1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-23 18:22:02 +01:00

Compare commits

..

67 Commits

Author SHA1 Message Date
e7d9b75fdd Warning fixes 2022-08-31 19:01:14 -04:00
3d0e3ec363 Tracing 2022-08-31 18:31:46 -04:00
3c1c51f9aa Merge branch 'feature/dirichlet-gparity' into feature/dirichlet 2022-08-31 18:25:34 -04:00
5c87342108 Used in g-2 sign off 2022-08-31 17:35:32 -04:00
66177bfbe2 Used in g-2 sign off 2022-08-31 17:35:07 -04:00
5205e68963 RocTX, NVTX, text based self profiling 2022-08-31 17:34:09 -04:00
cd5cf6d614 Tracing replaces self timing hooks 2022-08-31 17:33:41 -04:00
5abb19eab0 Remove self timing 2022-08-31 17:32:49 -04:00
06d7b88c78 Force reporting improved 2022-08-31 17:32:21 -04:00
cf72799735 Better action naming 2022-08-31 17:24:11 -04:00
cdb8fcc269 Width=4 support. This is too broad; hit it on physical point run.
Need to change strategy, I think.
2022-08-31 17:21:33 -04:00
b4f4130901 Defer SMP node links until after interior. Allows for DMA overlapping
compute
2022-08-31 17:20:21 -04:00
bb049847d5 Tracing replaces self timing 2022-08-31 17:19:02 -04:00
fd33c835dd Feynman rule fix and tracing replaces self timing 2022-08-31 17:18:17 -04:00
21371a7e5b Tracing replaces self timing 2022-08-31 17:16:05 -04:00
abfaa00d3e Tracing replaces self timing 2022-08-31 17:15:24 -04:00
efee33c55d Tracing replaces self timing 2022-08-31 17:14:57 -04:00
db0fe6ddbb Tracing replaces self timinng 2022-08-31 17:14:14 -04:00
8a9e647120 Tracing replaces self timing 2022-08-31 17:13:44 -04:00
e6dcb821ad Tracing replaces self timing 2022-08-31 17:12:31 -04:00
9bff188f02 Tracing replaces self timing 2022-08-31 17:12:05 -04:00
111b30ca1d Tracing replaces self timing 2022-08-31 17:11:48 -04:00
24182ca8bf HIP allows conserved currents.
Tracing replaces self timeing
2022-08-31 17:11:18 -04:00
ee2d7369b3 Tracing replaces self timing 2022-08-31 17:10:45 -04:00
7c686d29c9 Tracing replaces self timing 2022-08-31 17:10:17 -04:00
e8a0a1e75d Tracing replaces self timing hooks 2022-08-31 17:09:47 -04:00
730be89abf Remove timing hooks as tracing replaces 2022-08-31 17:08:44 -04:00
f991ad7d5c Remove timing hooks as tracing replaces 2022-08-31 17:08:18 -04:00
b3f33f82f7 Decrease self timing hooks, use nvtx / roctx type tracing hooks instead 2022-08-31 17:06:47 -04:00
a34a6e059f Logging improvement. Sinitial will be used to improve RHMC terms 2022-08-31 17:06:08 -04:00
1333319941 Tracing 2022-08-31 17:00:25 -04:00
9295ed8d20 Print full memory range 2022-08-31 16:59:51 -04:00
19cc7653fb Tracing 2022-08-31 16:57:51 -04:00
5752538661 Tracing 2022-08-31 16:57:32 -04:00
ca40a1b00b Tracing 2022-08-31 16:54:55 -04:00
659fac9dfb Tracing hook 2022-08-31 16:54:25 -04:00
4dc3d6fce0 Buy into Nvidia/Rocm etc... tracing. 2022-08-31 16:53:19 -04:00
95b640cb6b 10TF/s on 32^3 x 64 on single node 2022-08-04 15:43:52 -04:00
2cb5bedc15 Copy stream HIP improvements 2022-08-04 15:24:03 -04:00
806b02bddf Simplify dead code 2022-08-04 15:23:13 -04:00
de40395773 More timing. Think I should start to use nvtx and rocmtx ?? 2022-08-04 13:37:16 -04:00
7ba4788715 Fix 2022-08-04 13:36:44 -04:00
06d9ce1a02 Synch ranks on node here for GPU - GPU memcopy 2022-08-04 13:35:56 -04:00
75bb6b2b40 Move barrier into the StencilSend begin routine 2022-08-04 13:35:26 -04:00
74f10c2dc0 Move barrier into Stencil Send 2022-08-04 13:34:11 -04:00
a93d5459d4 Better mpi request completion 2022-07-28 12:18:35 -04:00
9c21add0c6 High res timer replaces getttimeofday 2022-07-28 12:14:03 -04:00
639aab6563 High res timer instead of gettimeofday 2022-07-28 12:13:35 -04:00
8137cc7049 Allways concurrent comms 2022-07-28 12:01:51 -04:00
60e63dca1d Add memory logging channel 2022-07-28 11:39:15 -04:00
486409574e Expanded cach to avoid any allocs in HMC 2022-07-28 11:38:34 -04:00
a913b8be12 Dslash self timing. Might want to not have this 2022-07-28 11:37:55 -04:00
2239751850 Better logging 2022-07-28 11:37:36 -04:00
9b20f1449c Better timing 2022-07-28 11:37:12 -04:00
b99453083d Updated timing 2022-07-28 11:37:02 -04:00
943fbb914d Merge branch 'feature/dirichlet' of https://github.com/paboyle/Grid into feature/dirichlet 2022-07-11 13:48:42 -04:00
ca4603580d Verbose 2022-07-11 13:48:35 -04:00
f73db8f1f3 Synch clocks 2022-07-11 13:47:39 -04:00
f7217d12d2 World barrier for clock synch 2022-07-11 13:45:31 -04:00
fab50c57d9 More loggin 2022-07-11 18:42:27 +01:00
3440534fbf MixedPrec support 2022-07-10 21:35:18 +01:00
177b1a7ec6 Mixed prec 2022-07-10 21:34:10 +01:00
58182fe345 Different approach to default dirichlet params 2022-07-10 21:32:58 +01:00
1f907d330d Different default params for dirichlet 2022-07-10 21:31:48 +01:00
b0fe664e9d Better force log info 2022-07-10 21:31:25 +01:00
c0f8482402 Remove SSC marks 2022-07-07 17:49:36 +01:00
3544965f54 Stream doesn't work 2022-07-07 17:49:20 +01:00
59 changed files with 1817 additions and 903 deletions

View File

@ -44,7 +44,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridStd.h>
#include <Grid/threads/Pragmas.h>
#include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/perfmon/Tracing.h>
//#include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h>
#include <Grid/log/Log.h>
#include <Grid/allocator/Allocator.h>

View File

@ -58,6 +58,7 @@ public:
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
GRID_TRACE("ConjugateGradient");
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
@ -117,6 +118,7 @@ public:
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
RealD usecs = -usecond();
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
@ -166,14 +168,16 @@ public:
// Stopping condition
if (cp <= rsq) {
usecs +=usecond();
SolverTimer.Stop();
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
GridBase *grid = src.Grid();
RealD DwfFlops = (1452. )*grid->gSites()*4*k
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
<< "\tComputed residual " << std::sqrt(cp / ssq)
<< "\tTrue residual " << true_residual
@ -187,6 +191,8 @@ public:
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;

View File

@ -84,6 +84,7 @@ public:
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{
GRID_TRACE("ConjugateGradientMultiShift");
GridBase *grid = src.Grid();

View File

@ -127,6 +127,7 @@ public:
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
GridBase *DoublePrecGrid = src_d.Grid();
////////////////////////////////////////////////////////////////////////

View File

@ -73,6 +73,7 @@ public:
}
void operator()(const FieldD &src, FieldD &psi) {
GRID_TRACE("ConjugateGradientReliableUpdate");
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;

View File

@ -40,7 +40,7 @@ void MemoryManager::PrintBytes(void)
//////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 8, 2, 8, 2, 8 };
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 8, 8, 16, 8, 16 };
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
//////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils

View File

@ -3,8 +3,14 @@
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
//#define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
#define dprintf(...)
#define MAXLINE 512
static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
//#define dprintf(...) printf (__VA_ARGS__ ); fflush(stdout);
#define dprintf(...)
////////////////////////////////////////////////////////////
@ -104,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -112,7 +118,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -126,7 +132,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
mprintf("MemoryManager: Evict(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
@ -137,7 +143,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -150,7 +156,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -165,7 +171,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
@ -241,7 +247,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
dprintf("ViewOpen found entry %lx %lx : %ld %ld\n",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,

View File

@ -107,6 +107,7 @@ public:
////////////////////////////////////////////////////////////////////////////////
static int RankWorld(void) ;
static void BroadcastWorld(int root,void* data, int bytes);
static void BarrierWorld(void);
////////////////////////////////////////////////////////////
// Reduction

View File

@ -396,17 +396,17 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
}
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
list.resize(0);
}
/* if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
* this->StencilSendToRecvFromComplete(list,dir);
* list.resize(0);
* }
*/
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
// std::cout << "Copy Synchronised\n"<<std::endl;
acceleratorCopySynchronise();
StencilBarrier();// Synch shared memory on a single nodes
int nreq=list.size();
@ -443,6 +443,10 @@ int CartesianCommunicator::RankWorld(void){
MPI_Comm_rank(communicator_world,&r);
return r;
}
void CartesianCommunicator::BarrierWorld(void){
int ierr = MPI_Barrier(communicator_world);
assert(ierr==0);
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,

View File

@ -104,6 +104,7 @@ int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
void CartesianCommunicator::BarrierWorld(void) { }
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)

View File

@ -523,7 +523,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
std::cout<< "Setting up IPC"<<std::endl;

View File

@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
@ -53,6 +54,7 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
@ -70,6 +72,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
@ -86,6 +89,7 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("add");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
@ -106,6 +110,7 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
@ -119,6 +124,7 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
@ -133,6 +139,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
@ -146,6 +153,7 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("add");
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
@ -163,6 +171,7 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
@ -177,6 +186,7 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
@ -191,6 +201,7 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
@ -204,6 +215,7 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("add");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
@ -218,6 +230,7 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
template<class sobj,class vobj> inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
GRID_TRACE("axpy");
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
@ -231,6 +244,7 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
}
template<class sobj,class vobj> inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
GRID_TRACE("axpby");
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
@ -246,11 +260,13 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpy_norm");
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpby_norm");
return axpby_norm_fast(ret,a,b,x,y);
}

View File

@ -117,6 +117,7 @@ public:
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
@ -140,6 +141,7 @@ public:
}
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
@ -163,6 +165,7 @@ public:
}
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);

View File

@ -488,6 +488,14 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words);
}
template<class vobj> inline
std::vector<typename vobj::scalar_object>
sliceSum(const Lattice<vobj> &Data,int orthogdim)
{
std::vector<typename vobj::scalar_object> result;
sliceSum(Data,result,orthogdim);
return result;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)

View File

@ -68,6 +68,7 @@ GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogDslash (1, "Dslash", GridLogColours, "BLUE");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
@ -80,6 +81,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogIterative.Active(0);
GridLogDebug.Active(0);
GridLogPerformance.Active(0);
GridLogDslash.Active(0);
GridLogIntegrator.Active(1);
GridLogColours.Active(0);
GridLogHMC.Active(1);
@ -91,6 +93,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Dslash")) GridLogDslash.Active(1);
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);

View File

@ -138,7 +138,8 @@ public:
stream << std::setw(log.topWidth);
}
stream << log.topName << log.background()<< " : ";
stream << log.colour() << std::left;
// stream << log.colour() << std::left;
stream << std::left;
if (log.chanWidth > 0)
{
stream << std::setw(log.chanWidth);
@ -153,9 +154,9 @@ public:
stream << log.evidence()
<< now << log.background() << " : " ;
}
stream << log.colour();
// stream << log.colour();
stream << std::right;
stream.flags(f);
return stream;
} else {
return devnull;
@ -180,6 +181,7 @@ extern GridLogger GridLogWarning;
extern GridLogger GridLogMessage;
extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogDslash;
extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;

View File

@ -27,10 +27,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h>
NAMESPACE_BEGIN(Grid);
GridTimePoint theProgramStart = GridClock::now();
#define CacheControl(L,O,R) ((PERF_COUNT_HW_CACHE_##L)|(PERF_COUNT_HW_CACHE_OP_##O<<8)| (PERF_COUNT_HW_CACHE_RESULT_##R<<16))
#define RawConfig(A,B) (A<<8|B)
const PerformanceCounter::PerformanceCounterConfig PerformanceCounter::PerformanceCounterConfigs [] = {

View File

@ -35,17 +35,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid)
// Dress the output; use std::chrono
// C++11 time facilities better?
inline double usecond(void) {
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 0;
gettimeofday(&tv,NULL);
return 1.0*tv.tv_usec + 1.0e6*tv.tv_sec;
}
typedef std::chrono::system_clock GridClock;
//typedef std::chrono::system_clock GridClock;
typedef std::chrono::high_resolution_clock GridClock;
typedef std::chrono::time_point<GridClock> GridTimePoint;
typedef std::chrono::seconds GridSecs;
@ -53,6 +44,15 @@ typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridUsecs;
typedef std::chrono::microseconds GridTime;
extern GridTimePoint theProgramStart;
// Dress the output; use std::chrono
// C++11 time facilities better?
inline double usecond(void) {
auto usecs = std::chrono::duration_cast<GridUsecs>(GridClock::now()-theProgramStart);
return 1.0*usecs.count();
}
inline std::ostream& operator<< (std::ostream & stream, const GridSecs & time)
{
stream << time.count()<<" s";

66
Grid/perfmon/Tracing.h Normal file
View File

@ -0,0 +1,66 @@
#pragma once
#ifdef GRID_TRACING_NVTX
#include <nvToolsExt.h>
class GridTracer {
public:
GridTracer(const char* name) {
nvtxRangePushA(name);
}
~GridTracer() {
nvtxRangePop();
}
};
inline void tracePush(const char *name) { nvtxRangePushA(name); }
inline void tracePop(const char *name) { nvtxRangePop(); }
inline int traceStart(const char *name) { }
inline void traceStop(int ID) { }
#endif
#ifdef GRID_TRACING_ROCTX
#include <roctracer/roctx.h>
class GridTracer {
public:
GridTracer(const char* name) {
roctxRangePushA(name);
std::cout << "roctxRangePush "<<name<<std::endl;
}
~GridTracer() {
roctxRangePop();
std::cout << "roctxRangePop "<<std::endl;
}
};
inline void tracePush(const char *name) { roctxRangePushA(name); }
inline void tracePop(const char *name) { roctxRangePop(); }
inline int traceStart(const char *name) { roctxRangeStart(name); }
inline void traceStop(int ID) { roctxRangeStop(ID); }
#endif
#ifdef GRID_TRACING_TIMER
class GridTracer {
public:
const char *name;
double elapsed;
GridTracer(const char* _name) {
name = _name;
elapsed=-usecond();
}
~GridTracer() {
elapsed+=usecond();
std::cout << GridLogTracing << name << " took " <<elapsed<< " us" <<std::endl;
}
};
inline void tracePush(const char *name) { }
inline void tracePop(const char *name) { }
inline int traceStart(const char *name) { return 0; }
inline void traceStop(int ID) { }
#endif
#ifdef GRID_TRACING_NONE
#define GRID_TRACE(name)
inline void tracePush(const char *name) { }
inline void tracePop(const char *name) { }
inline int traceStart(const char *name) { return 0; }
inline void traceStop(int ID) { }
#else
#define GRID_TRACE(name) GridTracer uniq_name_using_macros##__COUNTER__(name);
#endif

View File

@ -42,6 +42,8 @@ public:
bool is_smeared = false;
RealD deriv_norm_sum;
RealD deriv_max_sum;
RealD Fdt_norm_sum;
RealD Fdt_max_sum;
int deriv_num;
RealD deriv_us;
RealD S_us;
@ -50,13 +52,21 @@ public:
deriv_us = S_us = refresh_us = 0.0;
deriv_num=0;
deriv_norm_sum = deriv_max_sum=0.0;
Fdt_max_sum = Fdt_norm_sum = 0.0;
}
void deriv_log(RealD nrm, RealD max) { deriv_max_sum+=max; deriv_norm_sum+=nrm; deriv_num++;}
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
void deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) {
deriv_max_sum+=max;
deriv_norm_sum+=nrm;
Fdt_max_sum+=Fdt_max;
Fdt_norm_sum+=Fdt_nrm; deriv_num++;
}
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD Fdt_max_average(void) { return Fdt_max_sum/deriv_num; };
RealD Fdt_norm_average(void) { return Fdt_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return deriv_us; };
RealD refresh_timer(void) { return deriv_us; };
RealD S_timer(void) { return S_us; };
RealD refresh_timer(void) { return refresh_us; };
void deriv_timer_start(void) { deriv_us-=usecond(); }
void deriv_timer_stop(void) { deriv_us+=usecond(); }
void refresh_timer_start(void) { refresh_us-=usecond(); }
@ -66,6 +76,7 @@ public:
// Heatbath?
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
virtual std::string action_name() = 0; // return the action name
virtual std::string LogParameters() = 0; // prints action parameters

View File

@ -39,7 +39,7 @@ struct GparityWilsonImplParams {
Coordinate twists;
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
Coordinate dirichlet; // Blocksize of dirichlet BCs
GparityWilsonImplParams() : twists(Nd, 0), dirichlet(Nd, 0) {};
GparityWilsonImplParams() : twists(Nd, 0) { dirichlet.resize(0); };
};
struct WilsonImplParams {
@ -48,13 +48,13 @@ struct WilsonImplParams {
AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases;
WilsonImplParams() {
dirichlet.resize(Nd,0);
dirichlet.resize(0);
boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0);
};
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0);
dirichlet.resize(Nd,0);
dirichlet.resize(0);
}
};
@ -62,7 +62,7 @@ struct StaggeredImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs
StaggeredImplParams()
{
dirichlet.resize(Nd,0);
dirichlet.resize(0);
};
};

View File

@ -183,16 +183,6 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
void CayleyReport(void);
void CayleyZeroCounters(void);
double M5Dflops;
double M5Dcalls;
double M5Dtime;
double MooeeInvFlops;
double MooeeInvCalls;
double MooeeInvTime;
protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);

View File

@ -47,18 +47,6 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////

View File

@ -52,18 +52,6 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////

View File

@ -47,18 +47,6 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////

View File

@ -294,11 +294,7 @@ public:
typedef typename Base::View_type View_type;
typedef typename Base::StencilVector StencilVector;
void ZeroCountersi(void) { }
void Reporti(int calls) { }
// Vector<int> surface_list;
WilsonStencil(GridBase *grid,
int npoints,
int checkerboard,
@ -306,7 +302,6 @@ public:
const std::vector<int> &distances,Parameters p)
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p)
{
ZeroCountersi();
// surface_list.resize(0);
this->same_node.resize(npoints);
};
@ -400,7 +395,6 @@ public:
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier();
}
};

View File

@ -74,20 +74,6 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopTotalTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent

View File

@ -78,21 +78,6 @@ public:
int Dirichlet;
Coordinate Block;
/********** Deprecate timers **********/
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopTotalTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////

View File

@ -152,58 +152,6 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
}
}
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
{
this->Report();
Coordinate latt = GridDefaultLatt();
RealD volume = this->Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = this->_FourDimGrid->_Nprocessors;
if ( M5Dcalls > 0 ) {
std::cout << GridLogMessage << "#### M5D calls report " << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D Number of M5D Calls : " << M5Dcalls << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << M5Dtime / M5Dcalls << " us" << std::endl;
// Flops = 10.0*(Nc*Ns) *Ls*vol
RealD mflops = 10.0*(Nc*Ns)*volume*M5Dcalls/M5Dtime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
// Bytes = sizeof(Real) * (Nc*Ns*Nreim) * Ls * vol * (read+write) (/2 for red black counting)
// read = 2 ( psi[ss+s+1] and psi[ss+s-1] count as 1 )
// write = 1
RealD Gbytes = sizeof(Real) * (Nc*Ns*2) * volume * 3 /2. * 1.e-9;
std::cout << GridLogMessage << "Average bandwidth (GB/s) : " << Gbytes/M5Dtime*M5Dcalls*1.e6 << std::endl;
}
if ( MooeeInvCalls > 0 ) {
std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls : " << MooeeInvCalls << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
#ifdef GRID_CUDA
RealD mflops = ( -16.*Nc*Ns+this->Ls*(1.+18.*Nc*Ns) )*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
#else
// Flops = MADD * Ls *Ls *4dvol * spin/colour/complex
RealD mflops = 2.0*24*this->Ls*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
#endif
}
}
template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
{
this->ZeroCounters();
M5Dflops=0;
M5Dcalls=0;
M5Dtime=0;
MooeeInvFlops=0;
MooeeInvCalls=0;
MooeeInvTime=0;
}
template<class Impl>
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{
@ -646,7 +594,6 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
@ -765,7 +712,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
else q_out += C;
}
#endif
}
template <class Impl>
@ -832,7 +779,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
#endif
#if (!defined(GRID_HIP))
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
////////////////////////////////////////////////
@ -952,7 +898,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
InsertSlice(L_Q, q_out, s , 0);
}
#endif
}
#undef Pp
#undef Pm

View File

@ -63,9 +63,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
// 10 = 3 complex mult + 2 complex add
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
M5Dcalls++;
M5Dtime-=usecond();
uint64_t nloop = grid->oSites();
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t s = sss%Ls;
@ -78,7 +75,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
spProj5p(tmp2,psi(idx_l));
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
});
M5Dtime+=usecond();
}
template<class Impl>
@ -104,9 +100,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
int Ls=this->Ls;
// Flops = 6.0*(Nc*Ns) *Ls*vol
M5Dcalls++;
M5Dtime-=usecond();
uint64_t nloop = grid->oSites();
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t s = sss%Ls;
@ -119,7 +112,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
spProj5m(tmp2,psi(idx_l));
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
});
M5Dtime+=usecond();
}
template<class Impl>
@ -140,8 +132,6 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
auto pleem = & leem[0];
auto pueem = & ueem[0];
MooeeInvCalls++;
MooeeInvTime-=usecond();
uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -178,8 +168,6 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
coalescedWrite(chi[ss+s],res);
}
});
MooeeInvTime+=usecond();
}
@ -202,10 +190,6 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
assert(psi.Checkerboard() == psi.Checkerboard());
MooeeInvCalls++;
MooeeInvTime-=usecond();
uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -242,7 +226,6 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
coalescedWrite(chi[ss+s],res);
}
});
MooeeInvTime+=usecond();
}

View File

@ -94,10 +94,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
d_p[ss] = diag[s];
}}
M5Dcalls++;
M5Dtime-=usecond();
assert(Nc==3);
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
@ -198,7 +194,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
}
#endif
});
M5Dtime+=usecond();
}
template<class Impl>
@ -242,8 +237,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
d_p[ss] = diag[s];
}}
M5Dcalls++;
M5Dtime-=usecond();
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
@ -339,7 +332,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
}
#endif
});
M5Dtime+=usecond();
}
@ -813,9 +805,6 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
}
assert(_Matp->size()==Ls*LLs);
MooeeInvCalls++;
MooeeInvTime-=usecond();
if ( switcheroo<Coeff_t>::iscomplex() ) {
thread_loop( (auto site=0;site<vol;site++),{
MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
@ -825,7 +814,7 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
});
}
MooeeInvTime+=usecond();
}
NAMESPACE_END(Grid);

View File

@ -54,8 +54,6 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
auto pupper = &upper[0];
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
auto nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -71,7 +69,6 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
}
});
this->M5Dtime += usecond();
}
template<class Impl>
@ -91,8 +88,6 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
auto nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -108,7 +103,6 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
}
});
this->M5Dtime += usecond();
}
template<class Impl>
@ -127,8 +121,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
auto pleem = & this->leem[0];
auto pueem = & this->ueem[0];
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
uint64_t nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -164,7 +156,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
coalescedWrite(chi[ss+s],res);
}
});
this->MooeeInvTime += usecond();
}
template<class Impl>
@ -185,8 +176,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
assert(psi.Checkerboard() == psi.Checkerboard());
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
auto nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -223,7 +212,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
}
});
this->MooeeInvTime += usecond();
}
NAMESPACE_END(Grid);

View File

@ -298,45 +298,33 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
int LLs = in.Grid()->_rdimensions[0];
int len = U.Grid()->oSites();
DhopFaceTime-=usecond();
st.Prepare();
st.HaloGather(in,compressor);
DhopFaceTime+=usecond();
DhopCommTime -=usecond();
std::vector<std::vector<CommsRequest_t> > requests;
st.CommunicateBegin(requests);
// st.HaloExchangeOptGather(in,compressor); // Wilson compressor
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
DhopFaceTime+=usecond();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Remove explicit thread mapping introduced for OPA reasons.
//////////////////////////////////////////////////////////////////////////////////////////////////////
DhopComputeTime-=usecond();
{
int interior=1;
int exterior=0;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime+=usecond();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
DhopComputeTime2-=usecond();
{
int interior=0;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime2+=usecond();
}
template<class Impl>
@ -347,22 +335,14 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
Compressor compressor;
int LLs = in.Grid()->_rdimensions[0];
//double t1=usecond();
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
st.HaloExchange(in,compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
{
int interior=1;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
}
/*CHANGE END*/
@ -371,7 +351,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=1;
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
@ -383,7 +362,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=1;
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
@ -395,7 +373,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=2;
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
@ -404,58 +381,6 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Report(void)
{
Coordinate latt = GridDefaultLatt();
RealD volume = Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _FourDimGrid->_Nprocessors;
RealD NN = _FourDimGrid->NodeCount();
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Number of DhopEO Calls : "
<< DhopCalls << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D TotalTime /Calls : "
<< DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D CommTime /Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
// Average the compute time
_FourDimGrid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void)
{
DhopCalls = 0;
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopFaceTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
/////////////////////////////////////////////////////////////////////////
// Implement the general interface. Here we use SAME mass on all slices
/////////////////////////////////////////////////////////////////////////

View File

@ -334,7 +334,6 @@ void ImprovedStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionF
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=2;
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
@ -346,7 +345,6 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=1;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -359,7 +357,6 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=1;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -418,47 +415,33 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
Compressor compressor;
int len = U.Grid()->oSites();
DhopTotalTime -= usecond();
DhopFaceTime -= usecond();
st.Prepare();
st.HaloGather(in,compressor);
DhopFaceTime += usecond();
DhopCommTime -=usecond();
std::vector<std::vector<CommsRequest_t> > requests;
st.CommunicateBegin(requests);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+= usecond();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Removed explicit thread comms
//////////////////////////////////////////////////////////////////////////////////////////////////////
DhopComputeTime -= usecond();
{
int interior=1;
int exterior=0;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
// First to enter, last to leave timing
DhopFaceTime -= usecond();
st.CommsMerge(compressor);
DhopFaceTime -= usecond();
DhopComputeTime2 -= usecond();
{
int interior=0;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime2 += usecond();
}
@ -471,78 +454,16 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Le
{
assert((dag == DaggerNo) || (dag == DaggerYes));
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
Compressor compressor;
st.HaloExchange(in, compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
{
int interior=1;
int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
};
////////////////////////////////////////////////////////////////
// Reporting
////////////////////////////////////////////////////////////////
template<class Impl>
void ImprovedStaggeredFermion<Impl>::Report(void)
{
Coordinate latt = _grid->GlobalDimensions();
RealD volume = 1; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion Number of DhopEO Calls : "
<< DhopCalls << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion TotalTime /Calls : "
<< DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion CommTime /Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
template<class Impl>
void ImprovedStaggeredFermion<Impl>::ZeroCounters(void)
{
DhopCalls = 0;
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopFaceTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
////////////////////////////////////////////////////////
// Conserved current - not yet implemented.
////////////////////////////////////////////////////////

View File

@ -55,9 +55,6 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss = sss*Ls;
@ -73,7 +70,6 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
}
});
this->M5Dtime += usecond();
}
template<class Impl>
@ -99,9 +95,6 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
auto pshift_coeffs = &shift_coeffs[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss = sss*Ls;
@ -122,7 +115,6 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
}
});
this->M5Dtime += usecond();
}
template<class Impl>
@ -143,9 +135,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(), {
uint64_t ss = sss*Ls;
@ -161,8 +150,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
coalescedWrite(chi[ss+s], pdiag[s]*phi(ss+s) + pupper[s]*tmp1 + plower[s]*tmp2);
}
});
this->M5Dtime += usecond();
}
template<class Impl>
@ -186,9 +173,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
auto pshift_coeffs = &shift_coeffs[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
auto pm = this->pm;
int nloop = grid->oSites()/Ls;
@ -217,7 +201,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
}
});
this->M5Dtime += usecond();
}
template<class Impl>
@ -237,9 +220,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -277,7 +257,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
}
});
this->MooeeInvTime += usecond();
}
template<class Impl>
@ -297,8 +276,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
auto pueem= & this->ueem[0];
auto pMooeeInv_shift_lc = &MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -343,7 +320,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
}
});
this->MooeeInvTime += usecond();
}
template<class Impl>
@ -363,9 +339,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
auto pleem= & this->leem[0];
auto pueem= & this->ueem[0];
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -402,7 +375,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
coalescedWrite(chi[ss+s],res);
}
});
this->MooeeInvTime += usecond();
}
template<class Impl>
@ -423,9 +395,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
@ -469,7 +438,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
}
});
this->MooeeInvTime += usecond();
}
NAMESPACE_END(Grid);

View File

@ -263,7 +263,6 @@ void NaiveStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionFiel
template <class Impl>
void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=2;
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
@ -275,7 +274,6 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=1;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -288,7 +286,6 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=1;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -345,47 +342,33 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, L
Compressor compressor;
int len = U.Grid()->oSites();
DhopTotalTime -= usecond();
DhopFaceTime -= usecond();
st.Prepare();
st.HaloGather(in,compressor);
DhopFaceTime += usecond();
DhopCommTime -=usecond();
std::vector<std::vector<CommsRequest_t> > requests;
st.CommunicateBegin(requests);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+= usecond();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Removed explicit thread comms
//////////////////////////////////////////////////////////////////////////////////////////////////////
DhopComputeTime -= usecond();
{
int interior=1;
int exterior=0;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
// First to enter, last to leave timing
DhopFaceTime -= usecond();
st.CommsMerge(compressor);
DhopFaceTime -= usecond();
DhopComputeTime2 -= usecond();
{
int interior=0;
int exterior=1;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
DhopComputeTime2 += usecond();
}
template <class Impl>
@ -396,78 +379,16 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Lebes
{
assert((dag == DaggerNo) || (dag == DaggerYes));
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
Compressor compressor;
st.HaloExchange(in, compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
{
int interior=1;
int exterior=1;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
};
////////////////////////////////////////////////////////////////
// Reporting
////////////////////////////////////////////////////////////////
template<class Impl>
void NaiveStaggeredFermion<Impl>::Report(void)
{
Coordinate latt = _grid->GlobalDimensions();
RealD volume = 1; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion Number of DhopEO Calls : "
<< DhopCalls << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion TotalTime /Calls : "
<< DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion CommTime /Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
std::cout << GridLogMessage << "NaiveStaggeredFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "NaiveStaggeredFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "NaiveStaggeredFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
template<class Impl>
void NaiveStaggeredFermion<Impl>::ZeroCounters(void)
{
DhopCalls = 0;
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopFaceTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
////////////////////////////////////////////////////////
// Conserved current - not yet implemented.
////////////////////////////////////////////////////////

View File

@ -103,8 +103,6 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Block = block;
}
ZeroCounters();
if (Impl::LsVectorised) {
int nsimd = Simd::Nsimd();
@ -143,89 +141,6 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
// <<" " << StencilEven.surface_list.size()<<std::endl;
}
template<class Impl>
void WilsonFermion5D<Impl>::Report(void)
{
RealD NP = _FourDimGrid->_Nprocessors;
RealD NN = _FourDimGrid->NodeCount();
RealD volume = Ls;
Coordinate latt = _FourDimGrid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of DhopEO Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
// Average the compute time
_FourDimGrid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1344*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
}
if ( DerivCalls > 0 ) {
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls : " <<DerivCalls <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NP << std::endl; }
if (DerivCalls > 0 || DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion5D Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
}
if ( DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion5D Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion5D StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
}
}
template<class Impl>
void WilsonFermion5D<Impl>::ZeroCounters(void) {
DhopCalls = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopComputeTime2= 0;
DhopFaceTime = 0;
DhopTotalTime = 0;
DerivCalls = 0;
DerivCommTime = 0;
DerivComputeTime = 0;
DerivDhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
Stencil.ZeroCountersi();
StencilEven.ZeroCountersi();
StencilOdd.ZeroCountersi();
}
template<class Impl>
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
@ -233,10 +148,10 @@ void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
GaugeField HUmu(_Umu.Grid());
HUmu = _Umu*(-0.5);
if ( Dirichlet ) {
std::cout << GridLogMessage << " Dirichlet BCs 5d " <<Block<<std::endl;
std::cout << GridLogDslash << " Dirichlet BCs 5d " <<Block<<std::endl;
Coordinate GaugeBlock(Nd);
for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
std::cout << GridLogMessage << " Dirichlet BCs 4d " <<GaugeBlock<<std::endl;
std::cout << GridLogDslash << " Dirichlet BCs 4d " <<GaugeBlock<<std::endl;
DirichletFilter<GaugeField> Filter(GaugeBlock);
Filter.applyFilter(HUmu);
}
@ -281,7 +196,6 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
const FermionField &B,
int dag)
{
DerivCalls++;
assert((dag==DaggerNo) ||(dag==DaggerYes));
conformable(st.Grid(),A.Grid());
@ -292,15 +206,12 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
FermionField Btilde(B.Grid());
FermionField Atilde(B.Grid());
DerivCommTime-=usecond();
st.HaloExchange(B,compressor);
DerivCommTime+=usecond();
Atilde=A;
int LLs = B.Grid()->_rdimensions[0];
DerivComputeTime-=usecond();
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma if dag
@ -312,8 +223,6 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
// Call the single hop
////////////////////////
DerivDhopComputeTime -= usecond();
int Usites = U.Grid()->oSites();
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
@ -321,10 +230,8 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
////////////////////////////
// spin trace outer product
////////////////////////////
DerivDhopComputeTime += usecond();
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
}
DerivComputeTime += usecond();
}
template<class Impl>
@ -382,12 +289,10 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
DhopTotalTime-=usecond();
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
DhopInternalSerialComms(st,lo,U,in,out,dag);
DhopTotalTime+=usecond();
}
@ -396,6 +301,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
GRID_TRACE("DhopInternalOverlappedComms");
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
@ -404,53 +310,58 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
/////////////////////////////
// Start comms // Gather intranode and extra node differentiated??
/////////////////////////////
DhopFaceTime-=usecond();
st.HaloExchangeOptGather(in,compressor);
DhopFaceTime+=usecond();
DhopCommTime -=usecond();
{
GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor);
accelerator_barrier();
}
std::vector<std::vector<CommsRequest_t> > requests;
auto id=traceStart("Communicate overlapped");
st.CommunicateBegin(requests);
/////////////////////////////
// Overlap with comms
/////////////////////////////
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
DhopFaceTime+=usecond();
{
GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
}
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
} else {
GRID_TRACE("DhopInterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
DhopComputeTime+=usecond();
/////////////////////////////
// Complete comms
/////////////////////////////
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
traceStop(id);
/////////////////////////////
// do the compute exterior
/////////////////////////////
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
{
GRID_TRACE("Merge");
st.CommsMerge(compressor);
}
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
} else {
GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
}
DhopComputeTime2+=usecond();
}
@ -460,29 +371,30 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOr
const FermionField &in,
FermionField &out,int dag)
{
GRID_TRACE("DhopInternalSerialComms");
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
{
GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor);
}
DhopCommTime-=usecond();
st.HaloExchangeOpt(in,compressor);
DhopCommTime+=usecond();
DhopComputeTime-=usecond();
int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) {
GRID_TRACE("DhopDag");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
} else {
GRID_TRACE("Dhop");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
}
DhopComputeTime+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
@ -494,7 +406,6 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
@ -506,7 +417,6 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=2;
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
@ -561,12 +471,17 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
LatComplex sk(_grid); sk = Zero();
LatComplex sk2(_grid); sk2= Zero();
LatComplex W(_grid); W= Zero();
LatComplex a(_grid); a= Zero();
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex cosha(_grid);
LatComplex kmu(_grid);
LatComplex Wea(_grid);
LatComplex Wema(_grid);
LatComplex ea(_grid);
LatComplex ema(_grid);
LatComplex eaLs(_grid);
LatComplex emaLs(_grid);
LatComplex ea2Ls(_grid);
LatComplex ema2Ls(_grid);
LatComplex sinha(_grid);
LatComplex sinhaLs(_grid);
LatComplex coshaLs(_grid);
@ -601,39 +516,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
////////////////////////////////////////////
cosha = (one + W*W + sk) / (abs(W)*2.0);
// FIXME Need a Lattice acosh
{
autoView(cosha_v,cosha,CpuRead);
autoView(a_v,a,CpuWrite);
for(int idx=0;idx<_grid->lSites();idx++){
Coordinate lcoor(Nd);
Tcomplex cc;
// RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha_v,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a_v,lcoor);
}
}
Wea = ( exp( a) * abs(W) );
Wema= ( exp(-a) * abs(W) );
sinha = 0.5*(exp( a) - exp(-a));
sinhaLs = 0.5*(exp( a*Ls) - exp(-a*Ls));
coshaLs = 0.5*(exp( a*Ls) + exp(-a*Ls));
ea = (cosha + sqrt(cosha*cosha-one));
ema= (cosha - sqrt(cosha*cosha-one));
eaLs = pow(ea,Ls);
emaLs= pow(ema,Ls);
ea2Ls = pow(ea,2.0*Ls);
ema2Ls= pow(ema,2.0*Ls);
Wea= abs(W) * ea;
Wema= abs(W) * ema;
// a=log(ea);
sinha = 0.5*(ea - ema);
sinhaLs = 0.5*(eaLs-emaLs);
coshaLs = 0.5*(eaLs+emaLs);
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
F = exp( a*Ls) * (one - Wea + (Wema - one) * mass*mass);
F = F + exp(-a*Ls) * (Wema - one + (one - Wea) * mass*mass);
F = eaLs * (one - Wea + (Wema - one) * mass*mass);
F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
F = F - abs(W) * sinha * 4.0 * mass;
Bpp = (A/F) * (exp(-a*Ls*2.0) - one) * (one - Wema) * (one - mass*mass * one);
Bmm = (A/F) * (one - exp(a*Ls*2.0)) * (one - Wea) * (one - mass*mass * one);
App = (A/F) * (exp(-a*Ls*2.0) - one) * exp(-a) * (exp(-a) - abs(W)) * (one - mass*mass * one);
Amm = (A/F) * (one - exp(a*Ls*2.0)) * exp(a) * (exp(a) - abs(W)) * (one - mass*mass * one);
Bpp = (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
Bmm = (A/F) * (one - ea2Ls) * (one - Wea) * (one - mass*mass * one);
App = (A/F) * (ema2Ls - one) * ema * (ema - abs(W)) * (one - mass*mass * one);
Amm = (A/F) * (one - ea2Ls) * ea * (ea - abs(W)) * (one - mass*mass * one);
ABpm = (A/F) * abs(W) * sinha * 2.0 * (one + mass * coshaLs * 2.0 + mass*mass * one);
//P+ source, P- source
@ -656,29 +561,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
buf1_4d = Zero();
ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
//G(s,t)
bufR_4d = bufR_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf1_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf1_4d;
bufR_4d = bufR_4d + A * eaLs * pow(ema,f) * signW * buf1_4d + A * emaLs * pow(ea,f) * signW * buf1_4d;
//A++*exp(a(s+t))
bufR_4d = bufR_4d + App * exp(a*ss) * exp(a*tt) * signW * buf1_4d ;
bufR_4d = bufR_4d + App * pow(ea,ss) * pow(ea,tt) * signW * buf1_4d ;
//A+-*exp(a(s-t))
bufR_4d = bufR_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf1_4d ;
bufR_4d = bufR_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf1_4d ;
//A-+*exp(a(-s+t))
bufR_4d = bufR_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf1_4d ;
bufR_4d = bufR_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf1_4d ;
//A--*exp(a(-s-t))
bufR_4d = bufR_4d + Amm * exp(-a*ss) * exp(-a*tt) * signW * buf1_4d ;
bufR_4d = bufR_4d + Amm * pow(ema,ss) * pow(ema,tt) * signW * buf1_4d ;
//GL
buf2_4d = Zero();
ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
//G(s,t)
bufL_4d = bufL_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf2_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf2_4d;
bufL_4d = bufL_4d + A * eaLs * pow(ema,f) * signW * buf2_4d + A * emaLs * pow(ea,f) * signW * buf2_4d;
//B++*exp(a(s+t))
bufL_4d = bufL_4d + Bpp * exp(a*ss) * exp(a*tt) * signW * buf2_4d ;
bufL_4d = bufL_4d + Bpp * pow(ea,ss) * pow(ea,tt) * signW * buf2_4d ;
//B+-*exp(a(s-t))
bufL_4d = bufL_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf2_4d ;
bufL_4d = bufL_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf2_4d ;
//B-+*exp(a(-s+t))
bufL_4d = bufL_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf2_4d ;
bufL_4d = bufL_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf2_4d ;
//B--*exp(a(-s-t))
bufL_4d = bufL_4d + Bmm * exp(-a*ss) * exp(-a*tt) * signW * buf2_4d ;
bufL_4d = bufL_4d + Bmm * pow(ema,ss) * pow(ema,tt) * signW * buf2_4d ;
}
InsertSlice(bufR_4d, GR, (ss-1), 0);
InsertSlice(bufL_4d, GL, (ss-1), 0);
@ -797,28 +702,12 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
W = one - M5 + sk2;
////////////////////////////////////////////
// Cosh alpha -> alpha
// Cosh alpha -> exp(+/- alpha)
////////////////////////////////////////////
cosha = (one + W*W + sk) / (abs(W)*2.0);
// FIXME Need a Lattice acosh
{
autoView(cosha_v,cosha,CpuRead);
autoView(a_v,a,CpuWrite);
for(int idx=0;idx<_grid->lSites();idx++){
Coordinate lcoor(Nd);
Tcomplex cc;
// RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha_v,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a_v,lcoor);
}}
Wea = ( exp( a) * abs(W) );
Wema= ( exp(-a) * abs(W) );
Wea = abs(W)*(cosha + sqrt(cosha*cosha-one));
Wema= abs(W)*(cosha - sqrt(cosha*cosha-one));
num = num + ( one - Wema ) * mass * in;
denom= ( Wea - one ) + mass*mass * (one - Wema);

View File

@ -76,91 +76,6 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
StencilOdd.BuildSurfaceList(1,vol4);
}
template<class Impl>
void WilsonFermion<Impl>::Report(void)
{
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
RealD volume = 1;
Coordinate latt = _grid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion Number of DhopEO Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1320*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1320*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
}
if ( DerivCalls > 0 ) {
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
std::cout << GridLogMessage << "WilsonFermion Number of Deriv Calls : " <<DerivCalls <<std::endl;
std::cout << GridLogMessage << "WilsonFermion CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
// how to count flops here?
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call ? : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node ? : " << mflops/NP << std::endl;
// how to count flops here?
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) ? : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full) ? : " << Fullmflops/NP << std::endl; }
if (DerivCalls > 0 || DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "WilsonFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
if ( DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
}
}
template<class Impl>
void WilsonFermion<Impl>::ZeroCounters(void) {
DhopCalls = 0; // ok
DhopCommTime = 0;
DhopComputeTime = 0;
DhopComputeTime2= 0;
DhopFaceTime = 0;
DhopTotalTime = 0;
DerivCalls = 0; // ok
DerivCommTime = 0;
DerivComputeTime = 0;
DerivDhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
Stencil.ZeroCountersi();
StencilEven.ZeroCountersi();
StencilOdd.ZeroCountersi();
}
template <class Impl>
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
@ -320,7 +235,6 @@ template <class Impl>
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
GaugeField &mat, const FermionField &A,
const FermionField &B, int dag) {
DerivCalls++;
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
@ -329,11 +243,8 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
FermionField Atilde(B.Grid());
Atilde = A;
DerivCommTime-=usecond();
st.HaloExchange(B, compressor);
DerivCommTime+=usecond();
DerivComputeTime-=usecond();
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma (1+g)<->(1-g) if dag
@ -341,7 +252,6 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
int gamma = mu;
if (!dag) gamma += Nd;
DerivDhopComputeTime -= usecond();
int Ls=1;
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
@ -349,9 +259,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
// spin trace outer product
//////////////////////////////////////////////////
Impl::InsertForce4D(mat, Btilde, Atilde, mu);
DerivDhopComputeTime += usecond();
}
DerivComputeTime += usecond();
}
template <class Impl>
@ -398,7 +306,6 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
template <class Impl>
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=2;
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
@ -410,7 +317,6 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
template <class Impl>
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
DhopCalls++;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -423,7 +329,6 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
template <class Impl>
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -488,14 +393,12 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
const FermionField &in,
FermionField &out, int dag)
{
DhopTotalTime-=usecond();
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
DhopInternalSerial(st,lo,U,in,out,dag);
DhopTotalTime+=usecond();
}
template <class Impl>
@ -504,6 +407,7 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
const FermionField &in,
FermionField &out, int dag)
{
GRID_TRACE("DhopOverlapped");
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
@ -514,53 +418,55 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
/////////////////////////////
std::vector<std::vector<CommsRequest_t> > requests;
st.Prepare();
DhopFaceTime-=usecond();
st.HaloGather(in,compressor);
DhopFaceTime+=usecond();
{
GRID_TRACE("Gather");
st.HaloGather(in,compressor);
}
DhopCommTime -=usecond();
tracePush("Communication");
st.CommunicateBegin(requests);
/////////////////////////////
// Overlap with comms
/////////////////////////////
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+=usecond();
{
GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);
}
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt;
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
} else {
GRID_TRACE("DhopInterior");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
}
DhopComputeTime+=usecond();
/////////////////////////////
// Complete comms
/////////////////////////////
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
tracePop("Communication");
{
GRID_TRACE("Merge");
st.CommsMerge(compressor);
}
/////////////////////////////
// do the compute exterior
/////////////////////////////
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
} else {
GRID_TRACE("DhopExterior");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
}
DhopComputeTime2+=usecond();
};
@ -570,20 +476,22 @@ void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
const FermionField &in,
FermionField &out, int dag)
{
GRID_TRACE("DhopSerial");
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
DhopCommTime-=usecond();
st.HaloExchange(in, compressor);
DhopCommTime+=usecond();
{
GRID_TRACE("HaloExchange");
st.HaloExchange(in, compressor);
}
DhopComputeTime-=usecond();
int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) {
GRID_TRACE("DhopDag");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
} else {
GRID_TRACE("Dhop");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
}
DhopComputeTime+=usecond();
};
/*Change ends */

View File

@ -72,20 +72,15 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
if (SE->_is_local) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
} else if ( st.same_node[Dir] ) { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
if (SE->_is_local || st.same_node[Dir] ) { \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
} \
spProj(chi,tmp); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
} \
acceleratorSynchronise();
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
if (!SE->_is_local ) { \
auto chi = coalescedRead(buf[SE->_offset],lane); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
@ -416,19 +411,6 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#undef LoopBody
}
#define KERNEL_CALL_TMP(A) \
const uint64_t NN = Nsite*Ls; \
auto U_p = & U_v[0]; \
auto in_p = & in_v[0]; \
auto out_p = & out_v[0]; \
auto st_p = st_v._entries_p; \
auto st_perm = st_v._permute_type; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
WilsonKernels<Impl>::A(st_perm,st_p,U_p,buf,sF,sU,in_p,out_p); \
}); \
accelerator_barrier();
#define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \
@ -448,8 +430,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
int sF = ptr[ss]; \
int sU = ss/Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
}); \
accelerator_barrier();
});
#define ASM_CALL(A) \
thread_for( ss, Nsite, { \
@ -471,7 +452,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if( interior && exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
#ifdef SYCL_HACK
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_TMP(HandDhopSiteSycl); return; }
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteSycl); return; }
#else
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
#endif

View File

@ -91,6 +91,19 @@ struct DDHMCFilter: public MomentumFilterBase<GaugeField>
U_mu = where(mod(coor,B1)==Integer(B1-4),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
if ( Width==4) {
U = where(mod(coor,B1)==Integer(B1-4),zzz,U);
U = where(mod(coor,B1)==Integer(B1-3),zzz,U);
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
U = where(mod(coor,B1)==Integer(2) ,zzz,U);
U = where(mod(coor,B1)==Integer(3) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-5),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
}

View File

@ -38,6 +38,7 @@ NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct MomentumFilterBase{
virtual void applyFilter(MomentaField &P) const = 0;
virtual ~MomentumFilterBase(){};
};
//Do nothing
@ -83,7 +84,6 @@ struct MomentumFilterApplyPhase: public MomentumFilterBase<MomentaField>{
}
};

View File

@ -67,6 +67,36 @@ NAMESPACE_BEGIN(Grid);
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
};
template<class Impl,class ImplF>
class OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF> {
public:
typedef OneFlavourRationalParams Params;
private:
static RationalActionParams transcribe(const Params &in){
RationalActionParams out;
out.inv_pow = 2;
out.lo = in.lo;
out.hi = in.hi;
out.MaxIter = in.MaxIter;
out.action_tolerance = out.md_tolerance = in.tolerance;
out.action_degree = out.md_degree = in.degree;
out.precision = in.precision;
out.BoundsCheckFreq = in.BoundsCheckFreq;
return out;
}
public:
OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
FermionOperator<ImplF> &_NumOpF,
FermionOperator<ImplF> &_DenOpF,
const Params & p, Integer ReliableUpdateFreq
) :
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF>(_NumOp, _DenOp,_NumOpF, _DenOpF, transcribe(p),ReliableUpdateFreq){}
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
};
NAMESPACE_END(Grid);
#endif

View File

@ -85,7 +85,12 @@ NAMESPACE_BEGIN(Grid);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
virtual std::string action_name(){
std::stringstream sstream;
sstream<<"OneFlavourRatioRationalPseudoFermionAction("
<<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
return sstream.str();
}
virtual std::string LogParameters(){
std::stringstream sstream;

View File

@ -143,9 +143,10 @@ protected:
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
// DumpSliceNorm("force ",force,Nd-1);
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<< std::endl;
DumpSliceNorm("force ",force,Nd-1);
DumpSliceNorm("force filtered ",force,Nd-1);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
@ -153,7 +154,7 @@ protected:
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max);
as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
@ -285,6 +286,8 @@ public:
<<"["<<level<<"]["<< actionID<<"] : "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" Fdt max " << as[level].actions.at(actionID)->Fdt_max_average()
<<" Fdt norm " << as[level].actions.at(actionID)->Fdt_norm_average()
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}

View File

@ -290,6 +290,8 @@ public:
std::vector<Decompress> DecompressionsSHM;
std::vector<CopyReceiveBuffer> CopyReceiveBuffers ;
std::vector<CachedTransfer> CachedTransfers;
std::vector<CommsRequest_t> MpiReqs;
///////////////////////////////////////////////////////////
// Unified Comms buffers for all directions
///////////////////////////////////////////////////////////
@ -357,9 +359,9 @@ public:
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
reqs.resize(Packets.size());
accelerator_barrier();
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(reqs[i],
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
@ -370,41 +372,19 @@ public:
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromComplete(reqs[i],i);
}
_grid->StencilSendToRecvFromComplete(MpiReqs,0);
}
////////////////////////////////////////////////////////////////////////
// Blocking send and receive. Either sequential or parallel.
////////////////////////////////////////////////////////////////////////
void Communicate(void)
{
if ( CartesianCommunicator::CommunicatorPolicy == CartesianCommunicator::CommunicatorPolicySequential ){
/////////////////////////////////////////////////////////
// several way threaded on different communicators.
// Cannot combine with Dirichlet operators
// This scheme is needed on Intel Omnipath for best performance
// Deprecate once there are very few omnipath clusters
/////////////////////////////////////////////////////////
int nthreads = CartesianCommunicator::nCommThreads;
int old = GridThread::GetThreads();
GridThread::SetThreads(nthreads);
thread_for(i,Packets.size(),{
_grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].bytes,i);
});
GridThread::SetThreads(old);
} else {
/////////////////////////////////////////////////////////
// Concurrent and non-threaded asynch calls to MPI
/////////////////////////////////////////////////////////
std::vector<std::vector<CommsRequest_t> > reqs;
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
}
/////////////////////////////////////////////////////////
// Concurrent and non-threaded asynch calls to MPI
/////////////////////////////////////////////////////////
std::vector<std::vector<CommsRequest_t> > reqs;
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
}
template<class compressor> void HaloExchange(const Lattice<vobj> &source,compressor &compress)
@ -484,7 +464,6 @@ public:
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
accelerator_barrier();
}
/////////////////////////
@ -499,6 +478,7 @@ public:
Packets.resize(0);
CopyReceiveBuffers.resize(0);
CachedTransfers.resize(0);
MpiReqs.resize(0);
}
void AddCopy(void *from,void * to, Integer bytes)
{
@ -711,7 +691,9 @@ public:
this->_comms_recv.resize(npoints);
this->same_node.resize(npoints);
if ( p.dirichlet.size() ) DirichletBlock(p.dirichlet); // comms send/recv set up
if ( p.dirichlet.size() ==0 ) p.dirichlet.resize(grid->Nd(),0);
DirichletBlock(p.dirichlet); // comms send/recv set up
_unified_buffer_size=0;
surface_list.resize(0);
@ -793,7 +775,6 @@ public:
u_simd_recv_buf[l] = (cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
u_simd_send_buf[l] = (cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
}
PrecomputeByteOffsets();
}
@ -1105,7 +1086,6 @@ public:
// Gather locally
////////////////////////////////////////////////////////
assert(send_buf!=NULL);
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,comm_off,so);
}
@ -1212,8 +1192,9 @@ public:
face_table[face_idx].size()*sizeof(face_table_host[0]));
}
if ( comms_send || comms_recv )
if ( comms_send || comms_recv ) {
Gather_plane_exchange_table(face_table[face_idx],rhs,spointers,dimension,sx,cbmask,compress,permute_type);
}
face_idx++;
//spointers[0] -- low
@ -1270,10 +1251,6 @@ public:
return 0;
}
void ZeroCounters(void) { };
void Report(void) { };
};
NAMESPACE_END(Grid);

View File

@ -1,6 +1,7 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
int world_rank; // Use to control world rank for print guarding
int acceleratorAbortOnGpuError=1;
uint32_t accelerator_threads=2;
uint32_t acceleratorThreads(void) {return accelerator_threads;};
@ -16,7 +17,7 @@ void acceleratorThreads(uint32_t t) {accelerator_threads = t;};
#ifdef GRID_CUDA
cudaDeviceProp *gpu_props;
cudaStream_t copyStream;
cudaStream_t cpuStream;
cudaStream_t computeStream;
void acceleratorInit(void)
{
int nDevices = 1;
@ -24,7 +25,8 @@ void acceleratorInit(void)
gpu_props = new cudaDeviceProp[nDevices];
char * localRankStr = NULL;
int rank = 0, world_rank=0;
int rank = 0;
world_rank=0;
if ((localRankStr = getenv(ENV_RANK_OMPI )) != NULL) { world_rank = atoi(localRankStr);}
if ((localRankStr = getenv(ENV_RANK_MVAPICH)) != NULL) { world_rank = atoi(localRankStr);}
if ((localRankStr = getenv(ENV_RANK_SLURM )) != NULL) { world_rank = atoi(localRankStr);}
@ -99,7 +101,7 @@ void acceleratorInit(void)
cudaSetDevice(device);
cudaStreamCreate(&copyStream);
cudaStreamCreate(&cpuStream);
cudaStreamCreate(&computeStream);
const int len=64;
char busid[len];
if( rank == world_rank ) {
@ -114,7 +116,7 @@ void acceleratorInit(void)
#ifdef GRID_HIP
hipDeviceProp_t *gpu_props;
hipStream_t copyStream;
hipStream_t cpuStream;
hipStream_t computeStream;
void acceleratorInit(void)
{
int nDevices = 1;
@ -122,7 +124,8 @@ void acceleratorInit(void)
gpu_props = new hipDeviceProp_t[nDevices];
char * localRankStr = NULL;
int rank = 0, world_rank=0;
int rank = 0;
world_rank=0;
// We extract the local rank initialization using an environment variable
if ((localRankStr = getenv(ENV_LOCAL_RANK_OMPI)) != NULL)
{
@ -183,7 +186,7 @@ void acceleratorInit(void)
#endif
hipSetDevice(device);
hipStreamCreate(&copyStream);
hipStreamCreate(&cpuStream);
hipStreamCreate(&computeStream);
const int len=64;
char busid[len];
if( rank == world_rank ) {
@ -210,7 +213,8 @@ void acceleratorInit(void)
#endif
char * localRankStr = NULL;
int rank = 0, world_rank=0;
int rank = 0;
world_rank=0;
// We extract the local rank initialization using an environment variable
if ((localRankStr = getenv(ENV_LOCAL_RANK_OMPI)) != NULL)

View File

@ -107,7 +107,7 @@ void acceleratorInit(void);
extern int acceleratorAbortOnGpuError;
extern cudaStream_t copyStream;
extern cudaStream_t cpuStream;
extern cudaStream_t computeStream;
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
@ -135,7 +135,7 @@ inline void cuda_mem(void)
}; \
dim3 cu_threads(nsimd,acceleratorThreads(),1); \
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
LambdaApply<<<cu_blocks,cu_threads,0,cpuStream>>>(num1,num2,nsimd,lambda); \
LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
}
#define accelerator_for6dNB(iter1, num1, \
@ -154,7 +154,7 @@ inline void cuda_mem(void)
}; \
dim3 cu_blocks (num1,num2,num3); \
dim3 cu_threads(num4,num5,num6); \
Lambda6Apply<<<cu_blocks,cu_threads,0,cpuStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
Lambda6Apply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
}
template<typename lambda> __global__
@ -190,7 +190,7 @@ void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
#define accelerator_barrier(dummy) \
{ \
cudaStreamSynchronize(cpuStream); \
cudaStreamSynchronize(computeStream); \
cudaError err = cudaGetLastError(); \
if ( cudaSuccess != err ) { \
printf("accelerator_barrier(): Cuda error %s \n", \
@ -340,7 +340,7 @@ NAMESPACE_BEGIN(Grid);
#define accelerator_inline __host__ __device__ inline
extern hipStream_t copyStream;
extern hipStream_t cpuStream;
extern hipStream_t computeStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
@ -362,16 +362,15 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
if(hip_threads.x * hip_threads.y * hip_threads.z <= 64){ \
hipLaunchKernelGGL(LambdaApply64,hip_blocks,hip_threads, \
0,cpuStream, \
0,computeStream, \
num1,num2,nsimd, lambda); \
} else { \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,cpuStream, \
0,computeStream, \
num1,num2,nsimd, lambda); \
} \
}
template<typename lambda> __global__
__launch_bounds__(64,1)
void LambdaApply64(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
@ -400,7 +399,7 @@ void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
#define accelerator_barrier(dummy) \
{ \
hipStreamSynchronize(cpuStream); \
hipStreamSynchronize(computeStream); \
auto err = hipGetLastError(); \
if ( err != hipSuccess ) { \
printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
@ -443,7 +442,7 @@ inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(bas
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);
hipMemcpyDtoDAsync(to,from,bytes, copyStream);
}
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };

View File

@ -356,6 +356,11 @@ void Grid_init(int *argc,char ***argv)
//////////////////////////////////////////////////////////
CartesianCommunicator::Init(argc,argv);
GridLogger::GlobalStopWatch.Stop();
CartesianCommunicator::BarrierWorld();
GridLogger::GlobalStopWatch.Reset();// Back to zero with synchronised clock
GridLogger::GlobalStopWatch.Start();
////////////////////////////////////
// Banner after MPI (unless GPU)
////////////////////////////////////

View File

@ -128,8 +128,14 @@ template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, c
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
#if 1
RealD delta=1.e-4;
std::cout << GridLogMessage << "Calling reliable update Conjugate Gradient" <<std::endl;
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations*MaxOuterIterations,delta,SinglePrecGrid5,LinOpF,LinOpD);
#else
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
#endif
MPCG(src,psi);
}
};
@ -141,6 +147,10 @@ int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
CartesianCommunicator::BarrierWorld();
std::cout << GridLogMessage << " Clock skew check" <<std::endl;
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
@ -161,7 +171,7 @@ int main(int argc, char **argv) {
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 4;
MD.MDsteps = 6;
MD.trajL = 1.0;
HMCparameters HMCparams;
@ -183,7 +193,7 @@ int main(int argc, char **argv) {
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
std::cout << "loaded NERSC checpointer"<<std::endl;
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
@ -204,7 +214,8 @@ int main(int argc, char **argv) {
Real light_mass = 7.8e-4;
Real strange_mass = 0.02132;
Real pv_mass = 1.0;
std::vector<Real> hasenbusch({ light_mass, 3.8e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// std::vector<Real> hasenbusch({ light_mass, 3.8e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
std::vector<Real> hasenbusch({ light_mass, 5e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// FIXME:
// Same in MC and MD
@ -287,6 +298,7 @@ int main(int argc, char **argv) {
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
std::cout << "loaded NERSC gauge field"<<std::endl;
// These lines are unecessary if BC are all periodic

View File

@ -0,0 +1,474 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
/* Debugging instances of objects; references are stored
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
*/
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Must snarf a single precision copy of the gauge field in Linop_d argument
////////////////////////////////////////////////////////////////////////////////////
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
GridBase * GridPtrF = SinglePrecGrid4;
GridBase * GridPtrD = FermOpD.Umu.Grid();
GaugeFieldF U_f (GridPtrF);
GaugeLinkFieldF Umu_f(GridPtrF);
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
GaugeLinkFieldD Umu_d(GridPtrD);
for(int mu=0;mu<Nd*2;mu++){
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
precisionChange(Umu_f,Umu_d);
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
}
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
#if 1
RealD delta=1.e-4;
std::cout << GridLogMessage << "Calling reliable update Conjugate Gradient" <<std::endl;
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations*MaxOuterIterations,delta,SinglePrecGrid5,LinOpF,LinOpD);
#else
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
#endif
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef WilsonImplF FermionImplPolicyF;
typedef MobiusFermionR FermionAction;
typedef MobiusFermionF FermionActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 6;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 1077;
HMCparams.Trajectories = 1;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_DDHMC_lat";
CPparams.rng_prefix = "ckpoint_DDHMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
Real beta = 2.31;
// Real light_mass = 5.4e-4;
Real light_mass = 7.8e-4;
Real strange_mass = 0.02132;
Real pv_mass = 1.0;
// std::vector<Real> hasenbusch({ light_mass, 3.8e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
std::vector<Real> hasenbusch({ light_mass, 5e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// FIXME:
// Same in MC and MD
// Need to mix precision too
OneFlavourRationalParams SFRp; // Strange
SFRp.lo = 4.0e-3;
SFRp.hi = 90.0;
SFRp.MaxIter = 60000;
SFRp.tolerance= 1.0e-8;
SFRp.mdtolerance= 1.0e-6;
SFRp.degree = 12;
SFRp.precision= 50;
SFRp.BoundsCheckFreq=0;
OneFlavourRationalParams OFRp; // Up/down
OFRp.lo = 2.0e-5;
OFRp.hi = 90.0;
OFRp.MaxIter = 60000;
OFRp.tolerance= 1.0e-8;
OFRp.mdtolerance= 1.0e-6;
// OFRp.degree = 20; converges
// OFRp.degree = 16;
OFRp.degree = 12;
OFRp.precision= 80;
OFRp.BoundsCheckFreq=0;
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
////////////////////////////////////////////////////////////////
// Domain decomposed
////////////////////////////////////////////////////////////////
Coordinate latt4 = GridPtr->GlobalDimensions();
Coordinate mpi = GridPtr->ProcessorGrid();
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
Coordinate CommDim(Nd);
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Coordinate NonDirichlet(Nd+1,0);
Coordinate Dirichlet(Nd+1,0);
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Coordinate Block4(Nd);
Block4[0] = Dirichlet[1];
Block4[1] = Dirichlet[2];
Block4[2] = Dirichlet[3];
Block4[3] = Dirichlet[4];
int Width=3;
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block4,Width));
//////////////////////////
// Fermion Grids
//////////////////////////
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt4,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
Params.dirichlet=NonDirichlet;
FermionAction::ImplParams ParamsDir(boundary);
ParamsDir.dirichlet=Dirichlet;
// double StoppingCondition = 1e-14;
// double MDStoppingCondition = 1e-9;
double StoppingCondition = 1e-10;
double MDStoppingCondition = 1e-7;
double MDStoppingConditionLoose = 1e-6;
double MaxCGIterations = 300000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> MDCG(MDStoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(4);
ActionLevel<HMCWrapper::Field> Level3(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
FermionAction StrangeOpDir (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, ParamsDir);
FermionAction StrangePauliVillarsOpDir(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, ParamsDir);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionBdy(StrangeOpDir,StrangeOp,SFRp);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionLocal(StrangePauliVillarsOpDir,StrangeOpDir,SFRp);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionPVBdy(StrangePauliVillarsOp,StrangePauliVillarsOpDir,SFRp);
Level1.push_back(&StrangePseudoFermionBdy); // ok
Level2.push_back(&StrangePseudoFermionLocal);
Level1.push_back(&StrangePseudoFermionPVBdy); //ok
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
std::vector<int> dirichlet_den;
std::vector<int> dirichlet_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass); dirichlet_den.push_back(0);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]); dirichlet_den.push_back(1);
}
for(int h=0;h<n_hasenbusch;h++){
light_num.push_back(hasenbusch[h]); dirichlet_num.push_back(1);
}
light_num.push_back(pv_mass); dirichlet_num.push_back(0);
std::vector<FermionAction *> Numerators;
std::vector<FermionActionF *> NumeratorsF;
std::vector<FermionAction *> Denominators;
std::vector<FermionActionF *> DenominatorsF;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
#define MIXED_PRECISION
#ifdef MIXED_PRECISION
std::vector<OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicy,FermionImplPolicyF> *> Bdys;
#else
std::vector<OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> *> Bdys;
#endif
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage
<< " 2f quotient Action ";
std::cout << "det D("<<light_den[h]<<")";
if ( dirichlet_den[h] ) std::cout << "^dirichlet ";
std::cout << "/ det D("<<light_num[h]<<")";
if ( dirichlet_num[h] ) std::cout << "^dirichlet ";
std::cout << std::endl;
FermionAction::ImplParams ParamsNum(boundary);
FermionAction::ImplParams ParamsDen(boundary);
FermionActionF::ImplParams ParamsNumF(boundary);
FermionActionF::ImplParams ParamsDenF(boundary);
if ( dirichlet_num[h]==1) ParamsNum.dirichlet = Dirichlet;
else ParamsNum.dirichlet = NonDirichlet;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, ParamsNum));
if ( dirichlet_den[h]==1) ParamsDen.dirichlet = Dirichlet;
else ParamsDen.dirichlet = NonDirichlet;
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, ParamsDen));
ParamsDenF.dirichlet = ParamsDen.dirichlet;
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsDenF));
ParamsNumF.dirichlet = ParamsNum.dirichlet;
NumeratorsF.push_back (new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[h],M5,b,c, ParamsNumF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
double conv = MDStoppingCondition;
if (h<3) conv= MDStoppingConditionLoose; // Relax on first two hasenbusch factors
const int MX_inner = 5000;
MPCG.push_back(new MxPCG(conv,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(StoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
if(h!=0) {
// Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],MDCG,CG));
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],CG));
} else {
#ifdef MIXED_PRECISION
Bdys.push_back( new OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicy,FermionImplPolicyF>(
*Numerators[h],*Denominators[h],
*NumeratorsF[h],*DenominatorsF[h],
OFRp, 500) );
Bdys.push_back( new OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicy,FermionImplPolicyF>(
*Numerators[h],*Denominators[h],
*NumeratorsF[h],*DenominatorsF[h],
OFRp, 500) );
#else
Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
#endif
}
}
int nquo=Quotients.size();
Level1.push_back(Bdys[0]);
Level1.push_back(Bdys[1]);
for(int h=0;h<nquo-1;h++){
Level2.push_back(Quotients[h]);
}
Level2.push_back(Quotients[nquo-1]);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@ -420,7 +420,6 @@ public:
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
Dw.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);
@ -589,7 +588,6 @@ public:
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
Ds.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);

View File

@ -186,7 +186,6 @@ int main (int argc, char ** argv)
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
@ -231,7 +230,6 @@ int main (int argc, char ** argv)
exit(-1);
}
assert (norm2(err)< 1.0e-4 );
Dw.Report();
}
if (1)
@ -306,7 +304,6 @@ int main (int argc, char ** argv)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
{
Dw.ZeroCounters();
FGrid->Barrier();
Dw.DhopEO(src_o,r_e,DaggerNo);
double t0=usecond();
@ -328,7 +325,6 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);

View File

@ -93,14 +93,11 @@ int main (int argc, char ** argv)
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
Dw.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
@ -114,7 +111,6 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
@ -136,14 +132,11 @@ int main (int argc, char ** argv)
GparityDomainWallFermionD DwD(Umu_d,*FGrid_d,*FrbGrid_d,*UGrid_d,*UrbGrid_d,mass,M5);
if (1) {
FGrid_d->Barrier();
DwD.ZeroCounters();
DwD.Dhop(src_d,result_d,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwD.Dhop(src_d,result_d,0);
__SSC_STOP;
}
double t1=usecond();
FGrid_d->Barrier();
@ -157,7 +150,6 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwD.Report();
}
#endif
Grid_finalize();

View File

@ -103,35 +103,30 @@ int main (int argc, char ** argv)
#define BENCH_DW(A,...) \
Dw. A (__VA_ARGS__); \
FGrid->Barrier(); \
Dw.CayleyZeroCounters(); \
t0=usecond(); \
for(int i=0;i<ncall;i++){ \
Dw. A (__VA_ARGS__); \
} \
t1=usecond(); \
FGrid->Barrier(); \
Dw.CayleyReport(); \
std::cout<<GridLogMessage << "Called " #A " "<< (t1-t0)/ncall<<" us"<<std::endl;\
std::cout<<GridLogMessage << "******************"<<std::endl;
#define BENCH_ZDW(A,in,out) \
zDw. A (in,out); \
FGrid->Barrier(); \
zDw.CayleyZeroCounters(); \
t0=usecond(); \
for(int i=0;i<ncall;i++){ \
zDw. A (in,out); \
} \
t1=usecond(); \
FGrid->Barrier(); \
zDw.CayleyReport(); \
std::cout<<GridLogMessage << "Called ZDw " #A " "<< (t1-t0)/ncall<<" us"<<std::endl;\
std::cout<<GridLogMessage << "******************"<<std::endl;
#define BENCH_DW_SSC(A,in,out) \
Dw. A (in,out); \
FGrid->Barrier(); \
Dw.CayleyZeroCounters(); \
t0=usecond(); \
for(int i=0;i<ncall;i++){ \
__SSC_START ; \
@ -140,7 +135,6 @@ int main (int argc, char ** argv)
} \
t1=usecond(); \
FGrid->Barrier(); \
Dw.CayleyReport(); \
std::cout<<GridLogMessage << "Called " #A " "<< (t1-t0)/ncall<<" us"<<std::endl;\
std::cout<<GridLogMessage << "******************"<<std::endl;

View File

@ -155,7 +155,6 @@ int main (int argc, char ** argv)
//int ncall=1;
// Counters
Dw.ZeroCounters();
Grid.Barrier();
double t0=usecond();
@ -201,7 +200,6 @@ int main (int argc, char ** argv)
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
Dw.Report();
// guard
double err0 = norm2(err);

View File

@ -128,6 +128,26 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK]);;
esac
############### tracing
AC_ARG_ENABLE([tracing],
[AC_HELP_STRING([--enable-tracing=none|nvtx|roctx|timer], [enable tracing])],
[ac_TRACING=${enable_tracing}], [ac_TRACING=none])
case ${ac_TRACING} in
nvtx)
AC_DEFINE([GRID_TRACING_NVTX],[1],[use NVTX])
LIBS="${LIBS} -lnvToolsExt64_1"
;;
roctx)
AC_DEFINE([GRID_TRACING_ROCTX],[1],[use ROCTX])
LIBS="${LIBS} -lroctx64"
;;
timer)
AC_DEFINE([GRID_TRACING_TIMER],[1],[use TIMER]);;
*)
AC_DEFINE([GRID_TRACING_NONE],[1],[no tracing]);;
esac
############### fermions
AC_ARG_ENABLE([fermion-reps],
[AC_HELP_STRING([--enable-fermion-reps=yes|no], [enable extra fermion representation support])],

View File

@ -0,0 +1,436 @@
/*
* Warning: This code illustrative only: not well tested, and not meant for production use
* without regression / tests being applied
*/
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
RealD LLscale =1.0;
RealD LCscale =1.0;
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
GridBase *grid;
GaugeField U;
CovariantLaplacianCshift(GaugeField &_U) :
grid(_U.Grid()),
U(_U) { };
virtual GridBase *Grid(void) { return grid; };
virtual void M (const Field &in, Field &out)
{
out=Zero();
for(int mu=0;mu<Nd-1;mu++) {
GaugeLinkField Umu = PeekIndex<LorentzIndex>(U, mu); // NB: Inefficent
out = out - Gimpl::CovShiftForward(Umu,mu,in);
out = out - Gimpl::CovShiftBackward(Umu,mu,in);
out = out + 2.0*in;
}
};
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
};
void MakePhase(Coordinate mom,LatticeComplex &phase)
{
GridBase *grid = phase.Grid();
auto latt_size = grid->GlobalDimensions();
ComplexD ci(0.0,1.0);
phase=Zero();
LatticeComplex coor(phase.Grid());
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
phase = phase + (TwoPiL * mom[mu]) * coor;
}
phase = exp(phase*ci);
}
void PointSource(Coordinate &coor,LatticePropagator &source)
{
// Coordinate coor({0,0,0,0});
source=Zero();
SpinColourMatrix kronecker; kronecker=1.0;
pokeSite(kronecker,source,coor);
}
void Z2WallSource(GridParallelRNG &RNG,int tslice,LatticePropagator &source)
{
GridBase *grid = source.Grid();
LatticeComplex noise(grid);
LatticeComplex zz(grid); zz=Zero();
LatticeInteger t(grid);
RealD nrm=1.0/sqrt(2);
bernoulli(RNG, noise); // 0,1 50:50
noise = (2.*noise - Complex(1,1))*nrm;
LatticeCoordinate(t,Tdir);
noise = where(t==Integer(tslice), noise, zz);
source = 1.0;
source = source*noise;
std::cout << " Z2 wall " << norm2(source) << std::endl;
}
template<class Field>
void GaussianSmear(LatticeGaugeField &U,Field &unsmeared,Field &smeared)
{
typedef CovariantLaplacianCshift <PeriodicGimplR,Field> Laplacian_t;
Laplacian_t Laplacian(U);
Integer Iterations = 40;
Real width = 2.0;
Real coeff = (width*width) / Real(4*Iterations);
Field tmp(U.Grid());
smeared=unsmeared;
// chi = (1-p^2/2N)^N kronecker
for(int n = 0; n < Iterations; ++n) {
Laplacian.M(smeared,tmp);
smeared = smeared - coeff*tmp;
std::cout << " smear iter " << n<<" " <<norm2(smeared)<<std::endl;
}
}
void GaussianSource(Coordinate &site,LatticeGaugeField &U,LatticePropagator &source)
{
LatticePropagator tmp(source.Grid());
PointSource(site,source);
std::cout << " GaussianSource Kronecker "<< norm2(source)<<std::endl;
tmp = source;
GaussianSmear(U,tmp,source);
std::cout << " GaussianSource Smeared "<< norm2(source)<<std::endl;
}
void GaussianWallSource(GridParallelRNG &RNG,int tslice,LatticeGaugeField &U,LatticePropagator &source)
{
Z2WallSource(RNG,tslice,source);
auto tmp = source;
GaussianSmear(U,tmp,source);
}
void SequentialSource(int tslice,Coordinate &mom,LatticePropagator &spectator,LatticePropagator &source)
{
assert(mom.size()==Nd);
assert(mom[Tdir] == 0);
GridBase * grid = spectator.Grid();
LatticeInteger ts(grid);
LatticeCoordinate(ts,Tdir);
source = Zero();
source = where(ts==Integer(tslice),spectator,source); // Stick in a slice of the spectator, zero everywhere else
LatticeComplex phase(grid);
MakePhase(mom,phase);
source = source *phase;
}
template<class Action>
void MasslessFreePropagator(Action &D,LatticePropagator &source,LatticePropagator &propagator)
{
GridBase *UGrid = source.Grid();
GridBase *FGrid = D.FermionGrid();
bool fiveD = true; //calculate 5d free propagator
RealD mass = D.Mass();
LatticeFermion src4 (UGrid);
LatticeFermion result4 (UGrid);
LatticeFermion result5(FGrid);
LatticeFermion src5(FGrid);
LatticePropagator prop5(FGrid);
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
PropToFerm<Action>(src4,source,s,c);
D.ImportPhysicalFermionSource(src4,src5);
D.FreePropagator(src5,result5,mass,true);
std::cout<<GridLogMessage
<<"Free 5D prop spin "<<s<<" color "<<c
<<" norm2(src5d) " <<norm2(src5)
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
D.ExportPhysicalFermionSolution(result5,result4);
FermToProp<Action>(prop5,result5,s,c);
FermToProp<Action>(propagator,result4,s,c);
}
}
LatticePropagator Vector_mu(UGrid);
LatticeComplex VV (UGrid);
std::vector<TComplex> sumVV;
Gamma::Algebra GammaV[3] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ
};
for( int mu=0;mu<3;mu++ ) {
Gamma gV(GammaV[mu]);
D.ContractConservedCurrent(prop5,prop5,Vector_mu,source,Current::Vector,mu);
VV = trace(gV*Vector_mu); // (local) Vector-Vector conserved current
sliceSum(VV,sumVV,Tdir);
int Nt = sumVV.size();
for(int t=0;t<Nt;t++){
RealD Ct = real(TensorRemove(sumVV[t]))*LCscale;
RealD Cont=0;
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
std::cout<<GridLogMessage <<"VVc["<<mu<<"]["<<t<<"] "<< Ct
<< " 2 pi^2 t^3 C(t) "<< Ct/Cont << " delta Ct "<< Ct-Cont <<std::endl;
}
}
}
template<class Action>
void MasslessFreePropagator1(Action &D,LatticePropagator &source,LatticePropagator &propagator)
{
bool fiveD = false; //calculate 4d free propagator
RealD mass = D.Mass();
GridBase *UGrid = source.Grid();
LatticeFermion src4 (UGrid);
LatticeFermion result4 (UGrid);
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
PropToFerm<Action>(src4,source,s,c);
D.FreePropagator(src4,result4,mass,false);
FermToProp<Action>(propagator,result4,s,c);
}
}
}
template<class Action>
void Solve(Action &D,LatticePropagator &source,LatticePropagator &propagator)
{
GridBase *UGrid = D.GaugeGrid();
GridBase *FGrid = D.FermionGrid();
LatticeFermion src4 (UGrid);
LatticeFermion src5 (FGrid);
LatticeFermion result5(FGrid);
LatticeFermion result4(UGrid);
LatticePropagator prop5(FGrid);
ConjugateGradient<LatticeFermion> CG(1.0e-7,100000);
SchurRedBlackDiagMooeeSolve<LatticeFermion> schur(CG);
ZeroGuesser<LatticeFermion> ZG; // Could be a DeflatedGuesser if have eigenvectors
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
PropToFerm<Action>(src4,source,s,c);
D.ImportPhysicalFermionSource(src4,src5);
result5=Zero();
schur(D,src5,result5,ZG);
std::cout<<GridLogMessage
<<"spin "<<s<<" color "<<c
<<" norm2(src5d) " <<norm2(src5)
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
D.ExportPhysicalFermionSolution(result5,result4);
FermToProp<Action>(prop5,result5,s,c);
FermToProp<Action>(propagator,result4,s,c);
}
}
LatticePropagator Axial_mu(UGrid);
LatticePropagator Vector_mu(UGrid);
LatticeComplex PA (UGrid);
LatticeComplex VV (UGrid);
LatticeComplex PJ5q(UGrid);
LatticeComplex PP (UGrid);
std::vector<TComplex> sumPA;
std::vector<TComplex> sumVV;
std::vector<TComplex> sumPP;
std::vector<TComplex> sumPJ5q;
Gamma g5(Gamma::Algebra::Gamma5);
D.ContractConservedCurrent(prop5,prop5,Axial_mu,source,Current::Axial,Tdir);
PA = trace(g5*Axial_mu); // Pseudoscalar-Axial conserved current
sliceSum(PA,sumPA,Tdir);
int Nt{static_cast<int>(sumPA.size())};
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PAc["<<t<<"] "<<real(TensorRemove(sumPA[t]))*LCscale<<std::endl;
PP = trace(adj(propagator)*propagator); // Pseudoscalar density
sliceSum(PP,sumPP,Tdir);
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PP["<<t<<"] "<<real(TensorRemove(sumPP[t]))*LCscale<<std::endl;
D.ContractJ5q(prop5,PJ5q);
sliceSum(PJ5q,sumPJ5q,Tdir);
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PJ5q["<<t<<"] "<<real(TensorRemove(sumPJ5q[t]))<<std::endl;
Gamma::Algebra GammaV[3] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ
};
for( int mu=0;mu<3;mu++ ) {
Gamma gV(GammaV[mu]);
D.ContractConservedCurrent(prop5,prop5,Vector_mu,source,Current::Vector,mu);
// auto ss=sliceSum(Vector_mu,Tdir);
// for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"ss["<<mu<<"]["<<t<<"] "<<ss[t]<<std::endl;
VV = trace(gV*Vector_mu); // (local) Vector-Vector conserved current
sliceSum(VV,sumVV,Tdir);
for(int t=0;t<Nt;t++){
RealD Ct = real(TensorRemove(sumVV[t]))*LCscale;
RealD Cont=0;
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
std::cout<<GridLogMessage <<"VVc["<<mu<<"]["<<t<<"] "<< Ct
<< " 2 pi^2 t^3 C(t) "<< Ct/Cont << " delta Ct "<< Ct-Cont <<std::endl;
}
}
}
class MesonFile: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFile, std::vector<std::vector<Complex> >, data);
};
void MesonTrace(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
{
const int nchannel=4;
Gamma::Algebra Gammas[nchannel][2] = {
{Gamma::Algebra::GammaXGamma5,Gamma::Algebra::GammaXGamma5},
{Gamma::Algebra::GammaYGamma5,Gamma::Algebra::GammaYGamma5},
{Gamma::Algebra::GammaZGamma5,Gamma::Algebra::GammaZGamma5},
{Gamma::Algebra::Identity,Gamma::Algebra::Identity}
};
LatticeComplex meson_CF(q1.Grid());
MesonFile MF;
for(int ch=0;ch<nchannel;ch++){
Gamma Gsrc(Gammas[ch][0]);
Gamma Gsnk(Gammas[ch][1]);
meson_CF = trace(adj(q1)*Gsnk*q2*adj(Gsrc));
std::vector<TComplex> meson_T;
sliceSum(meson_CF,meson_T, Tdir);
int nt=meson_T.size();
std::vector<Complex> corr(nt);
for(int t=0;t<nt;t++){
corr[t] = TensorRemove(meson_T[t])*LLscale; // Yes this is ugly, not figured a work around
RealD Ct = real(corr[t]);
RealD Cont=0;
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
std::cout << " channel "<<ch<<" t "<<t<<" " <<real(corr[t])<< " 2 pi^2 t^3 C(t) "<< 2 * M_PI *M_PI * t*t*t * Ct
<< " deltaC " <<Ct-Cont<<std::endl;
}
MF.data.push_back(corr);
}
{
XmlWriter WR(file);
write(WR,"MesonFile",MF);
}
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int Ls= atoi(getenv("Ls"));
// Double precision grids
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
//////////////////////////////////////////////////////////////////////
// You can manage seeds however you like.
// Recommend SeedUniqueString.
//////////////////////////////////////////////////////////////////////
// std::vector<int> seeds4({1,2,3,4});
// GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
std::string config;
RealD M5=atof(getenv("M5"));
RealD mq = atof(getenv("mass"));
int point_x = atoi(getenv("point_x"));
int point_y = atoi(getenv("point_y"));
int point_z = atoi(getenv("point_z"));
int point_t = atoi(getenv("point_t"));
std::vector<RealD> masses({ mq} ); // u/d, s, c ??
if( argc > 1 && argv[1][0] != '-' )
{
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
FieldMetaData header;
NerscIO::readConfiguration(Umu, header, argv[1]);
config=argv[1];
LLscale = 1.0;
LCscale = 1.0;
} else {
printf("Expected a configuration");
exit(0);
}
int nmass = masses.size();
typedef MobiusFermionR FermionActionR;
std::vector<FermionActionR *> FermActs;
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"DomainWallFermion action"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
for(auto mass: masses) {
std::vector<Complex> boundary = {1,1,1,-1};
FermionActionR::ImplParams Params(boundary);
RealD b=1.5;
RealD c=0.5;
FermActs.push_back(new FermionActionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c));
}
LatticePropagator point_source(UGrid);
Coordinate Origin({point_x,point_y,point_z,point_t});
PointSource (Origin,point_source);
std::vector<LatticePropagator> PointProps(nmass,UGrid);
for(int m=0;m<nmass;m++) {
Solve(*FermActs[m],point_source ,PointProps[m]);
}
LatticeComplex phase(UGrid);
Coordinate mom({0,0,0,0});
MakePhase(mom,phase);
for(int m1=0 ;m1<nmass;m1++) {
for(int m2=m1;m2<nmass;m2++) {
std::stringstream ssp,ssg,ssz;
ssp<<config<< "_m" << m1 << "_m"<< m2 << "_point_meson.xml";
ssz<<config<< "_m" << m1 << "_m"<< m2 << "_free_meson.xml";
std::cout << "CG determined VV correlation function"<<std::endl;
MesonTrace(ssp.str(),PointProps[m1],PointProps[m2],phase);
}}
Grid_finalize();
}

479
examples/Example_taku1.cc Normal file
View File

@ -0,0 +1,479 @@
/*
* Warning: This code illustrative only: not well tested, and not meant for production use
* without regression / tests being applied
*/
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
RealD LLscale =1.0;
RealD LCscale =1.0;
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
GridBase *grid;
GaugeField U;
CovariantLaplacianCshift(GaugeField &_U) :
grid(_U.Grid()),
U(_U) { };
virtual GridBase *Grid(void) { return grid; };
virtual void M (const Field &in, Field &out)
{
out=Zero();
for(int mu=0;mu<Nd-1;mu++) {
GaugeLinkField Umu = PeekIndex<LorentzIndex>(U, mu); // NB: Inefficent
out = out - Gimpl::CovShiftForward(Umu,mu,in);
out = out - Gimpl::CovShiftBackward(Umu,mu,in);
out = out + 2.0*in;
}
};
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
};
void MakePhase(Coordinate mom,LatticeComplex &phase)
{
GridBase *grid = phase.Grid();
auto latt_size = grid->GlobalDimensions();
ComplexD ci(0.0,1.0);
phase=Zero();
LatticeComplex coor(phase.Grid());
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
phase = phase + (TwoPiL * mom[mu]) * coor;
}
phase = exp(phase*ci);
}
void PointSource(Coordinate &coor,LatticePropagator &source)
{
// Coordinate coor({0,0,0,0});
source=Zero();
SpinColourMatrix kronecker; kronecker=1.0;
pokeSite(kronecker,source,coor);
}
void Z2WallSource(GridParallelRNG &RNG,int tslice,LatticePropagator &source)
{
GridBase *grid = source.Grid();
LatticeComplex noise(grid);
LatticeComplex zz(grid); zz=Zero();
LatticeInteger t(grid);
RealD nrm=1.0/sqrt(2);
bernoulli(RNG, noise); // 0,1 50:50
noise = (2.*noise - Complex(1,1))*nrm;
LatticeCoordinate(t,Tdir);
noise = where(t==Integer(tslice), noise, zz);
source = 1.0;
source = source*noise;
std::cout << " Z2 wall " << norm2(source) << std::endl;
}
template<class Field>
void GaussianSmear(LatticeGaugeField &U,Field &unsmeared,Field &smeared)
{
typedef CovariantLaplacianCshift <PeriodicGimplR,Field> Laplacian_t;
Laplacian_t Laplacian(U);
Integer Iterations = 40;
Real width = 2.0;
Real coeff = (width*width) / Real(4*Iterations);
Field tmp(U.Grid());
smeared=unsmeared;
// chi = (1-p^2/2N)^N kronecker
for(int n = 0; n < Iterations; ++n) {
Laplacian.M(smeared,tmp);
smeared = smeared - coeff*tmp;
std::cout << " smear iter " << n<<" " <<norm2(smeared)<<std::endl;
}
}
void GaussianSource(Coordinate &site,LatticeGaugeField &U,LatticePropagator &source)
{
LatticePropagator tmp(source.Grid());
PointSource(site,source);
std::cout << " GaussianSource Kronecker "<< norm2(source)<<std::endl;
tmp = source;
GaussianSmear(U,tmp,source);
std::cout << " GaussianSource Smeared "<< norm2(source)<<std::endl;
}
void GaussianWallSource(GridParallelRNG &RNG,int tslice,LatticeGaugeField &U,LatticePropagator &source)
{
Z2WallSource(RNG,tslice,source);
auto tmp = source;
GaussianSmear(U,tmp,source);
}
void SequentialSource(int tslice,Coordinate &mom,LatticePropagator &spectator,LatticePropagator &source)
{
assert(mom.size()==Nd);
assert(mom[Tdir] == 0);
GridBase * grid = spectator.Grid();
LatticeInteger ts(grid);
LatticeCoordinate(ts,Tdir);
source = Zero();
source = where(ts==Integer(tslice),spectator,source); // Stick in a slice of the spectator, zero everywhere else
LatticeComplex phase(grid);
MakePhase(mom,phase);
source = source *phase;
}
template<class Action>
void MasslessFreePropagator(Action &D,LatticePropagator &source,LatticePropagator &propagator)
{
GridBase *UGrid = source.Grid();
GridBase *FGrid = D.FermionGrid();
bool fiveD = true; //calculate 5d free propagator
RealD mass = D.Mass();
LatticeFermion src4 (UGrid);
LatticeFermion result4 (UGrid);
LatticeFermion result5(FGrid);
LatticeFermion src5(FGrid);
LatticePropagator prop5(FGrid);
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
PropToFerm<Action>(src4,source,s,c);
D.ImportPhysicalFermionSource(src4,src5);
D.FreePropagator(src5,result5,mass,true);
std::cout<<GridLogMessage
<<"Free 5D prop spin "<<s<<" color "<<c
<<" norm2(src5d) " <<norm2(src5)
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
D.ExportPhysicalFermionSolution(result5,result4);
FermToProp<Action>(prop5,result5,s,c);
FermToProp<Action>(propagator,result4,s,c);
}
}
LatticePropagator Vector_mu(UGrid);
LatticeComplex VV (UGrid);
std::vector<TComplex> sumVV;
Gamma::Algebra GammaV[3] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ
};
for( int mu=0;mu<3;mu++ ) {
Gamma gV(GammaV[mu]);
D.ContractConservedCurrent(prop5,prop5,Vector_mu,source,Current::Vector,mu);
VV = trace(gV*Vector_mu); // (local) Vector-Vector conserved current
sliceSum(VV,sumVV,Tdir);
int Nt = sumVV.size();
for(int t=0;t<Nt;t++){
RealD Ct = real(TensorRemove(sumVV[t]))*LCscale;
RealD Cont=0;
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
std::cout<<GridLogMessage <<"VVc["<<mu<<"]["<<t<<"] "<< Ct
<< " 2 pi^2 t^3 C(t) "<< Ct/Cont << " delta Ct "<< Ct-Cont <<std::endl;
}
}
}
template<class Action>
void MasslessFreePropagator1(Action &D,LatticePropagator &source,LatticePropagator &propagator)
{
bool fiveD = false; //calculate 4d free propagator
RealD mass = D.Mass();
GridBase *UGrid = source.Grid();
LatticeFermion src4 (UGrid);
LatticeFermion result4 (UGrid);
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
PropToFerm<Action>(src4,source,s,c);
D.FreePropagator(src4,result4,mass,false);
FermToProp<Action>(propagator,result4,s,c);
}
}
}
template<class Action>
void Solve(Action &D,LatticePropagator &source,LatticePropagator &propagator)
{
GridBase *UGrid = D.GaugeGrid();
GridBase *FGrid = D.FermionGrid();
LatticeFermion src4 (UGrid);
LatticeFermion src5 (FGrid);
LatticeFermion result5(FGrid);
LatticeFermion result4(UGrid);
LatticePropagator prop5(FGrid);
ConjugateGradient<LatticeFermion> CG(1.0e-10,100000);
SchurRedBlackDiagMooeeSolve<LatticeFermion> schur(CG);
ZeroGuesser<LatticeFermion> ZG; // Could be a DeflatedGuesser if have eigenvectors
for(int s=0;s<Nd;s++){
for(int c=0;c<Nc;c++){
PropToFerm<Action>(src4,source,s,c);
D.ImportPhysicalFermionSource(src4,src5);
result5=Zero();
schur(D,src5,result5,ZG);
std::cout<<GridLogMessage
<<"spin "<<s<<" color "<<c
<<" norm2(src5d) " <<norm2(src5)
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
D.ExportPhysicalFermionSolution(result5,result4);
FermToProp<Action>(prop5,result5,s,c);
FermToProp<Action>(propagator,result4,s,c);
}
}
LatticePropagator Axial_mu(UGrid);
LatticePropagator Vector_mu(UGrid);
LatticeComplex PA (UGrid);
LatticeComplex VV (UGrid);
LatticeComplex PJ5q(UGrid);
LatticeComplex PP (UGrid);
std::vector<TComplex> sumPA;
std::vector<TComplex> sumVV;
std::vector<TComplex> sumPP;
std::vector<TComplex> sumPJ5q;
Gamma g5(Gamma::Algebra::Gamma5);
D.ContractConservedCurrent(prop5,prop5,Axial_mu,source,Current::Axial,Tdir);
PA = trace(g5*Axial_mu); // Pseudoscalar-Axial conserved current
sliceSum(PA,sumPA,Tdir);
int Nt{static_cast<int>(sumPA.size())};
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PAc["<<t<<"] "<<real(TensorRemove(sumPA[t]))*LCscale<<std::endl;
PP = trace(adj(propagator)*propagator); // Pseudoscalar density
sliceSum(PP,sumPP,Tdir);
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PP["<<t<<"] "<<real(TensorRemove(sumPP[t]))*LCscale<<std::endl;
D.ContractJ5q(prop5,PJ5q);
sliceSum(PJ5q,sumPJ5q,Tdir);
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PJ5q["<<t<<"] "<<real(TensorRemove(sumPJ5q[t]))<<std::endl;
Gamma::Algebra GammaV[3] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ
};
for( int mu=0;mu<3;mu++ ) {
Gamma gV(GammaV[mu]);
D.ContractConservedCurrent(prop5,prop5,Vector_mu,source,Current::Vector,mu);
// auto ss=sliceSum(Vector_mu,Tdir);
// for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"ss["<<mu<<"]["<<t<<"] "<<ss[t]<<std::endl;
VV = trace(gV*Vector_mu); // (local) Vector-Vector conserved current
sliceSum(VV,sumVV,Tdir);
for(int t=0;t<Nt;t++){
RealD Ct = real(TensorRemove(sumVV[t]))*LCscale;
RealD Cont=0;
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
std::cout<<GridLogMessage <<"VVc["<<mu<<"]["<<t<<"] "<< Ct
<< " 2 pi^2 t^3 C(t) "<< Ct/Cont << " delta Ct "<< Ct-Cont <<std::endl;
}
}
}
class MesonFile: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFile, std::vector<std::vector<Complex> >, data);
};
void MesonTrace(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
{
const int nchannel=4;
Gamma::Algebra Gammas[nchannel][2] = {
{Gamma::Algebra::GammaXGamma5,Gamma::Algebra::GammaXGamma5},
{Gamma::Algebra::GammaYGamma5,Gamma::Algebra::GammaYGamma5},
{Gamma::Algebra::GammaZGamma5,Gamma::Algebra::GammaZGamma5},
{Gamma::Algebra::Identity,Gamma::Algebra::Identity}
};
LatticeComplex meson_CF(q1.Grid());
MesonFile MF;
for(int ch=0;ch<nchannel;ch++){
Gamma Gsrc(Gammas[ch][0]);
Gamma Gsnk(Gammas[ch][1]);
meson_CF = trace(adj(q1)*Gsnk*q2*adj(Gsrc));
std::vector<TComplex> meson_T;
sliceSum(meson_CF,meson_T, Tdir);
int nt=meson_T.size();
std::vector<Complex> corr(nt);
for(int t=0;t<nt;t++){
corr[t] = TensorRemove(meson_T[t])*LLscale; // Yes this is ugly, not figured a work around
RealD Ct = real(corr[t]);
RealD Cont=0;
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
std::cout << " channel "<<ch<<" t "<<t<<" " <<real(corr[t])<< " 2 pi^2 t^3 C(t) "<< 2 * M_PI *M_PI * t*t*t * Ct
<< " deltaC " <<Ct-Cont<<std::endl;
}
MF.data.push_back(corr);
}
{
XmlWriter WR(file);
write(WR,"MesonFile",MF);
}
}
int main (int argc, char ** argv)
{
const int Ls=10;
Grid_init(&argc,&argv);
// Double precision grids
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
//////////////////////////////////////////////////////////////////////
// You can manage seeds however you like.
// Recommend SeedUniqueString.
//////////////////////////////////////////////////////////////////////
// std::vector<int> seeds4({1,2,3,4});
// GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
std::string config;
RealD M5=atof(getenv("M5"));
RealD mq = atof(getenv("mass"));
int tadpole = atof(getenv("tadpole"));
std::vector<RealD> masses({ mq} ); // u/d, s, c ??
if( argc > 1 && argv[1][0] != '-' )
{
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
FieldMetaData header;
NerscIO::readConfiguration(Umu, header, argv[1]);
config=argv[1];
LLscale = 1.0;
LCscale = 1.0;
}
else
{
SU<Nc>::ColdConfiguration(Umu);
config="ColdConfig";
// RealD P=1.0; // Don't scale
// RealD P=0.6388238 // 32Ifine
// RealD P=0.6153342; // 64I
RealD P=0.5871119; // 48I
RealD u0 = sqrt(sqrt(P));
RealD w0 = 1 - M5;
std::cout<<GridLogMessage <<"For plaquette P="<<P<<" u0= "<<u0<<std::endl;
if ( tadpole == 1 ) {
Umu = Umu * u0;
// LLscale = 1.0/(1-w0*w0)/(1-w0*w0)/u0/u0;
// LCscale = 1.0/(1-w0*w0)/(1-w0*w0)/u0/u0;
LLscale = 1.0;
LCscale = 1.0;
std::cout<<GridLogMessage <<"Gauge links are u= u0 "<<std::endl;
std::cout<<GridLogMessage <<"M5 = "<<M5<<std::endl;
} else if ( tadpole == 2) {
std::cout<<GridLogMessage <<"Gauge links are u=1 "<<std::endl;
LLscale = 1.0;
LCscale = 1.0;
std::cout<<GridLogMessage <<"M5 = "<<M5<<std::endl;
} else {
LLscale = 1.0/u0/u0;
LCscale = 1.0/u0/u0;
M5 = M5 - 4.0 * (1-u0);
std::cout<<GridLogMessage <<"Gauge links are u=1 "<<std::endl;
std::cout<<GridLogMessage <<"M5mf = "<<M5<<std::endl;
}
std::cout<<GridLogMessage <<"mq = "<<mq<<std::endl;
std::cout<<GridLogMessage <<"LLscale = "<<LLscale<<std::endl;
std::cout<<GridLogMessage <<"LCscale = "<<LCscale<<std::endl;
}
int nmass = masses.size();
typedef DomainWallFermionR FermionActionR;
// typedef MobiusFermionR FermionActionR;
std::vector<FermionActionR *> FermActs;
std::vector<DomainWallFermionR *> DWFActs;
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"DomainWallFermion action"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
for(auto mass: masses) {
std::vector<Complex> boundary = {1,1,1,-1};
FermionActionR::ImplParams Params(boundary);
RealD b=1.5;
RealD c=0.5;
std::cout<<GridLogMessage <<"Making DomainWallFermion action"<<std::endl;
// DWFActs.push_back(new DomainWallFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5));
FermActs.push_back(new FermionActionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,Params));
// FermActs.push_back(new FermionActionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass+0.001,M5,b,c));
std::cout<<GridLogMessage <<"Made DomainWallFermion action"<<std::endl;
}
LatticePropagator point_source(UGrid);
Coordinate Origin({0,0,0,0});
PointSource (Origin,point_source);
std::vector<LatticePropagator> PointProps(nmass,UGrid);
// std::vector<LatticePropagator> FreeProps(nmass,UGrid);
// LatticePropagator delta(UGrid);
for(int m=0;m<nmass;m++) {
Solve(*FermActs[m],point_source ,PointProps[m]);
// MasslessFreePropagator(*FermActs[m],point_source ,FreeProps[m]);
// delta = PointProps[m] - FreeProps[m];
// std::cout << " delta "<<norm2(delta) << " FFT "<<norm2(FreeProps[m])<< " CG " <<norm2(PointProps[m])<<std::endl;
}
LatticeComplex phase(UGrid);
Coordinate mom({0,0,0,0});
MakePhase(mom,phase);
for(int m1=0 ;m1<nmass;m1++) {
for(int m2=m1;m2<nmass;m2++) {
std::stringstream ssp,ssg,ssz;
ssp<<config<< "_m" << m1 << "_m"<< m2 << "_point_meson.xml";
ssz<<config<< "_m" << m1 << "_m"<< m2 << "_free_meson.xml";
std::cout << "CG determined VV correlation function"<<std::endl;
MesonTrace(ssp.str(),PointProps[m1],PointProps[m2],phase);
// std::cout << "FFT derived VV correlation function"<<std::endl;
// MesonTrace(ssz.str(),FreeProps[m1],FreeProps[m2],phase);
}}
Grid_finalize();
}

View File

@ -95,26 +95,34 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "::::::::::::: Starting mixed CG" << std::endl;
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(1.0e-8, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
double t1,t2,flops;
double MdagMsiteflops = 1452; // Mobius (real coeffs)
// CG overhead: 8 inner product, 4+8 axpy_norm, 4+4 linear comb (2 of)
double CGsiteflops = (8+4+8+4+4)*Nc*Ns ;
std:: cout << " MdagM site flops = "<< 4*MdagMsiteflops<<std::endl;
std:: cout << " CG site flops = "<< CGsiteflops <<std::endl;
int iters;
for(int i=0;i<100;i++){
for(int i=0;i<200;i++){
result_o = Zero();
t1=usecond();
mCG(src_o,result_o);
t2=usecond();
iters = mCG.TotalInnerIterations; //Number of inner CG iterations
flops = 1320.0*2*FGrid->gSites()*iters;
flops = MdagMsiteflops*4*FrbGrid->gSites()*iters;
flops+= CGsiteflops*FrbGrid->gSites()*iters;
std::cout << " SinglePrecision iterations/sec "<< iters/(t2-t1)*1000.*1000.<<std::endl;
std::cout << " SinglePrecision GF/s "<< flops/(t2-t1)/1000.<<std::endl;
}
std::cout << GridLogMessage << "::::::::::::: Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
for(int i=0;i<100;i++){
for(int i=0;i<1;i++){
result_o_2 = Zero();
t1=usecond();
CG(HermOpEO,src_o,result_o_2);
t2=usecond();
iters = CG.IterationsToComplete;
flops = 1320.0*2*FGrid->gSites()*iters;
flops = MdagMsiteflops*4*FrbGrid->gSites()*iters;
flops+= CGsiteflops*FrbGrid->gSites()*iters;
std::cout << " DoublePrecision iterations/sec "<< iters/(t2-t1)*1000.*1000.<<std::endl;
std::cout << " DoublePrecision GF/s "<< flops/(t2-t1)/1000.<<std::endl;
}