mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Compare commits
	
		
			3 Commits
		
	
	
		
			feature/de
			...
			feature/mi
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					1e3fb32572 | ||
| 
						 | 
					0d5af667d8 | ||
| 
						 | 
					e9712bc7fb | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							@@ -1,54 +0,0 @@
 | 
			
		||||
name: Bug report
 | 
			
		||||
description: Report a bug.
 | 
			
		||||
title: "<insert title>"
 | 
			
		||||
labels: [bug]
 | 
			
		||||
 | 
			
		||||
body:
 | 
			
		||||
  - type: markdown
 | 
			
		||||
    attributes:
 | 
			
		||||
      value: >
 | 
			
		||||
        Thank you for taking the time to file a bug report.
 | 
			
		||||
        Please check that the code is pointing to the HEAD of develop
 | 
			
		||||
        or any commit in master which is tagged with a version number.
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Describe the issue:"
 | 
			
		||||
      description: >
 | 
			
		||||
        Describe the issue and any previous attempt to solve it.
 | 
			
		||||
    validations:
 | 
			
		||||
      required: true
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Code example:"
 | 
			
		||||
      description: >
 | 
			
		||||
        If relevant, show how to reproduce the issue using a minimal working
 | 
			
		||||
        example.
 | 
			
		||||
      placeholder: |
 | 
			
		||||
        << your code here >>
 | 
			
		||||
      render: shell
 | 
			
		||||
    validations:
 | 
			
		||||
      required: false
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Target platform:"
 | 
			
		||||
      description: >
 | 
			
		||||
        Give a description of the target platform (CPU, network, compiler).
 | 
			
		||||
        Please give the full CPU part description, using for example
 | 
			
		||||
        `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
 | 
			
		||||
        or `sysctl machdep.cpu.brand_string` (macOS) and the full output
 | 
			
		||||
        the `--version` option of your compiler.
 | 
			
		||||
    validations:
 | 
			
		||||
      required: true
 | 
			
		||||
 | 
			
		||||
  - type: textarea
 | 
			
		||||
    attributes:
 | 
			
		||||
      label: "Configure options:"
 | 
			
		||||
      description: >
 | 
			
		||||
        Please give the exact configure command used and attach
 | 
			
		||||
        `config.log`, `grid.config.summary` and the output of `make V=1`.
 | 
			
		||||
      render: shell
 | 
			
		||||
    validations:
 | 
			
		||||
      required: true
 | 
			
		||||
							
								
								
									
										29
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										29
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -1,7 +1,3 @@
 | 
			
		||||
# Doxygen stuff
 | 
			
		||||
html/*
 | 
			
		||||
latex/*
 | 
			
		||||
 | 
			
		||||
# Compiled Object files #
 | 
			
		||||
#########################
 | 
			
		||||
*.slo
 | 
			
		||||
@@ -87,36 +83,37 @@ ltmain.sh
 | 
			
		||||
.Trashes
 | 
			
		||||
ehthumbs.db
 | 
			
		||||
Thumbs.db
 | 
			
		||||
.dirstamp
 | 
			
		||||
 | 
			
		||||
# build directory #
 | 
			
		||||
###################
 | 
			
		||||
build*/*
 | 
			
		||||
Documentation/_build
 | 
			
		||||
 | 
			
		||||
# IDE related files #
 | 
			
		||||
#####################
 | 
			
		||||
*.xcodeproj/*
 | 
			
		||||
build.sh
 | 
			
		||||
.vscode
 | 
			
		||||
*.code-workspace
 | 
			
		||||
 | 
			
		||||
# Eigen source #
 | 
			
		||||
################
 | 
			
		||||
Grid/Eigen
 | 
			
		||||
Eigen/*
 | 
			
		||||
lib/Eigen/*
 | 
			
		||||
 | 
			
		||||
# FFTW source #
 | 
			
		||||
################
 | 
			
		||||
lib/fftw/*
 | 
			
		||||
 | 
			
		||||
# libtool macros #
 | 
			
		||||
##################
 | 
			
		||||
m4/lt*
 | 
			
		||||
m4/libtool.m4
 | 
			
		||||
 | 
			
		||||
# github pages #
 | 
			
		||||
################
 | 
			
		||||
gh-pages/
 | 
			
		||||
# Buck files #
 | 
			
		||||
##############
 | 
			
		||||
.buck*
 | 
			
		||||
buck-out
 | 
			
		||||
BUCK
 | 
			
		||||
make-bin-BUCK.sh
 | 
			
		||||
 | 
			
		||||
# generated sources #
 | 
			
		||||
#####################
 | 
			
		||||
Grid/qcd/spin/gamma-gen/*.h
 | 
			
		||||
Grid/qcd/spin/gamma-gen/*.cc
 | 
			
		||||
Grid/util/Version.h
 | 
			
		||||
lib/qcd/spin/gamma-gen/*.h
 | 
			
		||||
lib/qcd/spin/gamma-gen/*.cc
 | 
			
		||||
							
								
								
									
										106
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,106 @@
 | 
			
		||||
language: cpp
 | 
			
		||||
 | 
			
		||||
cache:
 | 
			
		||||
  directories:
 | 
			
		||||
    - clang
 | 
			
		||||
 | 
			
		||||
matrix:
 | 
			
		||||
  include:
 | 
			
		||||
    - os:        osx
 | 
			
		||||
      osx_image: xcode7.2
 | 
			
		||||
      compiler: clang
 | 
			
		||||
    - compiler: gcc
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-4.9
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: VERSION=-4.9
 | 
			
		||||
    - compiler: gcc
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-5
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: VERSION=-5
 | 
			
		||||
    - compiler: clang
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-4.8
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: CLANG_LINK=http://llvm.org/releases/3.8.0/clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
 | 
			
		||||
    - compiler: clang
 | 
			
		||||
      addons:
 | 
			
		||||
        apt:
 | 
			
		||||
          sources:
 | 
			
		||||
            - ubuntu-toolchain-r-test
 | 
			
		||||
          packages:
 | 
			
		||||
            - g++-4.8
 | 
			
		||||
            - libmpfr-dev
 | 
			
		||||
            - libgmp-dev
 | 
			
		||||
            - libmpc-dev
 | 
			
		||||
            - libopenmpi-dev
 | 
			
		||||
            - openmpi-bin
 | 
			
		||||
            - binutils-dev
 | 
			
		||||
      env: CLANG_LINK=http://llvm.org/releases/3.7.0/clang+llvm-3.7.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
 | 
			
		||||
      
 | 
			
		||||
before_install:
 | 
			
		||||
    - export GRIDDIR=`pwd`
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install openmpi; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]] && [[ "$CC" == "gcc" ]]; then brew install gcc5; fi
 | 
			
		||||
    
 | 
			
		||||
install:
 | 
			
		||||
    - export CC=$CC$VERSION
 | 
			
		||||
    - export CXX=$CXX$VERSION
 | 
			
		||||
    - echo $PATH
 | 
			
		||||
    - which $CC
 | 
			
		||||
    - $CC  --version
 | 
			
		||||
    - which $CXX
 | 
			
		||||
    - $CXX --version
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
 | 
			
		||||
    
 | 
			
		||||
script:
 | 
			
		||||
    - ./bootstrap.sh
 | 
			
		||||
    - mkdir build
 | 
			
		||||
    - cd build
 | 
			
		||||
    - ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
 | 
			
		||||
    - make -j4 
 | 
			
		||||
    - ./benchmarks/Benchmark_dwf --threads 1
 | 
			
		||||
    - echo make clean
 | 
			
		||||
    - ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
 | 
			
		||||
    - make -j4
 | 
			
		||||
    - ./benchmarks/Benchmark_dwf --threads 1
 | 
			
		||||
    - echo make clean
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then export CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi
 | 
			
		||||
    - ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto
 | 
			
		||||
    - make -j4
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi
 | 
			
		||||
    - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then mpirun -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi
 | 
			
		||||
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,2 +0,0 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
@@ -1,5 +0,0 @@
 | 
			
		||||
CXX=hipcc
 | 
			
		||||
MPICXX=mpicxx 
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
			
		||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
			
		||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
			
		||||
@@ -1,2 +0,0 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
@@ -1,5 +0,0 @@
 | 
			
		||||
Version : 0.8.0
 | 
			
		||||
 | 
			
		||||
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
 | 
			
		||||
- MPI and MPI3 comms optimisations for KNL and OPA finished
 | 
			
		||||
- Half precision comms
 | 
			
		||||
 
 | 
			
		||||
@@ -1,73 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/DisableWarnings.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2016
 | 
			
		||||
 | 
			
		||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef DISABLE_WARNINGS_H
 | 
			
		||||
#define DISABLE_WARNINGS_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined __GNUC__ && __GNUC__>=6
 | 
			
		||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 //disables and intel compiler specific warning (in json.hpp)
 | 
			
		||||
#ifdef __ICC
 | 
			
		||||
#pragma warning disable 488  
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef __NVCC__
 | 
			
		||||
 //disables nvcc specific warning in json.hpp
 | 
			
		||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
 | 
			
		||||
 | 
			
		||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
			
		||||
 //disables nvcc specific warning in json.hpp
 | 
			
		||||
#pragma nv_diag_suppress unsigned_compare_with_zero
 | 
			
		||||
#pragma nv_diag_suppress cast_to_qualified_type
 | 
			
		||||
 //disables nvcc specific warning in many files
 | 
			
		||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
 | 
			
		||||
#pragma nv_diag_suppress extra_semicolon
 | 
			
		||||
#else
 | 
			
		||||
 //disables nvcc specific warning in json.hpp
 | 
			
		||||
#pragma diag_suppress unsigned_compare_with_zero
 | 
			
		||||
#pragma diag_suppress cast_to_qualified_type
 | 
			
		||||
 //disables nvcc specific warning in many files
 | 
			
		||||
#pragma diag_suppress esa_on_defaulted_function_ignored
 | 
			
		||||
#pragma diag_suppress extra_semicolon
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
 | 
			
		||||
#ifdef  __ALTIVEC__
 | 
			
		||||
#define  EIGEN_DONT_VECTORIZE
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef  __VSX__
 | 
			
		||||
#define  EIGEN_DONT_VECTORIZE
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,35 +0,0 @@
 | 
			
		||||
#ifndef GRID_STD_H
 | 
			
		||||
#define GRID_STD_H
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Std C++ dependencies
 | 
			
		||||
///////////////////
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <complex>
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <array>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <iomanip>
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <functional>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <strings.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <signal.h>
 | 
			
		||||
#include <ctime>
 | 
			
		||||
#include <sys/time.h>
 | 
			
		||||
#include <chrono>
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Grid config
 | 
			
		||||
///////////////////
 | 
			
		||||
#include "Config.h"
 | 
			
		||||
 | 
			
		||||
#ifdef TOFU
 | 
			
		||||
#undef GRID_COMMS_THREADS
 | 
			
		||||
#endif
 | 
			
		||||
#endif /* GRID_STD_H */
 | 
			
		||||
@@ -1,75 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#pragma once
 | 
			
		||||
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
 | 
			
		||||
#ifdef USE_MKL
 | 
			
		||||
#define EIGEN_USE_MKL_ALL
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined __GNUC__
 | 
			
		||||
#pragma GCC diagnostic push
 | 
			
		||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* NVCC save and restore compile environment*/
 | 
			
		||||
#ifdef __NVCC__
 | 
			
		||||
#pragma push
 | 
			
		||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
			
		||||
#pragma nv_diag_suppress code_is_unreachable
 | 
			
		||||
#else
 | 
			
		||||
#pragma diag_suppress code_is_unreachable
 | 
			
		||||
#endif
 | 
			
		||||
#pragma push_macro("__CUDA_ARCH__")
 | 
			
		||||
#pragma push_macro("__NVCC__")
 | 
			
		||||
#pragma push_macro("__CUDACC__")
 | 
			
		||||
#undef __CUDA_ARCH__
 | 
			
		||||
#undef __NVCC__
 | 
			
		||||
#undef __CUDACC__
 | 
			
		||||
#define __NVCC__REDEFINE__
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
/* SYCL save and restore compile environment*/
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#pragma push
 | 
			
		||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
			
		||||
#undef __SYCL_DEVICE_ONLY__
 | 
			
		||||
#define EIGEN_DONT_VECTORIZE
 | 
			
		||||
#undef EIGEN_USE_SYCL
 | 
			
		||||
#define __SYCL__REDEFINE__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* HIP save and restore compile environment*/
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#pragma push
 | 
			
		||||
#pragma push_macro("__HIP_DEVICE_COMPILE__")
 | 
			
		||||
#endif
 | 
			
		||||
#define EIGEN_NO_HIP
 | 
			
		||||
 | 
			
		||||
#include <Grid/Eigen/Dense>
 | 
			
		||||
#include <Grid/Eigen/unsupported/CXX11/Tensor>
 | 
			
		||||
 | 
			
		||||
/* NVCC restore */
 | 
			
		||||
#ifdef __NVCC__REDEFINE__
 | 
			
		||||
#pragma pop_macro("__CUDACC__")
 | 
			
		||||
#pragma pop_macro("__NVCC__")
 | 
			
		||||
#pragma pop_macro("__CUDA_ARCH__")
 | 
			
		||||
#pragma pop
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/*SYCL restore*/
 | 
			
		||||
#ifdef __SYCL__REDEFINE__
 | 
			
		||||
#pragma pop_macro("__SYCL_DEVICE_ONLY__")
 | 
			
		||||
#pragma pop
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/*HIP restore*/
 | 
			
		||||
#ifdef __HIP__REDEFINE__
 | 
			
		||||
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
 | 
			
		||||
#pragma pop
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined __GNUC__
 | 
			
		||||
#pragma GCC diagnostic pop
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
@@ -1,81 +0,0 @@
 | 
			
		||||
extra_sources=
 | 
			
		||||
extra_headers=
 | 
			
		||||
 | 
			
		||||
if BUILD_COMMS_MPI3
 | 
			
		||||
  extra_sources+=communicator/Communicator_mpi3.cc
 | 
			
		||||
  extra_sources+=communicator/Communicator_base.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemoryMPI.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemory.cc
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
if BUILD_COMMS_NONE
 | 
			
		||||
  extra_sources+=communicator/Communicator_none.cc
 | 
			
		||||
  extra_sources+=communicator/Communicator_base.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemoryNone.cc
 | 
			
		||||
  extra_sources+=communicator/SharedMemory.cc
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
if BUILD_HDF5
 | 
			
		||||
  extra_sources+=serialisation/Hdf5IO.cc 
 | 
			
		||||
  extra_headers+=serialisation/Hdf5IO.h
 | 
			
		||||
  extra_headers+=serialisation/Hdf5Type.h
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
all: version-cache Version.h
 | 
			
		||||
 | 
			
		||||
version-cache:
 | 
			
		||||
	@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
 | 
			
		||||
		a="uncommited changes";\
 | 
			
		||||
	else\
 | 
			
		||||
		a="clean";\
 | 
			
		||||
	fi;\
 | 
			
		||||
	echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d $$a\\"%n" HEAD`" > vertmp;\
 | 
			
		||||
	if [ -e version-cache ]; then\
 | 
			
		||||
		d=`diff vertmp version-cache`;\
 | 
			
		||||
		if [ "$${d}" != "" ]; then\
 | 
			
		||||
			mv vertmp version-cache;\
 | 
			
		||||
			rm -f Version.h;\
 | 
			
		||||
		fi;\
 | 
			
		||||
	else\
 | 
			
		||||
		mv vertmp version-cache;\
 | 
			
		||||
		rm -f Version.h;\
 | 
			
		||||
	fi;\
 | 
			
		||||
	rm -f vertmp
 | 
			
		||||
 | 
			
		||||
Version.h: version-cache
 | 
			
		||||
	cp version-cache Version.h
 | 
			
		||||
 | 
			
		||||
.PHONY: version-cache
 | 
			
		||||
 | 
			
		||||
#
 | 
			
		||||
# Libraries
 | 
			
		||||
#
 | 
			
		||||
include Make.inc
 | 
			
		||||
include Eigen.inc
 | 
			
		||||
 | 
			
		||||
extra_sources+=$(WILS_FERMION_FILES)
 | 
			
		||||
extra_sources+=$(STAG_FERMION_FILES)
 | 
			
		||||
if BUILD_ZMOBIUS
 | 
			
		||||
  extra_sources+=$(ZWILS_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_GPARITY
 | 
			
		||||
  extra_sources+=$(GP_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_FERMION_REPS
 | 
			
		||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
			
		||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_SP
 | 
			
		||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
			
		||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
CCFILES += $(extra_sources)
 | 
			
		||||
HFILES  += $(extra_headers) Config.h Version.h
 | 
			
		||||
 | 
			
		||||
libGrid_a_SOURCES              = $(CCFILES)
 | 
			
		||||
libGrid_adir                   = $(includedir)/Grid
 | 
			
		||||
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) $(eigen_unsupp_files)
 | 
			
		||||
@@ -1,43 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/Namespace.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2016
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <exception>
 | 
			
		||||
 | 
			
		||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
			
		||||
#define NAMESPACE_END(A)   }
 | 
			
		||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
			
		||||
#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
			
		||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
			
		||||
 | 
			
		||||
#define EXCEPTION_CHECK_BEGIN(A) try {
 | 
			
		||||
#define EXCEPTION_CHECK_END(A)   } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
 | 
			
		||||
 | 
			
		||||
@@ -1,303 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/Cshift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef _GRID_FFT_H_
 | 
			
		||||
#define _GRID_FFT_H_
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_FFTW
 | 
			
		||||
#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
			
		||||
#include <fftw/fftw3.h>
 | 
			
		||||
#else
 | 
			
		||||
#include <fftw3.h>
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class scalar> struct FFTW { };
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_FFTW	
 | 
			
		||||
template<> struct FFTW<ComplexD> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef fftw_complex FFTW_scalar;
 | 
			
		||||
  typedef fftw_plan    FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, const int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, const int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
			
		||||
    ::fftw_flops(p,add,mul,fmas);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
			
		||||
    ::fftw_execute_dft(p,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    ::fftw_destroy_plan(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<> struct FFTW<ComplexF> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef fftwf_complex FFTW_scalar;
 | 
			
		||||
  typedef fftwf_plan    FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, const int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, const int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
			
		||||
    ::fftwf_flops(p,add,mul,fmas);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
			
		||||
    ::fftwf_execute_dft(p,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    ::fftwf_destroy_plan(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef FFTW_FORWARD
 | 
			
		||||
#define FFTW_FORWARD (-1)
 | 
			
		||||
#define FFTW_BACKWARD (+1)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class FFT {
 | 
			
		||||
private:
 | 
			
		||||
    
 | 
			
		||||
  GridCartesian *vgrid;
 | 
			
		||||
  GridCartesian *sgrid;
 | 
			
		||||
    
 | 
			
		||||
  int Nd;
 | 
			
		||||
  double flops;
 | 
			
		||||
  double flops_call;
 | 
			
		||||
  uint64_t usec;
 | 
			
		||||
    
 | 
			
		||||
  Coordinate dimensions;
 | 
			
		||||
  Coordinate processors;
 | 
			
		||||
  Coordinate processor_coor;
 | 
			
		||||
    
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
  static const int backward=FFTW_BACKWARD;
 | 
			
		||||
    
 | 
			
		||||
  double Flops(void) {return flops;}
 | 
			
		||||
  double MFlops(void) {return flops/usec;}
 | 
			
		||||
  double USec(void)   {return (double)usec;}    
 | 
			
		||||
 | 
			
		||||
  FFT ( GridCartesian * grid ) :
 | 
			
		||||
    vgrid(grid),
 | 
			
		||||
    Nd(grid->_ndimension),
 | 
			
		||||
    dimensions(grid->_fdimensions),
 | 
			
		||||
    processors(grid->_processors),
 | 
			
		||||
    processor_coor(grid->_processor_coor)
 | 
			
		||||
  {
 | 
			
		||||
    flops=0;
 | 
			
		||||
    usec =0;
 | 
			
		||||
    Coordinate layout(Nd,1);
 | 
			
		||||
    sgrid = new GridCartesian(dimensions,layout,processors,*grid);
 | 
			
		||||
  };
 | 
			
		||||
    
 | 
			
		||||
  ~FFT ( void)  {
 | 
			
		||||
    delete sgrid;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
 | 
			
		||||
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
    conformable(source.Grid(),vgrid);
 | 
			
		||||
    Lattice<vobj> tmp(vgrid);
 | 
			
		||||
    tmp = source;
 | 
			
		||||
    for(int d=0;d<Nd;d++){
 | 
			
		||||
      if( mask[d] ) {
 | 
			
		||||
	FFT_dim(result,tmp,d,sign);
 | 
			
		||||
	tmp=result;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
 | 
			
		||||
    Coordinate mask(Nd,1);
 | 
			
		||||
    FFT_dim_mask(result,source,mask,sign);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
			
		||||
#ifndef HAVE_FFTW
 | 
			
		||||
    std::cerr << "FFTW is not compiled but is called"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
#else
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
    conformable(source.Grid(),vgrid);
 | 
			
		||||
 | 
			
		||||
    int L = vgrid->_ldimensions[dim];
 | 
			
		||||
    int G = vgrid->_fdimensions[dim];
 | 
			
		||||
      
 | 
			
		||||
    Coordinate layout(Nd,1);
 | 
			
		||||
    Coordinate pencil_gd(vgrid->_fdimensions);
 | 
			
		||||
      
 | 
			
		||||
    pencil_gd[dim] = G*processors[dim];
 | 
			
		||||
      
 | 
			
		||||
    // Pencil global vol LxLxGxLxL per node
 | 
			
		||||
    GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
 | 
			
		||||
      
 | 
			
		||||
    // Construct pencils
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename sobj::scalar_type   scalar;
 | 
			
		||||
      
 | 
			
		||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
			
		||||
    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
			
		||||
    std::cout << "CPU view" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
			
		||||
      
 | 
			
		||||
    int Ncomp = sizeof(sobj)/sizeof(scalar);
 | 
			
		||||
    int Nlow  = 1;
 | 
			
		||||
    for(int d=0;d<dim;d++){
 | 
			
		||||
      Nlow*=vgrid->_ldimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    int rank = 1;  /* 1d transforms */
 | 
			
		||||
    int n[] = {G}; /* 1d transforms of length G */
 | 
			
		||||
    int howmany = Ncomp;
 | 
			
		||||
    int odist,idist,istride,ostride;
 | 
			
		||||
    idist   = odist   = 1;          /* Distance between consecutive FT's */
 | 
			
		||||
    istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
 | 
			
		||||
    int *inembed = n, *onembed = n;
 | 
			
		||||
      
 | 
			
		||||
    scalar div;
 | 
			
		||||
    if ( sign == backward ) div = 1.0/G;
 | 
			
		||||
    else if ( sign == forward ) div = 1.0;
 | 
			
		||||
    else assert(0);
 | 
			
		||||
      
 | 
			
		||||
    std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    {
 | 
			
		||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
      FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
      p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
 | 
			
		||||
					   in,inembed,
 | 
			
		||||
					   istride,idist,
 | 
			
		||||
					   out,onembed,
 | 
			
		||||
					   ostride, odist,
 | 
			
		||||
					   sign,FFTW_ESTIMATE);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // Barrel shift and collect global pencil
 | 
			
		||||
    std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
			
		||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
			
		||||
    result = source;
 | 
			
		||||
    int pc = processor_coor[dim];
 | 
			
		||||
    for(int p=0;p<processors[dim];p++) {
 | 
			
		||||
      {
 | 
			
		||||
	autoView(r_v,result,CpuRead);
 | 
			
		||||
	autoView(p_v,pgbuf,CpuWrite);
 | 
			
		||||
	thread_for(idx, sgrid->lSites(),{
 | 
			
		||||
          Coordinate cbuf(Nd);
 | 
			
		||||
          sobj s;
 | 
			
		||||
	  sgrid->LocalIndexToLocalCoor(idx,cbuf);
 | 
			
		||||
	  peekLocalSite(s,r_v,cbuf);
 | 
			
		||||
	  cbuf[dim]+=((pc+p) % processors[dim])*L;
 | 
			
		||||
	  pokeLocalSite(s,p_v,cbuf);
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      if (p != processors[dim] - 1) {
 | 
			
		||||
	result = Cshift(result,dim,L);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
 | 
			
		||||
    // Loop over orthog coords
 | 
			
		||||
    int NN=pencil_g.lSites();
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
    timer.Start();
 | 
			
		||||
    thread_for( idx,NN,{
 | 
			
		||||
        Coordinate cbuf(Nd);
 | 
			
		||||
	pencil_g.LocalIndexToLocalCoor(idx, cbuf);
 | 
			
		||||
	if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0
 | 
			
		||||
	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
 | 
			
		||||
	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
 | 
			
		||||
	  FFTW<scalar>::fftw_execute_dft(p,in,out);
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
      
 | 
			
		||||
    // performance counting
 | 
			
		||||
    double add,mul,fma;
 | 
			
		||||
    FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
 | 
			
		||||
    flops_call = add+mul+2.0*fma;
 | 
			
		||||
    usec += timer.useconds();
 | 
			
		||||
    flops+= flops_call*NN;
 | 
			
		||||
      
 | 
			
		||||
    std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
 | 
			
		||||
    // writing out result
 | 
			
		||||
    {
 | 
			
		||||
      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
			
		||||
      autoView(result_v,result,CpuWrite);
 | 
			
		||||
      thread_for(idx,sgrid->lSites(),{
 | 
			
		||||
	Coordinate clbuf(Nd), cgbuf(Nd);
 | 
			
		||||
	sobj s;
 | 
			
		||||
	sgrid->LocalIndexToLocalCoor(idx,clbuf);
 | 
			
		||||
	cgbuf = clbuf;
 | 
			
		||||
	cgbuf[dim] = clbuf[dim]+L*pc;
 | 
			
		||||
	peekLocalSite(s,pgbuf_v,cgbuf);
 | 
			
		||||
	pokeLocalSite(s,result_v,clbuf);
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
    result = result*div;
 | 
			
		||||
      
 | 
			
		||||
    std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
 | 
			
		||||
    // destroying plan
 | 
			
		||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,711 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/LinearOperator.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// LinearOperators Take a something and return a something.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real):
 | 
			
		||||
//SBase
 | 
			
		||||
//   i)  F(a x + b y) = aF(x) + b F(y).
 | 
			
		||||
//  ii)  <x|Op|y> = <y|AdjOp|x>^\ast
 | 
			
		||||
//
 | 
			
		||||
// Would be fun to have a test linearity & Herm Conj function!
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class LinearOperatorBase {
 | 
			
		||||
public:
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
 | 
			
		||||
  virtual void OpDir  (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
 | 
			
		||||
  virtual void OpDirAll  (const Field &in, std::vector<Field> &out) = 0; // Abstract base
 | 
			
		||||
 | 
			
		||||
  virtual void Op     (const Field &in, Field &out) = 0; // Abstract base
 | 
			
		||||
  virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base
 | 
			
		||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
 | 
			
		||||
  virtual void HermOp(const Field &in, Field &out)=0;
 | 
			
		||||
  virtual ~LinearOperatorBase(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
 | 
			
		||||
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
 | 
			
		||||
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
 | 
			
		||||
// replication of code.
 | 
			
		||||
//
 | 
			
		||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
 | 
			
		||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
 | 
			
		||||
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
 | 
			
		||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op from non-herm matrix
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class MdagMLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op and shift it for mgrid smoother
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  RealD _shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
    out = out + _shift*in;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Create a shifted HermOp
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  LinearOperatorBase<Field> &_Mat;
 | 
			
		||||
  RealD _shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.HermOp(in,out);
 | 
			
		||||
    out = out + _shift*in;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Wrap an already herm matrix
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class HermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot= innerProduct(in,out); n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class NonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Even Odd Schur decomp operators; there are several
 | 
			
		||||
// ways to introduce the even odd checkerboarding
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class SchurOperatorBase :  public LinearOperatorBase<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual  void Mpc      (const Field &in, Field &out) =0;
 | 
			
		||||
  virtual  void MpcDag   (const Field &in, Field &out) =0;
 | 
			
		||||
  virtual  void MpcDagMpc(const Field &in, Field &out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    tmp.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    Mpc(in,tmp);
 | 
			
		||||
    MpcDag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    MpcDagMpc(in,out);
 | 
			
		||||
    ComplexD dot= innerProduct(in,out); 
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    MpcDagMpc(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    Mpc(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){ 
 | 
			
		||||
    MpcDag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    assert(0); // must coarsen the unpreconditioned system
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
  class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
    Matrix &_Mat;
 | 
			
		||||
    SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
    virtual  void Mpc      (const Field &in, Field &out) {
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
      tmp.Checkerboard() = !in.Checkerboard();
 | 
			
		||||
      
 | 
			
		||||
      _Mat.Meooe(in,tmp);
 | 
			
		||||
      _Mat.MooeeInv(tmp,out);
 | 
			
		||||
      _Mat.Meooe(out,tmp);
 | 
			
		||||
      _Mat.Mooee(in,out);
 | 
			
		||||
      axpy(out,-1.0,tmp,out);
 | 
			
		||||
    }
 | 
			
		||||
    virtual void MpcDag   (const Field &in, Field &out){
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
	
 | 
			
		||||
      _Mat.MeooeDag(in,tmp);
 | 
			
		||||
      _Mat.MooeeInvDag(tmp,out);
 | 
			
		||||
      _Mat.MeooeDag(out,tmp);
 | 
			
		||||
      _Mat.MooeeDag(in,out);
 | 
			
		||||
      axpy(out,-1.0,tmp,out);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
  class SchurDiagOneOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
 protected:
 | 
			
		||||
    Matrix &_Mat;
 | 
			
		||||
 public:
 | 
			
		||||
    SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
    
 | 
			
		||||
    virtual void Mpc      (const Field &in, Field &out) {
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
      _Mat.Meooe(in,out);
 | 
			
		||||
      _Mat.MooeeInv(out,tmp);
 | 
			
		||||
      _Mat.Meooe(tmp,out);
 | 
			
		||||
      _Mat.MooeeInv(out,tmp);
 | 
			
		||||
      axpy(out,-1.0,tmp,in);
 | 
			
		||||
    }
 | 
			
		||||
    virtual void MpcDag   (const Field &in, Field &out){
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
      
 | 
			
		||||
      _Mat.MooeeInvDag(in,out);
 | 
			
		||||
      _Mat.MeooeDag(out,tmp);
 | 
			
		||||
      _Mat.MooeeInvDag(tmp,out);
 | 
			
		||||
      _Mat.MeooeDag(out,tmp);
 | 
			
		||||
      axpy(out,-1.0,tmp,in);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
  class SchurDiagTwoOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
 protected:
 | 
			
		||||
    Matrix &_Mat;
 | 
			
		||||
 public:
 | 
			
		||||
    SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
    
 | 
			
		||||
    virtual void Mpc      (const Field &in, Field &out) {
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
      
 | 
			
		||||
      _Mat.MooeeInv(in,out);
 | 
			
		||||
      _Mat.Meooe(out,tmp);
 | 
			
		||||
      _Mat.MooeeInv(tmp,out);
 | 
			
		||||
      _Mat.Meooe(out,tmp);
 | 
			
		||||
      
 | 
			
		||||
      axpy(out,-1.0,tmp,in);
 | 
			
		||||
    }
 | 
			
		||||
    virtual  void MpcDag   (const Field &in, Field &out){
 | 
			
		||||
      Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
      _Mat.MeooeDag(in,out);
 | 
			
		||||
      _Mat.MooeeInvDag(out,tmp);
 | 
			
		||||
      _Mat.MeooeDag(tmp,out);
 | 
			
		||||
      _Mat.MooeeInvDag(out,tmp);
 | 
			
		||||
 | 
			
		||||
      axpy(out,-1.0,tmp,in);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field> 
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void  Mpc      (const Field& in, Field& out) = 0;
 | 
			
		||||
  virtual void  MpcDag   (const Field& in, Field& out) = 0;
 | 
			
		||||
  virtual void  MpcDagMpc(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    tmp.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    Mpc(in,tmp);
 | 
			
		||||
    MpcDag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOp(const Field& in, Field& out) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Op(const Field& in, Field& out) {
 | 
			
		||||
    Mpc(in, out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp(const Field& in, Field& out) { 
 | 
			
		||||
    MpcDag(in, out);
 | 
			
		||||
  }
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag(const Field& in, Field& out) {
 | 
			
		||||
    assert(0); // must coarsen the unpreconditioned system
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir(const Field& in, Field& out, int dir, int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll(const Field& in, std::vector<Field>& out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class NonHermitianSchurDiagMooeeOperator :  public NonHermitianSchurOperatorBase<Field> 
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  Matrix& _Mat;
 | 
			
		||||
 NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
 | 
			
		||||
  virtual void Mpc(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    tmp.Checkerboard() = !in.Checkerboard();
 | 
			
		||||
    
 | 
			
		||||
    _Mat.Meooe(in, tmp);
 | 
			
		||||
    _Mat.MooeeInv(tmp, out);
 | 
			
		||||
    _Mat.Meooe(out, tmp);
 | 
			
		||||
    
 | 
			
		||||
    _Mat.Mooee(in, out);
 | 
			
		||||
    
 | 
			
		||||
    axpy(out, -1.0, tmp, out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MpcDag(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    _Mat.MeooeDag(in, tmp);
 | 
			
		||||
    _Mat.MooeeInvDag(tmp, out);
 | 
			
		||||
    _Mat.MeooeDag(out, tmp);
 | 
			
		||||
	  
 | 
			
		||||
    _Mat.MooeeDag(in, out);
 | 
			
		||||
    
 | 
			
		||||
    axpy(out, -1.0, tmp, out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field> 
 | 
			
		||||
{
 | 
			
		||||
 protected:
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  
 | 
			
		||||
 public:
 | 
			
		||||
  NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
 | 
			
		||||
  virtual void Mpc(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
	  
 | 
			
		||||
    _Mat.Meooe(in, out);
 | 
			
		||||
    _Mat.MooeeInv(out, tmp);
 | 
			
		||||
    _Mat.Meooe(tmp, out);
 | 
			
		||||
    _Mat.MooeeInv(out, tmp);
 | 
			
		||||
 | 
			
		||||
    axpy(out, -1.0, tmp, in);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MpcDag(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    _Mat.MooeeInvDag(in, out);
 | 
			
		||||
    _Mat.MeooeDag(out, tmp);
 | 
			
		||||
    _Mat.MooeeInvDag(tmp, out);
 | 
			
		||||
    _Mat.MeooeDag(out, tmp);
 | 
			
		||||
    
 | 
			
		||||
    axpy(out, -1.0, tmp, in);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field> 
 | 
			
		||||
{
 | 
			
		||||
 protected:
 | 
			
		||||
  Matrix& _Mat;
 | 
			
		||||
  
 | 
			
		||||
 public:
 | 
			
		||||
 NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  virtual void Mpc(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    _Mat.MooeeInv(in, out);
 | 
			
		||||
    _Mat.Meooe(out, tmp);
 | 
			
		||||
    _Mat.MooeeInv(tmp, out);
 | 
			
		||||
    _Mat.Meooe(out, tmp);
 | 
			
		||||
 | 
			
		||||
    axpy(out, -1.0, tmp, in);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MpcDag(const Field& in, Field& out) {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    _Mat.MeooeDag(in, out);
 | 
			
		||||
    _Mat.MooeeInvDag(out, tmp);
 | 
			
		||||
    _Mat.MeooeDag(tmp, out);
 | 
			
		||||
    _Mat.MooeeInvDag(out, tmp);
 | 
			
		||||
 | 
			
		||||
    axpy(out, -1.0, tmp, in);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
 | 
			
		||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
 | 
			
		||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  Staggered use
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
 protected:
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  Field tmp;
 | 
			
		||||
  RealD mass;
 | 
			
		||||
 public:
 | 
			
		||||
  SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid()) 
 | 
			
		||||
  { 
 | 
			
		||||
    assert( _Mat.isTrivialEE() );
 | 
			
		||||
    mass = _Mat.Mass();
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    Mpc(in,out);
 | 
			
		||||
    ComplexD dot= innerProduct(in,out);
 | 
			
		||||
    n1 = real(dot);
 | 
			
		||||
    n2 =0.0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
    Mpc(in,out);
 | 
			
		||||
    //    _Mat.Meooe(in,out);
 | 
			
		||||
    //    _Mat.Meooe(out,tmp);
 | 
			
		||||
    //    axpby(out,-1.0,mass*mass,tmp,in);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mpc      (const Field &in, Field &out) 
 | 
			
		||||
  {
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
    Field tmp2(in.Grid());
 | 
			
		||||
	
 | 
			
		||||
    //    _Mat.Mooee(in,out);
 | 
			
		||||
    //    _Mat.Mooee(out,tmp);
 | 
			
		||||
 | 
			
		||||
    _Mat.Meooe(in,out);
 | 
			
		||||
    _Mat.Meooe(out,tmp);
 | 
			
		||||
    axpby(out,-1.0,mass*mass,tmp,in);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void MpcDag   (const Field &in, Field &out){
 | 
			
		||||
    Mpc(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MpcDagMpc(const Field &in, Field &out) {
 | 
			
		||||
    assert(0);// Never need with staggered
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for functions of operators
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class OperatorFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    for(int k=0;k<in.size();k++){
 | 
			
		||||
      (*this)(Linop,in[k],out[k]);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  virtual ~OperatorFunction(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class LinearFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (const Field &in, Field &out) = 0;
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
 | 
			
		||||
  {
 | 
			
		||||
    assert(in.size() == out.size());
 | 
			
		||||
 | 
			
		||||
    for (unsigned int i = 0; i < in.size(); ++i)
 | 
			
		||||
    {
 | 
			
		||||
      (*this)(in[i], out[i]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual ~LinearFunction(){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
    out = in;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for Multishift solvers for operators
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class OperatorMultiFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// FIXME : To think about
 | 
			
		||||
 | 
			
		||||
// Chroma functionality list defining LinearOperator
 | 
			
		||||
/*
 | 
			
		||||
  virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
 | 
			
		||||
  virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
 | 
			
		||||
  virtual const Subset& subset() const = 0;
 | 
			
		||||
  virtual unsigned long nFlops() const { return 0; }
 | 
			
		||||
  virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
 | 
			
		||||
  class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
 | 
			
		||||
  const Subset& subset() const {return all;}
 | 
			
		||||
  };
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Hermitian operator Linear function and operator function
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
    Linop.HermOp(in,out);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class PlainHermOp : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  LinearOperatorBase<Field> &_Linop;
 | 
			
		||||
      
 | 
			
		||||
  PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) 
 | 
			
		||||
  {}
 | 
			
		||||
      
 | 
			
		||||
  void operator()(const Field& in, Field& out) {
 | 
			
		||||
    _Linop.HermOp(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class FunctionHermOp : public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator(); 
 | 
			
		||||
  OperatorFunction<Field>   & _poly;
 | 
			
		||||
  LinearOperatorBase<Field> &_Linop;
 | 
			
		||||
      
 | 
			
		||||
  FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop) 
 | 
			
		||||
    : _poly(poly), _Linop(linop) {};
 | 
			
		||||
      
 | 
			
		||||
  void operator()(const Field& in, Field& out) {
 | 
			
		||||
    _poly(_Linop,in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class Polynomial : public OperatorFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
 | 
			
		||||
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    Field AtoN(in.Grid());
 | 
			
		||||
    Field Mtmp(in.Grid());
 | 
			
		||||
    AtoN = in;
 | 
			
		||||
    out = AtoN*Coeffs[0];
 | 
			
		||||
    for(int n=1;n<Coeffs.size();n++){
 | 
			
		||||
      Mtmp = AtoN;
 | 
			
		||||
      Linop.HermOp(Mtmp,AtoN);
 | 
			
		||||
      out=out+AtoN*Coeffs[n];
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,52 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/Preconditioner.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_PRECONDITIONER_H
 | 
			
		||||
#define GRID_PRECONDITIONER_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field> using Preconditioner =  LinearFunction<Field> ;
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class Field> class Preconditioner :  public LinearFunction<Field> {
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  virtual void operator()(const Field &src, Field & psi)=0;
 | 
			
		||||
};
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class Field> class TrivialPrecon :  public Preconditioner<Field> { 
 | 
			
		||||
public:
 | 
			
		||||
  using Preconditioner<Field>::operator();
 | 
			
		||||
  virtual void operator()(const Field &src, Field & psi){
 | 
			
		||||
    psi = src;
 | 
			
		||||
  }
 | 
			
		||||
  TrivialPrecon(void){};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,86 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/SparseMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_ALGORITHM_SPARSE_MATRIX_H
 | 
			
		||||
#define  GRID_ALGORITHM_SPARSE_MATRIX_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class SparseMatrixBase {
 | 
			
		||||
public:
 | 
			
		||||
  virtual GridBase *Grid(void) =0;
 | 
			
		||||
  // Full checkerboar operations
 | 
			
		||||
  virtual void  M    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual void  Mdag (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual void  MdagM(const Field &in, Field &out) {
 | 
			
		||||
    Field tmp (in.Grid());
 | 
			
		||||
    M(in,tmp);
 | 
			
		||||
    Mdag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
			
		||||
    Field tmp (in.Grid());
 | 
			
		||||
    Mdag(in,tmp);
 | 
			
		||||
    M(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
			
		||||
  virtual ~SparseMatrixBase() {};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Interface augmented by a red black sparse matrix, such as a Fermion action
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  virtual GridBase *RedBlackGrid(void)=0;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Query the even even properties to make algorithmic decisions
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual RealD  Mass(void)        { return 0.0; };
 | 
			
		||||
  virtual int    ConstEE(void)     { return 1; }; // Disable assumptions unless overridden
 | 
			
		||||
  virtual int    isTrivialEE(void) { return 0; }; // by a derived class that knows better
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operaions
 | 
			
		||||
  virtual  void Meooe    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mooee    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void MooeeInv (const Field &in, Field &out)=0;
 | 
			
		||||
 | 
			
		||||
  virtual  void MeooeDag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void MooeeDag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void MooeeInvDag (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual ~CheckerBoardedSparseMatrixBase() {};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,414 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/approx/Chebyshev.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CHEBYSHEV_H
 | 
			
		||||
#define GRID_CHEBYSHEV_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/LinearOperator.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
struct ChebyParams : Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
 | 
			
		||||
				  RealD, alpha,  
 | 
			
		||||
				  RealD, beta,   
 | 
			
		||||
				  int, Npoly);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Generic Chebyshev approximations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class Chebyshev : public OperatorFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD hi;
 | 
			
		||||
  RealD lo;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    RealD diff = hi-lo;
 | 
			
		||||
    RealD delta = diff*1.0e-9;
 | 
			
		||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
      delta*=1.02;
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Convenience for plotting the approximation
 | 
			
		||||
  void   PlotApprox(std::ostream &out) {
 | 
			
		||||
    out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
 | 
			
		||||
      out <<x<<"\t"<<approx(x)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  Chebyshev(){};
 | 
			
		||||
  Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
 | 
			
		||||
  Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
 | 
			
		||||
  Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // CJ: the one we need for Lanczos
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order,0.0);
 | 
			
		||||
    Coeffs[order-1] = 1.0;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
			
		||||
  // Similar kick effect below the threshold as Lanczos filter approach
 | 
			
		||||
  void InitLowPass(RealD _lo,RealD _hi,int _order)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD k=(order-1.0);
 | 
			
		||||
      RealD s=std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class functor>
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  void JacksonSmooth(void){
 | 
			
		||||
    RealD M=order;
 | 
			
		||||
    RealD alpha = M_PI/(M+2);
 | 
			
		||||
    RealD lmax = std::cos(alpha);
 | 
			
		||||
    RealD sumUsq =0;
 | 
			
		||||
    std::vector<RealD> U(M);
 | 
			
		||||
    std::vector<RealD> a(M);
 | 
			
		||||
    std::vector<RealD> g(M);
 | 
			
		||||
    for(int n=0;n<=M;n++){
 | 
			
		||||
      U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
 | 
			
		||||
      sumUsq += U[n]*U[n];
 | 
			
		||||
    }      
 | 
			
		||||
    sumUsq = std::sqrt(sumUsq);
 | 
			
		||||
 | 
			
		||||
    for(int i=1;i<=M;i++){
 | 
			
		||||
      a[i] = U[i]/sumUsq;
 | 
			
		||||
    }
 | 
			
		||||
    g[0] = 1.0;
 | 
			
		||||
    for(int m=1;m<=M;m++){
 | 
			
		||||
      g[m] = 0;
 | 
			
		||||
      for(int i=0;i<=M-m;i++){
 | 
			
		||||
	g[m]+= a[i]*a[m+i];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for(int m=1;m<=M;m++){
 | 
			
		||||
      Coeffs[m]*=g[m];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  RealD approx(RealD x) // Convenience for plotting the approximation
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
      
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
    RealD T0=1;
 | 
			
		||||
    RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
    sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int i=2;i<order;i++){
 | 
			
		||||
      Tnp=2*y*Tn-Tnm;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
      sum+= Tn*Coeffs[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  RealD approxD(RealD x)
 | 
			
		||||
  {
 | 
			
		||||
    RealD Un;
 | 
			
		||||
    RealD Unm;
 | 
			
		||||
    RealD Unp;
 | 
			
		||||
      
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
    RealD U0=1;
 | 
			
		||||
    RealD U1=2*y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = Coeffs[1]*U0;
 | 
			
		||||
    sum+= Coeffs[2]*U1*2.0;
 | 
			
		||||
      
 | 
			
		||||
    Un =U1;
 | 
			
		||||
    Unm=U0;
 | 
			
		||||
    for(int i=2;i<order-1;i++){
 | 
			
		||||
      Unp=2*y*Un-Unm;
 | 
			
		||||
      Unm=Un;
 | 
			
		||||
      Un =Unp;
 | 
			
		||||
      sum+= Un*Coeffs[i+1]*(i+1.0);
 | 
			
		||||
    }
 | 
			
		||||
    return sum/(0.5*(hi-lo));
 | 
			
		||||
  };
 | 
			
		||||
    
 | 
			
		||||
  RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
 | 
			
		||||
    RealD x = x0;
 | 
			
		||||
    RealD eps;
 | 
			
		||||
      
 | 
			
		||||
    int i;
 | 
			
		||||
    for (i=0;i<maxiter;i++) {
 | 
			
		||||
      eps = approx(x) - z;
 | 
			
		||||
      if (fabs(eps / z) < resid)
 | 
			
		||||
	return x;
 | 
			
		||||
      x = x - eps / approxD(x);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    return std::numeric_limits<double>::quiet_NaN();
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
    typedef typename Field::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    Field T0(grid); T0 = in;  
 | 
			
		||||
    Field T1(grid); 
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field y(grid);
 | 
			
		||||
      
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    axpby(T1,xscale,mscale,y,in);
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
			
		||||
    axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
      axpby(y,xscale,mscale,y,(*Tn));
 | 
			
		||||
      axpby(*Tnp,2.0,-1.0,y,(*Tnm));
 | 
			
		||||
      if ( Coeffs[n] != 0.0) {
 | 
			
		||||
	axpy(out,Coeffs[n],*Tnp,out);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ChebyshevLanczos : public Chebyshev<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD alpha;
 | 
			
		||||
  RealD beta;
 | 
			
		||||
  RealD mu;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
 | 
			
		||||
    alpha(_alpha),
 | 
			
		||||
    beta(_beta),
 | 
			
		||||
    mu(_mu)
 | 
			
		||||
  {
 | 
			
		||||
    order=_order;
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int i=0;i<_order;i++){
 | 
			
		||||
      Coeffs[i] = 0.0;
 | 
			
		||||
    }
 | 
			
		||||
    Coeffs[order-1]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD approx(RealD xx) // Convenience for plotting the approximation
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
    Real aa = alpha * alpha;
 | 
			
		||||
    Real bb = beta  *  beta;
 | 
			
		||||
      
 | 
			
		||||
    RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
 | 
			
		||||
 | 
			
		||||
    RealD y= x;
 | 
			
		||||
      
 | 
			
		||||
    RealD T0=1;
 | 
			
		||||
    RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
    sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int i=2;i<order;i++){
 | 
			
		||||
      Tnp=2*y*Tn-Tnm;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
      sum+= Tn*Coeffs[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // shift_Multiply in Rudy's code
 | 
			
		||||
  void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
 | 
			
		||||
    RealD aa= alpha*alpha;
 | 
			
		||||
    RealD bb= beta * beta;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOp(in,out);
 | 
			
		||||
    out = out - mu*in;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOp(out,tmp);
 | 
			
		||||
    tmp = tmp - mu * out;
 | 
			
		||||
 | 
			
		||||
    out = (2.0/ (aa-bb) ) * tmp -  ((aa+bb)/(aa-bb))*in;
 | 
			
		||||
  };
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid); T0 = in;  
 | 
			
		||||
    Field T1(grid); 
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field  y(grid);
 | 
			
		||||
      
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    // Tn=T1 = (xscale M )*in
 | 
			
		||||
    AminusMuSq(Linop,T0,T1);
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
      AminusMuSq(Linop,*Tn,y);
 | 
			
		||||
 | 
			
		||||
      *Tnp=2.0*y-(*Tnm);
 | 
			
		||||
 | 
			
		||||
      out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,152 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/approx/Forecast.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef INCLUDED_FORECAST_H
 | 
			
		||||
#define INCLUDED_FORECAST_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Abstract base class.
 | 
			
		||||
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
 | 
			
		||||
// and returns a forecasted solution to the system D*psi = phi (psi).
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class Forecast
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
 | 
			
		||||
// used to forecast solutions across poles of the EOFA heatbath.
 | 
			
		||||
//
 | 
			
		||||
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class ChronoForecast : public Forecast<Matrix,Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
 | 
			
		||||
  {
 | 
			
		||||
    int degree = prev_solns.size();
 | 
			
		||||
    Field chi(phi); // forecasted solution
 | 
			
		||||
 | 
			
		||||
    // Trivial cases
 | 
			
		||||
    if(degree == 0){ chi = Zero(); return chi; }
 | 
			
		||||
    else if(degree == 1){ return prev_solns[0]; }
 | 
			
		||||
 | 
			
		||||
    //    RealD dot;
 | 
			
		||||
    ComplexD xp;
 | 
			
		||||
    Field r(phi); // residual
 | 
			
		||||
    Field Mv(phi);
 | 
			
		||||
    std::vector<Field> v(prev_solns); // orthonormalized previous solutions
 | 
			
		||||
    std::vector<Field> MdagMv(degree,phi);
 | 
			
		||||
 | 
			
		||||
    // Array to hold the matrix elements
 | 
			
		||||
    std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
 | 
			
		||||
 | 
			
		||||
    // Solution and source vectors
 | 
			
		||||
    std::vector<ComplexD> a(degree);
 | 
			
		||||
    std::vector<ComplexD> b(degree);
 | 
			
		||||
 | 
			
		||||
    // Orthonormalize the vector basis
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      v[i] *= 1.0/std::sqrt(norm2(v[i]));
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Perform sparse matrix multiplication and construct rhs
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      b[i] = innerProduct(v[i],phi);
 | 
			
		||||
      Mat.M(v[i],Mv);
 | 
			
		||||
      Mat.Mdag(Mv,MdagMv[i]);
 | 
			
		||||
      G[i][i] = innerProduct(v[i],MdagMv[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Construct the matrix
 | 
			
		||||
    for(int j=0; j<degree; j++){
 | 
			
		||||
      for(int k=j+1; k<degree; k++){
 | 
			
		||||
	G[j][k] = innerProduct(v[j],MdagMv[k]);
 | 
			
		||||
	G[k][j] = conjugate(G[j][k]);
 | 
			
		||||
      }}
 | 
			
		||||
 | 
			
		||||
    // Gauss-Jordan elimination with partial pivoting
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
 | 
			
		||||
      // Perform partial pivoting
 | 
			
		||||
      int k = i;
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
 | 
			
		||||
      if(k != i){
 | 
			
		||||
	xp = b[k];
 | 
			
		||||
	b[k] = b[i];
 | 
			
		||||
	b[i] = xp;
 | 
			
		||||
	for(int j=0; j<degree; j++){
 | 
			
		||||
	  xp = G[k][j];
 | 
			
		||||
	  G[k][j] = G[i][j];
 | 
			
		||||
	  G[i][j] = xp;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Convert matrix to upper triangular form
 | 
			
		||||
      for(int j=i+1; j<degree; j++){
 | 
			
		||||
	xp = G[j][i]/G[i][i];
 | 
			
		||||
	b[j] -= xp * b[i];
 | 
			
		||||
	for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Use Gaussian elimination to solve equations and calculate initial guess
 | 
			
		||||
    chi = Zero();
 | 
			
		||||
    r = phi;
 | 
			
		||||
    for(int i=degree-1; i>=0; i--){
 | 
			
		||||
      a[i] = 0.0;
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
 | 
			
		||||
      a[i] = (b[i]-a[i])/G[i][i];
 | 
			
		||||
      chi += a[i]*v[i];
 | 
			
		||||
      r -= a[i]*MdagMv[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD true_r(0.0);
 | 
			
		||||
    ComplexD tmp;
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      tmp = -b[i];
 | 
			
		||||
      for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
 | 
			
		||||
      tmp = conjugate(tmp)*tmp;
 | 
			
		||||
      true_r += std::sqrt(tmp.real());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD error = std::sqrt(norm2(r)/norm2(phi));
 | 
			
		||||
    std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
 | 
			
		||||
 | 
			
		||||
    return chi;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,129 +0,0 @@
 | 
			
		||||
#ifndef GRID_JACOBIPOLYNOMIAL_H
 | 
			
		||||
#define GRID_JACOBIPOLYNOMIAL_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/LinearOperator.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class JacobiPolynomial : public OperatorFunction<Field> {
 | 
			
		||||
 private:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD hi;
 | 
			
		||||
  RealD lo;
 | 
			
		||||
  RealD alpha;
 | 
			
		||||
  RealD beta;
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    csv(out,lo,hi);
 | 
			
		||||
  }
 | 
			
		||||
  void csv(std::ostream &out,RealD llo,RealD hhi){
 | 
			
		||||
    RealD diff = hhi-llo;
 | 
			
		||||
    RealD delta = diff*1.0e-5;
 | 
			
		||||
    for (RealD x=llo-delta; x<=hhi; x+=delta) {
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f <<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  JacobiPolynomial(){};
 | 
			
		||||
  JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
 | 
			
		||||
  {
 | 
			
		||||
      lo=_lo;
 | 
			
		||||
      hi=_hi;
 | 
			
		||||
      alpha=_alpha;
 | 
			
		||||
      beta=_beta;
 | 
			
		||||
      order=_order;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  RealD approx(RealD x) // Convenience for plotting the approximation                                                       
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
 | 
			
		||||
    RealD T0=1.0;
 | 
			
		||||
    RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
 | 
			
		||||
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int n=2;n<=order;n++){
 | 
			
		||||
      RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
 | 
			
		||||
      RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
 | 
			
		||||
      RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
 | 
			
		||||
      RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
 | 
			
		||||
      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
    }
 | 
			
		||||
    return Tnp;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Implement the required interface                                                                                       
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
    GridBase *grid=in.Grid();
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid);
 | 
			
		||||
    Field T1(grid);
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field y(grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    //    RealD T0=1.0;                                                                                                     
 | 
			
		||||
    T0=in;
 | 
			
		||||
 | 
			
		||||
    //    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));                                                                           
 | 
			
		||||
    //           = x * 2/(hi-lo) - (hi+lo)/(hi-lo)                                                                          
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    y=y*xscale+in*mscale;
 | 
			
		||||
 | 
			
		||||
    // RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
 | 
			
		||||
    RealD halfAmB  = (alpha-beta)*0.5;
 | 
			
		||||
    RealD halfApBp2= (alpha+beta+2.0)*0.5;
 | 
			
		||||
    T1 = halfAmB * in + halfApBp2*y;
 | 
			
		||||
 | 
			
		||||
    for(int n=2;n<=order;n++){
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
      y=xscale*y+mscale*(*Tn);
 | 
			
		||||
 | 
			
		||||
      RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
 | 
			
		||||
      RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
 | 
			
		||||
      RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
 | 
			
		||||
      RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
 | 
			
		||||
 | 
			
		||||
      //      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;                                                             
 | 
			
		||||
      cny=cny/cnp;
 | 
			
		||||
      cn1=cn1/cnp;
 | 
			
		||||
      cn1=cn1/cnp;
 | 
			
		||||
      cnm=cnm/cnp;
 | 
			
		||||
 | 
			
		||||
      *Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies                                                                                     
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
    }
 | 
			
		||||
    out=*Tnp;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,473 +0,0 @@
 | 
			
		||||
#include<math.h>
 | 
			
		||||
#include<stdio.h>
 | 
			
		||||
#include<stdlib.h>
 | 
			
		||||
#include<string>
 | 
			
		||||
#include<iostream>
 | 
			
		||||
#include<iomanip>
 | 
			
		||||
#include<cassert>
 | 
			
		||||
 | 
			
		||||
#include<Grid/algorithms/approx/RemezGeneral.h>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Constructor
 | 
			
		||||
AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision,
 | 
			
		||||
				 bigfloat (*f)(bigfloat x, void *data), void *data): f(f), 
 | 
			
		||||
										     data(data), 
 | 
			
		||||
										     prec(precision),
 | 
			
		||||
										     apstrt(lower), apend(upper), apwidt(upper - lower),
 | 
			
		||||
										     n(0), d(0), pow_n(0), pow_d(0)
 | 
			
		||||
{
 | 
			
		||||
  bigfloat::setDefaultPrecision(prec);
 | 
			
		||||
 | 
			
		||||
  std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
 | 
			
		||||
  std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Determine the properties of the numerator and denominator polynomials
 | 
			
		||||
void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){
 | 
			
		||||
  pow_n = num_degree;
 | 
			
		||||
  pow_d = den_degree;
 | 
			
		||||
 | 
			
		||||
  if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
 | 
			
		||||
  if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
 | 
			
		||||
 | 
			
		||||
  if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
 | 
			
		||||
  if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
 | 
			
		||||
 | 
			
		||||
  num_type = num_type_in;
 | 
			
		||||
  den_type = den_type_in;
 | 
			
		||||
 | 
			
		||||
  num_pows.resize(pow_n+1);
 | 
			
		||||
  den_pows.resize(pow_d+1);
 | 
			
		||||
 | 
			
		||||
  int n_in = 0;
 | 
			
		||||
  bool odd = num_type == PolyType::Full || num_type == PolyType::Odd;
 | 
			
		||||
  bool even = num_type == PolyType::Full || num_type == PolyType::Even;
 | 
			
		||||
  for(int i=0;i<=pow_n;i++){
 | 
			
		||||
    num_pows[i] = -1;
 | 
			
		||||
    if(i % 2 == 0 && even) num_pows[i] = n_in++;
 | 
			
		||||
    if(i % 2 == 1 && odd) num_pows[i] = n_in++;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << n_in << " terms in numerator" << std::endl;
 | 
			
		||||
  --n_in; //power is 1 less than the number of terms, eg  pow=1   a x^1  + b x^0
 | 
			
		||||
 | 
			
		||||
  int d_in = 0;
 | 
			
		||||
  odd = den_type == PolyType::Full || den_type == PolyType::Odd;
 | 
			
		||||
  even = den_type == PolyType::Full || den_type == PolyType::Even;
 | 
			
		||||
  for(int i=0;i<=pow_d;i++){
 | 
			
		||||
    den_pows[i] = -1;
 | 
			
		||||
    if(i % 2 == 0 && even) den_pows[i] = d_in++;
 | 
			
		||||
    if(i % 2 == 1 && odd) den_pows[i] = d_in++;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << d_in << " terms in denominator" << std::endl;
 | 
			
		||||
  --d_in;
 | 
			
		||||
 | 
			
		||||
  n = n_in;
 | 
			
		||||
  d = d_in;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Setup algorithm
 | 
			
		||||
void AlgRemezGeneral::reinitializeAlgorithm(){
 | 
			
		||||
  spread = 1.0e37;
 | 
			
		||||
  iter = 0;
 | 
			
		||||
 | 
			
		||||
  neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1
 | 
			
		||||
 | 
			
		||||
  param.resize(neq);
 | 
			
		||||
  yy.resize(neq+1);
 | 
			
		||||
 | 
			
		||||
  //Initialize linear equation temporaries
 | 
			
		||||
  A.resize(neq*neq);
 | 
			
		||||
  B.resize(neq);
 | 
			
		||||
  IPS.resize(neq);
 | 
			
		||||
 | 
			
		||||
  //Initialize maximum and minimum errors
 | 
			
		||||
  xx.resize(neq+2);
 | 
			
		||||
  mm.resize(neq+1);
 | 
			
		||||
  initialGuess();
 | 
			
		||||
 | 
			
		||||
  //Initialize search steps
 | 
			
		||||
  step.resize(neq+1);
 | 
			
		||||
  stpini();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree, 
 | 
			
		||||
				       const PolyType num_type_in, const PolyType den_type_in, 
 | 
			
		||||
				       const double _tolerance, const int report_freq){
 | 
			
		||||
  //Setup the properties of the polynomial
 | 
			
		||||
  setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in);
 | 
			
		||||
 | 
			
		||||
  //Setup the algorithm
 | 
			
		||||
  reinitializeAlgorithm();
 | 
			
		||||
 | 
			
		||||
  bigfloat tolerance = _tolerance;
 | 
			
		||||
 | 
			
		||||
  //Iterate until convergance
 | 
			
		||||
  while (spread > tolerance) { 
 | 
			
		||||
    if (iter++ % report_freq==0)
 | 
			
		||||
      std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl; 
 | 
			
		||||
 | 
			
		||||
    equations();
 | 
			
		||||
    if (delta < tolerance) {
 | 
			
		||||
      std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
 | 
			
		||||
      assert(0);
 | 
			
		||||
    };    
 | 
			
		||||
    assert( delta>= tolerance );
 | 
			
		||||
 | 
			
		||||
    search();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int sign;
 | 
			
		||||
  double error = (double)getErr(mm[0],&sign);
 | 
			
		||||
  std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
 | 
			
		||||
 | 
			
		||||
  // Return the maximum error in the approximation
 | 
			
		||||
  return error;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Initial values of maximal and minimal errors
 | 
			
		||||
void AlgRemezGeneral::initialGuess(){
 | 
			
		||||
  // Supply initial guesses for solution points
 | 
			
		||||
  long ncheb = neq;			// Degree of Chebyshev error estimate
 | 
			
		||||
 | 
			
		||||
  // Find ncheb+1 extrema of Chebyshev polynomial
 | 
			
		||||
  bigfloat a = ncheb;
 | 
			
		||||
  bigfloat r;
 | 
			
		||||
 | 
			
		||||
  mm[0] = apstrt;
 | 
			
		||||
  for (long i = 1; i < ncheb; i++) {
 | 
			
		||||
    r = 0.5 * (1 - cos((M_PI * i)/(double) a));
 | 
			
		||||
    //r *= sqrt_bf(r);
 | 
			
		||||
    r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
 | 
			
		||||
    mm[i] = apstrt + r * apwidt;
 | 
			
		||||
  }
 | 
			
		||||
  mm[ncheb] = apend;
 | 
			
		||||
 | 
			
		||||
  a = 2.0 * ncheb;
 | 
			
		||||
  for (long i = 0; i <= ncheb; i++) {
 | 
			
		||||
    r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
 | 
			
		||||
    //r *= sqrt_bf(r); // Squeeze to low end of interval
 | 
			
		||||
    r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
 | 
			
		||||
    xx[i] = apstrt + r * apwidt;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Initialise step sizes
 | 
			
		||||
void AlgRemezGeneral::stpini(){
 | 
			
		||||
  xx[neq+1] = apend;
 | 
			
		||||
  delta = 0.25;
 | 
			
		||||
  step[0] = xx[0] - apstrt;
 | 
			
		||||
  for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
 | 
			
		||||
  step[neq] = step[neq-1];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Search for error maxima and minima
 | 
			
		||||
void AlgRemezGeneral::search(){
 | 
			
		||||
  bigfloat a, q, xm, ym, xn, yn, xx1;
 | 
			
		||||
  int emsign, ensign, steps;
 | 
			
		||||
 | 
			
		||||
  int meq = neq + 1;
 | 
			
		||||
 | 
			
		||||
  bigfloat eclose = 1.0e30;
 | 
			
		||||
  bigfloat farther = 0l;
 | 
			
		||||
 | 
			
		||||
  bigfloat xx0 = apstrt;
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < meq; i++) {
 | 
			
		||||
    steps = 0;
 | 
			
		||||
    xx1 = xx[i]; // Next zero
 | 
			
		||||
    if (i == meq-1) xx1 = apend;
 | 
			
		||||
    xm = mm[i];
 | 
			
		||||
    ym = getErr(xm,&emsign);
 | 
			
		||||
    q = step[i];
 | 
			
		||||
    xn = xm + q;
 | 
			
		||||
    if (xn < xx0 || xn >= xx1) {	// Cannot skip over adjacent boundaries
 | 
			
		||||
      q = -q;
 | 
			
		||||
      xn = xm;
 | 
			
		||||
      yn = ym;
 | 
			
		||||
      ensign = emsign;
 | 
			
		||||
    } else {
 | 
			
		||||
      yn = getErr(xn,&ensign);
 | 
			
		||||
      if (yn < ym) {
 | 
			
		||||
	q = -q;
 | 
			
		||||
	xn = xm;
 | 
			
		||||
	yn = ym;
 | 
			
		||||
	ensign = emsign;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    while(yn >= ym) {		// March until error becomes smaller.
 | 
			
		||||
      if (++steps > 10)
 | 
			
		||||
      	break;
 | 
			
		||||
      
 | 
			
		||||
      ym = yn;
 | 
			
		||||
      xm = xn;
 | 
			
		||||
      emsign = ensign;
 | 
			
		||||
      a = xm + q;
 | 
			
		||||
      if (a == xm || a <= xx0 || a >= xx1)
 | 
			
		||||
	break;// Must not skip over the zeros either side.      
 | 
			
		||||
 | 
			
		||||
      xn = a;
 | 
			
		||||
      yn = getErr(xn,&ensign);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    mm[i] = xm;			// Position of maximum
 | 
			
		||||
    yy[i] = ym;			// Value of maximum
 | 
			
		||||
 | 
			
		||||
    if (eclose > ym) eclose = ym;
 | 
			
		||||
    if (farther < ym) farther = ym;
 | 
			
		||||
 | 
			
		||||
    xx0 = xx1; // Walk to next zero.
 | 
			
		||||
  } // end of search loop
 | 
			
		||||
 | 
			
		||||
  q = (farther - eclose);	// Decrease step size if error spread increased
 | 
			
		||||
 | 
			
		||||
  if (eclose != 0.0) q /= eclose; // Relative error spread
 | 
			
		||||
 | 
			
		||||
  if (q >= spread)
 | 
			
		||||
    delta *= 0.5; // Spread is increasing; decrease step size
 | 
			
		||||
  
 | 
			
		||||
  spread = q;
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < neq; i++) {
 | 
			
		||||
    q = yy[i+1];
 | 
			
		||||
    if (q != 0.0) q = yy[i] / q  - (bigfloat)1l;
 | 
			
		||||
    else q = 0.0625;
 | 
			
		||||
    if (q > (bigfloat)0.25) q = 0.25;
 | 
			
		||||
    q *= mm[i+1] - mm[i];
 | 
			
		||||
    step[i] = q * delta;
 | 
			
		||||
  }
 | 
			
		||||
  step[neq] = step[neq-1];
 | 
			
		||||
  
 | 
			
		||||
  for (int i = 0; i < neq; i++) {	// Insert new locations for the zeros.
 | 
			
		||||
    xm = xx[i] - step[i];
 | 
			
		||||
 | 
			
		||||
    if (xm <= apstrt)
 | 
			
		||||
      continue;
 | 
			
		||||
 | 
			
		||||
    if (xm >= apend)
 | 
			
		||||
      continue;
 | 
			
		||||
 | 
			
		||||
    if (xm <= mm[i])
 | 
			
		||||
      xm = (bigfloat)0.5 * (mm[i] + xx[i]);    
 | 
			
		||||
 | 
			
		||||
    if (xm >= mm[i+1])
 | 
			
		||||
      xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
 | 
			
		||||
    
 | 
			
		||||
    xx[i] = xm;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Solve the equations
 | 
			
		||||
void AlgRemezGeneral::equations(){
 | 
			
		||||
  bigfloat x, y, z;
 | 
			
		||||
  bigfloat *aa;
 | 
			
		||||
  
 | 
			
		||||
  for (int i = 0; i < neq; i++) {	// set up the equations for solution by simq()
 | 
			
		||||
    int ip = neq * i;		// offset to 1st element of this row of matrix
 | 
			
		||||
    x = xx[i];			// the guess for this row
 | 
			
		||||
    y = func(x);		// right-hand-side vector
 | 
			
		||||
 | 
			
		||||
    z = (bigfloat)1l;
 | 
			
		||||
    aa = A.data()+ip;
 | 
			
		||||
    int t = 0;
 | 
			
		||||
    for (int j = 0; j <= pow_n; j++) {
 | 
			
		||||
      if(num_pows[j] != -1){ *aa++ = z; t++; }
 | 
			
		||||
      z *= x;
 | 
			
		||||
    }
 | 
			
		||||
    assert(t == n+1);
 | 
			
		||||
 | 
			
		||||
    z = (bigfloat)1l;
 | 
			
		||||
    t = 0;
 | 
			
		||||
    for (int j = 0; j < pow_d; j++) {
 | 
			
		||||
      if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
 | 
			
		||||
      z *= x;
 | 
			
		||||
    }
 | 
			
		||||
    assert(t == d);
 | 
			
		||||
 | 
			
		||||
    B[i] = y * z;		// Right hand side vector
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Solve the simultaneous linear equations.
 | 
			
		||||
  if (simq()){
 | 
			
		||||
    std::cout<<"simq failed\n";
 | 
			
		||||
    exit(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Evaluate the rational form P(x)/Q(x) using coefficients
 | 
			
		||||
// from the solution vector param
 | 
			
		||||
bigfloat AlgRemezGeneral::approx(const bigfloat x) const{
 | 
			
		||||
  // Work backwards toward the constant term.
 | 
			
		||||
  int c = n;
 | 
			
		||||
  bigfloat yn = param[c--];		// Highest order numerator coefficient
 | 
			
		||||
  for (int i = pow_n-1; i >= 0; i--) yn = x * yn  +  (num_pows[i] != -1 ? param[c--] : bigfloat(0l));  
 | 
			
		||||
 | 
			
		||||
  c = n+d;
 | 
			
		||||
  bigfloat yd = 1l; //Highest degree coefficient is 1.0
 | 
			
		||||
  for (int i = pow_d-1; i >= 0; i--) yd = x * yd  +  (den_pows[i] != -1 ? param[c--] : bigfloat(0l)); 
 | 
			
		||||
 | 
			
		||||
  return(yn/yd);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Compute size and sign of the approximation error at x
 | 
			
		||||
bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{
 | 
			
		||||
  bigfloat f = func(x);
 | 
			
		||||
  bigfloat e = approx(x) - f;
 | 
			
		||||
  if (f != 0) e /= f;
 | 
			
		||||
  if (e < (bigfloat)0.0) {
 | 
			
		||||
    *sign = -1;
 | 
			
		||||
    e = -e;
 | 
			
		||||
  }
 | 
			
		||||
  else *sign = 1;
 | 
			
		||||
  
 | 
			
		||||
  return(e);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Solve the system AX=B
 | 
			
		||||
int AlgRemezGeneral::simq(){
 | 
			
		||||
 | 
			
		||||
  int ip, ipj, ipk, ipn;
 | 
			
		||||
  int idxpiv;
 | 
			
		||||
  int kp, kp1, kpk, kpn;
 | 
			
		||||
  int nip, nkp;
 | 
			
		||||
  bigfloat em, q, rownrm, big, size, pivot, sum;
 | 
			
		||||
  bigfloat *aa;
 | 
			
		||||
  bigfloat *X = param.data();
 | 
			
		||||
 | 
			
		||||
  int n = neq;
 | 
			
		||||
  int nm1 = n - 1;
 | 
			
		||||
  // Initialize IPS and X
 | 
			
		||||
  
 | 
			
		||||
  int ij = 0;
 | 
			
		||||
  for (int i = 0; i < n; i++) {
 | 
			
		||||
    IPS[i] = i;
 | 
			
		||||
    rownrm = 0.0;
 | 
			
		||||
    for(int j = 0; j < n; j++) {
 | 
			
		||||
      q = abs_bf(A[ij]);
 | 
			
		||||
      if(rownrm < q) rownrm = q;
 | 
			
		||||
      ++ij;
 | 
			
		||||
    }
 | 
			
		||||
    if (rownrm == (bigfloat)0l) {
 | 
			
		||||
      std::cout<<"simq rownrm=0\n";
 | 
			
		||||
      return(1);
 | 
			
		||||
    }
 | 
			
		||||
    X[i] = (bigfloat)1.0 / rownrm;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  for (int k = 0; k < nm1; k++) {
 | 
			
		||||
    big = 0.0;
 | 
			
		||||
    idxpiv = 0;
 | 
			
		||||
    
 | 
			
		||||
    for (int i = k; i < n; i++) {
 | 
			
		||||
      ip = IPS[i];
 | 
			
		||||
      ipk = n*ip + k;
 | 
			
		||||
      size = abs_bf(A[ipk]) * X[ip];
 | 
			
		||||
      if (size > big) {
 | 
			
		||||
	big = size;
 | 
			
		||||
	idxpiv = i;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if (big == (bigfloat)0l) {
 | 
			
		||||
      std::cout<<"simq big=0\n";
 | 
			
		||||
      return(2);
 | 
			
		||||
    }
 | 
			
		||||
    if (idxpiv != k) {
 | 
			
		||||
      int j = IPS[k];
 | 
			
		||||
      IPS[k] = IPS[idxpiv];
 | 
			
		||||
      IPS[idxpiv] = j;
 | 
			
		||||
    }
 | 
			
		||||
    kp = IPS[k];
 | 
			
		||||
    kpk = n*kp + k;
 | 
			
		||||
    pivot = A[kpk];
 | 
			
		||||
    kp1 = k+1;
 | 
			
		||||
    for (int i = kp1; i < n; i++) {
 | 
			
		||||
      ip = IPS[i];
 | 
			
		||||
      ipk = n*ip + k;
 | 
			
		||||
      em = -A[ipk] / pivot;
 | 
			
		||||
      A[ipk] = -em;
 | 
			
		||||
      nip = n*ip;
 | 
			
		||||
      nkp = n*kp;
 | 
			
		||||
      aa = A.data()+nkp+kp1;
 | 
			
		||||
      for (int j = kp1; j < n; j++) {
 | 
			
		||||
	ipj = nip + j;
 | 
			
		||||
	A[ipj] = A[ipj] + em * *aa++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  kpn = n * IPS[n-1] + n - 1;	// last element of IPS[n] th row
 | 
			
		||||
  if (A[kpn] == (bigfloat)0l) {
 | 
			
		||||
    std::cout<<"simq A[kpn]=0\n";
 | 
			
		||||
    return(3);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ip = IPS[0];
 | 
			
		||||
  X[0] = B[ip];
 | 
			
		||||
  for (int i = 1; i < n; i++) {
 | 
			
		||||
    ip = IPS[i];
 | 
			
		||||
    ipj = n * ip;
 | 
			
		||||
    sum = 0.0;
 | 
			
		||||
    for (int j = 0; j < i; j++) {
 | 
			
		||||
      sum += A[ipj] * X[j];
 | 
			
		||||
      ++ipj;
 | 
			
		||||
    }
 | 
			
		||||
    X[i] = B[ip] - sum;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ipn = n * IPS[n-1] + n - 1;
 | 
			
		||||
  X[n-1] = X[n-1] / A[ipn];
 | 
			
		||||
  
 | 
			
		||||
  for (int iback = 1; iback < n; iback++) {
 | 
			
		||||
    //i goes (n-1),...,1
 | 
			
		||||
    int i = nm1 - iback;
 | 
			
		||||
    ip = IPS[i];
 | 
			
		||||
    nip = n*ip;
 | 
			
		||||
    sum = 0.0;
 | 
			
		||||
    aa = A.data()+nip+i+1;
 | 
			
		||||
    for (int j= i + 1; j < n; j++) 
 | 
			
		||||
      sum += *aa++ * X[j];
 | 
			
		||||
    X[i] = (X[i] - sum) / A[nip+i];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void AlgRemezGeneral::csv(std::ostream & os) const{
 | 
			
		||||
  os << "Numerator" << std::endl;
 | 
			
		||||
  for(int i=0;i<=pow_n;i++){
 | 
			
		||||
    os << getCoeffNum(i) << "*x^" << i;
 | 
			
		||||
    if(i!=pow_n) os << " + ";
 | 
			
		||||
  }
 | 
			
		||||
  os << std::endl;
 | 
			
		||||
 | 
			
		||||
  os << "Denominator" << std::endl;
 | 
			
		||||
  for(int i=0;i<=pow_d;i++){
 | 
			
		||||
    os << getCoeffDen(i) << "*x^" << i;
 | 
			
		||||
    if(i!=pow_d) os << " + ";
 | 
			
		||||
  }
 | 
			
		||||
  os << std::endl;
 | 
			
		||||
 | 
			
		||||
  //For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc
 | 
			
		||||
  int sign;
 | 
			
		||||
  os << "Errors at maxima: coordinate, error, (sign)" << std::endl;
 | 
			
		||||
  for(int i=0;i<neq+1;i++){ 
 | 
			
		||||
    os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  os << "Scan over range:" << std::endl;
 | 
			
		||||
  int npt = 60;
 | 
			
		||||
  bigfloat dlt = (apend - apstrt)/bigfloat(npt-1);
 | 
			
		||||
 | 
			
		||||
  for (bigfloat x=apstrt; x<=apend; x = x + dlt) {
 | 
			
		||||
    double f = evaluateFunc(x);
 | 
			
		||||
    double r = evaluateApprox(x);
 | 
			
		||||
    os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
@@ -1,170 +0,0 @@
 | 
			
		||||
/*
 | 
			
		||||
  C.Kelly Jan 2020 based on implementation by M. Clark May 2005
 | 
			
		||||
 | 
			
		||||
  AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial 
 | 
			
		||||
  It includes optional restriction to odd/even polynomials for the numerator and/or denominator
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
 | 
			
		||||
#define INCLUDED_ALG_REMEZ_GENERAL_H
 | 
			
		||||
 | 
			
		||||
#include <stddef.h>
 | 
			
		||||
#include <Grid/GridStd.h>
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_LIBGMP
 | 
			
		||||
#include "bigfloat.h"
 | 
			
		||||
#else
 | 
			
		||||
#include "bigfloat_double.h"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AlgRemezGeneral{
 | 
			
		||||
 public:
 | 
			
		||||
  enum PolyType { Even, Odd, Full };
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
 | 
			
		||||
  // In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
 | 
			
		||||
  bigfloat (*f)(bigfloat x, void *data);
 | 
			
		||||
  void *data;
 | 
			
		||||
 | 
			
		||||
  // The approximation parameters
 | 
			
		||||
  std::vector<bigfloat> param;
 | 
			
		||||
  bigfloat norm;
 | 
			
		||||
 | 
			
		||||
  // The number of non-zero terms in the numerator and denominator
 | 
			
		||||
  int n, d;
 | 
			
		||||
  // The numerator and denominator degree (i.e.  the largest power)
 | 
			
		||||
  int pow_n, pow_d;
 | 
			
		||||
  
 | 
			
		||||
  // Specify if the numerator and/or denominator are odd/even polynomials
 | 
			
		||||
  PolyType num_type;
 | 
			
		||||
  PolyType den_type;
 | 
			
		||||
  std::vector<int> num_pows; //contains the mapping, with -1 if not present
 | 
			
		||||
  std::vector<int> den_pows;
 | 
			
		||||
 | 
			
		||||
  // The bounds of the approximation
 | 
			
		||||
  bigfloat apstrt, apwidt, apend;
 | 
			
		||||
 | 
			
		||||
  // Variables used to calculate the approximation
 | 
			
		||||
  int nd1, iter;
 | 
			
		||||
  std::vector<bigfloat> xx;
 | 
			
		||||
  std::vector<bigfloat> mm;
 | 
			
		||||
  std::vector<bigfloat> step;
 | 
			
		||||
 | 
			
		||||
  bigfloat delta, spread;
 | 
			
		||||
  
 | 
			
		||||
  // Variables used in search
 | 
			
		||||
  std::vector<bigfloat> yy;
 | 
			
		||||
 | 
			
		||||
  // Variables used in solving linear equations
 | 
			
		||||
  std::vector<bigfloat> A;
 | 
			
		||||
  std::vector<bigfloat> B;
 | 
			
		||||
  std::vector<int> IPS;
 | 
			
		||||
 | 
			
		||||
  // The number of equations we must solve at each iteration (n+d+1)
 | 
			
		||||
  int neq;
 | 
			
		||||
 | 
			
		||||
  // The precision of the GNU MP library
 | 
			
		||||
  long prec;
 | 
			
		||||
 | 
			
		||||
  // Initialize member variables associated with the polynomial's properties
 | 
			
		||||
  void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
 | 
			
		||||
 | 
			
		||||
  // Initial values of maximal and minmal errors
 | 
			
		||||
  void initialGuess();
 | 
			
		||||
 | 
			
		||||
  // Initialise step sizes
 | 
			
		||||
  void stpini();
 | 
			
		||||
 | 
			
		||||
  // Initialize the algorithm
 | 
			
		||||
  void reinitializeAlgorithm();
 | 
			
		||||
 | 
			
		||||
  // Solve the equations
 | 
			
		||||
  void equations();
 | 
			
		||||
 | 
			
		||||
  // Search for error maxima and minima
 | 
			
		||||
  void search(); 
 | 
			
		||||
 | 
			
		||||
  // Calculate function required for the approximation
 | 
			
		||||
  inline bigfloat func(bigfloat x) const{
 | 
			
		||||
    return f(x, data);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Compute size and sign of the approximation error at x
 | 
			
		||||
  bigfloat getErr(bigfloat x, int *sign) const;
 | 
			
		||||
 | 
			
		||||
  // Solve the system AX=B   where X = param
 | 
			
		||||
  int simq();
 | 
			
		||||
 | 
			
		||||
  // Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
 | 
			
		||||
  bigfloat approx(bigfloat x) const;
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  
 | 
			
		||||
  AlgRemezGeneral(double lower, double upper, long prec,
 | 
			
		||||
		  bigfloat (*f)(bigfloat x, void *data), void *data);
 | 
			
		||||
 | 
			
		||||
  inline int getDegree(void) const{ 
 | 
			
		||||
    assert(n==d);
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  // Reset the bounds of the approximation
 | 
			
		||||
  inline void setBounds(double lower, double upper) {
 | 
			
		||||
    apstrt = lower;
 | 
			
		||||
    apend = upper;
 | 
			
		||||
    apwidt = apend - apstrt;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Get the bounds of the approximation
 | 
			
		||||
  inline void getBounds(double &lower, double &upper) const{ 
 | 
			
		||||
    lower=(double)apstrt;
 | 
			
		||||
    upper=(double)apend;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Run the algorithm to generate the rational approximation
 | 
			
		||||
  double generateApprox(int num_degree, int den_degree, 
 | 
			
		||||
			PolyType num_type, PolyType den_type,
 | 
			
		||||
			const double tolerance = 1e-15, const int report_freq = 1000);
 | 
			
		||||
  
 | 
			
		||||
  inline double generateApprox(int num_degree, int den_degree, 
 | 
			
		||||
			       const double tolerance = 1e-15, const int report_freq = 1000){
 | 
			
		||||
    return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // Evaluate the rational form P(x)/Q(x) using coefficients from the
 | 
			
		||||
  // solution vector param
 | 
			
		||||
  inline double evaluateApprox(double x) const{
 | 
			
		||||
    return (double)approx((bigfloat)x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
 | 
			
		||||
  inline double evaluateInverseApprox(double x) const{
 | 
			
		||||
    return 1.0/(double)approx((bigfloat)x);
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
  // Calculate function required for the approximation
 | 
			
		||||
  inline double evaluateFunc(double x) const{
 | 
			
		||||
    return (double)func((bigfloat)x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Calculate inverse function required for the approximation
 | 
			
		||||
  inline double evaluateInverseFunc(double x) const{
 | 
			
		||||
    return 1.0/(double)func((bigfloat)x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Dump csv of function, approx and error
 | 
			
		||||
  void csv(std::ostream &os = std::cout) const;
 | 
			
		||||
 | 
			
		||||
  // Get the coefficient of the term x^i in the numerator
 | 
			
		||||
  inline double getCoeffNum(const int i) const{    
 | 
			
		||||
    return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
 | 
			
		||||
  }
 | 
			
		||||
  // Get the coefficient of the term x^i in the denominator
 | 
			
		||||
  inline double getCoeffDen(const int i) const{ 
 | 
			
		||||
    if(i == pow_d) return 1.0;
 | 
			
		||||
    else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]); 
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,183 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/approx/ZMobius.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/approx/ZMobius.h>
 | 
			
		||||
#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
NAMESPACE_BEGIN(Approx);
 | 
			
		||||
 | 
			
		||||
//Compute the tanh approximation
 | 
			
		||||
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
 | 
			
		||||
  int Ls = w.size();
 | 
			
		||||
 | 
			
		||||
  ComplexD fxp = 1., fmp = 1.;
 | 
			
		||||
  for(int i=0;i<Ls;i++){
 | 
			
		||||
    fxp = fxp * ( w[i] + x );
 | 
			
		||||
    fmp = fmp * ( w[i] - x );
 | 
			
		||||
  }
 | 
			
		||||
  return ((fxp - fmp)/(fxp + fmp)).real();
 | 
			
		||||
}
 | 
			
		||||
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
 | 
			
		||||
  int Ls = w.size();
 | 
			
		||||
 | 
			
		||||
  double fxp = 1., fmp = 1.;
 | 
			
		||||
  for(int i=0;i<Ls;i++){
 | 
			
		||||
    fxp = fxp * ( w[i] + x );
 | 
			
		||||
    fmp = fmp * ( w[i] - x );
 | 
			
		||||
  }
 | 
			
		||||
  return (fxp - fmp)/(fxp + fmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Compute the tanh approximation in a form suitable for the Remez
 | 
			
		||||
bigfloat epsilonMobius(bigfloat x, void* data){
 | 
			
		||||
  const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
 | 
			
		||||
  bigfloat fxp(1.0);
 | 
			
		||||
  bigfloat fmp(1.0);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<omega.size();i++){
 | 
			
		||||
    fxp = fxp * ( bigfloat(omega[i]) + x);
 | 
			
		||||
    fmp = fmp * ( bigfloat(omega[i]) - x);
 | 
			
		||||
  }
 | 
			
		||||
  return (fxp - fmp)/(fxp + fmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound
 | 
			
		||||
//Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters
 | 
			
		||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
 | 
			
		||||
			 const std::vector<RealD> &omega_in, const int Ls_in,
 | 
			
		||||
			 const RealD lambda_bound){
 | 
			
		||||
  assert(omega_in.size() == Ls_in);
 | 
			
		||||
  omega_out.resize(Ls_out);
 | 
			
		||||
 | 
			
		||||
  //Use the Remez algorithm to generate the appropriate rational polynomial
 | 
			
		||||
  //For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)  
 | 
			
		||||
  AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in); 
 | 
			
		||||
  remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
 | 
			
		||||
  remez.csv(std::cout);
 | 
			
		||||
 | 
			
		||||
  //The rational approximation has the form  [ f(x) - f(-x) ] / [ f(x) + f(-x) ]  where  f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
 | 
			
		||||
  //cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7  pg 102
 | 
			
		||||
  //omega_i are therefore the negative of the complex roots of f(x)
 | 
			
		||||
 | 
			
		||||
  //We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
 | 
			
		||||
  // \rho(\lambda) = det( A - \lambda I )    where I is the unit matrix
 | 
			
		||||
  //The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n   is the companion matrix 
 | 
			
		||||
  // A = | 0    1   0    0 0 .... 0 |
 | 
			
		||||
  //     | 0    0   1    0 0 .... 0 |
 | 
			
		||||
  //     | :    :   :    : :      : |
 | 
			
		||||
  //     | 0    0   0    0 0      1
 | 
			
		||||
  //     | -a0 -a1 -a2  ...  ... -an|
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Note the Remez defines the largest power to have unit coefficient
 | 
			
		||||
  std::vector<RealD> coeffs(Ls_out+1);
 | 
			
		||||
  for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
 | 
			
		||||
  for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
 | 
			
		||||
 | 
			
		||||
  std::vector<std::complex<RealD> > roots(Ls_out);
 | 
			
		||||
 | 
			
		||||
  //Form the companion matrix
 | 
			
		||||
  Eigen::MatrixXd compn(Ls_out,Ls_out);
 | 
			
		||||
  for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
 | 
			
		||||
  compn(Ls_out - 1, 0) = -coeffs[0];
 | 
			
		||||
  
 | 
			
		||||
  for(int j=1;j<Ls_out;j++){
 | 
			
		||||
    for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
 | 
			
		||||
    compn(Ls_out - 1, j) = -coeffs[j];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Eigensolve
 | 
			
		||||
  Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
 | 
			
		||||
 | 
			
		||||
  const auto & ev = slv.eigenvalues();
 | 
			
		||||
  for(int i=0;i<Ls_out;i++)
 | 
			
		||||
    omega_out[i] = -ev(i);
 | 
			
		||||
 | 
			
		||||
  //Sort ascending (smallest at start of vector!)
 | 
			
		||||
  std::sort(omega_out.begin(), omega_out.end(), 
 | 
			
		||||
	    [&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
 | 
			
		||||
 | 
			
		||||
  //McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
 | 
			
		||||
  std::vector<ComplexD> omega_tmp = omega_out;
 | 
			
		||||
  int s_low=0, s_high=Ls_out-1, ss=0;
 | 
			
		||||
  for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
 | 
			
		||||
    int s_to;
 | 
			
		||||
    if(ss % 2 == 0){
 | 
			
		||||
      s_to = s_low++;
 | 
			
		||||
    }else{
 | 
			
		||||
      s_to = s_high--;
 | 
			
		||||
    }
 | 
			
		||||
    omega_out[s_to] = omega_tmp[s_from];
 | 
			
		||||
    ++ss;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  std::cout << "Resulting omega_i:" << std::endl;  
 | 
			
		||||
  for(int i=0;i<Ls_out;i++)
 | 
			
		||||
    std::cout << omega_out[i] << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
 | 
			
		||||
  std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
 | 
			
		||||
  
 | 
			
		||||
  int npt = 60;
 | 
			
		||||
  double dlt = lambda_bound/double(npt-1);
 | 
			
		||||
 | 
			
		||||
  for (int i =0; i<npt; i++){
 | 
			
		||||
    double x = i*dlt;
 | 
			
		||||
    double r = remez.evaluateApprox(x);
 | 
			
		||||
    double p = epsilonMobius(x, omega_out);
 | 
			
		||||
    double e = epsilonMobius(x, omega_in);
 | 
			
		||||
 | 
			
		||||
    std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
//mobius_param = b+c   with b-c=1
 | 
			
		||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
 | 
			
		||||
  std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
 | 
			
		||||
  computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out
 | 
			
		||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, 
 | 
			
		||||
			 const RealD mobius_param_out, const int Ls_out, 
 | 
			
		||||
			 const RealD mobius_param_in, const int Ls_in,
 | 
			
		||||
			 const RealD lambda_bound){
 | 
			
		||||
  computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
 | 
			
		||||
  for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
 | 
			
		||||
}
 | 
			
		||||
//Assumes mobius_param_out == mobius_param_in
 | 
			
		||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
 | 
			
		||||
  computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Approx);
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,57 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/approx/ZMobius.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_ZMOBIUS_APPROX_H
 | 
			
		||||
#define GRID_ZMOBIUS_APPROX_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
NAMESPACE_BEGIN(Approx);
 | 
			
		||||
 | 
			
		||||
//Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound
 | 
			
		||||
//Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters
 | 
			
		||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
 | 
			
		||||
			 const std::vector<RealD> &omega_in, const int Ls_in,
 | 
			
		||||
			 const RealD lambda_bound);
 | 
			
		||||
  
 | 
			
		||||
//mobius_param = b+c   with b-c=1
 | 
			
		||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
 | 
			
		||||
 | 
			
		||||
//ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out
 | 
			
		||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, 
 | 
			
		||||
			 const RealD mobius_param_out, const int Ls_out, 
 | 
			
		||||
			 const RealD mobius_param_in, const int Ls_in,
 | 
			
		||||
			 const RealD lambda_bound);
 | 
			
		||||
 | 
			
		||||
//Assumes mobius_param_out == mobius_param_in
 | 
			
		||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Approx);
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,34 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
gridblasHandle_t GridBLAS::gridblasHandle;
 | 
			
		||||
int              GridBLAS::gridblasInit;
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,895 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#include <hipblas/hipblas.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
#include <cublas_v2.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
#if 0
 | 
			
		||||
#define GRID_ONE_MKL
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////	  
 | 
			
		||||
// Need to rearrange lattice data to be in the right format for a
 | 
			
		||||
// batched multiply. Might as well make these static, dense packed
 | 
			
		||||
///////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  typedef hipblasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  typedef cublasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  typedef sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
  typedef sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
 | 
			
		||||
 | 
			
		||||
class GridBLAS {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  static gridblasHandle_t gridblasHandle;
 | 
			
		||||
  static int            gridblasInit;
 | 
			
		||||
  
 | 
			
		||||
  static void Init(void)
 | 
			
		||||
  {
 | 
			
		||||
    if ( ! gridblasInit ) {
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
      std::cout << "cublasCreate"<<std::endl;
 | 
			
		||||
      cublasCreate(&gridblasHandle);
 | 
			
		||||
      cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
      std::cout << "hipblasCreate"<<std::endl;
 | 
			
		||||
      hipblasCreate(&gridblasHandle);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      gridblasHandle = theGridAccelerator;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
      sycl::gpu_selector selector;
 | 
			
		||||
      sycl::device selectedDevice { selector };
 | 
			
		||||
      sycl::property_list q_prop{sycl::property::queue::in_order()};
 | 
			
		||||
      gridblasHandle =new sycl::queue (selectedDevice,q_prop);
 | 
			
		||||
#endif
 | 
			
		||||
      gridblasInit=1;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // Force construct once
 | 
			
		||||
  GridBLAS() { Init(); };
 | 
			
		||||
  ~GridBLAS() { };
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // BLAS GEMM conventions:
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // - C = alpha A * B + beta C
 | 
			
		||||
  // Dimensions:
 | 
			
		||||
  // - C_m.n
 | 
			
		||||
  // - A_m.k
 | 
			
		||||
  // - B_k.n
 | 
			
		||||
  // - Flops = 8 M N K
 | 
			
		||||
  // - Bytes = 2*sizeof(word) * (MN+MK+KN)
 | 
			
		||||
  // M=60, N=12
 | 
			
		||||
  // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void synchronise(void)
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipDeviceSynchronize();
 | 
			
		||||
    assert(err==hipSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cudaDeviceSynchronize();
 | 
			
		||||
    assert(err==cudaSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
    gridblasHandle->wait();
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_T);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    
 | 
			
		||||
    static deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasZgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    //	 std::cout << " hipblas return code " <<(int)err<<std::endl;
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasZgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (ComplexD *) &alpha_p[0],
 | 
			
		||||
						  (const ComplexD **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const ComplexD **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (ComplexD *) &beta_p[0],
 | 
			
		||||
						  (ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
#if 0
 | 
			
		||||
      // This code was used to check the mat mul on Sunspot/OneMKL
 | 
			
		||||
      std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
 | 
			
		||||
      std::vector<ComplexD> A(m*k);  // pointer list to matrices
 | 
			
		||||
      std::vector<ComplexD> B(k*n);
 | 
			
		||||
      std::vector<ComplexD> C(m*n);
 | 
			
		||||
      //      int sda = lda*k;
 | 
			
		||||
      //      int sdb = ldb*k;
 | 
			
		||||
      //      int sdc = ldc*n;
 | 
			
		||||
      std::cerr << " Checking the GEMM results "<<std::endl;
 | 
			
		||||
      for (int p = 0; p < 1; ++p) {
 | 
			
		||||
	ComplexD * Amk_p;  // pointer list to matrices
 | 
			
		||||
	ComplexD * Bkn_p;  // pointer list to matrices
 | 
			
		||||
	ComplexD * Cmn_p;  // pointer list to matrices
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
 | 
			
		||||
	std::cerr << " p " << p << " copied pointers "<<std::endl;
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
 | 
			
		||||
	std::cerr << " p " << p << " copied matrices "<<std::endl;
 | 
			
		||||
	std::cerr << " C[0] "<<C[0]<<std::endl;
 | 
			
		||||
	std::cerr << " A[0] "<<A[0]<<std::endl;
 | 
			
		||||
	std::cerr << " B[0] "<<B[0]<<std::endl;
 | 
			
		||||
	std::cerr << " m "<<m<<std::endl;
 | 
			
		||||
	std::cerr << " n "<<n<<std::endl;
 | 
			
		||||
	std::cerr << " k "<<k<<std::endl;
 | 
			
		||||
	for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	  for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	    ComplexD c_mn(0.0);
 | 
			
		||||
	    for (int kk = 0; kk < k; ++kk) {
 | 
			
		||||
	      int idx_a, idx_b;
 | 
			
		||||
	      //    int lda = m; // m x k column major
 | 
			
		||||
	      //    int ldb = k; // k x n column major
 | 
			
		||||
	      //    int ldc = m; // m x b column major
 | 
			
		||||
	      if(OpA!=GridBLAS_OP_N) {
 | 
			
		||||
		idx_a =kk + mm*lda;
 | 
			
		||||
	      } else {
 | 
			
		||||
		idx_a =mm + kk*lda;
 | 
			
		||||
	      }
 | 
			
		||||
	      if(OpB!=GridBLAS_OP_N) {
 | 
			
		||||
		idx_b =nn + kk*ldb;
 | 
			
		||||
	      } else {
 | 
			
		||||
		idx_b =kk + nn*ldb;
 | 
			
		||||
	      }
 | 
			
		||||
	      //	      std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
 | 
			
		||||
 | 
			
		||||
	      ComplexD Ac = A[idx_a];
 | 
			
		||||
	      ComplexD Bc = B[idx_b];
 | 
			
		||||
	      if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
 | 
			
		||||
	      if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
 | 
			
		||||
	      
 | 
			
		||||
	      c_mn += Ac*Bc;
 | 
			
		||||
	    }
 | 
			
		||||
	    std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
        });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_T);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    static deviceVector<ComplexF> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasCgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasCgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuComplex *) &beta_p[0],
 | 
			
		||||
				  (cuComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (ComplexF *) &alpha_p[0],
 | 
			
		||||
						  (const ComplexF **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (ComplexF *) &beta_p[0],
 | 
			
		||||
						  (ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
    synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Single precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_C);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    static deviceVector<RealF> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasSgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (float *) &alpha_p[0],
 | 
			
		||||
				   (float **)&Amk[0], lda,
 | 
			
		||||
				   (float **)&Bkn[0], ldb,
 | 
			
		||||
				   (float *) &beta_p[0],
 | 
			
		||||
				   (float **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasSgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (float *) &alpha_p[0],
 | 
			
		||||
				  (float **)&Amk[0], lda,
 | 
			
		||||
				  (float **)&Bkn[0], ldb,
 | 
			
		||||
				  (float *) &beta_p[0],
 | 
			
		||||
				  (float **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (float *) &alpha_p[0],
 | 
			
		||||
						  (const float **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const float **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (float *) &beta_p[0],
 | 
			
		||||
						  (float **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Double precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_C);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    
 | 
			
		||||
    static deviceVector<RealD> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasDgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (double *) &alpha_p[0],
 | 
			
		||||
				   (double **)&Amk[0], lda,
 | 
			
		||||
				   (double **)&Bkn[0], ldb,
 | 
			
		||||
				   (double *) &beta_p[0],
 | 
			
		||||
				   (double **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasDgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (double *) &alpha_p[0],
 | 
			
		||||
				  (double **)&Amk[0], lda,
 | 
			
		||||
				  (double **)&Bkn[0], ldb,
 | 
			
		||||
				  (double *) &beta_p[0],
 | 
			
		||||
				  (double **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t lda64=lda;
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (double *) &alpha_p[0],
 | 
			
		||||
						  (const double **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
						  (const double **)&Bkn[0], (const int64_t *)&ldb64,
 | 
			
		||||
						  (double *) &beta_p[0],
 | 
			
		||||
						  (double **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class CComplex>
 | 
			
		||||
  double benchmark(int M, int N, int K, int BATCH)
 | 
			
		||||
  {
 | 
			
		||||
    int32_t N_A = M*K*BATCH;
 | 
			
		||||
    int32_t N_B = K*N*BATCH;
 | 
			
		||||
    int32_t N_C = M*N*BATCH;
 | 
			
		||||
    deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
 | 
			
		||||
    deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
 | 
			
		||||
    deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
 | 
			
		||||
    CComplex alpha(1.0);
 | 
			
		||||
    CComplex beta (1.0);
 | 
			
		||||
    RealD flops = 8.0*M*N*K*BATCH;
 | 
			
		||||
    int ncall=1000;
 | 
			
		||||
    deviceVector<CComplex *> As(BATCH);
 | 
			
		||||
    deviceVector<CComplex *> Bs(BATCH);
 | 
			
		||||
    deviceVector<CComplex *> Cs(BATCH);
 | 
			
		||||
    for(int b = 0 ; b < BATCH;b++) {
 | 
			
		||||
      CComplex *ptr;
 | 
			
		||||
      ptr = &A[b*M*K];      acceleratorPut(As[b],ptr);
 | 
			
		||||
      ptr = &B[b*K*N];      acceleratorPut(Bs[b],ptr);
 | 
			
		||||
      ptr = &C[b*M*N];      acceleratorPut(Cs[b],ptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Warm up call
 | 
			
		||||
    gemmBatched(M,N,K,
 | 
			
		||||
		alpha,
 | 
			
		||||
		As, // m x k 
 | 
			
		||||
		Bs, // k x n
 | 
			
		||||
		beta, 
 | 
			
		||||
		Cs);
 | 
			
		||||
    synchronise();
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    for(int i=0;i<ncall;i++){
 | 
			
		||||
      gemmBatched(M,N,K,
 | 
			
		||||
		  alpha,
 | 
			
		||||
		  As, // m x k 
 | 
			
		||||
		  Bs, // k x n
 | 
			
		||||
		  beta, 
 | 
			
		||||
		  Cs);
 | 
			
		||||
      synchronise();
 | 
			
		||||
    }
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    flops = 8.0*M*N*K*BATCH*ncall;
 | 
			
		||||
    flops = flops/(t1-t0)/1.e3;
 | 
			
		||||
    return flops; // Returns gigaflops
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,157 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_DEFLATION_H
 | 
			
		||||
#define GRID_DEFLATION_H
 | 
			
		||||
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ZeroGuesser: public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
    virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
 | 
			
		||||
};
 | 
			
		||||
template<class Field>
 | 
			
		||||
class DoNothingGuesser: public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  virtual void operator()(const Field &src, Field &guess) {  };
 | 
			
		||||
};
 | 
			
		||||
template<class Field>
 | 
			
		||||
class SourceGuesser: public LinearFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  virtual void operator()(const Field &src, Field &guess) { guess = src; };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////
 | 
			
		||||
// Fine grid deflation
 | 
			
		||||
////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class DeflatedGuesser: public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
  const unsigned int       N;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
 | 
			
		||||
  : DeflatedGuesser(_evec, _eval, _evec.size())
 | 
			
		||||
  {}
 | 
			
		||||
 | 
			
		||||
  DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
 | 
			
		||||
  : evec(_evec), eval(_eval), N(_N)
 | 
			
		||||
  {
 | 
			
		||||
    assert(evec.size()==eval.size());
 | 
			
		||||
    assert(N <= evec.size());
 | 
			
		||||
  } 
 | 
			
		||||
 | 
			
		||||
  virtual void operator()(const Field &src,Field &guess) {
 | 
			
		||||
    guess = Zero();
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
 | 
			
		||||
    }
 | 
			
		||||
    guess.Checkerboard() = src.Checkerboard();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class FineField, class CoarseField>
 | 
			
		||||
class LocalCoherenceDeflatedGuesser: public LinearFunction<FineField> {
 | 
			
		||||
private:
 | 
			
		||||
  const std::vector<FineField>   &subspace;
 | 
			
		||||
  const std::vector<CoarseField> &evec_coarse;
 | 
			
		||||
  const std::vector<RealD>       &eval_coarse;
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
  using LinearFunction<FineField>::operator();
 | 
			
		||||
  LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace,
 | 
			
		||||
				const std::vector<CoarseField> &_evec_coarse,
 | 
			
		||||
				const std::vector<RealD>       &_eval_coarse)
 | 
			
		||||
    : subspace(_subspace), 
 | 
			
		||||
      evec_coarse(_evec_coarse), 
 | 
			
		||||
      eval_coarse(_eval_coarse)  
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void operator()(const FineField &src,FineField &guess) { 
 | 
			
		||||
    int N = (int)evec_coarse.size();
 | 
			
		||||
    CoarseField src_coarse(evec_coarse[0].Grid());
 | 
			
		||||
    CoarseField guess_coarse(evec_coarse[0].Grid());    guess_coarse = Zero();
 | 
			
		||||
    blockProject(src_coarse,src,subspace);    
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const CoarseField & tmp = evec_coarse[i];
 | 
			
		||||
      axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
 | 
			
		||||
    }
 | 
			
		||||
    blockPromote(guess_coarse,guess,subspace);
 | 
			
		||||
    guess.Checkerboard() = src.Checkerboard();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
 | 
			
		||||
    int Nevec = (int)evec_coarse.size();
 | 
			
		||||
    int Nsrc = (int)src.size();
 | 
			
		||||
    // make temp variables
 | 
			
		||||
    std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
 | 
			
		||||
    std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());    
 | 
			
		||||
    //Preporcessing
 | 
			
		||||
    std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
 | 
			
		||||
    for (int j=0;j<Nsrc;j++)
 | 
			
		||||
    {
 | 
			
		||||
    guess_coarse[j] = Zero();
 | 
			
		||||
    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
			
		||||
    blockProject(src_coarse[j],src[j],subspace);
 | 
			
		||||
    }
 | 
			
		||||
    //deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
 | 
			
		||||
    std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
 | 
			
		||||
    for (int i=0;i<Nevec;i++)
 | 
			
		||||
    {
 | 
			
		||||
      std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
 | 
			
		||||
      const CoarseField & tmp = evec_coarse[i];
 | 
			
		||||
      for (int j=0;j<Nsrc;j++)
 | 
			
		||||
      {
 | 
			
		||||
        axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //postprocessing
 | 
			
		||||
    std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
 | 
			
		||||
    for (int j=0;j<Nsrc;j++)
 | 
			
		||||
    {
 | 
			
		||||
    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
			
		||||
    blockPromote(guess_coarse[j],guess[j],subspace);
 | 
			
		||||
    guess[j].Checkerboard() = src[j].Checkerboard();
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,376 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2024
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSBlockCGLinalg
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
  typedef typename Field::vector_object vector_object;
 | 
			
		||||
 | 
			
		||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
			
		||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
			
		||||
  deviceVector<scalar *> Xdip;
 | 
			
		||||
  deviceVector<scalar *> Ydip;
 | 
			
		||||
  deviceVector<scalar *> Cdip;
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSBlockCGLinalg() {};
 | 
			
		||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    Xdip.resize(0);
 | 
			
		||||
    Ydip.resize(0);
 | 
			
		||||
    Cdip.resize(0);
 | 
			
		||||
    BLAS_Cred.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
    BLAS_X.resize(0);
 | 
			
		||||
    BLAS_Y.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      Y_copy[r] = Y[r];
 | 
			
		||||
    }
 | 
			
		||||
    MulMatrix(AP,m,X);
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::scalar_type scomplex;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    int nrhs = Y.size();
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Assumes Eigen storage contiguous
 | 
			
		||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   * Y = X . C
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Y = X*C (transpose?)
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nrhs,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     scalar(0.0),  // wipe out Y
 | 
			
		||||
		     Yd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
 | 
			
		||||
    // Copy back Y = m X 
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
			
		||||
    }    
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
    std::cout << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
			
		||||
  {
 | 
			
		||||
#if 0    
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    assert(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Yd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    for(int rr=0;rr<nrhs;rr++){
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	int off = r+nrhs*rr;
 | 
			
		||||
	m(r,rr)=HOST_C[off];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    assert(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
			
		||||
    vol   = grid->oSites()/rd0;
 | 
			
		||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
    assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
			
		||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
			
		||||
      scalar *BX = &BLAS_X[0];
 | 
			
		||||
      scalar *BY = &BLAS_Y[0];
 | 
			
		||||
      accelerator_for(ssw,vw,1,{
 | 
			
		||||
	  uint64_t ss=ssw/words;
 | 
			
		||||
	  uint64_t  w=ssw%words;
 | 
			
		||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
			
		||||
	  BX[offset] = from_x[ssw];
 | 
			
		||||
	  BY[offset] = from_y[ssw];
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    Xdip.resize(vol);
 | 
			
		||||
    Ydip.resize(vol);
 | 
			
		||||
    Cdip.resize(vol);
 | 
			
		||||
    std::vector<scalar *> Xh(vol);
 | 
			
		||||
    std::vector<scalar *> Yh(vol);
 | 
			
		||||
    std::vector<scalar *> Ch(vol);
 | 
			
		||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
			
		||||
 | 
			
		||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
			
		||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
			
		||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,words,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xdip,
 | 
			
		||||
		     Ydip,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cdip);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    for(int ss=0;ss<vol;ss++){
 | 
			
		||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
			
		||||
      m = m + eC;
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6l = usecond();
 | 
			
		||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
			
		||||
    std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
			
		||||
    std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,513 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSDeflation.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
   MultiRHS block projection
 | 
			
		||||
 | 
			
		||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
			
		||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
			
		||||
 | 
			
		||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
			
		||||
 | 
			
		||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
//			   const VLattice &fineData,
 | 
			
		||||
//			   const VLattice &Basis)
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSBlockProject
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
  typedef Field Fermion;
 | 
			
		||||
 | 
			
		||||
  int nbasis;
 | 
			
		||||
  GridBase *coarse_grid;
 | 
			
		||||
  GridBase *fine_grid;
 | 
			
		||||
  uint64_t block_vol;
 | 
			
		||||
  uint64_t fine_vol;
 | 
			
		||||
  uint64_t coarse_vol;
 | 
			
		||||
  uint64_t words;
 | 
			
		||||
 | 
			
		||||
  // Row major layout "C" order:
 | 
			
		||||
  // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
			
		||||
  // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
			
		||||
  // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Vxb = [v1(x)][..][vn(x)] ... x coarse vol
 | 
			
		||||
   *
 | 
			
		||||
   * Fxr = [r1(x)][..][rm(x)] ... x coarse vol
 | 
			
		||||
   *
 | 
			
		||||
   * Block project:
 | 
			
		||||
   * C_br = V^dag F x coarse vol
 | 
			
		||||
   *
 | 
			
		||||
   * Block promote:
 | 
			
		||||
   * F_xr = Vxb Cbr x coarse_vol
 | 
			
		||||
   */  
 | 
			
		||||
  deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol 
 | 
			
		||||
  deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs
 | 
			
		||||
 | 
			
		||||
  RealD blasNorm2(deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    scalar ss(0.0);
 | 
			
		||||
    std::vector<scalar> tmp(blas.size());
 | 
			
		||||
    acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
 | 
			
		||||
    for(int64_t s=0;s<blas.size();s++){
 | 
			
		||||
      ss=ss+tmp[s]*adj(tmp[s]);
 | 
			
		||||
    }
 | 
			
		||||
    coarse_grid->GlobalSum(ss);
 | 
			
		||||
    return real(ss);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSBlockProject(){};
 | 
			
		||||
 ~MultiRHSBlockProject(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    nbasis=0;
 | 
			
		||||
    coarse_grid=nullptr;
 | 
			
		||||
    fine_grid=nullptr;
 | 
			
		||||
    fine_vol=0;
 | 
			
		||||
    block_vol=0;
 | 
			
		||||
    coarse_vol=0;
 | 
			
		||||
    words=0;
 | 
			
		||||
    BLAS_V.resize(0);
 | 
			
		||||
    BLAS_F.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
 | 
			
		||||
  {
 | 
			
		||||
    nbasis=_nbasis;
 | 
			
		||||
 | 
			
		||||
    fine_grid=_fgrid;
 | 
			
		||||
    coarse_grid=_cgrid;
 | 
			
		||||
 | 
			
		||||
    fine_vol   = fine_grid->lSites();
 | 
			
		||||
    coarse_vol = coarse_grid->lSites();
 | 
			
		||||
    block_vol = fine_vol/coarse_vol;
 | 
			
		||||
    
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
 | 
			
		||||
    BLAS_V.resize (fine_vol * words * nbasis );
 | 
			
		||||
  }
 | 
			
		||||
  void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
    //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==fine_grid);
 | 
			
		||||
 | 
			
		||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    
 | 
			
		||||
    Coordinate  block_r      (_ndimension);
 | 
			
		||||
    for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    uint64_t sz = blas.size();
 | 
			
		||||
 | 
			
		||||
    acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
    int64_t bv= block_vol;
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
			
		||||
      autoView( fineData   , vecs[v], AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto fineData_p  = &fineData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = fine_grid->oSites();
 | 
			
		||||
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      //      std::cout << "sz "<<sz<<std::endl;
 | 
			
		||||
      //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
 | 
			
		||||
      assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
			
		||||
      uint64_t lwords= words; // local variable for copy in to GPU
 | 
			
		||||
      accelerator_for(sf,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	  // One thread per fine site
 | 
			
		||||
	  Coordinate coor_f(_ndimension);
 | 
			
		||||
	  Coordinate coor_b(_ndimension);
 | 
			
		||||
	  Coordinate coor_c(_ndimension);
 | 
			
		||||
 | 
			
		||||
	  // Fine site to fine coor
 | 
			
		||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
			
		||||
	  
 | 
			
		||||
	  int sc;// coarse site
 | 
			
		||||
	  int sb;// block site
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
			
		||||
 | 
			
		||||
          scalar_object data = extractLane(lane,fineData[sf]);
 | 
			
		||||
 | 
			
		||||
	  // BLAS layout address calculation
 | 
			
		||||
	  // words * block_vol * nbasis x coarse_vol
 | 
			
		||||
	  // coarse oSite x block vole x lanes
 | 
			
		||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
			
		||||
   	               + v*bv
 | 
			
		||||
	               + sb;
 | 
			
		||||
 | 
			
		||||
	  //	  assert(site*lwords<sz);
 | 
			
		||||
 | 
			
		||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
			
		||||
 | 
			
		||||
	  *ptr = data;
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
      //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
      //      std::cout << " BlockProjector imported vector"<<v<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==fine_grid);
 | 
			
		||||
 | 
			
		||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    
 | 
			
		||||
    Coordinate  block_r      (_ndimension);
 | 
			
		||||
    for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int64_t bv= block_vol;
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      autoView( fineData   , vecs[v], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto fineData_p    = &fineData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = fine_grid->oSites();
 | 
			
		||||
      uint64_t lwords = words;
 | 
			
		||||
      //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
 | 
			
		||||
      //      std::cout << " lwords is "<<lwords << std::endl;
 | 
			
		||||
      //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      accelerator_for(sf,osites,vobj::Nsimd(),{
 | 
			
		||||
      
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<vobj::Nsimd();lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	  // One thread per fine site
 | 
			
		||||
	  Coordinate coor_f(_ndimension);
 | 
			
		||||
	  Coordinate coor_b(_ndimension);
 | 
			
		||||
	  Coordinate coor_c(_ndimension);
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
			
		||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
			
		||||
	  
 | 
			
		||||
	  int sc;
 | 
			
		||||
	  int sb;
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
			
		||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
			
		||||
 | 
			
		||||
	  // BLAS layout address calculation
 | 
			
		||||
	  // words * block_vol * nbasis x coarse_vol 	  
 | 
			
		||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
			
		||||
   	               + v*bv
 | 
			
		||||
	               + sb;
 | 
			
		||||
 | 
			
		||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
			
		||||
 | 
			
		||||
	  scalar_object data = *ptr;
 | 
			
		||||
 | 
			
		||||
	  insertLane(lane,fineData[sf],data);
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
 | 
			
		||||
    uint64_t sz = blas.size();
 | 
			
		||||
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
    
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
			
		||||
      autoView( coarseData   , vecs[v], AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto coarseData_p  = &coarseData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = coarse_grid->oSites();
 | 
			
		||||
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
      assert(cwords==nbasis);
 | 
			
		||||
      
 | 
			
		||||
      accelerator_for(sc,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
           // C_br per site
 | 
			
		||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
			
		||||
	    
 | 
			
		||||
	    coarse_scalar_object data = extractLane(lane,coarseData[sc]);
 | 
			
		||||
 | 
			
		||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
			
		||||
 | 
			
		||||
	    *ptr = data;
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
      //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
			
		||||
  {
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
			
		||||
    //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
    uint64_t sz = blas.size();
 | 
			
		||||
 | 
			
		||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
			
		||||
    
 | 
			
		||||
    //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
			
		||||
    for(int v=0;v<vecs.size();v++){
 | 
			
		||||
 | 
			
		||||
      //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
 | 
			
		||||
      autoView( coarseData   , vecs[v], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
      auto blasData_p  = &blas[0];
 | 
			
		||||
      auto coarseData_p  = &coarseData[0];
 | 
			
		||||
 | 
			
		||||
      int64_t osites = coarse_grid->oSites();
 | 
			
		||||
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
      assert(cwords==nbasis);
 | 
			
		||||
      
 | 
			
		||||
      accelerator_for(sc,osites,Nsimd,{
 | 
			
		||||
	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
			
		||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
			
		||||
	    coarse_scalar_object data = *ptr;
 | 
			
		||||
	    insertLane(lane,coarseData[sc],data);
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ImportBasis(std::vector < Field > &vecs)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
 | 
			
		||||
    ImportFineGridVectors(vecs,BLAS_V);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class cobj>
 | 
			
		||||
  void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=fine.size();
 | 
			
		||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
    //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
 | 
			
		||||
    assert(nbasis==_nbasis);
 | 
			
		||||
    
 | 
			
		||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
			
		||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources to same data layout
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    //    std::cout << "BlockProject import fine"<<std::endl;
 | 
			
		||||
    ImportFineGridVectors(fine,BLAS_F);
 | 
			
		||||
    
 | 
			
		||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "BlockProject pointers"<<std::endl;
 | 
			
		||||
    for(int c=0;c<coarse_vol;c++){
 | 
			
		||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
			
		||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
			
		||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
			
		||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
			
		||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
			
		||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
			
		||||
 | 
			
		||||
      acceleratorPut(Vd[c],Vh);
 | 
			
		||||
      acceleratorPut(Fd[c],Fh);
 | 
			
		||||
      acceleratorPut(Cd[c],Ch);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "BlockProject BLAS"<<std::endl;
 | 
			
		||||
    int64_t vw = block_vol * words;
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_br = V^dag R
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nbasis,nrhs,vw,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Fd,
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
			
		||||
    ExportCoarseGridVectors(coarse, BLAS_C);
 | 
			
		||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class cobj>
 | 
			
		||||
  void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=fine.size();
 | 
			
		||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
    assert(nbasis==_nbasis);
 | 
			
		||||
    
 | 
			
		||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
			
		||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
			
		||||
 | 
			
		||||
    ImportCoarseGridVectors(coarse, BLAS_C);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
			
		||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
			
		||||
 | 
			
		||||
    for(int c=0;c<coarse_vol;c++){
 | 
			
		||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
			
		||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
			
		||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
			
		||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
			
		||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
			
		||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
			
		||||
      acceleratorPut(Vd[c],Vh);
 | 
			
		||||
      acceleratorPut(Fd[c],Fh);
 | 
			
		||||
      acceleratorPut(Cd[c],Ch);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Block promote:
 | 
			
		||||
    // F_xr = Vxb Cbr (x coarse_vol)
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    int64_t vw = block_vol * words;
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nbasis,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Fd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << " blas call done"<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    ExportFineGridVectors(fine, BLAS_F);
 | 
			
		||||
    //    std::cout << " exported "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,233 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSDeflation.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Need helper object for BLAS accelerated mrhs projection
 | 
			
		||||
 | 
			
		||||
   i) MultiRHS Deflation
 | 
			
		||||
 | 
			
		||||
   Import Evecs -> nev x vol x internal 
 | 
			
		||||
   Import vector of Lattice objects -> nrhs x vol x internal
 | 
			
		||||
   => Cij (nrhs x Nev) via GEMM.
 | 
			
		||||
   => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM)
 | 
			
		||||
   Export
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
   ii) MultiRHS block projection
 | 
			
		||||
 | 
			
		||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
			
		||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
			
		||||
 | 
			
		||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
			
		||||
 | 
			
		||||
   iii)   Alternate interface: 
 | 
			
		||||
   Import higher dim Lattice object-> vol x nrhs layout
 | 
			
		||||
   
 | 
			
		||||
*/
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSDeflation
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
 | 
			
		||||
  int nev;
 | 
			
		||||
  std::vector<RealD> eval;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  uint64_t vol;
 | 
			
		||||
  uint64_t words;
 | 
			
		||||
  
 | 
			
		||||
  deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda))
 | 
			
		||||
  deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients 
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSDeflation(){};
 | 
			
		||||
  ~MultiRHSDeflation(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    nev=0;
 | 
			
		||||
    grid=nullptr;
 | 
			
		||||
    vol=0;
 | 
			
		||||
    words=0;
 | 
			
		||||
    BLAS_E.resize(0);
 | 
			
		||||
    BLAS_R.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
    BLAS_G.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Allocate(int _nev,GridBase *_grid)
 | 
			
		||||
  {
 | 
			
		||||
    nev=_nev;
 | 
			
		||||
    grid=_grid;
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    eval.resize(nev);
 | 
			
		||||
    BLAS_E.resize (vol * words * nev );
 | 
			
		||||
    std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ImportEigenVector(Field &evec,RealD &_eval, int ev)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
 | 
			
		||||
    assert(ev<eval.size());
 | 
			
		||||
    eval[ev] = _eval;
 | 
			
		||||
 | 
			
		||||
    int64_t offset = ev*vol*words;
 | 
			
		||||
    autoView(v,evec,AcceleratorRead);
 | 
			
		||||
    acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
 | 
			
		||||
  {
 | 
			
		||||
    ImportEigenBasis(evec,_eval,0,evec.size());
 | 
			
		||||
  }
 | 
			
		||||
  // Could use to import a batch of eigenvectors
 | 
			
		||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
 | 
			
		||||
  {
 | 
			
		||||
    assert(_ev0+_nev<=evec.size());
 | 
			
		||||
 | 
			
		||||
    Allocate(_nev,evec[0].Grid());
 | 
			
		||||
    
 | 
			
		||||
    // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
 | 
			
		||||
    for(int e=0;e<nev;e++){
 | 
			
		||||
      std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
 | 
			
		||||
      ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs = source.size();
 | 
			
		||||
    assert(source.size()==guess.size());
 | 
			
		||||
    assert(grid == guess[0].Grid());
 | 
			
		||||
    conformable(guess[0],source[0]);
 | 
			
		||||
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    //    for(int r=0;r<nrhs;r++){
 | 
			
		||||
    //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
 | 
			
		||||
    //    }
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(v,source[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Exe = [e1(x)][..][en(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Rxr = [r1(x)][..][rm(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_er = E^dag R
 | 
			
		||||
   * C_er = C_er / lambda_e 
 | 
			
		||||
   * G_xr = Exe Cer
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Ed(1);
 | 
			
		||||
    deviceVector<scalar *> Rd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
    deviceVector<scalar *> Gd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Eh = & BLAS_E[0];
 | 
			
		||||
    scalar * Rh = & BLAS_R[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
    scalar * Gh = & BLAS_G[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Ed[0],Eh);
 | 
			
		||||
    acceleratorPut(Rd[0],Rh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
    acceleratorPut(Gd[0],Gh);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_er = E^dag R
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nev,nrhs,vw,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed,
 | 
			
		||||
		     Rd,
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
    assert(BLAS_C.size()==nev*nrhs);
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
 | 
			
		||||
    for(int e=0;e<nev;e++){
 | 
			
		||||
      RealD lam(1.0/eval[e]);
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	int off = e+nev*r;
 | 
			
		||||
	HOST_C[off]=HOST_C[off] * lam;
 | 
			
		||||
	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Guess G_xr = Exe Cer
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
		     vw,nrhs,nev,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed, // x . nev
 | 
			
		||||
		     Cd, // nev . nrhs
 | 
			
		||||
		     scalar(0.0),
 | 
			
		||||
		     Gd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Copy out the multirhs
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(v,guess[r],AcceleratorWrite);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,599 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/AdefGeneric.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
 | 
			
		||||
#define GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv. 
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
   * M1 = P^TM + Q
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCG(RealD tol,
 | 
			
		||||
	     Integer maxit,
 | 
			
		||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
	     LinearFunction<Field>       &Smoother,
 | 
			
		||||
	     GridBase *fine) : 
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      _FineLinop(FineLinop),
 | 
			
		||||
      _Smoother(Smoother)
 | 
			
		||||
  {
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  virtual void operator() (const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
 | 
			
		||||
    RealD f;
 | 
			
		||||
    RealD rtzp,rtz,a,d,b;
 | 
			
		||||
    RealD rptzp;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 5;
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
			
		||||
    std::vector<Field> p(mmax,grid);
 | 
			
		||||
    std::vector<Field> mmp(mmax,grid);
 | 
			
		||||
    std::vector<RealD> pAp(mmax);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field  mp (grid);
 | 
			
		||||
    Field  r  (grid);
 | 
			
		||||
    Field  mu (grid);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    RealD guess   = norm2(x);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
 | 
			
		||||
    RealD src_nrm = norm2(src);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    if ( src_nrm == 0.0 ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
 | 
			
		||||
      x=Zero();
 | 
			
		||||
    }
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
    
 | 
			
		||||
    // r0 = b -A x0
 | 
			
		||||
    _FineLinop.HermOp(x,mmp[0]);
 | 
			
		||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
			
		||||
    {
 | 
			
		||||
      double n1 = norm2(x);
 | 
			
		||||
      double n2 = norm2(mmp[0]);
 | 
			
		||||
      double n3 = norm2(r);
 | 
			
		||||
      std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
    rtzp =real(innerProduct(r,z));
 | 
			
		||||
    
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
			
		||||
    // Def2 p = 1 - Q Az = Pright z
 | 
			
		||||
    // Other algos M2 is trivial
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    PcgM2(z,p[0]);
 | 
			
		||||
 | 
			
		||||
    RealD ssq =  norm2(src);
 | 
			
		||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
 | 
			
		||||
 | 
			
		||||
    Field pp(grid);
 | 
			
		||||
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      rtz=rtzp;
 | 
			
		||||
      d= PcgM3(p[peri_k],mmp[peri_k]);
 | 
			
		||||
      a = rtz/d;
 | 
			
		||||
    
 | 
			
		||||
      // Memorise this
 | 
			
		||||
      pAp[peri_k] = d;
 | 
			
		||||
      
 | 
			
		||||
      axpy(x,a,p[peri_k],x);
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      
 | 
			
		||||
      {
 | 
			
		||||
	RealD n1,n2;
 | 
			
		||||
	n1=norm2(r);
 | 
			
		||||
	n2=norm2(z);
 | 
			
		||||
	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
 | 
			
		||||
      }
 | 
			
		||||
      rtzp =real(innerProduct(r,z));
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
 | 
			
		||||
 | 
			
		||||
      //    PcgM2(z,p[0]);
 | 
			
		||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
      
 | 
			
		||||
      p[peri_kp]=mu;
 | 
			
		||||
 | 
			
		||||
      // Standard search direction  p -> z + b p    
 | 
			
		||||
      b = (rtzp)/rtz;
 | 
			
		||||
      
 | 
			
		||||
      int northog;
 | 
			
		||||
      // k=zero  <=> peri_kp=1;        northog = 1
 | 
			
		||||
      // k=1     <=> peri_kp=2;        northog = 2
 | 
			
		||||
      // ...               ...                  ...
 | 
			
		||||
      // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1
 | 
			
		||||
      // k=mmax-1<=> peri_kp=0;        northog = 1
 | 
			
		||||
 | 
			
		||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
			
		||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
    
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
			
		||||
      for(int back=0; back < northog; back++){
 | 
			
		||||
	int peri_back = (k-back)%mmax;
 | 
			
		||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
			
		||||
	RealD beta = -pbApk/pAp[peri_back];
 | 
			
		||||
	axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      RealD rrn=sqrt(rn/ssq);
 | 
			
		||||
      RealD rtn=sqrt(rtz/ssq);
 | 
			
		||||
      RealD rtnp=sqrt(rtzp/ssq);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if ( rn <= rsq ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	
 | 
			
		||||
	_FineLinop.HermOp(x,mmp[0]);			  
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
			
		||||
	
 | 
			
		||||
	RealD  mmpnorm = sqrt(norm2(mmp[0]));
 | 
			
		||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
	RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage
 | 
			
		||||
	       <<"HDCG: true residual is "<<true_residual
 | 
			
		||||
	       <<" solution "<<xnorm
 | 
			
		||||
	       <<" source "<<srcnorm
 | 
			
		||||
	       <<" mmp "<<mmpnorm	  
 | 
			
		||||
	       <<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    std::vector<RealD> f(nrhs);
 | 
			
		||||
    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    std::vector<RealD> a(nrhs);
 | 
			
		||||
    std::vector<RealD> d(nrhs);
 | 
			
		||||
    std::vector<RealD> b(nrhs);
 | 
			
		||||
    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 3;
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<Field> z(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mp (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  r  (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mu (nrhs,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
			
		||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // This needs a multiRHS version for acceleration
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    std::vector<RealD> rsq(nrhs);
 | 
			
		||||
    std::vector<Field> pp(nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
      p[rhs][0]=z[rhs];
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]);
 | 
			
		||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
			
		||||
      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	rtz[rhs]=rtzp[rhs];
 | 
			
		||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
			
		||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
			
		||||
    
 | 
			
		||||
	// Memorise this
 | 
			
		||||
	pAp[rhs][peri_k] = d[rhs];
 | 
			
		||||
 | 
			
		||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
			
		||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x (for *all* RHS)
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      
 | 
			
		||||
      RealD max_rn=0.0;
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
			
		||||
	
 | 
			
		||||
	mu[rhs]=z[rhs];
 | 
			
		||||
 | 
			
		||||
	p[rhs][peri_kp]=mu[rhs];
 | 
			
		||||
 | 
			
		||||
	// Standard search direction p == z + b p 
 | 
			
		||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
			
		||||
 | 
			
		||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
			
		||||
	for(int back=0; back < northog; back++){
 | 
			
		||||
	  int peri_back = (k-back)%mmax;
 | 
			
		||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
			
		||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
			
		||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition based on worst case
 | 
			
		||||
      if ( max_rn <= Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
			
		||||
	  Field tmp(grid);
 | 
			
		||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<" mmp "<<mmpnorm	  
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<in.size();rhs++){
 | 
			
		||||
      this->PcgM1(in[rhs],out[rhs]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
			
		||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<x.size();rhs++){
 | 
			
		||||
      this->Vstart(x[rhs],src[rhs]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Field, class CoarseField, class Aggregation>
 | 
			
		||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
			
		||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  Aggregation &_Aggregates;                    
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelADEF2(RealD tol,
 | 
			
		||||
		Integer maxit,
 | 
			
		||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		LinearFunction<Field>        &Smoother,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
			
		||||
		Aggregation &Aggregates
 | 
			
		||||
		) :
 | 
			
		||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
			
		||||
      _CoarseSolver(CoarseSolver),
 | 
			
		||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
			
		||||
      _Aggregates(Aggregates)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MultiGridPreconditioner ");
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
 | 
			
		||||
    Field tmp(this->grid);
 | 
			
		||||
    Field Min(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SmootherTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    SmootherTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    SmootherTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    this->_FineLinop.HermOp(Min,out);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
			
		||||
 | 
			
		||||
    GridStopWatch ProjTimer;
 | 
			
		||||
    GridStopWatch CoarseTimer;
 | 
			
		||||
    GridStopWatch PromTimer;
 | 
			
		||||
    ProjTimer.Start();
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
			
		||||
    ProjTimer.Stop();
 | 
			
		||||
    CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    CoarseTimer.Stop();
 | 
			
		||||
    PromTimer.Start();
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    PromTimer.Stop();
 | 
			
		||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
    //                               = [1 - Ass_inv A] Guess + Assinv src
 | 
			
		||||
    //                               = P^T guess + Assinv src 
 | 
			
		||||
    //                               = Vstart  [Tang notation]
 | 
			
		||||
    // This gives:
 | 
			
		||||
    // W^T (src - A x_0) = src_s - A guess_s - r_s
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    Field r(this->grid);
 | 
			
		||||
    Field mmp(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
 | 
			
		||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
  
 | 
			
		||||
  TwoLevelADEF1defl(RealD tol,
 | 
			
		||||
		   Integer maxit,
 | 
			
		||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		   LinearFunction<Field>   &Smoother,
 | 
			
		||||
		   std::vector<Field> &_evec,
 | 
			
		||||
		   std::vector<RealD> &_eval) : 
 | 
			
		||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
			
		||||
    evec(_evec),
 | 
			
		||||
    eval(_eval)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  // Can just inherit existing M2
 | 
			
		||||
  // Can just inherit existing M3
 | 
			
		||||
 | 
			
		||||
  // Simple vstart - do nothing
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    x=src; // Could apply Q
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Override PcgM1
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("EvecPreconditioner ");
 | 
			
		||||
    int N=evec.size();
 | 
			
		||||
    Field Pin(this->grid);
 | 
			
		||||
    Field Qin(this->grid);
 | 
			
		||||
 | 
			
		||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
			
		||||
    // // If we are eigenvector deflating in coarse space
 | 
			
		||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
			
		||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
			
		||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
			
		||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
			
		||||
    Qin = Zero();
 | 
			
		||||
    Pin = in;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
			
		||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
			
		||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->_Smoother(Pin,out);
 | 
			
		||||
 | 
			
		||||
    out = out + Qin;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,718 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/AdefGeneric.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv. 
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
   * M1 = P^TM + Q
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCGmrhs
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
			
		||||
 | 
			
		||||
  GridStopWatch ProjectTimer;
 | 
			
		||||
  GridStopWatch PromoteTimer;
 | 
			
		||||
  GridStopWatch DeflateTimer;
 | 
			
		||||
  GridStopWatch CoarseTimer;
 | 
			
		||||
  GridStopWatch FineTimer;
 | 
			
		||||
  GridStopWatch SmoothTimer;
 | 
			
		||||
  GridStopWatch InsertTimer;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCGmrhs(RealD tol,
 | 
			
		||||
		 Integer maxit,
 | 
			
		||||
		 LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		 LinearFunction<Field>       &Smoother,
 | 
			
		||||
		 GridBase *fine) : 
 | 
			
		||||
    Tolerance(tol), 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    _FineLinop(FineLinop),
 | 
			
		||||
    _Smoother(Smoother)
 | 
			
		||||
  {
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // Vector case
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    SolveSingleSystem(src,x);
 | 
			
		||||
    //    SolvePrecBlockCG(src,x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Thin QR factorisation (google it)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //Dimensions
 | 
			
		||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
			
		||||
  //
 | 
			
		||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
			
		||||
  //
 | 
			
		||||
  //   Q  C = R => Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
			
		||||
  //
 | 
			
		||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
			
		||||
  //
 | 
			
		||||
  // Checks:
 | 
			
		||||
  // Cdag C = Rdag R ; passes.
 | 
			
		||||
  // QdagQ  = 1      ; passes
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
			
		||||
		   Eigen::MatrixXcd &C,
 | 
			
		||||
		   Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		   std::vector<Field> &  Q,
 | 
			
		||||
		   std::vector<Field> & MQ,
 | 
			
		||||
		   const std::vector<Field> & Z,
 | 
			
		||||
		   const std::vector<Field> & MZ)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
			
		||||
    RealD t1=usecond();
 | 
			
		||||
 | 
			
		||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
			
		||||
    
 | 
			
		||||
    C    = L.adjoint();
 | 
			
		||||
    Cinv = C.inverse();
 | 
			
		||||
    
 | 
			
		||||
    RealD t3=usecond();
 | 
			
		||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
			
		||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
			
		||||
    RealD t4=usecond();
 | 
			
		||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    //    std::vector<RealD> f(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    //    std::vector<RealD> a(nrhs);
 | 
			
		||||
    //    std::vector<RealD> d(nrhs);
 | 
			
		||||
    //    std::vector<RealD> b(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
 | 
			
		||||
    }      
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field> tmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
			
		||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
			
		||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
			
		||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
			
		||||
    std::vector<Field>   D(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  AD(nrhs,grid);
 | 
			
		||||
    
 | 
			
		||||
    /************************************************************************
 | 
			
		||||
     * Preconditioned Block conjugate gradient rQ
 | 
			
		||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
			
		||||
     * Introduce preconditioning following Saad Ch9
 | 
			
		||||
     ************************************************************************
 | 
			
		||||
     * Dimensions:
 | 
			
		||||
     *
 | 
			
		||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
			
		||||
     *  Matrix A==(Nferm x Nferm)
 | 
			
		||||
     *  
 | 
			
		||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
     * QC => Thin QR factorisation (google it)
 | 
			
		||||
     *
 | 
			
		||||
     * R = B-AX
 | 
			
		||||
     * Z = Mi R
 | 
			
		||||
     * QC = Z
 | 
			
		||||
     * D = Q 
 | 
			
		||||
     * for k: 
 | 
			
		||||
     *   R  = AD
 | 
			
		||||
     *   Z  = Mi R
 | 
			
		||||
     *   M  = [D^dag R]^{-1}
 | 
			
		||||
     *   X  = X + D M C
 | 
			
		||||
     *   QS = Q - Z.M
 | 
			
		||||
     *   D  = Q + D S^dag
 | 
			
		||||
     *   C  = S C
 | 
			
		||||
     */
 | 
			
		||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(X,src);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // R = B-AX
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
			
		||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(Z,MZ);  
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // QC = Z
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // D=MQ
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
    ProjectTimer.Reset();
 | 
			
		||||
    PromoteTimer.Reset();
 | 
			
		||||
    DeflateTimer.Reset();
 | 
			
		||||
    CoarseTimer.Reset();
 | 
			
		||||
    SmoothTimer.Reset();
 | 
			
		||||
    FineTimer.Reset();
 | 
			
		||||
    InsertTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch M1Timer;
 | 
			
		||||
    GridStopWatch M2Timer;
 | 
			
		||||
    GridStopWatch M3Timer;
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerProdTimer;
 | 
			
		||||
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // Z  = AD
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M3Timer.Start();
 | 
			
		||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
			
		||||
      M3Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M1Timer.Start();
 | 
			
		||||
      PcgM1(Z,MZ);
 | 
			
		||||
      M1Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      FineTimer.Start();
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      InnerProdTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
			
		||||
      InnerProdTimer.Stop();
 | 
			
		||||
      m_M       = m_DZ.inverse();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // X  = X + D MC
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      m_tmp     = m_M * m_C;
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // QS = Q - M Z
 | 
			
		||||
      // (MQ) S = MQ - M (M1Z)
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
			
		||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // D  = MQ + D S^dag
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_tmp = m_S.adjoint();
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // C  = S C
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_C = m_S*m_C;
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // convergence monitor
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
      
 | 
			
		||||
      FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      RealD max_resid=0;
 | 
			
		||||
      RealD rrsum=0;
 | 
			
		||||
      RealD sssum=0;
 | 
			
		||||
      RealD rr;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<nrhs;b++) {
 | 
			
		||||
	rrsum+=real(m_rr(b,b));
 | 
			
		||||
	sssum+=ssq[b];
 | 
			
		||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
	if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage <<
 | 
			
		||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
			
		||||
 | 
			
		||||
	  Field mytmp(grid);
 | 
			
		||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    std::vector<RealD> f(nrhs);
 | 
			
		||||
    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    std::vector<RealD> a(nrhs);
 | 
			
		||||
    std::vector<RealD> d(nrhs);
 | 
			
		||||
    std::vector<RealD> b(nrhs);
 | 
			
		||||
    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 3;
 | 
			
		||||
 | 
			
		||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
			
		||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
			
		||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
			
		||||
 | 
			
		||||
    std::vector<Field> z(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mp (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  r  (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mu (nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
			
		||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // This needs a multiRHS version for acceleration
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    std::vector<RealD> rsq(nrhs);
 | 
			
		||||
    std::vector<Field> pp(nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
      p[rhs][0]=z[rhs];
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]);
 | 
			
		||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
			
		||||
      //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ProjectTimer.Reset();
 | 
			
		||||
    PromoteTimer.Reset();
 | 
			
		||||
    DeflateTimer.Reset();
 | 
			
		||||
    CoarseTimer.Reset();
 | 
			
		||||
    SmoothTimer.Reset();
 | 
			
		||||
    FineTimer.Reset();
 | 
			
		||||
    InsertTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch M1Timer;
 | 
			
		||||
    GridStopWatch M2Timer;
 | 
			
		||||
    GridStopWatch M3Timer;
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	rtz[rhs]=rtzp[rhs];
 | 
			
		||||
	M3Timer.Start();
 | 
			
		||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
			
		||||
	M3Timer.Stop();
 | 
			
		||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
			
		||||
 | 
			
		||||
	LinalgTimer.Start();
 | 
			
		||||
	// Memorise this
 | 
			
		||||
	pAp[rhs][peri_k] = d[rhs];
 | 
			
		||||
 | 
			
		||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
			
		||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
			
		||||
	LinalgTimer.Stop();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x (for *all* RHS)
 | 
			
		||||
      M1Timer.Start();
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      M1Timer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      RealD max_rn=0.0;
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
			
		||||
	mu[rhs]=z[rhs];
 | 
			
		||||
 | 
			
		||||
	p[rhs][peri_kp]=mu[rhs];
 | 
			
		||||
 | 
			
		||||
	// Standard search direction p == z + b p 
 | 
			
		||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
			
		||||
 | 
			
		||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
	for(int back=0; back < northog; back++){
 | 
			
		||||
	  int peri_back = (k-back)%mmax;
 | 
			
		||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
			
		||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
			
		||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
			
		||||
      }
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      // Stopping condition based on worst case
 | 
			
		||||
      if ( max_rn <= Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
			
		||||
	  Field tmp(grid);
 | 
			
		||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<" mmp "<<mmpnorm	  
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
 | 
			
		||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field, class CoarseField>
 | 
			
		||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  GridBase *coarsegridmrhs;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverMrhs;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
 | 
			
		||||
  MultiRHSBlockProject<Field>    &_Projector;
 | 
			
		||||
  MultiRHSDeflation<CoarseField> &_Deflator;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  TwoLevelADEF2mrhs(RealD tol,
 | 
			
		||||
		    Integer maxit,
 | 
			
		||||
		    LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		    LinearFunction<Field>        &Smoother,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolverMrhs,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs,
 | 
			
		||||
		    MultiRHSBlockProject<Field>    &Projector,
 | 
			
		||||
		    MultiRHSDeflation<CoarseField> &Deflator,
 | 
			
		||||
		    GridBase *_coarsemrhsgrid) :
 | 
			
		||||
    TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
 | 
			
		||||
    _CoarseSolverMrhs(CoarseSolverMrhs),
 | 
			
		||||
    _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
 | 
			
		||||
    _Projector(Projector),
 | 
			
		||||
    _Deflator(Deflator)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Projector.coarse_grid;
 | 
			
		||||
    coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Override Vstart
 | 
			
		||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=x.size();
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
    //                               = [1 - Ass_inv A] Guess + Assinv src
 | 
			
		||||
    //                               = P^T guess + Assinv src 
 | 
			
		||||
    //                               = Vstart  [Tang notation]
 | 
			
		||||
    // This gives:
 | 
			
		||||
    // W^T (src - A x_0) = src_s - A guess_s - r_s
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
			
		||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
    this->_Projector.blockProject(src,PleftProj);
 | 
			
		||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
			
		||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
			
		||||
    }
 | 
			
		||||
    this->_Projector.blockPromote(x,PleftMss_proj);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
 | 
			
		||||
 | 
			
		||||
    int nrhs=in.size();
 | 
			
		||||
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    std::vector<Field> tmp(nrhs,this->grid);
 | 
			
		||||
    std::vector<Field> Min(nrhs,this->grid);
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
			
		||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
#if SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
    this->SmoothTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    this->SmoothTimer.Stop();
 | 
			
		||||
#else
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      this->SmoothTimer.Start();
 | 
			
		||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
			
		||||
      this->SmoothTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      
 | 
			
		||||
      this->FineTimer.Start();
 | 
			
		||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
			
		||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
			
		||||
      this->FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->ProjectTimer.Start();
 | 
			
		||||
    this->_Projector.blockProject(tmp,PleftProj);
 | 
			
		||||
    this->ProjectTimer.Stop();
 | 
			
		||||
    this->DeflateTimer.Start();
 | 
			
		||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
			
		||||
    this->DeflateTimer.Stop();
 | 
			
		||||
    this->InsertTimer.Start();
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
			
		||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
			
		||||
    }
 | 
			
		||||
    this->InsertTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    this->CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    this->CoarseTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    this->InsertTimer.Start();
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
			
		||||
    }
 | 
			
		||||
    this->InsertTimer.Stop();
 | 
			
		||||
    this->PromoteTimer.Start();
 | 
			
		||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
			
		||||
    this->PromoteTimer.Stop();
 | 
			
		||||
    this->FineTimer.Start();
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
			
		||||
    }
 | 
			
		||||
    this->FineTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,234 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: juettner <juettner@soton.ac.uk>
 | 
			
		||||
Author: David Murphy <djmurphy@mit.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef GRID_BICGSTAB_H
 | 
			
		||||
#define GRID_BICGSTAB_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class BiCGSTAB : public OperatorFunction<Field> 
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
    using OperatorFunction<Field>::operator();
 | 
			
		||||
    
 | 
			
		||||
    bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                             // Defaults true.
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
    Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  
 | 
			
		||||
    BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) : 
 | 
			
		||||
      Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi) 
 | 
			
		||||
    {
 | 
			
		||||
      psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
      conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
      RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
 | 
			
		||||
      RealD a(0), bo(0), b(0), ssq(0);
 | 
			
		||||
 | 
			
		||||
      Field p(src);
 | 
			
		||||
      Field r(src);
 | 
			
		||||
      Field rhat(src);
 | 
			
		||||
      Field v(src);
 | 
			
		||||
      Field s(src);
 | 
			
		||||
      Field t(src);
 | 
			
		||||
      Field h(src);
 | 
			
		||||
 | 
			
		||||
      v = Zero();
 | 
			
		||||
      p = Zero();
 | 
			
		||||
 | 
			
		||||
      // Initial residual computation & set up
 | 
			
		||||
      RealD guess = norm2(psi);
 | 
			
		||||
      assert(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
      Linop.Op(psi, v);
 | 
			
		||||
      b = norm2(v);
 | 
			
		||||
 | 
			
		||||
      r = src - v;
 | 
			
		||||
      rhat = r;
 | 
			
		||||
      a = norm2(r);
 | 
			
		||||
      ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:   src " << ssq << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:    mp " << b << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:     r " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
      RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
      // Check if guess is really REALLY good :)
 | 
			
		||||
      if(a <= rsq){ return; }
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      GridStopWatch LinalgTimer;
 | 
			
		||||
      GridStopWatch InnerTimer;
 | 
			
		||||
      GridStopWatch AxpyNormTimer;
 | 
			
		||||
      GridStopWatch LinearCombTimer;
 | 
			
		||||
      GridStopWatch MatrixTimer;
 | 
			
		||||
      GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Start();
 | 
			
		||||
      int k;
 | 
			
		||||
      for (k = 1; k <= MaxIterations; k++) 
 | 
			
		||||
      {
 | 
			
		||||
        rho_prev = rho;
 | 
			
		||||
 | 
			
		||||
        LinalgTimer.Start();
 | 
			
		||||
        InnerTimer.Start();
 | 
			
		||||
        ComplexD Crho  = innerProduct(rhat,r);
 | 
			
		||||
        InnerTimer.Stop();
 | 
			
		||||
        rho = Crho.real();
 | 
			
		||||
 | 
			
		||||
        beta = (rho / rho_prev) * (alpha / omega);
 | 
			
		||||
 | 
			
		||||
        LinearCombTimer.Start();
 | 
			
		||||
        bo = beta * omega;
 | 
			
		||||
	{
 | 
			
		||||
	  autoView( p_v , p, AcceleratorWrite);
 | 
			
		||||
	  autoView( r_v , r, AcceleratorRead);
 | 
			
		||||
	  autoView( v_v , v, AcceleratorRead);
 | 
			
		||||
	  accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
 | 
			
		||||
	      coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
 | 
			
		||||
	    });
 | 
			
		||||
	}
 | 
			
		||||
        LinearCombTimer.Stop();
 | 
			
		||||
        LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        MatrixTimer.Start();
 | 
			
		||||
        Linop.Op(p,v);
 | 
			
		||||
        MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinalgTimer.Start();
 | 
			
		||||
        InnerTimer.Start();
 | 
			
		||||
        ComplexD Calpha = innerProduct(rhat,v);
 | 
			
		||||
        InnerTimer.Stop();
 | 
			
		||||
        alpha = rho / Calpha.real();
 | 
			
		||||
 | 
			
		||||
        LinearCombTimer.Start();
 | 
			
		||||
	{
 | 
			
		||||
	  autoView( p_v , p, AcceleratorRead);
 | 
			
		||||
	  autoView( r_v , r, AcceleratorRead);
 | 
			
		||||
	  autoView( v_v , v, AcceleratorRead);
 | 
			
		||||
	  autoView( psi_v,psi, AcceleratorRead);
 | 
			
		||||
	  autoView( h_v  ,  h, AcceleratorWrite);
 | 
			
		||||
	  autoView( s_v  ,  s, AcceleratorWrite);
 | 
			
		||||
	  accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
 | 
			
		||||
	      coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
 | 
			
		||||
	    });
 | 
			
		||||
	  accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
 | 
			
		||||
	      coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
 | 
			
		||||
 	  });
 | 
			
		||||
        }
 | 
			
		||||
        LinearCombTimer.Stop();
 | 
			
		||||
        LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        MatrixTimer.Start();
 | 
			
		||||
        Linop.Op(s,t);
 | 
			
		||||
        MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinalgTimer.Start();
 | 
			
		||||
        InnerTimer.Start();
 | 
			
		||||
        ComplexD Comega = innerProduct(t,s);
 | 
			
		||||
        InnerTimer.Stop();
 | 
			
		||||
        omega = Comega.real() / norm2(t);
 | 
			
		||||
 | 
			
		||||
        LinearCombTimer.Start();
 | 
			
		||||
	{
 | 
			
		||||
	  autoView( psi_v,psi, AcceleratorWrite);
 | 
			
		||||
	  autoView( r_v , r, AcceleratorWrite);
 | 
			
		||||
	  autoView( h_v , h, AcceleratorRead);
 | 
			
		||||
	  autoView( s_v , s, AcceleratorRead);
 | 
			
		||||
	  autoView( t_v , t, AcceleratorRead);
 | 
			
		||||
	  accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
 | 
			
		||||
	      coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
 | 
			
		||||
	      coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
 | 
			
		||||
	    });
 | 
			
		||||
	}
 | 
			
		||||
        LinearCombTimer.Stop();
 | 
			
		||||
	
 | 
			
		||||
        cp = norm2(r);
 | 
			
		||||
        LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        // Stopping condition
 | 
			
		||||
        if(cp <= rsq) 
 | 
			
		||||
        {
 | 
			
		||||
          SolverTimer.Stop();
 | 
			
		||||
          Linop.Op(psi, v);
 | 
			
		||||
          p = v - src;
 | 
			
		||||
 | 
			
		||||
          RealD srcnorm = sqrt(norm2(src));
 | 
			
		||||
          RealD resnorm = sqrt(norm2(p));
 | 
			
		||||
          RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
          std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
          std::cout << GridLogMessage << "Time breakdown " << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
          if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
 | 
			
		||||
 | 
			
		||||
          IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
          return;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
      if(ErrorOnNoConverge){ assert(0); }
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,159 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
Author: David Murphy <djmurphy@mit.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef GRID_BICGSTAB_MIXED_PREC_H
 | 
			
		||||
#define GRID_BICGSTAB_MIXED_PREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Mixed precision restarted defect correction BiCGSTAB
 | 
			
		||||
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD> 
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
    using LinearFunction<FieldD>::operator();
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid; // Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
    LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
    LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, 
 | 
			
		||||
        LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) : 
 | 
			
		||||
      Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
 | 
			
		||||
 | 
			
		||||
    void useGuesser(LinearFunction<FieldF>& g){
 | 
			
		||||
      guesser = &g;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    void operator() (const FieldD& src_d_in, FieldD& sol_d)
 | 
			
		||||
    {
 | 
			
		||||
      TotalInnerIterations = 0;
 | 
			
		||||
    
 | 
			
		||||
      GridStopWatch TotalTimer;
 | 
			
		||||
      TotalTimer.Start();
 | 
			
		||||
      
 | 
			
		||||
      int cb = src_d_in.Checkerboard();
 | 
			
		||||
      sol_d.Checkerboard() = cb;
 | 
			
		||||
      
 | 
			
		||||
      RealD src_norm = norm2(src_d_in);
 | 
			
		||||
      RealD stop = src_norm * Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
      GridBase* DoublePrecGrid = src_d_in.Grid();
 | 
			
		||||
      FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
      tmp_d.Checkerboard() = cb;
 | 
			
		||||
      
 | 
			
		||||
      FieldD tmp2_d(DoublePrecGrid);
 | 
			
		||||
      tmp2_d.Checkerboard() = cb;
 | 
			
		||||
      
 | 
			
		||||
      FieldD src_d(DoublePrecGrid);
 | 
			
		||||
      src_d = src_d_in; //source for next inner iteration, computed from residual during operation
 | 
			
		||||
      
 | 
			
		||||
      RealD inner_tol = InnerTolerance;
 | 
			
		||||
      
 | 
			
		||||
      FieldF src_f(SinglePrecGrid);
 | 
			
		||||
      src_f.Checkerboard() = cb;
 | 
			
		||||
      
 | 
			
		||||
      FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
      sol_f.Checkerboard() = cb;
 | 
			
		||||
      
 | 
			
		||||
      BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
      CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
      GridStopWatch InnerCGtimer;
 | 
			
		||||
 | 
			
		||||
      GridStopWatch PrecChangeTimer;
 | 
			
		||||
      
 | 
			
		||||
      Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
        
 | 
			
		||||
      for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
 | 
			
		||||
      {
 | 
			
		||||
        // Compute double precision rsd and also new RHS vector.
 | 
			
		||||
        Linop_d.Op(sol_d, tmp_d);
 | 
			
		||||
        RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
			
		||||
        
 | 
			
		||||
        std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
 | 
			
		||||
 | 
			
		||||
        if(norm < OuterLoopNormMult * stop){
 | 
			
		||||
          std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
 | 
			
		||||
          break;
 | 
			
		||||
        }
 | 
			
		||||
        while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
        PrecChangeTimer.Start();
 | 
			
		||||
        precisionChange(src_f, src_d);
 | 
			
		||||
        PrecChangeTimer.Stop();
 | 
			
		||||
        
 | 
			
		||||
        sol_f = Zero();
 | 
			
		||||
 | 
			
		||||
        //Optionally improve inner solver guess (eg using known eigenvectors)
 | 
			
		||||
        if(guesser != NULL){ (*guesser)(src_f, sol_f); }
 | 
			
		||||
 | 
			
		||||
        //Inner CG
 | 
			
		||||
        CG_f.Tolerance = inner_tol;
 | 
			
		||||
        InnerCGtimer.Start();
 | 
			
		||||
        CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
        InnerCGtimer.Stop();
 | 
			
		||||
        TotalInnerIterations += CG_f.IterationsToComplete;
 | 
			
		||||
        
 | 
			
		||||
        //Convert sol back to double and add to double prec solution
 | 
			
		||||
        PrecChangeTimer.Start();
 | 
			
		||||
        precisionChange(tmp_d, sol_f);
 | 
			
		||||
        PrecChangeTimer.Stop();
 | 
			
		||||
        
 | 
			
		||||
        axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      //Final trial CG
 | 
			
		||||
      std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
      CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
      TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
 | 
			
		||||
      TotalTimer.Stop();
 | 
			
		||||
      std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,741 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = X.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  //
 | 
			
		||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
			
		||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  int Nblock = P.size();
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Block conjugate gradient. Dimension zero should be the block direction
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Field>
 | 
			
		||||
class BlockConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
 | 
			
		||||
  int blockDim ;
 | 
			
		||||
  int Nblock;
 | 
			
		||||
 | 
			
		||||
  BlockCGtype CGtype;
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  Integer PrintInterval; //GridLogMessages or Iterative
 | 
			
		||||
  RealD TrueResidual;
 | 
			
		||||
  
 | 
			
		||||
  BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol), CGtype(cgtype),   blockDim(_Orthog),  MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Thin QR factorisation (google it)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //Dimensions
 | 
			
		||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
			
		||||
  //
 | 
			
		||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
			
		||||
  //
 | 
			
		||||
  //   Q  C = R => Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
			
		||||
  //
 | 
			
		||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
			
		||||
  //
 | 
			
		||||
  // Checks:
 | 
			
		||||
  // Cdag C = Rdag R ; passes.
 | 
			
		||||
  // QdagQ  = 1      ; passes
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 Eigen::MatrixXcd &C,
 | 
			
		||||
		 Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		 Field & Q,
 | 
			
		||||
		 const Field & R)
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = blockDim; // First dimension is block dim; this is an assumption
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  // Force manifest hermitian to avoid rounding related
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
//  ComplexD det = L.determinant();
 | 
			
		||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Q_j  = R_i Cinv(i,j) 
 | 
			
		||||
  //
 | 
			
		||||
  // NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  sliceMulMatrix(Q,Cinv,R,Orthog);
 | 
			
		||||
}
 | 
			
		||||
// see comments above
 | 
			
		||||
void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 Eigen::MatrixXcd &C,
 | 
			
		||||
		 Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		 std::vector<Field> & Q,
 | 
			
		||||
		 const std::vector<Field> & R)
 | 
			
		||||
{
 | 
			
		||||
  InnerProductMatrix(m_rr,R,R);
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
  //  ComplexD det = L.determinant();
 | 
			
		||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
 | 
			
		||||
  MulMatrix(Q,Cinv,R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Call one of several implementations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  if ( CGtype == BlockCGrQ ) {
 | 
			
		||||
    BlockCGrQsolve(Linop,Src,Psi);
 | 
			
		||||
  } else if (CGtype == CGmultiRHS ) {
 | 
			
		||||
    CGmultiRHSsolve(Linop,Src,Psi);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  if ( CGtype == BlockCGrQVec ) {
 | 
			
		||||
    BlockCGrQsolveVec(Linop,Src,Psi);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQ implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
// X is guess/Solution
 | 
			
		||||
// B is RHS
 | 
			
		||||
// Solve A X_i = B_i    ;        i refers to Nblock index
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) 
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = blockDim; // First dimension is block dim; this is an assumption
 | 
			
		||||
  Nblock = B.Grid()->_fdimensions[Orthog];
 | 
			
		||||
/* FAKE */
 | 
			
		||||
  Nblock=8;
 | 
			
		||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  X.Checkerboard() = B.Checkerboard();
 | 
			
		||||
  conformable(X, B);
 | 
			
		||||
 | 
			
		||||
  Field tmp(B);
 | 
			
		||||
  Field Q(B);
 | 
			
		||||
  Field D(B);
 | 
			
		||||
  Field Z(B);
 | 
			
		||||
  Field AD(B);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  sliceNorm(ssq,B,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,B,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,X,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
			
		||||
   ************************************************************************
 | 
			
		||||
   * Dimensions:
 | 
			
		||||
   *
 | 
			
		||||
   *   X,B==(Nferm x Nblock)
 | 
			
		||||
   *   A==(Nferm x Nferm)
 | 
			
		||||
   *  
 | 
			
		||||
   * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
   * 
 | 
			
		||||
   * QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
   * for k: 
 | 
			
		||||
   *   Z  = AD
 | 
			
		||||
   *   M  = [D^dag Z]^{-1}
 | 
			
		||||
   *   X  = X + D MC
 | 
			
		||||
   *   QS = Q - ZM
 | 
			
		||||
   *   D  = Q + D S^dag
 | 
			
		||||
   *   C  = S C
 | 
			
		||||
   */
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Initial block: initial search dir is guess
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  //1.  QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
  Linop.HermOp(X, AD);
 | 
			
		||||
  tmp = B - AD;  
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,tmp,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
  D=Q;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch QRTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  RealD max_resid=0;
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    //3. Z  = AD
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    Linop.HermOp(D, Z);      
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //4. M  = [D^dag Z]^{-1}
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    m_M       = m_DZ.inverse();
 | 
			
		||||
    
 | 
			
		||||
    //5. X  = X + D MC
 | 
			
		||||
    m_tmp     = m_M * m_C;
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(X,m_tmp, D,X,Orthog);     
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //6. QS = Q - ZM
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(tmp,m_M,Z,Q,Orthog,-1.0);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
    QRTimer.Start();
 | 
			
		||||
    ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
 | 
			
		||||
    QRTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
    //7. D  = Q + D S^dag
 | 
			
		||||
    m_tmp = m_S.adjoint();
 | 
			
		||||
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //8. C  = S C
 | 
			
		||||
    m_C = m_S*m_C;
 | 
			
		||||
    
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<Nblock;b++) {
 | 
			
		||||
      rrsum+=real(m_rr(b,b));
 | 
			
		||||
      rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
 | 
			
		||||
	      <<" ave "<<std::sqrt(rrsum/sssum) << " max "<< max_resid <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
 | 
			
		||||
		  << std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(X, AD);
 | 
			
		||||
      AD = AD-B;
 | 
			
		||||
      TrueResidual = std::sqrt(norm2(AD)/norm2(B));
 | 
			
		||||
      std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed()  <<std::endl;
 | 
			
		||||
	    
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
			
		||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// multiRHS conjugate gradient. Dimension zero should be the block direction
 | 
			
		||||
// Use this for spread out across nodes
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = blockDim; // First dimension is block dim
 | 
			
		||||
  Nblock = Src.Grid()->_fdimensions[Orthog];
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  Psi.Checkerboard() = Src.Checkerboard();
 | 
			
		||||
  conformable(Psi, Src);
 | 
			
		||||
 | 
			
		||||
  Field P(Src);
 | 
			
		||||
  Field AP(Src);
 | 
			
		||||
  Field R(Src);
 | 
			
		||||
  
 | 
			
		||||
  std::vector<ComplexD> v_pAp(Nblock);
 | 
			
		||||
  std::vector<RealD> v_rr (Nblock);
 | 
			
		||||
  std::vector<RealD> v_rr_inv(Nblock);
 | 
			
		||||
  std::vector<RealD> v_alpha(Nblock);
 | 
			
		||||
  std::vector<RealD> v_beta(Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  sliceNorm(ssq,Src,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Src,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Psi,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  // Initial search dir is guess
 | 
			
		||||
  Linop.HermOp(Psi, AP);
 | 
			
		||||
 | 
			
		||||
  R = Src - AP;  
 | 
			
		||||
  P = R;
 | 
			
		||||
  sliceNorm(v_rr,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch sliceNormTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
 | 
			
		||||
	      <<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    Linop.HermOp(P, AP);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Alpha
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductVector(v_pAp,P,AP,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_alpha[b] = v_rr[b]/real(v_pAp[b]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Psi, R update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddVector(Psi,v_alpha, P,Psi,Orthog);     // add alpha *  P to psi
 | 
			
		||||
    sliceMaddVector(R  ,v_alpha,AP,  R,Orthog,-1.0);// sub alpha * AP to resid
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Beta
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_rr_inv[b] = 1.0/v_rr[b];
 | 
			
		||||
    }
 | 
			
		||||
    sliceNormTimer.Start();
 | 
			
		||||
    sliceNorm(v_rr,R,Orthog);
 | 
			
		||||
    sliceNormTimer.Stop();
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_beta[b] = v_rr_inv[b] *v_rr[b];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Search update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddVector(P,v_beta,P,R,Orthog);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      RealD rr = v_rr[b]/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tBlock "<<b<<" computed resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(Psi, AP);
 | 
			
		||||
      AP = AP-Src;
 | 
			
		||||
      TrueResidual = std::sqrt(norm2(AP)/norm2(Src));
 | 
			
		||||
      std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tNorm       " << sliceNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQvec implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
// X is guess/Solution
 | 
			
		||||
// B is RHS
 | 
			
		||||
// Solve A X_i = B_i    ;        i refers to Nblock index
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X) 
 | 
			
		||||
{
 | 
			
		||||
  Nblock = B.size();
 | 
			
		||||
  assert(Nblock == X.size());
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ 
 | 
			
		||||
    X[b].Checkerboard() = B[b].Checkerboard();
 | 
			
		||||
    conformable(X[b], B[b]);
 | 
			
		||||
    conformable(X[b], X[0]); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Field Fake(B[0]);
 | 
			
		||||
 | 
			
		||||
  std::vector<Field> tmp(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>   Q(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>   D(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>   Z(Nblock,Fake);
 | 
			
		||||
  std::vector<Field>  AD(Nblock,Fake);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
			
		||||
   ************************************************************************
 | 
			
		||||
   * Dimensions:
 | 
			
		||||
   *
 | 
			
		||||
   *   X,B==(Nferm x Nblock)
 | 
			
		||||
   *   A==(Nferm x Nferm)
 | 
			
		||||
   *  
 | 
			
		||||
   * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
   * 
 | 
			
		||||
   * QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
   * for k: 
 | 
			
		||||
   *   Z  = AD
 | 
			
		||||
   *   M  = [D^dag Z]^{-1}
 | 
			
		||||
   *   X  = X + D MC
 | 
			
		||||
   *   QS = Q - ZM
 | 
			
		||||
   *   D  = Q + D S^dag
 | 
			
		||||
   *   C  = S C
 | 
			
		||||
   */
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Initial block: initial search dir is guess
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  //1.  QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it)
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
    tmp[b] = B[b] - AD[b];  
 | 
			
		||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++) D[b]=Q[b];
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch QRTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    //3. Z  = AD
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);      
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //4. M  = [D^dag Z]^{-1}
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    InnerProductMatrix(m_DZ,D,Z);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    m_M       = m_DZ.inverse();
 | 
			
		||||
    
 | 
			
		||||
    //5. X  = X + D MC
 | 
			
		||||
    m_tmp     = m_M * m_C;
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    MaddMatrix(X,m_tmp, D,X);     
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //6. QS = Q - ZM
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    MaddMatrix(tmp,m_M,Z,Q,-1.0);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
    QRTimer.Start();
 | 
			
		||||
    ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
 | 
			
		||||
    QRTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
    //7. D  = Q + D S^dag
 | 
			
		||||
    m_tmp = m_S.adjoint();
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    MaddMatrix(D,m_tmp,D,Q);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    //8. C  = S C
 | 
			
		||||
    m_C = m_S*m_C;
 | 
			
		||||
    
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<Nblock;b++) {
 | 
			
		||||
      rrsum+=real(m_rr(b,b));
 | 
			
		||||
      rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
      for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
 | 
			
		||||
      TrueResidual = std::sqrt(normv(AD)/normv(B));
 | 
			
		||||
      std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed()  <<std::endl;
 | 
			
		||||
	    
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,248 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the CAGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  CommunicationAvoidingGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                                  Integer maxit,
 | 
			
		||||
                                                  Integer restart_length,
 | 
			
		||||
                                                  bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // this should probably be made a class member so that it is only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    ComplexD scale = 1.0/gamma[0];
 | 
			
		||||
    v[0] = scale * r;
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(v, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(v[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu     = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + v[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,373 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
  
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  RealD TrueResidual;
 | 
			
		||||
  
 | 
			
		||||
  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
			
		||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogBegin(void){
 | 
			
		||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
      this->LogBegin();
 | 
			
		||||
 | 
			
		||||
      GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    GridStopWatch PreambleTimer;
 | 
			
		||||
    GridStopWatch ConstructTimer;
 | 
			
		||||
    GridStopWatch NormTimer;
 | 
			
		||||
    GridStopWatch AssignTimer;
 | 
			
		||||
    PreambleTimer.Start();
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD cp, c, a, d, b, ssq, qq;
 | 
			
		||||
    //RealD b_pred;
 | 
			
		||||
 | 
			
		||||
    // Was doing copies
 | 
			
		||||
    ConstructTimer.Start();
 | 
			
		||||
    Field p  (src.Grid());
 | 
			
		||||
    Field mmp(src.Grid());
 | 
			
		||||
    Field r  (src.Grid());
 | 
			
		||||
    ConstructTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    NormTimer.Start();
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    NormTimer.Stop();
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    AssignTimer.Start();
 | 
			
		||||
    if ( guess == 0.0 ) {
 | 
			
		||||
      r = src;
 | 
			
		||||
      p = r;
 | 
			
		||||
      a = ssq;
 | 
			
		||||
    } else { 
 | 
			
		||||
      Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
      r = src - mmp;
 | 
			
		||||
      p = r;
 | 
			
		||||
      a = norm2(p);
 | 
			
		||||
    }
 | 
			
		||||
    cp = a;
 | 
			
		||||
    AssignTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src
 | 
			
		||||
    if (ssq == 0.){
 | 
			
		||||
      psi = Zero();
 | 
			
		||||
      IterationsToComplete = 1;
 | 
			
		||||
      TrueResidual = 0.;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:    mp " << d << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:   mmp " << b << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:  cp,r " << cp << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:     p " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    // Check if guess is really REALLY good :)
 | 
			
		||||
    if (cp <= rsq) {
 | 
			
		||||
      TrueResidual = std::sqrt(a/ssq);
 | 
			
		||||
      std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
 | 
			
		||||
      IterationsToComplete = 0;	
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(8)
 | 
			
		||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    PreambleTimer.Stop();
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerTimer;
 | 
			
		||||
    GridStopWatch AxpyNormTimer;
 | 
			
		||||
    GridStopWatch LinearCombTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    RealD usecs = -usecond();
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k;
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
      GridStopWatch IterationTimer;
 | 
			
		||||
      IterationTimer.Start();
 | 
			
		||||
      c = cp;
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
      Linop.HermOp(p, mmp);
 | 
			
		||||
      MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      InnerTimer.Start();
 | 
			
		||||
      ComplexD dc  = innerProduct(p,mmp);
 | 
			
		||||
      InnerTimer.Stop();
 | 
			
		||||
      d = dc.real();
 | 
			
		||||
      a = c / d;
 | 
			
		||||
 | 
			
		||||
      AxpyNormTimer.Start();
 | 
			
		||||
      cp = axpy_norm(r, -a, mmp, r);
 | 
			
		||||
      AxpyNormTimer.Stop();
 | 
			
		||||
      b = cp / c;
 | 
			
		||||
 | 
			
		||||
      LinearCombTimer.Start();
 | 
			
		||||
      {
 | 
			
		||||
	autoView( psi_v , psi, AcceleratorWrite);
 | 
			
		||||
	autoView( p_v   , p,   AcceleratorWrite);
 | 
			
		||||
	autoView( r_v   , r,   AcceleratorWrite);
 | 
			
		||||
	accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
 | 
			
		||||
	    coalescedWrite(psi_v[ss], a      *  p_v(ss) + psi_v(ss));
 | 
			
		||||
	    coalescedWrite(p_v[ss]  , b      *  p_v(ss) + r_v  (ss));
 | 
			
		||||
	});
 | 
			
		||||
      }
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
      LogIteration(k,a,b);
 | 
			
		||||
 | 
			
		||||
      IterationTimer.Stop();
 | 
			
		||||
      if ( (k % 500) == 0 ) {
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
 | 
			
		||||
                << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
			
		||||
      } else { 
 | 
			
		||||
	std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
			
		||||
		  << " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	usecs +=usecond();
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
        Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
        p = mmp - src;
 | 
			
		||||
	GridBase *grid = src.Grid();
 | 
			
		||||
	RealD DwfFlops = (1452. )*grid->gSites()*4*k
 | 
			
		||||
   	               + (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
 | 
			
		||||
        RealD srcnorm = std::sqrt(norm2(src));
 | 
			
		||||
        RealD resnorm = std::sqrt(norm2(p));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k 
 | 
			
		||||
		  << "\tComputed residual " << std::sqrt(cp / ssq)
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
	TrueResidual = true_residual;
 | 
			
		||||
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // Failed. Calculate true residual before giving up                                                         
 | 
			
		||||
    // Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
    //    p = mmp - src;
 | 
			
		||||
    //TrueResidual = sqrt(norm2(p)/ssq);
 | 
			
		||||
    //    TrueResidual = 1;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
 | 
			
		||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
			
		||||
    SolverTimer.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  // Optionally record the CG polynomial
 | 
			
		||||
  std::vector<double> ak;
 | 
			
		||||
  std::vector<double> bk;
 | 
			
		||||
  std::vector<double> poly_p;
 | 
			
		||||
  std::vector<double> poly_r;
 | 
			
		||||
  std::vector<double> poly_Ap;
 | 
			
		||||
  std::vector<double> polynomial;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
			
		||||
  { };
 | 
			
		||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    Field tmp(src.Grid());
 | 
			
		||||
    Field AtoN(src.Grid());
 | 
			
		||||
    AtoN = src;
 | 
			
		||||
    psi=AtoN*polynomial[0];
 | 
			
		||||
    for(int n=1;n<polynomial.size();n++){
 | 
			
		||||
      tmp = AtoN;
 | 
			
		||||
      Linop.HermOp(tmp,AtoN);
 | 
			
		||||
      psi = psi + polynomial[n]*AtoN;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    Field Ap(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
    Field p(src.Grid());
 | 
			
		||||
    p=src;
 | 
			
		||||
    r=src;
 | 
			
		||||
    x=Zero();
 | 
			
		||||
    x.Checkerboard()=src.Checkerboard();
 | 
			
		||||
    for(int k=0;k<ak.size();k++){
 | 
			
		||||
      x = x + ak[k]*p;
 | 
			
		||||
      Linop.HermOp(p,Ap);
 | 
			
		||||
      r = r - ak[k] * Ap;
 | 
			
		||||
      p = r + bk[k] * p;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    this->operator ()(Linop,src,psi);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void LogBegin(void)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
			
		||||
    ak.resize(0);
 | 
			
		||||
    bk.resize(0);
 | 
			
		||||
    polynomial.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_p.resize(1);
 | 
			
		||||
    poly_r.resize(1);
 | 
			
		||||
    poly_p[0]=1.0;
 | 
			
		||||
    poly_r[0]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
			
		||||
  {
 | 
			
		||||
    // With zero guess,
 | 
			
		||||
    // p = r = src
 | 
			
		||||
    //
 | 
			
		||||
    // iterate:
 | 
			
		||||
    //   x =  x + a p
 | 
			
		||||
    //   r =  r - a A p
 | 
			
		||||
    //   p =  r + b p
 | 
			
		||||
    //
 | 
			
		||||
    // [0]
 | 
			
		||||
    // r = x
 | 
			
		||||
    // p = x
 | 
			
		||||
    // Ap=0
 | 
			
		||||
    //
 | 
			
		||||
    // [1]
 | 
			
		||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
			
		||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
			
		||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
			
		||||
    // p  = r + b p  ==> add polynomials term by term
 | 
			
		||||
    //
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
			
		||||
    ak.push_back(a);
 | 
			
		||||
    bk.push_back(b);
 | 
			
		||||
    //  Ap= right_shift(p)
 | 
			
		||||
    poly_Ap.resize(k+1);
 | 
			
		||||
    poly_Ap[0]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      poly_Ap[i+1]=poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //  x = x + a p
 | 
			
		||||
    polynomial.resize(k);
 | 
			
		||||
    polynomial[k-1]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //  r = r - a Ap
 | 
			
		||||
    //  p = r + b p
 | 
			
		||||
    poly_r.resize(k+1);
 | 
			
		||||
    poly_p.resize(k+1);
 | 
			
		||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
			
		||||
    for(int i=0;i<k+1;i++){
 | 
			
		||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
			
		||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,170 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrec.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  //Mixed precision restarted defect correction CG
 | 
			
		||||
  template<class FieldD,class FieldF, 
 | 
			
		||||
    typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
    typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
  class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
 | 
			
		||||
  public:
 | 
			
		||||
    using LinearFunction<FieldD>::operator();
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
    LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
    LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
    RealD TrueResidual;
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionConjugateGradient(RealD tol, 
 | 
			
		||||
				    Integer maxinnerit, 
 | 
			
		||||
				    Integer maxouterit, 
 | 
			
		||||
				    GridBase* _sp_grid, 
 | 
			
		||||
				    LinearOperatorBase<FieldF> &_Linop_f, 
 | 
			
		||||
				    LinearOperatorBase<FieldD> &_Linop_d) :
 | 
			
		||||
      Linop_f(_Linop_f), Linop_d(_Linop_d),
 | 
			
		||||
      Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
 | 
			
		||||
      OuterLoopNormMult(100.), guesser(NULL){ };
 | 
			
		||||
 | 
			
		||||
    void useGuesser(LinearFunction<FieldF> &g){
 | 
			
		||||
      guesser = &g;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
 | 
			
		||||
    TotalInnerIterations = 0;
 | 
			
		||||
	
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
    TotalTimer.Start();
 | 
			
		||||
    
 | 
			
		||||
    int cb = src_d_in.Checkerboard();
 | 
			
		||||
    sol_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    RealD src_norm = norm2(src_d_in);
 | 
			
		||||
    RealD stop = src_norm * Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    GridBase* DoublePrecGrid = src_d_in.Grid();
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    tmp_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldD tmp2_d(DoublePrecGrid);
 | 
			
		||||
    tmp2_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldD src_d(DoublePrecGrid);
 | 
			
		||||
    src_d = src_d_in; //source for next inner iteration, computed from residual during operation
 | 
			
		||||
    
 | 
			
		||||
    RealD inner_tol = InnerTolerance;
 | 
			
		||||
    
 | 
			
		||||
    FieldF src_f(SinglePrecGrid);
 | 
			
		||||
    src_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
    sol_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch InnerCGtimer;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
 | 
			
		||||
    precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
 | 
			
		||||
    
 | 
			
		||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
			
		||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(norm < OuterLoopNormMult * stop){
 | 
			
		||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      sol_f = Zero();
 | 
			
		||||
 | 
			
		||||
      //Optionally improve inner solver guess (eg using known eigenvectors)
 | 
			
		||||
      if(guesser != NULL)
 | 
			
		||||
	(*guesser)(src_f, sol_f);
 | 
			
		||||
 | 
			
		||||
      //Inner CG
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
      CG_f.Tolerance = inner_tol;
 | 
			
		||||
      InnerCGtimer.Start();
 | 
			
		||||
      CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
      InnerCGtimer.Stop();
 | 
			
		||||
      TotalInnerIterations += CG_f.IterationsToComplete;
 | 
			
		||||
      
 | 
			
		||||
      //Convert sol back to double and add to double prec solution
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //Final trial CG
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
    TrueResidual = CG_d.TrueResidual;
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,213 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//Mixed precision restarted defect correction CG
 | 
			
		||||
template<class FieldD,class FieldF, 
 | 
			
		||||
  typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
  typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<FieldD>::operator();
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
  Integer MaxInnerIterations;
 | 
			
		||||
  Integer MaxOuterIterations;
 | 
			
		||||
  Integer MaxPatchupIterations;
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
 | 
			
		||||
  //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
  LinearFunction<FieldF> *guesser;
 | 
			
		||||
  bool updateResidual;
 | 
			
		||||
  
 | 
			
		||||
  MixedPrecisionConjugateGradientBatched(RealD tol, 
 | 
			
		||||
          Integer maxinnerit, 
 | 
			
		||||
          Integer maxouterit, 
 | 
			
		||||
          Integer maxpatchit,
 | 
			
		||||
          GridBase* _sp_grid, 
 | 
			
		||||
          LinearOperatorBase<FieldF> &_Linop_f, 
 | 
			
		||||
          LinearOperatorBase<FieldD> &_Linop_d,
 | 
			
		||||
          bool _updateResidual=true) :
 | 
			
		||||
    Linop_f(_Linop_f), Linop_d(_Linop_d),
 | 
			
		||||
    Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
 | 
			
		||||
    OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
 | 
			
		||||
 | 
			
		||||
  void useGuesser(LinearFunction<FieldF> &g){
 | 
			
		||||
    guesser = &g;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::vector<FieldD> srcs_d_in{src_d_in};
 | 
			
		||||
    std::vector<FieldD> sols_d{sol_d};
 | 
			
		||||
 | 
			
		||||
    (*this)(srcs_d_in,sols_d);
 | 
			
		||||
 | 
			
		||||
    sol_d = sols_d[0];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
 | 
			
		||||
    assert(src_d_in.size() == sol_d.size());
 | 
			
		||||
    int NBatch = src_d_in.size();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
 | 
			
		||||
 | 
			
		||||
    Integer TotalOuterIterations = 0; //Number of restarts
 | 
			
		||||
    std::vector<Integer> TotalInnerIterations(NBatch,0);     //Number of inner CG iterations
 | 
			
		||||
    std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
 | 
			
		||||
  
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
    TotalTimer.Start();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch InnerCGtimer;
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    int cb = src_d_in[0].Checkerboard();
 | 
			
		||||
    
 | 
			
		||||
    std::vector<RealD> src_norm;
 | 
			
		||||
    std::vector<RealD> norm;
 | 
			
		||||
    std::vector<RealD> stop;
 | 
			
		||||
    
 | 
			
		||||
    GridBase* DoublePrecGrid = src_d_in[0].Grid();
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    tmp_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    FieldD tmp2_d(DoublePrecGrid);
 | 
			
		||||
    tmp2_d.Checkerboard() = cb;
 | 
			
		||||
 | 
			
		||||
    std::vector<FieldD> src_d;
 | 
			
		||||
    std::vector<FieldF> src_f;
 | 
			
		||||
    std::vector<FieldF> sol_f;
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<NBatch; i++) {
 | 
			
		||||
      sol_d[i].Checkerboard() = cb;
 | 
			
		||||
 | 
			
		||||
      src_norm.push_back(norm2(src_d_in[i]));
 | 
			
		||||
      norm.push_back(0.);
 | 
			
		||||
      stop.push_back(src_norm[i] * Tolerance*Tolerance);
 | 
			
		||||
 | 
			
		||||
      src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
 | 
			
		||||
 | 
			
		||||
      src_f.push_back(SinglePrecGrid);
 | 
			
		||||
      src_f[i].Checkerboard() = cb;
 | 
			
		||||
 | 
			
		||||
      sol_f.push_back(SinglePrecGrid);
 | 
			
		||||
      sol_f[i].Checkerboard() = cb;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    RealD inner_tol = InnerTolerance;
 | 
			
		||||
    
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
    
 | 
			
		||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
			
		||||
      
 | 
			
		||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
			
		||||
      std::cout << GridLogMessage << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      bool allConverged = true;
 | 
			
		||||
      
 | 
			
		||||
      for (int i=0; i<NBatch; i++) {
 | 
			
		||||
        //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
        Linop_d.HermOp(sol_d[i], tmp_d);
 | 
			
		||||
        norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
 | 
			
		||||
        
 | 
			
		||||
        std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
 | 
			
		||||
 | 
			
		||||
        PrecChangeTimer.Start();
 | 
			
		||||
        precisionChange(src_f[i], src_d[i]);
 | 
			
		||||
        PrecChangeTimer.Stop();
 | 
			
		||||
        
 | 
			
		||||
        sol_f[i] = Zero();
 | 
			
		||||
      
 | 
			
		||||
        if(norm[i] > OuterLoopNormMult * stop[i]) {
 | 
			
		||||
          allConverged = false;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      if (allConverged) break;
 | 
			
		||||
 | 
			
		||||
      if (updateResidual) {
 | 
			
		||||
        RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
 | 
			
		||||
        RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
 | 
			
		||||
        while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
        CG_f.Tolerance = inner_tol;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Optionally improve inner solver guess (eg using known eigenvectors)
 | 
			
		||||
      if(guesser != NULL) {
 | 
			
		||||
        (*guesser)(src_f, sol_f);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for (int i=0; i<NBatch; i++) {
 | 
			
		||||
        //Inner CG
 | 
			
		||||
        InnerCGtimer.Start();
 | 
			
		||||
        CG_f(Linop_f, src_f[i], sol_f[i]);
 | 
			
		||||
        InnerCGtimer.Stop();
 | 
			
		||||
        TotalInnerIterations[i] += CG_f.IterationsToComplete;
 | 
			
		||||
        
 | 
			
		||||
        //Convert sol back to double and add to double prec solution
 | 
			
		||||
        PrecChangeTimer.Start();
 | 
			
		||||
        precisionChange(tmp_d, sol_f[i]);
 | 
			
		||||
        PrecChangeTimer.Stop();
 | 
			
		||||
        
 | 
			
		||||
        axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //Final trial CG
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    for (int i=0; i<NBatch; i++) {
 | 
			
		||||
      ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
 | 
			
		||||
      CG_d(Linop_d, src_d_in[i], sol_d[i]);
 | 
			
		||||
      TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    for (int i=0; i<NBatch; i++) {
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,346 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
 | 
			
		||||
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
 | 
			
		||||
				    public OperatorFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  //  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    shifts(_shifts)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<Field> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShift");
 | 
			
		||||
  
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
  
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
    std::vector<Field>   ps(nshift,grid);// Search directions
 | 
			
		||||
 | 
			
		||||
    assert(psi.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field p(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
  
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
			
		||||
	       <<" target resid^2 "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps[s] = src;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    r=src;
 | 
			
		||||
    p=src;
 | 
			
		||||
  
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    Linop.HermOpAndNorm(p,mmp,d,qq);
 | 
			
		||||
    axpy(mmp,mass[0],p,mmp);
 | 
			
		||||
    RealD rn = norm2(p);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
  
 | 
			
		||||
    // have verified that inner product of 
 | 
			
		||||
    // p and mmp is equal to d after this since
 | 
			
		||||
    // the d computation is tricky
 | 
			
		||||
    //  qq = real(innerProduct(p,mmp));
 | 
			
		||||
    //  std::cout<<GridLogMessage << "debug equal ?  qq "<<qq<<" d "<< d<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r,b,mmp,r);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  GridStopWatch AXPYTimer;
 | 
			
		||||
  GridStopWatch ShiftTimer;
 | 
			
		||||
  GridStopWatch QRTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      axpy(p,a,p,r);
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      // Note to self - direction ps is iterated seperately
 | 
			
		||||
      // for each shift. Does not appear to have any scope
 | 
			
		||||
      // for avoiding linear algebra in "single" case.
 | 
			
		||||
      // 
 | 
			
		||||
      // However SAME r is used. Could load "r" and update
 | 
			
		||||
      // ALL ps[s]. 2/3 Bandwidth saving
 | 
			
		||||
      // New Kernel: Load r, vector of coeffs, vector of pointers ps
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps[s],a,ps[s],r);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps[s],z[s][iz],as,r,ps[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      cp=c;
 | 
			
		||||
    MatrixTimer.Start();  
 | 
			
		||||
    //Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
 | 
			
		||||
    // The below is faster on KNL
 | 
			
		||||
    Linop.HermOp(p,mmp); 
 | 
			
		||||
    d=real(innerProduct(p,mmp));
 | 
			
		||||
    
 | 
			
		||||
    MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      axpy(mmp,mass[0],p,mmp);
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
    
 | 
			
		||||
    AXPYTimer.Start();
 | 
			
		||||
      c=axpy_norm(r,b,mmp,r);
 | 
			
		||||
    AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
    ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    ShiftTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	// Scope for optimisation here in case of "single".
 | 
			
		||||
	// Could load psi[0] and pull all ps[s] in.
 | 
			
		||||
	//      if ( single ) ss=primary;
 | 
			
		||||
	// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
 | 
			
		||||
	// Pipelined CG gain:
 | 
			
		||||
	//
 | 
			
		||||
	// New Kernel: Load r, vector of coeffs, vector of pointers ps
 | 
			
		||||
	// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
 | 
			
		||||
	// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
 | 
			
		||||
	//  on ps[s].
 | 
			
		||||
	// Before:  3 x npole  + 3 x npole
 | 
			
		||||
	// After :  2 x npole (ps[s])        => 3x speed up of multishift CG.
 | 
			
		||||
      
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsq[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      if ( all_converged ){
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop.HermOpAndNorm(psi[s],mmp,d,qq);
 | 
			
		||||
	  axpy(tmp,mass[s],psi[s],mmp);
 | 
			
		||||
	  axpy(r,-alpha[s],src,tmp);
 | 
			
		||||
	  RealD rn = norm2(r);
 | 
			
		||||
	  RealD cn = norm2(src);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tAXPY     " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    // ugly hack
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    //  assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,373 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//PB Pure single, then double fixup
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterationsMshift;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq) : 
 | 
			
		||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
    MaxIterations(20000)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
 | 
			
		||||
    std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	psi_f[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      rsqf[s] =rsq[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      //      ps_d[s] = src_d;
 | 
			
		||||
      precisionChange(ps_f[s],src_d);
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
    r_d = p_d;
 | 
			
		||||
    
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    precisionChange(p_f,p_d);
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    precisionChange(tmp_d,mmp_f);
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
      precisionChange(psi_f[s],psi_d[s]);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
			
		||||
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(r_f, r_d);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_f[s],a,ps_f[s],r_f);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(mmp_d, mmp_f); // From Float to Double
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
			
		||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
      RealD rn = norm2(p_d);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update single precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsqf[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	for(int s=0;s<nshift;s++){
 | 
			
		||||
	  precisionChange(psi_d[s],psi_f[s]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	if ( all_converged ){
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,416 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
    
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//Linop to add shift to input linop, used in cleanup CG
 | 
			
		||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class ShiftedLinop: public LinearOperatorBase<Field>{
 | 
			
		||||
public:
 | 
			
		||||
  LinearOperatorBase<Field> &linop_base;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
 | 
			
		||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
			
		||||
  
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    linop_base.HermOp(in, out);
 | 
			
		||||
    axpy(out, shift, in, out);
 | 
			
		||||
  }    
 | 
			
		||||
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterationsMshift;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq) : 
 | 
			
		||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
			
		||||
    MaxIterations(20000)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
 | 
			
		||||
    
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      rsqf[s] =rsq[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps_d[s] = src_d;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
    r_d = p_d;
 | 
			
		||||
    
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    precisionChange(p_f, p_d, pc_wk_d_to_s);
 | 
			
		||||
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    assert(norm2(tmp_d)< 1.0);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
			
		||||
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_d[s],a,ps_d[s],r_d);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
			
		||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p_d);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update double precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Perform reliable update if necessary; otherwise update residual from single-prec mmp
 | 
			
		||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k % ReliableUpdateFreq == 0){
 | 
			
		||||
	RealD c_old = c;
 | 
			
		||||
	//Replace r with true residual
 | 
			
		||||
	MatrixTimer.Start();  
 | 
			
		||||
	Linop_d.HermOp(psi_d[0],mmp_d); 
 | 
			
		||||
	MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
	AXPYTimer.Start();
 | 
			
		||||
	axpy(mmp_d,mass[0],psi_d[0],mmp_d);
 | 
			
		||||
 | 
			
		||||
	c = axpy_norm(r_d, -1.0, mmp_d, src_d);
 | 
			
		||||
	AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsqf[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	if ( all_converged ){
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,277 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class FieldD,class FieldF, 
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
 | 
			
		||||
public:
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
  // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  Integer ReliableUpdatesPerformed;
 | 
			
		||||
 | 
			
		||||
  bool DoFinalCleanup; //Final DP cleanup, defaults to true
 | 
			
		||||
  Integer IterationsToCleanup; //Final DP cleanup step iterations
 | 
			
		||||
    
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
  GridBase* SinglePrecGrid;
 | 
			
		||||
  RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
 | 
			
		||||
 | 
			
		||||
  //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
			
		||||
  LinearOperatorBase<FieldF> *Linop_fallback;
 | 
			
		||||
  RealD fallback_transition_tol;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      Delta(_delta),
 | 
			
		||||
      Linop_f(_Linop_f),
 | 
			
		||||
      Linop_d(_Linop_d),
 | 
			
		||||
      SinglePrecGrid(_sp_grid),
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv),
 | 
			
		||||
      DoFinalCleanup(true),
 | 
			
		||||
      Linop_fallback(NULL)
 | 
			
		||||
  {
 | 
			
		||||
    assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
			
		||||
    Linop_fallback = &_Linop_fallback;
 | 
			
		||||
    fallback_transition_tol = _fallback_transition_tol;      
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  void operator()(const FieldD &src, FieldD &psi) {
 | 
			
		||||
    GRID_TRACE("ConjugateGradientReliableUpdate");
 | 
			
		||||
    LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
			
		||||
    bool using_fallback = false;
 | 
			
		||||
      
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD cp, c, a, d, b, ssq, qq, b_pred;
 | 
			
		||||
 | 
			
		||||
    FieldD p(src);
 | 
			
		||||
    FieldD mmp(src);
 | 
			
		||||
    FieldD r(src);
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
    Linop_d.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
    
 | 
			
		||||
    r = src - mmp;
 | 
			
		||||
    p = r;
 | 
			
		||||
 | 
			
		||||
    a = norm2(p);
 | 
			
		||||
    cp = a;
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:    mp " << d << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   mmp " << b << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:  cp,r " << cp << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:     p " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    // Check if guess is really REALLY good :)
 | 
			
		||||
    if (cp <= rsq) {
 | 
			
		||||
      std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
 | 
			
		||||
      std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //Single prec initialization
 | 
			
		||||
    precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    r_f.Checkerboard() = r.Checkerboard();
 | 
			
		||||
    precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
			
		||||
 | 
			
		||||
    FieldF psi_f(r_f);
 | 
			
		||||
    psi_f = Zero();
 | 
			
		||||
 | 
			
		||||
    FieldF p_f(r_f);
 | 
			
		||||
    FieldF mmp_f(r_f);
 | 
			
		||||
 | 
			
		||||
    RealD MaxResidSinceLastRelUp = cp; //initial residual    
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
	      << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    GridStopWatch PrecChangeTimer;
 | 
			
		||||
    
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k = 0;
 | 
			
		||||
    int l = 0;
 | 
			
		||||
    
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
      c = cp;
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
      Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
 | 
			
		||||
      MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      a = c / d;
 | 
			
		||||
      b_pred = a * (a * qq - d) / c;
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r_f, -a, mmp_f, r_f);
 | 
			
		||||
      b = cp / c;
 | 
			
		||||
 | 
			
		||||
      // Fuse these loops ; should be really easy
 | 
			
		||||
      psi_f = a * p_f + psi_f;
 | 
			
		||||
      //p_f = p_f * b + r_f;
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
 | 
			
		||||
		<< " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
      std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << "  b = "<< b << std::endl;
 | 
			
		||||
      std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << "  c = "<< c << std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp > MaxResidSinceLastRelUp){
 | 
			
		||||
	std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
 | 
			
		||||
	MaxResidSinceLastRelUp = cp;
 | 
			
		||||
      }
 | 
			
		||||
	  
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	//Although not written in the paper, I assume that I have to add on the final solution
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
	
 | 
			
		||||
	
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	p = mmp - src;
 | 
			
		||||
 | 
			
		||||
	RealD srcnorm = std::sqrt(norm2(src));
 | 
			
		||||
	RealD resnorm = std::sqrt(norm2(p));
 | 
			
		||||
	RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
	ReliableUpdatesPerformed = l;
 | 
			
		||||
	  
 | 
			
		||||
	if(DoFinalCleanup){
 | 
			
		||||
	  //Do a final CG to cleanup
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
 | 
			
		||||
	  ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
 | 
			
		||||
	  CG.ErrorOnNoConverge = ErrorOnNoConverge;
 | 
			
		||||
	  CG(Linop_d,src,psi);
 | 
			
		||||
	  IterationsToCleanup = CG.IterationsToComplete;
 | 
			
		||||
	}
 | 
			
		||||
	else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
			
		||||
		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	psi = psi + mmp;
 | 
			
		||||
 | 
			
		||||
	MatrixTimer.Start();
 | 
			
		||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	MatrixTimer.Stop();
 | 
			
		||||
	
 | 
			
		||||
	r = src - mmp;
 | 
			
		||||
 | 
			
		||||
	psi_f = Zero();
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	cp = norm2(r);
 | 
			
		||||
	MaxResidSinceLastRelUp = cp;
 | 
			
		||||
 | 
			
		||||
	b = cp/c;
 | 
			
		||||
	  
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	l = l+1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
 | 
			
		||||
 | 
			
		||||
      if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
 | 
			
		||||
	Linop_f_use = Linop_fallback;
 | 
			
		||||
	using_fallback = true;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
 | 
			
		||||
	      << std::endl;
 | 
			
		||||
      
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
    ReliableUpdatesPerformed = l;      
 | 
			
		||||
  }    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,113 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_RESIDUAL_H
 | 
			
		||||
#define GRID_CONJUGATE_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class ConjugateResidual : public OperatorFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
 | 
			
		||||
  ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) { 
 | 
			
		||||
    verbose=0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    RealD a, b; // c, d;
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
      
 | 
			
		||||
    RealD rAr, rAAr, rArp;
 | 
			
		||||
    RealD pAp, pAAp;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    Field r(grid),  p(grid), Ap(grid), Ar(grid);
 | 
			
		||||
      
 | 
			
		||||
    r=src;
 | 
			
		||||
    p=src;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
 | 
			
		||||
    Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
 | 
			
		||||
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
 | 
			
		||||
    if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int k=1;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      a = rAr/pAAp;
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p,psi);
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r,-a,Ap,r);
 | 
			
		||||
 | 
			
		||||
      rArp=rAr;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
 | 
			
		||||
 | 
			
		||||
      b   =rAr/rArp;
 | 
			
		||||
 
 | 
			
		||||
      axpy(p,b,p,r);
 | 
			
		||||
      pAAp=axpy_norm(Ap,b,Ap,Ar);
 | 
			
		||||
	
 | 
			
		||||
      if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
	Linop.HermOp(psi,Ap);
 | 
			
		||||
	axpy(r,-1.0,src,Ap);
 | 
			
		||||
	RealD true_resid = norm2(r)/ssq;
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
 | 
			
		||||
		 << " computed residual "<<std::sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "<<std::sqrt(true_resid)
 | 
			
		||||
		 << " target "       <<Tolerance <<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,258 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                                          Integer maxit,
 | 
			
		||||
                                                          LinearFunction<Field> &Prec,
 | 
			
		||||
                                                          Integer restart_length,
 | 
			
		||||
                                                          bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.)
 | 
			
		||||
      , Preconditioner(Prec) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // these should probably be made class members so that they are only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
    std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, z, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(z, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(v[iter], z[iter]);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(z[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + z[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,256 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the FGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  FlexibleGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                     Integer maxit,
 | 
			
		||||
                                     LinearFunction<Field> &Prec,
 | 
			
		||||
                                     Integer restart_length,
 | 
			
		||||
                                     bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.)
 | 
			
		||||
      , Preconditioner(Prec) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // these should probably be made class members so that they are only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
    std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, z, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(z, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(v[iter], z[iter]);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(z[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + z[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,244 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the GMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  GeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                             Integer maxit,
 | 
			
		||||
                             Integer restart_length,
 | 
			
		||||
                             bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "GeneralisedMinimalResidual:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    Field w(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // this should probably be made a class member so that it is only allocated once, not in every restart
 | 
			
		||||
    std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(v, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(v[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + v[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,739 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_BIRL_H
 | 
			
		||||
#define GRID_BIRL_H
 | 
			
		||||
 | 
			
		||||
#include <string.h> //memset
 | 
			
		||||
//#include <zlib.h>
 | 
			
		||||
#include <sys/stat.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Implicitly restarted lanczos
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class ImplicitlyRestartedLanczosTester 
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
 | 
			
		||||
  virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
enum IRLdiagonalisation { 
 | 
			
		||||
  IRLdiagonaliseWithDSTEGR,
 | 
			
		||||
  IRLdiagonaliseWithQR,
 | 
			
		||||
  IRLdiagonaliseWithEigen
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public ImplicitlyRestartedLanczosTester<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field>       &_HermOp;
 | 
			
		||||
  ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOp) : _HermOp(HermOp)  {  };
 | 
			
		||||
  int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    return TestConvergence(j,resid,B,eval,evalMaxApprox);
 | 
			
		||||
  }
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    Field v(B);
 | 
			
		||||
    RealD eval_poly = eval;
 | 
			
		||||
    // Apply operator
 | 
			
		||||
    _HermOp(B,v);
 | 
			
		||||
 | 
			
		||||
    RealD vnum = real(innerProduct(B,v)); // HermOp.
 | 
			
		||||
    RealD vden = norm2(B);
 | 
			
		||||
    RealD vv0  = norm2(v);
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    v -= eval*B;
 | 
			
		||||
 | 
			
		||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<" target " << eresid*eresid << " conv " <<conv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class ImplicitlyRestartedLanczos {
 | 
			
		||||
 private:
 | 
			
		||||
  const RealD small = 1.0e-8;
 | 
			
		||||
  int MaxIter;
 | 
			
		||||
  int MinRestart; // Minimum number of restarts; only check for convergence after
 | 
			
		||||
  int Nstop;   // Number of evecs checked for convergence
 | 
			
		||||
  int Nk;      // Number of converged sought
 | 
			
		||||
  //  int Np;      // Np -- Number of spare vecs in krylov space //  == Nm - Nk
 | 
			
		||||
  int Nm;      // Nm -- total number of vectors
 | 
			
		||||
  IRLdiagonalisation diagonalisation;
 | 
			
		||||
  int orth_period;
 | 
			
		||||
    
 | 
			
		||||
  RealD OrthoTime;
 | 
			
		||||
  RealD eresid, betastp;
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Embedded objects
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  LinearFunction<Field>       &_PolyOp;
 | 
			
		||||
  LinearFunction<Field>       &_HermOp;
 | 
			
		||||
  ImplicitlyRestartedLanczosTester<Field> &_Tester;
 | 
			
		||||
  // Default tester provided (we need a ref to something in default case)
 | 
			
		||||
  ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
 | 
			
		||||
  /////////////////////////
 | 
			
		||||
  // Constructor
 | 
			
		||||
  /////////////////////////
 | 
			
		||||
  
 | 
			
		||||
public:       
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // PAB:
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Too many options  & knobs. 
 | 
			
		||||
  // Eliminate:
 | 
			
		||||
  //   orth_period
 | 
			
		||||
  //   betastp
 | 
			
		||||
  //   MinRestart
 | 
			
		||||
  //
 | 
			
		||||
  // Do we really need orth_period
 | 
			
		||||
  // What is the theoretical basis & guarantees of betastp ?
 | 
			
		||||
  // Nstop=Nk viable?
 | 
			
		||||
  // MinRestart avoidable with new convergence test?
 | 
			
		||||
  // Could cut to PolyOp, HermOp, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
 | 
			
		||||
  // HermOp could be eliminated if we dropped the Power method for max eval.
 | 
			
		||||
  // -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
 ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
 | 
			
		||||
			    LinearFunction<Field> & HermOp,
 | 
			
		||||
			    ImplicitlyRestartedLanczosTester<Field> & Tester,
 | 
			
		||||
			    int _Nstop, // sought vecs
 | 
			
		||||
			    int _Nk, // sought vecs
 | 
			
		||||
			    int _Nm, // spare vecs
 | 
			
		||||
			    RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			    int _MaxIter, // Max iterations
 | 
			
		||||
			    RealD _betastp=0.0, // if beta(k) < betastp: converged
 | 
			
		||||
			    int _MinRestart=0, int _orth_period = 1,
 | 
			
		||||
			    IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
 | 
			
		||||
    SimpleTester(HermOp), _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(Tester),
 | 
			
		||||
    Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm),
 | 
			
		||||
    eresid(_eresid),      betastp(_betastp),
 | 
			
		||||
    MaxIter(_MaxIter)  ,      MinRestart(_MinRestart),
 | 
			
		||||
    orth_period(_orth_period), diagonalisation(_diagonalisation)  { };
 | 
			
		||||
 | 
			
		||||
    ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
 | 
			
		||||
			       LinearFunction<Field> & HermOp,
 | 
			
		||||
			       int _Nstop, // sought vecs
 | 
			
		||||
			       int _Nk, // sought vecs
 | 
			
		||||
			       int _Nm, // spare vecs
 | 
			
		||||
			       RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			       int _MaxIter, // Max iterations
 | 
			
		||||
			       RealD _betastp=0.0, // if beta(k) < betastp: converged
 | 
			
		||||
			       int _MinRestart=0, int _orth_period = 1,
 | 
			
		||||
			       IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
 | 
			
		||||
    SimpleTester(HermOp),  _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(SimpleTester),
 | 
			
		||||
    Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm),
 | 
			
		||||
    eresid(_eresid),      betastp(_betastp),
 | 
			
		||||
    MaxIter(_MaxIter)  ,      MinRestart(_MinRestart),
 | 
			
		||||
    orth_period(_orth_period), diagonalisation(_diagonalisation)  { };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = std::sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void orthogonalize(Field& w, std::vector<Field>& evec,int k)
 | 
			
		||||
  {
 | 
			
		||||
    OrthoTime-=usecond()/1e6;
 | 
			
		||||
    basisOrthogonalize(evec,w,k);
 | 
			
		||||
    normalise(w);
 | 
			
		||||
    OrthoTime+=usecond()/1e6;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
/* Rudy Arthur's thesis pp.137
 | 
			
		||||
------------------------
 | 
			
		||||
Require: M > K P = M − K †
 | 
			
		||||
Compute the factorization AVM = VM HM + fM eM 
 | 
			
		||||
repeat
 | 
			
		||||
  Q=I
 | 
			
		||||
  for i = 1,...,P do
 | 
			
		||||
    QiRi =HM −θiI Q = QQi
 | 
			
		||||
    H M = Q †i H M Q i
 | 
			
		||||
  end for
 | 
			
		||||
  βK =HM(K+1,K) σK =Q(M,K)
 | 
			
		||||
  r=vK+1βK +rσK
 | 
			
		||||
  VK =VM(1:M)Q(1:M,1:K)
 | 
			
		||||
  HK =HM(1:K,1:K)
 | 
			
		||||
  →AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
 | 
			
		||||
until convergence
 | 
			
		||||
*/
 | 
			
		||||
  void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    assert(grid == evec[0].Grid());
 | 
			
		||||
    
 | 
			
		||||
    //    GridLogIRL.TimingMode(1);
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 /  "<< MaxIter<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- seek   Nk    = " << Nk    <<" vectors"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- total  Nm    = " << Nm    <<" vectors"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
 | 
			
		||||
    std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
 | 
			
		||||
    if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
 | 
			
		||||
      std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
 | 
			
		||||
    } else if ( diagonalisation == IRLdiagonaliseWithQR ) { 
 | 
			
		||||
      std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
 | 
			
		||||
    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
			
		||||
      std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
	
 | 
			
		||||
    assert(Nm <= evec.size() && Nm <= eval.size());
 | 
			
		||||
    
 | 
			
		||||
    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
			
		||||
    RealD evalMaxApprox = 0.0;
 | 
			
		||||
    {
 | 
			
		||||
      auto src_n = src;
 | 
			
		||||
      auto tmp = src;
 | 
			
		||||
      std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl;
 | 
			
		||||
      const int _MAX_ITER_IRL_MEVAPP_ = 50;
 | 
			
		||||
      for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
 | 
			
		||||
	normalise(src_n);
 | 
			
		||||
	_HermOp(src_n,tmp);
 | 
			
		||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
			
		||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
			
		||||
	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	RealD vden = norm2(src_n);
 | 
			
		||||
	RealD na = vnum/vden;
 | 
			
		||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
			
		||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	evalMaxApprox = na;
 | 
			
		||||
	std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
	src_n = tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
	
 | 
			
		||||
    std::vector<RealD> lme(Nm);  
 | 
			
		||||
    std::vector<RealD> lme2(Nm);
 | 
			
		||||
    std::vector<RealD> eval2(Nm);
 | 
			
		||||
    std::vector<RealD> eval2_copy(Nm);
 | 
			
		||||
    Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
 | 
			
		||||
 | 
			
		||||
    Field f(grid);
 | 
			
		||||
    Field v(grid);
 | 
			
		||||
    int k1 = 1;
 | 
			
		||||
    int k2 = Nk;
 | 
			
		||||
    RealD beta_k;
 | 
			
		||||
 | 
			
		||||
    Nconv = 0;
 | 
			
		||||
  
 | 
			
		||||
    // Set initial vector
 | 
			
		||||
    evec[0] = src;
 | 
			
		||||
    normalise(evec[0]);
 | 
			
		||||
	
 | 
			
		||||
    // Initial Nk steps
 | 
			
		||||
    OrthoTime=0.;
 | 
			
		||||
    for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
    std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Restarting loop begins
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    int iter;
 | 
			
		||||
    for(iter = 0; iter<MaxIter; ++iter){
 | 
			
		||||
      
 | 
			
		||||
      OrthoTime=0.;
 | 
			
		||||
 | 
			
		||||
      std::cout<< GridLogMessage <<" **********************"<< std::endl;
 | 
			
		||||
      std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
 | 
			
		||||
      std::cout<< GridLogMessage <<" **********************"<< std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
 | 
			
		||||
      for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
      f *= lme[Nm-1];
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
 | 
			
		||||
      std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      // getting eigenvalues
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      for(int k=0; k<Nm; ++k){
 | 
			
		||||
	eval2[k] = eval[k+k1-1];
 | 
			
		||||
	lme2[k] = lme[k+k1-1];
 | 
			
		||||
      }
 | 
			
		||||
      Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
      diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
 | 
			
		||||
      std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      // sorting
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      eval2_copy = eval2;
 | 
			
		||||
      std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
 | 
			
		||||
      std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
 | 
			
		||||
      const int chunk=8;
 | 
			
		||||
      for(int io=0; io<k2;io+=chunk){
 | 
			
		||||
	std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
 | 
			
		||||
	for(int ii=0;ii<chunk;ii++){
 | 
			
		||||
	  if ( (io+ii)<k2 )
 | 
			
		||||
	    std::cout<< " "<< std::setw(12)<< eval2[io+ii];
 | 
			
		||||
	}
 | 
			
		||||
	std::cout << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      // Implicitly shifted QR transformations
 | 
			
		||||
      //////////////////////////////////
 | 
			
		||||
      Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
      for(int ip=k2; ip<Nm; ++ip){ 
 | 
			
		||||
	QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(k2<Nm);      assert(k2<Nm);      assert(k1>0);
 | 
			
		||||
 | 
			
		||||
      basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
 | 
			
		||||
      std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      // Compressed vector f and beta(k2)
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      f *= Qt(k2-1,Nm-1);
 | 
			
		||||
      f += lme[k2-1] * evec[k2];
 | 
			
		||||
      beta_k = norm2(f);
 | 
			
		||||
      beta_k = std::sqrt(beta_k);
 | 
			
		||||
      std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
      RealD betar = 1.0/beta_k;
 | 
			
		||||
      evec[k2] = betar * f;
 | 
			
		||||
      lme[k2-1] = beta_k;
 | 
			
		||||
	  
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      // Convergence test
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      for(int k=0; k<Nm; ++k){    
 | 
			
		||||
	eval2[k] = eval[k];
 | 
			
		||||
	lme2[k] = lme[k];
 | 
			
		||||
      }
 | 
			
		||||
      Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
      diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
 | 
			
		||||
      std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
      Nconv = 0;
 | 
			
		||||
      if (iter >= MinRestart) {
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
 | 
			
		||||
 | 
			
		||||
	Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
	//  power of two search pattern;  not every evalue in eval2 is assessed.
 | 
			
		||||
	int allconv =1;
 | 
			
		||||
	for(int jj = 1; jj<=Nstop; jj*=2){
 | 
			
		||||
	  int j = Nstop-jj;
 | 
			
		||||
	  RealD e = eval2_copy[j]; // Discard the evalue
 | 
			
		||||
	  basisRotateJ(B,evec,Qt,j,0,Nk,Nm);	    
 | 
			
		||||
	  if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
 | 
			
		||||
	    allconv=0;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	// Do evec[0] for good measure
 | 
			
		||||
	{ 
 | 
			
		||||
	  int j=0;
 | 
			
		||||
	  RealD e = eval2_copy[0]; 
 | 
			
		||||
	  basisRotateJ(B,evec,Qt,j,0,Nk,Nm);	    
 | 
			
		||||
	  if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) allconv=0;
 | 
			
		||||
	}
 | 
			
		||||
	if ( allconv ) Nconv = Nstop;
 | 
			
		||||
 | 
			
		||||
	// test if we converged, if so, terminate
 | 
			
		||||
	std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
 | 
			
		||||
	//	if( Nconv>=Nstop || beta_k < betastp){
 | 
			
		||||
	if( Nconv>=Nstop){
 | 
			
		||||
	  goto converged;
 | 
			
		||||
	}
 | 
			
		||||
	  
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
 | 
			
		||||
      } // end of iter loop
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogError<<"\n NOT converged.\n";
 | 
			
		||||
    abort();
 | 
			
		||||
	
 | 
			
		||||
  converged:
 | 
			
		||||
    {
 | 
			
		||||
      Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
 | 
			
		||||
      basisRotate(evec,Qt,0,Nk,0,Nk,Nm);	    
 | 
			
		||||
      std::cout << GridLogIRL << " Rotated basis"<<std::endl;
 | 
			
		||||
      Nconv=0;
 | 
			
		||||
      //////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Full final convergence test; unconditionally applied
 | 
			
		||||
      //////////////////////////////////////////////////////////////////////
 | 
			
		||||
      for(int j = 0; j<=Nk; j++){
 | 
			
		||||
	B=evec[j];
 | 
			
		||||
	if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
 | 
			
		||||
	  Nconv++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( Nconv < Nstop ) {
 | 
			
		||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
			
		||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      eval=eval2;
 | 
			
		||||
      
 | 
			
		||||
      //Keep only converged
 | 
			
		||||
      eval.resize(Nstop);// was Nconv
 | 
			
		||||
      evec.resize(Nstop,grid);// was Nconv
 | 
			
		||||
      basisSortInPlace(evec,eval,reverse);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
       
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
    std::cout << GridLogIRL << " -- Iterations  = "<< iter   << "\n";
 | 
			
		||||
    std::cout << GridLogIRL << " -- beta(k)     = "<< beta_k << "\n";
 | 
			
		||||
    std::cout << GridLogIRL << " -- Nconv       = "<< Nconv  << "\n";
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
/* Saad PP. 195
 | 
			
		||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
 | 
			
		||||
2. For k = 1,2,...,m Do:
 | 
			
		||||
3. wk:=Avk - b_k v_{k-1}      
 | 
			
		||||
4. ak:=(wk,vk)       // 
 | 
			
		||||
5. wk:=wk-akvk       // wk orthog vk 
 | 
			
		||||
6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop
 | 
			
		||||
7. vk+1 := wk/b_k+1
 | 
			
		||||
8. EndDo
 | 
			
		||||
 */
 | 
			
		||||
  void step(std::vector<RealD>& lmd,
 | 
			
		||||
	    std::vector<RealD>& lme, 
 | 
			
		||||
	    std::vector<Field>& evec,
 | 
			
		||||
	    Field& w,int Nm,int k)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    const RealD tiny = 1.0e-20;
 | 
			
		||||
    assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
    GridStopWatch gsw_op,gsw_o;
 | 
			
		||||
 | 
			
		||||
    Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
			
		||||
 | 
			
		||||
    ComplexD zalph = innerProduct(evec_k,w);
 | 
			
		||||
    RealD     alph = real(zalph);
 | 
			
		||||
 | 
			
		||||
    w = w - alph * evec_k;
 | 
			
		||||
 | 
			
		||||
    RealD beta = normalise(w); 
 | 
			
		||||
 | 
			
		||||
    lmd[k] = alph;
 | 
			
		||||
    lme[k] = beta;
 | 
			
		||||
 | 
			
		||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(k < Nm-1) evec[k+1] = w;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    if ( beta < tiny ) 
 | 
			
		||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
			 int Nk, int Nm,  
 | 
			
		||||
			 Eigen::MatrixXd & Qt, // Nm x Nm
 | 
			
		||||
			 GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nk;i++)   TriDiag(i,i)   = lmd[i];
 | 
			
		||||
    for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
 | 
			
		||||
    for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
 | 
			
		||||
    
 | 
			
		||||
    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < Nk; i++) {
 | 
			
		||||
      lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
 | 
			
		||||
    }
 | 
			
		||||
    for (int i = 0; i < Nk; i++) {
 | 
			
		||||
      for (int j = 0; j < Nk; j++) {
 | 
			
		||||
	Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // File could end here if settle on Eigen ??? !!!
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void QR_decomp(std::vector<RealD>& lmd,   // Nm 
 | 
			
		||||
		 std::vector<RealD>& lme,   // Nm 
 | 
			
		||||
		 int Nk, int Nm,            // Nk, Nm
 | 
			
		||||
		 Eigen::MatrixXd& Qt,       // Nm x Nm matrix
 | 
			
		||||
		 RealD Dsh, int kmin, int kmax)
 | 
			
		||||
  {
 | 
			
		||||
    int k = kmin-1;
 | 
			
		||||
    RealD x;
 | 
			
		||||
    
 | 
			
		||||
    RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
 | 
			
		||||
    RealD c = ( lmd[k] -Dsh) *Fden;
 | 
			
		||||
    RealD s = -lme[k] *Fden;
 | 
			
		||||
      
 | 
			
		||||
    RealD tmpa1 = lmd[k];
 | 
			
		||||
    RealD tmpa2 = lmd[k+1];
 | 
			
		||||
    RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
    lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
    lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
    lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
    x        =-s*lme[k+1];
 | 
			
		||||
    lme[k+1] = c*lme[k+1];
 | 
			
		||||
      
 | 
			
		||||
    for(int i=0; i<Nk; ++i){
 | 
			
		||||
      RealD Qtmp1 = Qt(k,i);
 | 
			
		||||
      RealD Qtmp2 = Qt(k+1,i);
 | 
			
		||||
      Qt(k,i)  = c*Qtmp1 - s*Qtmp2;
 | 
			
		||||
      Qt(k+1,i)= s*Qtmp1 + c*Qtmp2; 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Givens transformations
 | 
			
		||||
    for(int k = kmin; k < kmax-1; ++k){
 | 
			
		||||
      
 | 
			
		||||
      RealD Fden = 1.0/hypot(x,lme[k-1]);
 | 
			
		||||
      RealD c = lme[k-1]*Fden;
 | 
			
		||||
      RealD s = - x*Fden;
 | 
			
		||||
	
 | 
			
		||||
      RealD tmpa1 = lmd[k];
 | 
			
		||||
      RealD tmpa2 = lmd[k+1];
 | 
			
		||||
      RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
      lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
      lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
      lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
      lme[k-1] = c*lme[k-1] -s*x;
 | 
			
		||||
 | 
			
		||||
      if(k != kmax-2){
 | 
			
		||||
	x = -s*lme[k+1];
 | 
			
		||||
	lme[k+1] = c*lme[k+1];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int i=0; i<Nk; ++i){
 | 
			
		||||
	RealD Qtmp1 = Qt(k,i);
 | 
			
		||||
	RealD Qtmp2 = Qt(k+1,i);
 | 
			
		||||
	Qt(k,i)     = c*Qtmp1 -s*Qtmp2;
 | 
			
		||||
	Qt(k+1,i)   = s*Qtmp1 +c*Qtmp2;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
		   int Nk, int Nm,   
 | 
			
		||||
		   Eigen::MatrixXd & Qt,
 | 
			
		||||
		   GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    Qt = Eigen::MatrixXd::Identity(Nm,Nm);
 | 
			
		||||
    if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
 | 
			
		||||
      diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    } else if ( diagonalisation == IRLdiagonaliseWithQR ) { 
 | 
			
		||||
      diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
			
		||||
      diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    } else { 
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK
 | 
			
		||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
 | 
			
		||||
                   double *vl, double *vu, int *il, int *iu, double *abstol,
 | 
			
		||||
                   int *m, double *w, double *z, int *ldz, int *isuppz,
 | 
			
		||||
                   double *work, int *lwork, int *iwork, int *liwork,
 | 
			
		||||
                   int *info);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void diagonalize_lapack(std::vector<RealD>& lmd,
 | 
			
		||||
			std::vector<RealD>& lme, 
 | 
			
		||||
			int Nk, int Nm,  
 | 
			
		||||
			Eigen::MatrixXd& Qt,
 | 
			
		||||
			GridBase *grid)
 | 
			
		||||
{
 | 
			
		||||
#ifdef USE_LAPACK
 | 
			
		||||
  const int size = Nm;
 | 
			
		||||
  int NN = Nk;
 | 
			
		||||
  double evals_tmp[NN];
 | 
			
		||||
  double evec_tmp[NN][NN];
 | 
			
		||||
  memset(evec_tmp[0],0,sizeof(double)*NN*NN);
 | 
			
		||||
  double DD[NN];
 | 
			
		||||
  double EE[NN];
 | 
			
		||||
  for (int i = 0; i< NN; i++) {
 | 
			
		||||
    for (int j = i - 1; j <= i + 1; j++) {
 | 
			
		||||
      if ( j < NN && j >= 0 ) {
 | 
			
		||||
	if (i==j) DD[i] = lmd[i];
 | 
			
		||||
	if (i==j) evals_tmp[i] = lmd[i];
 | 
			
		||||
	if (j==(i-1)) EE[j] = lme[j];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  int evals_found;
 | 
			
		||||
  int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
 | 
			
		||||
  int liwork =  3+NN*10 ;
 | 
			
		||||
  int iwork[liwork];
 | 
			
		||||
  double work[lwork];
 | 
			
		||||
  int isuppz[2*NN];
 | 
			
		||||
  char jobz = 'V'; // calculate evals & evecs
 | 
			
		||||
  char range = 'I'; // calculate all evals
 | 
			
		||||
  //    char range = 'A'; // calculate all evals
 | 
			
		||||
  char uplo = 'U'; // refer to upper half of original matrix
 | 
			
		||||
  char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
 | 
			
		||||
  int ifail[NN];
 | 
			
		||||
  int info;
 | 
			
		||||
  int total = grid->_Nprocessors;
 | 
			
		||||
  int node  = grid->_processor;
 | 
			
		||||
  int interval = (NN/total)+1;
 | 
			
		||||
  double vl = 0.0, vu = 0.0;
 | 
			
		||||
  int il = interval*node+1 , iu = interval*(node+1);
 | 
			
		||||
  if (iu > NN)  iu=NN;
 | 
			
		||||
  double tol = 0.0;
 | 
			
		||||
  if (1) {
 | 
			
		||||
    memset(evals_tmp,0,sizeof(double)*NN);
 | 
			
		||||
    if ( il <= NN){
 | 
			
		||||
      LAPACK_dstegr(&jobz, &range, &NN,
 | 
			
		||||
		    (double*)DD, (double*)EE,
 | 
			
		||||
		    &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
 | 
			
		||||
		    &tol, // tolerance
 | 
			
		||||
		    &evals_found, evals_tmp, (double*)evec_tmp, &NN,
 | 
			
		||||
		    isuppz,
 | 
			
		||||
		    work, &lwork, iwork, &liwork,
 | 
			
		||||
		    &info);
 | 
			
		||||
      for (int i = iu-1; i>= il-1; i--){
 | 
			
		||||
	evals_tmp[i] = evals_tmp[i - (il-1)];
 | 
			
		||||
	if (il>1) evals_tmp[i-(il-1)]=0.;
 | 
			
		||||
	for (int j = 0; j< NN; j++){
 | 
			
		||||
	  evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
 | 
			
		||||
	  if (il>1) evec_tmp[i-(il-1)][j]=0.;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
      grid->GlobalSumVector(evals_tmp,NN);
 | 
			
		||||
      grid->GlobalSumVector((double*)evec_tmp,NN*NN);
 | 
			
		||||
    }
 | 
			
		||||
  } 
 | 
			
		||||
  // Safer to sort instead of just reversing it, 
 | 
			
		||||
  // but the document of the routine says evals are sorted in increasing order. 
 | 
			
		||||
  // qr gives evals in decreasing order.
 | 
			
		||||
  for(int i=0;i<NN;i++){
 | 
			
		||||
    lmd [NN-1-i]=evals_tmp[i];
 | 
			
		||||
    for(int j=0;j<NN;j++){
 | 
			
		||||
      Qt((NN-1-i),j)=evec_tmp[i][j];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#else 
 | 
			
		||||
  assert(0);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
		    int Nk, int Nm,   
 | 
			
		||||
		    Eigen::MatrixXd & Qt,
 | 
			
		||||
		    GridBase *grid)
 | 
			
		||||
{
 | 
			
		||||
  int QRiter = 100*Nm;
 | 
			
		||||
  int kmin = 1;
 | 
			
		||||
  int kmax = Nk;
 | 
			
		||||
  
 | 
			
		||||
  // (this should be more sophisticated)
 | 
			
		||||
  for(int iter=0; iter<QRiter; ++iter){
 | 
			
		||||
    
 | 
			
		||||
    // determination of 2x2 leading submatrix
 | 
			
		||||
    RealD dsub = lmd[kmax-1]-lmd[kmax-2];
 | 
			
		||||
    RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
 | 
			
		||||
    RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
 | 
			
		||||
    // (Dsh: shift)
 | 
			
		||||
    
 | 
			
		||||
    // transformation
 | 
			
		||||
    QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
 | 
			
		||||
    
 | 
			
		||||
    // Convergence criterion (redef of kmin and kamx)
 | 
			
		||||
    for(int j=kmax-1; j>= kmin; --j){
 | 
			
		||||
      RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
 | 
			
		||||
      if(fabs(lme[j-1])+dds > dds){
 | 
			
		||||
	kmax = j+1;
 | 
			
		||||
	goto continued;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    QRiter = iter;
 | 
			
		||||
    return;
 | 
			
		||||
    
 | 
			
		||||
  continued:
 | 
			
		||||
    for(int j=0; j<kmax-1; ++j){
 | 
			
		||||
      RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
 | 
			
		||||
      if(fabs(lme[j])+dds > dds){
 | 
			
		||||
	kmin = j+1;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
 | 
			
		||||
  abort();
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,454 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LOCAL_COHERENCE_IRL_H
 | 
			
		||||
#define GRID_LOCAL_COHERENCE_IRL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
struct LanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
 | 
			
		||||
				  ChebyParams, Cheby,/*Chebyshev*/
 | 
			
		||||
				  int, Nstop,    /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
 | 
			
		||||
				  int, Nk,       /*Vecs in Lanczos seek converge*/
 | 
			
		||||
				  int, Nm,       /*Total vecs in Lanczos include restart*/
 | 
			
		||||
				  RealD, resid,  /*residual*/
 | 
			
		||||
 				  int, MaxIt, 
 | 
			
		||||
				  RealD, betastp,  /* ? */
 | 
			
		||||
				  int, MinRes);    // Must restart
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//This class is the input parameter class for some testing programs
 | 
			
		||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
			
		||||
				  bool, saveEvecs,
 | 
			
		||||
				  bool, doFine,
 | 
			
		||||
				  bool, doFineRead,
 | 
			
		||||
				  bool, doCoarse,
 | 
			
		||||
	       			  bool, doCoarseRead,
 | 
			
		||||
				  LanczosParams, FineParams,
 | 
			
		||||
				  LanczosParams, CoarseParams,
 | 
			
		||||
				  ChebyParams,   Smoother,
 | 
			
		||||
				  RealD        , coarse_relax_tol,
 | 
			
		||||
				  std::vector<int>, blockSize,
 | 
			
		||||
				  std::string, config,
 | 
			
		||||
				  std::vector < ComplexD  >, omega,
 | 
			
		||||
				  RealD, mass,
 | 
			
		||||
				  RealD, M5);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  std::vector<FineField>        &subspace;
 | 
			
		||||
 | 
			
		||||
  ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) : 
 | 
			
		||||
    _Linop(linop), subspace(_subspace)
 | 
			
		||||
  {  
 | 
			
		||||
    assert(subspace.size() >0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator()(const CoarseField& in, CoarseField& out) {
 | 
			
		||||
    GridBase *FineGrid = subspace[0].Grid();    
 | 
			
		||||
    int   checkerboard = subspace[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
    FineField fin (FineGrid);     fin.Checkerboard()= checkerboard;
 | 
			
		||||
    FineField fout(FineGrid);   fout.Checkerboard() = checkerboard;
 | 
			
		||||
 | 
			
		||||
    blockPromote(in,fin,subspace);       std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
 | 
			
		||||
    _Linop.HermOp(fin,fout);                   std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
 | 
			
		||||
    blockProject(out,fout,subspace);     std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
			
		||||
public:
 | 
			
		||||
  using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  OperatorFunction<FineField>   & _poly;
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  std::vector<FineField>        &subspace;
 | 
			
		||||
 | 
			
		||||
  ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,
 | 
			
		||||
			  LinearOperatorBase<FineField>& linop, 
 | 
			
		||||
			  std::vector<FineField> & _subspace) :
 | 
			
		||||
    _poly(poly),
 | 
			
		||||
    _Linop(linop),
 | 
			
		||||
    subspace(_subspace)
 | 
			
		||||
  {  };
 | 
			
		||||
 | 
			
		||||
  void operator()(const CoarseField& in, CoarseField& out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *FineGrid = subspace[0].Grid();    
 | 
			
		||||
    int   checkerboard = subspace[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
    FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
 | 
			
		||||
    FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
 | 
			
		||||
    
 | 
			
		||||
    blockPromote(in,fin,subspace);             std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
 | 
			
		||||
    _poly(_Linop,fin,fout);                    std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
 | 
			
		||||
    blockProject(out,fout,subspace);           std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class ImplicitlyRestartedLanczosSmoothedTester  : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<CoarseField> & _Poly;
 | 
			
		||||
  OperatorFunction<FineField>   & _smoother;
 | 
			
		||||
  LinearOperatorBase<FineField> &_Linop;
 | 
			
		||||
  RealD                             _coarse_relax_tol;
 | 
			
		||||
  std::vector<FineField>        &_subspace;
 | 
			
		||||
 | 
			
		||||
  int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
 | 
			
		||||
                                //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
 | 
			
		||||
                                //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
 | 
			
		||||
                                //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
 | 
			
		||||
                                //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
 | 
			
		||||
  
 | 
			
		||||
  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
			
		||||
					   OperatorFunction<FineField>   &smoother,
 | 
			
		||||
					   LinearOperatorBase<FineField> &Linop,
 | 
			
		||||
					   std::vector<FineField>        &subspace,
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3,
 | 
			
		||||
					   int largestEvalIdxForReport=-1) 
 | 
			
		||||
    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    CoarseField v(B);
 | 
			
		||||
    RealD eval_poly = eval;
 | 
			
		||||
 | 
			
		||||
    // Apply operator
 | 
			
		||||
    _Poly(B,v);
 | 
			
		||||
 | 
			
		||||
    RealD vnum = real(innerProduct(B,v)); // HermOp.
 | 
			
		||||
    RealD vden = norm2(B);
 | 
			
		||||
    RealD vv0  = norm2(v);
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    v -= eval*B;
 | 
			
		||||
 | 
			
		||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
 | 
			
		||||
      std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
 | 
			
		||||
      RealD tmp_eval;
 | 
			
		||||
      ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
 | 
			
		||||
  //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
 | 
			
		||||
  //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
 | 
			
		||||
  //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)  
 | 
			
		||||
  {
 | 
			
		||||
    evalMaxApprox = 1.0; //cf above
 | 
			
		||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
			
		||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
			
		||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
			
		||||
    FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
 | 
			
		||||
 | 
			
		||||
    blockPromote(B,fv,_subspace);  
 | 
			
		||||
    
 | 
			
		||||
    _smoother(_Linop,fv,fB); 
 | 
			
		||||
 | 
			
		||||
    RealD eval_poly = eval;
 | 
			
		||||
    _Linop.HermOp(fB,fv);
 | 
			
		||||
 | 
			
		||||
    RealD vnum = real(innerProduct(fB,fv)); // HermOp.
 | 
			
		||||
    RealD vden = norm2(fB);
 | 
			
		||||
    RealD vv0  = norm2(fv);
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    fv -= eval*fB;
 | 
			
		||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
    if( (vv<eresid*eresid) ) return 1;
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Make serializable Lanczos params
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class LocalCoherenceLanczos 
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<Fobj>                       FineField;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  GridBase *_CoarseGrid;
 | 
			
		||||
  GridBase *_FineGrid;
 | 
			
		||||
  int _checkerboard;
 | 
			
		||||
  LinearOperatorBase<FineField>                 & _FineOp;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<RealD>                              &evals_fine;
 | 
			
		||||
  std::vector<RealD>                              &evals_coarse; 
 | 
			
		||||
  std::vector<FineField>                          &subspace;
 | 
			
		||||
  std::vector<CoarseField>                        &evec_coarse;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD>                              _evals_fine;
 | 
			
		||||
  std::vector<RealD>                              _evals_coarse; 
 | 
			
		||||
  std::vector<FineField>                          _subspace;
 | 
			
		||||
  std::vector<CoarseField>                        _evec_coarse;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  LocalCoherenceLanczos(GridBase *FineGrid,
 | 
			
		||||
			GridBase *CoarseGrid,
 | 
			
		||||
			LinearOperatorBase<FineField> &FineOp,
 | 
			
		||||
			int checkerboard) :
 | 
			
		||||
    _CoarseGrid(CoarseGrid),
 | 
			
		||||
    _FineGrid(FineGrid),
 | 
			
		||||
    _FineOp(FineOp),
 | 
			
		||||
    _checkerboard(checkerboard),
 | 
			
		||||
    evals_fine  (_evals_fine),
 | 
			
		||||
    evals_coarse(_evals_coarse),
 | 
			
		||||
    subspace    (_subspace),
 | 
			
		||||
    evec_coarse(_evec_coarse)
 | 
			
		||||
  {
 | 
			
		||||
    evals_fine.resize(0);
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Alternate constructore, external storage for use by Hadrons module
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  LocalCoherenceLanczos(GridBase *FineGrid,
 | 
			
		||||
			GridBase *CoarseGrid,
 | 
			
		||||
			LinearOperatorBase<FineField> &FineOp,
 | 
			
		||||
			int checkerboard,
 | 
			
		||||
			std::vector<FineField>   &ext_subspace,
 | 
			
		||||
			std::vector<CoarseField> &ext_coarse,
 | 
			
		||||
			std::vector<RealD>       &ext_eval_fine,
 | 
			
		||||
			std::vector<RealD>       &ext_eval_coarse
 | 
			
		||||
			) :
 | 
			
		||||
    _CoarseGrid(CoarseGrid),
 | 
			
		||||
    _FineGrid(FineGrid),
 | 
			
		||||
    _FineOp(FineOp),
 | 
			
		||||
    _checkerboard(checkerboard),
 | 
			
		||||
    evals_fine  (ext_eval_fine), 
 | 
			
		||||
    evals_coarse(ext_eval_coarse),
 | 
			
		||||
    subspace    (ext_subspace),
 | 
			
		||||
    evec_coarse (ext_coarse)
 | 
			
		||||
  {
 | 
			
		||||
    evals_fine.resize(0);
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //The block inner product is the inner product on the fine grid locally summed over the blocks
 | 
			
		||||
  //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
 | 
			
		||||
  //vectors under the block inner product. This step must be performed after computing the fine grid
 | 
			
		||||
  //eigenvectors and before computing the coarse grid eigenvectors.    
 | 
			
		||||
  void Orthogonalise(void ) {
 | 
			
		||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = ::sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  void fakeFine(void)
 | 
			
		||||
  {
 | 
			
		||||
    int Nk = nbasis;
 | 
			
		||||
    subspace.resize(Nk,_FineGrid);
 | 
			
		||||
    subspace[0]=1.0;
 | 
			
		||||
    subspace[0].Checkerboard()=_checkerboard;
 | 
			
		||||
    normalise(subspace[0]);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
    for(int k=1;k<Nk;k++){
 | 
			
		||||
      subspace[k].Checkerboard()=_checkerboard;
 | 
			
		||||
      Op(subspace[k-1],subspace[k]);
 | 
			
		||||
      normalise(subspace[k]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  void testFine(RealD resid) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
    assert(subspace.size() == nbasis);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
    ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
 | 
			
		||||
    for(int k=0;k<nbasis;k++){
 | 
			
		||||
      assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
 | 
			
		||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
    assert(subspace.size() == nbasis);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    Chebyshev<FineField>                          ChebySmooth(cheby_smooth);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,subspace);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<evec_coarse.size();k++){
 | 
			
		||||
      if ( k < nbasis ) { 
 | 
			
		||||
	assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid, 
 | 
			
		||||
		RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    assert(nbasis<=Nm);
 | 
			
		||||
    Chebyshev<FineField>      Cheby(cheby_parms);
 | 
			
		||||
    FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
 | 
			
		||||
    evals_fine.resize(Nm);
 | 
			
		||||
    subspace.resize(Nm,_FineGrid);
 | 
			
		||||
 | 
			
		||||
    ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
 | 
			
		||||
    FineField src(_FineGrid); 
 | 
			
		||||
    typedef typename FineField::scalar_type Scalar;
 | 
			
		||||
    // src=1.0; 
 | 
			
		||||
    src=Scalar(1.0); 
 | 
			
		||||
    src.Checkerboard() = _checkerboard;
 | 
			
		||||
 | 
			
		||||
    int Nconv;
 | 
			
		||||
    IRL.calc(evals_fine,subspace,src,Nconv,false);
 | 
			
		||||
    
 | 
			
		||||
    // Shrink down to number saved
 | 
			
		||||
    assert(Nstop>=nbasis);
 | 
			
		||||
    assert(Nconv>=nbasis);
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
 | 
			
		||||
  //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
 | 
			
		||||
  //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
 | 
			
		||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
			
		||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
			
		||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1); 
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
			
		||||
 | 
			
		||||
    //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
    assert(Nconv>=Nstop);
 | 
			
		||||
    evals_coarse.resize(Nstop);
 | 
			
		||||
    evec_coarse.resize (Nstop,_CoarseGrid);
 | 
			
		||||
    for (int i=0;i<Nstop;i++){
 | 
			
		||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Get the fine eigenvector 'i' by reconstruction
 | 
			
		||||
  void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
 | 
			
		||||
    blockPromote(evec_coarse[i],evec,subspace);  
 | 
			
		||||
    eval = evals_coarse[i];
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,157 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/MinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
 | 
			
		||||
                          // Defaults true.
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  RealD   overRelaxParam;
 | 
			
		||||
  Integer IterationsToComplete; // Number of iterations the MR took to finish.
 | 
			
		||||
                                // Filled in upon completion
 | 
			
		||||
 | 
			
		||||
  MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    ComplexD a, c;
 | 
			
		||||
    RealD    d;
 | 
			
		||||
 | 
			
		||||
    Field Mr(src);
 | 
			
		||||
    Field r(src);
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    Linop.Op(psi, Mr);
 | 
			
		||||
 | 
			
		||||
    r = src - Mr;
 | 
			
		||||
 | 
			
		||||
    RealD cp = norm2(r);
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual:  cp,r " << cp << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (cp <= rsq) {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
    int k;
 | 
			
		||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
      MatrixTimer.Start();
 | 
			
		||||
      Linop.Op(r, Mr);
 | 
			
		||||
      MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      c = innerProduct(Mr, r);
 | 
			
		||||
 | 
			
		||||
      d = norm2(Mr);
 | 
			
		||||
 | 
			
		||||
      a = c / d;
 | 
			
		||||
 | 
			
		||||
      a = a * overRelaxParam;
 | 
			
		||||
 | 
			
		||||
      psi = psi + r * a;
 | 
			
		||||
 | 
			
		||||
      r = r - Mr * a;
 | 
			
		||||
 | 
			
		||||
      cp = norm2(r);
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
      std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        Linop.Op(psi, Mr);
 | 
			
		||||
        r = src - Mr;
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "MinimalResidual Converged on iteration " << k
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Total   " << SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Matrix  " << MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge)
 | 
			
		||||
          assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
        IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "MinimalResidual did NOT converge"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
} // namespace Grid
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,276 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
 | 
			
		||||
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer RestartLength;
 | 
			
		||||
  Integer MaxNumberOfRestarts;
 | 
			
		||||
  Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
 | 
			
		||||
                          // filled in upon completion
 | 
			
		||||
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
  GridStopWatch QrTimer;
 | 
			
		||||
  GridStopWatch CompSolutionTimer;
 | 
			
		||||
  GridStopWatch ChangePrecTimer;
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd H;
 | 
			
		||||
 | 
			
		||||
  std::vector<ComplexD> y;
 | 
			
		||||
  std::vector<ComplexD> gamma;
 | 
			
		||||
  std::vector<ComplexD> c;
 | 
			
		||||
  std::vector<ComplexD> s;
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<FieldF> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD   tol,
 | 
			
		||||
                                                   Integer maxit,
 | 
			
		||||
                                                   GridBase * sp_grid,
 | 
			
		||||
                                                   LinearFunction<FieldF> &Prec,
 | 
			
		||||
                                                   Integer restart_length,
 | 
			
		||||
                                                   bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , RestartLength(restart_length)
 | 
			
		||||
      , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
      , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
 | 
			
		||||
      , y(RestartLength + 1, 0.)
 | 
			
		||||
      , gamma(RestartLength + 1, 0.)
 | 
			
		||||
      , c(RestartLength + 1, 0.)
 | 
			
		||||
      , s(RestartLength + 1, 0.)
 | 
			
		||||
      , SinglePrecGrid(sp_grid)
 | 
			
		||||
      , Preconditioner(Prec) {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
    FieldD r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    std::cout << std::setprecision(4) << std::scientific;
 | 
			
		||||
    std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << "MPFGMRES:   src " << ssq   << std::endl;
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatrixTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
    QrTimer.Reset();
 | 
			
		||||
    CompSolutionTimer.Reset();
 | 
			
		||||
    ChangePrecTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    IterationCount = 0;
 | 
			
		||||
 | 
			
		||||
    for (int k=0; k<MaxNumberOfRestarts; k++) {
 | 
			
		||||
 | 
			
		||||
      cp = outerLoopBody(LinOp, src, psi, rsq);
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
 | 
			
		||||
        SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
        LinOp.Op(psi,r);
 | 
			
		||||
        axpy(r,-1.0,src,r);
 | 
			
		||||
 | 
			
		||||
        RealD srcnorm       = sqrt(ssq);
 | 
			
		||||
        RealD resnorm       = sqrt(norm2(r));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage        << "MPFGMRES: Converged on iteration " << IterationCount
 | 
			
		||||
                  << " computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual "     << true_residual
 | 
			
		||||
                  << " target "            << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total      " <<       SolverTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon     " <<         PrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix     " <<       MatrixTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg     " <<       LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR         " <<           QrTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol    " << CompSolutionTimer.Elapsed() << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " <<   ChangePrecTimer.Elapsed() << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
 | 
			
		||||
 | 
			
		||||
    RealD cp = 0;
 | 
			
		||||
 | 
			
		||||
    FieldD w(src.Grid());
 | 
			
		||||
    FieldD r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    // these should probably be made class members so that they are only allocated once, not in every restart
 | 
			
		||||
    std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
 | 
			
		||||
    std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(psi, w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r = src - w;
 | 
			
		||||
 | 
			
		||||
    gamma[0] = sqrt(norm2(r));
 | 
			
		||||
 | 
			
		||||
    v[0] = (1. / gamma[0]) * r;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<RestartLength; i++) {
 | 
			
		||||
 | 
			
		||||
      IterationCount++;
 | 
			
		||||
 | 
			
		||||
      arnoldiStep(LinOp, v, z, w, i);
 | 
			
		||||
 | 
			
		||||
      qrUpdate(i);
 | 
			
		||||
 | 
			
		||||
      cp = norm(gamma[i+1]);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
 | 
			
		||||
                << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
 | 
			
		||||
 | 
			
		||||
        computeSolution(z, psi, i);
 | 
			
		||||
 | 
			
		||||
        return cp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
 | 
			
		||||
 | 
			
		||||
    FieldF v_f(SinglePrecGrid);
 | 
			
		||||
    FieldF z_f(SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    ChangePrecTimer.Start();
 | 
			
		||||
    precisionChange(v_f, v[iter]);
 | 
			
		||||
    precisionChange(z_f, z[iter]);
 | 
			
		||||
    ChangePrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(v_f, z_f);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    ChangePrecTimer.Start();
 | 
			
		||||
    precisionChange(z[iter], z_f);
 | 
			
		||||
    ChangePrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    LinOp.Op(z[iter], w);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    for (int i = 0; i <= iter; ++i) {
 | 
			
		||||
      H(iter, i) = innerProduct(v[i], w);
 | 
			
		||||
      w = w - ComplexD(H(iter, i)) * v[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    H(iter, iter + 1) = sqrt(norm2(w));
 | 
			
		||||
    v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void qrUpdate(int iter) {
 | 
			
		||||
 | 
			
		||||
    QrTimer.Start();
 | 
			
		||||
    for (int i = 0; i < iter ; ++i) {
 | 
			
		||||
      auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
 | 
			
		||||
      H(iter, i + 1) = tmp;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Compute new Givens Rotation
 | 
			
		||||
    auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
 | 
			
		||||
    c[iter]     = H(iter, iter) / nu;
 | 
			
		||||
    s[iter]     = H(iter, iter + 1) / nu;
 | 
			
		||||
 | 
			
		||||
    // Apply new Givens rotation
 | 
			
		||||
    H(iter, iter)     = nu;
 | 
			
		||||
    H(iter, iter + 1) = 0.;
 | 
			
		||||
 | 
			
		||||
    gamma[iter + 1] = -s[iter] * gamma[iter];
 | 
			
		||||
    gamma[iter]     = conjugate(c[iter]) * gamma[iter];
 | 
			
		||||
    QrTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
 | 
			
		||||
 | 
			
		||||
    CompSolutionTimer.Start();
 | 
			
		||||
    for (int i = iter; i >= 0; i--) {
 | 
			
		||||
      y[i] = gamma[i];
 | 
			
		||||
      for (int k = i + 1; k <= iter; k++)
 | 
			
		||||
        y[i] = y[i] - ComplexD(H(k, i)) * y[k];
 | 
			
		||||
      y[i] = y[i] / ComplexD(H(i, i));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i <= iter; i++)
 | 
			
		||||
      psi = psi + z[i] * y[i];
 | 
			
		||||
    CompSolutionTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,138 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/NormalEquations.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_NORMAL_EQUATIONS_H
 | 
			
		||||
#define GRID_NORMAL_EQUATIONS_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
		 LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    Field src(in.Grid());
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
    MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
 | 
			
		||||
    _Matrix.Mdag(in,src);
 | 
			
		||||
    _Guess(src,out);
 | 
			
		||||
    _HermitianSolver(MdagMOp,src,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
		 LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    Field res(in.Grid());
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
			
		||||
    _Guess(in,res);
 | 
			
		||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
			
		||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 HPDSolver(LinearOperatorBase<Field> &Matrix,
 | 
			
		||||
	   OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
	   LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
	     LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
 | 
			
		||||
    _HermitianSolver(MdagMOp,in,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,46 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
namespace Grid {
 | 
			
		||||
template<class Field> class PowerMethod  
 | 
			
		||||
{ 
 | 
			
		||||
 public: 
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *grid = src.Grid(); 
 | 
			
		||||
    
 | 
			
		||||
    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum 
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 200; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
      normalise(src_n); 
 | 
			
		||||
      HermOp.HermOp(src_n,tmp); 
 | 
			
		||||
      RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. 
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
	// 	evalMaxApprox = na; 
 | 
			
		||||
	// 	return evalMaxApprox; 
 | 
			
		||||
      //      } 
 | 
			
		||||
      evalMaxApprox = na; 
 | 
			
		||||
      src_n = tmp;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
    return evalMaxApprox;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
@@ -1,76 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
class Band
 | 
			
		||||
{
 | 
			
		||||
  RealD lo, hi;
 | 
			
		||||
public:
 | 
			
		||||
  Band(RealD _lo,RealD _hi)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
  }
 | 
			
		||||
  RealD operator() (RealD x){
 | 
			
		||||
    if ( x>lo && x<hi ){
 | 
			
		||||
      return 1.0;
 | 
			
		||||
    } else {
 | 
			
		||||
      return 0.0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class PowerSpectrum
 | 
			
		||||
{ 
 | 
			
		||||
 public: 
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> ranges;
 | 
			
		||||
  std::vector<int> order;
 | 
			
		||||
  
 | 
			
		||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *grid = src.Grid(); 
 | 
			
		||||
    int N=ranges.size();
 | 
			
		||||
    RealD hi = ranges[N-1];
 | 
			
		||||
 | 
			
		||||
    RealD lo_band = 0.0;
 | 
			
		||||
    RealD hi_band;
 | 
			
		||||
    RealD nn=norm2(src);
 | 
			
		||||
    RealD ss=0.0;
 | 
			
		||||
 | 
			
		||||
    Field tmp = src;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<N;b++){
 | 
			
		||||
      hi_band = ranges[b];
 | 
			
		||||
      Band Notch(lo_band,hi_band);
 | 
			
		||||
      
 | 
			
		||||
      Chebyshev<Field> polynomial;
 | 
			
		||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
			
		||||
      polynomial.JacksonSmooth();
 | 
			
		||||
 | 
			
		||||
      polynomial(HermOp,src,tmp) ;
 | 
			
		||||
 | 
			
		||||
      RealD p=norm2(tmp);
 | 
			
		||||
      ss=ss+p;
 | 
			
		||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      lo_band=hi_band;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
@@ -1,119 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/PrecConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
 | 
			
		||||
#define GRID_PREC_CONJUGATE_RESIDUAL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Base classes for iterative processes based on operators
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
class PrecConjugateResidual : public OperatorFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
  LinearFunction<Field> &Preconditioner;
 | 
			
		||||
 | 
			
		||||
  PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit),      Preconditioner(Prec)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    RealD a, b, c, d;
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
      
 | 
			
		||||
    RealD rAr, rAAr, rArp;
 | 
			
		||||
    RealD pAp, pAAp;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    Field r(grid),  p(grid), Ap(grid), Ar(grid), z(grid);
 | 
			
		||||
      
 | 
			
		||||
    psi=zero;
 | 
			
		||||
    r  = src;
 | 
			
		||||
    Preconditioner(r,p);
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
    Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
 | 
			
		||||
    Ar=Ap;
 | 
			
		||||
    rAr=pAp;
 | 
			
		||||
    rAAr=pAAp;
 | 
			
		||||
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
 | 
			
		||||
    if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      Preconditioner(Ap,z);
 | 
			
		||||
      RealD rq= real(innerProduct(Ap,z)); 
 | 
			
		||||
 | 
			
		||||
      a = rAr/rq;
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p,psi);
 | 
			
		||||
      cp = axpy_norm(r,-a,z,r);
 | 
			
		||||
 | 
			
		||||
      rArp=rAr;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
 | 
			
		||||
 | 
			
		||||
      b   =rAr/rArp;
 | 
			
		||||
 
 | 
			
		||||
      axpy(p,b,p,r);
 | 
			
		||||
      pAAp=axpy_norm(Ap,b,Ap,Ar);
 | 
			
		||||
	
 | 
			
		||||
      if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
	Linop.HermOp(psi,Ap);
 | 
			
		||||
	axpy(r,-1.0,src,Ap);
 | 
			
		||||
	RealD true_resid = norm2(r)/ssq;
 | 
			
		||||
	std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
 | 
			
		||||
		 << " computed residual "<<sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "<<sqrt(true_resid)
 | 
			
		||||
		 << " target "       <<Tolerance <<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,239 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_PREC_GCR_H
 | 
			
		||||
#define GRID_PREC_GCR_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//VPGCR Abe and Zhang, 2005.
 | 
			
		||||
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
 | 
			
		||||
//Computing and Information Volume 2, Number 2, Pages 147-161
 | 
			
		||||
//NB. Likely not original reference since they are focussing on a preconditioner variant.
 | 
			
		||||
//    but VPGCR was nicely written up in their paper
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" " 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
  int mmax;
 | 
			
		||||
  int nstep;
 | 
			
		||||
  int steps;
 | 
			
		||||
  int level;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch MatTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field>     &Preconditioner;
 | 
			
		||||
  LinearOperatorBase<Field> &Linop;
 | 
			
		||||
 | 
			
		||||
  void Level(int lv) { level=lv; };
 | 
			
		||||
 | 
			
		||||
  PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) : 
 | 
			
		||||
    Tolerance(tol), 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    Linop(_Linop),
 | 
			
		||||
    Preconditioner(Prec),
 | 
			
		||||
    mmax(_mmax),
 | 
			
		||||
    nstep(_nstep)
 | 
			
		||||
  { 
 | 
			
		||||
    level=1;
 | 
			
		||||
    verbose=1;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
      
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    steps=0;
 | 
			
		||||
    for(int k=0;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      cp=GCRnStep(src,psi,rsq);
 | 
			
		||||
 | 
			
		||||
      GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	Linop.HermOp(psi,r);
 | 
			
		||||
	axpy(r,-1.0,src,r);
 | 
			
		||||
	RealD tr = norm2(r);
 | 
			
		||||
	GCRLogLevel<<"PGCR: Converged on iteration " <<steps
 | 
			
		||||
		 << " computed residual "<<sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "    <<sqrt(tr/ssq)
 | 
			
		||||
		 << " target "           <<Tolerance <<std::endl;
 | 
			
		||||
 | 
			
		||||
	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	/*
 | 
			
		||||
	  GCRLogLevel<<"PGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl;
 | 
			
		||||
	  GCRLogLevel<<"PGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl;
 | 
			
		||||
	  GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	*/
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
			
		||||
    //    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD a, b;
 | 
			
		||||
    RealD zAz, zAAz;
 | 
			
		||||
    RealD rq;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field ttmp(grid);
 | 
			
		||||
    Field Az(grid);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////
 | 
			
		||||
    // history for flexible orthog
 | 
			
		||||
    ////////////////////////////////
 | 
			
		||||
    std::vector<Field> q(mmax,grid);
 | 
			
		||||
    std::vector<Field> p(mmax,grid);
 | 
			
		||||
    std::vector<RealD> qq(mmax);
 | 
			
		||||
      
 | 
			
		||||
    GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // initial guess x0 is taken as nonzero.
 | 
			
		||||
    // r0=src-A x0 = src
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    MatTimer.Start();
 | 
			
		||||
    Linop.HermOpAndNorm(psi,Az,zAz,zAAz); 
 | 
			
		||||
    MatTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r=src-Az;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
    GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////
 | 
			
		||||
    // p = Prec(r)
 | 
			
		||||
    /////////////////////
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(r,z);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatTimer.Start();
 | 
			
		||||
    Linop.HermOpAndNorm(z,Az,zAz,zAAz); 
 | 
			
		||||
    MatTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
    //p[0],q[0],qq[0] 
 | 
			
		||||
    p[0]= z;
 | 
			
		||||
    q[0]= Az;
 | 
			
		||||
    qq[0]= zAAz;
 | 
			
		||||
    
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<nstep;k++){
 | 
			
		||||
 | 
			
		||||
      steps++;
 | 
			
		||||
 | 
			
		||||
      int kp     = k+1;
 | 
			
		||||
      int peri_k = k %mmax;
 | 
			
		||||
      int peri_kp= kp%mmax;
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
 | 
			
		||||
      a = rq/qq[peri_k];
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p[peri_k],psi);         
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r,-a,q[peri_k],r);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl; 
 | 
			
		||||
 | 
			
		||||
      if((k==nstep-1)||(cp<rsq)){
 | 
			
		||||
	return cp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      PrecTimer.Start();
 | 
			
		||||
      Preconditioner(r,z);// solve Az = r
 | 
			
		||||
      PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      MatTimer.Start();
 | 
			
		||||
      Linop.HermOpAndNorm(z,Az,zAz,zAAz);
 | 
			
		||||
      MatTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      q[peri_kp]=Az;
 | 
			
		||||
      p[peri_kp]=z;
 | 
			
		||||
 | 
			
		||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
			
		||||
      for(int back=0;back<northog;back++){
 | 
			
		||||
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
			
		||||
 | 
			
		||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
			
		||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
			
		||||
	q[peri_kp]=q[peri_kp]+b*q[peri_back];
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    assert(0); // never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,242 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_PREC_GCR_NON_HERM_H
 | 
			
		||||
#define GRID_PREC_GCR_NON_HERM_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//VPGCR Abe and Zhang, 2005.
 | 
			
		||||
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
 | 
			
		||||
//Computing and Information Volume 2, Number 2, Pages 147-161
 | 
			
		||||
//NB. Likely not original reference since they are focussing on a preconditioner variant.
 | 
			
		||||
//    but VPGCR was nicely written up in their paper
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" " 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
 | 
			
		||||
public:                                                
 | 
			
		||||
  using LinearFunction<Field>::operator();
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  int verbose;
 | 
			
		||||
  int mmax;
 | 
			
		||||
  int nstep;
 | 
			
		||||
  int steps;
 | 
			
		||||
  int level;
 | 
			
		||||
  GridStopWatch PrecTimer;
 | 
			
		||||
  GridStopWatch MatTimer;
 | 
			
		||||
  GridStopWatch LinalgTimer;
 | 
			
		||||
 | 
			
		||||
  LinearFunction<Field>     &Preconditioner;
 | 
			
		||||
  LinearOperatorBase<Field> &Linop;
 | 
			
		||||
 | 
			
		||||
  void Level(int lv) { level=lv; };
 | 
			
		||||
 | 
			
		||||
  PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) : 
 | 
			
		||||
    Tolerance(tol), 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    Linop(_Linop),
 | 
			
		||||
    Preconditioner(Prec),
 | 
			
		||||
    mmax(_mmax),
 | 
			
		||||
    nstep(_nstep)
 | 
			
		||||
  { 
 | 
			
		||||
    level=1;
 | 
			
		||||
    verbose=1;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
      
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Reset();
 | 
			
		||||
    MatTimer.Reset();
 | 
			
		||||
    LinalgTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SolverTimer;
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
    steps=0;
 | 
			
		||||
    for(int k=0;k<MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      cp=GCRnStep(src,psi,rsq);
 | 
			
		||||
 | 
			
		||||
      GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(cp<rsq) {
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	Linop.Op(psi,r);
 | 
			
		||||
	axpy(r,-1.0,src,r);
 | 
			
		||||
	RealD tr = norm2(r);
 | 
			
		||||
	GCRLogLevel<<"PGCR: Converged on iteration " <<steps
 | 
			
		||||
		 << " computed residual "<<sqrt(cp/ssq)
 | 
			
		||||
		 << " true residual "    <<sqrt(tr/ssq)
 | 
			
		||||
		 << " target "           <<Tolerance <<std::endl;
 | 
			
		||||
 | 
			
		||||
	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
			
		||||
    //    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    ComplexD a, b;
 | 
			
		||||
    //    ComplexD zAz;
 | 
			
		||||
    RealD zAAz;
 | 
			
		||||
    ComplexD rq;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field z(grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field ttmp(grid);
 | 
			
		||||
    Field Az(grid);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////
 | 
			
		||||
    // history for flexible orthog
 | 
			
		||||
    ////////////////////////////////
 | 
			
		||||
    std::vector<Field> q(mmax,grid);
 | 
			
		||||
    std::vector<Field> p(mmax,grid);
 | 
			
		||||
    std::vector<RealD> qq(mmax);
 | 
			
		||||
      
 | 
			
		||||
    GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // initial guess x0 is taken as nonzero.
 | 
			
		||||
    // r0=src-A x0 = src
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    MatTimer.Start();
 | 
			
		||||
    Linop.Op(psi,Az);
 | 
			
		||||
    //    zAz = innerProduct(Az,psi);
 | 
			
		||||
    zAAz= norm2(Az);
 | 
			
		||||
    MatTimer.Stop();
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
    r=src-Az;
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
    GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////
 | 
			
		||||
    // p = Prec(r)
 | 
			
		||||
    /////////////////////
 | 
			
		||||
 | 
			
		||||
    PrecTimer.Start();
 | 
			
		||||
    Preconditioner(r,z);
 | 
			
		||||
    PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatTimer.Start();
 | 
			
		||||
    Linop.Op(z,Az);
 | 
			
		||||
    MatTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
    //    zAz = innerProduct(Az,psi);
 | 
			
		||||
    zAAz= norm2(Az);
 | 
			
		||||
 | 
			
		||||
    //p[0],q[0],qq[0] 
 | 
			
		||||
    p[0]= z;
 | 
			
		||||
    q[0]= Az;
 | 
			
		||||
    qq[0]= zAAz;
 | 
			
		||||
    
 | 
			
		||||
    cp =norm2(r);
 | 
			
		||||
    LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    for(int k=0;k<nstep;k++){
 | 
			
		||||
 | 
			
		||||
      steps++;
 | 
			
		||||
 | 
			
		||||
      int kp     = k+1;
 | 
			
		||||
      int peri_k = k %mmax;
 | 
			
		||||
      int peri_kp= kp%mmax;
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      rq= innerProduct(q[peri_k],r); // what if rAr not real?
 | 
			
		||||
      a = rq/qq[peri_k];
 | 
			
		||||
 | 
			
		||||
      axpy(psi,a,p[peri_k],psi);         
 | 
			
		||||
 | 
			
		||||
      cp = axpy_norm(r,-a,q[peri_k],r);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl; 
 | 
			
		||||
 | 
			
		||||
      if((k==nstep-1)||(cp<rsq)){
 | 
			
		||||
	return cp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      PrecTimer.Start();
 | 
			
		||||
      Preconditioner(r,z);// solve Az = r
 | 
			
		||||
      PrecTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      MatTimer.Start();
 | 
			
		||||
      Linop.Op(z,Az);
 | 
			
		||||
      MatTimer.Stop();
 | 
			
		||||
      //      zAz = innerProduct(Az,psi);
 | 
			
		||||
      zAAz= norm2(Az);
 | 
			
		||||
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
      q[peri_kp]=Az;
 | 
			
		||||
      p[peri_kp]=z;
 | 
			
		||||
 | 
			
		||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
			
		||||
      for(int back=0;back<northog;back++){
 | 
			
		||||
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
			
		||||
 | 
			
		||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
			
		||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
			
		||||
	q[peri_kp]=q[peri_kp]+b*q[peri_back];
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    assert(0); // never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,371 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2019
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field> 
 | 
			
		||||
RealD innerG5ProductReal(Field &l, Field &r)
 | 
			
		||||
{
 | 
			
		||||
  Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
  Field tmp(l.Grid());
 | 
			
		||||
  //  tmp = G5*r;
 | 
			
		||||
  G5R5(tmp,r);
 | 
			
		||||
  ComplexD ip =innerProduct(l,tmp);
 | 
			
		||||
  std::cout << "innerProductRealG5R5 "<<ip<<std::endl;
 | 
			
		||||
  return ip.real();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; 
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationCount;
 | 
			
		||||
 | 
			
		||||
  QuasiMinimalResidual(RealD   tol,
 | 
			
		||||
		       Integer maxit,
 | 
			
		||||
		       bool    err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol)
 | 
			
		||||
      , MaxIterations(maxit)
 | 
			
		||||
      , ErrorOnNoConverge(err_on_no_conv) 
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD resid;
 | 
			
		||||
    IterationCount=0;
 | 
			
		||||
 | 
			
		||||
    RealD  rho, rho_1, xi, gamma, gamma_1, theta, theta_1;
 | 
			
		||||
    RealD  eta, delta, ep, beta; 
 | 
			
		||||
 | 
			
		||||
    GridBase *Grid = b.Grid();
 | 
			
		||||
    Field r(Grid), d(Grid), s(Grid);
 | 
			
		||||
    Field v(Grid), w(Grid), y(Grid),  z(Grid);
 | 
			
		||||
    Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid);
 | 
			
		||||
    Field p(Grid), q(Grid), p_tld(Grid);
 | 
			
		||||
 | 
			
		||||
    Real normb = norm2(b);
 | 
			
		||||
 | 
			
		||||
    LinOp.Op(x,r); r = b - r;
 | 
			
		||||
 | 
			
		||||
    assert(normb> 0.0);
 | 
			
		||||
 | 
			
		||||
    resid = norm2(r)/normb;
 | 
			
		||||
    if (resid <= Tolerance) {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    v_tld = r;
 | 
			
		||||
    y = v_tld;
 | 
			
		||||
    rho = norm2(y);
 | 
			
		||||
 | 
			
		||||
    // Take Gamma5 conjugate
 | 
			
		||||
    //    Gamma G5(Gamma::Algebra::Gamma5);
 | 
			
		||||
    //    G5R5(w_tld,r);
 | 
			
		||||
    //    w_tld = G5* v_tld;
 | 
			
		||||
    w_tld=v_tld;
 | 
			
		||||
    z = w_tld;
 | 
			
		||||
    xi = norm2(z);
 | 
			
		||||
 | 
			
		||||
    gamma = 1.0;
 | 
			
		||||
    eta   = -1.0;
 | 
			
		||||
    theta = 0.0;
 | 
			
		||||
 | 
			
		||||
    for (int i = 1; i <= MaxIterations; i++) {
 | 
			
		||||
 | 
			
		||||
      // Breakdown tests
 | 
			
		||||
      assert( rho != 0.0);
 | 
			
		||||
      assert( xi  != 0.0);
 | 
			
		||||
 | 
			
		||||
      v = (1. / rho) * v_tld;
 | 
			
		||||
      y = (1. / rho) * y;
 | 
			
		||||
 | 
			
		||||
      w = (1. / xi) * w_tld;
 | 
			
		||||
      z = (1. / xi) * z;
 | 
			
		||||
 | 
			
		||||
      ComplexD Zdelta = innerProduct(z, y); // Complex?
 | 
			
		||||
      std::cout << "Zdelta "<<Zdelta<<std::endl;
 | 
			
		||||
      delta = Zdelta.real();
 | 
			
		||||
 | 
			
		||||
      y_tld = y; 
 | 
			
		||||
      z_tld = z;
 | 
			
		||||
 | 
			
		||||
      if (i > 1) {
 | 
			
		||||
	p = y_tld - (xi  * delta / ep) * p;
 | 
			
		||||
	q = z_tld - (rho * delta / ep) * q;
 | 
			
		||||
      } else {
 | 
			
		||||
	p = y_tld;
 | 
			
		||||
	q = z_tld;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      LinOp.Op(p,p_tld);      //     p_tld = A * p;
 | 
			
		||||
      ComplexD Zep = innerProduct(q, p_tld);
 | 
			
		||||
      ep=Zep.real();
 | 
			
		||||
      std::cout << "Zep "<<Zep <<std::endl;
 | 
			
		||||
      // Complex Audit
 | 
			
		||||
      assert(abs(ep)>0);
 | 
			
		||||
 | 
			
		||||
      beta = ep / delta;
 | 
			
		||||
      assert(abs(beta)>0);
 | 
			
		||||
 | 
			
		||||
      v_tld = p_tld - beta * v;
 | 
			
		||||
      y = v_tld;
 | 
			
		||||
 | 
			
		||||
      rho_1 = rho;
 | 
			
		||||
      rho   = norm2(y);
 | 
			
		||||
      LinOp.AdjOp(q,w_tld);
 | 
			
		||||
      w_tld = w_tld - beta * w;
 | 
			
		||||
      z = w_tld;
 | 
			
		||||
 | 
			
		||||
      xi = norm2(z);
 | 
			
		||||
 | 
			
		||||
      gamma_1 = gamma;
 | 
			
		||||
      theta_1 = theta;
 | 
			
		||||
 | 
			
		||||
      theta   = rho / (gamma_1 * beta);
 | 
			
		||||
      gamma   = 1.0 / sqrt(1.0 + theta * theta);
 | 
			
		||||
      std::cout << "theta "<<theta<<std::endl;
 | 
			
		||||
      std::cout << "gamma "<<gamma<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(abs(gamma)> 0.0);
 | 
			
		||||
 | 
			
		||||
      eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
 | 
			
		||||
 | 
			
		||||
      if (i > 1) {
 | 
			
		||||
	d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d;
 | 
			
		||||
	s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s;
 | 
			
		||||
      } else {
 | 
			
		||||
	d = eta * p;
 | 
			
		||||
	s = eta * p_tld;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      x =x+d;                            // update approximation vector
 | 
			
		||||
      r =r-s;                            // compute residual
 | 
			
		||||
 | 
			
		||||
      if ((resid = norm2(r) / normb) <= Tolerance) {
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return;                            // no convergence
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  // QMRg5 SMP thesis
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x) 
 | 
			
		||||
  {
 | 
			
		||||
    // Real scalars
 | 
			
		||||
    GridBase *grid = b.Grid();
 | 
			
		||||
 | 
			
		||||
    Field    r(grid);
 | 
			
		||||
    Field    p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid);
 | 
			
		||||
    Field    v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid);
 | 
			
		||||
    Field    tmp(grid);
 | 
			
		||||
 | 
			
		||||
    RealD    w;
 | 
			
		||||
    RealD    z1, z2;
 | 
			
		||||
    RealD    delta_m, delta_m_minus_1;
 | 
			
		||||
    RealD    c_m_plus_1, c_m, c_m_minus_1;
 | 
			
		||||
    RealD    s_m_plus_1, s_m, s_m_minus_1;
 | 
			
		||||
    RealD    alpha, beta, gamma, epsilon;
 | 
			
		||||
    RealD    mu, nu, rho, theta, xi, chi;
 | 
			
		||||
    RealD    mod2r, mod2b;
 | 
			
		||||
    RealD    tau2, target2;
 | 
			
		||||
 | 
			
		||||
    mod2b=norm2(b);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Initial residual
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    LinOp.Op(x,tmp);
 | 
			
		||||
    r = b - tmp;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // \mu = \rho = |r_0|
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    mod2r = norm2(r);
 | 
			
		||||
    rho = sqrt( mod2r);
 | 
			
		||||
    mu=rho;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Zero negative history
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    v_m_plus_1  = Zero();
 | 
			
		||||
    v_m_minus_1 = Zero();
 | 
			
		||||
    p_m_minus_1 = Zero();
 | 
			
		||||
    p_m_minus_2 = Zero();
 | 
			
		||||
 | 
			
		||||
    // v0
 | 
			
		||||
    v_m = (1.0/rho)*r;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Initial coeffs
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    delta_m_minus_1 = 1.0;
 | 
			
		||||
    c_m_minus_1     = 1.0;
 | 
			
		||||
    c_m             = 1.0;
 | 
			
		||||
    s_m_minus_1     = 0.0;
 | 
			
		||||
    s_m             = 0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Set up convergence check
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    tau2    = mod2r;
 | 
			
		||||
    target2 = mod2b * Tolerance*Tolerance;
 | 
			
		||||
 
 | 
			
		||||
    for(int iter = 0 ; iter < MaxIterations; iter++){
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \delta_m = (v_m, \gamma_5 v_m) 
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      delta_m = innerG5ProductReal(v_m,v_m);
 | 
			
		||||
      std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // tmp = A v_m
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      LinOp.Op(v_m,tmp);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \alpha = (v_m, \gamma_5 temp) / \delta_m 
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      alpha = innerG5ProductReal(v_m,tmp);
 | 
			
		||||
      alpha = alpha/delta_m ;
 | 
			
		||||
      std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \beta = \rho \delta_m / \delta_{m-1}
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      beta = rho * delta_m / delta_m_minus_1;
 | 
			
		||||
      std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      // \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1}
 | 
			
		||||
      /////////////////////////
 | 
			
		||||
      v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      // \rho = || \tilde{v}_{m+1} ||
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      rho = sqrt( norm2(v_m_plus_1) );
 | 
			
		||||
      std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      //      v_{m+1} = \tilde{v}_{m+1}
 | 
			
		||||
      ///////////////////////////////
 | 
			
		||||
      v_m_plus_1 = (1.0 / rho) * v_m_plus_1;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      // QMR recurrence coefficients.
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      theta      = s_m_minus_1 * beta;
 | 
			
		||||
      gamma      = c_m_minus_1 * beta;
 | 
			
		||||
      epsilon    =  c_m * gamma + s_m * alpha;
 | 
			
		||||
      xi         = -s_m * gamma + c_m * alpha;
 | 
			
		||||
      nu         = sqrt( xi*xi + rho*rho );
 | 
			
		||||
      c_m_plus_1 = fabs(xi) / nu;
 | 
			
		||||
      if ( xi == 0.0 ) {
 | 
			
		||||
	s_m_plus_1 = 1.0;
 | 
			
		||||
      } else {
 | 
			
		||||
	s_m_plus_1 = c_m_plus_1 * rho / xi;
 | 
			
		||||
      }
 | 
			
		||||
      chi = c_m_plus_1 * xi + s_m_plus_1 * rho;
 | 
			
		||||
 | 
			
		||||
      std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl;
 | 
			
		||||
      std::cout << "QuasiMinimalResidual coeffs "<< chi   <<std::endl;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      //p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////
 | 
			
		||||
      //      \psi = \psi + c_{m+1} \mu p_m	
 | 
			
		||||
      ////////////////////////////////////////////////////////////////
 | 
			
		||||
      x = x + ( c_m_plus_1 * mu ) * p_m;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////
 | 
			
		||||
      //
 | 
			
		||||
      ////////////////////////////////////////
 | 
			
		||||
      mu              = -s_m_plus_1 * mu;
 | 
			
		||||
      delta_m_minus_1 = delta_m;
 | 
			
		||||
      c_m_minus_1     = c_m;
 | 
			
		||||
      c_m             = c_m_plus_1;
 | 
			
		||||
      s_m_minus_1     = s_m;
 | 
			
		||||
      s_m             = s_m_plus_1;
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////
 | 
			
		||||
      // Could use pointer swizzle games.
 | 
			
		||||
      ////////////////////////////////////
 | 
			
		||||
      v_m_minus_1 = v_m;
 | 
			
		||||
      v_m         = v_m_plus_1;
 | 
			
		||||
      p_m_minus_2 = p_m_minus_1;
 | 
			
		||||
      p_m_minus_1 = p_m;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      /////////////////////////////////////
 | 
			
		||||
      z1 = RealD(iter+1.0);
 | 
			
		||||
      z2 = z1 + 1.0;
 | 
			
		||||
      tau2 = tau2 *( z2 / z1 ) * s_m * s_m;
 | 
			
		||||
      std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl;
 | 
			
		||||
      std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Compute true residual
 | 
			
		||||
      mod2r = tau2;
 | 
			
		||||
      if ( 1 || (tau2 < (100.0 * target2)) ) {
 | 
			
		||||
	LinOp.Op(x,tmp);
 | 
			
		||||
	r = b - tmp;
 | 
			
		||||
	mod2r = norm2(r);
 | 
			
		||||
	std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if ( mod2r < target2 ) { 
 | 
			
		||||
 | 
			
		||||
	std::cout << " QuasiMinimumResidual has converged"<<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,732 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/SchurRedBlack.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_SCHUR_RED_BLACK_H
 | 
			
		||||
#define GRID_SCHUR_RED_BLACK_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * Red black Schur decomposition
 | 
			
		||||
   *
 | 
			
		||||
   *  M = (Mee Meo) =  (1             0 )   (Mee   0               )  (1 Mee^{-1} Meo)
 | 
			
		||||
   *      (Moe Moo)    (Moe Mee^-1    1 )   (0   Moo-Moe Mee^-1 Meo)  (0   1         )
 | 
			
		||||
   *                =         L                     D                     U
 | 
			
		||||
   *
 | 
			
		||||
   * L^-1 = (1              0 )
 | 
			
		||||
   *        (-MoeMee^{-1}   1 )   
 | 
			
		||||
   * L^{dag} = ( 1       Mee^{-dag} Moe^{dag} )
 | 
			
		||||
   *           ( 0       1                    )
 | 
			
		||||
   * L^{-d}  = ( 1      -Mee^{-dag} Moe^{dag} )
 | 
			
		||||
   *           ( 0       1                    )
 | 
			
		||||
   *
 | 
			
		||||
   * U^-1 = (1   -Mee^{-1} Meo)
 | 
			
		||||
   *        (0    1           )
 | 
			
		||||
   * U^{dag} = ( 1                 0)
 | 
			
		||||
   *           (Meo^dag Mee^{-dag} 1)
 | 
			
		||||
   * U^{-dag} = (  1                 0)
 | 
			
		||||
   *            (-Meo^dag Mee^{-dag} 1)
 | 
			
		||||
   ***********************
 | 
			
		||||
   *     M psi = eta
 | 
			
		||||
   ***********************
 | 
			
		||||
   *Odd
 | 
			
		||||
   * i)                 D_oo psi_o =  L^{-1}  eta_o
 | 
			
		||||
   *                        eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * Wilson:
 | 
			
		||||
   *      (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   * Stag:
 | 
			
		||||
   *      D_oo psi_o = L^{-1}  eta =    (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * L^-1 eta_o= (1              0 ) (e
 | 
			
		||||
   *             (-MoeMee^{-1}   1 )   
 | 
			
		||||
   *
 | 
			
		||||
   *Even
 | 
			
		||||
   * ii)  Mee psi_e + Meo psi_o = src_e
 | 
			
		||||
   *
 | 
			
		||||
   *   => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
   *
 | 
			
		||||
   * 
 | 
			
		||||
   * TODO: Other options:
 | 
			
		||||
   * 
 | 
			
		||||
   * a) change checkerboards for Schur e<->o
 | 
			
		||||
   *
 | 
			
		||||
   * Left precon by Moo^-1
 | 
			
		||||
   * b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 =  (D_oo)^dag M_oo^-dag Moo^-1 L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * Right precon by Moo^-1
 | 
			
		||||
   * c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *                              psi_o = M_oo^-1 phi_o
 | 
			
		||||
   * TODO: Deflation 
 | 
			
		||||
   */
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Use base class to share code
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackBase {
 | 
			
		||||
  protected:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
    OperatorFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
    bool subGuess;
 | 
			
		||||
    bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
        const bool _solnAsInitGuess = false)  :
 | 
			
		||||
    _HermitianRBSolver(HermitianRBSolver),
 | 
			
		||||
    useSolnAsInitGuess(_solnAsInitGuess)
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise = 0;
 | 
			
		||||
      subtractGuess(initSubGuess);
 | 
			
		||||
    };
 | 
			
		||||
    void subtractGuess(const bool initSubGuess)
 | 
			
		||||
    {
 | 
			
		||||
      subGuess = initSubGuess;
 | 
			
		||||
    }
 | 
			
		||||
    bool isSubtractGuess(void)
 | 
			
		||||
    {
 | 
			
		||||
      return subGuess;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Shared code
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
      ZeroGuesser<Field> guess;
 | 
			
		||||
      (*this)(_Matrix,in,out,guess);
 | 
			
		||||
    }
 | 
			
		||||
    void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out) 
 | 
			
		||||
    {
 | 
			
		||||
      ZeroGuesser<Field> guess;
 | 
			
		||||
      (*this)(_Matrix,in,out,guess);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o) 
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      Field tmp(grid);
 | 
			
		||||
      int nblock = in.size();
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // James can write his own deflated guesser
 | 
			
		||||
    // with optimised code for the inner products
 | 
			
		||||
    //    RedBlackSolveSplitGrid();
 | 
			
		||||
    //    RedBlackSolve(_Matrix,src_o,sol_o); 
 | 
			
		||||
 | 
			
		||||
    void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      Field tmp(grid);
 | 
			
		||||
      int nblock = in.size();
 | 
			
		||||
      for(int b=0;b<nblock;b++) {
 | 
			
		||||
	pickCheckerboard(Even,tmp,in[b]);
 | 
			
		||||
	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Guesser>
 | 
			
		||||
    void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess) 
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
      int nblock = in.size();
 | 
			
		||||
 | 
			
		||||
      std::vector<Field> src_o(nblock,grid);
 | 
			
		||||
      std::vector<Field> sol_o(nblock,grid);
 | 
			
		||||
      
 | 
			
		||||
      std::vector<Field> guess_save;
 | 
			
		||||
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
      Field tmp(grid);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Prepare RedBlack source
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSource(_Matrix,in,src_o);
 | 
			
		||||
	//      for(int b=0;b<nblock;b++){
 | 
			
		||||
	//	RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
 | 
			
		||||
	//      }
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Make the guesses
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      if ( subGuess ) guess_save.resize(nblock,grid);
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
      if(useSolnAsInitGuess) {
 | 
			
		||||
        for(int b=0;b<nblock;b++){
 | 
			
		||||
          pickCheckerboard(Odd, sol_o[b], out[b]);
 | 
			
		||||
        }
 | 
			
		||||
      } else {
 | 
			
		||||
        guess(src_o, sol_o); 
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
	    if ( subGuess ) { 
 | 
			
		||||
        for(int b=0;b<nblock;b++){
 | 
			
		||||
          guess_save[b] = sol_o[b];
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the block solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
 | 
			
		||||
      RedBlackSolve(_Matrix,src_o,sol_o);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // A2A boolean behavioural control & reconstruct other checkerboard
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      for(int b=0;b<nblock;b++) {
 | 
			
		||||
 | 
			
		||||
	if (subGuess)   sol_o[b] = sol_o[b] - guess_save[b];
 | 
			
		||||
 | 
			
		||||
	///////// Needs even source //////////////
 | 
			
		||||
	pickCheckerboard(Even,tmp,in[b]);
 | 
			
		||||
	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////
 | 
			
		||||
	// Check unprec residual if possible
 | 
			
		||||
	/////////////////////////////////////////////////
 | 
			
		||||
	if ( ! subGuess ) {
 | 
			
		||||
	  _Matrix.M(out[b],resid); 
 | 
			
		||||
	  resid = resid-in[b];
 | 
			
		||||
	  RealD ns = norm2(in[b]);
 | 
			
		||||
	  RealD nr = norm2(resid);
 | 
			
		||||
	
 | 
			
		||||
	  std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
 | 
			
		||||
	} else {
 | 
			
		||||
	  std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class Guesser>
 | 
			
		||||
    void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // RedBlack source
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSource(_Matrix,in,src_e,src_o);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      // Construct the guess
 | 
			
		||||
      ////////////////////////////////
 | 
			
		||||
      if(useSolnAsInitGuess) {
 | 
			
		||||
        pickCheckerboard(Odd, sol_o, out);
 | 
			
		||||
      } else {
 | 
			
		||||
        guess(src_o,sol_o);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Field  guess_save(grid);
 | 
			
		||||
      guess_save = sol_o;
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSolve(_Matrix,src_o,sol_o);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // Fionn A2A boolean behavioural control
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      if (subGuess)      sol_o= sol_o-guess_save;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // RedBlack solution needs the even source
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      RedBlackSolution(_Matrix,sol_o,src_e,out);
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      if ( ! subGuess ) {
 | 
			
		||||
        _Matrix.M(out,resid); 
 | 
			
		||||
        resid = resid-in;
 | 
			
		||||
        RealD ns = norm2(in);
 | 
			
		||||
        RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
        std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
 | 
			
		||||
      } else {
 | 
			
		||||
        std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }     
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Override in derived. 
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    virtual void RedBlackSource  (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)                =0;
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)          =0;
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)                           =0;
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)=0;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
        const bool _solnAsInitGuess = false) 
 | 
			
		||||
      :    SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) 
 | 
			
		||||
    {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Override RedBlack specialisation
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field   sol_e(grid);
 | 
			
		||||
      Field   src_e(grid);
 | 
			
		||||
 | 
			
		||||
      src_e = src_e_c; // Const correctness
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal has Mooee on it.
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
        const bool _solnAsInitGuess = false)  
 | 
			
		||||
      : SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Override RedBlack specialisation
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  sol_e(grid);
 | 
			
		||||
      Field  src_e_i(grid);
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> 
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
      NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
 | 
			
		||||
          const bool _solnAsInitGuess = false)  
 | 
			
		||||
      : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // Override RedBlack specialisation
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
 | 
			
		||||
      {
 | 
			
		||||
        GridBase* grid  = _Matrix.RedBlackGrid();
 | 
			
		||||
        GridBase* fgrid = _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
        Field  tmp(grid);
 | 
			
		||||
        Field Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
        pickCheckerboard(Even, src_e, src);
 | 
			
		||||
        pickCheckerboard(Odd , src_o, src);
 | 
			
		||||
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );     
 | 
			
		||||
        src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );     
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
			
		||||
      {
 | 
			
		||||
        GridBase* grid  = _Matrix.RedBlackGrid();
 | 
			
		||||
        GridBase* fgrid = _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
        Field     tmp(grid);
 | 
			
		||||
        Field   sol_e(grid);
 | 
			
		||||
        Field src_e_i(grid);
 | 
			
		||||
        
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even );
 | 
			
		||||
        src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even );
 | 
			
		||||
       
 | 
			
		||||
        setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
 | 
			
		||||
        setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  );
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
			
		||||
      {
 | 
			
		||||
        NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
 | 
			
		||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
 | 
			
		||||
      {
 | 
			
		||||
        NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
 | 
			
		||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o); 
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal is identity, left preconditioned by Mee^inv
 | 
			
		||||
  // ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv  ) phi =  Mee_inv eta
 | 
			
		||||
  //
 | 
			
		||||
  // Solve:
 | 
			
		||||
  // ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag  Mee_inv eta
 | 
			
		||||
  //
 | 
			
		||||
  // Old notation e<->o
 | 
			
		||||
  //
 | 
			
		||||
  // Left precon by Moo^-1
 | 
			
		||||
  //  b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o =  [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1}  eta_o
 | 
			
		||||
  //                                   eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
      const bool _solnAsInitGuess = false)  
 | 
			
		||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      Mtmp=src_o-Mtmp;                 
 | 
			
		||||
      _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field   sol_e(grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
			
		||||
  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
			
		||||
  //=> psi = MeeInv phi
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
			
		||||
      const bool _solnAsInitGuess = false)  
 | 
			
		||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,src);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,src);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      Field   sol_o_i(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field   sol_e(grid);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      // MooeeInv due to pecond
 | 
			
		||||
      ////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(sol_o,tmp);
 | 
			
		||||
      sol_o_i = tmp;
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd );
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> 
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Wrap the usual normal equations Schur trick
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
 | 
			
		||||
          const bool _solnAsInitGuess = false)  
 | 
			
		||||
      : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
 | 
			
		||||
      {
 | 
			
		||||
        GridBase* grid  = _Matrix.RedBlackGrid();
 | 
			
		||||
        GridBase* fgrid = _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
        Field  tmp(grid);
 | 
			
		||||
        Field Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
        pickCheckerboard(Even, src_e, src);
 | 
			
		||||
        pickCheckerboard(Odd , src_o, src);
 | 
			
		||||
      
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );     
 | 
			
		||||
        src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );     
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
			
		||||
      {
 | 
			
		||||
        GridBase* grid  = _Matrix.RedBlackGrid();
 | 
			
		||||
        GridBase* fgrid = _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
        Field sol_o_i(grid);
 | 
			
		||||
        Field     tmp(grid);
 | 
			
		||||
        Field   sol_e(grid);
 | 
			
		||||
 | 
			
		||||
        ////////////////////////////////////////////////
 | 
			
		||||
        // MooeeInv due to pecond
 | 
			
		||||
        ////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.MooeeInv(sol_o, tmp);
 | 
			
		||||
        sol_o_i = tmp;
 | 
			
		||||
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even );
 | 
			
		||||
        tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even );
 | 
			
		||||
       
 | 
			
		||||
        setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even );
 | 
			
		||||
        setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  );
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
			
		||||
      {
 | 
			
		||||
        NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
 | 
			
		||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o,  std::vector<Field>& sol_o)
 | 
			
		||||
      {
 | 
			
		||||
        NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
 | 
			
		||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o); 
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,478 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
inline RealD AggregatePowerLaw(RealD x)
 | 
			
		||||
{
 | 
			
		||||
  //  return std::pow(x,-4);
 | 
			
		||||
  //  return std::pow(x,-3);
 | 
			
		||||
  return std::pow(x,-5);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation {
 | 
			
		||||
public:
 | 
			
		||||
  constexpr int Nbasis(void) { return nbasis; };
 | 
			
		||||
  
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
			
		||||
    int nn=nbasis;
 | 
			
		||||
    RealD scale;
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      subspace[b] = noise;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
			
		||||
	      <<ordermin<<" step "<<orderstep
 | 
			
		||||
	      <<" lo"<<filterlo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
 | 
			
		||||
      // Refine
 | 
			
		||||
      Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
 | 
			
		||||
      noise = Mn;
 | 
			
		||||
      PowerLaw(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
 | 
			
		||||
      // normalise
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					       int nn,
 | 
			
		||||
					       double hi,
 | 
			
		||||
					       int orderfilter
 | 
			
		||||
					       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					  double hi
 | 
			
		||||
					  ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
 | 
			
		||||
      /*266
 | 
			
		||||
      Chebyshev<FineField> Cheb1(3.0,hi,300);
 | 
			
		||||
      Chebyshev<FineField> Cheb2(1.0,hi,50);
 | 
			
		||||
      Chebyshev<FineField> Cheb3(0.5,hi,300);
 | 
			
		||||
      Chebyshev<FineField> Cheb4(0.05,hi,500);
 | 
			
		||||
      Chebyshev<FineField> Cheb5(0.01,hi,2000);
 | 
			
		||||
      */
 | 
			
		||||
      /* 242 */
 | 
			
		||||
      /*
 | 
			
		||||
      Chebyshev<FineField> Cheb3(0.1,hi,300);
 | 
			
		||||
      Chebyshev<FineField> Cheb2(0.02,hi,1000);
 | 
			
		||||
      Chebyshev<FineField> Cheb1(0.003,hi,2000);
 | 
			
		||||
      8?
 | 
			
		||||
      */
 | 
			
		||||
      /* How many??
 | 
			
		||||
      */
 | 
			
		||||
      Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
 | 
			
		||||
      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
			
		||||
 | 
			
		||||
      //      Chebyshev<FineField> Cheb2(0.001,hi,1500);
 | 
			
		||||
      //      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
			
		||||
      Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
			
		||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
      hermop.Op(subspace[b],tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					double Lo,double tol,int maxit)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Filter
 | 
			
		||||
    // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
 | 
			
		||||
    //
 | 
			
		||||
    // 1/(x+Lo)  - 1/(x+2 Lo)
 | 
			
		||||
    double epsilon      = Lo/3;
 | 
			
		||||
    std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
 | 
			
		||||
    std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
 | 
			
		||||
    std::vector<RealD> tols({tol,tol,tol,tol});
 | 
			
		||||
    std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
 | 
			
		||||
 | 
			
		||||
    MultiShiftFunction msf(4,0.0,95.0);
 | 
			
		||||
    std::cout << "msf constructed "<<std::endl;
 | 
			
		||||
    msf.poles=shifts;
 | 
			
		||||
    msf.residues=alpha;
 | 
			
		||||
    msf.tolerances=tols;
 | 
			
		||||
    msf.norm=0.0;
 | 
			
		||||
    msf.order=alpha.size();
 | 
			
		||||
    ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
 | 
			
		||||
    
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      MSCG(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
			      double Lo,double tol,int maxit)
 | 
			
		||||
  {
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      ConjugateGradient<FineField>  CGsloppy(tol,maxit,false);
 | 
			
		||||
      ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
 | 
			
		||||
      tmp=Zero();
 | 
			
		||||
      CGsloppy(hermop,subspace[b],tmp);
 | 
			
		||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
			
		||||
      subspace[b]=tmp;
 | 
			
		||||
      hermop.Op(subspace[b],tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
 | 
			
		||||
				  int nrhs)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<FineField> src_mrhs(nrhs,FineGrid);
 | 
			
		||||
    std::vector<FineField> res_mrhs(nrhs,FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    for(int b =0;b<nbasis;b+=nrhs)
 | 
			
		||||
    {
 | 
			
		||||
      tmp = subspace[b];
 | 
			
		||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
			
		||||
      subspace[b] =tmp;
 | 
			
		||||
      hermop.Op(subspace[b],tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
			
		||||
	src_mrhs[r] = subspace[b+r];
 | 
			
		||||
      }
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	res_mrhs[r] = Zero();
 | 
			
		||||
      }
 | 
			
		||||
      theHDCG(src_mrhs,res_mrhs);
 | 
			
		||||
 | 
			
		||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
			
		||||
	tmp = res_mrhs[r];
 | 
			
		||||
	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
 | 
			
		||||
	subspace[b+r]=tmp;
 | 
			
		||||
      }
 | 
			
		||||
      hermop.Op(subspace[b],tmp);
 | 
			
		||||
      std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,837 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/CoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_ALGORITHM_COARSENED_MATRIX_H
 | 
			
		||||
#define  GRID_ALGORITHM_COARSENED_MATRIX_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj,class CComplex>
 | 
			
		||||
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
			
		||||
				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
 | 
			
		||||
				    const Lattice<vobj> &fineX,
 | 
			
		||||
				    const Lattice<vobj> &fineY)
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) dotp;
 | 
			
		||||
 | 
			
		||||
  GridBase *coarse(CoarseInner.Grid());
 | 
			
		||||
  GridBase *fine  (fineX.Grid());
 | 
			
		||||
 | 
			
		||||
  Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
 | 
			
		||||
  Lattice<dotp> fine_inner_msk(fine);
 | 
			
		||||
 | 
			
		||||
  // Multiply could be fused with innerProduct
 | 
			
		||||
  // Single block sum kernel could do both masks.
 | 
			
		||||
  fine_inner = localInnerProduct(fineX,fineY);
 | 
			
		||||
  mult(fine_inner_msk, fine_inner,FineMask);
 | 
			
		||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef Lattice<CComplex >                  CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef CoarseVector FermionField;
 | 
			
		||||
 | 
			
		||||
  // enrich interface, use default implementation as in FermionOperator ///////
 | 
			
		||||
  void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
 | 
			
		||||
  void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
 | 
			
		||||
  void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
 | 
			
		||||
  void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
 | 
			
		||||
  void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
 | 
			
		||||
  void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
 | 
			
		||||
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  Geometry         geom;
 | 
			
		||||
  GridBase *       _grid; 
 | 
			
		||||
  GridBase*        _cbgrid;
 | 
			
		||||
  int hermitian;
 | 
			
		||||
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil; 
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
 | 
			
		||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
 | 
			
		||||
 | 
			
		||||
  std::vector<CoarseMatrix> A;
 | 
			
		||||
  std::vector<CoarseMatrix> Aeven;
 | 
			
		||||
  std::vector<CoarseMatrix> Aodd;
 | 
			
		||||
 | 
			
		||||
  CoarseMatrix AselfInv;
 | 
			
		||||
  CoarseMatrix AselfInvEven;
 | 
			
		||||
  CoarseMatrix AselfInvOdd;
 | 
			
		||||
 | 
			
		||||
  deviceVector<RealD> dag_factor;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase * RedBlackGrid()     { return _cbgrid; };
 | 
			
		||||
 | 
			
		||||
  int ConstEE() { return 0; }
 | 
			
		||||
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
    autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      for(int point=0;point<npoint;point++){
 | 
			
		||||
 | 
			
		||||
	SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
			
		||||
	  
 | 
			
		||||
	if(SE->_is_local) { 
 | 
			
		||||
	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
	} else {
 | 
			
		||||
	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
 | 
			
		||||
	}
 | 
			
		||||
	acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
	for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if(hermitian) {
 | 
			
		||||
      // corresponds to Petrov-Galerkin coarsening
 | 
			
		||||
      return M(in,out);
 | 
			
		||||
    } else {
 | 
			
		||||
      // corresponds to Galerkin coarsening
 | 
			
		||||
      return MdagNonHermitian(in, out);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
    autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    deviceVector<int> points(geom.npoint);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
			
		||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
			
		||||
    }
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      for(int p=0;p<npoint;p++){
 | 
			
		||||
        int point = points_p[p];
 | 
			
		||||
 | 
			
		||||
	SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
	if(SE->_is_local) {
 | 
			
		||||
	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
	} else {
 | 
			
		||||
	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
 | 
			
		||||
	}
 | 
			
		||||
	acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
	for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	  res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MdirComms(const CoarseVector &in)
 | 
			
		||||
  {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
    Stencil.HaloExchange(in,compressor);
 | 
			
		||||
  }
 | 
			
		||||
  void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(_grid,in.Grid());
 | 
			
		||||
    conformable(_grid,out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
    autoView( in_v  , in, AcceleratorRead);
 | 
			
		||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
      int ss = sss/nbasis;
 | 
			
		||||
      int b  = sss%nbasis;
 | 
			
		||||
      calcComplex res = Zero();
 | 
			
		||||
      calcVector nbr;
 | 
			
		||||
      int ptype;
 | 
			
		||||
      StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
      SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
			
		||||
	  
 | 
			
		||||
      if(SE->_is_local) { 
 | 
			
		||||
	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
      } else {
 | 
			
		||||
	nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
 | 
			
		||||
      }
 | 
			
		||||
      acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
      for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
    });
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
			
		||||
  {
 | 
			
		||||
    this->MdirComms(in);
 | 
			
		||||
    int ndir=geom.npoint-1;
 | 
			
		||||
    if ((out.size()!=ndir)&&(out.size()!=ndir+1)) { 
 | 
			
		||||
      std::cout <<"MdirAll out size "<< out.size()<<std::endl;
 | 
			
		||||
      std::cout <<"MdirAll ndir "<< ndir<<std::endl;
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=0;p<ndir;p++){
 | 
			
		||||
      MdirCalc(in,out[p],p);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
 | 
			
		||||
 | 
			
		||||
    this->MdirComms(in);
 | 
			
		||||
 | 
			
		||||
    MdirCalc(in,out,geom.point(dir,disp));
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdiag(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    int point=geom.npoint-1;
 | 
			
		||||
    MdirCalc(in, out, point); // No comms
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mooee(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerNo, InverseNo);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeInv(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerNo, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeDag(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerYes, InverseNo);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    MooeeInternal(in, out, DaggerYes, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Meooe(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    if(in.Checkerboard() == Odd) {
 | 
			
		||||
      DhopEO(in, out, DaggerNo);
 | 
			
		||||
    } else {
 | 
			
		||||
      DhopOE(in, out, DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MeooeDag(const CoarseVector &in, CoarseVector &out) {
 | 
			
		||||
    if(in.Checkerboard() == Odd) {
 | 
			
		||||
      DhopEO(in, out, DaggerYes);
 | 
			
		||||
    } else {
 | 
			
		||||
      DhopOE(in, out, DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    conformable(in.Grid(), _grid); // verifies full grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid());
 | 
			
		||||
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    DhopInternal(Stencil, A, in, out, dag);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
    assert(in.Checkerboard() == Even);
 | 
			
		||||
    out.Checkerboard() = Odd;
 | 
			
		||||
 | 
			
		||||
    DhopInternal(StencilEven, Aodd, in, out, dag);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
    assert(in.Checkerboard() == Odd);
 | 
			
		||||
    out.Checkerboard() = Even;
 | 
			
		||||
 | 
			
		||||
    DhopInternal(StencilOdd, Aeven, in, out, dag);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
 | 
			
		||||
 | 
			
		||||
    CoarseMatrix *Aself = nullptr;
 | 
			
		||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
			
		||||
      if(in.Checkerboard() == Odd) {
 | 
			
		||||
        Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
 | 
			
		||||
        DselfInternal(StencilOdd, *Aself, in, out, dag);
 | 
			
		||||
      } else {
 | 
			
		||||
        Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
 | 
			
		||||
        DselfInternal(StencilEven, *Aself, in, out, dag);
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
 | 
			
		||||
      DselfInternal(Stencil, *Aself, in, out, dag);
 | 
			
		||||
    }
 | 
			
		||||
    assert(Aself != nullptr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
			
		||||
                       const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    int point = geom.npoint-1;
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
    autoView( in_v,  in,  AcceleratorRead);
 | 
			
		||||
    autoView( st_v,  st,  AcceleratorRead);
 | 
			
		||||
    autoView( a_v,   a,   AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
 | 
			
		||||
    if(dag) {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
        if(SE->_is_local) {
 | 
			
		||||
          nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
        } else {
 | 
			
		||||
          nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
        }
 | 
			
		||||
        acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
        for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
          res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    } else {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
        if(SE->_is_local) {
 | 
			
		||||
          nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
        } else {
 | 
			
		||||
          nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
        }
 | 
			
		||||
        acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
        for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
          res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
 | 
			
		||||
                    const CoarseVector &in, CoarseVector &out, int dag) {
 | 
			
		||||
    SimpleCompressor<siteVector> compressor;
 | 
			
		||||
 | 
			
		||||
    st.HaloExchange(in,compressor);
 | 
			
		||||
    autoView( in_v,  in,  AcceleratorRead);
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
    autoView( st_v , st,  AcceleratorRead);
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    // determine in what order we need the points
 | 
			
		||||
    int npoint = geom.npoint-1;
 | 
			
		||||
    deviceVector<int> points(npoint);
 | 
			
		||||
    for(int p=0; p<npoint; p++) {
 | 
			
		||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
      acceleratorPut(points[p], val);
 | 
			
		||||
    }
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0])) calcVector;
 | 
			
		||||
    typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
 | 
			
		||||
    if(dag) {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        for(int p=0;p<npoint;p++){
 | 
			
		||||
          int point = points_p[p];
 | 
			
		||||
          SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
          if(SE->_is_local) {
 | 
			
		||||
            nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
          } else {
 | 
			
		||||
            nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
          }
 | 
			
		||||
          acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
          for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
            res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    } else {
 | 
			
		||||
      accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
 | 
			
		||||
        int ss = sss/nbasis;
 | 
			
		||||
        int b  = sss%nbasis;
 | 
			
		||||
        calcComplex res = Zero();
 | 
			
		||||
        calcVector nbr;
 | 
			
		||||
        int ptype;
 | 
			
		||||
        StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
        for(int p=0;p<npoint;p++){
 | 
			
		||||
          int point = points_p[p];
 | 
			
		||||
          SE=st_v.GetEntry(ptype,point,ss);
 | 
			
		||||
 | 
			
		||||
          if(SE->_is_local) {
 | 
			
		||||
            nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
 | 
			
		||||
          } else {
 | 
			
		||||
            nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
 | 
			
		||||
          }
 | 
			
		||||
          acceleratorSynchronise();
 | 
			
		||||
 | 
			
		||||
          for(int bb=0;bb<nbasis;bb++) {
 | 
			
		||||
            res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
			
		||||
    _grid(&CoarseGrid),
 | 
			
		||||
    _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,_cbgrid),
 | 
			
		||||
    Aodd(geom.npoint,_cbgrid),
 | 
			
		||||
    AselfInv(&CoarseGrid),
 | 
			
		||||
    AselfInvEven(_cbgrid),
 | 
			
		||||
    AselfInvOdd(_cbgrid),
 | 
			
		||||
    dag_factor(nbasis*nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    fillFactor();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) 	:
 | 
			
		||||
 | 
			
		||||
    _grid(&CoarseGrid),
 | 
			
		||||
    _cbgrid(&CoarseRBGrid),
 | 
			
		||||
    geom(CoarseGrid._ndimension),
 | 
			
		||||
    hermitian(hermitian_),
 | 
			
		||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
			
		||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
			
		||||
    A(geom.npoint,&CoarseGrid),
 | 
			
		||||
    Aeven(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
    Aodd(geom.npoint,&CoarseRBGrid),
 | 
			
		||||
    AselfInv(&CoarseGrid),
 | 
			
		||||
    AselfInvEven(&CoarseRBGrid),
 | 
			
		||||
    AselfInvOdd(&CoarseRBGrid),
 | 
			
		||||
    dag_factor(nbasis*nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    fillFactor();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void fillFactor() {
 | 
			
		||||
    Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
 | 
			
		||||
    if(!hermitian) {
 | 
			
		||||
      const int nb = nbasis/2;
 | 
			
		||||
      dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
 | 
			
		||||
      dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // GPU readable prefactor
 | 
			
		||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
			
		||||
    thread_for(i, nbasis*nbasis, {
 | 
			
		||||
      int j = i/nbasis;
 | 
			
		||||
      int k = i%nbasis;
 | 
			
		||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
    });
 | 
			
		||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
 | 
			
		||||
    typedef typename Fobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
 | 
			
		||||
    FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
 | 
			
		||||
 | 
			
		||||
    std::vector<FineComplexField> masks(geom.npoint,FineGrid);
 | 
			
		||||
    FineComplexField imask(FineGrid); // contributions from within this block
 | 
			
		||||
    FineComplexField omask(FineGrid); // contributions from outwith this block
 | 
			
		||||
 | 
			
		||||
    FineComplexField evenmask(FineGrid);
 | 
			
		||||
    FineComplexField oddmask(FineGrid); 
 | 
			
		||||
 | 
			
		||||
    FineField     phi(FineGrid);
 | 
			
		||||
    FineField     tmp(FineGrid);
 | 
			
		||||
    FineField     zz(FineGrid); zz=Zero();
 | 
			
		||||
    FineField    Mphi(FineGrid);
 | 
			
		||||
    FineField    Mphie(FineGrid);
 | 
			
		||||
    FineField    Mphio(FineGrid);
 | 
			
		||||
    std::vector<FineField>     Mphi_p(geom.npoint,FineGrid);
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor (FineGrid);
 | 
			
		||||
    Lattice<iScalar<vInteger> > bcoor(FineGrid);
 | 
			
		||||
    Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero();
 | 
			
		||||
 | 
			
		||||
    CoarseVector iProj(Grid()); 
 | 
			
		||||
    CoarseVector oProj(Grid()); 
 | 
			
		||||
    CoarseVector SelfProj(Grid()); 
 | 
			
		||||
    CoarseComplexField iZProj(Grid()); 
 | 
			
		||||
    CoarseComplexField oZProj(Grid()); 
 | 
			
		||||
 | 
			
		||||
    CoarseScalar InnerProd(Grid()); 
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    // Compute the matrix elements of linop between this orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
 | 
			
		||||
    int self_stencil=-1;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++)
 | 
			
		||||
    { 
 | 
			
		||||
      int dir   = geom.directions[p];
 | 
			
		||||
      int disp  = geom.displacements[p];
 | 
			
		||||
      A[p]=Zero();
 | 
			
		||||
      if( geom.displacements[p]==0){
 | 
			
		||||
	self_stencil=p;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor,dir);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////////
 | 
			
		||||
      // Work out even and odd block checkerboarding for fast diagonal term
 | 
			
		||||
      ///////////////////////////////////////////////////////
 | 
			
		||||
      if ( disp==1 ) {
 | 
			
		||||
	bcb   = bcb + div(coor,block);
 | 
			
		||||
      }
 | 
			
		||||
	
 | 
			
		||||
      if ( disp==0 ) {
 | 
			
		||||
	  masks[p]= Zero();
 | 
			
		||||
      } else if ( disp==1 ) {
 | 
			
		||||
	masks[p] = where(mod(coor,block)==(block-1),one,zero);
 | 
			
		||||
      } else if ( disp==-1 ) {
 | 
			
		||||
	masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
 | 
			
		||||
    oddmask  = one-evenmask;
 | 
			
		||||
 | 
			
		||||
    assert(self_stencil!=-1);
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<nbasis;i++){
 | 
			
		||||
 | 
			
		||||
      phi=Subspace.subspace[i];
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
 | 
			
		||||
      linop.OpDirAll(phi,Mphi_p);
 | 
			
		||||
      linop.OpDiag  (phi,Mphi_p[geom.npoint-1]);
 | 
			
		||||
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){ 
 | 
			
		||||
 | 
			
		||||
	Mphi = Mphi_p[p];
 | 
			
		||||
 | 
			
		||||
	int dir   = geom.directions[p];
 | 
			
		||||
	int disp  = geom.displacements[p];
 | 
			
		||||
 | 
			
		||||
	if ( (disp==-1) || (!hermitian ) ) {
 | 
			
		||||
 | 
			
		||||
	  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Pick out contributions coming from this cell and neighbour cell
 | 
			
		||||
	  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  omask = masks[p];
 | 
			
		||||
	  imask = one-omask;
 | 
			
		||||
	
 | 
			
		||||
	  for(int j=0;j<nbasis;j++){
 | 
			
		||||
	    
 | 
			
		||||
	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
 | 
			
		||||
	    
 | 
			
		||||
	    autoView( iZProj_v , iZProj, AcceleratorRead) ;
 | 
			
		||||
	    autoView( oZProj_v , oZProj, AcceleratorRead) ;
 | 
			
		||||
	    autoView( A_p     ,  A[p], AcceleratorWrite);
 | 
			
		||||
	    autoView( A_self  , A[self_stencil], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
 | 
			
		||||
	    if ( hermitian && (disp==-1) ) {
 | 
			
		||||
	      for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
 | 
			
		||||
		int dirp   = geom.directions[pp];
 | 
			
		||||
		int dispp  = geom.displacements[pp];
 | 
			
		||||
		if ( (dirp==dir) && (dispp==1) ){
 | 
			
		||||
		  auto sft = conjugate(Cshift(oZProj,dir,1));
 | 
			
		||||
		  autoView( sft_v    ,  sft  , AcceleratorWrite);
 | 
			
		||||
		  autoView( A_pp     ,  A[pp], AcceleratorWrite);
 | 
			
		||||
		  accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
 | 
			
		||||
		}
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////
 | 
			
		||||
      // Faster alternate self coupling.. use hermiticity to save 2x
 | 
			
		||||
      ///////////////////////////////////////////
 | 
			
		||||
      {
 | 
			
		||||
	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie);
 | 
			
		||||
	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio);
 | 
			
		||||
 | 
			
		||||
	{
 | 
			
		||||
	  autoView( tmp_      , tmp, AcceleratorWrite);
 | 
			
		||||
	  autoView( evenmask_ , evenmask, AcceleratorRead);
 | 
			
		||||
	  autoView( oddmask_  ,  oddmask, AcceleratorRead);
 | 
			
		||||
	  autoView( Mphie_    ,  Mphie, AcceleratorRead);
 | 
			
		||||
	  autoView( Mphio_    ,  Mphio, AcceleratorRead);
 | 
			
		||||
	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{ 
 | 
			
		||||
	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
 | 
			
		||||
	    });
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	blockProject(SelfProj,tmp,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
	autoView( SelfProj_ , SelfProj, AcceleratorRead);
 | 
			
		||||
	autoView( A_self  , A[self_stencil], AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
 | 
			
		||||
	  for(int j=0;j<nbasis;j++){
 | 
			
		||||
	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if(hermitian) {
 | 
			
		||||
      std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl;
 | 
			
		||||
    FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void InvertSelfStencilLink() {
 | 
			
		||||
    std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
 | 
			
		||||
    int localVolume = Grid()->lSites();
 | 
			
		||||
 | 
			
		||||
    typedef typename Cobj::scalar_object scalar_object;
 | 
			
		||||
 | 
			
		||||
    autoView(Aself_v,    A[geom.npoint-1], CpuRead);
 | 
			
		||||
    autoView(AselfInv_v, AselfInv,         CpuWrite);
 | 
			
		||||
    thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
 | 
			
		||||
      Eigen::MatrixXcd selfLinkEigen    = Eigen::MatrixXcd::Zero(nbasis, nbasis);
 | 
			
		||||
      Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
 | 
			
		||||
 | 
			
		||||
      scalar_object selfLink    = Zero();
 | 
			
		||||
      scalar_object selfLinkInv = Zero();
 | 
			
		||||
 | 
			
		||||
      Coordinate lcoor;
 | 
			
		||||
 | 
			
		||||
      Grid()->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
      peekLocalSite(selfLink, Aself_v, lcoor);
 | 
			
		||||
 | 
			
		||||
      for (int i = 0; i < nbasis; ++i)
 | 
			
		||||
        for (int j = 0; j < nbasis; ++j)
 | 
			
		||||
          selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
 | 
			
		||||
 | 
			
		||||
      selfLinkInvEigen = selfLinkEigen.inverse();
 | 
			
		||||
 | 
			
		||||
      for(int i = 0; i < nbasis; ++i)
 | 
			
		||||
        for(int j = 0; j < nbasis; ++j)
 | 
			
		||||
          selfLinkInv(i, j) = selfLinkInvEigen(i, j);
 | 
			
		||||
 | 
			
		||||
      pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void FillHalfCbs() {
 | 
			
		||||
    std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
 | 
			
		||||
    for(int p = 0; p < geom.npoint; ++p) {
 | 
			
		||||
      pickCheckerboard(Even, Aeven[p], A[p]);
 | 
			
		||||
      pickCheckerboard(Odd, Aodd[p], A[p]);
 | 
			
		||||
    }
 | 
			
		||||
    pickCheckerboard(Even, AselfInvEven, AselfInv);
 | 
			
		||||
    pickCheckerboard(Odd, AselfInvOdd, AselfInv);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,619 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  int hermitian;
 | 
			
		||||
  GridBase      *       _FineGrid; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid; 
 | 
			
		||||
  NonLocalStencilGeometry &geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<CoarseMatrix> _A;
 | 
			
		||||
  std::vector<CoarseMatrix> _Adag;
 | 
			
		||||
  std::vector<CoarseVector> MultTemporaries;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  /*  void ShiftMatrix(RealD shift)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd=_FineGrid->Nd(); 
 | 
			
		||||
    Coordinate zero_shift(Nd,0);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      if ( zero_shift==geom.shifts[p] ) {
 | 
			
		||||
	_A[p] = _A[p]+shift;
 | 
			
		||||
	//	_Adag[p] = _Adag[p]+shift;
 | 
			
		||||
      }
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
			
		||||
  {
 | 
			
		||||
    int nfound=0;
 | 
			
		||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
			
		||||
 	// Search for the same relative shift
 | 
			
		||||
	// Avoids brutal handling of Grid pointers
 | 
			
		||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
			
		||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
			
		||||
	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
			
		||||
	  nfound++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
			
		||||
    : geom(_geom),
 | 
			
		||||
      _FineGrid(FineGrid),
 | 
			
		||||
      _CoarseGrid(CoarseGrid),
 | 
			
		||||
      hermitian(1),
 | 
			
		||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
			
		||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
			
		||||
  {
 | 
			
		||||
    {
 | 
			
		||||
      int npoint = _geom.npoint;
 | 
			
		||||
    }
 | 
			
		||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
    //    _Adag.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    assert(hermitian);
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
    //    if ( hermitian ) M(in,out);
 | 
			
		||||
    //    else Mult(_Adag,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0;
 | 
			
		||||
    RealD tmult2=0;
 | 
			
		||||
 | 
			
		||||
    ttot=-usecond();
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
 | 
			
		||||
    texch-=usecond();
 | 
			
		||||
    CoarseVector pin = Cell.ExchangePeriodic(tin);
 | 
			
		||||
    texch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid());
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    typedef LatticeView<Cvec> Vview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    int64_t osites=pin.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
			
		||||
    RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
 | 
			
		||||
                + 2.0*osites*sizeof(siteVector)*npoint;
 | 
			
		||||
      
 | 
			
		||||
    {
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      autoView( in_v , pin, AcceleratorRead);
 | 
			
		||||
      autoView( out_v , pout, AcceleratorWriteDiscard);
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
 | 
			
		||||
      // Static and prereserve to keep UVM region live and not resized across multiple calls
 | 
			
		||||
      ttemps-=usecond();
 | 
			
		||||
      MultTemporaries.resize(npoint,pin.Grid());       
 | 
			
		||||
      ttemps+=usecond();
 | 
			
		||||
      std::vector<Aview> AcceleratorViewContainer_h;
 | 
			
		||||
      std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
			
		||||
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      for(int p=0;p<npoint;p++) {
 | 
			
		||||
	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead));
 | 
			
		||||
	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
 | 
			
		||||
      }
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
 | 
			
		||||
      static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
 | 
			
		||||
      static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint); 
 | 
			
		||||
      
 | 
			
		||||
      auto Aview_p = &AcceleratorViewContainer[0];
 | 
			
		||||
      auto Vview_p = &AcceleratorVecViewContainer[0];
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
 | 
			
		||||
      acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
      tmult-=usecond();
 | 
			
		||||
      accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
 | 
			
		||||
	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
	  int32_t ss   = spb/(nbasis*npoint);
 | 
			
		||||
	  int32_t bp   = spb%(nbasis*npoint);
 | 
			
		||||
	  int32_t point= bp/nbasis;
 | 
			
		||||
	  int32_t b    = bp%nbasis;
 | 
			
		||||
	  auto SE  = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
			
		||||
	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
 | 
			
		||||
	  for(int bb=1;bb<nbasis;bb++) {
 | 
			
		||||
	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
 | 
			
		||||
	  }
 | 
			
		||||
	  coalescedWrite(Vview_p[point][ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
      tmult2-=usecond();
 | 
			
		||||
      accelerator_for(sb, osites*nbasis, Nsimd, {
 | 
			
		||||
	  int ss = sb/nbasis;
 | 
			
		||||
	  int b  = sb%nbasis;
 | 
			
		||||
	  auto res = coalescedRead(Vview_p[0][ss](b));
 | 
			
		||||
	  for(int point=1;point<npoint;point++){
 | 
			
		||||
	    res = res + coalescedRead(Vview_p[point][ss](b));
 | 
			
		||||
	  }
 | 
			
		||||
	  coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
      tmult2+=usecond();
 | 
			
		||||
      tmult+=usecond();
 | 
			
		||||
      for(int p=0;p<npoint;p++) {
 | 
			
		||||
	AcceleratorViewContainer_h[p].ViewClose();
 | 
			
		||||
	AcceleratorVecViewContainer_h[p].ViewClose();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    text-=usecond();
 | 
			
		||||
    out = Cell.Extract(pout);
 | 
			
		||||
    text+=usecond();
 | 
			
		||||
    ttot+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogPerformance<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void PopulateAdag(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
			
		||||
      Coordinate bcoor;
 | 
			
		||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
			
		||||
      
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
	Coordinate scoor = bcoor;
 | 
			
		||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
			
		||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
			
		||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
			
		||||
	}
 | 
			
		||||
	// Flip to poke/peekLocalSite and not too bad
 | 
			
		||||
	auto link = peekSite(_A[p],scoor);
 | 
			
		||||
	int pp = geom.Reverse(p);
 | 
			
		||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // 
 | 
			
		||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
			
		||||
  // and apply MpcDagMpc in the padded cell.
 | 
			
		||||
  //
 | 
			
		||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
			
		||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
			
		||||
  // Cost is 81x more, same as stencil size.
 | 
			
		||||
  //
 | 
			
		||||
  // But: can eliminate comms and do as local dirichlet.
 | 
			
		||||
  //
 | 
			
		||||
  // Local exchange gauge field once.
 | 
			
		||||
  // Apply to all vectors, local only computation.
 | 
			
		||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
			
		||||
  //
 | 
			
		||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
			
		||||
  //                     pad by 2, apply Doe
 | 
			
		||||
  //                     pad by 3, apply Deo
 | 
			
		||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
			
		||||
  //
 | 
			
		||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
			
		||||
  //
 | 
			
		||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
			
		||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    /*
 | 
			
		||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
			
		||||
     *
 | 
			
		||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
			
		||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
			
		||||
     *
 | 
			
		||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
     *
 | 
			
		||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
     */
 | 
			
		||||
#if 0
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	// Stick a phase on every block
 | 
			
		||||
	/////////////////////////////////////////////////////
 | 
			
		||||
	tphase-=usecond();
 | 
			
		||||
	CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  LatticeCoordinate(coor,mu);
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
	}
 | 
			
		||||
	pha  =exp(pha*ci);
 | 
			
		||||
	phaV=Zero();
 | 
			
		||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
			
		||||
	tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      //      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tphaseBZ=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    //    for(int s=0;s<Subspace.subspace.size();s++){
 | 
			
		||||
      //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
 | 
			
		||||
    //    }
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
    
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    tphase=-usecond();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    tphase+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	tphaseBZ-=usecond();
 | 
			
		||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
			
		||||
	tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      //      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
#endif  
 | 
			
		||||
  void ExchangeCoarseLinks(void){
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      _A[p] = Cell.ExchangePeriodic(_A[p]);
 | 
			
		||||
      //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,729 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename CComplex::scalar_object SComplex;
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
 | 
			
		||||
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef iVector<SComplex,nbasis >           calcVector;
 | 
			
		||||
  typedef iMatrix<SComplex,nbasis >           calcMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  GridCartesian *       _CoarseGridMulti; 
 | 
			
		||||
  NonLocalStencilGeometry geom;
 | 
			
		||||
  NonLocalStencilGeometry geom_srhs;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
 | 
			
		||||
  deviceVector<calcVector> BLAS_B;
 | 
			
		||||
  deviceVector<calcVector> BLAS_C;
 | 
			
		||||
  std::vector<deviceVector<calcMatrix> > BLAS_A;
 | 
			
		||||
 | 
			
		||||
  std::vector<deviceVector<ComplexD *> > BLAS_AP;
 | 
			
		||||
  std::vector<deviceVector<ComplexD *> > BLAS_BP;
 | 
			
		||||
  deviceVector<ComplexD *>               BLAS_CP;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  // Can be used to do I/O on the operator matrices externally
 | 
			
		||||
  void SetMatrix (int p,CoarseMatrix & A)
 | 
			
		||||
  {
 | 
			
		||||
    assert(A.size()==geom_srhs.npoint);
 | 
			
		||||
    GridtoBLAS(A[p],BLAS_A[p]);
 | 
			
		||||
  }
 | 
			
		||||
  void GetMatrix (int p,CoarseMatrix & A)
 | 
			
		||||
  {
 | 
			
		||||
    assert(A.size()==geom_srhs.npoint);
 | 
			
		||||
    BLAStoGrid(A[p],BLAS_A[p]);
 | 
			
		||||
  }
 | 
			
		||||
  void CopyMatrix (GeneralCoarseOp &_Op)
 | 
			
		||||
  {
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
			
		||||
      //Unpadded
 | 
			
		||||
      GridtoBLAS(Aup,BLAS_A[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  void CheckMatrix (GeneralCoarseOp &_Op)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      //Unpadded
 | 
			
		||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
			
		||||
      auto Ack = Aup;
 | 
			
		||||
      BLAStoGrid(Ack,BLAS_A[p]);
 | 
			
		||||
      std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
 | 
			
		||||
      std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout <<"************* "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
  MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
 | 
			
		||||
    _CoarseGridMulti(CoarseGridMulti),
 | 
			
		||||
    geom_srhs(_geom),
 | 
			
		||||
    geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
 | 
			
		||||
    Cell(geom.Depth(),_CoarseGridMulti),
 | 
			
		||||
    Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
 | 
			
		||||
  {
 | 
			
		||||
    int32_t padded_sites   = Cell.grids.back()->lSites();
 | 
			
		||||
    int32_t unpadded_sites = CoarseGridMulti->lSites();
 | 
			
		||||
    
 | 
			
		||||
    int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS
 | 
			
		||||
    int32_t orhs  = nrhs/CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    padded_sites   = padded_sites/nrhs;
 | 
			
		||||
    unpadded_sites = unpadded_sites/nrhs;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Device data vector storage
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    BLAS_A.resize(geom.npoint);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone
 | 
			
		||||
    BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
 | 
			
		||||
    BLAS_AP.resize(geom.npoint);
 | 
			
		||||
    BLAS_BP.resize(geom.npoint);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      BLAS_AP[p].resize(unpadded_sites);
 | 
			
		||||
      BLAS_BP[p].resize(unpadded_sites);
 | 
			
		||||
    }
 | 
			
		||||
    BLAS_CP.resize(unpadded_sites);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Pointers to data
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // Site identity mapping for A
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int ss=0;ss<unpadded_sites;ss++){
 | 
			
		||||
	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
 | 
			
		||||
	acceleratorPut(BLAS_AP[p][ss],ptr);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // Site identity mapping for C
 | 
			
		||||
    for(int ss=0;ss<unpadded_sites;ss++){
 | 
			
		||||
      ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
 | 
			
		||||
      acceleratorPut(BLAS_CP[ss],ptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Neighbour table is more complicated
 | 
			
		||||
    int32_t j=0; // Interior point counter (unpadded)
 | 
			
		||||
    for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
 | 
			
		||||
      int ghost_zone=0;
 | 
			
		||||
      for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	int i=s*orhs*geom.npoint+point;
 | 
			
		||||
	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
 | 
			
		||||
	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if( ghost_zone==0) {
 | 
			
		||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	  int i=s*orhs*geom.npoint+point;
 | 
			
		||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
			
		||||
	  assert(nbr<BLAS_B.size());
 | 
			
		||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
			
		||||
	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
			
		||||
	}
 | 
			
		||||
	j++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(j==unpadded_sites);
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
			
		||||
  {
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = from.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Fg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  to.resize(Fg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Fg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,from,AcceleratorRead);
 | 
			
		||||
  auto to_v = &to[0];
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate from_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	from_coor[i] = base[i];
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      scalar_type* to = (scalar_type *)&to_v[idx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	to[w] = stmp;
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }    
 | 
			
		||||
  template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
 | 
			
		||||
  {
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Tg = grid.Grid();
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Tg->_ndimension;
 | 
			
		||||
  
 | 
			
		||||
  assert(in.size()==Tg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  autoView(to_v,grid,AcceleratorWrite);
 | 
			
		||||
  auto from_v = &in[0];
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate to_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	to_coor[i] = base[i];
 | 
			
		||||
      }
 | 
			
		||||
      int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      scalar_type* from = (scalar_type *)&from_v[idx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp=from[w];
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace,
 | 
			
		||||
		       GridBase *CoarseGrid)
 | 
			
		||||
  {
 | 
			
		||||
#if 0
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Subspace.FineGrid;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom_srhs.npoint;
 | 
			
		||||
 | 
			
		||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid->Nd();
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid);
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);	
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Could save on temporary storage here
 | 
			
		||||
    std::vector<CoarseMatrix> _A;
 | 
			
		||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
			
		||||
    CoarseVector          FT(CoarseGrid);
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
 | 
			
		||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
 | 
			
		||||
	// Fixme, could use batched block projector here
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
 | 
			
		||||
	FT = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    //    if ( ! hermitian ) {
 | 
			
		||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
    //      PopulateAdag();
 | 
			
		||||
    //    }
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
			
		||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
			
		||||
    }
 | 
			
		||||
    /*
 | 
			
		||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us
 | 
			
		||||
Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us
 | 
			
		||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
 | 
			
		||||
Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us
 | 
			
		||||
Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us
 | 
			
		||||
Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us
 | 
			
		||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
 | 
			
		||||
Easy to speed up with the batched block project.
 | 
			
		||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
 | 
			
		||||
 | 
			
		||||
// Block project below taks to 240s
 | 
			
		||||
Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us
 | 
			
		||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us
 | 
			
		||||
Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
			
		||||
//Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed
 | 
			
		||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion
 | 
			
		||||
     */
 | 
			
		||||
#else
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tphaseBZ=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Subspace.FineGrid;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    MultiRHSBlockProject<Lattice<Fobj> >    Projector;
 | 
			
		||||
    Projector.Allocate(nbasis,grid,CoarseGrid);
 | 
			
		||||
    Projector.ImportBasis(Subspace.subspace);
 | 
			
		||||
    
 | 
			
		||||
    const int npoint = geom_srhs.npoint;
 | 
			
		||||
 | 
			
		||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid->Nd();
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid);
 | 
			
		||||
    
 | 
			
		||||
    tphase=-usecond();
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid);
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);	
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
    }
 | 
			
		||||
    tphase+=usecond();
 | 
			
		||||
 | 
			
		||||
    // Could save on temporary storage here
 | 
			
		||||
    std::vector<CoarseMatrix> _A;
 | 
			
		||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    // Count use small chunks than npoint == 81 and save memory
 | 
			
		||||
    int batch = 9;
 | 
			
		||||
    std::vector<FineField>    _MphaV(batch,grid);
 | 
			
		||||
    std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
			
		||||
    CoarseVector          FT(CoarseGrid);
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
 | 
			
		||||
      // Fixme : do this in batches
 | 
			
		||||
      for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
 | 
			
		||||
 | 
			
		||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
			
		||||
	  tphaseBZ-=usecond();
 | 
			
		||||
	  phaV = phaF[p+b]*Subspace.subspace[i];
 | 
			
		||||
	  tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	  // Remove local bulk phase to leave relative phases
 | 
			
		||||
	  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
	  // Memory footprint was an issue
 | 
			
		||||
	  tmat-=usecond();
 | 
			
		||||
	  linop.Op(phaV,MphaV);
 | 
			
		||||
	  _MphaV[b] = MphaV;
 | 
			
		||||
	  tmat+=usecond();
 | 
			
		||||
	}      
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage << " Calling block project "<<std::endl;
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	Projector.blockProject(_MphaV,TmpProj);
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
	
 | 
			
		||||
	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
 | 
			
		||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
			
		||||
	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
			
		||||
      
 | 
			
		||||
      // std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT = Zero();
 | 
			
		||||
	// 81 kernel calls as many ComputeProj vectors
 | 
			
		||||
	// Could fuse with a vector of views, but ugly
 | 
			
		||||
	// Could unroll the expression and run fewer kernels -- much more attractive
 | 
			
		||||
	// Could also do non blocking.
 | 
			
		||||
#if 0	
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	const int radix = 9;
 | 
			
		||||
	int ll;
 | 
			
		||||
	for(ll=0;ll+radix-1<npoint;ll+=radix){
 | 
			
		||||
	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
 | 
			
		||||
	  FT = FT 
 | 
			
		||||
	    + invMkl(ll+0,k)*ComputeProj[ll+0]
 | 
			
		||||
	    + invMkl(ll+1,k)*ComputeProj[ll+1]
 | 
			
		||||
	    + invMkl(ll+2,k)*ComputeProj[ll+2]
 | 
			
		||||
	    + invMkl(ll+3,k)*ComputeProj[ll+3]
 | 
			
		||||
	    + invMkl(ll+4,k)*ComputeProj[ll+4]
 | 
			
		||||
	    + invMkl(ll+5,k)*ComputeProj[ll+5]
 | 
			
		||||
	    + invMkl(ll+6,k)*ComputeProj[ll+6]
 | 
			
		||||
	    + invMkl(ll+7,k)*ComputeProj[ll+7]
 | 
			
		||||
	    + invMkl(ll+8,k)*ComputeProj[ll+8];
 | 
			
		||||
	}
 | 
			
		||||
	for(int l=ll;l<npoint;l++){
 | 
			
		||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      
 | 
			
		||||
	// 1 kernel call -- must be cheaper
 | 
			
		||||
	int osites=CoarseGrid->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    //    if ( ! hermitian ) {
 | 
			
		||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
    //      PopulateAdag();
 | 
			
		||||
    //    }
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
			
		||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    this->M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    RealD t_tot;
 | 
			
		||||
    RealD t_exch;
 | 
			
		||||
    RealD t_GtoB;
 | 
			
		||||
    RealD t_BtoG;
 | 
			
		||||
    RealD t_mult;
 | 
			
		||||
 | 
			
		||||
    t_tot=-usecond();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
    t_exch=-usecond();
 | 
			
		||||
    CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
 | 
			
		||||
    t_exch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid());
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef calcMatrix* Aview;
 | 
			
		||||
    typedef LatticeView<Cvec> Vview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
			
		||||
    assert(nrhs>=1);
 | 
			
		||||
 | 
			
		||||
    RealD flops,bytes;
 | 
			
		||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
			
		||||
    int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
 | 
			
		||||
    
 | 
			
		||||
    flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
			
		||||
    bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
 | 
			
		||||
          + 2.0*osites*sizeof(siteVector)*npoint;
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    t_GtoB=-usecond();
 | 
			
		||||
    GridtoBLAS(pin,BLAS_B);
 | 
			
		||||
    t_GtoB+=usecond();
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    t_mult=-usecond();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      RealD c = 1.0;
 | 
			
		||||
      if (p==0) c = 0.0;
 | 
			
		||||
      ComplexD beta(c);
 | 
			
		||||
 | 
			
		||||
      BLAS.gemmBatched(nbasis,nrhs,nbasis,
 | 
			
		||||
		       ComplexD(1.0),
 | 
			
		||||
		       BLAS_AP[p], 
 | 
			
		||||
		       BLAS_BP[p], 
 | 
			
		||||
		       ComplexD(c), 
 | 
			
		||||
		       BLAS_CP);
 | 
			
		||||
    }
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    t_mult+=usecond();
 | 
			
		||||
 | 
			
		||||
    t_BtoG=-usecond();
 | 
			
		||||
    BLAStoGrid(out,BLAS_C);
 | 
			
		||||
    t_BtoG+=usecond();
 | 
			
		||||
    t_tot+=usecond();
 | 
			
		||||
    /*
 | 
			
		||||
    std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl;
 | 
			
		||||
    */
 | 
			
		||||
    //    std::cout << GridLogMessage<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,238 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less local equivalent of Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
class NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  //  int depth;
 | 
			
		||||
  int skip;
 | 
			
		||||
  int hops;
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  Coordinate stencil_size;
 | 
			
		||||
  Coordinate stencil_lo;
 | 
			
		||||
  Coordinate stencil_hi;
 | 
			
		||||
  GridCartesian *grid;
 | 
			
		||||
  GridCartesian *Grid() {return grid;};
 | 
			
		||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
			
		||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
			
		||||
  int DimSkip(void){return skip;};
 | 
			
		||||
 | 
			
		||||
  virtual ~NonLocalStencilGeometry() {};
 | 
			
		||||
 | 
			
		||||
  int  Reverse(int point)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd = Grid()->Nd();
 | 
			
		||||
    Coordinate shft = shifts[point];
 | 
			
		||||
    Coordinate rev(Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
			
		||||
    for(int p=0;p<npoint;p++){
 | 
			
		||||
      if(rev==shifts[p]){
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
  {
 | 
			
		||||
    this->shifts.resize(0);
 | 
			
		||||
    int Nd = this->grid->Nd();
 | 
			
		||||
 | 
			
		||||
    int dd = this->DimSkip();
 | 
			
		||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
			
		||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
			
		||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
			
		||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
			
		||||
      Coordinate sft(Nd,0);
 | 
			
		||||
      sft[dd+0] = s0;
 | 
			
		||||
      sft[dd+1] = s1;
 | 
			
		||||
      sft[dd+2] = s2;
 | 
			
		||||
      sft[dd+3] = s3;
 | 
			
		||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
			
		||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
			
		||||
    }}}}
 | 
			
		||||
    this->npoint = this->shifts.size();
 | 
			
		||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate latt = grid->GlobalDimensions();
 | 
			
		||||
    stencil_size.resize(grid->Nd());
 | 
			
		||||
    stencil_lo.resize(grid->Nd());
 | 
			
		||||
    stencil_hi.resize(grid->Nd());
 | 
			
		||||
    for(int d=0;d<grid->Nd();d++){
 | 
			
		||||
     if ( latt[d] == 1 ) {
 | 
			
		||||
      stencil_lo[d] = 0;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 1;
 | 
			
		||||
     } else if ( latt[d] == 2 ) {
 | 
			
		||||
      stencil_lo[d] = -1;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 2;
 | 
			
		||||
     } else if ( latt[d] > 2 ) {
 | 
			
		||||
       stencil_lo[d] = -1;
 | 
			
		||||
       stencil_hi[d] =  1;
 | 
			
		||||
       stencil_size[d]= 3;
 | 
			
		||||
     }
 | 
			
		||||
    }
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Need to worry about red-black now
 | 
			
		||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DerivedDimSkip(void) { return 0;};
 | 
			
		||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
			
		||||
};
 | 
			
		||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DerivedDimSkip(void) { return 1; }; 
 | 
			
		||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 * Bunch of different options classes
 | 
			
		||||
 */
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,220 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/AlignedAllocator.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<typename _Tp>
 | 
			
		||||
class alignedAllocator {
 | 
			
		||||
public: 
 | 
			
		||||
  typedef std::size_t     size_type;
 | 
			
		||||
  typedef std::ptrdiff_t  difference_type;
 | 
			
		||||
  typedef _Tp*       pointer;
 | 
			
		||||
  typedef const _Tp* const_pointer;
 | 
			
		||||
  typedef _Tp&       reference;
 | 
			
		||||
  typedef const _Tp& const_reference;
 | 
			
		||||
  typedef _Tp        value_type;
 | 
			
		||||
 | 
			
		||||
  template<typename _Tp1>  struct rebind { typedef alignedAllocator<_Tp1> other; };
 | 
			
		||||
  alignedAllocator() throw() { }
 | 
			
		||||
  alignedAllocator(const alignedAllocator&) throw() { }
 | 
			
		||||
  template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { }
 | 
			
		||||
  ~alignedAllocator() throw() { }
 | 
			
		||||
  pointer       address(reference __x)       const { return &__x; }
 | 
			
		||||
  size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
 | 
			
		||||
 | 
			
		||||
  pointer allocate(size_type __n, const void* _p= 0)
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void deallocate(pointer __p, size_type __n) 
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n * sizeof(_Tp);
 | 
			
		||||
    profilerFree(bytes);
 | 
			
		||||
    MemoryManager::CpuFree((void *)__p,bytes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
template<typename _Tp>  inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
 | 
			
		||||
template<typename _Tp>  inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Unified virtual memory
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<typename _Tp>
 | 
			
		||||
class uvmAllocator {
 | 
			
		||||
public: 
 | 
			
		||||
  typedef std::size_t     size_type;
 | 
			
		||||
  typedef std::ptrdiff_t  difference_type;
 | 
			
		||||
  typedef _Tp*       pointer;
 | 
			
		||||
  typedef const _Tp* const_pointer;
 | 
			
		||||
  typedef _Tp&       reference;
 | 
			
		||||
  typedef const _Tp& const_reference;
 | 
			
		||||
  typedef _Tp        value_type;
 | 
			
		||||
 | 
			
		||||
  template<typename _Tp1>  struct rebind { typedef uvmAllocator<_Tp1> other; };
 | 
			
		||||
  uvmAllocator() throw() { }
 | 
			
		||||
  uvmAllocator(const uvmAllocator&) throw() { }
 | 
			
		||||
  template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
 | 
			
		||||
  ~uvmAllocator() throw() { }
 | 
			
		||||
  pointer       address(reference __x)       const { return &__x; }
 | 
			
		||||
  size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
 | 
			
		||||
 | 
			
		||||
  pointer allocate(size_type __n, const void* _p= 0)
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void deallocate(pointer __p, size_type __n) 
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n * sizeof(_Tp);
 | 
			
		||||
    profilerFree(bytes);
 | 
			
		||||
    MemoryManager::SharedFree((void *)__p,bytes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
template<typename _Tp>  inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
 | 
			
		||||
template<typename _Tp>  inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Device memory
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<typename _Tp>
 | 
			
		||||
class devAllocator {
 | 
			
		||||
public: 
 | 
			
		||||
  typedef std::size_t     size_type;
 | 
			
		||||
  typedef std::ptrdiff_t  difference_type;
 | 
			
		||||
  typedef _Tp*       pointer;
 | 
			
		||||
  typedef const _Tp* const_pointer;
 | 
			
		||||
  typedef _Tp&       reference;
 | 
			
		||||
  typedef const _Tp& const_reference;
 | 
			
		||||
  typedef _Tp        value_type;
 | 
			
		||||
 | 
			
		||||
  template<typename _Tp1>  struct rebind { typedef devAllocator<_Tp1> other; };
 | 
			
		||||
  devAllocator() throw() { }
 | 
			
		||||
  devAllocator(const devAllocator&) throw() { }
 | 
			
		||||
  template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
 | 
			
		||||
  ~devAllocator() throw() { }
 | 
			
		||||
  pointer       address(reference __x)       const { return &__x; }
 | 
			
		||||
  size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
 | 
			
		||||
 | 
			
		||||
  pointer allocate(size_type __n, const void* _p= 0)
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n*sizeof(_Tp);
 | 
			
		||||
    profilerAllocate(bytes);
 | 
			
		||||
    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void deallocate(pointer __p, size_type __n) 
 | 
			
		||||
  { 
 | 
			
		||||
    size_type bytes = __n * sizeof(_Tp);
 | 
			
		||||
    profilerFree(bytes);
 | 
			
		||||
    MemoryManager::AcceleratorFree((void *)__p,bytes);
 | 
			
		||||
  }
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
template<typename _Tp>  inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
 | 
			
		||||
template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Template typedefs
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
			
		||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // 
 | 
			
		||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
			
		||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
			
		||||
 | 
			
		||||
template<class T> class vecView
 | 
			
		||||
{
 | 
			
		||||
 protected:
 | 
			
		||||
  T * data;
 | 
			
		||||
  uint64_t size;
 | 
			
		||||
  ViewMode mode;
 | 
			
		||||
  void * cpu_ptr;
 | 
			
		||||
 public:
 | 
			
		||||
  // Rvalue accessor
 | 
			
		||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
			
		||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  {
 | 
			
		||||
    cpu_ptr = &refer_to_me[0];
 | 
			
		||||
    size = refer_to_me.size();
 | 
			
		||||
    mode = _mode;
 | 
			
		||||
    data =(T *) MemoryManager::ViewOpen(cpu_ptr,
 | 
			
		||||
					size*sizeof(T),
 | 
			
		||||
					mode,
 | 
			
		||||
					AdviseDefault);
 | 
			
		||||
  }
 | 
			
		||||
  void ViewClose(void)
 | 
			
		||||
  { // Inform the manager
 | 
			
		||||
    MemoryManager::ViewClose(this->cpu_ptr,this->mode);    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
			
		||||
{
 | 
			
		||||
  vecView<T> ret(vec,_mode); // does the open
 | 
			
		||||
  return ret;                // must be closed
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define autoVecView(v_v,v,mode)					\
 | 
			
		||||
  auto v_v = VectorView(v,mode);				\
 | 
			
		||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,4 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <Grid/allocator/MemoryStats.h>
 | 
			
		||||
#include <Grid/allocator/MemoryManager.h>
 | 
			
		||||
#include <Grid/allocator/AlignedAllocator.h>
 | 
			
		||||
@@ -1,362 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/*Allocation types, saying which pointer cache should be used*/
 | 
			
		||||
#define Cpu      (0)
 | 
			
		||||
#define CpuHuge  (1)
 | 
			
		||||
#define CpuSmall (2)
 | 
			
		||||
#define Acc      (3)
 | 
			
		||||
#define AccHuge  (4)
 | 
			
		||||
#define AccSmall (5)
 | 
			
		||||
#define Shared   (6)
 | 
			
		||||
#define SharedHuge  (7)
 | 
			
		||||
#define SharedSmall (8)
 | 
			
		||||
#undef GRID_MM_VERBOSE 
 | 
			
		||||
uint64_t total_shared;
 | 
			
		||||
uint64_t total_device;
 | 
			
		||||
uint64_t total_host;;
 | 
			
		||||
 | 
			
		||||
#if defined(__has_feature)
 | 
			
		||||
#if __has_feature(leak_sanitizer)
 | 
			
		||||
#define ASAN_LEAK_CHECK
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef ASAN_LEAK_CHECK
 | 
			
		||||
#include <sanitizer/asan_interface.h>
 | 
			
		||||
#include <sanitizer/common_interface_defs.h>
 | 
			
		||||
#include <sanitizer/lsan_interface.h>
 | 
			
		||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
 | 
			
		||||
#else
 | 
			
		||||
#define LEAK_CHECK(A) { }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void MemoryManager::DisplayMallinfo(void)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
			
		||||
  
 | 
			
		||||
  mi = mallinfo();
 | 
			
		||||
 | 
			
		||||
  std::cout << "MemoryManager: Total non-mmapped bytes (arena):       "<< (size_t)mi.arena<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: # of free chunks (ordblks):            "<< (size_t)mi.ordblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: # of free fastbin blocks (smblks):     "<< (size_t)mi.smblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: # of mapped regions (hblks):           "<< (size_t)mi.hblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Bytes in mapped regions (hblkhd):      "<< (size_t)mi.hblkhd<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Max. total allocated space (usmblks):  "<< (size_t)mi.usmblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Total allocated space (uordblks):      "<< (size_t)mi.uordblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Total free space (fordblks):           "<< (size_t)mi.fordblks<<std::endl;
 | 
			
		||||
  std::cout << "MemoryManager: Topmost releasable block (keepcost):   "<< (size_t)mi.keepcost<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  LEAK_CHECK();
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::PrintBytes(void)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
			
		||||
  std::cout << " MemoryManager : PrintBytes "<<std::endl;
 | 
			
		||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
			
		||||
  std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared      Mbytes "<<std::endl;
 | 
			
		||||
  std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
 | 
			
		||||
  std::cout << " MemoryManager : "<<(total_host>>20)  <<" cpu         Mbytes "<<std::endl;
 | 
			
		||||
  uint64_t cacheBytes;
 | 
			
		||||
  cacheBytes = CacheBytes[Cpu];
 | 
			
		||||
  std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
 | 
			
		||||
  cacheBytes = CacheBytes[Acc];
 | 
			
		||||
  std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
 | 
			
		||||
  cacheBytes = CacheBytes[Shared];
 | 
			
		||||
  std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  cuda_mem();
 | 
			
		||||
#endif
 | 
			
		||||
  DisplayMallinfo();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
			
		||||
uint64_t MemoryManager::HostCacheBytes()   { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Data tables for recently freed pooiniter caches
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
 | 
			
		||||
int MemoryManager::Victim[MemoryManager::NallocType];
 | 
			
		||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
 | 
			
		||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Actual allocation and deallocation utils
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
void *MemoryManager::AcceleratorAllocate(size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_device+=bytes;
 | 
			
		||||
  void *ptr = (void *) Lookup(bytes,Acc);
 | 
			
		||||
  if ( ptr == (void *) NULL ) {
 | 
			
		||||
    ptr = (void *) acceleratorAllocDevice(bytes);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"AcceleratorAllocate "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_device-=bytes;
 | 
			
		||||
  void *__freeme = Insert(ptr,bytes,Acc);
 | 
			
		||||
  if ( __freeme ) {
 | 
			
		||||
    acceleratorFreeDevice(__freeme);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"AcceleratorFree "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
void *MemoryManager::SharedAllocate(size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_shared+=bytes;
 | 
			
		||||
  void *ptr = (void *) Lookup(bytes,Shared);
 | 
			
		||||
  if ( ptr == (void *) NULL ) {
 | 
			
		||||
    ptr = (void *) acceleratorAllocShared(bytes);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"SharedAllocate "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::SharedFree    (void *ptr,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_shared-=bytes;
 | 
			
		||||
  void *__freeme = Insert(ptr,bytes,Shared);
 | 
			
		||||
  if ( __freeme ) {
 | 
			
		||||
    acceleratorFreeShared(__freeme);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"SharedFree "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
#ifdef GRID_UVM
 | 
			
		||||
void *MemoryManager::CpuAllocate(size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_host+=bytes;
 | 
			
		||||
  void *ptr = (void *) Lookup(bytes,Cpu);
 | 
			
		||||
  if ( ptr == (void *) NULL ) {
 | 
			
		||||
    ptr = (void *) acceleratorAllocShared(bytes);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"CpuAllocate "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::CpuFree    (void *_ptr,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_host-=bytes;
 | 
			
		||||
  NotifyDeletion(_ptr);
 | 
			
		||||
  void *__freeme = Insert(_ptr,bytes,Cpu);
 | 
			
		||||
  if ( __freeme ) { 
 | 
			
		||||
    acceleratorFreeShared(__freeme);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"CpuFree "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void *MemoryManager::CpuAllocate(size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_host+=bytes;
 | 
			
		||||
  void *ptr = (void *) Lookup(bytes,Cpu);
 | 
			
		||||
  if ( ptr == (void *) NULL ) {
 | 
			
		||||
    ptr = (void *) acceleratorAllocCpu(bytes);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"CpuAllocate "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::CpuFree    (void *_ptr,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  total_host-=bytes;
 | 
			
		||||
  NotifyDeletion(_ptr);
 | 
			
		||||
  void *__freeme = Insert(_ptr,bytes,Cpu);
 | 
			
		||||
  if ( __freeme ) { 
 | 
			
		||||
    acceleratorFreeCpu(__freeme);
 | 
			
		||||
  }
 | 
			
		||||
#ifdef GRID_MM_VERBOSE
 | 
			
		||||
  std::cout <<"CpuFree "<<std::endl;
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////
 | 
			
		||||
// call only once
 | 
			
		||||
//////////////////////////////////////////
 | 
			
		||||
void MemoryManager::Init(void)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  char * str;
 | 
			
		||||
  int Nc;
 | 
			
		||||
  
 | 
			
		||||
  str= getenv("GRID_ALLOC_NCACHE_LARGE");
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    Nc = atoi(str);
 | 
			
		||||
    if ( (Nc>=0) && (Nc < NallocCacheMax)) {
 | 
			
		||||
      Ncache[Cpu]=Nc;
 | 
			
		||||
      Ncache[Acc]=Nc;
 | 
			
		||||
      Ncache[Shared]=Nc;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  str= getenv("GRID_ALLOC_NCACHE_HUGE");
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    Nc = atoi(str);
 | 
			
		||||
    if ( (Nc>=0) && (Nc < NallocCacheMax)) {
 | 
			
		||||
      Ncache[CpuHuge]=Nc;
 | 
			
		||||
      Ncache[AccHuge]=Nc;
 | 
			
		||||
      Ncache[SharedHuge]=Nc;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  str= getenv("GRID_ALLOC_NCACHE_SMALL");
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    Nc = atoi(str);
 | 
			
		||||
    if ( (Nc>=0) && (Nc < NallocCacheMax)) {
 | 
			
		||||
      Ncache[CpuSmall]=Nc;
 | 
			
		||||
      Ncache[AccSmall]=Nc;
 | 
			
		||||
      Ncache[SharedSmall]=Nc;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::InitMessage(void) {
 | 
			
		||||
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
  std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
 | 
			
		||||
#ifdef ALLOCATION_CACHE
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host   allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
#ifdef GRID_UVM
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
#else
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *MemoryManager::Insert(void *ptr,size_t bytes,int type) 
 | 
			
		||||
{
 | 
			
		||||
#ifdef ALLOCATION_CACHE
 | 
			
		||||
  int cache;
 | 
			
		||||
  if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
 | 
			
		||||
  else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
 | 
			
		||||
  else                                     cache = type;
 | 
			
		||||
 | 
			
		||||
  return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);  
 | 
			
		||||
#else
 | 
			
		||||
  return ptr;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) 
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
  if (ncache == 0) return ptr;
 | 
			
		||||
 | 
			
		||||
  void * ret = NULL;
 | 
			
		||||
  int v = -1;
 | 
			
		||||
 | 
			
		||||
  for(int e=0;e<ncache;e++) {
 | 
			
		||||
    if ( entries[e].valid==0 ) {
 | 
			
		||||
      v=e; 
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( v==-1 ) {
 | 
			
		||||
    v=victim;
 | 
			
		||||
    victim = (victim+1)%ncache;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if ( entries[v].valid ) {
 | 
			
		||||
    ret = entries[v].address;
 | 
			
		||||
    cacheBytes -= entries[v].bytes;
 | 
			
		||||
    entries[v].valid = 0;
 | 
			
		||||
    entries[v].address = NULL;
 | 
			
		||||
    entries[v].bytes = 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  entries[v].address=ptr;
 | 
			
		||||
  entries[v].bytes  =bytes;
 | 
			
		||||
  entries[v].valid  =1;
 | 
			
		||||
  cacheBytes += bytes;
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *MemoryManager::Lookup(size_t bytes,int type)
 | 
			
		||||
{
 | 
			
		||||
#ifdef ALLOCATION_CACHE
 | 
			
		||||
  int cache;
 | 
			
		||||
  if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
 | 
			
		||||
  else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
 | 
			
		||||
  else                                     cache = type;
 | 
			
		||||
 | 
			
		||||
  return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
 | 
			
		||||
#else
 | 
			
		||||
  return NULL;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) 
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
  for(int e=0;e<ncache;e++){
 | 
			
		||||
    if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
 | 
			
		||||
      entries[e].valid = 0;
 | 
			
		||||
      cacheBytes -= entries[e].bytes;
 | 
			
		||||
      return entries[e].address;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return NULL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,227 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/MemoryManager.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <list> 
 | 
			
		||||
#include <unordered_map>  
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Move control to configure.ac and Config.h?
 | 
			
		||||
 | 
			
		||||
#define GRID_ALLOC_SMALL_LIMIT (4096)
 | 
			
		||||
#define GRID_ALLOC_HUGE_LIMIT  (2147483648)
 | 
			
		||||
 | 
			
		||||
#define STRINGIFY(x) #x
 | 
			
		||||
#define TOSTRING(x) STRINGIFY(x)
 | 
			
		||||
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
 | 
			
		||||
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
 | 
			
		||||
 | 
			
		||||
/*Pinning pages is costly*/
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Advise the LatticeAccelerator class
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
enum ViewAdvise {
 | 
			
		||||
 AdviseDefault       = 0x0,    // Regular data
 | 
			
		||||
 AdviseInfrequentUse = 0x1     // Advise that the data is used infrequently.  This can
 | 
			
		||||
                               // significantly influence performance of bulk storage.
 | 
			
		||||
 
 | 
			
		||||
 // AdviseTransient      = 0x2,   // Data will mostly be read.  On some architectures
 | 
			
		||||
                               // enables read-only copies of memory to be kept on
 | 
			
		||||
                               // host and device.
 | 
			
		||||
 | 
			
		||||
 // AdviseAcceleratorWriteDiscard = 0x4  // Field will be written in entirety on device
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// View Access Mode
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
enum ViewMode {
 | 
			
		||||
  AcceleratorRead  = 0x01,
 | 
			
		||||
  AcceleratorWrite = 0x02,
 | 
			
		||||
  AcceleratorWriteDiscard = 0x04,
 | 
			
		||||
  CpuRead  = 0x08,
 | 
			
		||||
  CpuWrite = 0x10,
 | 
			
		||||
  CpuWriteDiscard = 0x10 // same for now
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct MemoryStatus {
 | 
			
		||||
  uint64_t     DeviceBytes;
 | 
			
		||||
  uint64_t     DeviceLRUBytes;
 | 
			
		||||
  uint64_t     DeviceMaxBytes;
 | 
			
		||||
  uint64_t     HostToDeviceBytes;
 | 
			
		||||
  uint64_t     DeviceToHostBytes;
 | 
			
		||||
  uint64_t     HostToDeviceXfer;
 | 
			
		||||
  uint64_t     DeviceToHostXfer;
 | 
			
		||||
  uint64_t     DeviceEvictions;
 | 
			
		||||
  uint64_t     DeviceDestroy;
 | 
			
		||||
  uint64_t     DeviceAllocCacheBytes;
 | 
			
		||||
  uint64_t     HostAllocCacheBytes;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MemoryManager {
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // For caching recently freed allocations
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef struct { 
 | 
			
		||||
    void *address;
 | 
			
		||||
    size_t bytes;
 | 
			
		||||
    int valid;
 | 
			
		||||
  } AllocationCacheEntry;
 | 
			
		||||
 | 
			
		||||
  static const int NallocCacheMax=128; 
 | 
			
		||||
  static const int NallocType=9;
 | 
			
		||||
  static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
 | 
			
		||||
  static int Victim[NallocType];
 | 
			
		||||
  static int Ncache[NallocType];
 | 
			
		||||
  static uint64_t CacheBytes[NallocType];
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  // Free pool
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  static void *Insert(void *ptr,size_t bytes,int type) ;
 | 
			
		||||
  static void *Lookup(size_t bytes,int type) ;
 | 
			
		||||
  static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
 | 
			
		||||
  static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  static void PrintBytes(void);
 | 
			
		||||
  static void Audit(std::string s);
 | 
			
		||||
  static void Init(void);
 | 
			
		||||
  static void InitMessage(void);
 | 
			
		||||
  static void *AcceleratorAllocate(size_t bytes);
 | 
			
		||||
  static void  AcceleratorFree    (void *ptr,size_t bytes);
 | 
			
		||||
  static void *SharedAllocate(size_t bytes);
 | 
			
		||||
  static void  SharedFree    (void *ptr,size_t bytes);
 | 
			
		||||
  static void *CpuAllocate(size_t bytes);
 | 
			
		||||
  static void  CpuFree    (void *ptr,size_t bytes);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // Footprint tracking
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  static uint64_t     DeviceBytes;
 | 
			
		||||
  static uint64_t     DeviceLRUBytes;
 | 
			
		||||
  static uint64_t     DeviceMaxBytes;
 | 
			
		||||
  static uint64_t     HostToDeviceBytes;
 | 
			
		||||
  static uint64_t     DeviceToHostBytes;
 | 
			
		||||
  static uint64_t     HostToDeviceXfer;
 | 
			
		||||
  static uint64_t     DeviceToHostXfer;
 | 
			
		||||
  static uint64_t     DeviceEvictions;
 | 
			
		||||
  static uint64_t     DeviceDestroy;
 | 
			
		||||
  
 | 
			
		||||
  static uint64_t     DeviceCacheBytes();
 | 
			
		||||
  static uint64_t     HostCacheBytes();
 | 
			
		||||
 | 
			
		||||
  static MemoryStatus GetFootprint(void) {
 | 
			
		||||
    MemoryStatus stat;
 | 
			
		||||
    stat.DeviceBytes       = DeviceBytes;
 | 
			
		||||
    stat.DeviceLRUBytes    = DeviceLRUBytes;
 | 
			
		||||
    stat.DeviceMaxBytes    = DeviceMaxBytes;
 | 
			
		||||
    stat.HostToDeviceBytes = HostToDeviceBytes;
 | 
			
		||||
    stat.DeviceToHostBytes = DeviceToHostBytes;
 | 
			
		||||
    stat.HostToDeviceXfer  = HostToDeviceXfer;
 | 
			
		||||
    stat.DeviceToHostXfer  = DeviceToHostXfer;
 | 
			
		||||
    stat.DeviceEvictions   = DeviceEvictions;
 | 
			
		||||
    stat.DeviceDestroy     = DeviceDestroy;
 | 
			
		||||
    stat.DeviceAllocCacheBytes = DeviceCacheBytes();
 | 
			
		||||
    stat.HostAllocCacheBytes   = HostCacheBytes();
 | 
			
		||||
    return stat;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
 private:
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Data tables for ViewCache
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef std::list<uint64_t> LRU_t;
 | 
			
		||||
  typedef typename LRU_t::iterator LRUiterator;
 | 
			
		||||
  typedef struct { 
 | 
			
		||||
    int        LRU_valid;
 | 
			
		||||
    LRUiterator LRU_entry;
 | 
			
		||||
    uint64_t CpuPtr;
 | 
			
		||||
    uint64_t AccPtr;
 | 
			
		||||
    size_t   bytes;
 | 
			
		||||
    uint32_t transient;
 | 
			
		||||
    uint32_t state;
 | 
			
		||||
    uint32_t accLock;
 | 
			
		||||
    uint32_t cpuLock;
 | 
			
		||||
  } AcceleratorViewEntry;
 | 
			
		||||
  
 | 
			
		||||
  typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
 | 
			
		||||
  typedef typename AccViewTable_t::iterator AccViewTableIterator ;
 | 
			
		||||
 | 
			
		||||
  static AccViewTable_t AccViewTable;
 | 
			
		||||
  static LRU_t LRU;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  // Device motion
 | 
			
		||||
  /////////////////////////////////////////////////
 | 
			
		||||
  static void  Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
  static void  EvictVictims(uint64_t bytes); // Frees up <bytes>
 | 
			
		||||
  static void  Evict(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  static void  Flush(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  static void  Clone(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  static void  AccDiscard(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  static void  CpuDiscard(AcceleratorViewEntry &AccCache);
 | 
			
		||||
 | 
			
		||||
  //  static void  LRUupdate(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  static void  LRUinsert(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  static void  LRUremove(AcceleratorViewEntry &AccCache);
 | 
			
		||||
  
 | 
			
		||||
  // manage entries in the table
 | 
			
		||||
  static int                  EntryPresent(uint64_t CpuPtr);
 | 
			
		||||
  static void                 EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
  static void                 EntryErase (uint64_t CpuPtr);
 | 
			
		||||
  static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
 | 
			
		||||
  static void                 EntrySet   (uint64_t CpuPtr,AcceleratorViewEntry &entry);
 | 
			
		||||
 | 
			
		||||
  static void     AcceleratorViewClose(uint64_t AccPtr);
 | 
			
		||||
  static uint64_t AcceleratorViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
  static void     CpuViewClose(uint64_t Ptr);
 | 
			
		||||
  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  static void DisplayMallinfo(void);
 | 
			
		||||
  static void NotifyDeletion(void * CpuPtr);
 | 
			
		||||
  static void Print(void);
 | 
			
		||||
  static void PrintAll(void);
 | 
			
		||||
  static void PrintState( void* CpuPtr);
 | 
			
		||||
  static int   isOpen   (void* CpuPtr);
 | 
			
		||||
  static void  ViewClose(void* CpuPtr,ViewMode mode);
 | 
			
		||||
  static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,602 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define MAXLINE 512
 | 
			
		||||
static char print_buffer [ MAXLINE ];
 | 
			
		||||
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
			
		||||
//#define dprintf(...) 
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
// For caching copies of data on device
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
 | 
			
		||||
MemoryManager::LRU_t MemoryManager::LRU;
 | 
			
		||||
  
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Footprint tracking
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
uint64_t  MemoryManager::DeviceBytes;
 | 
			
		||||
uint64_t  MemoryManager::DeviceLRUBytes;
 | 
			
		||||
uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128;
 | 
			
		||||
uint64_t  MemoryManager::HostToDeviceBytes;
 | 
			
		||||
uint64_t  MemoryManager::DeviceToHostBytes;
 | 
			
		||||
uint64_t  MemoryManager::HostToDeviceXfer;
 | 
			
		||||
uint64_t  MemoryManager::DeviceToHostXfer;
 | 
			
		||||
uint64_t  MemoryManager::DeviceEvictions;
 | 
			
		||||
uint64_t  MemoryManager::DeviceDestroy;
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////
 | 
			
		||||
// Priority ordering for unlocked entries
 | 
			
		||||
//  Empty
 | 
			
		||||
//  CpuDirty 
 | 
			
		||||
//  Consistent
 | 
			
		||||
//  AccDirty
 | 
			
		||||
////////////////////////////////////
 | 
			
		||||
#define Empty         (0x0)  /*Entry unoccupied  */
 | 
			
		||||
#define CpuDirty      (0x1)  /*CPU copy is golden, Acc buffer MAY not be allocated*/
 | 
			
		||||
#define Consistent    (0x2)  /*ACC copy AND CPU copy are valid */
 | 
			
		||||
#define AccDirty      (0x4)  /*ACC copy is golden */
 | 
			
		||||
#define EvictNext     (0x8)  /*Priority for eviction*/
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////
 | 
			
		||||
// Mechanics of data table maintenance
 | 
			
		||||
/////////////////////////////////////////////////
 | 
			
		||||
int   MemoryManager::EntryPresent(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  if(AccViewTable.empty()) return 0;
 | 
			
		||||
 | 
			
		||||
  auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1));
 | 
			
		||||
  return count;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
			
		||||
{
 | 
			
		||||
  assert(!EntryPresent(CpuPtr));
 | 
			
		||||
  AcceleratorViewEntry AccCache;
 | 
			
		||||
  AccCache.CpuPtr = CpuPtr;
 | 
			
		||||
  AccCache.AccPtr = (uint64_t)NULL;
 | 
			
		||||
  AccCache.bytes  = bytes;
 | 
			
		||||
  AccCache.state  = CpuDirty;
 | 
			
		||||
  AccCache.LRU_valid=0;
 | 
			
		||||
  AccCache.transient=0;
 | 
			
		||||
  AccCache.accLock=0;
 | 
			
		||||
  AccCache.cpuLock=0;
 | 
			
		||||
  AccViewTable[CpuPtr] = AccCache;
 | 
			
		||||
}
 | 
			
		||||
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  assert(EntryPresent(CpuPtr));
 | 
			
		||||
  auto AccCacheIterator = AccViewTable.find(CpuPtr);
 | 
			
		||||
  assert(AccCacheIterator!=AccViewTable.end());
 | 
			
		||||
  return AccCacheIterator;
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::EntryErase(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  auto AccCache = EntryLookup(CpuPtr);
 | 
			
		||||
  AccViewTable.erase(CpuPtr);
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.LRU_valid==0);
 | 
			
		||||
  if (AccCache.transient) { 
 | 
			
		||||
    LRU.push_back(AccCache.CpuPtr);
 | 
			
		||||
    AccCache.LRU_entry = --LRU.end();
 | 
			
		||||
  } else {
 | 
			
		||||
    LRU.push_front(AccCache.CpuPtr);
 | 
			
		||||
    AccCache.LRU_entry = LRU.begin();
 | 
			
		||||
  }
 | 
			
		||||
  AccCache.LRU_valid = 1;
 | 
			
		||||
  DeviceLRUBytes+=AccCache.bytes;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.LRU_valid==1);
 | 
			
		||||
  LRU.erase(AccCache.LRU_entry);
 | 
			
		||||
  AccCache.LRU_valid = 0;
 | 
			
		||||
  DeviceLRUBytes-=AccCache.bytes;
 | 
			
		||||
}
 | 
			
		||||
/////////////////////////////////////////////////
 | 
			
		||||
// Accelerator cache motion & consistency logic
 | 
			
		||||
/////////////////////////////////////////////////
 | 
			
		||||
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // Remove from Accelerator, remove entry, without flush
 | 
			
		||||
  // Cannot be locked. If allocated Must be in LRU pool.
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.AccPtr) {
 | 
			
		||||
    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
    DeviceDestroy++;
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  EntryErase(CpuPtr);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
 | 
			
		||||
  // Cannot be acclocked. If allocated must be in LRU pool.
 | 
			
		||||
  //
 | 
			
		||||
  // Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
 | 
			
		||||
  //                          and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
 | 
			
		||||
  //                          but there is a weakness where CpuLock entries are attempted for erase
 | 
			
		||||
  //                          Take these OUT LRU queue when CPU locked?
 | 
			
		||||
  //                          Cannot take out the table as cpuLock data is important.
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
  if (AccCache.cpuLock!=0) return;
 | 
			
		||||
  if(AccCache.state==AccDirty) {
 | 
			
		||||
    Flush(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
  if(AccCache.AccPtr) {
 | 
			
		||||
    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
			
		||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  DeviceEvictions++;
 | 
			
		||||
  //  EntryErase(CpuPtr);
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.state==AccDirty);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
			
		||||
  DeviceToHostXfer++;
 | 
			
		||||
  AccCache.state=Consistent;
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.state==CpuDirty);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
  }
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx\n",
 | 
			
		||||
	  (uint64_t)AccCache.bytes,
 | 
			
		||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
			
		||||
  HostToDeviceXfer++;
 | 
			
		||||
  AccCache.state=Consistent;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
  }
 | 
			
		||||
  AccCache.state=AccDirty;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// View management
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
			
		||||
{
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
 | 
			
		||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    CpuViewClose((uint64_t)Ptr);
 | 
			
		||||
  } else { 
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
			
		||||
{
 | 
			
		||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
 | 
			
		||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  } else { 
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return NULL;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  assert(bytes<DeviceMaxBytes);
 | 
			
		||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
			
		||||
    if ( DeviceLRUBytes > 0){
 | 
			
		||||
      assert(LRU.size()>0);
 | 
			
		||||
      uint64_t victim = LRU.back(); // From the LRU
 | 
			
		||||
      auto AccCacheIterator = EntryLookup(victim);
 | 
			
		||||
      auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
      Evict(AccCache);
 | 
			
		||||
    } else {
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Find if present, otherwise get or force an empty
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  if ( EntryPresent(CpuPtr)==0 ){
 | 
			
		||||
    EntryCreate(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
  auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
  if (!AccCache.AccPtr) {
 | 
			
		||||
    EvictVictims(bytes); 
 | 
			
		||||
  } 
 | 
			
		||||
  assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.cpuLock==0);  // Programming error
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state!=Empty) {
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld\n",
 | 
			
		||||
		    (uint64_t)AccCache.CpuPtr,
 | 
			
		||||
		    (uint64_t)CpuPtr,
 | 
			
		||||
		    (uint64_t)AccCache.bytes,
 | 
			
		||||
	            (uint64_t)bytes,
 | 
			
		||||
		    (uint64_t)AccCache.accLock);
 | 
			
		||||
    assert(AccCache.CpuPtr == CpuPtr);
 | 
			
		||||
    assert(AccCache.bytes  ==bytes);
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 *  State transitions and actions
 | 
			
		||||
 *
 | 
			
		||||
 *  Action  State   StateNext         Flush    Clone
 | 
			
		||||
 *
 | 
			
		||||
 *  AccRead  Empty   Consistent        -        Y
 | 
			
		||||
 *  AccWrite Empty   AccDirty          -        Y
 | 
			
		||||
 *  AccRead  CpuDirty Consistent       -        Y
 | 
			
		||||
 *  AccWrite CpuDirty AccDirty         -        Y
 | 
			
		||||
 *  AccRead  Consistent Consistent     -        - 
 | 
			
		||||
 *  AccWrite Consistent AccDirty       -        - 
 | 
			
		||||
 *  AccRead  AccDirty   AccDirty       -        - 
 | 
			
		||||
 *  AccWrite AccDirty   AccDirty       -        - 
 | 
			
		||||
 */
 | 
			
		||||
  if(AccCache.state==Empty) {
 | 
			
		||||
    assert(AccCache.LRU_valid==0);
 | 
			
		||||
    AccCache.CpuPtr = CpuPtr;
 | 
			
		||||
    AccCache.AccPtr = (uint64_t)NULL;
 | 
			
		||||
    AccCache.bytes  = bytes;
 | 
			
		||||
    AccCache.state  = CpuDirty;   // Cpu starts primary
 | 
			
		||||
    if(mode==AcceleratorWriteDiscard){
 | 
			
		||||
      CpuDiscard(AccCache);
 | 
			
		||||
      AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    } else if(mode==AcceleratorWrite){
 | 
			
		||||
      Clone(AccCache);
 | 
			
		||||
      AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    } else {
 | 
			
		||||
      Clone(AccCache);
 | 
			
		||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock= 1;
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==CpuDirty ){
 | 
			
		||||
    if(mode==AcceleratorWriteDiscard) {
 | 
			
		||||
      CpuDiscard(AccCache);
 | 
			
		||||
      AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    } else if(mode==AcceleratorWrite) {
 | 
			
		||||
      Clone(AccCache);
 | 
			
		||||
      AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    } else {
 | 
			
		||||
      Clone(AccCache);
 | 
			
		||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==Consistent) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==AccDirty) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.accLock>0);
 | 
			
		||||
  // If view is opened on device must remove from LRU
 | 
			
		||||
  if(AccCache.LRU_valid==1){
 | 
			
		||||
    // must possibly remove from LRU as now locked on GPU
 | 
			
		||||
    dprintf("AccCache entry removed from LRU \n");
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int transient =hint;
 | 
			
		||||
  AccCache.transient= transient? EvictNext : 0;
 | 
			
		||||
 | 
			
		||||
  return AccCache.AccPtr;
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////
 | 
			
		||||
// look up & decrement lock count
 | 
			
		||||
////////////////////////////////////
 | 
			
		||||
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
  auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock>0);
 | 
			
		||||
 | 
			
		||||
  AccCache.accLock--;
 | 
			
		||||
  // Move to LRU queue if not locked and close on device
 | 
			
		||||
  if(AccCache.accLock==0) {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    LRUinsert(AccCache);
 | 
			
		||||
  } else {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
  auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.cpuLock>0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
 | 
			
		||||
  AccCache.cpuLock--;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 *  Action  State   StateNext         Flush    Clone
 | 
			
		||||
 *
 | 
			
		||||
 *  CpuRead  Empty   CpuDirty          -        -
 | 
			
		||||
 *  CpuWrite Empty   CpuDirty          -        -
 | 
			
		||||
 *  CpuRead  CpuDirty CpuDirty         -        -
 | 
			
		||||
 *  CpuWrite CpuDirty CpuDirty         -        - 
 | 
			
		||||
 *  CpuRead  Consistent Consistent     -        - 
 | 
			
		||||
 *  CpuWrite Consistent CpuDirty       -        - 
 | 
			
		||||
 *  CpuRead  AccDirty   Consistent     Y        -
 | 
			
		||||
 *  CpuWrite AccDirty   CpuDirty       Y        -
 | 
			
		||||
 */
 | 
			
		||||
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Find if present, otherwise get or force an empty
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  if ( EntryPresent(CpuPtr)==0 ){
 | 
			
		||||
    EntryCreate(CpuPtr,bytes,mode,transient);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
  auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
 | 
			
		||||
  // CPU doesn't need to free space
 | 
			
		||||
  //  if (!AccCache.AccPtr) {
 | 
			
		||||
  //    EvictVictims(bytes);
 | 
			
		||||
  //  }
 | 
			
		||||
 | 
			
		||||
  assert((mode==CpuRead)||(mode==CpuWrite));
 | 
			
		||||
  assert(AccCache.accLock==0);  // Programming error
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state!=Empty) {
 | 
			
		||||
    assert(AccCache.CpuPtr == CpuPtr);
 | 
			
		||||
    assert(AccCache.bytes==bytes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state==Empty) {
 | 
			
		||||
    AccCache.CpuPtr = CpuPtr;
 | 
			
		||||
    AccCache.AccPtr = (uint64_t)NULL;
 | 
			
		||||
    AccCache.bytes  = bytes;
 | 
			
		||||
    AccCache.state  = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
 | 
			
		||||
    AccCache.accLock= 0;
 | 
			
		||||
    AccCache.cpuLock= 1;
 | 
			
		||||
  } else if(AccCache.state==CpuDirty ){
 | 
			
		||||
    // AccPtr dont care, deferred allocate
 | 
			
		||||
    AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
 | 
			
		||||
    AccCache.cpuLock++;
 | 
			
		||||
  } else if(AccCache.state==Consistent) {
 | 
			
		||||
    assert(AccCache.AccPtr != (uint64_t)NULL);
 | 
			
		||||
    if(mode==CpuWrite)
 | 
			
		||||
      AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty
 | 
			
		||||
    else 
 | 
			
		||||
      AccCache.state = Consistent; // Consistent +CpuRead  => Consistent
 | 
			
		||||
    AccCache.cpuLock++;
 | 
			
		||||
  } else if(AccCache.state==AccDirty) {
 | 
			
		||||
    assert(AccCache.AccPtr != (uint64_t)NULL);
 | 
			
		||||
    Flush(AccCache);
 | 
			
		||||
    if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush
 | 
			
		||||
    else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush
 | 
			
		||||
    AccCache.cpuLock++;
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0); // should be unreachable
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  AccCache.transient= transient? EvictNext : 0;
 | 
			
		||||
 | 
			
		||||
  return AccCache.CpuPtr;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::NotifyDeletion(void *_ptr)
 | 
			
		||||
{
 | 
			
		||||
  // Look up in ViewCache
 | 
			
		||||
  uint64_t ptr = (uint64_t)_ptr;
 | 
			
		||||
  if(EntryPresent(ptr)) {
 | 
			
		||||
    auto e = EntryLookup(ptr);
 | 
			
		||||
    AccDiscard(e->second);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::Print(void)
 | 
			
		||||
{
 | 
			
		||||
  PrintBytes();
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Memory Manager                             " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceBytes   << " bytes allocated on device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device       " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << HostToDeviceXfer << " transfers        to   device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceToHostXfer << " transfers        from device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to   device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
			
		||||
  acceleratorMem();
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::PrintAll(void)
 | 
			
		||||
{
 | 
			
		||||
  Print();
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
			
		||||
    auto &AccCache = it->second;
 | 
			
		||||
    
 | 
			
		||||
    std::string str;
 | 
			
		||||
    if ( AccCache.state==Empty    ) str = std::string("Empty");
 | 
			
		||||
    if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
 | 
			
		||||
    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
			
		||||
    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
			
		||||
	      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
			
		||||
	      << "\t" << AccCache.cpuLock
 | 
			
		||||
	      << "\t" << AccCache.accLock
 | 
			
		||||
	      << "\t" << AccCache.LRU_valid<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
int   MemoryManager::isOpen   (void* _CpuPtr) 
 | 
			
		||||
{ 
 | 
			
		||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
			
		||||
  if ( EntryPresent(CpuPtr) ){
 | 
			
		||||
    auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
    auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
    return AccCache.cpuLock+AccCache.accLock;
 | 
			
		||||
  } else { 
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::Audit(std::string s)
 | 
			
		||||
{
 | 
			
		||||
  uint64_t CpuBytes=0;
 | 
			
		||||
  uint64_t AccBytes=0;
 | 
			
		||||
  uint64_t LruBytes1=0;
 | 
			
		||||
  uint64_t LruBytes2=0;
 | 
			
		||||
  uint64_t LruCnt=0;
 | 
			
		||||
  
 | 
			
		||||
  std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
 | 
			
		||||
  for(auto it=LRU.begin();it!=LRU.end();it++){
 | 
			
		||||
    uint64_t cpuPtr = *it;
 | 
			
		||||
    assert(EntryPresent(cpuPtr));
 | 
			
		||||
    auto AccCacheIterator = EntryLookup(cpuPtr);
 | 
			
		||||
    auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
    LruBytes2+=AccCache.bytes;
 | 
			
		||||
    assert(AccCache.LRU_valid==1);
 | 
			
		||||
    assert(AccCache.LRU_entry==it);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
			
		||||
 | 
			
		||||
  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
			
		||||
    auto &AccCache = it->second;
 | 
			
		||||
    
 | 
			
		||||
    std::string str;
 | 
			
		||||
    if ( AccCache.state==Empty    ) str = std::string("Empty");
 | 
			
		||||
    if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
 | 
			
		||||
    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
			
		||||
    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
			
		||||
 | 
			
		||||
    CpuBytes+=AccCache.bytes;
 | 
			
		||||
    if( AccCache.AccPtr )    AccBytes+=AccCache.bytes;
 | 
			
		||||
    if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
 | 
			
		||||
    if( AccCache.LRU_valid ) LruCnt++;
 | 
			
		||||
    
 | 
			
		||||
    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
			
		||||
      assert(AccCache.LRU_valid==0);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
			
		||||
		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
			
		||||
		<< "\t cpuLock  " << AccCache.cpuLock
 | 
			
		||||
		<< "\t accLock  " << AccCache.accLock
 | 
			
		||||
		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert( AccCache.cpuLock== 0 ) ;
 | 
			
		||||
    assert( AccCache.accLock== 0 ) ;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
 | 
			
		||||
  assert(LruBytes1==LruBytes2);
 | 
			
		||||
  assert(LruBytes1==DeviceLRUBytes);
 | 
			
		||||
  std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
 | 
			
		||||
  assert(AccBytes==DeviceBytes);
 | 
			
		||||
  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
			
		||||
  assert(LruCnt == LRU.size());
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MemoryManager::PrintState(void* _CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
			
		||||
 | 
			
		||||
  if ( EntryPresent(CpuPtr) ){
 | 
			
		||||
    auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
    auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
    std::string str;
 | 
			
		||||
    if ( AccCache.state==Empty    ) str = std::string("Empty");
 | 
			
		||||
    if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
 | 
			
		||||
    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
			
		||||
    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
			
		||||
    if ( AccCache.state==EvictNext) str = std::string("EvictNext");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
			
		||||
    << "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
			
		||||
    << "\t" << AccCache.cpuLock
 | 
			
		||||
    << "\t" << AccCache.accLock
 | 
			
		||||
    << "\t" << AccCache.LRU_valid<<std::endl;
 | 
			
		||||
 | 
			
		||||
  } else {
 | 
			
		||||
    std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,31 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#ifdef GRID_UVM
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// View management is 1:1 address space mapping
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
uint64_t  MemoryManager::DeviceBytes;
 | 
			
		||||
uint64_t  MemoryManager::DeviceLRUBytes;
 | 
			
		||||
uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128;
 | 
			
		||||
uint64_t  MemoryManager::HostToDeviceBytes;
 | 
			
		||||
uint64_t  MemoryManager::DeviceToHostBytes;
 | 
			
		||||
uint64_t  MemoryManager::HostToDeviceXfer;
 | 
			
		||||
uint64_t  MemoryManager::DeviceToHostXfer;
 | 
			
		||||
uint64_t  MemoryManager::DeviceEvictions;
 | 
			
		||||
uint64_t  MemoryManager::DeviceDestroy;
 | 
			
		||||
 | 
			
		||||
void  MemoryManager::Audit(std::string s){};
 | 
			
		||||
void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
 | 
			
		||||
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
 | 
			
		||||
int   MemoryManager::isOpen   (void* CpuPtr) { return 0;}
 | 
			
		||||
void  MemoryManager::PrintState(void* CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
 | 
			
		||||
};
 | 
			
		||||
void  MemoryManager::Print(void){};
 | 
			
		||||
void  MemoryManager::PrintAll(void){};
 | 
			
		||||
void  MemoryManager::NotifyDeletion(void *ptr){};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,67 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <fcntl.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
MemoryStats *MemoryProfiler::stats = nullptr;
 | 
			
		||||
bool         MemoryProfiler::debug = false;
 | 
			
		||||
 | 
			
		||||
void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  int fd = open("/proc/self/pagemap", O_RDONLY);
 | 
			
		||||
  assert(fd >= 0);
 | 
			
		||||
  const int page_size = 4096;
 | 
			
		||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
			
		||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
			
		||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
			
		||||
  std::vector<uint64_t> pagedata(npages);
 | 
			
		||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
			
		||||
  assert(ret == offset);
 | 
			
		||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
			
		||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
			
		||||
  int nhugepages = npages / 512;
 | 
			
		||||
  int n4ktotal, nnothuge;
 | 
			
		||||
  n4ktotal = 0;
 | 
			
		||||
  nnothuge = 0;
 | 
			
		||||
  for (int i = 0; i < nhugepages; ++i) {
 | 
			
		||||
    uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
 | 
			
		||||
    for (int j = 0; j < 512; ++j) {
 | 
			
		||||
      uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
 | 
			
		||||
      ++n4ktotal;
 | 
			
		||||
      if (pageaddr != baseaddr + j * page_size)
 | 
			
		||||
	++nnothuge;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  int rank = CartesianCommunicator::RankWorld();
 | 
			
		||||
  printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::string sizeString(const size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  constexpr unsigned int bufSize = 256;
 | 
			
		||||
  const char             *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
 | 
			
		||||
  char                   buf[256];
 | 
			
		||||
  size_t                 s     = 0;
 | 
			
		||||
  double                 count = bytes;
 | 
			
		||||
  
 | 
			
		||||
  while (count >= 1024 && s < 7)
 | 
			
		||||
    {
 | 
			
		||||
      s++;
 | 
			
		||||
      count /= 1024;
 | 
			
		||||
    }
 | 
			
		||||
  if (count - floor(count) == 0.0)
 | 
			
		||||
    {
 | 
			
		||||
      snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
 | 
			
		||||
    }
 | 
			
		||||
  else
 | 
			
		||||
    {
 | 
			
		||||
      snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  return std::string(buf);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,95 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/MemoryStats.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
std::string sizeString(size_t bytes);
 | 
			
		||||
 | 
			
		||||
struct MemoryStats
 | 
			
		||||
{
 | 
			
		||||
  size_t totalAllocated{0}, maxAllocated{0}, 
 | 
			
		||||
    currentlyAllocated{0}, totalFreed{0};
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
class MemoryProfiler
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  static MemoryStats *stats;
 | 
			
		||||
  static bool        debug;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
 | 
			
		||||
#define profilerDebugPrint						\
 | 
			
		||||
  if (MemoryProfiler::stats)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      auto s = MemoryProfiler::stats;					\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \
 | 
			
		||||
		<< std::endl;						\
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#define profilerAllocate(bytes)						\
 | 
			
		||||
  if (MemoryProfiler::stats)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      auto s = MemoryProfiler::stats;					\
 | 
			
		||||
      s->totalAllocated     += (bytes);					\
 | 
			
		||||
      s->currentlyAllocated += (bytes);					\
 | 
			
		||||
      s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated); \
 | 
			
		||||
    }									\
 | 
			
		||||
  if (MemoryProfiler::debug)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
 | 
			
		||||
      profilerDebugPrint;						\
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#define profilerFree(bytes)						\
 | 
			
		||||
  if (MemoryProfiler::stats)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      auto s = MemoryProfiler::stats;					\
 | 
			
		||||
      s->totalFreed         += (bytes);					\
 | 
			
		||||
      s->currentlyAllocated -= (bytes);					\
 | 
			
		||||
    }									\
 | 
			
		||||
  if (MemoryProfiler::debug)						\
 | 
			
		||||
    {									\
 | 
			
		||||
      std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
 | 
			
		||||
      profilerDebugPrint;						\
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
void check_huge_pages(void *Buf,uint64_t BYTES);
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,292 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/Cartesian_base.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CARTESIAN_BASE_H
 | 
			
		||||
#define GRID_CARTESIAN_BASE_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Commicator provides information on the processor grid
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
//    unsigned long _ndimension;
 | 
			
		||||
//    Coordinate _processors; // processor grid
 | 
			
		||||
//    int              _processor;  // linear processor rank
 | 
			
		||||
//    Coordinate _processor_coor;  // linear processor rank
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
class GridBase : public CartesianCommunicator , public GridThread {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  // Give Lattice access
 | 
			
		||||
  template<class object> friend class Lattice;
 | 
			
		||||
 | 
			
		||||
  GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;}; 
 | 
			
		||||
 | 
			
		||||
  GridBase(const Coordinate & processor_grid,
 | 
			
		||||
	   const CartesianCommunicator &parent,
 | 
			
		||||
	   int &split_rank) 
 | 
			
		||||
    : CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;};
 | 
			
		||||
 | 
			
		||||
  GridBase(const Coordinate & processor_grid,
 | 
			
		||||
	   const CartesianCommunicator &parent) 
 | 
			
		||||
    : CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;};
 | 
			
		||||
 | 
			
		||||
  virtual ~GridBase() = default;
 | 
			
		||||
 | 
			
		||||
  // Physics Grid information.
 | 
			
		||||
  Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
 | 
			
		||||
  Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
 | 
			
		||||
  Coordinate _gdimensions;// Global dimensions of array after cb removal
 | 
			
		||||
  Coordinate _ldimensions;// local dimensions of array with processor images removed
 | 
			
		||||
  Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed 
 | 
			
		||||
  Coordinate _ostride;    // Outer stride for each dimension
 | 
			
		||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
			
		||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _isites;
 | 
			
		||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int64_t _gsites;
 | 
			
		||||
  Coordinate _slice_block;// subslice information
 | 
			
		||||
  Coordinate _slice_stride;
 | 
			
		||||
  Coordinate _slice_nblock;
 | 
			
		||||
 | 
			
		||||
  Coordinate _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
 | 
			
		||||
  Coordinate _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
 | 
			
		||||
 | 
			
		||||
  bool _isCheckerBoarded; 
 | 
			
		||||
  int        LocallyPeriodic;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Checkerboarding interface is virtual and overridden by 
 | 
			
		||||
  // GridCartesian / GridRedBlackCartesian
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual int CheckerBoarded(int dim) =0;
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
			
		||||
  virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
 | 
			
		||||
  virtual int CheckerBoardFromOindex (int Oindex)=0;
 | 
			
		||||
  virtual int CheckerBoardFromOindexTable (int Oindex)=0;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Local layout calculations
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // These routines are key. Subdivide the linearised cartesian index into
 | 
			
		||||
  //      "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
 | 
			
		||||
  //      "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
 | 
			
		||||
  //
 | 
			
		||||
  // Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
 | 
			
		||||
  // stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
 | 
			
		||||
  // coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
 | 
			
		||||
  // lanes are operated upon simultaneously.
 | 
			
		||||
  
 | 
			
		||||
  virtual int oIndex(Coordinate &coor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx=0;
 | 
			
		||||
    // Works with either global or local coordinates
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int iIndex(Coordinate &lcoor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx=0;
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
  inline int oIndexReduced(Coordinate &ocoor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx=0; 
 | 
			
		||||
    // ocoor is already reduced so can eliminate the modulo operation
 | 
			
		||||
    // for fast indexing and inline the routine
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
  inline void oCoorFromOindex (Coordinate& coor,int Oindex){
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
 | 
			
		||||
    lcoor.resize(_ndimension);
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////
 | 
			
		||||
  // SIMD lane addressing
 | 
			
		||||
  //////////////////////////////////////////////////////////
 | 
			
		||||
  inline void iCoorFromIindex(Coordinate &coor,int lane)
 | 
			
		||||
  {
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline int PermuteDim(int dimension){
 | 
			
		||||
    return _simd_layout[dimension]>1;
 | 
			
		||||
  }
 | 
			
		||||
  inline int PermuteType(int dimension){
 | 
			
		||||
    int permute_type=0;
 | 
			
		||||
    //
 | 
			
		||||
    // Best way to encode this would be to present a mask 
 | 
			
		||||
    // for which simd dimensions are rotated, and the rotation
 | 
			
		||||
    // size. If there is only one simd dimension rotated, this is just 
 | 
			
		||||
    // a permute. 
 | 
			
		||||
    //
 | 
			
		||||
    // Cases: PermuteType == 1,2,4,8
 | 
			
		||||
    // Distance should be either 0,1,2..
 | 
			
		||||
    //
 | 
			
		||||
    if ( _simd_layout[dimension] > 2 ) { 
 | 
			
		||||
      for(int d=0;d<_ndimension;d++){
 | 
			
		||||
	if ( d != dimension ) assert ( (_simd_layout[d]==1)  );
 | 
			
		||||
      }
 | 
			
		||||
      permute_type = RotateBit; // How to specify distance; this is not just direction.
 | 
			
		||||
      return permute_type;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int d=_ndimension-1;d>dimension;d--){
 | 
			
		||||
      if (_simd_layout[d]>1 ) permute_type++;
 | 
			
		||||
    }
 | 
			
		||||
    return permute_type;
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Array sizing queries
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  inline int iSites(void) const { return _isites; };
 | 
			
		||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
			
		||||
  inline int oSites(void) const { return _osites; };
 | 
			
		||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
			
		||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
  inline const Coordinate &FullDimensions(void)         { return _fdimensions;};
 | 
			
		||||
  inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;};
 | 
			
		||||
  inline const Coordinate &LocalDimensions(void)        { return _ldimensions;};
 | 
			
		||||
  inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Utility to print the full decomposition details 
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void show_decomposition(){
 | 
			
		||||
    std::cout << GridLogMessage << "\tFull Dimensions    : " << _fdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tSIMD layout        : " << _simd_layout << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tGlobal Dimensions  : " << _gdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tLocal Dimensions   : " << _ldimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tOuter strides      : " << _ostride << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tInner strides      : " << _istride << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tiSites             : " << _isites << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\toSites             : " << _osites << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tlSites             : " << lSites() << std::endl;        
 | 
			
		||||
    std::cout << GridLogMessage << "\tgSites             : " << gSites() << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tNd                 : " << _ndimension << std::endl;             
 | 
			
		||||
  } 
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
			
		||||
    gidx=0;
 | 
			
		||||
    int mult=1;
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
			
		||||
      gidx+=mult*gcoor[mu];
 | 
			
		||||
      mult*=_gdimensions[mu];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    pcoor.resize(_ndimension);
 | 
			
		||||
    lcoor.resize(_ndimension);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++){
 | 
			
		||||
      int _fld  = _fdimensions[mu]/_processors[mu];
 | 
			
		||||
      pcoor[mu] = gcoor[mu]/_fld;
 | 
			
		||||
      lcoor[mu] = gcoor[mu]%_fld;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate pcoor;
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
 | 
			
		||||
    rank = RankFromProcessorCoor(pcoor);
 | 
			
		||||
    /*
 | 
			
		||||
      Coordinate cblcoor(lcoor);
 | 
			
		||||
      for(int d=0;d<cblcoor.size();d++){
 | 
			
		||||
      if( this->CheckerBoarded(d) ) {
 | 
			
		||||
      cblcoor[d] = lcoor[d]/2;
 | 
			
		||||
      }
 | 
			
		||||
      }
 | 
			
		||||
    */
 | 
			
		||||
    i_idx= iIndex(lcoor);
 | 
			
		||||
    o_idx= oIndex(lcoor);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    gcoor.resize(_ndimension);
 | 
			
		||||
    Coordinate coor(_ndimension);
 | 
			
		||||
 | 
			
		||||
    ProcessorCoorFromRank(rank,coor);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
 | 
			
		||||
 | 
			
		||||
    iCoorFromIindex(coor,i_idx);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
 | 
			
		||||
 | 
			
		||||
    oCoorFromOindex (coor,o_idx);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
 | 
			
		||||
      
 | 
			
		||||
  }
 | 
			
		||||
  void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
 | 
			
		||||
  {
 | 
			
		||||
    RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
 | 
			
		||||
    if(CheckerBoarded(0)){
 | 
			
		||||
      fcoor[0] = fcoor[0]*2+cb;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
 | 
			
		||||
  {
 | 
			
		||||
    gcoor.resize(_ndimension);
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,179 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/Cartesian_full.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CARTESIAN_FULL_H
 | 
			
		||||
#define GRID_CARTESIAN_FULL_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Grid Support.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class GridCartesian: public GridBase {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int  CheckerBoardFromOindex (int Oindex)
 | 
			
		||||
  {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoarded(int dim) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardDestination(int cb,int shift,int dim){
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
 | 
			
		||||
    return shift;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
 | 
			
		||||
    return shift;
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Constructor takes a parent grid and possibly subdivides communicator.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
 | 
			
		||||
  {
 | 
			
		||||
    Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
 | 
			
		||||
  {
 | 
			
		||||
    Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Construct from comm world
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid) : GridBase(processor_grid)
 | 
			
		||||
  {
 | 
			
		||||
    Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~GridCartesian() = default;
 | 
			
		||||
 | 
			
		||||
  void Init(const Coordinate &dimensions,
 | 
			
		||||
	    const Coordinate &simd_layout,
 | 
			
		||||
	    const Coordinate &processor_grid)
 | 
			
		||||
  {
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // Grid information
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
      _isCheckerBoarded = false;
 | 
			
		||||
    _ndimension = dimensions.size();
 | 
			
		||||
 | 
			
		||||
    _fdimensions.resize(_ndimension);
 | 
			
		||||
    _gdimensions.resize(_ndimension);
 | 
			
		||||
    _ldimensions.resize(_ndimension);
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _checker_dim_mask.resize(_ndimension);;
 | 
			
		||||
    _checker_dim = -1;
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _ostride.resize(_ndimension);
 | 
			
		||||
    _istride.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _fsites = _gsites = _osites = _isites = 1;
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
	_checker_dim_mask[d]=0;
 | 
			
		||||
 | 
			
		||||
        _fdimensions[d] = dimensions[d];   // Global dimensions
 | 
			
		||||
        _gdimensions[d] = _fdimensions[d]; // Global dimensions
 | 
			
		||||
        _simd_layout[d] = simd_layout[d];
 | 
			
		||||
        _fsites = _fsites * _fdimensions[d];
 | 
			
		||||
        _gsites = _gsites * _gdimensions[d];
 | 
			
		||||
 | 
			
		||||
        // Use a reduced simd grid
 | 
			
		||||
        _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
 | 
			
		||||
        //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl;
 | 
			
		||||
        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
 | 
			
		||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
 | 
			
		||||
        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
 | 
			
		||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
			
		||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
			
		||||
        _osites *= _rdimensions[d];
 | 
			
		||||
        _isites *= _simd_layout[d];
 | 
			
		||||
 | 
			
		||||
        // Addressing support
 | 
			
		||||
        if (d == 0)
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = 1;
 | 
			
		||||
	    _istride[d] = 1;
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
 | 
			
		||||
	    _istride[d] = _istride[d - 1] * _simd_layout[d - 1];
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // subplane information
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    _slice_block.resize(_ndimension);
 | 
			
		||||
    _slice_stride.resize(_ndimension);
 | 
			
		||||
    _slice_nblock.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    int block = 1;
 | 
			
		||||
    int nblock = 1;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      nblock *= _rdimensions[d];
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        nblock /= _rdimensions[d];
 | 
			
		||||
        _slice_block[d] = block;
 | 
			
		||||
        _slice_stride[d] = _ostride[d] * _rdimensions[d];
 | 
			
		||||
        _slice_nblock[d] = nblock;
 | 
			
		||||
        block = block * _rdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,306 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/Cartesian_red_black.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CARTESIAN_RED_BLACK_H
 | 
			
		||||
#define GRID_CARTESIAN_RED_BLACK_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
static const int CbRed  =0;
 | 
			
		||||
static const int CbBlack=1;
 | 
			
		||||
static const int Even   =CbRed;
 | 
			
		||||
static const int Odd    =CbBlack;
 | 
			
		||||
 | 
			
		||||
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk)
 | 
			
		||||
{
 | 
			
		||||
  int nd=rdim.size();
 | 
			
		||||
  Coordinate coor(nd);
 | 
			
		||||
 | 
			
		||||
  Lexicographic::CoorFromIndex(coor,oindex,rdim);
 | 
			
		||||
 | 
			
		||||
  int linear=0;
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    if(chk_dim_msk[d])
 | 
			
		||||
      linear=linear+coor[d];
 | 
			
		||||
  }
 | 
			
		||||
  return (linear&0x1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
// Specialise this for red black grids storing half the data like a chess board.
 | 
			
		||||
class GridRedBlackCartesian : public GridBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  //  int              _checker_dim;
 | 
			
		||||
  std::vector<int> _checker_board;
 | 
			
		||||
 | 
			
		||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    if( dim==_checker_dim) return 1;
 | 
			
		||||
    else return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
    int linear=0;
 | 
			
		||||
    assert(site.size()==_ndimension);
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){ 
 | 
			
		||||
      if(_checker_dim_mask[d])
 | 
			
		||||
	linear=linear+site[d];
 | 
			
		||||
    }
 | 
			
		||||
    return (linear&0x1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Depending on the cb of site, we toggle source cb.
 | 
			
		||||
  // for block #b, element #e = (b, e)
 | 
			
		||||
  // we need 
 | 
			
		||||
  virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
 | 
			
		||||
    if(dim != _checker_dim) return shift;
 | 
			
		||||
 | 
			
		||||
    int fulldim =_fdimensions[dim];
 | 
			
		||||
    shift = (shift+fulldim)%fulldim;
 | 
			
		||||
 | 
			
		||||
    // Probably faster with table lookup;
 | 
			
		||||
    // or by looping over x,y,z and multiply rather than computing checkerboard.
 | 
			
		||||
	  
 | 
			
		||||
    if ( (source_cb+ocb)&1 ) {
 | 
			
		||||
      return (shift)/2;
 | 
			
		||||
    } else {
 | 
			
		||||
      return (shift+1)/2;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return _checker_board[Oindex];
 | 
			
		||||
  }
 | 
			
		||||
  virtual int  CheckerBoardFromOindex (int Oindex)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate ocoor;
 | 
			
		||||
    oCoorFromOindex(ocoor,Oindex);
 | 
			
		||||
    return CheckerBoard(ocoor);
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
 | 
			
		||||
 | 
			
		||||
    if(dim != _checker_dim) return shift;
 | 
			
		||||
 | 
			
		||||
    int ocb=CheckerBoardFromOindex(osite);
 | 
			
		||||
      
 | 
			
		||||
    return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
 | 
			
		||||
    if ( _checker_dim_mask[dim]  ) {
 | 
			
		||||
      // If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
 | 
			
		||||
      // does NOT cause a parity hop.
 | 
			
		||||
      int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
 | 
			
		||||
      if ( (shift+add) &0x1) {
 | 
			
		||||
	return 1-source_cb;
 | 
			
		||||
      } else {
 | 
			
		||||
	return source_cb;
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      return source_cb;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Create Redblack from original grid; require full grid pointer ?
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
 | 
			
		||||
  {
 | 
			
		||||
    int dims = base->_ndimension;
 | 
			
		||||
    Coordinate checker_dim_mask(dims,1);
 | 
			
		||||
    int checker_dim = 0;
 | 
			
		||||
    Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Create redblack from original grid, with non-trivial checker dim mask
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  GridRedBlackCartesian(const GridBase *base,
 | 
			
		||||
			const Coordinate &checker_dim_mask,
 | 
			
		||||
			int checker_dim
 | 
			
		||||
			) :  GridBase(base->_processors,*base) 
 | 
			
		||||
  {
 | 
			
		||||
    Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim)  ;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  virtual ~GridRedBlackCartesian() = default;
 | 
			
		||||
 | 
			
		||||
  void Init(const Coordinate &dimensions,
 | 
			
		||||
	    const Coordinate &simd_layout,
 | 
			
		||||
	    const Coordinate &processor_grid,
 | 
			
		||||
	    const Coordinate &checker_dim_mask,
 | 
			
		||||
	    int checker_dim)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
      _isCheckerBoarded = true;
 | 
			
		||||
    _checker_dim = checker_dim;
 | 
			
		||||
    assert(checker_dim_mask[checker_dim] == 1);
 | 
			
		||||
    _ndimension = dimensions.size();
 | 
			
		||||
    assert(checker_dim_mask.size() == _ndimension);
 | 
			
		||||
    assert(processor_grid.size() == _ndimension);
 | 
			
		||||
    assert(simd_layout.size() == _ndimension);
 | 
			
		||||
 | 
			
		||||
    _fdimensions.resize(_ndimension);
 | 
			
		||||
    _gdimensions.resize(_ndimension);
 | 
			
		||||
    _ldimensions.resize(_ndimension);
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _ostride.resize(_ndimension);
 | 
			
		||||
    _istride.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    _fsites = _gsites = _osites = _isites = 1;
 | 
			
		||||
 | 
			
		||||
    _checker_dim_mask = checker_dim_mask;
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        _fdimensions[d] = dimensions[d];
 | 
			
		||||
        _gdimensions[d] = _fdimensions[d];
 | 
			
		||||
        _fsites = _fsites * _fdimensions[d];
 | 
			
		||||
        _gsites = _gsites * _gdimensions[d];
 | 
			
		||||
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    assert((_gdimensions[d] & 0x1) == 0);
 | 
			
		||||
	    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
 | 
			
		||||
	    _gsites /= 2;
 | 
			
		||||
	  }
 | 
			
		||||
        _ldimensions[d] = _gdimensions[d] / _processors[d];
 | 
			
		||||
        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
			
		||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
			
		||||
 | 
			
		||||
        // Use a reduced simd grid
 | 
			
		||||
        _simd_layout[d] = simd_layout[d];
 | 
			
		||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
 | 
			
		||||
        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
        assert(_rdimensions[d] > 0);
 | 
			
		||||
 | 
			
		||||
        // all elements of a simd vector must have same checkerboard.
 | 
			
		||||
        // If Ls vectorised, this must still be the case; e.g. dwf rb5d
 | 
			
		||||
        if (_simd_layout[d] > 1)
 | 
			
		||||
	  {
 | 
			
		||||
	    if (checker_dim_mask[d])
 | 
			
		||||
	      {
 | 
			
		||||
		assert((_rdimensions[d] & 0x1) == 0);
 | 
			
		||||
	      }
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
        _osites *= _rdimensions[d];
 | 
			
		||||
        _isites *= _simd_layout[d];
 | 
			
		||||
 | 
			
		||||
        // Addressing support
 | 
			
		||||
        if (d == 0)
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = 1;
 | 
			
		||||
	    _istride[d] = 1;
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
 | 
			
		||||
	    _istride[d] = _istride[d - 1] * _simd_layout[d - 1];
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // subplane information
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    _slice_block.resize(_ndimension);
 | 
			
		||||
    _slice_stride.resize(_ndimension);
 | 
			
		||||
    _slice_nblock.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
    int block = 1;
 | 
			
		||||
    int nblock = 1;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      nblock *= _rdimensions[d];
 | 
			
		||||
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        nblock /= _rdimensions[d];
 | 
			
		||||
        _slice_block[d] = block;
 | 
			
		||||
        _slice_stride[d] = _ostride[d] * _rdimensions[d];
 | 
			
		||||
        _slice_nblock[d] = nblock;
 | 
			
		||||
        block = block * _rdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    // Create a checkerboard lookup table
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
    int rvol = 1;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        rvol = rvol * _rdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
    _checker_board.resize(rvol);
 | 
			
		||||
    for (int osite = 0; osite < _osites; osite++)
 | 
			
		||||
      {
 | 
			
		||||
        _checker_board[osite] = CheckerBoardFromOindex(osite);
 | 
			
		||||
      }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  virtual int oIndex(Coordinate &coor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx = 0;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _ostride[d] * (coor[d] % _rdimensions[d]);
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
    return idx;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual int iIndex(Coordinate &lcoor)
 | 
			
		||||
  {
 | 
			
		||||
    int idx = 0;
 | 
			
		||||
    for (int d = 0; d < _ndimension; d++)
 | 
			
		||||
      {
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
 | 
			
		||||
	  }
 | 
			
		||||
        else
 | 
			
		||||
	  {
 | 
			
		||||
	    idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
 | 
			
		||||
	  }
 | 
			
		||||
      }
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,90 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/Communicator_none.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <fcntl.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
#include <limits.h>
 | 
			
		||||
#include <sys/mman.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
bool Stencil_force_mpi = true;
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
// Info that is setup once and indept of cartesian layout
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CommunicatorPolicy_t  
 | 
			
		||||
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
 | 
			
		||||
int CartesianCommunicator::nCommThreads = -1;
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Grid information queries
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
int                      CartesianCommunicator::Dimensions(void)        { return _ndimension; };
 | 
			
		||||
int                      CartesianCommunicator::IsBoss(void)            { return _processor==0; };
 | 
			
		||||
int                      CartesianCommunicator::BossRank(void)          { return 0; };
 | 
			
		||||
int                      CartesianCommunicator::ThisRank(void)          { return _processor; };
 | 
			
		||||
const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
 | 
			
		||||
const Coordinate & CartesianCommunicator::ProcessorGrid(void)     { return _processors; };
 | 
			
		||||
int                      CartesianCommunicator::ProcessorCount(void)    { return _Nprocessors; };
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,242 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/Communicator_base.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_COMMUNICATOR_BASE_H
 | 
			
		||||
#define GRID_COMMUNICATOR_BASE_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
// Processor layout information
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern bool Stencil_force_mpi ;
 | 
			
		||||
 | 
			
		||||
class CartesianCommunicator : public SharedMemory {
 | 
			
		||||
 | 
			
		||||
public:    
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Policies
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  enum CommunicatorPolicy_t { CommunicatorPolicyConcurrent, CommunicatorPolicySequential };
 | 
			
		||||
  static CommunicatorPolicy_t CommunicatorPolicy;
 | 
			
		||||
  static void SetCommunicatorPolicy(CommunicatorPolicy_t policy ) { CommunicatorPolicy = policy; }
 | 
			
		||||
  static int       nCommThreads;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Communicator should know nothing of the physics grid, only processor grid.
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  int              _Nprocessors;     // How many in all
 | 
			
		||||
  int              _processor;       // linear processor rank
 | 
			
		||||
  unsigned long    _ndimension;
 | 
			
		||||
  Coordinate _shm_processors;  // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  Coordinate _processors;      // Which dimensions get relayed out over processors lanes.
 | 
			
		||||
  Coordinate _processor_coor;  // linear processor coordinate
 | 
			
		||||
  static Grid_MPI_Comm      communicator_world;
 | 
			
		||||
  Grid_MPI_Comm             communicator;
 | 
			
		||||
  std::vector<Grid_MPI_Comm> communicator_halo;
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Must call in Grid startup
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  static void Init(int *argc, char ***argv);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Constructors to sub-divide a parent communicator
 | 
			
		||||
  // and default to comm world
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank);
 | 
			
		||||
  CartesianCommunicator(const Coordinate &pdimensions_in);
 | 
			
		||||
  virtual ~CartesianCommunicator();
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Private initialise from an MPI communicator
 | 
			
		||||
  // Can use after an MPI_Comm_split, but hidden from user so private
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  void InitFromMPICommunicator(const Coordinate &processors, Grid_MPI_Comm communicator_base);
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Wraps MPI_Cart routines, or implements equivalent on other impls
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ShiftedRanks(int dim,int shift,int & source, int & dest);
 | 
			
		||||
  int  RankFromProcessorCoor(Coordinate &coor);
 | 
			
		||||
  void ProcessorCoorFromRank(int rank,Coordinate &coor);
 | 
			
		||||
  
 | 
			
		||||
  int                      Dimensions(void)        ;
 | 
			
		||||
  int                      IsBoss(void)            ;
 | 
			
		||||
  int                      BossRank(void)          ;
 | 
			
		||||
  int                      ThisRank(void)          ;
 | 
			
		||||
  const Coordinate & ThisProcessorCoor(void) ;
 | 
			
		||||
  const Coordinate & ShmGrid(void)  { return _shm_processors; }  ;
 | 
			
		||||
  const Coordinate & ProcessorGrid(void)     ;
 | 
			
		||||
  int                ProcessorCount(void)    ;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static int  RankWorld(void) ;
 | 
			
		||||
  static void BroadcastWorld(int root,void* data, int bytes);
 | 
			
		||||
  static void BarrierWorld(void);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Reduction
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalMax(RealD &);
 | 
			
		||||
  void GlobalMax(RealF &);
 | 
			
		||||
  void GlobalSum(RealF &);
 | 
			
		||||
  void GlobalSumVector(RealF *,int N);
 | 
			
		||||
  void GlobalSum(RealD &);
 | 
			
		||||
  void GlobalSumVector(RealD *,int N);
 | 
			
		||||
  void GlobalSum(uint32_t &);
 | 
			
		||||
  void GlobalSum(uint64_t &);
 | 
			
		||||
  void GlobalSumVector(uint64_t*,int N);
 | 
			
		||||
  void GlobalSum(ComplexF &c);
 | 
			
		||||
  void GlobalSumVector(ComplexF *c,int N);
 | 
			
		||||
  void GlobalSum(ComplexD &c);
 | 
			
		||||
  void GlobalSumVector(ComplexD *c,int N);
 | 
			
		||||
  void GlobalXOR(uint32_t &);
 | 
			
		||||
  void GlobalXOR(uint64_t &);
 | 
			
		||||
  
 | 
			
		||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<obj> column;
 | 
			
		||||
    obj accum = o;
 | 
			
		||||
    int source,dest;
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){
 | 
			
		||||
      column.resize(_processors[d]);
 | 
			
		||||
      column[0] = accum;
 | 
			
		||||
      std::vector<MpiCommsRequest_t> list;
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	ShiftedRanks(d,p,source,dest);
 | 
			
		||||
	SendToRecvFromBegin(list,
 | 
			
		||||
			    &column[0],
 | 
			
		||||
			    dest,
 | 
			
		||||
			    &column[p],
 | 
			
		||||
			    source,
 | 
			
		||||
			    sizeof(obj),d*100+p);
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      CommsComplete(list);
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	accum = accum + column[p];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Broadcast(0,accum);
 | 
			
		||||
    o=accum;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class obj> void GlobalSum(obj &o){
 | 
			
		||||
    typedef typename obj::scalar_type scalar_type;
 | 
			
		||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
			
		||||
    scalar_type * ptr = (scalar_type *)& o; // Safe alias 
 | 
			
		||||
    GlobalSumVector(ptr,words);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Face exchange, buffer swap in translational invariant way
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
			   void *xmit,
 | 
			
		||||
			   int dest,
 | 
			
		||||
			   void *recv,
 | 
			
		||||
			   int from,
 | 
			
		||||
			   int bytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  void SendToRecvFrom(void *xmit,
 | 
			
		||||
		      int xmit_to_rank,
 | 
			
		||||
		      void *recv,
 | 
			
		||||
		      int recv_from_rank,
 | 
			
		||||
		      int bytes);
 | 
			
		||||
  
 | 
			
		||||
  double StencilSendToRecvFrom(void *xmit,
 | 
			
		||||
			       int xmit_to_rank,int do_xmit,
 | 
			
		||||
			       void *recv,
 | 
			
		||||
			       int recv_from_rank,int do_recv,
 | 
			
		||||
			       int bytes,int dir);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				      void *xmit,
 | 
			
		||||
				      int xmit_to_rank,int do_xmit,
 | 
			
		||||
				      void *recv,
 | 
			
		||||
				      int recv_from_rank,int do_recv,
 | 
			
		||||
				      int xbytes,int rbytes,int dir);
 | 
			
		||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				    void *xmit,
 | 
			
		||||
				    int xmit_to_rank,int do_xmit,
 | 
			
		||||
				    void *recv,
 | 
			
		||||
				    int recv_from_rank,int do_recv,
 | 
			
		||||
				    int xbytes,int rbytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
			
		||||
  void StencilBarrier(void);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Barrier
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void Barrier(void);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Broadcast a buffer and composite larger
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void Broadcast(int root,void* data, int bytes);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // All2All down one dimension
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
 | 
			
		||||
    assert(dim>=0);
 | 
			
		||||
    assert(dim<_ndimension);
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    int numnode = _processors[dim];
 | 
			
		||||
    uint64_t bytes=sizeof(T);
 | 
			
		||||
    uint64_t words=in.size()/numnode;
 | 
			
		||||
    assert(numnode * words == in.size());
 | 
			
		||||
    assert(words < (1ULL<<31));
 | 
			
		||||
    AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
 | 
			
		||||
  }
 | 
			
		||||
  void AllToAll(int dim  ,void *in,void *out,uint64_t words,uint64_t bytes);
 | 
			
		||||
  void AllToAll(void  *in,void *out,uint64_t words         ,uint64_t bytes);
 | 
			
		||||
  
 | 
			
		||||
  template<class obj> void Broadcast(int root,obj &data)
 | 
			
		||||
  {
 | 
			
		||||
    Broadcast(root,(void *)&data,sizeof(data));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}; 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,787 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/Communicator_mpi.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// First initialise of comms system
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
void CartesianCommunicator::Init(int *argc, char ***argv)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  int flag;
 | 
			
		||||
  int provided;
 | 
			
		||||
 | 
			
		||||
  MPI_Initialized(&flag); // needed to coexist with other libs apparently
 | 
			
		||||
  if ( !flag ) {
 | 
			
		||||
 | 
			
		||||
#ifndef GRID_COMMS_THREADS
 | 
			
		||||
    nCommThreads=1;
 | 
			
		||||
    // wrong results here too
 | 
			
		||||
    // For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
 | 
			
		||||
    // other comms schemes are ok
 | 
			
		||||
    MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
 | 
			
		||||
#else
 | 
			
		||||
    MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
 | 
			
		||||
#endif
 | 
			
		||||
    //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
 | 
			
		||||
    if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
 | 
			
		||||
      assert(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Never clean up as done once.
 | 
			
		||||
  MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
 | 
			
		||||
 | 
			
		||||
  Grid_quiesce_nodes();
 | 
			
		||||
  GlobalSharedMemory::Init(communicator_world);
 | 
			
		||||
  GlobalSharedMemory::SharedMemoryAllocate(
 | 
			
		||||
		   GlobalSharedMemory::MAX_MPI_SHM_BYTES,
 | 
			
		||||
		   GlobalSharedMemory::Hugepages);
 | 
			
		||||
  Grid_unquiesce_nodes();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Use cartesian communicators now even in MPI3
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
 | 
			
		||||
{
 | 
			
		||||
  int rank;
 | 
			
		||||
  int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  return rank;
 | 
			
		||||
}
 | 
			
		||||
void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
 | 
			
		||||
{
 | 
			
		||||
  coor.resize(_ndimension);
 | 
			
		||||
  int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Initialises from communicator_world
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Comm optimal_comm;
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  // Remap using the shared memory optimising routine
 | 
			
		||||
  // The remap creates a comm which must be freed
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm,_shm_processors);
 | 
			
		||||
  InitFromMPICommunicator(processors,optimal_comm);
 | 
			
		||||
  SetCommunicator(optimal_comm);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Free the temp communicator
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  MPI_Comm_free(&optimal_comm);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
// Try to subdivide communicator
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
			
		||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
			
		||||
  Coordinate parent_processors    (_ndimension,1);
 | 
			
		||||
  Coordinate shm_processors       (_ndimension,1);
 | 
			
		||||
  // Can make 5d grid from 4d etc...
 | 
			
		||||
  int pad = _ndimension-parent_ndimension;
 | 
			
		||||
  for(int d=0;d<parent_ndimension;d++){
 | 
			
		||||
    parent_processor_coor[pad+d]=parent._processor_coor[d];
 | 
			
		||||
    parent_processors    [pad+d]=parent._processors[d];
 | 
			
		||||
    shm_processors       [pad+d]=parent._shm_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // split the communicator
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //  int Nparent = parent._processors ;
 | 
			
		||||
  int Nparent;
 | 
			
		||||
  MPI_Comm_size(parent.communicator,&Nparent);
 | 
			
		||||
 | 
			
		||||
  int childsize=1;
 | 
			
		||||
  for(int d=0;d<processors.size();d++) {
 | 
			
		||||
    childsize *= processors[d];
 | 
			
		||||
  }
 | 
			
		||||
  int Nchild = Nparent/childsize;
 | 
			
		||||
  assert (childsize * Nchild == Nparent);
 | 
			
		||||
 | 
			
		||||
  Coordinate ccoor(_ndimension); // coor within subcommunicator
 | 
			
		||||
  Coordinate scoor(_ndimension); // coor of split within parent
 | 
			
		||||
  Coordinate ssize(_ndimension); // coor of split within parent
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<_ndimension;d++){
 | 
			
		||||
    ccoor[d] = parent_processor_coor[d] % processors[d];
 | 
			
		||||
    scoor[d] = parent_processor_coor[d] / processors[d];
 | 
			
		||||
    ssize[d] = parent_processors[d]     / processors[d];
 | 
			
		||||
    if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
 | 
			
		||||
  int crank;
 | 
			
		||||
  // Mpi uses the reverse Lexico convention to us; so reversed routines called
 | 
			
		||||
  Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
 | 
			
		||||
  Lexicographic::IndexFromCoorReversed(scoor,srank,ssize);      // ssize is the number of split grids
 | 
			
		||||
 | 
			
		||||
  MPI_Comm comm_split;
 | 
			
		||||
  if ( Nchild > 1 ) {
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Split the communicator
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  } else {
 | 
			
		||||
    srank = 0;
 | 
			
		||||
    int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Set up from the new split communicator
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  InitFromMPICommunicator(processors,comm_split);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take the right SHM buffers
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  SetCommunicator(comm_split);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Free the temp communicator
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  MPI_Comm_free(&comm_split);
 | 
			
		||||
 | 
			
		||||
  if(0){
 | 
			
		||||
    std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
 | 
			
		||||
    for(int d=0;d<processors.size();d++){
 | 
			
		||||
      std::cout << d<< " " << _processor_coor[d] <<" " <<  ccoor[d]<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int d=0;d<processors.size();d++){
 | 
			
		||||
    assert(_processor_coor[d] == ccoor[d] );
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  // Creates communicator, and the communicator_halo
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  // Count the requested nodes
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  for(int i=0;i<_ndimension;i++){
 | 
			
		||||
    _Nprocessors*=_processors[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Coordinate periodic(_ndimension,1);
 | 
			
		||||
  MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
 | 
			
		||||
  MPI_Comm_rank(communicator,&_processor);
 | 
			
		||||
  MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
 | 
			
		||||
 | 
			
		||||
  if ( 0 && (communicator_base != communicator_world) ) {
 | 
			
		||||
    std::cout << "InitFromMPICommunicator Cartesian communicator created with a non-world communicator"<<std::endl;
 | 
			
		||||
    std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
 | 
			
		||||
    for(int d=0;d<_processors.size();d++){
 | 
			
		||||
      std::cout << _processor_coor[d]<<" ";
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int Size;
 | 
			
		||||
  MPI_Comm_size(communicator,&Size);
 | 
			
		||||
 | 
			
		||||
  communicator_halo.resize (2*_ndimension);
 | 
			
		||||
  for(int i=0;i<_ndimension*2;i++){
 | 
			
		||||
    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
			
		||||
  }
 | 
			
		||||
  assert(Size==_Nprocessors);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::~CartesianCommunicator()
 | 
			
		||||
{
 | 
			
		||||
  int MPI_is_finalised;
 | 
			
		||||
  MPI_Finalized(&MPI_is_finalised);
 | 
			
		||||
  if (communicator && !MPI_is_finalised) {
 | 
			
		||||
    MPI_Comm_free(&communicator);
 | 
			
		||||
    for(int i=0;i<communicator_halo.size();i++){
 | 
			
		||||
      MPI_Comm_free(&communicator_halo[i]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(float &f)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(double &d)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  tag= dir+from*32;
 | 
			
		||||
  int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(rrq);
 | 
			
		||||
  
 | 
			
		||||
  tag= dir+_processor*32;
 | 
			
		||||
  ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(xrq);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
					   void *recv,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
			
		||||
  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
 | 
			
		||||
  int myrank = _processor;
 | 
			
		||||
  int ierr;
 | 
			
		||||
 | 
			
		||||
  // Enforce no UVM in comms, device or host OK
 | 
			
		||||
  assert(acceleratorIsCommunicable(xmit));
 | 
			
		||||
  assert(acceleratorIsCommunicable(recv));
 | 
			
		||||
 | 
			
		||||
  // Give the CPU to MPI immediately; can use threads to overlap optionally
 | 
			
		||||
  //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
 | 
			
		||||
  ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
 | 
			
		||||
		    recv,bytes,MPI_CHAR,from, from,
 | 
			
		||||
		    communicator,MPI_STATUS_IGNORE);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
			
		||||
  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int dest, int dox,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int from, int dor,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0; // Do nothing -- no preparation required
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
  
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
  this->StencilBarrier(); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Pipeline mode through host memory
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
   * In prepare (phase 1):
 | 
			
		||||
   * PHASE 1: (prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 3: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers
 | 
			
		||||
   *
 | 
			
		||||
   *********************************
 | 
			
		||||
   * NB could split this further:
 | 
			
		||||
   *--------------------------------
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (BeginInterNode)
 | 
			
		||||
   * - complete all copies 
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * PHASE 3: (BeginIntraNode)
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 4: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers asynch
 | 
			
		||||
   * - (complete all copies) 
 | 
			
		||||
   */
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
/*
 | 
			
		||||
 * Bring sequence from Stencil.h down to lower level.
 | 
			
		||||
 * Assume using XeLink is ok
 | 
			
		||||
 */  
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_recv = NULL;
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   */
 | 
			
		||||
  
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
			
		||||
      ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      srq.PacketType = InterNodeRecv;
 | 
			
		||||
      srq.bytes      = rbytes;
 | 
			
		||||
      srq.req        = rrq;
 | 
			
		||||
      srq.host_buf   = host_recv;
 | 
			
		||||
      srq.device_buf = recv;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
#undef DEVICE_TO_HOST_CONCURRENT // pipeline
 | 
			
		||||
#ifdef DEVICE_TO_HOST_CONCURRENT
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
 | 
			
		||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
			
		||||
      acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
			
		||||
      
 | 
			
		||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      //      assert(ierr==0);
 | 
			
		||||
      //      off_node_bytes+=xbytes;
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      srq.PacketType = InterNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = host_xmit;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
#else
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
 | 
			
		||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
			
		||||
      const int chunks=1;
 | 
			
		||||
      for(int n=0;n<chunks;n++){
 | 
			
		||||
	void * host_xmitc = (void *)( (uint64_t) host_xmit + n*xbytes/chunks);
 | 
			
		||||
	void * xmitc      = (void *)( (uint64_t) xmit      + n*xbytes/chunks);
 | 
			
		||||
	acceleratorCopyFromDeviceAsynch(xmitc, host_xmitc,xbytes/chunks); // Make this Asynch
 | 
			
		||||
      }
 | 
			
		||||
      acceleratorCopySynchronise(); // Complete all pending copy transfers
 | 
			
		||||
      
 | 
			
		||||
      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      srq.PacketType = InterNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = host_xmit;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Receives already posted
 | 
			
		||||
  // Copies already started
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  /*  
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
  //  static int printed;
 | 
			
		||||
  //  if((printed<8) && this->IsBoss() ) {
 | 
			
		||||
  //    printf("dir %d doX %d doR %d Face size %ld %ld\n",dir,dox,dor,xbytes,rbytes);
 | 
			
		||||
  //    printed++;
 | 
			
		||||
  //  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
#ifdef DEVICE_TO_HOST_CONCURRENT
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      // Find the send in the prepared list
 | 
			
		||||
      int list_idx=-1;
 | 
			
		||||
      for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
	if ( (list[idx].device_buf==xmit)
 | 
			
		||||
	   &&(list[idx].PacketType==InterNodeXmit)
 | 
			
		||||
	   &&(list[idx].bytes==xbytes) ) {
 | 
			
		||||
 | 
			
		||||
	  list_idx = idx;
 | 
			
		||||
	  host_xmit = list[idx].host_buf;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      assert(list_idx != -1); // found it
 | 
			
		||||
      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list[list_idx].req        = xrq; // Update the MPI request in the list
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
#endif      
 | 
			
		||||
    } else {
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  std::vector<MPI_Request> MpiRequests(nreq);
 | 
			
		||||
 | 
			
		||||
  for(int r=0;r<nreq;r++){
 | 
			
		||||
    MpiRequests[r] = list[r].req;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&MpiRequests[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  for(int r=0;r<nreq;r++){
 | 
			
		||||
    if ( list[r].PacketType==InterNodeRecv ) {
 | 
			
		||||
      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers
 | 
			
		||||
  list.resize(0);               // Delete the list
 | 
			
		||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
			
		||||
  this->StencilBarrier(); 
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Barrier  (ShmComm);
 | 
			
		||||
}
 | 
			
		||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
//{
 | 
			
		||||
//}
 | 
			
		||||
void CartesianCommunicator::Barrier(void)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Barrier(communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Bcast(data,
 | 
			
		||||
		     bytes,
 | 
			
		||||
		     MPI_BYTE,
 | 
			
		||||
		     root,
 | 
			
		||||
		     communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::RankWorld(void){
 | 
			
		||||
  int r;
 | 
			
		||||
  MPI_Comm_rank(communicator_world,&r);
 | 
			
		||||
  return r;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void){
 | 
			
		||||
  int ierr = MPI_Barrier(communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
		      bytes,
 | 
			
		||||
		      MPI_BYTE,
 | 
			
		||||
		      root,
 | 
			
		||||
		      communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  Coordinate row(_ndimension,1);
 | 
			
		||||
  assert(dim>=0 && dim<_ndimension);
 | 
			
		||||
 | 
			
		||||
  //  Split the communicator
 | 
			
		||||
  row[dim] = _processors[dim];
 | 
			
		||||
 | 
			
		||||
  int me;
 | 
			
		||||
  CartesianCommunicator Comm(row,*this,me);
 | 
			
		||||
  Comm.AllToAll(in,out,words,bytes);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  // MPI is a pain and uses "int" arguments
 | 
			
		||||
  // 64*64*64*128*16 == 500Million elements of data.
 | 
			
		||||
  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
			
		||||
  // (Turns up on 32^3 x 64 Gparity too)
 | 
			
		||||
  MPI_Datatype object;
 | 
			
		||||
  int iwords;
 | 
			
		||||
  int ibytes;
 | 
			
		||||
  iwords = words;
 | 
			
		||||
  ibytes = bytes;
 | 
			
		||||
  assert(words == iwords); // safe to cast to int ?
 | 
			
		||||
  assert(bytes == ibytes); // safe to cast to int ?
 | 
			
		||||
  MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
 | 
			
		||||
  MPI_Type_commit(&object);
 | 
			
		||||
  MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
 | 
			
		||||
  MPI_Type_free(&object);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,161 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/Communicator_none.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Info that is setup once and indept of cartesian layout
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSharedMemory::Init(communicator_world);
 | 
			
		||||
  GlobalSharedMemory::SharedMemoryAllocate(
 | 
			
		||||
					   GlobalSharedMemory::MAX_MPI_SHM_BYTES,
 | 
			
		||||
					   GlobalSharedMemory::Hugepages);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) 
 | 
			
		||||
  : CartesianCommunicator(processors) 
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  srank=0;
 | 
			
		||||
  SetCommunicator(communicator_world);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
  
 | 
			
		||||
  // Require 1^N processor grid for fake
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processor = 0;
 | 
			
		||||
  for(int d=0;d<_ndimension;d++) {
 | 
			
		||||
    assert(_processors[d]==1);
 | 
			
		||||
    _processor_coor[d] = 0;
 | 
			
		||||
  }
 | 
			
		||||
  SetCommunicator(communicator_world);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::~CartesianCommunicator(){}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::GlobalMax(float &){}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(double &){}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &){}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *,int N){}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &){}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(double *,int N){}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &){}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &){}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint32_t &){}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint64_t &){}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Basic Halo comms primitive -- should never call in single node
 | 
			
		||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
					   void *recv,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  bcopy(in,out,bytes*words);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  bcopy(in,out,bytes*words);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
			
		||||
void CartesianCommunicator::Barrier(void){}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void) { }
 | 
			
		||||
int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
			
		||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
			
		||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
			
		||||
{
 | 
			
		||||
  source =0;
 | 
			
		||||
  dest=0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int xmit_to_rank,int dox,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int recv_from_rank,int dor,
 | 
			
		||||
						     int bytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int xmit_to_rank,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int recv_from_rank,int dor,
 | 
			
		||||
							   int xbytes,int rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return xbytes+rbytes;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int xmit_to_rank,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int recv_from_rank,int dor,
 | 
			
		||||
							 int xbytes,int rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return xbytes+rbytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilBarrier(void){};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,172 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
// static data
 | 
			
		||||
 | 
			
		||||
int                 GlobalSharedMemory::HPEhypercube = 1;
 | 
			
		||||
uint64_t            GlobalSharedMemory::MAX_MPI_SHM_BYTES   = 1024LL*1024LL*1024LL; 
 | 
			
		||||
int                 GlobalSharedMemory::Hugepages = 0;
 | 
			
		||||
int                 GlobalSharedMemory::_ShmSetup;
 | 
			
		||||
int                 GlobalSharedMemory::_ShmAlloc;
 | 
			
		||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
			
		||||
 | 
			
		||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void * GlobalSharedMemory::HostCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
			
		||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
			
		||||
int                 GlobalSharedMemory::WorldShmSize;
 | 
			
		||||
std::vector<int>    GlobalSharedMemory::WorldShmRanks;
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       GlobalSharedMemory::WorldComm;
 | 
			
		||||
int                 GlobalSharedMemory::WorldSize;
 | 
			
		||||
int                 GlobalSharedMemory::WorldRank;
 | 
			
		||||
 | 
			
		||||
int                 GlobalSharedMemory::WorldNodes;
 | 
			
		||||
int                 GlobalSharedMemory::WorldNode;
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryFree(void)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmAlloc);
 | 
			
		||||
  assert(_ShmAllocBytes>0);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    munmap(WorldShmCommBufs[r],_ShmAllocBytes);
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAlloc = 0;
 | 
			
		||||
  _ShmAllocBytes = 0;
 | 
			
		||||
}
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Alloc, free shmem region
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
			
		||||
  void *ptr = (void *)host_heap_top;
 | 
			
		||||
  host_heap_top  += bytes;
 | 
			
		||||
  host_heap_bytes+= bytes;
 | 
			
		||||
  if (host_heap_bytes >= host_heap_size) {
 | 
			
		||||
    std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
			
		||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
			
		||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    assert(host_heap_bytes<host_heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void SharedMemory::HostBufferFreeAll(void) { 
 | 
			
		||||
  host_heap_top  =(size_t)HostCommBuf;
 | 
			
		||||
  host_heap_bytes=0;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
			
		||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
			
		||||
  void *ptr = (void *)heap_top;
 | 
			
		||||
  heap_top  += bytes;
 | 
			
		||||
  heap_bytes+= bytes;
 | 
			
		||||
  if (heap_bytes >= heap_size) {
 | 
			
		||||
    std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
			
		||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
			
		||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    assert(heap_bytes<heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void SharedMemory::ShmBufferFreeAll(void) { 
 | 
			
		||||
  heap_top  =(size_t)ShmBufferSelf();
 | 
			
		||||
  heap_bytes=0;
 | 
			
		||||
}
 | 
			
		||||
void *SharedMemory::ShmBufferSelf(void)
 | 
			
		||||
{
 | 
			
		||||
  //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
 | 
			
		||||
  return ShmCommBufs[ShmRank];
 | 
			
		||||
}
 | 
			
		||||
static inline int divides(int a,int b)
 | 
			
		||||
{
 | 
			
		||||
  return ( b == ( (b/a)*a ) );
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
			
		||||
{
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Allow user to configure through environment variable
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    std::vector<int> IntShmDims;
 | 
			
		||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
			
		||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    long ShmSize = 1;
 | 
			
		||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
			
		||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
			
		||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
    }
 | 
			
		||||
    assert(ShmSize == WorldShmSize);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ndimension = WorldDims.size();
 | 
			
		||||
  ShmDims=Coordinate(ndimension,1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> primes({2,3,5});
 | 
			
		||||
 | 
			
		||||
  int dim = 0;
 | 
			
		||||
  int last_dim = ndimension - 1;
 | 
			
		||||
  int AutoShmSize = 1;
 | 
			
		||||
  while(AutoShmSize != WorldShmSize) {
 | 
			
		||||
    int p;
 | 
			
		||||
    for(p=0;p<primes.size();p++) {
 | 
			
		||||
      int prime=primes[p];
 | 
			
		||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
			
		||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
			
		||||
  AutoShmSize*=prime;
 | 
			
		||||
  ShmDims[dim]*=prime;
 | 
			
		||||
  last_dim = dim;
 | 
			
		||||
  break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if (p == primes.size() && last_dim == dim) {
 | 
			
		||||
      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
			
		||||
      exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
    dim=(dim+1) %ndimension;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
@@ -1,190 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
#include <mpi.h>
 | 
			
		||||
#endif 
 | 
			
		||||
#include <semaphore.h>
 | 
			
		||||
#include <fcntl.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
#include <limits.h>
 | 
			
		||||
#include <sys/types.h>
 | 
			
		||||
#include <sys/ipc.h>
 | 
			
		||||
#include <sys/shm.h>
 | 
			
		||||
#include <sys/mman.h>
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
			
		||||
typedef MPI_Request MpiCommsRequest_t;
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
typedef MPI_Request CommsRequest_t;
 | 
			
		||||
#else
 | 
			
		||||
enum PacketType_t { InterNodeXmit, InterNodeRecv, IntraNodeXmit, IntraNodeRecv };
 | 
			
		||||
typedef struct {
 | 
			
		||||
  PacketType_t PacketType;
 | 
			
		||||
  void *host_buf;
 | 
			
		||||
  void *device_buf;
 | 
			
		||||
  unsigned long bytes;
 | 
			
		||||
  MpiCommsRequest_t req;
 | 
			
		||||
} CommsRequest_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
typedef int MpiCommsRequest_t;
 | 
			
		||||
typedef int CommsRequest_t;
 | 
			
		||||
typedef int Grid_MPI_Comm;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class GlobalSharedMemory {
 | 
			
		||||
private:
 | 
			
		||||
  static const int     MAXLOG2RANKSPERNODE = 16;            
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // Init once lock on the buffer allocation
 | 
			
		||||
  static int      _ShmSetup;
 | 
			
		||||
  static int      _ShmAlloc;
 | 
			
		||||
  static uint64_t _ShmAllocBytes;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // HPE 8600 hypercube optimisation
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  static int HPEhypercube;
 | 
			
		||||
 | 
			
		||||
  static int      ShmSetup(void)      { return _ShmSetup; }
 | 
			
		||||
  static int      ShmAlloc(void)      { return _ShmAlloc; }
 | 
			
		||||
  static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
 | 
			
		||||
  static uint64_t      MAX_MPI_SHM_BYTES;
 | 
			
		||||
  static int           Hugepages;
 | 
			
		||||
 | 
			
		||||
  static std::vector<void *> WorldShmCommBufs;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  static void *HostCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
  static Grid_MPI_Comm WorldComm;
 | 
			
		||||
  static int           WorldRank;
 | 
			
		||||
  static int           WorldSize;
 | 
			
		||||
 | 
			
		||||
  static Grid_MPI_Comm WorldShmComm;
 | 
			
		||||
  static int           WorldShmRank;
 | 
			
		||||
  static int           WorldShmSize;
 | 
			
		||||
 | 
			
		||||
  static int           WorldNodes;
 | 
			
		||||
  static int           WorldNode;
 | 
			
		||||
 | 
			
		||||
  static std::vector<int>  WorldShmRanks;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Create an optimal reordered communicator that makes MPI_Cart_create get it right
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
 | 
			
		||||
  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
			
		||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
			
		||||
  static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Provide shared memory facilities off comm world
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
			
		||||
  static void SharedMemoryFree(void);
 | 
			
		||||
  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////
 | 
			
		||||
// one per communicator
 | 
			
		||||
//////////////////////////////
 | 
			
		||||
class SharedMemory 
 | 
			
		||||
{
 | 
			
		||||
private:
 | 
			
		||||
  static const int     MAXLOG2RANKSPERNODE = 16;            
 | 
			
		||||
 | 
			
		||||
  size_t heap_top;
 | 
			
		||||
  size_t heap_bytes;
 | 
			
		||||
  size_t heap_size;
 | 
			
		||||
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  size_t host_heap_top;  // set in free all
 | 
			
		||||
  size_t host_heap_bytes;// set in free all
 | 
			
		||||
  void *HostCommBuf;     // set in SetCommunicator
 | 
			
		||||
  size_t host_heap_size; // set in SetCommunicator
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
			
		||||
  int    ShmRank; 
 | 
			
		||||
  int    ShmSize;
 | 
			
		||||
  std::vector<void *> ShmCommBufs;
 | 
			
		||||
  std::vector<int>    ShmRanks;// Mapping comm ranks to Shm ranks
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  SharedMemory() {};
 | 
			
		||||
  ~SharedMemory();
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // set the buffers & sizes
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void SetCommunicator(Grid_MPI_Comm comm);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // For this instance ; disjoint buffer sets between splits if split grid
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ShmBarrier(void); 
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Call on any instance
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  void SharedMemoryTest(void);
 | 
			
		||||
  
 | 
			
		||||
  void *ShmBufferSelf(void);
 | 
			
		||||
  void *ShmBuffer    (int rank);
 | 
			
		||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
			
		||||
  void *ShmBufferMalloc(size_t bytes);
 | 
			
		||||
  void  ShmBufferFreeAll(void) ;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  void *HostBufferMalloc(size_t bytes);
 | 
			
		||||
  void HostBufferFreeAll(void);
 | 
			
		||||
#endif  
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Make info on Nodes & ranks and Shared memory available
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  int NodeCount(void) { return GlobalSharedMemory::WorldNodes;};
 | 
			
		||||
  int RankCount(void) { return GlobalSharedMemory::WorldSize;};
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,171 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/communicator/SharedMemory.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
#define header "SharedMemoryNone: "
 | 
			
		||||
 | 
			
		||||
/*Construct from an MPI communicator*/
 | 
			
		||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmSetup==0);
 | 
			
		||||
  WorldComm = 0;
 | 
			
		||||
  WorldRank = 0;
 | 
			
		||||
  WorldSize = 1;
 | 
			
		||||
  WorldShmComm = 0 ;
 | 
			
		||||
  WorldShmRank = 0 ;
 | 
			
		||||
  WorldShmSize = 1 ;
 | 
			
		||||
  WorldNodes   = 1 ;
 | 
			
		||||
  WorldNode    = 0 ;
 | 
			
		||||
  WorldShmRanks.resize(WorldSize); WorldShmRanks[0] = 0;
 | 
			
		||||
  WorldShmCommBufs.resize(1);
 | 
			
		||||
  _ShmSetup=1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
{
 | 
			
		||||
  optimal_comm = WorldComm;
 | 
			
		||||
  SHM = Coordinate(processors.size(),1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Hugetlbfs mapping intended, use anonymous mmap
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#if 1
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
  if ( WorldRank == 0 ){
 | 
			
		||||
    std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Loop over ranks/gpu's on our node
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  WorldShmCommBufs[0] = ShmCommBuf;
 | 
			
		||||
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  int mmap_flag =0;
 | 
			
		||||
#ifdef MAP_ANONYMOUS
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_ANON
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
  if ( flags ) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
  ShmCommBuf =(void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag, -1, 0); 
 | 
			
		||||
  if (ShmCommBuf == (void *)MAP_FAILED) {
 | 
			
		||||
    perror("mmap failed ");
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
#ifdef MADV_HUGEPAGE
 | 
			
		||||
  if (!Hugepages ) madvise(ShmCommBuf,bytes,MADV_HUGEPAGE);
 | 
			
		||||
#endif
 | 
			
		||||
  bzero(ShmCommBuf,bytes);
 | 
			
		||||
  WorldShmCommBufs[0] = ShmCommBuf;
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorMemSet(dest,0,bytes);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  ShmRanks.resize(1);
 | 
			
		||||
  ShmCommBufs.resize(1);
 | 
			
		||||
  ShmRanks[0] = 0;
 | 
			
		||||
  ShmRank     = 0;
 | 
			
		||||
  ShmSize     = 1;
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map ShmRank to WorldShmRank and use the right buffer
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ShmCommBufs[0] = GlobalSharedMemory::WorldShmCommBufs[0];
 | 
			
		||||
  heap_size      = GlobalSharedMemory::ShmAllocBytes();
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
// On node barrier
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::ShmBarrier(void){ return ; }
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Test the shared memory is working
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SharedMemoryTest(void) { return; }
 | 
			
		||||
 | 
			
		||||
void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
{
 | 
			
		||||
  return NULL;
 | 
			
		||||
}
 | 
			
		||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
 | 
			
		||||
{
 | 
			
		||||
  return NULL;
 | 
			
		||||
}
 | 
			
		||||
SharedMemory::~SharedMemory()
 | 
			
		||||
{};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
@@ -1,440 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cshift/Cshift_common.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
 | 
			
		||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
{
 | 
			
		||||
  // GPU version
 | 
			
		||||
  uint64_t sz=Cshift_table.size();
 | 
			
		||||
  if (Cshift_table_device.size()!=sz )    {
 | 
			
		||||
    Cshift_table_device.resize(sz);
 | 
			
		||||
  }
 | 
			
		||||
  acceleratorCopyToDevice((void *)&Cshift_table[0],
 | 
			
		||||
			  (void *)&Cshift_table_device[0],
 | 
			
		||||
			  sizeof(Cshift_table[0])*sz);
 | 
			
		||||
 | 
			
		||||
  return &Cshift_table_device[0];
 | 
			
		||||
  // CPU version use identify map
 | 
			
		||||
}
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask = 0x3;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int ent = 0;
 | 
			
		||||
 | 
			
		||||
  if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
 | 
			
		||||
 | 
			
		||||
  int stride=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( cbmask == 0x3 ) { 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o  = n*stride;
 | 
			
		||||
	int bo = n*e2;
 | 
			
		||||
	Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } else { 
 | 
			
		||||
     int bo=0;
 | 
			
		||||
     for(int n=0;n<e1;n++){
 | 
			
		||||
       for(int b=0;b<e2;b++){
 | 
			
		||||
	 int o  = n*stride;
 | 
			
		||||
	 int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
	 if ( ocb &cbmask ) {
 | 
			
		||||
	   Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there *is* need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
		     ExtractPointerArray<typename vobj::scalar_object> pointers,
 | 
			
		||||
		     int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask = 0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( cbmask ==0x3){
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
	int b = nn/e1;
 | 
			
		||||
	int o      =   n*n1;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
	
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
  } else { 
 | 
			
		||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
			
		||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
			
		||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
	int b = nn/e1;
 | 
			
		||||
 | 
			
		||||
	Coordinate coor;
 | 
			
		||||
 | 
			
		||||
	int o=n*n1;
 | 
			
		||||
	int oindex = o+b;
 | 
			
		||||
 | 
			
		||||
       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
			
		||||
 | 
			
		||||
	int ocb=1<<cb;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there is no need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
    
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int stride=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
 | 
			
		||||
 | 
			
		||||
  int ent    =0;
 | 
			
		||||
 | 
			
		||||
  if ( cbmask ==0x3 ) {
 | 
			
		||||
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o   =n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int bo  =n*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
	Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  } else { 
 | 
			
		||||
    int bo=0;
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o   =n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there *is* need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
    
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
 | 
			
		||||
  if(cbmask ==0x3 ) {
 | 
			
		||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
	int b = nn/e1;
 | 
			
		||||
	int o      = n*_slice_stride;
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
  } else { 
 | 
			
		||||
 | 
			
		||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
			
		||||
    // Test_cshift_red_black code.
 | 
			
		||||
    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
 | 
			
		||||
    std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
 | 
			
		||||
    assert(0); // This will fail if hit on GPU
 | 
			
		||||
    autoView( rhs_v, rhs, CpuWrite);
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int o      = n*rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
	int offset = b+n*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
	if ( ocb&cbmask ) {
 | 
			
		||||
	  merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// local to node block strided copies
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
  int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  int stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
 | 
			
		||||
 | 
			
		||||
  int ent=0;
 | 
			
		||||
 | 
			
		||||
  if(cbmask == 0x3 ){
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int o =n*stride+b;
 | 
			
		||||
	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } else { 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int o =n*stride+b;
 | 
			
		||||
        int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
 | 
			
		||||
        if ( ocb&cbmask ) {
 | 
			
		||||
	  Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    cbmask=0x3;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
  int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane 
 | 
			
		||||
 | 
			
		||||
  int e1=rhs.Grid()->_slice_nblock[dimension];
 | 
			
		||||
  int e2=rhs.Grid()->_slice_block [dimension];
 | 
			
		||||
  int stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
 | 
			
		||||
 | 
			
		||||
  int ent=0;
 | 
			
		||||
 | 
			
		||||
  if ( cbmask == 0x3 ) {
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
    for(int b=0;b<e2;b++){
 | 
			
		||||
      int o  =n*stride;
 | 
			
		||||
      Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
			
		||||
    }}
 | 
			
		||||
  } else {
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
    for(int b=0;b<e2;b++){
 | 
			
		||||
      int o  =n*stride;
 | 
			
		||||
      int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
 | 
			
		||||
      if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
			
		||||
    }}
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,1,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Local to node Cshift
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  int sshift[2];
 | 
			
		||||
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = rhs.Grid();
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int gd = grid->_gdimensions[dimension];
 | 
			
		||||
  int ly = grid->_simd_layout[dimension];
 | 
			
		||||
 | 
			
		||||
  // Map to always positive shift modulo global full dimension.
 | 
			
		||||
  shift = (shift+fd)%fd;
 | 
			
		||||
 | 
			
		||||
  // the permute type
 | 
			
		||||
  ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
			
		||||
  int permute_dim =grid->PermuteDim(dimension);
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
  int permute_type_dist;
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    //    int o   = 0;
 | 
			
		||||
    int bo  = x * grid->_ostride[dimension];
 | 
			
		||||
    int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
 | 
			
		||||
    int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
    int sx     = (x+sshift)%rd;
 | 
			
		||||
    
 | 
			
		||||
    // wrap is whether sshift > rd.
 | 
			
		||||
    //  num is sshift mod rd.
 | 
			
		||||
    // 
 | 
			
		||||
    //  shift 7
 | 
			
		||||
    //
 | 
			
		||||
    //  XoXo YcYc 
 | 
			
		||||
    //  oXoX cYcY
 | 
			
		||||
    //  XoXo YcYc
 | 
			
		||||
    //  oXoX cYcY
 | 
			
		||||
    //
 | 
			
		||||
    //  sshift -- 
 | 
			
		||||
    //
 | 
			
		||||
    //  XX YY ; 3
 | 
			
		||||
    //  XX YY ; 0
 | 
			
		||||
    //  XX YY ; 3
 | 
			
		||||
    //  XX YY ; 0
 | 
			
		||||
    //
 | 
			
		||||
    int permute_slice=0;
 | 
			
		||||
    if(permute_dim){
 | 
			
		||||
      int wrap = sshift/rd; wrap=wrap % ly;
 | 
			
		||||
      int  num = sshift%rd;
 | 
			
		||||
 | 
			
		||||
      if ( x< rd-num ) permute_slice=wrap;
 | 
			
		||||
      else permute_slice = (wrap+1)%ly;
 | 
			
		||||
 | 
			
		||||
      if ( (ly>2) && (permute_slice) ) {
 | 
			
		||||
	assert(permute_type & RotateBit);
 | 
			
		||||
	permute_type_dist = permute_type|permute_slice;
 | 
			
		||||
      } else {
 | 
			
		||||
	permute_type_dist = permute_type;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type_dist);
 | 
			
		||||
    else                 Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
  
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,545 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cshift/Cshift_mpi.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef _GRID_CSHIFT_MPI_H_
 | 
			
		||||
#define _GRID_CSHIFT_MPI_H_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
const int Cshift_verbose=0;
 | 
			
		||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> ret(rhs.Grid()); 
 | 
			
		||||
  
 | 
			
		||||
  int fd = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
  // Map to always positive shift modulo global full dimension.
 | 
			
		||||
  shift = (shift+fd)%fd;
 | 
			
		||||
 | 
			
		||||
  ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
			
		||||
        
 | 
			
		||||
  // the permute type
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
			
		||||
 | 
			
		||||
  RealD t1,t0;
 | 
			
		||||
  t0=usecond();
 | 
			
		||||
  if ( !comm_dim ) {
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
			
		||||
  } else if ( splice_dim ) {
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift);
 | 
			
		||||
  } else {
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
			
		||||
  }
 | 
			
		||||
  t1=usecond();
 | 
			
		||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
#if 1
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  int sshift[2];
 | 
			
		||||
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  //  std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    //    std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    //    std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  int sshift[2];
 | 
			
		||||
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    //    std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    //    std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  Lattice<vobj> temp(rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  assert(simd_layout==1);
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
      if (cbmask != 0x3) words=words>>1;
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
      
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if (Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
   
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int pd = grid->_processors[dimension];
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //	    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //	    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Simd direction uses an extract/merge pair
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
 
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Work out what to send where
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  int cb    = (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  // loop over outer coord planes orthog to dim
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    // FIXME call local permute copy if none are offnode.
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
      int inner_bit = (Nsimd>>(permute_type+1));
 | 
			
		||||
      int ic= (i&inner_bit)? 1:0;
 | 
			
		||||
 | 
			
		||||
      int my_coor          = rd*ic + x;
 | 
			
		||||
      int nbr_coor         = my_coor+sshift;
 | 
			
		||||
      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
			
		||||
 | 
			
		||||
      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
			
		||||
      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
			
		||||
      int nbr_lane = (i&(~inner_bit));
 | 
			
		||||
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
			
		||||
 | 
			
		||||
      assert (sx == nbr_ox);
 | 
			
		||||
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  if(Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  Lattice<vobj> temp(rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  assert(simd_layout==1);
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
			
		||||
  vobj *send_buf;
 | 
			
		||||
  vobj *recv_buf;
 | 
			
		||||
  {
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    size_t bytes = buffer_size*sizeof(vobj);
 | 
			
		||||
    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
      if (cbmask != 0x3) words=words>>1;
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
			
		||||
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
   
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int pd = grid->_processors[dimension];
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Simd direction uses an extract/merge pair
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
  {
 | 
			
		||||
    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Work out what to send where
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  int cb    = (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  // loop over outer coord planes orthog to dim
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    // FIXME call local permute copy if none are offnode.
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
      int inner_bit = (Nsimd>>(permute_type+1));
 | 
			
		||||
      int ic= (i&inner_bit)? 1:0;
 | 
			
		||||
 | 
			
		||||
      int my_coor          = rd*ic + x;
 | 
			
		||||
      int nbr_coor         = my_coor+sshift;
 | 
			
		||||
      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
			
		||||
 | 
			
		||||
      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
			
		||||
      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
			
		||||
      int nbr_lane = (i&(~inner_bit));
 | 
			
		||||
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
			
		||||
 | 
			
		||||
      assert (sx == nbr_ox);
 | 
			
		||||
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  if(Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,5 +0,0 @@
 | 
			
		||||
#include <Grid/GridCore.h>       
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										22091
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										22091
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,534 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/lattice/Lattice_ET.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: Christoph Lehner <christoph@lhnr.de
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_ET_H
 | 
			
		||||
#define GRID_LATTICE_ET_H
 | 
			
		||||
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <tuple>
 | 
			
		||||
#include <typeinfo>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
// Predicated where support
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
// drop to scalar in SIMT; cleaner in fact
 | 
			
		||||
template <class iobj, class vobj, class robj>
 | 
			
		||||
accelerator_inline vobj predicatedWhere(const iobj &predicate, 
 | 
			
		||||
					const vobj &iftrue, 
 | 
			
		||||
					const robj &iffalse) 
 | 
			
		||||
{
 | 
			
		||||
  Integer mask = TensorRemove(predicate);
 | 
			
		||||
  typename std::remove_const<vobj>::type ret= iffalse;
 | 
			
		||||
  if (mask) ret=iftrue;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
template <class iobj, class vobj, class robj>
 | 
			
		||||
accelerator_inline vobj predicatedWhere(const iobj &predicate, 
 | 
			
		||||
					const vobj &iftrue, 
 | 
			
		||||
					const robj &iffalse) 
 | 
			
		||||
{
 | 
			
		||||
  typename std::remove_const<vobj>::type ret;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  //  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<Integer> mask(Nsimd);
 | 
			
		||||
  ExtractBuffer<scalar_object> truevals(Nsimd);
 | 
			
		||||
  ExtractBuffer<scalar_object> falsevals(Nsimd);
 | 
			
		||||
 | 
			
		||||
  extract(iftrue, truevals);
 | 
			
		||||
  extract(iffalse, falsevals);
 | 
			
		||||
  extract<vInteger, Integer>(TensorRemove(predicate), mask);
 | 
			
		||||
 | 
			
		||||
  for (int s = 0; s < Nsimd; s++) {
 | 
			
		||||
    if (mask[s]) falsevals[s] = truevals[s];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  merge(ret, falsevals);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
//Specialization of getVectorType for lattices
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
template<typename T>
 | 
			
		||||
struct getVectorType<Lattice<T> >{
 | 
			
		||||
  typedef typename Lattice<T>::vector_object type;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
//--  recursive evaluation of expressions; --
 | 
			
		||||
// handle leaves of syntax tree
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
template<class sobj,
 | 
			
		||||
  typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr> 
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
sobj eval(const uint64_t ss, const sobj &arg)
 | 
			
		||||
{
 | 
			
		||||
  return arg;
 | 
			
		||||
}
 | 
			
		||||
template <class lobj> accelerator_inline 
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
 | 
			
		||||
{
 | 
			
		||||
  return arg(ss);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
//--  recursive evaluation of expressions; --
 | 
			
		||||
// whole vector return, used only for expression return type inference
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
template<class sobj> accelerator_inline 
 | 
			
		||||
sobj vecEval(const uint64_t ss, const sobj &arg)
 | 
			
		||||
{
 | 
			
		||||
  return arg;
 | 
			
		||||
}
 | 
			
		||||
template <class lobj> accelerator_inline 
 | 
			
		||||
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg) 
 | 
			
		||||
{
 | 
			
		||||
  return arg[ss];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
// handle nodes in syntax tree- eval one operand
 | 
			
		||||
// vecEval needed (but never called as all expressions offloaded) to infer the return type
 | 
			
		||||
// in SIMT contexts of closure.
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
template <typename Op, typename T1> accelerator_inline 
 | 
			
		||||
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func( vecEval(ss, expr.arg1)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func( vecEval(ss, expr.arg1) );
 | 
			
		||||
}
 | 
			
		||||
// vecEval two operands
 | 
			
		||||
template <typename Op, typename T1, typename T2> accelerator_inline
 | 
			
		||||
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
 | 
			
		||||
}
 | 
			
		||||
// vecEval three operands
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
 | 
			
		||||
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
// handle nodes in syntax tree- eval one operand coalesced
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
template <typename Op, typename T1> accelerator_inline 
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func( eval(ss, expr.arg1)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func( eval(ss, expr.arg1) );
 | 
			
		||||
}
 | 
			
		||||
// eval two operands
 | 
			
		||||
template <typename Op, typename T1, typename T2> accelerator_inline
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
 | 
			
		||||
{
 | 
			
		||||
  return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
 | 
			
		||||
}
 | 
			
		||||
// eval three operands
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
 | 
			
		||||
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  
 | 
			
		||||
  -> decltype(expr.op.func(eval(ss, expr.arg1), 
 | 
			
		||||
			   eval(ss, expr.arg2), 
 | 
			
		||||
			   eval(ss, expr.arg3)))
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
  // Handles Nsimd (vInteger) != Nsimd(ComplexD)
 | 
			
		||||
  typedef decltype(vecEval(ss, expr.arg2)) rvobj;
 | 
			
		||||
  typedef typename std::remove_reference<rvobj>::type vobj;
 | 
			
		||||
 | 
			
		||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
			
		||||
 | 
			
		||||
  auto vpred = vecEval(ss,expr.arg1);
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<Integer> mask(Nsimd);
 | 
			
		||||
  extract<vInteger, Integer>(TensorRemove(vpred), mask);
 | 
			
		||||
 | 
			
		||||
  int s = acceleratorSIMTlane(Nsimd);
 | 
			
		||||
  return expr.op.func(mask[s],
 | 
			
		||||
		      eval(ss, expr.arg2), 
 | 
			
		||||
		      eval(ss, expr.arg3));
 | 
			
		||||
#else
 | 
			
		||||
  return expr.op.func(eval(ss, expr.arg1),
 | 
			
		||||
		      eval(ss, expr.arg2), 
 | 
			
		||||
		      eval(ss, expr.arg3));
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Obtain the grid from an expression, ensuring conformable. This must follow a
 | 
			
		||||
// tree recursion; must retain grid pointer in the LatticeView class which sucks
 | 
			
		||||
// Use a different method, and make it void *.
 | 
			
		||||
// Perhaps a conformable method.
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  lat.Conformable(grid);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid,const T1 ¬lat)  // non-lattice leaf
 | 
			
		||||
{}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  GridFromExpression(grid, expr.arg1);  // recurse
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1, typename T2>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  GridFromExpression(grid, expr.arg1);  // recurse
 | 
			
		||||
  GridFromExpression(grid, expr.arg2);
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  GridFromExpression(grid, expr.arg1);  // recurse
 | 
			
		||||
  GridFromExpression(grid, expr.arg2);  // recurse
 | 
			
		||||
  GridFromExpression(grid, expr.arg3);  // recurse
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Obtain the CB from an expression, ensuring conformable. This must follow a
 | 
			
		||||
// tree recursion
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  if ((cb == Odd) || (cb == Even)) {
 | 
			
		||||
    assert(cb == lat.Checkerboard());
 | 
			
		||||
  }
 | 
			
		||||
  cb = lat.Checkerboard();
 | 
			
		||||
}
 | 
			
		||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void CBFromExpression(int &cb, const T1 ¬lat) {} // non-lattice leaf
 | 
			
		||||
template <typename Op, typename T1> inline 
 | 
			
		||||
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  CBFromExpression(cb, expr.arg1);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2> inline 
 | 
			
		||||
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  CBFromExpression(cb, expr.arg1);  // recurse AST
 | 
			
		||||
  CBFromExpression(cb, expr.arg2);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3>
 | 
			
		||||
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  CBFromExpression(cb, expr.arg1);  // recurse AST
 | 
			
		||||
  CBFromExpression(cb, expr.arg2);  // recurse AST
 | 
			
		||||
  CBFromExpression(cb, expr.arg3);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// ViewOpen
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void ExpressionViewOpen(T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  lat.ViewOpen(AcceleratorRead);
 | 
			
		||||
}
 | 
			
		||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
  inline void ExpressionViewOpen(T1 ¬lat) {}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1> inline 
 | 
			
		||||
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr) 
 | 
			
		||||
{  
 | 
			
		||||
  ExpressionViewOpen(expr.arg1); // recurse AST
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1, typename T2> inline 
 | 
			
		||||
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  ExpressionViewOpen(expr.arg1);  // recurse AST
 | 
			
		||||
  ExpressionViewOpen(expr.arg2);  // rrecurse AST
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3>
 | 
			
		||||
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  ExpressionViewOpen(expr.arg1);  // recurse AST
 | 
			
		||||
  ExpressionViewOpen(expr.arg2);  // recurse AST
 | 
			
		||||
  ExpressionViewOpen(expr.arg3);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// ViewClose
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void ExpressionViewClose( T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  lat.ViewClose();
 | 
			
		||||
}
 | 
			
		||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
 | 
			
		||||
inline void ExpressionViewClose(T1 ¬lat) {}
 | 
			
		||||
 | 
			
		||||
template <typename Op, typename T1> inline 
 | 
			
		||||
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr) 
 | 
			
		||||
{  
 | 
			
		||||
  ExpressionViewClose(expr.arg1); // recurse AST
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2> inline 
 | 
			
		||||
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  ExpressionViewClose(expr.arg1);  // recurse AST
 | 
			
		||||
  ExpressionViewClose(expr.arg2);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
template <typename Op, typename T1, typename T2, typename T3>
 | 
			
		||||
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr) 
 | 
			
		||||
{
 | 
			
		||||
  ExpressionViewClose(expr.arg1);  // recurse AST
 | 
			
		||||
  ExpressionViewClose(expr.arg2);  // recurse AST
 | 
			
		||||
  ExpressionViewClose(expr.arg3);  // recurse AST
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Unary operators and funcs
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#define GridUnopClass(name, ret)					\
 | 
			
		||||
  struct name {								\
 | 
			
		||||
    template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
GridUnopClass(UnarySub, -a);
 | 
			
		||||
GridUnopClass(UnaryNot, Not(a));
 | 
			
		||||
GridUnopClass(UnaryTrace, trace(a));
 | 
			
		||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
			
		||||
GridUnopClass(UnaryTa, Ta(a));
 | 
			
		||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
			
		||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
			
		||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
			
		||||
GridUnopClass(UnaryAbs, abs(a));
 | 
			
		||||
GridUnopClass(UnarySqrt, sqrt(a));
 | 
			
		||||
GridUnopClass(UnarySin, sin(a));
 | 
			
		||||
GridUnopClass(UnaryCos, cos(a));
 | 
			
		||||
GridUnopClass(UnaryAsin, asin(a));
 | 
			
		||||
GridUnopClass(UnaryAcos, acos(a));
 | 
			
		||||
GridUnopClass(UnaryLog, log(a));
 | 
			
		||||
GridUnopClass(UnaryExp, exp(a));
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Binary operators
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#define GridBinOpClass(name, combination)			\
 | 
			
		||||
  struct name {							\
 | 
			
		||||
    template <class _left, class _right>			\
 | 
			
		||||
    static auto accelerator_inline				\
 | 
			
		||||
    func(const _left &lhs, const _right &rhs)			\
 | 
			
		||||
      -> decltype(combination) const				\
 | 
			
		||||
    {								\
 | 
			
		||||
      return combination;					\
 | 
			
		||||
    }								\
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
GridBinOpClass(BinaryAdd, lhs + rhs);
 | 
			
		||||
GridBinOpClass(BinarySub, lhs - rhs);
 | 
			
		||||
GridBinOpClass(BinaryMul, lhs *rhs);
 | 
			
		||||
GridBinOpClass(BinaryDiv, lhs /rhs);
 | 
			
		||||
GridBinOpClass(BinaryAnd, lhs &rhs);
 | 
			
		||||
GridBinOpClass(BinaryOr, lhs | rhs);
 | 
			
		||||
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
 | 
			
		||||
GridBinOpClass(BinaryOrOr, lhs || rhs);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
// Trinary conditional op
 | 
			
		||||
////////////////////////////////////////////////////
 | 
			
		||||
#define GridTrinOpClass(name, combination)				\
 | 
			
		||||
  struct name {								\
 | 
			
		||||
    template <class _predicate,class _left, class _right>		\
 | 
			
		||||
    static auto accelerator_inline					\
 | 
			
		||||
    func(const _predicate &pred, const _left &lhs, const _right &rhs)	\
 | 
			
		||||
      -> decltype(combination) const					\
 | 
			
		||||
    {									\
 | 
			
		||||
      return combination;						\
 | 
			
		||||
    }									\
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
GridTrinOpClass(TrinaryWhere,
 | 
			
		||||
		(predicatedWhere<
 | 
			
		||||
		 typename std::remove_reference<_predicate>::type, 
 | 
			
		||||
		 typename std::remove_reference<_left>::type,
 | 
			
		||||
		 typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Operator syntactical glue
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#define GRID_UNOP(name)   name
 | 
			
		||||
#define GRID_BINOP(name)  name
 | 
			
		||||
#define GRID_TRINOP(name) name
 | 
			
		||||
 | 
			
		||||
#define GRID_DEF_UNOP(op, name)						\
 | 
			
		||||
  template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
 | 
			
		||||
  inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return     LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define GRID_BINOP_LEFT(op, name)					\
 | 
			
		||||
  template <typename T1, typename T2,					\
 | 
			
		||||
            typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
 | 
			
		||||
  inline auto op(const T1 &lhs, const T2 &rhs)				\
 | 
			
		||||
    ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define GRID_BINOP_RIGHT(op, name)					\
 | 
			
		||||
  template <typename T1, typename T2,					\
 | 
			
		||||
            typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
 | 
			
		||||
            typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
 | 
			
		||||
  inline auto op(const T1 &lhs, const T2 &rhs)				\
 | 
			
		||||
    ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define GRID_DEF_BINOP(op, name)		\
 | 
			
		||||
  GRID_BINOP_LEFT(op, name);			\
 | 
			
		||||
  GRID_BINOP_RIGHT(op, name);
 | 
			
		||||
 | 
			
		||||
#define GRID_DEF_TRINOP(op, name)					\
 | 
			
		||||
  template <typename T1, typename T2, typename T3>			\
 | 
			
		||||
  inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs)		\
 | 
			
		||||
    ->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
////////////////////////
 | 
			
		||||
// Operator definitions
 | 
			
		||||
////////////////////////
 | 
			
		||||
GRID_DEF_UNOP(operator-, UnarySub);
 | 
			
		||||
GRID_DEF_UNOP(Not, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(operator!, UnaryNot);
 | 
			
		||||
//GRID_DEF_UNOP(adj, UnaryAdj);
 | 
			
		||||
//GRID_DEF_UNOP(conjugate, UnaryConj);
 | 
			
		||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
			
		||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
			
		||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
			
		||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
			
		||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
			
		||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
			
		||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
			
		||||
                               // abs-fabs-dabs-labs thing
 | 
			
		||||
GRID_DEF_UNOP(sqrt, UnarySqrt);
 | 
			
		||||
GRID_DEF_UNOP(sin, UnarySin);
 | 
			
		||||
GRID_DEF_UNOP(cos, UnaryCos);
 | 
			
		||||
GRID_DEF_UNOP(asin, UnaryAsin);
 | 
			
		||||
GRID_DEF_UNOP(acos, UnaryAcos);
 | 
			
		||||
GRID_DEF_UNOP(log, UnaryLog);
 | 
			
		||||
GRID_DEF_UNOP(exp, UnaryExp);
 | 
			
		||||
 | 
			
		||||
GRID_DEF_BINOP(operator+, BinaryAdd);
 | 
			
		||||
GRID_DEF_BINOP(operator-, BinarySub);
 | 
			
		||||
GRID_DEF_BINOP(operator*, BinaryMul);
 | 
			
		||||
GRID_DEF_BINOP(operator/, BinaryDiv);
 | 
			
		||||
 | 
			
		||||
GRID_DEF_BINOP(operator&, BinaryAnd);
 | 
			
		||||
GRID_DEF_BINOP(operator|, BinaryOr);
 | 
			
		||||
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
 | 
			
		||||
GRID_DEF_BINOP(operator||, BinaryOrOr);
 | 
			
		||||
 | 
			
		||||
GRID_DEF_TRINOP(where, TrinaryWhere);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Closure convenience to force expression to evaluate
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Op, class T1>
 | 
			
		||||
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
 | 
			
		||||
  -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > 
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template <class Op, class T1, class T2>
 | 
			
		||||
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
 | 
			
		||||
  -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template <class Op, class T1, class T2, class T3>
 | 
			
		||||
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
 | 
			
		||||
  -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
 | 
			
		||||
				   vecEval(0, expr.arg2),
 | 
			
		||||
				   vecEval(0, expr.arg3)))>::type >
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
 | 
			
		||||
				vecEval(0, expr.arg2),
 | 
			
		||||
			        vecEval(0, expr.arg3)))>::type >  ret(expr);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
#define EXPRESSION_CLOSURE(function)					\
 | 
			
		||||
  template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
 | 
			
		||||
    auto function(Expression &expr) -> decltype(function(closure(expr))) \
 | 
			
		||||
  {									\
 | 
			
		||||
    return function(closure(expr));					\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#undef GRID_UNOP
 | 
			
		||||
#undef GRID_BINOP
 | 
			
		||||
#undef GRID_TRINOP
 | 
			
		||||
 | 
			
		||||
#undef GRID_DEF_UNOP
 | 
			
		||||
#undef GRID_DEF_BINOP
 | 
			
		||||
#undef GRID_DEF_TRINOP
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,324 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_arith.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_ARITH_H
 | 
			
		||||
#define GRID_LATTICE_ARITH_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  avoid copy back routines for mult, mac, sub, add
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t = lhs_v(ss);
 | 
			
		||||
    auto rhs_t = rhs_v(ss);
 | 
			
		||||
    mult(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    auto tmp  =ret_v(ss);
 | 
			
		||||
    mac(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    sub(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  conformable(lhs,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    add(&tmp,&lhs_t,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  avoid copy back routines for mult, mac, sub, add
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    mult(&tmp,&lhs_v(ss),&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    auto tmp  =ret_v(ss);
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    mac(&tmp,&lhs_t,&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(ret,lhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    sub(&tmp,&lhs_t,&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
			
		||||
  conformable(lhs,ret);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto lhs_t=lhs_v(ss);
 | 
			
		||||
    add(&tmp,&lhs_t,&rhs);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//  avoid copy back routines for mult, mac, sub, add
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mult");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( rhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    mult(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("mac");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( rhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    auto tmp  =ret_v(ss);
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    mac(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("sub");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( rhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    sub(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2,class obj3> inline
 | 
			
		||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
			
		||||
  GRID_TRACE("add");
 | 
			
		||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
			
		||||
  conformable(ret,rhs);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( rhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
 | 
			
		||||
    decltype(coalescedRead(obj1())) tmp;
 | 
			
		||||
    auto rhs_t=rhs_v(ss);
 | 
			
		||||
    add(&tmp,&lhs,&rhs_t);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  GRID_TRACE("axpy");
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( x_v , x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v , y, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
			
		||||
  GRID_TRACE("axpby");
 | 
			
		||||
  ret.Checkerboard() = x.Checkerboard();
 | 
			
		||||
  conformable(ret,x);
 | 
			
		||||
  conformable(x,y);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  autoView( x_v , x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v , y, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
    coalescedWrite(ret_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define FAST_AXPY_NORM
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpy_norm");
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpby_norm");
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+b*y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Trace product
 | 
			
		||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
 | 
			
		||||
  -> Lattice<decltype(trace(obj()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(trace(obj())) robj;
 | 
			
		||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
			
		||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
			
		||||
  autoView( rhs2 , rhs_2, AcceleratorRead);
 | 
			
		||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
			
		||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
 | 
			
		||||
  -> Lattice<decltype(trace(obj1()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(trace(obj1())) robj;
 | 
			
		||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
			
		||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
			
		||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
			
		||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
 | 
			
		||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
 | 
			
		||||
  -> Lattice<decltype(trace(obj1()))>
 | 
			
		||||
{
 | 
			
		||||
  return traceProduct(rhs_1,rhs_2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,395 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/lattice/Lattice_base.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
#define STREAMING_STORES
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern int GridCshiftPermuteMap[4][16];
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// The real lattice class, with normal copy and assignment semantics.
 | 
			
		||||
// This contains extra (host resident) grid pointer data that may be accessed by host code
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
class Lattice : public LatticeAccelerator<vobj>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *Grid(void) const { return this->_grid; }
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  // Member types
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef vobj vector_object;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  void dealloc(void)
 | 
			
		||||
  {
 | 
			
		||||
    if( this->_odata_size ) {
 | 
			
		||||
      alignedAllocator<vobj> alloc;
 | 
			
		||||
      alloc.deallocate(this->_odata,this->_odata_size);
 | 
			
		||||
      this->_odata=nullptr;
 | 
			
		||||
      this->_odata_size=0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void resize(uint64_t size)
 | 
			
		||||
  {
 | 
			
		||||
    if ( this->_odata_size != size ) {
 | 
			
		||||
      alignedAllocator<vobj> alloc;
 | 
			
		||||
 | 
			
		||||
      dealloc();
 | 
			
		||||
      
 | 
			
		||||
      this->_odata_size = size;
 | 
			
		||||
      if ( size )
 | 
			
		||||
	this->_odata      = alloc.allocate(this->_odata_size);
 | 
			
		||||
      else 
 | 
			
		||||
	this->_odata      = nullptr;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void SetViewMode(ViewMode mode) {
 | 
			
		||||
    LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
 | 
			
		||||
    accessor.ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Helper function to print the state of this object in the AccCache
 | 
			
		||||
  void PrintCacheState(void)
 | 
			
		||||
  {
 | 
			
		||||
    MemoryManager::PrintState(this->_odata);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Return a view object that may be dereferenced in site loops.
 | 
			
		||||
  // The view is trivially copy constructible and may be copied to an accelerator device
 | 
			
		||||
  // in device lambdas
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  LatticeView<vobj> View (ViewMode mode) const 
 | 
			
		||||
  {
 | 
			
		||||
    LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
 | 
			
		||||
    return accessor;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ~Lattice() { 
 | 
			
		||||
    if ( this->_odata_size ) {
 | 
			
		||||
      dealloc();
 | 
			
		||||
    }
 | 
			
		||||
   }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Expression Template closure support
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
    
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
    auto me  = View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      auto tmp = eval(ss,exprCopy);
 | 
			
		||||
      coalescedWrite(me[ss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    ExpressionViewClose(exprCopy);
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
    auto me  = View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      auto tmp = eval(ss,exprCopy);
 | 
			
		||||
      coalescedWrite(me[ss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    ExpressionViewClose(exprCopy);
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
    auto me  = View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      auto tmp = eval(ss,exprCopy);
 | 
			
		||||
      coalescedWrite(me[ss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    ExpressionViewClose(exprCopy);
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  //GridFromExpression is tricky to do
 | 
			
		||||
  template<class Op,class T1>
 | 
			
		||||
  Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
 | 
			
		||||
    *this = expr;
 | 
			
		||||
  }
 | 
			
		||||
  template<class Op,class T1, class T2>
 | 
			
		||||
  Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
 | 
			
		||||
    *this = expr;
 | 
			
		||||
  }
 | 
			
		||||
  template<class Op,class T1, class T2, class T3>
 | 
			
		||||
  Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
 | 
			
		||||
    *this = expr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
			
		||||
    vobj vtmp;
 | 
			
		||||
    vtmp = r;
 | 
			
		||||
#if 0
 | 
			
		||||
    deviceVector<vobj> vvtmp(1);
 | 
			
		||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
			
		||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
			
		||||
	coalescedWrite(me[ss],stmp);
 | 
			
		||||
    });
 | 
			
		||||
#else    
 | 
			
		||||
    auto me  = View(CpuWrite);
 | 
			
		||||
    thread_for(ss,me.size(),{
 | 
			
		||||
       me[ss]= r;
 | 
			
		||||
      });
 | 
			
		||||
#endif    
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Follow rule of five, with Constructor requires "grid" passed
 | 
			
		||||
  // to user defined constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // user defined constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) { 
 | 
			
		||||
    this->_grid = grid;
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
    assert((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
			
		||||
    this->checkerboard=0;
 | 
			
		||||
    SetViewMode(mode);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //  virtual ~Lattice(void) = default;
 | 
			
		||||
    
 | 
			
		||||
  void reset(GridBase* grid) {
 | 
			
		||||
    if (this->_grid != grid) {
 | 
			
		||||
      this->_grid = grid;
 | 
			
		||||
      this->resize(grid->oSites());
 | 
			
		||||
      this->checkerboard = 0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // copy constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(const Lattice& r){ 
 | 
			
		||||
    this->_grid = r.Grid();
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
    *this = r;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // move constructor
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  Lattice(Lattice && r){ 
 | 
			
		||||
    this->_grid = r.Grid();
 | 
			
		||||
    this->_odata      = r._odata;
 | 
			
		||||
    this->_odata_size = r._odata_size;
 | 
			
		||||
    this->checkerboard= r.Checkerboard();
 | 
			
		||||
    r._odata      = nullptr;
 | 
			
		||||
    r._odata_size = 0;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // assignment template
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
 | 
			
		||||
    typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
 | 
			
		||||
    conformable(*this,r);
 | 
			
		||||
    this->checkerboard = r.Checkerboard();
 | 
			
		||||
    auto him= r.View(AcceleratorRead);
 | 
			
		||||
    auto me =   View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(me[ss],him(ss));
 | 
			
		||||
    });
 | 
			
		||||
    me.ViewClose();    him.ViewClose();
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Copy assignment 
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
 | 
			
		||||
    this->checkerboard = r.Checkerboard();
 | 
			
		||||
    conformable(*this,r);
 | 
			
		||||
    auto him= r.View(AcceleratorRead);
 | 
			
		||||
    auto me =   View(AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(me[ss],him(ss));
 | 
			
		||||
    });
 | 
			
		||||
    me.ViewClose();    him.ViewClose();
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Move assignment possible if same type
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  inline Lattice<vobj> & operator = (Lattice<vobj> && r){
 | 
			
		||||
 | 
			
		||||
    resize(0); // deletes if appropriate
 | 
			
		||||
    this->_grid       = r.Grid();
 | 
			
		||||
    this->_odata      = r._odata;
 | 
			
		||||
    this->_odata_size = r._odata_size;
 | 
			
		||||
    this->checkerboard= r.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    r._odata      = nullptr;
 | 
			
		||||
    r._odata_size = 0;
 | 
			
		||||
    
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // *=,+=,-= operators inherit behvour from correspond */+/- operation
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class T> inline Lattice<vobj> &operator *=(const T &r) {
 | 
			
		||||
    *this = (*this)*r;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template<class T> inline Lattice<vobj> &operator -=(const T &r) {
 | 
			
		||||
    *this = (*this)-r;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
  template<class T> inline Lattice<vobj> &operator +=(const T &r) {
 | 
			
		||||
    *this = (*this)+r;
 | 
			
		||||
    return *this;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  friend inline void swap(Lattice &l, Lattice &r) { 
 | 
			
		||||
    conformable(l,r);
 | 
			
		||||
    LatticeAccelerator<vobj> tmp;
 | 
			
		||||
    LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
 | 
			
		||||
    LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
 | 
			
		||||
    tmp = *lp;    *lp=*rp;    *rp=tmp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}; // class Lattice
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 | 
			
		||||
    sobj ss;
 | 
			
		||||
    peekSite(ss,o,gcoor);
 | 
			
		||||
    stream<<"[";
 | 
			
		||||
    for(int d=0;d<gcoor.size();d++){
 | 
			
		||||
      stream<<gcoor[d];
 | 
			
		||||
      if(d!=gcoor.size()-1) stream<<",";
 | 
			
		||||
    }
 | 
			
		||||
    stream<<"]\t";
 | 
			
		||||
    stream<<ss<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  return stream;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,235 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/lattice/Lattice_basis.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k) 
 | 
			
		||||
{
 | 
			
		||||
  // If assume basis[j] are already orthonormal,
 | 
			
		||||
  // can take all inner products in parallel saving 2x bandwidth
 | 
			
		||||
  // Save 3x bandwidth on the second line of loop.
 | 
			
		||||
  // perhaps 2.5x speed up.
 | 
			
		||||
  // 2x overall in Multigrid Lanczos  
 | 
			
		||||
  for(int j=0; j<k; ++j){
 | 
			
		||||
    auto ip = innerProduct(basis[j],w);
 | 
			
		||||
    w = w - ip*basis[j];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class VField, class Matrix>
 | 
			
		||||
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) 
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(basis[0]) Field;
 | 
			
		||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
			
		||||
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
			
		||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
			
		||||
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
      
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  View *basis_vp = &d_basis_v[0];
 | 
			
		||||
 | 
			
		||||
  int nrot = j1-j0;
 | 
			
		||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
			
		||||
    return;
 | 
			
		||||
 | 
			
		||||
  uint64_t oSites   =grid->oSites();
 | 
			
		||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
			
		||||
 | 
			
		||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  auto Bp=&Bt[0];
 | 
			
		||||
 | 
			
		||||
  // GPU readable copy of matrix
 | 
			
		||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
			
		||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
			
		||||
  thread_for(i,Nm*Nm,{
 | 
			
		||||
      int j = i/Nm;
 | 
			
		||||
      int k = i%Nm;
 | 
			
		||||
      h_Qt_jv[i]=Qt(j,k);
 | 
			
		||||
  });
 | 
			
		||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
			
		||||
 | 
			
		||||
  // Block the loop to keep storage footprint down
 | 
			
		||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
			
		||||
 | 
			
		||||
    // remaining work in this block
 | 
			
		||||
    int ssites=MIN(siteBlock,oSites-s);
 | 
			
		||||
 | 
			
		||||
    // zero out the accumulators
 | 
			
		||||
    accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
 | 
			
		||||
	decltype(coalescedRead(Bp[ss])) z;
 | 
			
		||||
	z=Zero();
 | 
			
		||||
	coalescedWrite(Bp[ss],z);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
 | 
			
		||||
	
 | 
			
		||||
	int j =sj%nrot;
 | 
			
		||||
	int jj  =j0+j;
 | 
			
		||||
	int ss =sj/nrot;
 | 
			
		||||
	int sss=ss+s;
 | 
			
		||||
 | 
			
		||||
	for(int k=k0; k<k1; ++k){
 | 
			
		||||
	  auto tmp = coalescedRead(Bp[ss*nrot+j]);
 | 
			
		||||
	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
 | 
			
		||||
	int j =sj%nrot;
 | 
			
		||||
	int jj  =j0+j;
 | 
			
		||||
	int ss =sj/nrot;
 | 
			
		||||
	int sss=ss+s;
 | 
			
		||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Extract a single rotated vector
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm) 
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
			
		||||
  typedef typename Field::vector_object vobj;
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
 | 
			
		||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  deviceVector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
			
		||||
 | 
			
		||||
  auto basis_vp=& d_basis_v[0];
 | 
			
		||||
  autoView(result_v,result,AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
			
		||||
    vobj zzz=Zero();
 | 
			
		||||
    auto B=coalescedRead(zzz);
 | 
			
		||||
    for(int k=k0; k<k1; ++k){
 | 
			
		||||
      B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
 | 
			
		||||
    }
 | 
			
		||||
    coalescedWrite(result_v[ss], B);
 | 
			
		||||
  });
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx) 
 | 
			
		||||
{
 | 
			
		||||
  int vlen = idx.size();
 | 
			
		||||
 | 
			
		||||
  assert(vlen>=1);
 | 
			
		||||
  assert(vlen<=sort_vals.size());
 | 
			
		||||
  assert(vlen<=_v.size());
 | 
			
		||||
 | 
			
		||||
  for (size_t i=0;i<vlen;i++) {
 | 
			
		||||
 | 
			
		||||
    if (idx[i] != i) {
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////
 | 
			
		||||
      // idx[i] is a table of desired sources giving a permutation.
 | 
			
		||||
      // Swap v[i] with v[idx[i]].
 | 
			
		||||
      // Find  j>i for which _vnew[j] = _vold[i],
 | 
			
		||||
      // track the move idx[j] => idx[i]
 | 
			
		||||
      // track the move idx[i] => i
 | 
			
		||||
      //////////////////////////////////////
 | 
			
		||||
      size_t j;
 | 
			
		||||
      for (j=i;j<idx.size();j++)
 | 
			
		||||
	if (idx[j]==i)
 | 
			
		||||
	  break;
 | 
			
		||||
 | 
			
		||||
      assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i);
 | 
			
		||||
 | 
			
		||||
      swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
 | 
			
		||||
      std::swap(sort_vals[i],sort_vals[idx[i]]);
 | 
			
		||||
 | 
			
		||||
      idx[j] = idx[i];
 | 
			
		||||
      idx[i] = i;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals) 
 | 
			
		||||
{
 | 
			
		||||
  std::vector<int> idx(sort_vals.size());
 | 
			
		||||
  std::iota(idx.begin(), idx.end(), 0);
 | 
			
		||||
 | 
			
		||||
  // sort indexes based on comparing values in v
 | 
			
		||||
  std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
 | 
			
		||||
    return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
 | 
			
		||||
  });
 | 
			
		||||
  return idx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse) 
 | 
			
		||||
{
 | 
			
		||||
  std::vector<int> idx = basisSortGetIndex(sort_vals);
 | 
			
		||||
  if (reverse)
 | 
			
		||||
    std::reverse(idx.begin(), idx.end());
 | 
			
		||||
  
 | 
			
		||||
  basisReorderInPlace(_v,sort_vals,idx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// PAB: faster to compute the inner products first then fuse loops.
 | 
			
		||||
// If performance critical can improve.
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
			
		||||
  result = Zero();
 | 
			
		||||
  assert(_v.size()==eval.size());
 | 
			
		||||
  int N = (int)_v.size();
 | 
			
		||||
  for (int i=0;i<N;i++) {
 | 
			
		||||
    Field& tmp = _v[i];
 | 
			
		||||
    axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,179 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_comparison.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_COMPARISON_H
 | 
			
		||||
#define GRID_LATTICE_COMPARISON_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// relational operators
 | 
			
		||||
// 
 | 
			
		||||
// Support <,>,<=,>=,==,!=
 | 
			
		||||
//
 | 
			
		||||
//Query supporting bitwise &, |, ^, !
 | 
			
		||||
//Query supporting logical &&, ||, 
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
typedef iScalar<vInteger> vPredicate ;
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare lattice to lattice
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vfunctor,class lobj,class robj>  
 | 
			
		||||
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  Lattice<vPredicate> ret(rhs.Grid());
 | 
			
		||||
  autoView( lhs_v, lhs, CpuRead);
 | 
			
		||||
  autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
  autoView( ret_v, ret, CpuWrite);
 | 
			
		||||
  thread_for( ss, rhs_v.size(), {
 | 
			
		||||
      ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare lattice to scalar
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vfunctor,class lobj,class robj> 
 | 
			
		||||
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
 | 
			
		||||
{
 | 
			
		||||
  Lattice<vPredicate> ret(lhs.Grid());
 | 
			
		||||
  autoView( lhs_v, lhs, CpuRead);
 | 
			
		||||
  autoView( ret_v, ret, CpuWrite);
 | 
			
		||||
  thread_for( ss, lhs_v.size(), {
 | 
			
		||||
    ret_v[ss]=op(lhs_v[ss],rhs);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare scalar to lattice
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vfunctor,class lobj,class robj> 
 | 
			
		||||
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  Lattice<vPredicate> ret(rhs.Grid());
 | 
			
		||||
  autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
  autoView( ret_v, ret, CpuWrite);
 | 
			
		||||
  thread_for( ss, rhs_v.size(), {
 | 
			
		||||
    ret_v[ss]=op(lhs,rhs_v[ss]);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map to functors
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less than
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vlt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vlt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vlt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// Less than equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vle<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vle<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vle<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// Greater than 
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vgt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vgt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vgt<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
// Greater than equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vge<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vge<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vge<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
   
 | 
			
		||||
// equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(veq<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(veq<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(veq<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
   
 | 
			
		||||
   
 | 
			
		||||
// not equal
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return LLComparison(vne<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
 | 
			
		||||
  return LSComparison(vne<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
template<class lobj,class robj>
 | 
			
		||||
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
 | 
			
		||||
  return SLComparison(vne<lobj,robj>(),lhs,rhs);
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,55 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_coordinate.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename iobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
  int Nsimd = grid->iSites();
 | 
			
		||||
 | 
			
		||||
  autoView(l_v, l, CpuWrite);
 | 
			
		||||
  thread_for( o, grid->oSites(), {
 | 
			
		||||
    vector_type vI;
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    ExtractBuffer<scalar_type> mergebuf(Nsimd);
 | 
			
		||||
    for(int i=0;i<grid->iSites();i++){
 | 
			
		||||
      grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
 | 
			
		||||
      mergebuf[i]=(Integer)gcoor[mu];
 | 
			
		||||
    }
 | 
			
		||||
    merge<vector_type,scalar_type>(vI,mergebuf);
 | 
			
		||||
    l_v[o]=vI;
 | 
			
		||||
  });
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,55 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_crc.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2021
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
 | 
			
		||||
{
 | 
			
		||||
  auto ff = localNorm2(f);
 | 
			
		||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
			
		||||
  typedef typename vobj::tensor_reduced normtype;
 | 
			
		||||
  typedef typename normtype::scalar_object scalar;
 | 
			
		||||
  std::vector<scalar> sff;
 | 
			
		||||
  sliceSum(ff,sff,mu);
 | 
			
		||||
  for(int t=0;t<sff.size();t++){
 | 
			
		||||
    std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
 | 
			
		||||
{
 | 
			
		||||
  autoView( buf_v , buf, CpuRead);
 | 
			
		||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,87 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_local.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_LOCALREDUCTION_H
 | 
			
		||||
#define GRID_LATTICE_LOCALREDUCTION_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// localInner, localNorm, outerProduct
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
// Non site, reduced locally reduced routines
 | 
			
		||||
/////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
// localNorm2,
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// localInnerProduct
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
 | 
			
		||||
    coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
// outerProduct Scalar x Scalar -> Scalar
 | 
			
		||||
//              Vector x Vector -> Matrix
 | 
			
		||||
template<class ll,class rr>
 | 
			
		||||
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(coalescedRead(ll())) sll;
 | 
			
		||||
  typedef decltype(coalescedRead(rr())) srr;
 | 
			
		||||
  Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
 | 
			
		||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
			
		||||
  autoView( rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss,rhs_v.size(),1,{
 | 
			
		||||
    // FIXME had issues with scalar version of outer 
 | 
			
		||||
    // Use vector [] operator and don't read coalesce this loop
 | 
			
		||||
    ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,199 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_reduction.h
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once 
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_WARN_SUBOPTIMAL
 | 
			
		||||
#warning "Optimisation alert all these reduction loops are NOT threaded "
 | 
			
		||||
#endif     
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
  autoView( X_v , X, CpuRead);
 | 
			
		||||
  autoView( Y_v , Y, CpuRead);
 | 
			
		||||
  autoView( R_v , R, CpuWrite);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_loop_collapse2( (int n=0;n<nblock;n++),{
 | 
			
		||||
      for(int b=0;b<block;b++){
 | 
			
		||||
	int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	vobj dot;
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  dot = Y_v[o+i*ostride];
 | 
			
		||||
	  for(int j=0;j<Nblock;j++){
 | 
			
		||||
	    dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	  }
 | 
			
		||||
	  R_v[o+i*ostride]=dot;
 | 
			
		||||
	}
 | 
			
		||||
      }});
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  autoView( X_v , X, CpuRead);
 | 
			
		||||
  autoView( R_v , R, CpuWrite);
 | 
			
		||||
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
    
 | 
			
		||||
    thread_loop_collapse2( (int n=0;n<nblock;n++),{
 | 
			
		||||
      for(int b=0;b<block;b++){
 | 
			
		||||
	int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	vobj dot;
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  dot = s_x[0]*(scale*aa(0,i));
 | 
			
		||||
	  for(int j=1;j<Nblock;j++){
 | 
			
		||||
	    dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	  }
 | 
			
		||||
	  R_v[o+i*ostride]=dot;
 | 
			
		||||
	}
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
			
		||||
  
 | 
			
		||||
  //  Lattice<vobj> Lslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_typeD;
 | 
			
		||||
  autoView( lhs_v , lhs, CpuRead);
 | 
			
		||||
  autoView( rhs_v , rhs, CpuRead);
 | 
			
		||||
  thread_region {
 | 
			
		||||
    std::vector<vobj> Left(Nblock);
 | 
			
		||||
    std::vector<vobj> Right(Nblock);
 | 
			
		||||
    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_loop_collapse2((int n=0;n<nblock;n++),{
 | 
			
		||||
      for(int b=0;b<block;b++){
 | 
			
		||||
 | 
			
		||||
	int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  Left [i] = lhs_v[o+i*ostride];
 | 
			
		||||
	  Right[i] = rhs_v[o+i*ostride];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for(int i=0;i<Nblock;i++){
 | 
			
		||||
	  for(int j=0;j<Nblock;j++){
 | 
			
		||||
	    auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	    auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	    ComplexD z = Reduce(rtmp);
 | 
			
		||||
	    mat_thread(i,j) += std::complex<double>(real(z),imag(z));
 | 
			
		||||
	  }}
 | 
			
		||||
    }});
 | 
			
		||||
    thread_critical {
 | 
			
		||||
      mat += mat_thread;
 | 
			
		||||
    }  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<Nblock;i++){
 | 
			
		||||
    for(int j=0;j<Nblock;j++){
 | 
			
		||||
      ComplexD sum = mat(i,j);
 | 
			
		||||
      FullGrid->GlobalSum(sum);
 | 
			
		||||
      mat(i,j)=sum;
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1,231 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_peekpoke.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_LATTICE_PEEK_H
 | 
			
		||||
#define GRID_LATTICE_PEEK_H
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Peeking and poking around
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// FIXME accelerator_loop and accelerator_inline these
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Peek internal indices of a Lattice object
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj> 
 | 
			
		||||
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
 | 
			
		||||
  ret.Checkerboard()=lhs.Checkerboard();
 | 
			
		||||
  autoView( ret_v, ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v, lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for( ss, lhs_v.size(), 1, {
 | 
			
		||||
    ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
template<int Index,class vobj> 
 | 
			
		||||
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
 | 
			
		||||
{
 | 
			
		||||
  Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
 | 
			
		||||
  ret.Checkerboard()=lhs.Checkerboard();
 | 
			
		||||
  autoView( ret_v, ret, AcceleratorWrite);
 | 
			
		||||
  autoView( lhs_v, lhs, AcceleratorRead);
 | 
			
		||||
  accelerator_for( ss, lhs_v.size(), 1, {
 | 
			
		||||
    ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Poke internal indices of a Lattice object
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<int Index,class vobj>  
 | 
			
		||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
 | 
			
		||||
{
 | 
			
		||||
  autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
  autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
  accelerator_for( ss, lhs_v.size(), 1, {
 | 
			
		||||
    pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
template<int Index,class vobj> 
 | 
			
		||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
 | 
			
		||||
{
 | 
			
		||||
  autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
  autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
  accelerator_for( ss, lhs_v.size(), 1, {
 | 
			
		||||
    pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Poke a scalar object into the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj,class sobj> 
 | 
			
		||||
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  int rank,odx,idx;
 | 
			
		||||
  // Optional to broadcast from node 0.
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
  grid->Broadcast(grid->BossRank(),s);
 | 
			
		||||
 | 
			
		||||
  // extract-modify-merge cycle is easiest way and this is not perf critical
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  if ( rank == grid->ThisRank() ) {
 | 
			
		||||
    extract(l_v[odx],buf);
 | 
			
		||||
    buf[idx] = s;
 | 
			
		||||
    merge(l_v[odx],buf);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj>
 | 
			
		||||
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  typename vobj::scalar_object s;
 | 
			
		||||
  peekSite(s,l,site);
 | 
			
		||||
  return s;
 | 
			
		||||
}        
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
        
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
			
		||||
 | 
			
		||||
  int rank,odx,idx;
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  extract(l_v[odx],buf);
 | 
			
		||||
 | 
			
		||||
  s = buf[idx];
 | 
			
		||||
 | 
			
		||||
  grid->Broadcast(rank,s);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Must be CPU read view
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = l.getGrid();
 | 
			
		||||
  assert(l.mode==CpuRead);
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  int odx,idx;
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
  
 | 
			
		||||
  const vector_type *vp = (const vector_type *) &l[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
      
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    pt[w] = getlane(vp[w],idx);
 | 
			
		||||
  }
 | 
			
		||||
  //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
 | 
			
		||||
{
 | 
			
		||||
  autoView(lv,l,CpuRead);
 | 
			
		||||
  peekLocalSite(s,lv,site);
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Must be CPU write view
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=l.getGrid();
 | 
			
		||||
  assert(l.mode==CpuWrite);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  int odx,idx;
 | 
			
		||||
  idx= grid->iIndex(site);
 | 
			
		||||
  odx= grid->oIndex(site);
 | 
			
		||||
 | 
			
		||||
  vector_type * vp = (vector_type *)&l[odx];
 | 
			
		||||
  scalar_type * pt = (scalar_type *)&s;
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    putlane(vp[w],pt[w],idx);
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
 | 
			
		||||
{
 | 
			
		||||
  autoView(lv,l,CpuWrite);
 | 
			
		||||
  pokeLocalSite(s,lv,site);
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user