mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-25 10:09:34 +01:00 
			
		
		
		
	Compare commits
	
		
			256 Commits
		
	
	
		
			feature/ft
			...
			develop
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 6165931afa | ||
| 23581333e6 | |||
| e5fa3d887f | |||
| 583fa7bb0a | |||
|  | fe0db53842 | ||
|  | 76c0ada1e1 | ||
|  | 92f49e9194 | ||
|  | 44c8057b5f | ||
|  | 0ad837f595 | ||
|  | bd2103c746 | ||
|  | 9c18d2ddb0 | ||
|  | 1245a8c151 | ||
|  | 07113dc8ba | ||
| a3420e6fa9 | |||
| 732836d9f8 | |||
| 87658f7b53 | |||
| e7f51e5fb1 | |||
|  | 1ce5f70dd1 | ||
|  | 473635f401 | ||
| 5adf2657dd | |||
| 82cfff2990 | |||
| 4397b1c442 | |||
| 9e6a4a4737 | |||
| 41f344bbd3 | |||
| a77cd50b2f | |||
| 73af020f98 | |||
| bffb83c46e | |||
| 7031f37350 | |||
| 829dd74cb2 | |||
| 66e671985d | |||
| 5afcbcf0f3 | |||
| 9730579312 | |||
| bfae14d035 | |||
| b78fc73d19 | |||
|  | 709f8ae76c | ||
|  | 7aa06329d0 | ||
|  | 9d6a38c44c | ||
|  | 6ec5cee368 | ||
|  | f2e9a68825 | ||
|  | d88750e6b6 | ||
|  | 821358eda7 | ||
|  | fce6e1f135 | ||
|  | 8f0bb3e676 | ||
|  | 262c70d967 | ||
|  | da43ef7c2d | ||
|  | 7b60ab5df1 | ||
|  | f6b961a64e | ||
|  | f1ed988aa3 | ||
|  | eea51bb604 | ||
|  | 9203126aa5 | ||
|  | f90ba4712a | ||
|  | 3737a24096 | ||
| d418f78352 | |||
| 25163998a0 | |||
|  | dc546aaa4b | ||
|  | 5364d580c9 | ||
|  | 2a9a6347e3 | ||
|  | cfdb56f314 | ||
|  | b517e88db3 | ||
| bb317aba8d | |||
| 644cc6647e | |||
| 72397ce23b | |||
|  | d60a80c098 | ||
|  | bb8b6d9d73 | ||
|  | 677b4cc5b0 | ||
|  | be565ffab6 | ||
|  | df6120e5f6 | ||
|  | 21de6f7da8 | ||
|  | dbe39f9ce0 | ||
|  | ab3de50d5e | ||
|  | c545bd2139 | ||
|  | 6a1c64fbdd | ||
|  | b75809ed61 | ||
|  | ecaf228e5c | ||
|  | 6d015ae8fc | ||
|  | 233150d93f | ||
|  | 7af8c77a52 | ||
|  | a957e7bfa1 | ||
|  | cee4c8ce8c | ||
|  | 96bf814d8c | ||
|  | 7ddc422788 | ||
|  | e652fc2825 | ||
|  | a49fa3f8d0 | ||
|  | cd452a2f91 | ||
|  | 4f89f603ae | ||
|  | 11dc2c5e1d | ||
|  | 6fec3c15ca | ||
|  | 938c47480f | ||
|  | 3811d19298 | ||
|  | 83a3ab6b6f | ||
|  | d66a9af6a3 | ||
|  | adc90d3a86 | ||
|  | ebbd015c5c | ||
|  | 4ab73b36b2 | ||
|  | 130e07a422 | ||
|  | 8f47bb367e | ||
|  | 0c3cb60135 | ||
|  | 9eae8fca5d | ||
|  | 882a217074 | ||
|  | e465fce201 | ||
|  | d41542c64b | ||
|  | 199818bd6c | ||
|  | fe66c7ca30 | ||
|  | e9177e4af3 | ||
|  | d15a6c5933 | ||
| 25ab9325e7 | |||
| 19f9378b98 | |||
|  | 785bc7a14f | ||
|  | 1a1fe85428 | ||
|  | 0000d2e558 | ||
|  | 9ffd1ed4ce | ||
|  | 3d014864e2 | ||
| 1d22841811 | |||
|  | a1cdda833f | ||
|  | ad6db92690 | ||
|  | e8ff9d8e50 | ||
|  | 795769c636 | ||
|  | 267a39d943 | ||
|  | 3624bd3d22 | ||
|  | bc12dbbb38 | ||
|  | eb8a008a8f | ||
| c4d9aa1a21 | |||
| 6ae809ed40 | |||
|  | 311e2aab3f | ||
| 438dfbdb83 | |||
| b2ce760cf4 | |||
|  | b1ba209696 | ||
|  | cb3e529b1e | ||
|  | 717f647418 | ||
|  | 98e7418187 | ||
|  | fe05bf48b1 | ||
|  | d2dd8f54e2 | ||
|  | 7726ee4b16 | ||
| ba9bbe0221 | |||
| 4c3dd82d84 | |||
| 44e911b5b7 | |||
| a7a16df9d0 | |||
| 382e0abefd | |||
| 6fdefe5b90 | |||
| 4788dd8e2e | |||
| 1cc5f221f3 | |||
| 93251bfba0 | |||
| 18b79508b8 | |||
| 4de5ed1613 | |||
| 0baaddbe98 | |||
| 8729c46169 | |||
| 09f81fe7c3 | |||
| 1876e5b7c0 | |||
|  | 355ec76257 | ||
| b50fb34e71 | |||
| de84d730ff | |||
|  | c74d11e3d7 | ||
|  | 84cab5e6e7 | ||
| c4fc972fec | |||
| 8cf809e231 | |||
| 94019a922e | |||
|  | 4f17c8d081 | ||
|  | aaab753982 | ||
| d6b2727f86 | |||
| 74a4f43946 | |||
| 1caf8b0f86 | |||
|  | 570b72a47b | ||
|  | a5798a89ed | ||
|  | 3f3661a86f | ||
|  | f7e2f9a401 | ||
|  | 2848a9b558 | ||
|  | d4868991af | ||
|  | e99d42404e | ||
|  | 3ba019c747 | ||
|  | 47429218bb | ||
| 8fe429346f | |||
|  | 5a4f9bf2e3 | ||
|  | b91fc1b6b4 | ||
|  | eafc150034 | ||
|  | 2877f1a268 | ||
|  | 1e893af775 | ||
|  | d9f430a575 | ||
|  | 63abe87f36 | ||
|  | 368d649c8a | ||
|  | 5603464f39 | ||
|  | 655c79f39e | ||
|  | 565b231c03 | ||
|  | 62a9f180fa | ||
|  | 5ae77876a8 | ||
|  | 4ed2c2c74f | ||
|  | 955da582b6 | ||
|  | 11b07b950d | ||
|  | 8f70cfeda9 | ||
|  | ce64271048 | ||
| 5cc4f3241d | |||
|  | 6815e138b4 | ||
| a78a61d76f | |||
| 2eff3f34ed | |||
| 03687c1d62 | |||
| febfe4e77f | |||
| 4d1aa134b5 | |||
| 5ec879860a | |||
|  | f617468e04 | ||
| b728af903c | |||
| 54f1999030 | |||
| fd58f0b669 | |||
| c5c67b706e | |||
| be7a543e2c | |||
| 68f112d576 | |||
| ec1395a304 | |||
| beb0e474ee | |||
| 2b5fdcbbc5 | |||
| 295127d456 | |||
| 7dcfb13694 | |||
|  | ee4046fe92 | ||
|  | 2a9cfeb9ea | ||
|  | 1147b8ea40 | ||
|  | 3f9119b39d | ||
|  | 35e8225abd | ||
|  | bdbfbb7a14 | ||
|  | f7d4be8d96 | ||
| 9fa8bd6438 | |||
| 02c8178f16 | |||
| e637fbacae | |||
| 066544281f | |||
| 11be10d2c0 | |||
| 160969a758 | |||
| 622f78ebea | |||
|  | aa67a5b095 | ||
|  | af9ea0864c | ||
|  | 4e2a6d87c4 | ||
|  | a465ecece9 | ||
|  | 575eb72182 | ||
|  | 3a973914d6 | ||
|  | f568c07bbd | ||
|  | 2c9878fc3a | ||
|  | 27b1b1b005 | ||
|  | 130d7ab077 | ||
|  | 29f6b8a74a | ||
|  | 9779aaea33 | ||
|  | ec25604a67 | ||
|  | 3668e81c5e | ||
|  | d66b2423cb | ||
|  | 15cc78f0b6 | ||
|  | 06db4ddea2 | ||
|  | 6cfb90e99f | ||
|  | d8be95a2a3 | ||
|  | f82702872d | ||
|  | 3752c49ef0 | ||
|  | fe65fa4988 | ||
|  | 1fe4c205a3 | ||
|  | d4dc5e0f43 | ||
|  | 77944437ce | ||
|  | c164bff758 | ||
|  | aa2e3d954a | ||
|  | de62b04728 | ||
|  | d0bdb50f24 | ||
|  | a8fecbc609 | ||
| 8d305df0db | |||
|  | e29b97b3ea | ||
|  | ad2b699d2b | 
| @@ -12,15 +12,13 @@ | ||||
| #include <iostream> | ||||
| #include <sys/time.h> | ||||
|  | ||||
| #define GRID_SYCL | ||||
| #undef  GRID_HIP | ||||
| #undef  GRID_CUDA | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipblas/hipblas.h> | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| #include <cublas_v2.h> | ||||
|  | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #include <oneapi/mkl.hpp> | ||||
| @@ -45,6 +43,90 @@ inline void acceleratorFreeDevice(void *ptr,size_t bytes){free(ptr,*theAccelerat | ||||
| inline void acceleratorMemSet(void *base,int value,size_t bytes) { theAccelerator->memset(base,value,bytes); theAccelerator->wait();} | ||||
| inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();} | ||||
| inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();} | ||||
| #define accelerator_barrier(dummy) { theAccelerator->wait(); } | ||||
| #endif | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| hipStream_t copyStream; | ||||
| hipStream_t computeStream; | ||||
| void acceleratorInit(void) | ||||
| { | ||||
|   int device = 0; | ||||
|   auto discard = hipSetDevice(device); | ||||
|   discard = hipStreamCreate(©Stream); | ||||
|   discard = hipStreamCreate(&computeStream); | ||||
|   printf("AcceleratorHIPInit\n"); | ||||
| } | ||||
| inline void *acceleratorAllocDevice(size_t bytes) | ||||
| { | ||||
|   void *ptr=NULL; | ||||
|   auto err = hipMalloc((void **)&ptr,bytes); | ||||
|   if( err != hipSuccess ) { | ||||
|     ptr = (void *) NULL; | ||||
|     fprintf(stderr," hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr); | ||||
|   } | ||||
|   return ptr; | ||||
| }; | ||||
| inline void acceleratorFreeDevice(void *ptr,size_t bytes){ auto discard=hipFree(ptr);}; | ||||
| inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);}; | ||||
| inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);} | ||||
| inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);} | ||||
| inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);} | ||||
| #define accelerator_barrier(dummy)				\ | ||||
|   {								\ | ||||
|     auto tmp=hipStreamSynchronize(computeStream);		\ | ||||
|     auto err = hipGetLastError();				\ | ||||
|     if ( err != hipSuccess ) {					\ | ||||
|       printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \ | ||||
|       puts(__FILE__);							\ | ||||
|       printf("Line %d\n",__LINE__);				\ | ||||
|       exit(0);							\ | ||||
|     }								\ | ||||
|   } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| cudaStream_t copyStream; | ||||
| cudaStream_t computeStream; | ||||
| void acceleratorInit(void) | ||||
| { | ||||
|   int device = 0; | ||||
|   cudaSetDevice(device); | ||||
|   cudaStreamCreate(©Stream); | ||||
|   cudaStreamCreate(&computeStream); | ||||
| } | ||||
| inline void *acceleratorAllocDevice(size_t bytes) | ||||
| { | ||||
|   void *ptr=NULL; | ||||
|   auto err = cudaMalloc((void **)&ptr,bytes); | ||||
|   if( err != cudaSuccess ) { | ||||
|     ptr = (void *) NULL; | ||||
|     printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err)); | ||||
|   } | ||||
|   return ptr; | ||||
| }; | ||||
| inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);}; | ||||
| inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);}; | ||||
| inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);} | ||||
| inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);} | ||||
| inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);} | ||||
| #define accelerator_barrier(dummy)					\ | ||||
|   {									\ | ||||
|     cudaStreamSynchronize(computeStream);				\ | ||||
|     cudaError err = cudaGetLastError();					\ | ||||
|     if ( cudaSuccess != err ) {						\ | ||||
|       printf("accelerator_barrier(): Cuda error %s \n",			\ | ||||
| 	     cudaGetErrorString( err ));				\ | ||||
|       printf("File %s Line %d\n",__FILE__,__LINE__);			\ | ||||
|       fflush(stdout);							\ | ||||
|       if (acceleratorAbortOnGpuError) GRID_ASSERT(err==cudaSuccess);		\ | ||||
|     }									\ | ||||
|   } | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| template<class T> void acceleratorPut(T& dev,T&host) | ||||
| { | ||||
|   acceleratorCopyToDevice(&host,&dev,sizeof(T)); | ||||
| @@ -55,9 +137,6 @@ template<class T> T acceleratorGet(T& dev) | ||||
|   acceleratorCopyFromDevice(&dev,&host,sizeof(T)); | ||||
|   return host; | ||||
| } | ||||
| #define accelerator_barrier(dummy) { theAccelerator->wait(); } | ||||
| #endif | ||||
|  | ||||
|  | ||||
| /************************************************************** | ||||
|  * Allocator | ||||
| @@ -89,7 +168,7 @@ public: | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
| @@ -197,11 +276,11 @@ public: | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
|     GRID_ASSERT(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
|     GRID_ASSERT(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| @@ -211,6 +290,269 @@ public: | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   // Single matrix GEMM -- fp64 and fp32 | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   void gemm(GridBLASOperation_t OpA, | ||||
| 	    GridBLASOperation_t OpB, | ||||
| 	    int m,int n, int k, | ||||
| 	    ComplexD alpha, | ||||
| 	    ComplexD* Amk,  // Device pointer | ||||
| 	    ComplexD* Bkn, | ||||
| 	    ComplexD beta, | ||||
| 	    ComplexD* Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|  | ||||
|     GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     GRID_ASSERT(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexD> alpha_p(1); | ||||
|     static deviceVector<ComplexD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasZgemm(gridblasHandle, | ||||
| 			    hOpA, | ||||
| 			    hOpB, | ||||
| 			    m,n,k, | ||||
| 			    (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 			    (hipblasDoubleComplex *) Amk, lda, | ||||
| 			    (hipblasDoubleComplex *) Bkn, ldb, | ||||
| 			    (hipblasDoubleComplex *) &beta_p[0], | ||||
| 			    (hipblasDoubleComplex *) Cmn, ldc); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasZgemm(gridblasHandle, | ||||
| 			   hOpA, | ||||
| 			   hOpB, | ||||
| 			   m,n,k, | ||||
| 			   (cuDoubleComplex *) &alpha_p[0], | ||||
| 			   (cuDoubleComplex *) Amk, lda, | ||||
| 			   (cuDoubleComplex *) Bkn, ldb, | ||||
| 			   (cuDoubleComplex *) &beta_p[0], | ||||
| 			   (cuDoubleComplex *) Cmn, ldc); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm(*gridblasHandle, | ||||
| 					    iOpA, | ||||
| 					    iOpB, | ||||
| 					    m64,n64,k64, | ||||
| 					    (ComplexD *) &alpha_p[0], | ||||
| 					    (const ComplexD *)Amk, (int64_t )lda64, | ||||
| 					    (const ComplexD *)Bkn, (int64_t )ldb64, | ||||
| 					    (ComplexD *) &beta_p[0], | ||||
| 					    (ComplexD *)Cmn, (int64_t)ldc64); | ||||
|       synchronise(); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n); | ||||
|   } | ||||
|   void gemm(GridBLASOperation_t OpA, | ||||
| 	    GridBLASOperation_t OpB, | ||||
| 	    int m,int n, int k, | ||||
| 	    ComplexF alpha, | ||||
| 	    ComplexF* Amk,  // Device pointer | ||||
| 	    ComplexF* Bkn, | ||||
| 	    ComplexF beta, | ||||
| 	    ComplexF* Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|  | ||||
|     GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     GRID_ASSERT(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexF> alpha_p(1); | ||||
|     static deviceVector<ComplexF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasCgemm(gridblasHandle, | ||||
| 			    hOpA, | ||||
| 			    hOpB, | ||||
| 			    m,n,k, | ||||
| 			    (hipblasComplex *) &alpha_p[0], | ||||
| 			    (hipblasComplex *) Amk, lda, | ||||
| 			    (hipblasComplex *) Bkn, ldb, | ||||
| 			    (hipblasComplex *) &beta_p[0], | ||||
| 			    (hipblasComplex *) Cmn, ldc); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemm(gridblasHandle, | ||||
| 			   hOpA, | ||||
| 			   hOpB, | ||||
| 			   m,n,k, | ||||
| 			   (cuComplex *) &alpha_p[0], | ||||
| 			   (cuComplex *) Amk, lda, | ||||
| 			   (cuComplex *) Bkn, ldb, | ||||
| 			   (cuComplex *) &beta_p[0], | ||||
| 			   (cuComplex *) Cmn, ldc); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm(*gridblasHandle, | ||||
| 					    iOpA, | ||||
| 					    iOpB, | ||||
| 					    m64,n64,k64, | ||||
| 					    (ComplexF *) &alpha_p[0], | ||||
| 					    (const ComplexF *)Amk, (int64_t )lda64, | ||||
| 					    (const ComplexF *)Bkn, (int64_t )ldb64, | ||||
| 					    (ComplexF *) &beta_p[0], | ||||
| 					    (ComplexF *)Cmn, (int64_t )ldc64); | ||||
|       synchronise(); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n); | ||||
| 	eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k; | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n); | ||||
|   } | ||||
|  | ||||
|    | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| @@ -241,36 +583,6 @@ public: | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| @@ -283,11 +595,11 @@ public: | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|     GRID_ASSERT(Bkn.size()==batchCount); | ||||
|     GRID_ASSERT(Cmn.size()==batchCount); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     assert(OpB!=GridBLAS_OP_T); | ||||
|     GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     GRID_ASSERT(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
| @@ -324,7 +636,7 @@ public: | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
| @@ -345,7 +657,7 @@ public: | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
| @@ -492,8 +804,8 @@ public: | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     assert(OpB!=GridBLAS_OP_T); | ||||
|     GRID_ASSERT(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     GRID_ASSERT(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
| @@ -509,8 +821,8 @@ public: | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|     GRID_ASSERT(Bkn.size()==batchCount); | ||||
|     GRID_ASSERT(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
| @@ -531,7 +843,7 @@ public: | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
| @@ -552,7 +864,7 @@ public: | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
| @@ -624,301 +936,6 @@ public: | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Single precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     assert(OpB!=GridBLAS_OP_C); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<RealF> alpha_p(1); | ||||
|     static deviceVector<RealF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasSgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (float *) &alpha_p[0], | ||||
| 				   (float **)&Amk[0], lda, | ||||
| 				   (float **)&Bkn[0], ldb, | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasSgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (float *) &alpha_p[0], | ||||
| 				  (float **)&Amk[0], lda, | ||||
| 				  (float **)&Bkn[0], ldb, | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (float *) &alpha_p[0], | ||||
| 						  (const float **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const float **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (float *) &beta_p[0], | ||||
| 						  (float **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|       synchronise(); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  } ); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     assert(OpB!=GridBLAS_OP_C); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<RealD> alpha_p(1); | ||||
|     static deviceVector<RealD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasDgemmBatched(gridblasHandle, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   m,n,k, | ||||
| 				   (double *) &alpha_p[0], | ||||
| 				   (double **)&Amk[0], lda, | ||||
| 				   (double **)&Bkn[0], ldb, | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasDgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (double *) &alpha_p[0], | ||||
| 				  (double **)&Amk[0], lda, | ||||
| 				  (double **)&Bkn[0], ldb, | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|  | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|        | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|  | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (double *) &alpha_p[0], | ||||
| 						  (const double **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const double **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (double *) &beta_p[0], | ||||
| 						  (double **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|       synchronise(); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|  | ||||
|   template<class CComplex> | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
| @@ -967,6 +984,47 @@ public: | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|   template<class CComplex> | ||||
|   double benchmark(int M, int N, int K) | ||||
|   { | ||||
|     int32_t N_A = M*K; | ||||
|     int32_t N_B = K*N; | ||||
|     int32_t N_C = M*N; | ||||
|     deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex)); | ||||
|     deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex)); | ||||
|     deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex)); | ||||
|     CComplex alpha(1.0); | ||||
|     CComplex beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K; | ||||
|     int ncall=10; | ||||
|  | ||||
|     gemm(GridBLAS_OP_C,GridBLAS_OP_N, | ||||
| 	 M,N,K, | ||||
| 	 alpha, | ||||
| 	 &A[0], // m x k  | ||||
| 	 &B[0], // k x n | ||||
| 	 beta,  | ||||
| 	 &C[0]); | ||||
|     synchronise(); | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemm(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 	   M,N,K, | ||||
| 	   alpha, | ||||
| 	   &A[0], // m x k  | ||||
| 	   &B[0], // k x n | ||||
| 	   beta,  | ||||
| 	   &C[0]); | ||||
|       synchronise(); | ||||
|     } | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K); | ||||
|     flops = 8.0*M*N*K*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|  | ||||
| @@ -1035,6 +1093,21 @@ static void BLAS(void) | ||||
|       std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl; | ||||
|     }} | ||||
|   fprintf(FP,"\n\n\n"); | ||||
|  | ||||
|   std::cout << "----------------------------------------------------------"<<std::endl; | ||||
|   std::cout << "  M  "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (inner product matrix)"<<std::endl; | ||||
|   std::cout << "----------------------------------------------------------"<<std::endl; | ||||
|   { | ||||
|     int M=12; | ||||
|     int N=12; | ||||
|     std::vector<int> ks({4*1024*1024, 2*1024*1024, 1024*1024, 256*1024, 1024 }); | ||||
|     for( int kk=0;kk<ks.size();kk++ ) { | ||||
|       int K = ks[kk]; | ||||
|       double p=blas.benchmark<CComplex>(M,N,K); | ||||
|       fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, 1, p); | ||||
|       std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<1<<"\t\t"<<p<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   std::cout << "=================================================================================="<<std::endl; | ||||
| }; | ||||
|  | ||||
|   | ||||
| @@ -1,2 +1,2 @@ | ||||
|  | ||||
| mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench | ||||
| mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL | ||||
							
								
								
									
										5
									
								
								BLAS_benchmark/compile-command-frontier
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								BLAS_benchmark/compile-command-frontier
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| CXX=hipcc | ||||
| MPICXX=mpicxx  | ||||
| CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP" | ||||
| LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123" | ||||
| hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench | ||||
							
								
								
									
										2
									
								
								BLAS_benchmark/compile-command-sunspot
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								BLAS_benchmark/compile-command-sunspot
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,2 @@ | ||||
|  | ||||
| mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL | ||||
| @@ -51,11 +51,13 @@ directory | ||||
| #pragma nv_diag_suppress cast_to_qualified_type | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma nv_diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma nv_diag_suppress declared_but_not_referenced | ||||
| #pragma nv_diag_suppress extra_semicolon | ||||
| #else | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma diag_suppress unsigned_compare_with_zero | ||||
| #pragma diag_suppress cast_to_qualified_type | ||||
| #pragma diag_suppress declared_but_not_referenced | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma diag_suppress extra_semicolon | ||||
|   | ||||
| @@ -1,9 +1,17 @@ | ||||
| #ifndef GRID_STD_H | ||||
| #define GRID_STD_H | ||||
|  | ||||
| /////////////////// | ||||
| // Grid config | ||||
| /////////////////// | ||||
| #include "Config.h" | ||||
|  | ||||
| /////////////////// | ||||
| // Std C++ dependencies | ||||
| /////////////////// | ||||
| #define _NBACKTRACE (256) | ||||
| extern void * Grid_backtrace_buffer[_NBACKTRACE]; | ||||
|  | ||||
| #include <cassert> | ||||
| #include <complex> | ||||
| #include <memory> | ||||
| @@ -15,7 +23,9 @@ | ||||
| #include <random> | ||||
| #include <functional> | ||||
| #include <stdio.h> | ||||
| #include <string.h> | ||||
| #include <stdlib.h> | ||||
| #include <unistd.h> | ||||
| #include <strings.h> | ||||
| #include <stdio.h> | ||||
| #include <signal.h> | ||||
| @@ -23,11 +33,36 @@ | ||||
| #include <sys/time.h> | ||||
| #include <chrono> | ||||
| #include <zlib.h> | ||||
| #ifdef HAVE_EXECINFO_H | ||||
| #include <execinfo.h> | ||||
| #endif | ||||
|  | ||||
| void GridAbort(void); | ||||
|  | ||||
| #define ASSLOG(A) ::write(STDERR_FILENO,A,::strlen(A)); | ||||
| #ifdef HAVE_EXECINFO_H | ||||
| #define GRID_ASSERT(b) if(!(b)) {					\ | ||||
|     fflush(stdout); \ | ||||
|     ASSLOG(" GRID_ASSERT failure: ");					\ | ||||
|     ASSLOG(__FILE__);							\ | ||||
|     ASSLOG(" : ");							\ | ||||
|     ASSLOG(#b);								\ | ||||
|     ASSLOG(" : ");							\ | ||||
|     int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);		\ | ||||
|     backtrace_symbols_fd(Grid_backtrace_buffer,symbols,STDERR_FILENO);	\ | ||||
|     GridAbort();							\ | ||||
|   }; | ||||
| #else | ||||
| #define GRID_ASSERT(b) if(!(b)) {					\ | ||||
|     ASSLOG(" GRID_ASSERT failure: ");					\ | ||||
|     ASSLOG(__FILE__);							\ | ||||
|     ASSLOG(" : ");							\ | ||||
|     ASSLOG(#b);								\ | ||||
|     ASSLOG(" : ");							\ | ||||
|     GridAbort();							\ | ||||
|   }; | ||||
| #endif | ||||
|  | ||||
| /////////////////// | ||||
| // Grid config | ||||
| /////////////////// | ||||
| #include "Config.h" | ||||
|  | ||||
| #ifdef TOFU | ||||
| #undef GRID_COMMS_THREADS | ||||
|   | ||||
| @@ -68,8 +68,10 @@ if BUILD_FERMION_REPS | ||||
| endif | ||||
| if BUILD_SP | ||||
|     extra_sources+=$(SP_FERMION_FILES) | ||||
| if BUILD_FERMION_REPS | ||||
|     extra_sources+=$(SP_TWOIND_FERMION_FILES) | ||||
| endif | ||||
| endif | ||||
|  | ||||
| lib_LIBRARIES = libGrid.a | ||||
|  | ||||
|   | ||||
| @@ -29,8 +29,8 @@ directory | ||||
| #pragma once | ||||
|  | ||||
| #include <type_traits> | ||||
| #include <cassert> | ||||
| #include <exception> | ||||
| #include <cassert> | ||||
|  | ||||
| #define NAMESPACE_BEGIN(A) namespace A { | ||||
| #define NAMESPACE_END(A)   } | ||||
|   | ||||
| @@ -50,6 +50,9 @@ NAMESPACE_CHECK(approx); | ||||
| #include <Grid/algorithms/deflation/Deflation.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSBlockProject.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSDeflation.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h> | ||||
| // Not really deflation, but useful | ||||
| #include <Grid/algorithms/blas/MomentumProject.h> | ||||
| NAMESPACE_CHECK(deflation); | ||||
| #include <Grid/algorithms/iterative/ConjugateGradient.h> | ||||
| NAMESPACE_CHECK(ConjGrad); | ||||
|   | ||||
| @@ -28,6 +28,15 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef _GRID_FFT_H_ | ||||
| #define _GRID_FFT_H_ | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| #include <cufft.h> | ||||
| #endif | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipfft/hipfft.h> | ||||
| #endif | ||||
|  | ||||
| #if !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
| #ifdef HAVE_FFTW | ||||
| #if defined(USE_MKL) || defined(GRID_SYCL) | ||||
| #include <fftw/fftw3.h> | ||||
| @@ -35,88 +44,190 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <fftw3.h> | ||||
| #endif | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class scalar> struct FFTW { }; | ||||
| #ifndef FFTW_FORWARD | ||||
| #define FFTW_FORWARD (-1) | ||||
| #define FFTW_BACKWARD (+1) | ||||
| #define FFTW_ESTIMATE (0) | ||||
| #endif | ||||
|  | ||||
| template<class scalar> struct FFTW { | ||||
| }; | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| template<> struct FFTW<ComplexD> { | ||||
| public: | ||||
|   static const int forward=FFTW_FORWARD; | ||||
|   static const int backward=FFTW_BACKWARD; | ||||
|   typedef hipfftDoubleComplex FFTW_scalar; | ||||
|   typedef hipfftHandle        FFTW_plan; | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany, | ||||
| 				      FFTW_scalar *in, int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     FFTW_plan p; | ||||
|     auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_Z2Z,howmany); | ||||
|     GRID_ASSERT(rv==HIPFFT_SUCCESS); | ||||
|     return p; | ||||
|   }	   | ||||
|      | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) { | ||||
|     hipfftResult rv; | ||||
|     if ( sign == forward ) rv =hipfftExecZ2Z(p,in,out,HIPFFT_FORWARD); | ||||
|     else                   rv =hipfftExecZ2Z(p,in,out,HIPFFT_BACKWARD); | ||||
|     accelerator_barrier(); | ||||
|     GRID_ASSERT(rv==HIPFFT_SUCCESS); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     hipfftDestroy(p); | ||||
|   } | ||||
| }; | ||||
| template<> struct FFTW<ComplexF> { | ||||
| public: | ||||
|   static const int forward=FFTW_FORWARD; | ||||
|   static const int backward=FFTW_BACKWARD; | ||||
|   typedef hipfftComplex      FFTW_scalar; | ||||
|   typedef hipfftHandle        FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany, | ||||
| 				      FFTW_scalar *in, int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     FFTW_plan p; | ||||
|     auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_C2C,howmany); | ||||
|     GRID_ASSERT(rv==HIPFFT_SUCCESS); | ||||
|     return p; | ||||
|   }	   | ||||
|      | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) { | ||||
|     hipfftResult rv; | ||||
|     if ( sign == forward ) rv =hipfftExecC2C(p,in,out,HIPFFT_FORWARD); | ||||
|     else                   rv =hipfftExecC2C(p,in,out,HIPFFT_BACKWARD); | ||||
|     accelerator_barrier(); | ||||
|     GRID_ASSERT(rv==HIPFFT_SUCCESS); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     hipfftDestroy(p); | ||||
|   } | ||||
| }; | ||||
| #endif | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| template<> struct FFTW<ComplexD> { | ||||
| public: | ||||
|   static const int forward=FFTW_FORWARD; | ||||
|   static const int backward=FFTW_BACKWARD; | ||||
|   typedef cufftDoubleComplex FFTW_scalar; | ||||
|   typedef cufftHandle        FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany, | ||||
| 				      FFTW_scalar *in, int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     FFTW_plan p; | ||||
|     cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_Z2Z,howmany); | ||||
|     return p; | ||||
|   }	   | ||||
|      | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) { | ||||
|     if ( sign == forward ) cufftExecZ2Z(p,in,out,CUFFT_FORWARD); | ||||
|     else                   cufftExecZ2Z(p,in,out,CUFFT_INVERSE); | ||||
|     accelerator_barrier(); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     cufftDestroy(p); | ||||
|   } | ||||
| }; | ||||
| template<> struct FFTW<ComplexF> { | ||||
| public: | ||||
|   static const int forward=FFTW_FORWARD; | ||||
|   static const int backward=FFTW_BACKWARD; | ||||
|   typedef cufftComplex FFTW_scalar; | ||||
|   typedef cufftHandle        FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany, | ||||
| 				      FFTW_scalar *in, int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     FFTW_plan p; | ||||
|     cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_C2C,howmany); | ||||
|     return p; | ||||
|   }	   | ||||
|      | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) { | ||||
|     if ( sign == forward ) cufftExecC2C(p,in,out,CUFFT_FORWARD); | ||||
|     else                   cufftExecC2C(p,in,out,CUFFT_INVERSE); | ||||
|     accelerator_barrier(); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     cufftDestroy(p); | ||||
|   } | ||||
| }; | ||||
| #endif | ||||
|  | ||||
| #if !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
| #ifdef HAVE_FFTW | ||||
| template<> struct FFTW<ComplexD> { | ||||
| public: | ||||
|  | ||||
|   typedef fftw_complex FFTW_scalar; | ||||
|   typedef fftw_plan    FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany, | ||||
| 				      FFTW_scalar *in, const int *inembed,		 | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany, | ||||
| 				      FFTW_scalar *in, int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, const int *onembed,		 | ||||
| 				      FFTW_scalar *out, int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags); | ||||
|   }	   | ||||
|      | ||||
|   static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){ | ||||
|     ::fftw_flops(p,add,mul,fmas); | ||||
|   } | ||||
|  | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) { | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) { | ||||
|     ::fftw_execute_dft(p,in,out); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     ::fftw_destroy_plan(p); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<> struct FFTW<ComplexF> { | ||||
| public: | ||||
|  | ||||
|   typedef fftwf_complex FFTW_scalar; | ||||
|   typedef fftwf_plan    FFTW_plan; | ||||
|  | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany, | ||||
| 				      FFTW_scalar *in, const int *inembed,		 | ||||
|   static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany, | ||||
| 				      FFTW_scalar *in, int *inembed,		 | ||||
| 				      int istride, int idist,		 | ||||
| 				      FFTW_scalar *out, const int *onembed,		 | ||||
| 				      FFTW_scalar *out, int *onembed,		 | ||||
| 				      int ostride, int odist,		 | ||||
| 				      int sign, unsigned flags) { | ||||
|     return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags); | ||||
|   }	   | ||||
|      | ||||
|   static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){ | ||||
|     ::fftwf_flops(p,add,mul,fmas); | ||||
|   } | ||||
|  | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) { | ||||
|   inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) { | ||||
|     ::fftwf_execute_dft(p,in,out); | ||||
|   } | ||||
|   inline static void fftw_destroy_plan(const FFTW_plan p) { | ||||
|     ::fftwf_destroy_plan(p); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #ifndef FFTW_FORWARD | ||||
| #define FFTW_FORWARD (-1) | ||||
| #define FFTW_BACKWARD (+1) | ||||
| #endif | ||||
|  | ||||
| class FFT { | ||||
| private: | ||||
|      | ||||
|   GridCartesian *vgrid; | ||||
|   GridCartesian *sgrid; | ||||
|      | ||||
|   int Nd; | ||||
|   double flops; | ||||
|   double flops_call; | ||||
|   uint64_t usec; | ||||
|      | ||||
|   Coordinate dimensions; | ||||
|   Coordinate processors; | ||||
|   Coordinate processor_coor; | ||||
|      | ||||
| public: | ||||
|      | ||||
|   static const int forward=FFTW_FORWARD; | ||||
| @@ -126,31 +237,25 @@ public: | ||||
|   double MFlops(void) {return flops/usec;} | ||||
|   double USec(void)   {return (double)usec;}     | ||||
|  | ||||
|   FFT ( GridCartesian * grid ) : | ||||
|     vgrid(grid), | ||||
|     Nd(grid->_ndimension), | ||||
|     dimensions(grid->_fdimensions), | ||||
|     processors(grid->_processors), | ||||
|     processor_coor(grid->_processor_coor) | ||||
|   FFT ( GridCartesian * grid )  | ||||
|   { | ||||
|     flops=0; | ||||
|     usec =0; | ||||
|     Coordinate layout(Nd,1); | ||||
|     sgrid = new GridCartesian(dimensions,layout,processors,*grid); | ||||
|   }; | ||||
|      | ||||
|   ~FFT ( void)  { | ||||
|     delete sgrid; | ||||
|     //    delete sgrid; | ||||
|   } | ||||
|      | ||||
|   template<class vobj> | ||||
|   void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){ | ||||
|  | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|     Lattice<vobj> tmp(vgrid); | ||||
|     tmp = source; | ||||
|     for(int d=0;d<Nd;d++){ | ||||
|     //    vgrid=result.Grid(); | ||||
|     //    conformable(result.Grid(),vgrid); | ||||
|     //    conformable(source.Grid(),vgrid); | ||||
|     const int Ndim = source.Grid()->Nd(); | ||||
|     Lattice<vobj> tmp = source; | ||||
|     for(int d=0;d<Ndim;d++){ | ||||
|       if( mask[d] ) { | ||||
| 	FFT_dim(result,tmp,d,sign); | ||||
| 	tmp=result; | ||||
| @@ -160,59 +265,70 @@ public: | ||||
|  | ||||
|   template<class vobj> | ||||
|   void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){ | ||||
|     Coordinate mask(Nd,1); | ||||
|     const int Ndim = source.Grid()->Nd(); | ||||
|     Coordinate mask(Ndim,1); | ||||
|     FFT_dim_mask(result,source,mask,sign); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   template<class vobj> | ||||
|   void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){ | ||||
| #ifndef HAVE_FFTW | ||||
|     assert(0); | ||||
| #else | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|     const int Ndim = source.Grid()->Nd(); | ||||
|     GridBase *grid = source.Grid(); | ||||
|     conformable(result.Grid(),source.Grid()); | ||||
|  | ||||
|     int L = vgrid->_ldimensions[dim]; | ||||
|     int G = vgrid->_fdimensions[dim]; | ||||
|     int L = grid->_ldimensions[dim]; | ||||
|     int G = grid->_fdimensions[dim]; | ||||
|        | ||||
|     Coordinate layout(Nd,1); | ||||
|     Coordinate pencil_gd(vgrid->_fdimensions); | ||||
|        | ||||
|     pencil_gd[dim] = G*processors[dim]; | ||||
|        | ||||
|     // Pencil global vol LxLxGxLxL per node | ||||
|     GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid); | ||||
|     Coordinate layout(Ndim,1); | ||||
|      | ||||
|     // Construct pencils | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename sobj::scalar_type   scalar; | ||||
|     typedef typename vobj::scalar_type   scalar; | ||||
|     typedef typename vobj::scalar_type   scalar_type; | ||||
|     typedef typename vobj::vector_type   vector_type; | ||||
|        | ||||
|     Lattice<sobj> pgbuf(&pencil_g); | ||||
|     autoView(pgbuf_v , pgbuf, CpuWrite); | ||||
|     //std::cout << "CPU view" << std::endl; | ||||
|      | ||||
|     typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; | ||||
|     typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan; | ||||
|        | ||||
|     int Ncomp = sizeof(sobj)/sizeof(scalar); | ||||
|     int Nlow  = 1; | ||||
|     int64_t Nlow  = 1; | ||||
|     int64_t Nhigh = 1; | ||||
|  | ||||
|     for(int d=0;d<dim;d++){ | ||||
|       Nlow*=vgrid->_ldimensions[d]; | ||||
|       Nlow*=grid->_ldimensions[d]; | ||||
|     } | ||||
|     for(int d=dim+1;d<Ndim;d++){ | ||||
|       Nhigh*=grid->_ldimensions[d]; | ||||
|     } | ||||
|     int64_t Nperp=Nlow*Nhigh; | ||||
|      | ||||
|     deviceVector<scalar> pgbuf; // Layout is [perp][component][dim] | ||||
|     pgbuf.resize(Nperp*Ncomp*G); | ||||
|     scalar *pgbuf_v = &pgbuf[0]; | ||||
|        | ||||
|     int rank = 1;  /* 1d transforms */ | ||||
|     int n[] = {G}; /* 1d transforms of length G */ | ||||
|     int howmany = Ncomp; | ||||
|     int howmany = Ncomp * Nperp; | ||||
|     int odist,idist,istride,ostride; | ||||
|     idist   = odist   = 1;          /* Distance between consecutive FT's */ | ||||
|     istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */ | ||||
|     idist   = odist   = G;            /* Distance between consecutive FT's */ | ||||
|     istride = ostride = 1;            /* Distance between two elements in the same FT */ | ||||
|     int *inembed = n, *onembed = n; | ||||
|        | ||||
|     scalar div; | ||||
|     if ( sign == backward ) div = 1.0/G; | ||||
|     else if ( sign == forward ) div = 1.0; | ||||
|     else assert(0); | ||||
|     else GRID_ASSERT(0); | ||||
|  | ||||
|     double t_pencil=0; | ||||
|     double t_fft   =0; | ||||
|     double t_total =-usecond(); | ||||
|     //    std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl; | ||||
|     /* | ||||
|      * | ||||
|      */ | ||||
|     FFTW_plan p; | ||||
|     { | ||||
|       FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; | ||||
| @@ -226,68 +342,154 @@ public: | ||||
|     } | ||||
|        | ||||
|     // Barrel shift and collect global pencil | ||||
|     Coordinate lcoor(Nd), gcoor(Nd); | ||||
|     //    std::cout << GridLogPerformance<<"Making pencil" << std::endl; | ||||
|     Coordinate lcoor(Ndim), gcoor(Ndim); | ||||
|     double t_copy=0; | ||||
|     double t_shift=0; | ||||
|     t_pencil = -usecond(); | ||||
|     result = source; | ||||
|     int pc = processor_coor[dim]; | ||||
|     int pc = grid->_processor_coor[dim]; | ||||
|  | ||||
|     const Coordinate ldims = grid->_ldimensions; | ||||
|     const Coordinate rdims = grid->_rdimensions; | ||||
|     const Coordinate sdims = grid->_simd_layout; | ||||
|  | ||||
|     Coordinate processors = grid->_processors; | ||||
|     Coordinate pgdims(Ndim); | ||||
|     pgdims[0] = G; | ||||
|     for(int d=0, dd=1;d<Ndim;d++){ | ||||
|       if ( d!=dim ) pgdims[dd++] = ldims[d]; | ||||
|     } | ||||
|     int64_t pgvol=1; | ||||
|     for(int d=0;d<Ndim;d++) pgvol*=pgdims[d]; | ||||
|      | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|     for(int p=0;p<processors[dim];p++) { | ||||
|       t_copy-=usecond(); | ||||
|       autoView(r_v,result,AcceleratorRead); | ||||
|       accelerator_for(idx, grid->oSites(), vobj::Nsimd(), { | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	autoView(r_v,result,CpuRead); | ||||
| 	autoView(p_v,pgbuf,CpuWrite); | ||||
| 	thread_for(idx, sgrid->lSites(),{ | ||||
|           Coordinate cbuf(Nd); | ||||
|           sobj s; | ||||
| 	  sgrid->LocalIndexToLocalCoor(idx,cbuf); | ||||
| 	  peekLocalSite(s,r_v,cbuf); | ||||
| 	  cbuf[dim]+=((pc+p) % processors[dim])*L; | ||||
| 	  pokeLocalSite(s,p_v,cbuf); | ||||
|         }); | ||||
| 	int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	Coordinate icoor; | ||||
| 	Coordinate ocoor; | ||||
| 	Coordinate pgcoor; | ||||
|  | ||||
| 	Lexicographic::CoorFromIndex(icoor,lane,sdims); | ||||
| 	Lexicographic::CoorFromIndex(ocoor,idx,rdims); | ||||
|  | ||||
| 	pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + ((pc+p)%processors[dim])*L; | ||||
| 	for(int d=0,dd=1;d<Ndim;d++){ | ||||
| 	  if ( d!=dim ) { | ||||
| 	    pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d]; | ||||
| 	    dd++; | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	// Map coordinates in lattice layout to FFTW index | ||||
| 	int64_t pgidx; | ||||
| 	Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims); | ||||
|  | ||||
| 	vector_type *from = (vector_type *)&r_v[idx]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<Ncomp;w++){ | ||||
| 	  int64_t pg_idx = pgidx + w*pgvol; | ||||
| 	  stmp = getlane(from[w], lane); | ||||
| 	  pgbuf_v[pg_idx] = stmp; | ||||
| 	} | ||||
| #ifdef GRID_SIMT | ||||
|       } | ||||
| #else | ||||
|       } | ||||
| #endif | ||||
|       }); | ||||
|  | ||||
|       t_copy+=usecond(); | ||||
|       if (p != processors[dim] - 1) { | ||||
| 	result = Cshift(result,dim,L); | ||||
| 	Lattice<vobj> temp(grid); | ||||
| 	t_shift-=usecond(); | ||||
| 	temp = Cshift(result,dim,L); result = temp; | ||||
| 	t_shift+=usecond(); | ||||
|       } | ||||
|     } | ||||
|     t_pencil += usecond(); | ||||
|        | ||||
|     // Loop over orthog coords | ||||
|     int NN=pencil_g.lSites(); | ||||
|     GridStopWatch timer; | ||||
|     timer.Start(); | ||||
|     thread_for( idx,NN,{ | ||||
|         Coordinate cbuf(Nd); | ||||
| 	pencil_g.LocalIndexToLocalCoor(idx, cbuf); | ||||
| 	if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0 | ||||
| 	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx]; | ||||
| 	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx]; | ||||
| 	  FFTW<scalar>::fftw_execute_dft(p,in,out); | ||||
| 	} | ||||
|     }); | ||||
|     timer.Stop(); | ||||
|     FFTW_scalar *in = (FFTW_scalar *)pgbuf_v; | ||||
|     FFTW_scalar *out= (FFTW_scalar *)pgbuf_v; | ||||
|     t_fft = -usecond(); | ||||
|     FFTW<scalar>::fftw_execute_dft(p,in,out,sign); | ||||
|     t_fft += usecond(); | ||||
|      | ||||
|     // performance counting | ||||
|     double add,mul,fma; | ||||
|     FFTW<scalar>::fftw_flops(p,&add,&mul,&fma); | ||||
|     flops_call = add+mul+2.0*fma; | ||||
|     usec += timer.useconds(); | ||||
|     flops+= flops_call*NN; | ||||
|     flops_call = 5.0*howmany*G*log2(G); | ||||
|     usec = t_fft; | ||||
|     flops= flops_call; | ||||
|  | ||||
|     // writing out result | ||||
|     result = Zero(); | ||||
|      | ||||
|     double t_insert = -usecond(); | ||||
|     { | ||||
|       autoView(pgbuf_v,pgbuf,CpuRead); | ||||
|       autoView(result_v,result,CpuWrite); | ||||
|       thread_for(idx,sgrid->lSites(),{ | ||||
| 	Coordinate clbuf(Nd), cgbuf(Nd); | ||||
| 	sobj s; | ||||
| 	sgrid->LocalIndexToLocalCoor(idx,clbuf); | ||||
| 	cgbuf = clbuf; | ||||
| 	cgbuf[dim] = clbuf[dim]+L*pc; | ||||
| 	peekLocalSite(s,pgbuf_v,cgbuf); | ||||
| 	pokeLocalSite(s,result_v,clbuf); | ||||
|       autoView(r_v,result,AcceleratorWrite); | ||||
|       accelerator_for(idx,grid->oSites(),Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	Coordinate icoor(Ndim); | ||||
| 	Coordinate ocoor(Ndim); | ||||
| 	Coordinate pgcoor(Ndim); | ||||
|  | ||||
| 	Lexicographic::CoorFromIndex(icoor,lane,sdims); | ||||
| 	Lexicographic::CoorFromIndex(ocoor,idx,rdims); | ||||
|  | ||||
| 	pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + pc*L; | ||||
| 	for(int d=0,dd=1;d<Ndim;d++){ | ||||
| 	  if ( d!=dim ) { | ||||
| 	    pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d]; | ||||
| 	    dd++; | ||||
| 	  } | ||||
| 	} | ||||
| 	// Map coordinates in lattice layout to FFTW index | ||||
| 	int64_t pgidx; | ||||
| 	Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims); | ||||
|  | ||||
| 	vector_type *to = (vector_type *)&r_v[idx]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<Ncomp;w++){ | ||||
| 	  int64_t pg_idx = pgidx + w*pgvol; | ||||
| 	  stmp = pgbuf_v[pg_idx]; | ||||
| 	  putlane(to[w], stmp, lane); | ||||
| 	} | ||||
| 	 | ||||
| #ifdef GRID_SIMT | ||||
|       } | ||||
| #else | ||||
|       } | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|  | ||||
|     result = result*div; | ||||
|  | ||||
|     t_insert +=usecond(); | ||||
|      | ||||
|     // destroying plan | ||||
|     FFTW<scalar>::fftw_destroy_plan(p); | ||||
| #endif | ||||
|  | ||||
|     t_total +=usecond(); | ||||
|  | ||||
|     std::cout <<GridLogPerformance<< " FFT took   "<<t_total/1.0e6 <<" s" << std::endl; | ||||
|     std::cout <<GridLogPerformance<< " FFT pencil "<<t_pencil/1.0e6 <<" s" << std::endl; | ||||
|     std::cout <<GridLogPerformance<< "  of which copy "<<t_copy/1.0e6 <<" s" << std::endl; | ||||
|     std::cout <<GridLogPerformance<< "  of which shift"<<t_shift/1.0e6 <<" s" << std::endl; | ||||
|     std::cout <<GridLogPerformance<< " FFT kernels "<<t_fft/1.0e6 <<" s" << std::endl; | ||||
|     std::cout <<GridLogPerformance<< " FFT insert  "<<t_insert/1.0e6 <<" s" << std::endl; | ||||
|      | ||||
|   } | ||||
| }; | ||||
|  | ||||
|   | ||||
| @@ -64,7 +64,7 @@ public: | ||||
| // | ||||
| // I'm not entirely happy with implementation; to share the Schur code between herm and non-herm | ||||
| // while still having a "OpAndNorm" in the abstract base I had to implement it in both cases | ||||
| // with an assert trap in the non-herm. This isn't right; there must be a better C++ way to | ||||
| // with an GRID_ASSERT trap in the non-herm. This isn't right; there must be a better C++ way to | ||||
| // do it, but I fear it required multiple inheritance and mixed in abstract base classes | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| @@ -103,6 +103,38 @@ public: | ||||
|     _Mat.MdagM(in,out); | ||||
|   } | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
| class MMdagLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   MMdagLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     _Mat.MMdag(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MMdag(in,out); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Construct herm op and shift it for mgrid smoother | ||||
| @@ -116,22 +148,22 @@ public: | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
| @@ -156,13 +188,13 @@ public: | ||||
|   ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
| @@ -239,10 +271,42 @@ public: | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
| class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
|   RealD shift; | ||||
| public: | ||||
|   ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|     out = out + shift*in; | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|     out = out + shift * in; | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|     out = out + shift * in; | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -281,13 +345,13 @@ class SchurOperatorBase :  public LinearOperatorBase<Field> { | ||||
|   } | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); // must coarsen the unpreconditioned system | ||||
|     GRID_ASSERT(0); // must coarsen the unpreconditioned system | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   }; | ||||
| }; | ||||
| template<class Matrix,class Field> | ||||
| @@ -383,10 +447,10 @@ class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field> | ||||
|     MpcDag(tmp,out); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   virtual void HermOp(const Field& in, Field& out) { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void Op(const Field& in, Field& out) { | ||||
|     Mpc(in, out); | ||||
| @@ -396,13 +460,13 @@ class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field> | ||||
|   } | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag(const Field& in, Field& out) { | ||||
|     assert(0); // must coarsen the unpreconditioned system | ||||
|     GRID_ASSERT(0); // must coarsen the unpreconditioned system | ||||
|   } | ||||
|   void OpDir(const Field& in, Field& out, int dir, int disp) { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   void OpDirAll(const Field& in, std::vector<Field>& out){ | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| @@ -516,7 +580,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|  public: | ||||
|   SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())  | ||||
|   {  | ||||
|     assert( _Mat.isTrivialEE() ); | ||||
|     GRID_ASSERT( _Mat.isTrivialEE() ); | ||||
|     mass = _Mat.Mass(); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
| @@ -547,7 +611,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|     Mpc(in,out); | ||||
|   } | ||||
|   virtual void MpcDagMpc(const Field &in, Field &out) { | ||||
|     assert(0);// Never need with staggered | ||||
|     GRID_ASSERT(0);// Never need with staggered | ||||
|   } | ||||
| }; | ||||
| template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>; | ||||
| @@ -559,7 +623,7 @@ template<class Field> class OperatorFunction { | ||||
| public: | ||||
|   virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0; | ||||
|   virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) { | ||||
|     assert(in.size()==out.size()); | ||||
|     GRID_ASSERT(in.size()==out.size()); | ||||
|     for(int k=0;k<in.size();k++){ | ||||
|       (*this)(Linop,in[k],out[k]); | ||||
|     } | ||||
| @@ -573,7 +637,7 @@ public: | ||||
|  | ||||
|   virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out) | ||||
|   { | ||||
|     assert(in.size() == out.size()); | ||||
|     GRID_ASSERT(in.size() == out.size()); | ||||
|  | ||||
|     for (unsigned int i = 0; i < in.size(); ++i) | ||||
|     { | ||||
|   | ||||
| @@ -45,6 +45,11 @@ public: | ||||
|     M(in,tmp); | ||||
|     Mdag(tmp,out); | ||||
|   } | ||||
|   virtual void  MMdag(const Field &in, Field &out) { | ||||
|     Field tmp (in.Grid()); | ||||
|     Mdag(in,tmp); | ||||
|     M(tmp,out); | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out)=0; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0; | ||||
|   | ||||
| @@ -59,7 +59,7 @@ public: | ||||
|     RealD diff = hi-lo; | ||||
|     RealD delta = diff*1.0e-9; | ||||
|     for (RealD x=lo; x<hi; x+=delta) { | ||||
|       delta*=1.1; | ||||
|       delta*=1.02; | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f<<std::endl; | ||||
|     } | ||||
| @@ -131,6 +131,26 @@ public: | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|   }; | ||||
|   template<class functor> | ||||
|   void Init(RealD _lo,RealD _hi,int _order, functor & func) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     for(int j=0;j<order;j++){ | ||||
|       RealD s=0; | ||||
|       for(int k=0;k<order;k++){ | ||||
| 	RealD y=std::cos(M_PI*(k+0.5)/order); | ||||
| 	RealD x=0.5*(y*(hi-lo)+(hi+lo)); | ||||
| 	RealD f=func(x); | ||||
| 	s=s+f*std::cos( j*M_PI*(k+0.5)/order ); | ||||
|       } | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|      | ||||
|   void JacksonSmooth(void){ | ||||
| @@ -249,7 +269,9 @@ public: | ||||
|     RealD xscale = 2.0/(hi-lo); | ||||
|     RealD mscale = -(hi+lo)/(hi-lo); | ||||
|     Linop.HermOp(T0,y); | ||||
|     grid->Barrier(); | ||||
|     axpby(T1,xscale,mscale,y,in); | ||||
|     grid->Barrier(); | ||||
|  | ||||
|     // sum = .5 c[0] T0 + c[1] T1 | ||||
|     //    out = ()*T0 + Coeffs[1]*T1; | ||||
|   | ||||
| @@ -121,7 +121,7 @@ double AlgRemez::generateApprox(int num_degree, int den_degree, | ||||
|   // Reallocate arrays, since degree has changed | ||||
|   if (num_degree != n || den_degree != d) allocate(num_degree,den_degree); | ||||
|  | ||||
|   assert(a_len<=SUM_MAX); | ||||
|   GRID_ASSERT(a_len<=SUM_MAX); | ||||
|  | ||||
|   step = new bigfloat[num_degree+den_degree+2]; | ||||
|  | ||||
| @@ -151,9 +151,9 @@ double AlgRemez::generateApprox(int num_degree, int den_degree, | ||||
|     equations(); | ||||
|     if (delta < tolerance) { | ||||
|       std::cout<<"Delta too small, try increasing precision\n"; | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     };     | ||||
|     assert( delta>= tolerance); | ||||
|     GRID_ASSERT( delta>= tolerance); | ||||
|  | ||||
|     search(step); | ||||
|   } | ||||
|   | ||||
| @@ -134,7 +134,7 @@ class AlgRemez | ||||
|   virtual ~AlgRemez(); | ||||
|  | ||||
|   int getDegree(void){  | ||||
|     assert(n==d); | ||||
|     GRID_ASSERT(n==d); | ||||
|     return n; | ||||
|   } | ||||
|   // Reset the bounds of the approximation | ||||
|   | ||||
| @@ -28,11 +28,11 @@ void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyTy | ||||
|   pow_n = num_degree; | ||||
|   pow_d = den_degree; | ||||
|  | ||||
|   if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0); | ||||
|   if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) GRID_ASSERT(0); | ||||
|   if(pow_n % 2 == 1 && num_type_in == PolyType::Even) GRID_ASSERT(0); | ||||
|  | ||||
|   if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0); | ||||
|   if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) GRID_ASSERT(0); | ||||
|   if(pow_d % 2 == 1 && den_type_in == PolyType::Even) GRID_ASSERT(0); | ||||
|  | ||||
|   num_type = num_type_in; | ||||
|   den_type = den_type_in; | ||||
| @@ -112,9 +112,9 @@ double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degre | ||||
|     equations(); | ||||
|     if (delta < tolerance) { | ||||
|       std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n"; | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     };     | ||||
|     assert( delta>= tolerance ); | ||||
|     GRID_ASSERT( delta>= tolerance ); | ||||
|  | ||||
|     search(); | ||||
|   } | ||||
| @@ -278,7 +278,7 @@ void AlgRemezGeneral::equations(){ | ||||
|       if(num_pows[j] != -1){ *aa++ = z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == n+1); | ||||
|     GRID_ASSERT(t == n+1); | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     t = 0; | ||||
| @@ -286,7 +286,7 @@ void AlgRemezGeneral::equations(){ | ||||
|       if(den_pows[j] != -1){ *aa++ = -y * z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == d); | ||||
|     GRID_ASSERT(t == d); | ||||
|  | ||||
|     B[i] = y * z;		// Right hand side vector | ||||
|   } | ||||
|   | ||||
| @@ -106,7 +106,7 @@ class AlgRemezGeneral{ | ||||
| 		  bigfloat (*f)(bigfloat x, void *data), void *data); | ||||
|  | ||||
|   inline int getDegree(void) const{  | ||||
|     assert(n==d); | ||||
|     GRID_ASSERT(n==d); | ||||
|     return n; | ||||
|   } | ||||
|   // Reset the bounds of the approximation | ||||
|   | ||||
| @@ -74,7 +74,7 @@ bigfloat epsilonMobius(bigfloat x, void* data){ | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   assert(omega_in.size() == Ls_in); | ||||
|   GRID_ASSERT(omega_in.size() == Ls_in); | ||||
|   omega_out.resize(Ls_out); | ||||
|  | ||||
|   //Use the Remez algorithm to generate the appropriate rational polynomial | ||||
|   | ||||
| @@ -55,16 +55,17 @@ NAMESPACE_BEGIN(Grid); | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
|   typedef sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
|   typedef sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| #endif | ||||
|  | ||||
| enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ; | ||||
| enum GridBLASPrecision_t { GridBLAS_PRECISION_DEFAULT, GridBLAS_PRECISION_16F, GridBLAS_PRECISION_16BF, GridBLAS_PRECISION_TF32 }; | ||||
|  | ||||
| class GridBLAS { | ||||
| public: | ||||
| @@ -89,15 +90,30 @@ public: | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       cl::sycl::gpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()}; | ||||
|       sycl::gpu_selector selector; | ||||
|       sycl::device selectedDevice { selector }; | ||||
|       sycl::property_list q_prop{sycl::property::queue::in_order()}; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice,q_prop); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
|   } | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
|   cublasComputeType_t toDataType(GridBLASPrecision_t p) { | ||||
|     switch (p) { | ||||
|     case GridBLAS_PRECISION_16F: | ||||
|       return CUBLAS_COMPUTE_32F_FAST_16F; | ||||
|     case GridBLAS_PRECISION_16BF: | ||||
|       return CUBLAS_COMPUTE_32F_FAST_16BF; | ||||
|     case GridBLAS_PRECISION_TF32: | ||||
|       return CUBLAS_COMPUTE_32F_FAST_TF32; | ||||
|     default: | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|     return CUBLAS_COMPUTE_32F_FAST_16F; | ||||
|   } | ||||
| #endif | ||||
|   // Force construct once | ||||
|   GridBLAS() { Init(); }; | ||||
|   ~GridBLAS() { }; | ||||
| @@ -119,11 +135,11 @@ public: | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
|     GRID_ASSERT(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
|     GRID_ASSERT(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| @@ -138,8 +154,10 @@ public: | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
| 		   deviceVector<ComplexD*> &Cmn, | ||||
| 		   GridBLASPrecision_t precision = GridBLAS_PRECISION_DEFAULT) | ||||
|   { | ||||
|     GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT); | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| @@ -201,15 +219,17 @@ public: | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
| 		   deviceVector<ComplexD*> &Cmn, | ||||
| 		   GridBLASPrecision_t precision = GridBLAS_PRECISION_DEFAULT) | ||||
|   { | ||||
|     GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT); | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|     GRID_ASSERT(Bkn.size()==batchCount); | ||||
|     GRID_ASSERT(Cmn.size()==batchCount); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     assert(OpB!=GridBLAS_OP_T); | ||||
|     //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     //assert(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
| @@ -246,7 +266,7 @@ public: | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
| @@ -267,7 +287,7 @@ public: | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
| @@ -367,28 +387,67 @@ public: | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
|         }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  } ); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  } ); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
| @@ -409,13 +468,14 @@ public: | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
| 		   deviceVector<ComplexF*> &Cmn, | ||||
| 		   GridBLASPrecision_t precision = GridBLAS_PRECISION_DEFAULT) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     assert(OpB!=GridBLAS_OP_T); | ||||
|     //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose | ||||
|     //assert(OpB!=GridBLAS_OP_T); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
| @@ -431,9 +491,10 @@ public: | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|     GRID_ASSERT(Bkn.size()==batchCount); | ||||
|     GRID_ASSERT(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT); | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
| @@ -453,7 +514,7 @@ public: | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
| @@ -464,78 +525,137 @@ public: | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuComplex *) &alpha_p[0], | ||||
| 				  (cuComplex **)&Amk[0], lda, | ||||
| 				  (cuComplex **)&Bkn[0], ldb, | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
|     cublasStatus_t err; | ||||
|     if (precision == GridBLAS_PRECISION_DEFAULT) { | ||||
|       err = cublasCgemmBatched(gridblasHandle, | ||||
| 			       hOpA, | ||||
| 			       hOpB, | ||||
| 			       m,n,k, | ||||
| 			       (cuComplex *) &alpha_p[0], | ||||
| 			       (cuComplex **)&Amk[0], lda, | ||||
| 			       (cuComplex **)&Bkn[0], ldb, | ||||
| 			       (cuComplex *) &beta_p[0], | ||||
| 			       (cuComplex **)&Cmn[0], ldc, | ||||
| 			       batchCount); | ||||
|     } else { | ||||
|       cublasComputeType_t compute_precision = toDataType(precision); | ||||
|       err = cublasGemmBatchedEx(gridblasHandle, | ||||
| 				hOpA, | ||||
| 				hOpB, | ||||
| 				m,n,k, | ||||
| 				(void *) &alpha_p[0], | ||||
| 				(void **)&Amk[0], CUDA_C_32F, lda, | ||||
| 				(void **)&Bkn[0], CUDA_C_32F, ldb, | ||||
| 				(void *) &beta_p[0], | ||||
| 				(void **)&Cmn[0], CUDA_C_32F, ldc, | ||||
| 				batchCount, compute_precision, CUBLAS_GEMM_DEFAULT); | ||||
|     } | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t lda64=lda; | ||||
|       int64_t ldb64=ldb; | ||||
|       int64_t ldc64=ldc; | ||||
|       int64_t batchCount64=batchCount; | ||||
|     GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT); | ||||
|     int64_t m64=m; | ||||
|     int64_t n64=n; | ||||
|     int64_t k64=k; | ||||
|     int64_t lda64=lda; | ||||
|     int64_t ldb64=ldb; | ||||
|     int64_t ldc64=ldc; | ||||
|     int64_t batchCount64=batchCount; | ||||
|      | ||||
|       oneapi::mkl::transpose iOpA; | ||||
|       oneapi::mkl::transpose iOpB; | ||||
|     oneapi::mkl::transpose iOpA; | ||||
|     oneapi::mkl::transpose iOpB; | ||||
|      | ||||
|       if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|       if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|       if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|       if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|       if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|       if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|     if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N; | ||||
|     if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T; | ||||
|     if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C; | ||||
|     if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N; | ||||
|     if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T; | ||||
|     if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C; | ||||
|      | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						  &iOpA, | ||||
| 						  &iOpB, | ||||
| 						  &m64,&n64,&k64, | ||||
| 						  (ComplexF *) &alpha_p[0], | ||||
| 						  (const ComplexF **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						  (const ComplexF **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						  (ComplexF *) &beta_p[0], | ||||
| 						  (ComplexF **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						  (int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						&iOpA, | ||||
| 						&iOpB, | ||||
| 						&m64,&n64,&k64, | ||||
| 						(ComplexF *) &alpha_p[0], | ||||
| 						(const ComplexF **)&Amk[0], (const int64_t *)&lda64, | ||||
| 						(const ComplexF **)&Bkn[0], (const int64_t *)&ldb64, | ||||
| 						(ComplexF *) &beta_p[0], | ||||
| 						(ComplexF **)&Cmn[0], (const int64_t *)&ldc64, | ||||
| 						(int64_t)1,&batchCount64,std::vector<sycl::event>()); | ||||
|     synchronise(); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     GRID_ASSERT(precision == GridBLAS_PRECISION_DEFAULT); | ||||
|     // Need a default/reference implementation; use Eigen | ||||
|       if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.adjoint() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ; | ||||
| 	  } ); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  } ); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
| @@ -562,8 +682,8 @@ public: | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     assert(OpB!=GridBLAS_OP_C); | ||||
|     GRID_ASSERT(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     GRID_ASSERT(OpB!=GridBLAS_OP_C); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
| @@ -579,8 +699,8 @@ public: | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|     GRID_ASSERT(Bkn.size()==batchCount); | ||||
|     GRID_ASSERT(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
| @@ -600,7 +720,7 @@ public: | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
| @@ -621,7 +741,7 @@ public: | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
| @@ -661,29 +781,41 @@ public: | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.transpose() ;	   | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  } ); | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
|       } | ||||
| @@ -709,8 +841,8 @@ public: | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     assert(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     assert(OpB!=GridBLAS_OP_C); | ||||
|     GRID_ASSERT(OpA!=GridBLAS_OP_C); // Real case no conjugate | ||||
|     GRID_ASSERT(OpB!=GridBLAS_OP_C); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
| @@ -727,8 +859,8 @@ public: | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|     GRID_ASSERT(Bkn.size()==batchCount); | ||||
|     GRID_ASSERT(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
| @@ -748,7 +880,7 @@ public: | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
| @@ -769,7 +901,7 @@ public: | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       int64_t m64=m; | ||||
| @@ -809,28 +941,40 @@ public: | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { | ||||
| 	thread_for (p, batchCount, { | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); | ||||
| 	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); | ||||
| 	  eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  if (std::abs(beta) != 0.0) | ||||
| 	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  else | ||||
| 	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ; | ||||
| 	  }); | ||||
|       } else {  | ||||
| 	assert(0); | ||||
| @@ -841,6 +985,336 @@ public: | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|  | ||||
|   /* | ||||
|     Inverse and Determinant | ||||
|  | ||||
|     - CPU version uses Eigen | ||||
|     - GPU version uses LAPACK-compatible getrf / getri | ||||
|  | ||||
|     Design comment: Eigen does not expose getrf / getri in a LAPACK compatible manner. | ||||
|                     Overhead to go through getrf / getri for CPU version too large. | ||||
| 		    Current interface therefore only guarantees the inverse and determinant | ||||
| 		    functions on all platforms but not the getrf / getri ones. | ||||
|   */ | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|  | ||||
|   void inverseBatched(int64_t n, | ||||
| 		      deviceVector<ComplexD*> &Ann, | ||||
| 		      deviceVector<ComplexD*> &Cnn) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(batchCount == Cnn.size()); | ||||
|     thread_for(p,batchCount, { | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eAnn(Ann[p],n,n); | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eCnn(Cnn[p],n,n); | ||||
| 	eCnn = eAnn.inverse(); | ||||
|       }); | ||||
|   } | ||||
|  | ||||
|   void inverseBatched(int64_t n, | ||||
| 		      deviceVector<ComplexF*> &Ann, | ||||
| 		      deviceVector<ComplexF*> &Cnn) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(batchCount == Cnn.size()); | ||||
|     thread_for(p,batchCount, { | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eAnn(Ann[p],n,n); | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eCnn(Cnn[p],n,n); | ||||
| 	eCnn = eAnn.inverse(); | ||||
|       }); | ||||
|   } | ||||
|  | ||||
|   void determinantBatched(int64_t n, | ||||
| 			  deviceVector<ComplexD*> &Ann, | ||||
| 			  deviceVector<ComplexD*> &C) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(batchCount == C.size()); | ||||
|     thread_for(p,batchCount, { | ||||
| 	Eigen::Map<Eigen::MatrixXcd> eAnn(Ann[p],n,n); | ||||
| 	*C[p] = eAnn.determinant(); | ||||
|       }); | ||||
|   } | ||||
|  | ||||
|   void determinantBatched(int64_t n, | ||||
| 			  deviceVector<ComplexF*> &Ann, | ||||
| 			  deviceVector<ComplexF*> &C) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(batchCount == C.size()); | ||||
|     thread_for(p,batchCount, { | ||||
| 	Eigen::Map<Eigen::MatrixXcf> eAnn(Ann[p],n,n); | ||||
| 	*C[p] = eAnn.determinant(); | ||||
|       }); | ||||
|   } | ||||
|    | ||||
| #else | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
|   template<typename T> | ||||
|   void getrfBatchedSYCL(int64_t n, | ||||
| 			deviceVector<T*> &Ann, | ||||
| 			deviceVector<int64_t> &ipiv, | ||||
| 			deviceVector<int64_t> &info) { | ||||
|      | ||||
|     int64_t batchCount = Ann.size(); | ||||
|  | ||||
|     static deviceVector<T> scratchpad; | ||||
|     int64_t sp_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<T>(*gridblasHandle, &n, &n, &n, (int64_t)1, &batchCount); | ||||
|     if (sp_size > scratchpad.size()) | ||||
|       scratchpad.resize(sp_size); | ||||
|  | ||||
|     static deviceVector<int64_t*> _ipiv; | ||||
|     if (batchCount > _ipiv.size()) | ||||
|       _ipiv.resize(batchCount); | ||||
|     int64_t** p_ipiv = &_ipiv[0]; | ||||
|     int64_t* pipiv = &ipiv[0]; | ||||
|  | ||||
|     accelerator_for(i, batchCount, 1, { p_ipiv[i] = &pipiv[i*n]; }); | ||||
|  | ||||
|     oneapi::mkl::lapack::getrf_batch(*gridblasHandle, | ||||
| 				    &n, &n, | ||||
| 				    (T **)&Ann[0], | ||||
| 				    &n, | ||||
| 				    (int64_t**)&_ipiv[0], | ||||
| 				    (int64_t)1, &batchCount, | ||||
| 				    (T*)&scratchpad[0], (int64_t)scratchpad.size(), | ||||
| 				    std::vector<sycl::event>()); | ||||
|     synchronise(); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   void getrfBatched(int64_t n, | ||||
| 		    deviceVector<ComplexD*> &Ann, | ||||
| 		    deviceVector<int64_t> &ipiv, | ||||
| 		    deviceVector<int64_t> &info) | ||||
|   { | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(ipiv.size()==batchCount*n); | ||||
|     GRID_ASSERT(info.size()==batchCount); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgetrfBatched(gridblasHandle,(int)n, | ||||
| 				    (hipblasDoubleComplex **)&Ann[0], (int)n, | ||||
| 				    (int*) &ipiv[0], | ||||
| 				    (int*) &info[0], | ||||
| 				    (int)batchCount); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cublasZgetrfBatched(gridblasHandle, (int)n, | ||||
| 				   (cuDoubleComplex **)&Ann[0], (int)n, | ||||
| 				   (int*) &ipiv[0], | ||||
| 				   (int*) &info[0], | ||||
| 				   (int)batchCount); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     getrfBatchedSYCL(n, Ann, ipiv, info); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   void getrfBatched(int64_t n, | ||||
| 		    deviceVector<ComplexF*> &Ann, | ||||
| 		    deviceVector<int64_t> &ipiv, | ||||
| 		    deviceVector<int64_t> &info) | ||||
|   { | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(ipiv.size()==batchCount*n); | ||||
|     GRID_ASSERT(info.size()==batchCount); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasCgetrfBatched(gridblasHandle,(int)n, | ||||
| 				    (hipblasComplex **)&Ann[0], (int)n, | ||||
| 				    (int*) &ipiv[0], | ||||
| 				    (int*) &info[0], | ||||
| 				    (int)batchCount); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cublasCgetrfBatched(gridblasHandle, (int)n, | ||||
| 				   (cuComplex **)&Ann[0], (int)n, | ||||
| 				   (int*) &ipiv[0], | ||||
| 				   (int*) &info[0], | ||||
| 				   (int)batchCount); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     getrfBatchedSYCL(n, Ann, ipiv, info); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
|   template<typename T> | ||||
|   void getriBatchedSYCL(int64_t n, | ||||
| 			deviceVector<T*> &Ann, | ||||
| 			deviceVector<int64_t> &ipiv, | ||||
| 			deviceVector<int64_t> &info, | ||||
| 			deviceVector<T*> &Cnn) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|  | ||||
|     static deviceVector<T> scratchpad; | ||||
|     int64_t sp_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<T>(*gridblasHandle, &n, &n, (int64_t)1, &batchCount); | ||||
|     if (sp_size > scratchpad.size()) | ||||
|       scratchpad.resize(sp_size); | ||||
|  | ||||
|     static deviceVector<int64_t*> _ipiv; | ||||
|     if (batchCount > _ipiv.size()) | ||||
|       _ipiv.resize(batchCount); | ||||
|     int64_t** p_ipiv = &_ipiv[0]; | ||||
|     int64_t* pipiv = &ipiv[0]; | ||||
|  | ||||
|     accelerator_for(i, batchCount, 1, { p_ipiv[i] = &pipiv[i*n]; }); | ||||
|  | ||||
|     oneapi::mkl::lapack::getri_batch(*gridblasHandle, | ||||
| 				     &n, | ||||
| 				     (T **)&Ann[0], | ||||
| 				     &n, | ||||
| 				     (int64_t**)p_ipiv, | ||||
| 				     (int64_t)1, &batchCount, | ||||
| 				     (T *)&scratchpad[0], (int64_t)scratchpad.size(), | ||||
| 				     std::vector<sycl::event>()); | ||||
|  | ||||
|     synchronise(); | ||||
|  | ||||
|     T** pA = &Ann[0]; | ||||
|     T** pC = &Cnn[0]; | ||||
|     accelerator_for(i, batchCount*n*n, 1, { | ||||
| 	auto j = i / batchCount; | ||||
| 	auto k = i % batchCount; | ||||
| 	pC[k][j] = pA[k][j]; | ||||
|       }); | ||||
|   } | ||||
|  | ||||
| #endif | ||||
|  | ||||
|   void getriBatched(int64_t n, | ||||
| 		    deviceVector<ComplexD*> &Ann, | ||||
| 		    deviceVector<int64_t> &ipiv, | ||||
| 		    deviceVector<int64_t> &info, | ||||
| 		    deviceVector<ComplexD*> &Cnn) | ||||
|   { | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(ipiv.size()==batchCount*n); | ||||
|     GRID_ASSERT(info.size()==batchCount); | ||||
|     GRID_ASSERT(Cnn.size()==batchCount); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgetriBatched(gridblasHandle,(int)n, | ||||
| 				    (hipblasDoubleComplex **)&Ann[0], (int)n, | ||||
| 				    (int*) &ipiv[0], | ||||
| 				    (hipblasDoubleComplex **)&Cnn[0], (int)n, | ||||
| 				    (int*) &info[0], | ||||
| 				    (int)batchCount); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cublasZgetriBatched(gridblasHandle, (int)n, | ||||
| 				   (cuDoubleComplex **)&Ann[0], (int)n, | ||||
| 				   (int*) &ipiv[0], | ||||
| 				   (cuDoubleComplex **)&Cnn[0], (int)n, | ||||
| 				   (int*) &info[0], | ||||
| 				   (int)batchCount); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     getriBatchedSYCL(n, Ann, ipiv, info, Cnn); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   void getriBatched(int64_t n, | ||||
| 		    deviceVector<ComplexF*> &Ann, | ||||
| 		    deviceVector<int64_t> &ipiv, | ||||
| 		    deviceVector<int64_t> &info, | ||||
| 		    deviceVector<ComplexF*> &Cnn) | ||||
|   { | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     GRID_ASSERT(ipiv.size()==batchCount*n); | ||||
|     GRID_ASSERT(info.size()==batchCount); | ||||
|     GRID_ASSERT(Cnn.size()==batchCount); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasCgetriBatched(gridblasHandle,(int)n, | ||||
| 				    (hipblasComplex **)&Ann[0], (int)n, | ||||
| 				    (int*) &ipiv[0], | ||||
| 				    (hipblasComplex **)&Cnn[0], (int)n, | ||||
| 				    (int*) &info[0], | ||||
| 				    (int)batchCount); | ||||
|     GRID_ASSERT(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cublasCgetriBatched(gridblasHandle, (int)n, | ||||
| 				   (cuComplex **)&Ann[0], (int)n, | ||||
| 				   (int*) &ipiv[0], | ||||
| 				   (cuComplex **)&Cnn[0], (int)n, | ||||
| 				   (int*) &info[0], | ||||
| 				   (int)batchCount); | ||||
|     GRID_ASSERT(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     getriBatchedSYCL(n, Ann, ipiv, info, Cnn); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   template<typename dtype> | ||||
|   void inverseBatched(int64_t n, | ||||
| 		      deviceVector<dtype*> &Ann, // this will be overwritten with LU decomposition | ||||
| 		      deviceVector<dtype*> &Cnn  // this will be overwritten with the inverse | ||||
| 		      ) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     RealD t0 = usecond(); | ||||
|     deviceVector<int64_t> ipiv(batchCount*n); | ||||
|     deviceVector<int64_t> info(batchCount); | ||||
|  | ||||
|     //RealD t1 = usecond(); | ||||
|     getrfBatched(n, Ann, ipiv, info); | ||||
|     // test info for non-invertibility?  set to nan if yes? | ||||
|     getriBatched(n, Ann, ipiv, info, Cnn); | ||||
|     //synchronise(); | ||||
|     //RealD t2 = usecond(); | ||||
|     //std::cout << GridLogMessage << "Temp " << t1-t0 << " rf/ri " << t2-t1  << std::endl; | ||||
|   } | ||||
|  | ||||
|   template<typename dtype> | ||||
|   void determinantBatched(int64_t n, | ||||
| 			  deviceVector<dtype*> &Ann, // this will be overwritten with LU decomposition | ||||
| 			  deviceVector<dtype*> &C    // this will be overwritten with determinant | ||||
| 			  ) { | ||||
|  | ||||
|     int64_t batchCount = Ann.size(); | ||||
|     //RealD t0 = usecond(); | ||||
|     deviceVector<int64_t> ipiv(batchCount*n); | ||||
|     deviceVector<int64_t> info(batchCount); | ||||
|      | ||||
|     dtype** pAnn = (dtype**)&Ann[0]; | ||||
|     dtype** pC = (dtype**)&C[0]; | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|     int* pipiv = (int*)&ipiv[0]; | ||||
| #else | ||||
|     int64_t* pipiv = (int64_t*)&ipiv[0]; | ||||
| #endif | ||||
|  | ||||
|     //RealD t1 = usecond(); | ||||
|     getrfBatched(n, Ann, ipiv, info); | ||||
|     //RealD t2 = usecond(); | ||||
|     accelerator_for(i,batchCount,1,{ | ||||
| 	dtype det = 1.0; | ||||
| 	for (int64_t j=0;j<n;j++) { | ||||
| 	  det *= pAnn[i][n*j + j]; | ||||
| 	  // branchless signs | ||||
| 	  det *= (pipiv[i*n + j] == j+1) ? (1.0) : (-1.0); | ||||
| 	} | ||||
| 	*pC[i] = det; | ||||
|       }); | ||||
|      | ||||
|     //RealD t3 = usecond(); | ||||
|     //std::cout << GridLogMessage << "Temp " << t1 - t0 << " rf/ri " << t2-t1  << "final" << t3 - t2 << std::endl; | ||||
|   } | ||||
| #endif | ||||
|    | ||||
|    | ||||
|   template<class CComplex> | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|   | ||||
							
								
								
									
										300
									
								
								Grid/algorithms/blas/MomentumProject.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										300
									
								
								Grid/algorithms/blas/MomentumProject.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,300 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MomentumProject.h | ||||
|  | ||||
|     Copyright (C) 2025 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| /*  | ||||
|    MultiMomProject | ||||
|  | ||||
|    Import vectors -> nxyz x (ncomponent x nt) | ||||
|    Import complex phases -> nmom x nxy | ||||
|  | ||||
|    apply = via (possibly batched) GEMM | ||||
| */ | ||||
| template<class Field, class ComplexField> | ||||
| class MomentumProject | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|  | ||||
|   GridBase *grid; | ||||
|   uint64_t nmom; | ||||
|   uint64_t nxyz; | ||||
|   uint64_t nt; | ||||
|   uint64_t nbtw; | ||||
|   uint64_t words; | ||||
|  | ||||
|   deviceVector<scalar> BLAS_V;      //  | ||||
|   deviceVector<scalar> BLAS_M;      //  | ||||
|   deviceVector<scalar> BLAS_P;      //  | ||||
|    | ||||
|   MomentumProject(){}; | ||||
|  ~MomentumProject(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     grid=nullptr; | ||||
|     nmom=0; | ||||
|     nxyz=0; | ||||
|     nt=0; | ||||
|     nbtw=0; | ||||
|     words=0; | ||||
|     BLAS_V.resize(0); | ||||
|     BLAS_M.resize(0); | ||||
|     BLAS_P.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nmom,GridBase *_grid) | ||||
|   { | ||||
|     grid=_grid; | ||||
|     Coordinate ldims = grid->LocalDimensions(); | ||||
|  | ||||
|     nmom=_nmom; | ||||
|     nt   = ldims[grid->Nd()-1]; | ||||
|     nxyz = grid->lSites()/nt; | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     nbtw = nt * words; | ||||
|  | ||||
|     BLAS_V.resize (nxyz * nt * words ); | ||||
|     BLAS_M.resize (nmom * nxyz       ); | ||||
|     BLAS_P.resize (nmom * nt * words ); | ||||
|   } | ||||
|   void ImportMomenta(const std::vector <ComplexField> &momenta) | ||||
|   { | ||||
|     GRID_ASSERT(momenta.size()==nmom); | ||||
|     //    might as well just make the momenta here | ||||
|     typedef typename Field::vector_object vobj; | ||||
|  | ||||
|     int nd = grid->_ndimension; | ||||
|  | ||||
|     uint64_t sz = BLAS_M.size(); | ||||
|  | ||||
|     GRID_ASSERT(momenta.size()==nmom) | ||||
|     GRID_ASSERT(momenta[0].Grid()==grid); | ||||
|     GRID_ASSERT(sz = nxyz * nmom); | ||||
|      | ||||
|     Coordinate rdimensions = grid->_rdimensions; | ||||
|     Coordinate ldims       = grid->LocalDimensions(); | ||||
|     int64_t osites         = grid->oSites(); | ||||
|     Coordinate simd        = grid->_simd_layout; | ||||
|     const int Nsimd        = vobj::Nsimd(); | ||||
|     uint64_t lwords        = words; // local variable for copy in to GPU | ||||
|     int64_t Nxyz = nxyz; | ||||
|     auto blasData_p  = &BLAS_M[0]; | ||||
|     for(int m=0;m<momenta.size();m++){ | ||||
|  | ||||
|       autoView( Data   , momenta[m], AcceleratorRead); | ||||
|       auto Data_p  = &Data[0]; | ||||
|  | ||||
|       accelerator_for(xyz,nxyz,1,{ | ||||
| 	  ////////////////////////////////////////// | ||||
| 	  // isite -- map lane within buffer to lane within lattice | ||||
| 	  //////////////////////////////////////////// | ||||
| 	    Coordinate lcoor(nd,0); | ||||
| 	    Lexicographic::CoorFromIndex(lcoor,xyz,ldims); | ||||
| 	     | ||||
| 	    Coordinate icoor(nd); | ||||
| 	    Coordinate ocoor(nd); | ||||
| 	    for (int d = 0; d < nd; d++) { | ||||
| 	      icoor[d] = lcoor[d]/rdimensions[d]; | ||||
| 	      ocoor[d] = lcoor[d]%rdimensions[d]; | ||||
| 	    } | ||||
| 	    int64_t osite; | ||||
| 	    int64_t isite; | ||||
| 	    Lexicographic::IndexFromCoor(ocoor,osite,rdimensions); | ||||
| 	    Lexicographic::IndexFromCoor(icoor,isite,simd); | ||||
| 	     | ||||
| 	    // BLAS_M[nmom][slice_vol] | ||||
| 	    // Fortran Column major BLAS layout is M_xyz,mom | ||||
| 	    scalar data = extractLane(isite,Data[osite]); | ||||
| 	    uint64_t idx = xyz+m*Nxyz; | ||||
| 	    blasData_p[idx] = data; | ||||
| 	}); | ||||
|     } | ||||
|   } | ||||
|   void ImportVector(Field &vec) | ||||
|   { | ||||
|     typedef typename Field::vector_object vobj; | ||||
|  | ||||
|     int nd = grid->_ndimension; | ||||
|  | ||||
|     uint64_t sz = BLAS_V.size(); | ||||
|  | ||||
|     GRID_ASSERT(sz = nxyz * words * nt); | ||||
|      | ||||
|     Coordinate rdimensions = grid->_rdimensions; | ||||
|     Coordinate ldims= grid->LocalDimensions(); | ||||
|     int64_t osites = grid->oSites(); | ||||
|     Coordinate simd = grid->_simd_layout; | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|     uint64_t lwords= words; // local variable for copy in to GPU | ||||
|  | ||||
|     auto blasData_p  = &BLAS_V[0]; | ||||
|     autoView( Data   , vec, AcceleratorRead); | ||||
|     auto Data_p  = &Data[0]; | ||||
|  | ||||
|     int64_t nwords = words;// for capture | ||||
|     int64_t Nt     = nt;// for capture | ||||
|      | ||||
|     accelerator_for(sf,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	  ////////////////////////////////////////// | ||||
| 	  // isite -- map lane within buffer to lane within lattice | ||||
| 	  //////////////////////////////////////////// | ||||
| 	    Coordinate lcoor(nd,0); | ||||
| 	    Coordinate icoor(nd); | ||||
| 	    Coordinate ocoor(nd); | ||||
| 	     | ||||
| 	    Lexicographic::CoorFromIndex(icoor,lane,simd); | ||||
| 	    Lexicographic::CoorFromIndex(ocoor,sf,rdimensions); | ||||
|  | ||||
| 	   | ||||
| 	    int64_t l_xyz = 0; | ||||
| 	    for (int d = 0; d < nd; d++) { | ||||
| 	      lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d]; | ||||
| 	    } | ||||
| 	    uint64_t l_t   = lcoor[nd-1]; | ||||
|  | ||||
| 	    Coordinate xyz_coor = lcoor; | ||||
| 	    xyz_coor[nd-1] =0; | ||||
| 	    Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims); | ||||
|  | ||||
| 	     | ||||
| 	    scalar_object data = extractLane(lane,Data[sf]); | ||||
| 	    scalar *data_words = (scalar *) &data; | ||||
| 	    for(int w = 0 ; w < nwords; w++) { | ||||
| 	      // BLAS_V[slice_vol][nt][words] | ||||
| 	      // Fortran Column major BLAS layout is V_(t,w)_xyz | ||||
| 	      uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt; | ||||
| 	      blasData_p[idx] = data_words[w]; | ||||
| 	    } | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
| 	}); | ||||
|   } | ||||
|   void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection) | ||||
|   { | ||||
|     projection.resize(nmom*nt); | ||||
|     acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar)); | ||||
|     // Could decide on a layout late? | ||||
|   } | ||||
|  | ||||
|   // Row major layout "C" order: | ||||
|   // BLAS_V[slice_vol][nt][words] | ||||
|   // BLAS_M[nmom][slice_vol] | ||||
|   // BLAS_P[nmom][nt][words] | ||||
|   // | ||||
|   // Fortran Column major BLAS layout is V_(w,t)_xyz | ||||
|   // Fortran Column major BLAS layout is M_xyz,mom | ||||
|   // Fortran Column major BLAS layout is P_(w,t),mom | ||||
|   // | ||||
|   // Projected | ||||
|   // | ||||
|   // P = (V * M)_(w,t),mom | ||||
|   // | ||||
|   void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata) | ||||
|   { | ||||
|     double t_import=0; | ||||
|     double t_export=0; | ||||
|     double t_gemm  =0; | ||||
|     double t_allreduce=0; | ||||
|     t_import-=usecond(); | ||||
|     this->ImportVector(data); | ||||
|  | ||||
|     std::vector< typename Field::scalar_object > projected_planes; | ||||
|  | ||||
|     deviceVector<scalar *> Vd(1); | ||||
|     deviceVector<scalar *> Md(1); | ||||
|     deviceVector<scalar *> Pd(1); | ||||
|  | ||||
|     scalar * Vh = & BLAS_V[0]; | ||||
|     scalar * Mh = & BLAS_M[0]; | ||||
|     scalar * Ph = & BLAS_P[0]; | ||||
|  | ||||
|     acceleratorPut(Vd[0],Vh); | ||||
|     acceleratorPut(Md[0],Mh); | ||||
|     acceleratorPut(Pd[0],Ph); | ||||
|     t_import+=usecond(); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // P_im = VMmx . Vxi | ||||
|     ///////////////////////////////////////// | ||||
|     t_gemm-=usecond(); | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     words*nt,nmom,nxyz, | ||||
| 		     scalar(1.0), | ||||
| 		     Vd, | ||||
| 		     Md, | ||||
| 		     scalar(0.0),  // wipe out result | ||||
| 		     Pd); | ||||
|     BLAS.synchronise(); | ||||
|     t_gemm+=usecond(); | ||||
|  | ||||
|     t_export-=usecond(); | ||||
|     ExportMomentumProjection(projected_planes); // resizes | ||||
|     t_export+=usecond(); | ||||
|  | ||||
|     ///////////////////////////////// | ||||
|     // Reduce across MPI ranks | ||||
|     ///////////////////////////////// | ||||
|     int nd = grid->Nd(); | ||||
|     int gt = grid->GlobalDimensions()[nd-1]; | ||||
|     int lt = grid->LocalDimensions()[nd-1]; | ||||
|     projected_gdata.resize(gt*nmom); | ||||
|     for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node | ||||
|       projected_gdata[t]=Zero(); | ||||
|     } | ||||
|     for(int t=0;t<lt;t++){ | ||||
|     for(int m=0;m<nmom;m++){ | ||||
|       int st = grid->LocalStarts()[nd-1]; | ||||
|       projected_gdata[t+st + gt*m] = projected_planes[t+lt*m]; | ||||
|     }} | ||||
|     t_allreduce-=usecond(); | ||||
|     grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words); | ||||
|     t_allreduce+=usecond(); | ||||
|  | ||||
|     std::cout << GridLogPerformance<<" MomentumProject t_import  "<<t_import<<"us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" MomentumProject t_export  "<<t_export<<"us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" MomentumProject t_gemm    "<<t_gemm<<"us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" MomentumProject t_reduce  "<<t_allreduce<<"us"<<std::endl; | ||||
|  | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -69,8 +69,8 @@ public: | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N) | ||||
|   : evec(_evec), eval(_eval), N(_N) | ||||
|   { | ||||
|     assert(evec.size()==eval.size()); | ||||
|     assert(N <= evec.size()); | ||||
|     GRID_ASSERT(evec.size()==eval.size()); | ||||
|     GRID_ASSERT(N <= evec.size()); | ||||
|   }  | ||||
|  | ||||
|   virtual void operator()(const Field &src,Field &guess) { | ||||
| @@ -141,11 +141,10 @@ public: | ||||
|     } | ||||
|     //postprocessing | ||||
|     std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockPromote(guess_coarse[j],guess[j],subspace); | ||||
|     guess[j].Checkerboard() = src[j].Checkerboard(); | ||||
|     for (int j=0;j<Nsrc;j++) { | ||||
|       std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|       blockPromote(guess_coarse[j],guess[j],subspace); | ||||
|       guess[j].Checkerboard() = src[j].Checkerboard(); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   | ||||
							
								
								
									
										376
									
								
								Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										376
									
								
								Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,376 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSBlockCGLinalg.h | ||||
|  | ||||
|     Copyright (C) 2024 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /* Need helper object for BLAS accelerated mrhs blockCG */ | ||||
| template<class Field> | ||||
| class MultiRHSBlockCGLinalg | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|   typedef typename Field::vector_object vector_object; | ||||
|  | ||||
|   deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources | ||||
|   deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients  | ||||
|   deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer | ||||
|   deviceVector<scalar *> Xdip; | ||||
|   deviceVector<scalar *> Ydip; | ||||
|   deviceVector<scalar *> Cdip; | ||||
|    | ||||
|   MultiRHSBlockCGLinalg() {}; | ||||
|   ~MultiRHSBlockCGLinalg(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     Xdip.resize(0); | ||||
|     Ydip.resize(0); | ||||
|     Cdip.resize(0); | ||||
|     BLAS_Cred.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|     BLAS_X.resize(0); | ||||
|     BLAS_Y.resize(0); | ||||
|   } | ||||
|   void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0) | ||||
|   { | ||||
|     std::vector<Field> Y_copy(AP.size(),AP[0].Grid()); | ||||
|     for(int r=0;r<AP.size();r++){ | ||||
|       Y_copy[r] = Y[r]; | ||||
|     } | ||||
|     MulMatrix(AP,m,X); | ||||
|     for(int r=0;r<AP.size();r++){ | ||||
|       AP[r] = scale*AP[r]+Y_copy[r]; | ||||
|     } | ||||
|   } | ||||
|   void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X) | ||||
|   { | ||||
|     typedef typename Field::scalar_type scomplex; | ||||
|     GridBase *grid; | ||||
|     uint64_t vol; | ||||
|     uint64_t words; | ||||
|  | ||||
|     int nrhs = Y.size(); | ||||
|     grid  = X[0].Grid(); | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_X.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change | ||||
|     RealD t1 = usecond(); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(x_v,X[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|  | ||||
|     // Assumes Eigen storage contiguous | ||||
|     acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|      | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Xxr = [X1(x)][..][Xn(x)] | ||||
|    * Yxr = [Y1(x)][..][Ym(x)] | ||||
|    * Y = X . C | ||||
|    */ | ||||
|     deviceVector<scalar *> Xd(1); | ||||
|     deviceVector<scalar *> Yd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|  | ||||
|     scalar * Xh = & BLAS_X[0]; | ||||
|     scalar * Yh = & BLAS_Y[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|  | ||||
|     acceleratorPut(Xd[0],Xh); | ||||
|     acceleratorPut(Yd[0],Yh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|  | ||||
|     RealD t2 = usecond(); | ||||
|     GridBLAS BLAS; | ||||
|     ///////////////////////////////////////// | ||||
|     // Y = X*C (transpose?) | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nrhs, | ||||
| 		     scalar(1.0), | ||||
| 		     Xd, | ||||
| 		     Cd, | ||||
| 		     scalar(0.0),  // wipe out Y | ||||
| 		     Yd); | ||||
|     BLAS.synchronise(); | ||||
|     RealD t3 = usecond(); | ||||
|  | ||||
|     // Copy back Y = m X  | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(y_v,Y[r],AcceleratorWrite); | ||||
|       acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol); | ||||
|     }     | ||||
|     RealD t4 = usecond(); | ||||
|     std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl; | ||||
|   } | ||||
|    | ||||
|   void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y) | ||||
|   { | ||||
| #if 0     | ||||
|     int nrhs; | ||||
|     GridBase *grid; | ||||
|     uint64_t vol; | ||||
|     uint64_t words; | ||||
|  | ||||
|     nrhs = X.size(); | ||||
|     GRID_ASSERT(X.size()==Y.size()); | ||||
|     conformable(X[0],Y[0]); | ||||
|  | ||||
|     grid  = X[0].Grid(); | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_X.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change | ||||
|     RealD t1 = usecond(); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(x_v,X[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol); | ||||
|       autoView(y_v,Y[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|     RealD t2 = usecond(); | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Xxr = [X1(x)][..][Xn(x)] | ||||
|    * | ||||
|    * Yxr = [Y1(x)][..][Ym(x)] | ||||
|    * | ||||
|    * C_rs = X^dag Y | ||||
|    */ | ||||
|     deviceVector<scalar *> Xd(1); | ||||
|     deviceVector<scalar *> Yd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|  | ||||
|     scalar * Xh = & BLAS_X[0]; | ||||
|     scalar * Yh = & BLAS_Y[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|  | ||||
|     acceleratorPut(Xd[0],Xh); | ||||
|     acceleratorPut(Yd[0],Yh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     RealD t3 = usecond(); | ||||
|     ///////////////////////////////////////// | ||||
|     // C_rs = X^dag Y | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nrhs,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Xd, | ||||
| 		     Yd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     RealD t4 = usecond(); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|     grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs); | ||||
|  | ||||
|     RealD t5 = usecond(); | ||||
|     for(int rr=0;rr<nrhs;rr++){ | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	int off = r+nrhs*rr; | ||||
| 	m(r,rr)=HOST_C[off]; | ||||
|       } | ||||
|     } | ||||
|     RealD t6 = usecond(); | ||||
|     uint64_t M=nrhs; | ||||
|     uint64_t N=nrhs; | ||||
|     uint64_t K=vw; | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K); | ||||
|     RealD flops = 8.0*M*N*K; | ||||
|     flops = flops/(t4-t3)/1.e3; | ||||
|     bytes = bytes/(t4-t3)/1.e3; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl; | ||||
| #else | ||||
|     int nrhs; | ||||
|     GridBase *grid; | ||||
|     uint64_t vol; | ||||
|     uint64_t words; | ||||
|  | ||||
|     nrhs = X.size(); | ||||
|     GRID_ASSERT(X.size()==Y.size()); | ||||
|     conformable(X[0],Y[0]); | ||||
|  | ||||
|     grid  = X[0].Grid(); | ||||
|     int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1]; | ||||
|     vol   = grid->oSites()/rd0; | ||||
|     words = rd0*sizeof(vector_object)/sizeof(scalar); | ||||
|     int64_t vw = vol * words; | ||||
|     GRID_ASSERT(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar)); | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_X.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change | ||||
|     RealD t1 = usecond(); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources -- layout batched BLAS ready | ||||
|     ///////////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       autoView(x_v,X[r],AcceleratorRead); | ||||
|       autoView(y_v,Y[r],AcceleratorRead); | ||||
|       scalar *from_x=(scalar *)&x_v[0]; | ||||
|       scalar *from_y=(scalar *)&y_v[0]; | ||||
|       scalar *BX = &BLAS_X[0]; | ||||
|       scalar *BY = &BLAS_Y[0]; | ||||
|       accelerator_for(ssw,vw,1,{ | ||||
| 	  uint64_t ss=ssw/words; | ||||
| 	  uint64_t  w=ssw%words; | ||||
| 	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words] | ||||
| 	  BX[offset] = from_x[ssw]; | ||||
| 	  BY[offset] = from_y[ssw]; | ||||
| 	}); | ||||
|     } | ||||
|     RealD t2 = usecond(); | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Xxr = [X1(x)][..][Xn(x)] | ||||
|    * | ||||
|    * Yxr = [Y1(x)][..][Ym(x)] | ||||
|    * | ||||
|    * C_rs = X^dag Y | ||||
|    */ | ||||
|     Xdip.resize(vol); | ||||
|     Ydip.resize(vol); | ||||
|     Cdip.resize(vol); | ||||
|     std::vector<scalar *> Xh(vol); | ||||
|     std::vector<scalar *> Yh(vol); | ||||
|     std::vector<scalar *> Ch(vol); | ||||
|     for(uint64_t ss=0;ss<vol;ss++){ | ||||
|  | ||||
|       Xh[ss] = & BLAS_X[ss*nrhs*words]; | ||||
|       Yh[ss] = & BLAS_Y[ss*nrhs*words]; | ||||
|       Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs]; | ||||
|  | ||||
|     } | ||||
|     acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *)); | ||||
|     acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *)); | ||||
|     acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *)); | ||||
|      | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     RealD t3 = usecond(); | ||||
|     ///////////////////////////////////////// | ||||
|     // C_rs = X^dag Y | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nrhs,nrhs,words, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Xdip, | ||||
| 		     Ydip, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cdip); | ||||
|     BLAS.synchronise(); | ||||
|     RealD t4 = usecond(); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar)); | ||||
|  | ||||
|     RealD t5 = usecond(); | ||||
|     m = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     for(int ss=0;ss<vol;ss++){ | ||||
|       Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs); | ||||
|       m = m + eC; | ||||
|     } | ||||
|     RealD t6l = usecond(); | ||||
|     grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs); | ||||
|     RealD t6 = usecond(); | ||||
|     uint64_t M=nrhs; | ||||
|     uint64_t N=nrhs; | ||||
|     uint64_t K=vw; | ||||
|     RealD xybytes = grid->lSites()*sizeof(scalar_object); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K); | ||||
|     RealD flops = 8.0*M*N*K; | ||||
|     flops = flops/(t4-t3)/1.e3; | ||||
|     bytes = bytes/(t4-t3)/1.e3; | ||||
|     xybytes = 4*xybytes/(t2-t1)/1.e3; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl; | ||||
|     std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl; | ||||
| #endif | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -131,12 +131,12 @@ public: | ||||
|     typedef typename Field::vector_object vobj; | ||||
|     //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|     GRID_ASSERT(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|     GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
| @@ -164,7 +164,7 @@ public: | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       //      std::cout << "sz "<<sz<<std::endl; | ||||
|       //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl; | ||||
|       assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words); | ||||
|       GRID_ASSERT(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words); | ||||
|       uint64_t lwords= words; // local variable for copy in to GPU | ||||
|       accelerator_for(sf,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
| @@ -198,7 +198,7 @@ public: | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  //	  assert(site*lwords<sz); | ||||
| 	  //	  GRID_ASSERT(site*lwords<sz); | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| @@ -219,12 +219,12 @@ public: | ||||
|  | ||||
|     int nvec = vecs.size(); | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|     GRID_ASSERT(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|     GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
| @@ -299,7 +299,7 @@ public: | ||||
|  | ||||
|     //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|     GRID_ASSERT(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|  | ||||
| @@ -320,7 +320,7 @@ public: | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|       GRID_ASSERT(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
| @@ -353,7 +353,7 @@ public: | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|     //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|     GRID_ASSERT(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|      | ||||
| @@ -375,7 +375,7 @@ public: | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|       GRID_ASSERT(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| 	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... }); | ||||
| @@ -409,7 +409,7 @@ public: | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl; | ||||
|     assert(nbasis==_nbasis); | ||||
|     GRID_ASSERT(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
| @@ -447,10 +447,10 @@ public: | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nbasis,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     scalar(1.0), | ||||
| 		     Vd, | ||||
| 		     Fd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     scalar(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
| @@ -464,7 +464,7 @@ public: | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     assert(nbasis==_nbasis); | ||||
|     GRID_ASSERT(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
| @@ -497,10 +497,10 @@ public: | ||||
|     int64_t vw = block_vol * words; | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nbasis, | ||||
| 		     ComplexD(1.0), | ||||
| 		     scalar(1.0), | ||||
| 		     Vd, | ||||
| 		     Cd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     scalar(0.0),  // wipe out C | ||||
| 		     Fd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << " blas call done"<<std::endl; | ||||
|   | ||||
| @@ -98,7 +98,7 @@ public: | ||||
|   void ImportEigenVector(Field &evec,RealD &_eval, int ev) | ||||
|   { | ||||
|     //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl; | ||||
|     assert(ev<eval.size()); | ||||
|     GRID_ASSERT(ev<eval.size()); | ||||
|     eval[ev] = _eval; | ||||
|  | ||||
|     int64_t offset = ev*vol*words; | ||||
| @@ -113,7 +113,7 @@ public: | ||||
|   // Could use to import a batch of eigenvectors | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev) | ||||
|   { | ||||
|     assert(_ev0+_nev<=evec.size()); | ||||
|     GRID_ASSERT(_ev0+_nev<=evec.size()); | ||||
|  | ||||
|     Allocate(_nev,evec[0].Grid()); | ||||
|      | ||||
| @@ -126,8 +126,8 @@ public: | ||||
|   void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess) | ||||
|   { | ||||
|     int nrhs = source.size(); | ||||
|     assert(source.size()==guess.size()); | ||||
|     assert(grid == guess[0].Grid()); | ||||
|     GRID_ASSERT(source.size()==guess.size()); | ||||
|     GRID_ASSERT(grid == guess[0].Grid()); | ||||
|     conformable(guess[0],source[0]); | ||||
|  | ||||
|     int64_t vw = vol * words; | ||||
| @@ -182,14 +182,14 @@ public: | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nev,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     scalar(1.0), | ||||
| 		     Ed, | ||||
| 		     Rd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     scalar(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     assert(BLAS_C.size()==nev*nrhs); | ||||
|     GRID_ASSERT(BLAS_C.size()==nev*nrhs); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
| @@ -210,10 +210,10 @@ public: | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
| 		     vw,nrhs,nev, | ||||
| 		     ComplexD(1.0), | ||||
| 		     scalar(1.0), | ||||
| 		     Ed, // x . nev | ||||
| 		     Cd, // nev . nrhs | ||||
| 		     ComplexD(0.0), | ||||
| 		     scalar(0.0), | ||||
| 		     Gd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|   | ||||
| @@ -270,7 +270,7 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|       GRID_ASSERT(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|   | ||||
| @@ -53,6 +53,7 @@ class TwoLevelCGmrhs | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|   MultiRHSBlockCGLinalg<Field> _BlockCGLinalg; | ||||
|  | ||||
|   GridStopWatch ProjectTimer; | ||||
|   GridStopWatch PromoteTimer; | ||||
| @@ -62,7 +63,12 @@ class TwoLevelCGmrhs | ||||
|   GridStopWatch SmoothTimer; | ||||
|   GridStopWatch InsertTimer; | ||||
|  | ||||
|    | ||||
|   /* | ||||
|     Field rrr; | ||||
|   Field sss; | ||||
|   Field qqq; | ||||
|   Field zzz; | ||||
|   */   | ||||
|   // more most opertor functions | ||||
|   TwoLevelCGmrhs(RealD tol, | ||||
| 		 Integer maxit, | ||||
| @@ -73,12 +79,313 @@ class TwoLevelCGmrhs | ||||
|     MaxIterations(maxit), | ||||
|     _FineLinop(FineLinop), | ||||
|     _Smoother(Smoother) | ||||
|     /* | ||||
|     rrr(fine), | ||||
|     sss(fine), | ||||
|     qqq(fine), | ||||
|     zzz(fine) | ||||
| */ | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|    | ||||
|   // Vector case | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     //    SolveSingleSystem(src,x); | ||||
|     SolvePrecBlockCG(src,x); | ||||
|   } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Thin QR factorisation (google it) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //Dimensions | ||||
|   // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock | ||||
|   // | ||||
|   // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen) | ||||
|   // | ||||
|   //   Q  C = R => Q = R C^{-1} | ||||
|   // | ||||
|   // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}  | ||||
|   // | ||||
|   // Set C = L^{dag}, and then Q^dag Q = ident  | ||||
|   // | ||||
|   // Checks: | ||||
|   // Cdag C = Rdag R ; passes. | ||||
|   // QdagQ  = 1      ; passes | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   void ThinQRfact (Eigen::MatrixXcd &m_zz, | ||||
| 		   Eigen::MatrixXcd &C, | ||||
| 		   Eigen::MatrixXcd &Cinv, | ||||
| 		   std::vector<Field> &  Q, | ||||
| 		   std::vector<Field> & MQ, | ||||
| 		   const std::vector<Field> & Z, | ||||
| 		   const std::vector<Field> & MZ) | ||||
|   { | ||||
|     RealD t0=usecond(); | ||||
|     _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z); | ||||
|     RealD t1=usecond(); | ||||
|  | ||||
|     m_zz = 0.5*(m_zz+m_zz.adjoint()); | ||||
|      | ||||
|     Eigen::MatrixXcd L    = m_zz.llt().matrixL();  | ||||
|      | ||||
|     C    = L.adjoint(); | ||||
|     Cinv = C.inverse(); | ||||
|      | ||||
|     RealD t3=usecond(); | ||||
|     _BlockCGLinalg.MulMatrix( Q,Cinv,Z); | ||||
|     _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ); | ||||
|     RealD t4=usecond(); | ||||
|     std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl; | ||||
|     std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl; | ||||
|     std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl; | ||||
|   } | ||||
|  | ||||
|   virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     //    std::vector<RealD> f(nrhs); | ||||
|     //    std::vector<RealD> rtzp(nrhs); | ||||
|     //    std::vector<RealD> rtz(nrhs); | ||||
|     //    std::vector<RealD> a(nrhs); | ||||
|     //    std::vector<RealD> d(nrhs); | ||||
|     //    std::vector<RealD> b(nrhs); | ||||
|     //    std::vector<RealD> rptzp(nrhs); | ||||
|  | ||||
|     //////////////////////////////////////////// | ||||
|     //Initial residual computation & set up | ||||
|     //////////////////////////////////////////// | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       ssq[rhs]=norm2(src[rhs]); GRID_ASSERT(ssq[rhs]!=0.0); | ||||
|     }       | ||||
|  | ||||
|     /////////////////////////// | ||||
|     // Fields -- eliminate duplicates between fPcg and block cg | ||||
|     /////////////////////////// | ||||
|     std::vector<Field> Mtmp(nrhs,grid); | ||||
|     std::vector<Field> tmp(nrhs,grid); | ||||
|     std::vector<Field>   Z(nrhs,grid); // Rename Z to R | ||||
|     std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z | ||||
|     std::vector<Field>   Q(nrhs,grid); //  | ||||
|     std::vector<Field>  MQ(nrhs,grid); // Rename to P | ||||
|     std::vector<Field>   D(nrhs,grid); | ||||
|     std::vector<Field>  AD(nrhs,grid); | ||||
|      | ||||
|     /************************************************************************ | ||||
|      * Preconditioned Block conjugate gradient rQ | ||||
|      * Generalise Sebastien Birk Thesis, after Dubrulle 2001. | ||||
|      * Introduce preconditioning following Saad Ch9 | ||||
|      ************************************************************************ | ||||
|      * Dimensions: | ||||
|      * | ||||
|      *   X,B etc... ==(Nferm x nrhs) | ||||
|      *  Matrix A==(Nferm x Nferm) | ||||
|      *   | ||||
|      * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site | ||||
|      * QC => Thin QR factorisation (google it) | ||||
|      * | ||||
|      * R = B-AX | ||||
|      * Z = Mi R | ||||
|      * QC = Z | ||||
|      * D = Q  | ||||
|      * for k:  | ||||
|      *   R  = AD | ||||
|      *   Z  = Mi R | ||||
|      *   M  = [D^dag R]^{-1} | ||||
|      *   X  = X + D M C | ||||
|      *   QS = Q - Z.M | ||||
|      *   D  = Q + D S^dag | ||||
|      *   C  = S C | ||||
|      */ | ||||
|     Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|      | ||||
|     Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs); | ||||
|      | ||||
|     Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|     Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|  | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(X,src); | ||||
|  | ||||
|     ////////////////////////// | ||||
|     // R = B-AX | ||||
|     ////////////////////////// | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(X[rhs],tmp[rhs]); | ||||
|       axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute MZ = M1 Z = M1 B - M1 A x0 | ||||
|     ////////////////////////////////// | ||||
|     PcgM1(Z,MZ);   | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // QC = Z | ||||
|     ////////////////////////////////// | ||||
|     ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ); | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // D=MQ | ||||
|     ////////////////////////////////// | ||||
|     for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs | ||||
|  | ||||
|     std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl; | ||||
|  | ||||
|     ProjectTimer.Reset(); | ||||
|     PromoteTimer.Reset(); | ||||
|     DeflateTimer.Reset(); | ||||
|     CoarseTimer.Reset(); | ||||
|     SmoothTimer.Reset(); | ||||
|     FineTimer.Reset(); | ||||
|     InsertTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch M1Timer; | ||||
|     GridStopWatch M2Timer; | ||||
|     GridStopWatch M3Timer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch InnerProdTimer; | ||||
|  | ||||
|     HDCGTimer.Start(); | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|  | ||||
|       //////////////////// | ||||
|       // Z  = AD | ||||
|       //////////////////// | ||||
|       M3Timer.Start(); | ||||
|       for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);       | ||||
|       M3Timer.Stop(); | ||||
|  | ||||
|       //////////////////// | ||||
|       // MZ  = M1 Z <==== the Multigrid preconditioner | ||||
|       //////////////////// | ||||
|       M1Timer.Start(); | ||||
|       PcgM1(Z,MZ); | ||||
|       M1Timer.Stop(); | ||||
|  | ||||
|       FineTimer.Start(); | ||||
|       //////////////////// | ||||
|       // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG | ||||
|       //////////////////// | ||||
|       InnerProdTimer.Start(); | ||||
|       _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z); | ||||
|       InnerProdTimer.Stop(); | ||||
|       m_M       = m_DZ.inverse(); | ||||
|  | ||||
|       /////////////////////////// | ||||
|       // X  = X + D MC | ||||
|       /////////////////////////// | ||||
|       m_tmp     = m_M * m_C; | ||||
|       LinalgTimer.Start(); | ||||
|       _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates  | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       /////////////////////////// | ||||
|       // QS = Q - M Z | ||||
|       // (MQ) S = MQ - M (M1Z) | ||||
|       /////////////////////////// | ||||
|       LinalgTimer.Start(); | ||||
|       _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0); | ||||
|       _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0); | ||||
|       ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       //////////////////////////// | ||||
|       // D  = MQ + D S^dag | ||||
|       //////////////////////////// | ||||
|       m_tmp = m_S.adjoint(); | ||||
|       LinalgTimer.Start(); | ||||
|       _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       //////////////////////////// | ||||
|       // C  = S C | ||||
|       //////////////////////////// | ||||
|       m_C = m_S*m_C; | ||||
|        | ||||
|       //////////////////////////// | ||||
|       // convergence monitor | ||||
|       //////////////////////////// | ||||
|       m_rr = m_C.adjoint() * m_C; | ||||
|        | ||||
|       FineTimer.Stop(); | ||||
|  | ||||
|       RealD max_resid=0; | ||||
|       RealD rrsum=0; | ||||
|       RealD sssum=0; | ||||
|       RealD rr; | ||||
|  | ||||
|       for(int b=0;b<nrhs;b++) { | ||||
| 	rrsum+=real(m_rr(b,b)); | ||||
| 	sssum+=ssq[b]; | ||||
| 	rr = real(m_rr(b,b))/ssq[b]; | ||||
| 	if ( rr > max_resid ) max_resid = rr; | ||||
|       } | ||||
|       std::cout << GridLogMessage << | ||||
| 	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl; | ||||
|  | ||||
|  | ||||
|       if ( max_resid < Tolerance*Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			   | ||||
|  | ||||
| 	  Field mytmp(grid); | ||||
| 	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]); | ||||
|        | ||||
| 	  RealD  xnorm   = sqrt(norm2(X[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(mytmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
| @@ -108,7 +415,7 @@ class TwoLevelCGmrhs | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|       GRID_ASSERT(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
| @@ -361,15 +668,26 @@ public: | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|     //    this->rrr=in[0]; | ||||
|  | ||||
| #undef SMOOTHER_BLOCK_SOLVE | ||||
| #if SMOOTHER_BLOCK_SOLVE | ||||
|     this->SmoothTimer.Start(); | ||||
|     this->_Smoother(in,Min); | ||||
|     this->SmoothTimer.Stop(); | ||||
| #else | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       this->SmoothTimer.Start(); | ||||
|       this->_Smoother(in[rhs],Min[rhs]); | ||||
|       this->SmoothTimer.Stop(); | ||||
|     } | ||||
| #endif | ||||
|     //    this->sss=Min[0]; | ||||
|      | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|        | ||||
|       this->FineTimer.Start(); | ||||
|       this->_FineLinop.HermOp(Min[rhs],out[rhs]); | ||||
|  | ||||
|       axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min | ||||
|       this->FineTimer.Stop(); | ||||
|  | ||||
| @@ -401,9 +719,11 @@ public: | ||||
|     this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]   | ||||
|     this->PromoteTimer.Stop(); | ||||
|     this->FineTimer.Start(); | ||||
|     //    this->qqq=tmp[0]; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp | ||||
|     } | ||||
|     //    this->zzz=out[0]; | ||||
|     this->FineTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
|   | ||||
| @@ -47,7 +47,7 @@ class BiCGSTAB : public OperatorFunction<Field> | ||||
|   public: | ||||
|     using OperatorFunction<Field>::operator(); | ||||
|      | ||||
|     bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|     bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge. | ||||
|                              // Defaults true. | ||||
|     RealD Tolerance; | ||||
|     Integer MaxIterations; | ||||
| @@ -77,7 +77,7 @@ class BiCGSTAB : public OperatorFunction<Field> | ||||
|  | ||||
|       // Initial residual computation & set up | ||||
|       RealD guess = norm2(psi); | ||||
|       assert(std::isnan(guess) == 0); | ||||
|       GRID_ASSERT(std::isnan(guess) == 0); | ||||
|      | ||||
|       Linop.Op(psi, v); | ||||
|       b = norm2(v); | ||||
| @@ -214,7 +214,7 @@ class BiCGSTAB : public OperatorFunction<Field> | ||||
|           std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl; | ||||
|  | ||||
|           if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); } | ||||
|           if(ErrorOnNoConverge){ GRID_ASSERT(true_residual / Tolerance < 10000.0); } | ||||
|  | ||||
|           IterationsToComplete = k;	 | ||||
|  | ||||
| @@ -224,7 +224,7 @@ class BiCGSTAB : public OperatorFunction<Field> | ||||
|        | ||||
|       std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl; | ||||
|  | ||||
|       if(ErrorOnNoConverge){ assert(0); } | ||||
|       if(ErrorOnNoConverge){ GRID_ASSERT(0); } | ||||
|       IterationsToComplete = k; | ||||
|     } | ||||
| }; | ||||
|   | ||||
| @@ -31,6 +31,58 @@ directory | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){ | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|   int Nblock = X.size(); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|   for(int bp=0;bp<Nblock;bp++) { | ||||
|     m(b,bp) = innerProduct(X[b],Y[bp]);   | ||||
|   }} | ||||
| } | ||||
| template<class Field> | ||||
| void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   // Deal with case AP aliases with either Y or X | ||||
|   // | ||||
|   //Could pack "X" and "AP" into a Nblock x Volume dense array. | ||||
|   // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol) | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|   int Nblock = AP.size(); | ||||
|   std::vector<Field> tmp(Nblock,X[0]); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     tmp[b]   = Y[b]; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = tmp[b]; | ||||
|   } | ||||
| } | ||||
| template<class Field> | ||||
| void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|   int Nblock = AP.size(); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = Zero(); | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       AP[b] += scomplex(m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
| } | ||||
| template<class Field> | ||||
| double normv(const std::vector<Field> &P){ | ||||
|   int Nblock = P.size(); | ||||
|   double nn = 0.0; | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     nn+=norm2(P[b]); | ||||
|   } | ||||
|   return nn; | ||||
| } | ||||
|  | ||||
|  | ||||
| enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -46,7 +98,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> { | ||||
|   int Nblock; | ||||
|  | ||||
|   BlockCGtype CGtype; | ||||
|   bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|   bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge. | ||||
|                            // Defaults true. | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
| @@ -87,10 +139,19 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
|   sliceInnerProductMatrix(m_rr,R,R,Orthog); | ||||
|  | ||||
|   // Force manifest hermitian to avoid rounding related | ||||
|   /* | ||||
|   int rank=m_rr.rows(); | ||||
|   for(int r=0;r<rank;r++){ | ||||
|   for(int s=0;s<rank;s++){ | ||||
|     std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl; | ||||
|   }} | ||||
|   */ | ||||
|   m_rr = 0.5*(m_rr+m_rr.adjoint()); | ||||
|  | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
|  | ||||
| //  ComplexD det = L.determinant(); | ||||
| //  std::cout << " Det m_rr "<<det<<std::endl; | ||||
|   C    = L.adjoint(); | ||||
|   Cinv = C.inverse(); | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -110,11 +171,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
| 		 const std::vector<Field> & R) | ||||
| { | ||||
|   InnerProductMatrix(m_rr,R,R); | ||||
|  | ||||
|   /* | ||||
|   int rank=m_rr.rows(); | ||||
|   for(int r=0;r<rank;r++){ | ||||
|   for(int s=0;s<rank;s++){ | ||||
|     std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl; | ||||
|   }} | ||||
|   */ | ||||
|   m_rr = 0.5*(m_rr+m_rr.adjoint()); | ||||
|  | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
|  | ||||
|   //  ComplexD det = L.determinant(); | ||||
|   //  std::cout << " Det m_rr "<<det<<std::endl; | ||||
|  | ||||
|   C    = L.adjoint(); | ||||
|   Cinv = C.inverse(); | ||||
|  | ||||
| @@ -131,7 +201,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) | ||||
|   } else if (CGtype == CGmultiRHS ) { | ||||
|     CGmultiRHSsolve(Linop,Src,Psi); | ||||
|   } else { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| } | ||||
| virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)  | ||||
| @@ -139,7 +209,7 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel | ||||
|   if ( CGtype == BlockCGrQVec ) { | ||||
|     BlockCGrQsolveVec(Linop,Src,Psi); | ||||
|   } else { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -186,12 +256,13 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   sliceNorm(ssq,B,Orthog); | ||||
|   RealD sssum=0; | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|   for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl; | ||||
|  | ||||
|   sliceNorm(residuals,B,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|   for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   sliceNorm(residuals,X,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|   for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   /************************************************************************ | ||||
|    * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001) | ||||
| @@ -221,6 +292,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   Linop.HermOp(X, AD); | ||||
|   tmp = B - AD;   | ||||
|  | ||||
|   sliceNorm(residuals,tmp,Orthog); | ||||
|   for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl; | ||||
|    | ||||
|   ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); | ||||
|   D=Q; | ||||
|  | ||||
| @@ -236,6 +310,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   GridStopWatch SolverTimer; | ||||
|   SolverTimer.Start(); | ||||
|  | ||||
|   RealD max_resid=0; | ||||
|  | ||||
|   int k; | ||||
|   for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
| @@ -280,7 +356,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|      */ | ||||
|     m_rr = m_C.adjoint() * m_C; | ||||
|  | ||||
|     RealD max_resid=0; | ||||
|     max_resid=0; | ||||
|     RealD rrsum=0; | ||||
|     RealD rr; | ||||
|  | ||||
| @@ -322,9 +398,11 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) assert(0); | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations | ||||
| 	    <<" residual "<< std::sqrt(max_resid)<< std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) GRID_ASSERT(0); | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -360,10 +438,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field & | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|  | ||||
|   sliceNorm(residuals,Src,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|   for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   sliceNorm(residuals,Psi,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|   for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   // Initial search dir is guess | ||||
|   Linop.HermOp(Psi, AP); | ||||
| @@ -462,47 +540,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field & | ||||
|   } | ||||
|   std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) assert(0); | ||||
|   if (ErrorOnNoConverge) GRID_ASSERT(0); | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
|  | ||||
| void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){ | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|   for(int bp=0;bp<Nblock;bp++) { | ||||
|     m(b,bp) = innerProduct(X[b],Y[bp]);   | ||||
|   }} | ||||
| } | ||||
| void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   // Deal with case AP aliases with either Y or X | ||||
|   std::vector<Field> tmp(Nblock,X[0]); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     tmp[b]   = Y[b]; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = tmp[b]; | ||||
|   } | ||||
| } | ||||
| void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = Zero(); | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       AP[b] += scomplex(m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
| } | ||||
| double normv(const std::vector<Field> &P){ | ||||
|   double nn = 0.0; | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     nn+=norm2(P[b]); | ||||
|   } | ||||
|   return nn; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // BlockCGrQvec implementation: | ||||
| //-------------------------- | ||||
| @@ -513,7 +554,7 @@ double normv(const std::vector<Field> &P){ | ||||
| void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)  | ||||
| { | ||||
|   Nblock = B.size(); | ||||
|   assert(Nblock == X.size()); | ||||
|   GRID_ASSERT(Nblock == X.size()); | ||||
|  | ||||
|   std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
| @@ -549,13 +590,14 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|  | ||||
|   RealD sssum=0; | ||||
|   for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);} | ||||
|   for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;} | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);} | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|   for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);} | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|   for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   /************************************************************************ | ||||
|    * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001) | ||||
| @@ -585,6 +627,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     Linop.HermOp(X[b], AD[b]); | ||||
|     tmp[b] = B[b] - AD[b];   | ||||
|     std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl; | ||||
|   } | ||||
|  | ||||
|   ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); | ||||
| @@ -688,7 +731,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field | ||||
|   } | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) assert(0); | ||||
|   if (ErrorOnNoConverge) GRID_ASSERT(0); | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -36,7 +36,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge, | ||||
|   bool ErrorOnNoConverge; // Throw an GRID_ASSERT when CAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
| @@ -82,7 +82,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
| @@ -137,7 +137,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|     std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
| @@ -185,7 +185,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction< | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     GRID_ASSERT(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -38,13 +38,14 @@ NAMESPACE_BEGIN(Grid); | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
| template <class Field> | ||||
| class ConjugateGradient : public OperatorFunction<Field> { | ||||
| public: | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|    | ||||
|   bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|   bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge. | ||||
|                            // Defaults true. | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
| @@ -57,10 +58,22 @@ public: | ||||
|       ErrorOnNoConverge(err_on_no_conv) | ||||
|   {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|   virtual void LogIteration(int k,RealD a,RealD b){ | ||||
|     //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl; | ||||
|   }; | ||||
|   virtual void LogBegin(void){ | ||||
|     std::cout << "ConjugageGradient::LogBegin() "<<std::endl; | ||||
|   }; | ||||
|  | ||||
|     GRID_TRACE("ConjugateGradient"); | ||||
|     void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|       this->LogBegin(); | ||||
|  | ||||
|       GRID_TRACE("ConjugateGradient"); | ||||
|     GridStopWatch PreambleTimer; | ||||
|     GridStopWatch ConstructTimer; | ||||
|     GridStopWatch NormTimer; | ||||
|     GridStopWatch AssignTimer; | ||||
|     PreambleTimer.Start(); | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|  | ||||
| @@ -70,14 +83,19 @@ public: | ||||
|     //RealD b_pred; | ||||
|  | ||||
|     // Was doing copies | ||||
|     Field p(src.Grid()); | ||||
|     ConstructTimer.Start(); | ||||
|     Field p  (src.Grid()); | ||||
|     Field mmp(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field r  (src.Grid()); | ||||
|     ConstructTimer.Stop(); | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     NormTimer.Start(); | ||||
|     ssq = norm2(src); | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     NormTimer.Stop(); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|     AssignTimer.Start(); | ||||
|     if ( guess == 0.0 ) { | ||||
|       r = src; | ||||
|       p = r; | ||||
| @@ -89,6 +107,7 @@ public: | ||||
|       a = norm2(p); | ||||
|     } | ||||
|     cp = a; | ||||
|     AssignTimer.Stop(); | ||||
|  | ||||
|     // Handle trivial case of zero src | ||||
|     if (ssq == 0.){ | ||||
| @@ -164,6 +183,7 @@ public: | ||||
|       } | ||||
|       LinearCombTimer.Stop(); | ||||
|       LinalgTimer.Stop(); | ||||
|       LogIteration(k,a,b); | ||||
|  | ||||
|       IterationTimer.Stop(); | ||||
|       if ( (k % 500) == 0 ) { | ||||
| @@ -202,7 +222,7 @@ public: | ||||
|  | ||||
| 	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); | ||||
|         if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
| 	TrueResidual = true_residual; | ||||
| @@ -220,6 +240,9 @@ public: | ||||
|     	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl; | ||||
|     SolverTimer.Stop(); | ||||
|     std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "Solver breakdown "<<std::endl; | ||||
|     std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| @@ -228,10 +251,123 @@ public: | ||||
|     std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     if (ErrorOnNoConverge) GRID_ASSERT(0); | ||||
|     IterationsToComplete = k; | ||||
|  | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template <class Field> | ||||
| class ConjugateGradientPolynomial : public ConjugateGradient<Field> { | ||||
| public: | ||||
|   // Optionally record the CG polynomial | ||||
|   std::vector<double> ak; | ||||
|   std::vector<double> bk; | ||||
|   std::vector<double> poly_p; | ||||
|   std::vector<double> poly_r; | ||||
|   std::vector<double> poly_Ap; | ||||
|   std::vector<double> polynomial; | ||||
|  | ||||
| public: | ||||
|   ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|     : ConjugateGradient<Field>(tol,maxit,err_on_no_conv) | ||||
|   { }; | ||||
|   void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
|   { | ||||
|     Field tmp(src.Grid()); | ||||
|     Field AtoN(src.Grid()); | ||||
|     AtoN = src; | ||||
|     psi=AtoN*polynomial[0]; | ||||
|     for(int n=1;n<polynomial.size();n++){ | ||||
|       tmp = AtoN; | ||||
|       Linop.HermOp(tmp,AtoN); | ||||
|       psi = psi + polynomial[n]*AtoN; | ||||
|     } | ||||
|   } | ||||
|   void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x) | ||||
|   { | ||||
|     Field Ap(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field p(src.Grid()); | ||||
|     p=src; | ||||
|     r=src; | ||||
|     x=Zero(); | ||||
|     x.Checkerboard()=src.Checkerboard(); | ||||
|     for(int k=0;k<ak.size();k++){ | ||||
|       x = x + ak[k]*p; | ||||
|       Linop.HermOp(p,Ap); | ||||
|       r = r - ak[k] * Ap; | ||||
|       p = r + bk[k] * p; | ||||
|     } | ||||
|   } | ||||
|   void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
|   { | ||||
|     psi=Zero(); | ||||
|     this->operator ()(Linop,src,psi); | ||||
|   } | ||||
|   virtual void LogBegin(void) | ||||
|   { | ||||
|     std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl; | ||||
|     ak.resize(0); | ||||
|     bk.resize(0); | ||||
|     polynomial.resize(0); | ||||
|     poly_Ap.resize(0); | ||||
|     poly_Ap.resize(0); | ||||
|     poly_p.resize(1); | ||||
|     poly_r.resize(1); | ||||
|     poly_p[0]=1.0; | ||||
|     poly_r[0]=1.0; | ||||
|   }; | ||||
|   virtual void LogIteration(int k,RealD a,RealD b) | ||||
|   { | ||||
|     // With zero guess, | ||||
|     // p = r = src | ||||
|     // | ||||
|     // iterate: | ||||
|     //   x =  x + a p | ||||
|     //   r =  r - a A p | ||||
|     //   p =  r + b p | ||||
|     // | ||||
|     // [0] | ||||
|     // r = x | ||||
|     // p = x | ||||
|     // Ap=0 | ||||
|     // | ||||
|     // [1] | ||||
|     // Ap = A x + 0  ==> shift poly P right by 1 and add 0. | ||||
|     // x  = x + a p  ==> add polynomials term by term  | ||||
|     // r  = r - a A p  ==> add polynomials term by term | ||||
|     // p  = r + b p  ==> add polynomials term by term | ||||
|     // | ||||
|     std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl; | ||||
|     ak.push_back(a); | ||||
|     bk.push_back(b); | ||||
|     //  Ap= right_shift(p) | ||||
|     poly_Ap.resize(k+1); | ||||
|     poly_Ap[0]=0.0; | ||||
|     for(int i=0;i<k;i++){ | ||||
|       poly_Ap[i+1]=poly_p[i]; | ||||
|     } | ||||
|  | ||||
|     //  x = x + a p | ||||
|     polynomial.resize(k); | ||||
|     polynomial[k-1]=0.0; | ||||
|     for(int i=0;i<k;i++){ | ||||
|       polynomial[i] = polynomial[i] + a * poly_p[i]; | ||||
|     } | ||||
|      | ||||
|     //  r = r - a Ap | ||||
|     //  p = r + b p | ||||
|     poly_r.resize(k+1); | ||||
|     poly_p.resize(k+1); | ||||
|     poly_r[k] = poly_p[k] = 0.0; | ||||
|     for(int i=0;i<k+1;i++){ | ||||
|       poly_r[i] = poly_r[i] - a * poly_Ap[i]; | ||||
|       poly_p[i] = poly_r[i] + b * poly_p[i]; | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid); | ||||
|       //Compute double precision rsd and also new RHS vector. | ||||
|       Linop_d.HermOp(sol_d, tmp_d); | ||||
|       RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector | ||||
|        | ||||
|       std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl; | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl; | ||||
|  | ||||
|       if(norm < OuterLoopNormMult * stop){ | ||||
| 	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl; | ||||
| 	break; | ||||
|       } | ||||
|       while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|       while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(src_f, src_d, pc_wk_dp_to_sp); | ||||
|   | ||||
| @@ -77,7 +77,7 @@ public: | ||||
|   } | ||||
|  | ||||
|   void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){ | ||||
|     assert(src_d_in.size() == sol_d.size()); | ||||
|     GRID_ASSERT(src_d_in.size() == sol_d.size()); | ||||
|     int NBatch = src_d_in.size(); | ||||
|  | ||||
|     std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl; | ||||
|   | ||||
| @@ -98,15 +98,15 @@ public: | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|     std::vector<Field>   ps(nshift,grid);// Search directions | ||||
|  | ||||
|     assert(psi.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|     GRID_ASSERT(psi.size()==nshift); | ||||
|     GRID_ASSERT(mass.size()==nshift); | ||||
|     GRID_ASSERT(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|     // remove dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     std::vector<RealD>  bs(nshift); | ||||
|     std::vector<RealD>  rsq(nshift); | ||||
|     std::vector<std::array<RealD,2> >  z(nshift); | ||||
|     std::vector<int>     converged(nshift); | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
| @@ -122,7 +122,7 @@ public: | ||||
|    | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       GRID_ASSERT( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
| @@ -338,7 +338,7 @@ public: | ||||
|     } | ||||
|     // ugly hack | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     //  assert(0); | ||||
|     //  GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   | ||||
| @@ -118,16 +118,16 @@ public: | ||||
|     FieldF r_f(SinglePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|     GRID_ASSERT(psi_d.size()==nshift); | ||||
|     GRID_ASSERT(mass.size()==nshift); | ||||
|     GRID_ASSERT(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|     std::vector<RealD>  bs(nshift); | ||||
|     std::vector<RealD>  rsq(nshift); | ||||
|     std::vector<RealD>  rsqf(nshift); | ||||
|     std::vector<std::array<RealD,2> >  z(nshift); | ||||
|     std::vector<int>     converged(nshift); | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
| @@ -141,7 +141,7 @@ public: | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       GRID_ASSERT( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
| @@ -179,7 +179,7 @@ public: | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     //    assert(norm2(tmp_d)< 1.0e-4); | ||||
|     //    GRID_ASSERT(norm2(tmp_d)< 1.0e-4); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
| @@ -365,7 +365,7 @@ public: | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   | ||||
| @@ -48,12 +48,12 @@ public: | ||||
|  | ||||
|   ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){} | ||||
|  | ||||
|   void OpDiag (const Field &in, Field &out){ assert(0); } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } | ||||
|   void OpDiag (const Field &in, Field &out){ GRID_ASSERT(0); } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp){ GRID_ASSERT(0); } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ GRID_ASSERT(0); } | ||||
|    | ||||
|   void Op     (const Field &in, Field &out){ assert(0); } | ||||
|   void AdjOp  (const Field &in, Field &out){ assert(0); } | ||||
|   void Op     (const Field &in, Field &out){ GRID_ASSERT(0); } | ||||
|   void AdjOp  (const Field &in, Field &out){ GRID_ASSERT(0); } | ||||
|  | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     linop_base.HermOp(in, out); | ||||
| @@ -151,16 +151,16 @@ public: | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|     GRID_ASSERT(psi_d.size()==nshift); | ||||
|     GRID_ASSERT(mass.size()==nshift); | ||||
|     GRID_ASSERT(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|     std::vector<RealD>  bs(nshift); | ||||
|     std::vector<RealD>  rsq(nshift); | ||||
|     std::vector<RealD>  rsqf(nshift); | ||||
|     std::vector<std::array<RealD,2> >  z(nshift); | ||||
|     std::vector<int>     converged(nshift); | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
| @@ -174,7 +174,7 @@ public: | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       GRID_ASSERT( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
| @@ -211,7 +211,7 @@ public: | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     assert(norm2(tmp_d)< 1.0); | ||||
|     GRID_ASSERT(norm2(tmp_d)< 1.0); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
| @@ -408,7 +408,7 @@ public: | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   | ||||
| @@ -35,7 +35,7 @@ template<class FieldD,class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> { | ||||
| public: | ||||
|   bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|   bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge. | ||||
|   // Defaults true. | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
| @@ -66,7 +66,7 @@ public: | ||||
|       DoFinalCleanup(true), | ||||
|       Linop_fallback(NULL) | ||||
|   { | ||||
|     assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1"); | ||||
|     GRID_ASSERT(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1"); | ||||
|   }; | ||||
|  | ||||
|   void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){ | ||||
| @@ -90,7 +90,7 @@ public: | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|      | ||||
|     Linop_d.HermOpAndNorm(psi, mmp, d, b); | ||||
|      | ||||
| @@ -217,7 +217,7 @@ public: | ||||
| 	  CG(Linop_d,src,psi); | ||||
| 	  IterationsToCleanup = CG.IterationsToComplete; | ||||
| 	} | ||||
| 	else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); | ||||
| 	else if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n"; | ||||
| 	return; | ||||
| @@ -263,7 +263,7 @@ public: | ||||
|     std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge" | ||||
| 	      << std::endl; | ||||
|        | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     if (ErrorOnNoConverge) GRID_ASSERT(0); | ||||
|     IterationsToComplete = k; | ||||
|     ReliableUpdatesPerformed = l;       | ||||
|   }     | ||||
|   | ||||
| @@ -106,7 +106,7 @@ public: | ||||
|     } | ||||
|  | ||||
|     std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl; | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -36,7 +36,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge, | ||||
|   bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FCAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
| @@ -87,7 +87,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
| @@ -144,7 +144,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|     std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
| @@ -191,7 +191,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     GRID_ASSERT(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -36,7 +36,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge, | ||||
|   bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
| @@ -85,7 +85,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
| @@ -142,7 +142,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
| @@ -189,7 +189,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     GRID_ASSERT(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -36,7 +36,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge, | ||||
|   bool ErrorOnNoConverge; // Throw an GRID_ASSERT when GMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
| @@ -80,7 +80,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
| @@ -135,7 +135,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|     std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
| @@ -181,7 +181,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     GRID_ASSERT(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -175,7 +175,7 @@ public: | ||||
|       eresid(_eresid),  MaxIter(_MaxIter), | ||||
|       diagonalisation(_diagonalisation),split_test(0), | ||||
|       Nevec_acc(_Nu) | ||||
|   { assert( (Nk%Nu==0) && (Nm%Nu==0) ); }; | ||||
|   { GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); }; | ||||
|  | ||||
|   //////////////////////////////// | ||||
|   // Helpers | ||||
| @@ -206,7 +206,7 @@ public: | ||||
|           Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl; | ||||
|       } | ||||
|     } | ||||
|     assert(normalize(w,if_print) != 0); | ||||
|     GRID_ASSERT(normalize(w,if_print) != 0); | ||||
|   } | ||||
|   void reorthogonalize(Field& w, std::vector<Field>& evec, int k) | ||||
|   { | ||||
| @@ -225,7 +225,7 @@ public: | ||||
|       w[i] = w[i] - ip * evec[j]; | ||||
|     }} | ||||
|     for(int i=0; i<_Nu; ++i) | ||||
|     assert(normalize(w[i],if_print) !=0); | ||||
|     GRID_ASSERT(normalize(w[i],if_print) !=0); | ||||
|   } | ||||
|  | ||||
|  | ||||
| @@ -244,7 +244,7 @@ public: | ||||
|     const uint64_t sites = grid->lSites(); | ||||
|  | ||||
|     int Nbatch = R/Nevec_acc; | ||||
|     assert( R%Nevec_acc == 0 ); | ||||
|     GRID_ASSERT( R%Nevec_acc == 0 ); | ||||
| //    Glog << "nBatch, Nevec_acc, R, Nu = "  | ||||
| //         << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl; | ||||
|      | ||||
| @@ -302,7 +302,7 @@ public: | ||||
|       } | ||||
|     } | ||||
|     for (int i=0; i<Nu; ++i) { | ||||
|       assert(normalize(w[i],do_print)!=0); | ||||
|       GRID_ASSERT(normalize(w[i],do_print)!=0); | ||||
|     } | ||||
|      | ||||
|     Glog << "cuBLAS Zgemm done"<< std::endl; | ||||
| @@ -374,8 +374,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_ | ||||
|   { | ||||
|     std::string fname = std::string(cname+"::calc_irbl()");  | ||||
|     GridBase *grid = evec[0].Grid(); | ||||
|     assert(grid == src[0].Grid()); | ||||
|     assert( Nu = src.size() ); | ||||
|     GRID_ASSERT(grid == src[0].Grid()); | ||||
|     GRID_ASSERT( Nu = src.size() ); | ||||
|      | ||||
|     Glog << std::string(74,'*') << std::endl; | ||||
|     Glog << fname + " starting iteration 0 /  "<< MaxIter<< std::endl; | ||||
| @@ -396,7 +396,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_ | ||||
|     } | ||||
|     Glog << std::string(74,'*') << std::endl; | ||||
|      | ||||
|     assert(Nm == evec.size() && Nm == eval.size()); | ||||
|     GRID_ASSERT(Nm == evec.size() && Nm == eval.size()); | ||||
|  | ||||
|     std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
|     std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
| @@ -579,8 +579,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_ | ||||
|   { | ||||
|     std::string fname = std::string(cname+"::calc_rbl()");  | ||||
|     GridBase *grid = evec[0].Grid(); | ||||
|     assert(grid == src[0].Grid()); | ||||
|     assert( Nu = src.size() ); | ||||
|     GRID_ASSERT(grid == src[0].Grid()); | ||||
|     GRID_ASSERT( Nu = src.size() ); | ||||
|  | ||||
|     int Np = (Nm-Nk); | ||||
|     if (Np > 0 && MaxIter > 1) Np /= MaxIter; | ||||
| @@ -607,7 +607,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_ | ||||
|     } | ||||
|     Glog << std::string(74,'*') << std::endl; | ||||
|      | ||||
|     assert(Nm == evec.size() && Nm == eval.size()); | ||||
|     GRID_ASSERT(Nm == evec.size() && Nm == eval.size()); | ||||
| 	 | ||||
|     std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
|     std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
| @@ -785,7 +785,7 @@ private: | ||||
|      | ||||
|     int Nu = w.size(); | ||||
|     int Nm = evec.size(); | ||||
|     assert( b < Nm/Nu ); | ||||
|     GRID_ASSERT( b < Nm/Nu ); | ||||
| //    GridCartesian *grid = evec[0]._grid; | ||||
|      | ||||
|     // converts block index to full indicies for an interval [L,R) | ||||
| @@ -796,7 +796,7 @@ private: | ||||
|  | ||||
|     Glog << "Using split grid"<< std::endl; | ||||
| //   LatticeGaugeField s_Umu(SGrid); | ||||
|    assert((Nu%mrhs)==0); | ||||
|    GRID_ASSERT((Nu%mrhs)==0); | ||||
|    std::vector<Field>   in(mrhs,f_grid); | ||||
|       | ||||
|     Field s_in(sf_grid); | ||||
| @@ -906,7 +906,7 @@ if(split_test){ | ||||
|      | ||||
|     for (int u=0; u<Nu; ++u) { | ||||
| //      Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl; | ||||
|       assert (!isnan(norm2(w[u]))); | ||||
|       GRID_ASSERT (!isnan(norm2(w[u]))); | ||||
|       for (int k=L+u; k<R; ++k) { | ||||
|         Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl; | ||||
|       } | ||||
| @@ -929,8 +929,8 @@ if(split_test){ | ||||
| 			 Eigen::MatrixXcd & Qt, // Nm x Nm | ||||
| 			 GridBase *grid) | ||||
|   { | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|     Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk); | ||||
|      | ||||
|     for ( int u=0; u<Nu; ++u ) { | ||||
| @@ -970,8 +970,8 @@ if(split_test){ | ||||
| 			 GridBase *grid) | ||||
|   { | ||||
|     Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl; | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|     Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk); | ||||
|      | ||||
|     for ( int u=0; u<Nu; ++u ) { | ||||
| @@ -1119,7 +1119,7 @@ if (1){ | ||||
|       diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid); | ||||
| #endif | ||||
|     } else {  | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|   } | ||||
|    | ||||
| @@ -1131,8 +1131,8 @@ if (1){ | ||||
|          Eigen::MatrixXcd& M) | ||||
|   { | ||||
|     //Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';  | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|     M = Eigen::MatrixXcd::Zero(Nk,Nk); | ||||
|      | ||||
|     // rearrange  | ||||
| @@ -1159,8 +1159,8 @@ if (1){ | ||||
|          Eigen::MatrixXcd& M) | ||||
|   { | ||||
|     //Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';  | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|      | ||||
|     // rearrange  | ||||
|     for ( int u=0; u<Nu; ++u ) { | ||||
|   | ||||
| @@ -121,7 +121,7 @@ public: | ||||
|       eresid(_eresid),  MaxIter(_MaxIter), | ||||
|       diagonalisation(_diagonalisation), | ||||
|       Nevec_acc(_Nu) | ||||
|   { assert( (Nk%Nu==0) && (Nm%Nu==0) ); }; | ||||
|   { GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); }; | ||||
|  | ||||
|   //////////////////////////////// | ||||
|   // Helpers | ||||
| @@ -143,7 +143,7 @@ public: | ||||
|       ip = innerProduct(evec[j],w);  | ||||
|       if(if_print)  | ||||
|       if( norm(ip)/norm2(w) > 1e-14) | ||||
|       Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl; | ||||
| 	Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl; | ||||
|       w = w - ip * evec[j]; | ||||
|       if(if_print) { | ||||
|         ip = innerProduct(evec[j],w);  | ||||
| @@ -151,7 +151,7 @@ public: | ||||
|           Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl; | ||||
|       } | ||||
|     } | ||||
|     assert(normalize(w,if_print) != 0); | ||||
|     GRID_ASSERT(normalize(w,if_print) != 0); | ||||
|   } | ||||
|   void reorthogonalize(Field& w, std::vector<Field>& evec, int k) | ||||
|   { | ||||
| @@ -169,7 +169,7 @@ public: | ||||
|       w[i] = w[i] - ip * evec[j]; | ||||
|     }} | ||||
|     for(int i=0; i<_Nu; ++i) | ||||
|     assert(normalize(w[i],if_print) !=0); | ||||
|     GRID_ASSERT(normalize(w[i],if_print) !=0); | ||||
|   } | ||||
|    | ||||
|   void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu) | ||||
| @@ -205,8 +205,8 @@ public: | ||||
|   { | ||||
|     std::string fname = std::string(cname+"::calc_irbl()");  | ||||
|     GridBase *grid = evec[0].Grid(); | ||||
|     assert(grid == src[0].Grid()); | ||||
|     assert( Nu = src.size() ); | ||||
|     GRID_ASSERT(grid == src[0].Grid()); | ||||
|     GRID_ASSERT( Nu = src.size() ); | ||||
|      | ||||
|     Glog << std::string(74,'*') << std::endl; | ||||
|     Glog << fname + " starting iteration 0 /  "<< MaxIter<< std::endl; | ||||
| @@ -227,7 +227,7 @@ public: | ||||
|     } | ||||
|     Glog << std::string(74,'*') << std::endl; | ||||
|      | ||||
|     assert(Nm == evec.size() && Nm == eval.size()); | ||||
|     GRID_ASSERT(Nm == evec.size() && Nm == eval.size()); | ||||
|  | ||||
|     std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
|     std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
| @@ -279,16 +279,16 @@ public: | ||||
|       Qt = Eigen::MatrixXcd::Identity(Nm,Nm); | ||||
|       diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid); | ||||
|       _sort.push(eval2,Nm); | ||||
|       Glog << "#Ritz value before shift: "<< std::endl; | ||||
|       //      Glog << "#Ritz value before shift: "<< std::endl; | ||||
|       for(int i=0; i<Nm; ++i){ | ||||
| 	std::cout.precision(13); | ||||
| 	std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] "; | ||||
| 	std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl; | ||||
| 	//	std::cout.precision(13); | ||||
| 	//	std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] "; | ||||
| 	//	std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl; | ||||
|       } | ||||
|        | ||||
|       //---------------------------------------------------------------------- | ||||
|       if ( Nm>Nk ) { | ||||
|         Glog <<" #Apply shifted QR transformations "<<std::endl; | ||||
| 	//        Glog <<" #Apply shifted QR transformations "<<std::endl; | ||||
|         //int k2 = Nk+Nu; | ||||
|         int k2 = Nk; | ||||
|        | ||||
| @@ -326,11 +326,11 @@ public: | ||||
|         Qt = Eigen::MatrixXcd::Identity(Nm,Nm); | ||||
|         diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid); | ||||
|         _sort.push(eval2,Nk); | ||||
| 	Glog << "#Ritz value after shift: "<< std::endl; | ||||
| 	//	Glog << "#Ritz value after shift: "<< std::endl; | ||||
|         for(int i=0; i<Nk; ++i){ | ||||
| 	  //          std::cout.precision(13); | ||||
| 	  //          std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] "; | ||||
| 	  //          std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl; | ||||
| 	  //	  std::cout.precision(13); | ||||
| 	  //	  std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] "; | ||||
| 	  //	  std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl; | ||||
|         } | ||||
|       } | ||||
|       //---------------------------------------------------------------------- | ||||
| @@ -413,8 +413,8 @@ public: | ||||
|   { | ||||
|     std::string fname = std::string(cname+"::calc_rbl()");  | ||||
|     GridBase *grid = evec[0].Grid(); | ||||
|     assert(grid == src[0].Grid()); | ||||
|     assert( Nu = src.size() ); | ||||
|     GRID_ASSERT(grid == src[0].Grid()); | ||||
|     GRID_ASSERT( Nu = src.size() ); | ||||
|  | ||||
|     int Np = (Nm-Nk); | ||||
|     if (Np > 0 && MaxIter > 1) Np /= MaxIter; | ||||
| @@ -441,7 +441,7 @@ public: | ||||
|     } | ||||
|     Glog << std::string(74,'*') << std::endl; | ||||
|      | ||||
|     assert(Nm == evec.size() && Nm == eval.size()); | ||||
|     GRID_ASSERT(Nm == evec.size() && Nm == eval.size()); | ||||
| 	 | ||||
|     std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
|     std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));   | ||||
| @@ -622,7 +622,7 @@ private: | ||||
|      | ||||
|     int Nu = w.size(); | ||||
|     int Nm = evec.size(); | ||||
|     assert( b < Nm/Nu ); | ||||
|     GRID_ASSERT( b < Nm/Nu ); | ||||
|      | ||||
|     // converts block index to full indicies for an interval [L,R) | ||||
|     int L = Nu*b; | ||||
| @@ -630,7 +630,7 @@ private: | ||||
|  | ||||
|     Real beta; | ||||
|  | ||||
|     assert((Nu%mrhs)==0); | ||||
|     GRID_ASSERT((Nu%mrhs)==0); | ||||
|     std::vector<Field>   in(mrhs,f_grid); | ||||
|     std::vector<Field>   out(mrhs,f_grid); | ||||
|  | ||||
| @@ -644,7 +644,7 @@ private: | ||||
|       //      for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl; | ||||
|       k_start +=mrhs; | ||||
|     } | ||||
|     Glog << "LinAlg "<< std::endl; | ||||
|     //    Glog << "LinAlg "<< std::endl; | ||||
|      | ||||
|     if (b>0) { | ||||
|       for (int u=0; u<Nu; ++u) { | ||||
| @@ -678,7 +678,7 @@ private: | ||||
|       } | ||||
|       w_copy[u] = w[u]; | ||||
|     } | ||||
|     Glog << "LinAlg done"<< std::endl; | ||||
|     //    Glog << "LinAlg done"<< std::endl; | ||||
|      | ||||
|     // In block version, the steps 6 and 7 in Lanczos construction is | ||||
|     // replaced by the QR decomposition of new basis block. | ||||
| @@ -691,15 +691,15 @@ private: | ||||
|     } | ||||
|  | ||||
|     // re-orthogonalization for numerical stability | ||||
|     Glog << "Gram Schmidt"<< std::endl; | ||||
|     //    Glog << "Gram Schmidt"<< std::endl; | ||||
|     orthogonalize(w,Nu,evec,R); | ||||
|     // QR part | ||||
|     for (int u=1; u<Nu; ++u) { | ||||
|       orthogonalize(w[u],w,u); | ||||
|     } | ||||
|     Glog << "Gram Schmidt done "<< std::endl; | ||||
|     //    Glog << "Gram Schmidt done "<< std::endl; | ||||
|      | ||||
|     Glog << "LinAlg "<< std::endl; | ||||
|     //    Glog << "LinAlg "<< std::endl; | ||||
|     for (int u=0; u<Nu; ++u) { | ||||
|       //for (int v=0; v<Nu; ++v) { | ||||
|       for (int v=u; v<Nu; ++v) { | ||||
| @@ -711,12 +711,12 @@ private: | ||||
|      | ||||
|     for (int u=0; u<Nu; ++u) { | ||||
|       //      Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl; | ||||
|       assert (!isnan(norm2(w[u]))); | ||||
|       GRID_ASSERT (!isnan(norm2(w[u]))); | ||||
|       for (int k=L+u; k<R; ++k) { | ||||
| 	//        Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl; | ||||
|       } | ||||
|     } | ||||
|     Glog << "LinAlg done "<< std::endl; | ||||
|     //    Glog << "LinAlg done "<< std::endl; | ||||
|  | ||||
|     if (b < Nm/Nu-1) { | ||||
|       for (int u=0; u<Nu; ++u) { | ||||
| @@ -734,8 +734,8 @@ private: | ||||
| 			 Eigen::MatrixXcd & Qt, // Nm x Nm | ||||
| 			 GridBase *grid) | ||||
|   { | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|     Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk); | ||||
|      | ||||
|     for ( int u=0; u<Nu; ++u ) { | ||||
| @@ -775,8 +775,8 @@ private: | ||||
| 			 GridBase *grid) | ||||
|   { | ||||
|     Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl; | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|     Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk); | ||||
|      | ||||
|     for ( int u=0; u<Nu; ++u ) { | ||||
| @@ -924,7 +924,7 @@ if (1){ | ||||
|       diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid); | ||||
| #endif | ||||
|     } else {  | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|   } | ||||
|    | ||||
| @@ -935,9 +935,9 @@ if (1){ | ||||
|          int Nu, int Nb, int Nk, int Nm, | ||||
|          Eigen::MatrixXcd& M) | ||||
|   { | ||||
|     Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';  | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     //    Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';  | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|     M = Eigen::MatrixXcd::Zero(Nk,Nk); | ||||
|      | ||||
|     // rearrange  | ||||
| @@ -953,7 +953,7 @@ if (1){ | ||||
|         M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu]; | ||||
|       } | ||||
|     } | ||||
|     Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;  | ||||
|     //    Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;  | ||||
|   } | ||||
|   | ||||
|  | ||||
| @@ -963,9 +963,9 @@ if (1){ | ||||
|          int Nu, int Nb, int Nk, int Nm, | ||||
|          Eigen::MatrixXcd& M) | ||||
|   { | ||||
|     Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';  | ||||
|     assert( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     assert( Nk <= Nm ); | ||||
|     //    Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';  | ||||
|     GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 ); | ||||
|     GRID_ASSERT( Nk <= Nm ); | ||||
|      | ||||
|     // rearrange  | ||||
|     for ( int u=0; u<Nu; ++u ) { | ||||
| @@ -979,7 +979,7 @@ if (1){ | ||||
|         lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu); | ||||
|       } | ||||
|     } | ||||
|     Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;  | ||||
|     //    Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;  | ||||
|   } | ||||
|  | ||||
|  | ||||
| @@ -988,7 +988,7 @@ if (1){ | ||||
| 		            RealD Dsh, | ||||
| 		            Eigen::MatrixXcd& Qprod) | ||||
|   { | ||||
|     Glog << "shiftedQRDecompEigen() begin" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() begin" << '\n';  | ||||
|     Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm); | ||||
|     Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm); | ||||
|     Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm); | ||||
| @@ -1004,7 +1004,7 @@ if (1){ | ||||
|                         // lower triangular part used to represent series | ||||
|                         // of Q sequence. | ||||
|  | ||||
|     Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';  | ||||
|     // equivalent operation of Qprod *= Q | ||||
|     //M = Eigen::MatrixXcd::Zero(Nm,Nm); | ||||
|      | ||||
| @@ -1025,7 +1025,7 @@ if (1){ | ||||
|      | ||||
|     Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm); | ||||
|  | ||||
|     Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';  | ||||
|     for (int i=0; i<Nm; ++i) { | ||||
|       for (int j=0; j<Nm-(Nu+1); ++j) { | ||||
|         for (int k=0; k<Nu+1+j; ++k) { | ||||
| @@ -1033,7 +1033,7 @@ if (1){ | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|     Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';  | ||||
|     for (int i=0; i<Nm; ++i) { | ||||
|       for (int j=Nm-(Nu+1); j<Nm; ++j) { | ||||
|         for (int k=0; k<Nm; ++k) { | ||||
| @@ -1041,7 +1041,7 @@ if (1){ | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|     Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';  | ||||
|      | ||||
|     //static int ntimes = 2; | ||||
|     //for (int j=0; j<Nm-(ntimes*Nu); ++j) { | ||||
| @@ -1067,13 +1067,13 @@ if (1){ | ||||
|         Mtmp(j,i) = conj(Mtmp(i,j)); | ||||
|       } | ||||
|     } | ||||
|     Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';  | ||||
|  | ||||
|     for (int i=0; i<Nm; ++i) { | ||||
|       Mtmp(i,i) = real(Mtmp(i,i)) + Dsh; | ||||
|     } | ||||
|      | ||||
|     Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';  | ||||
|     //    Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';  | ||||
|     M = Mtmp; | ||||
|  | ||||
|     //M = Q.adjoint()*(M*Q); | ||||
| @@ -1085,7 +1085,7 @@ if (1){ | ||||
|     //  } | ||||
|     //} | ||||
|      | ||||
|     Glog << "shiftedQRDecompEigen() end" <<std::endl;  | ||||
|     //    Glog << "shiftedQRDecompEigen() end" <<std::endl;  | ||||
|   } | ||||
|  | ||||
|   void exampleQRDecompEigen(void) | ||||
|   | ||||
| @@ -211,7 +211,7 @@ until convergence | ||||
|   void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     assert(grid == evec[0].Grid()); | ||||
|     GRID_ASSERT(grid == evec[0].Grid()); | ||||
|      | ||||
|     //    GridLogIRL.TimingMode(1); | ||||
|     std::cout << GridLogIRL <<"**************************************************************************"<< std::endl; | ||||
| @@ -231,7 +231,7 @@ until convergence | ||||
|     } | ||||
|     std::cout << GridLogIRL <<"**************************************************************************"<< std::endl; | ||||
| 	 | ||||
|     assert(Nm <= evec.size() && Nm <= eval.size()); | ||||
|     GRID_ASSERT(Nm <= evec.size() && Nm <= eval.size()); | ||||
|      | ||||
|     // quickly get an idea of the largest eigenvalue to more properly normalize the residuum | ||||
|     RealD evalMaxApprox = 0.0; | ||||
| @@ -245,9 +245,10 @@ until convergence | ||||
| 	_HermOp(src_n,tmp); | ||||
| 	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0); | ||||
| 	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl; | ||||
| 	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. | ||||
| //	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. | ||||
| 	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2. | ||||
| 	RealD vden = norm2(src_n); | ||||
| 	RealD na = vnum/vden; | ||||
| 	RealD na = std::sqrt(vnum/vden); | ||||
| 	if (fabs(evalMaxApprox/na - 1.0) < 0.0001) | ||||
| 	  i=_MAX_ITER_IRL_MEVAPP_; | ||||
| 	evalMaxApprox = na; | ||||
| @@ -255,6 +256,7 @@ until convergence | ||||
| 	src_n = tmp; | ||||
|       } | ||||
|     } | ||||
|     std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl; | ||||
| 	 | ||||
|     std::vector<RealD> lme(Nm);   | ||||
|     std::vector<RealD> lme2(Nm); | ||||
| @@ -335,7 +337,7 @@ until convergence | ||||
|       } | ||||
|       std::cout<<GridLogIRL <<"QR decomposed "<<std::endl; | ||||
|  | ||||
|       assert(k2<Nm);      assert(k2<Nm);      assert(k1>0); | ||||
|       GRID_ASSERT(k2<Nm);      GRID_ASSERT(k2<Nm);      GRID_ASSERT(k1>0); | ||||
|  | ||||
|       basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis | ||||
|       std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl; | ||||
| @@ -461,7 +463,7 @@ until convergence | ||||
|   { | ||||
|     std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl; | ||||
|     const RealD tiny = 1.0e-20; | ||||
|     assert( k< Nm ); | ||||
|     GRID_ASSERT( k< Nm ); | ||||
|  | ||||
|     GridStopWatch gsw_op,gsw_o; | ||||
|  | ||||
| @@ -595,7 +597,7 @@ until convergence | ||||
|     }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) {  | ||||
|       diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid); | ||||
|     } else {  | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|   } | ||||
|  | ||||
| @@ -685,7 +687,7 @@ void diagonalize_lapack(std::vector<RealD>& lmd, | ||||
|     } | ||||
|   } | ||||
| #else  | ||||
|   assert(0); | ||||
|   GRID_ASSERT(0); | ||||
| #endif | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -80,7 +80,7 @@ public: | ||||
|   ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :  | ||||
|     _Linop(linop), subspace(_subspace) | ||||
|   {   | ||||
|     assert(subspace.size() >0); | ||||
|     GRID_ASSERT(subspace.size() >0); | ||||
|   }; | ||||
|  | ||||
|   void operator()(const CoarseField& in, CoarseField& out) { | ||||
| @@ -346,12 +346,12 @@ public: | ||||
|  | ||||
|   void testFine(RealD resid)  | ||||
|   { | ||||
|     assert(evals_fine.size() == nbasis); | ||||
|     assert(subspace.size() == nbasis); | ||||
|     GRID_ASSERT(evals_fine.size() == nbasis); | ||||
|     GRID_ASSERT(subspace.size() == nbasis); | ||||
|     PlainHermOp<FineField>    Op(_FineOp); | ||||
|     ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op); | ||||
|     for(int k=0;k<nbasis;k++){ | ||||
|       assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1); | ||||
|       GRID_ASSERT(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1); | ||||
|     } | ||||
|   } | ||||
|  | ||||
| @@ -359,8 +359,8 @@ public: | ||||
|   //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here | ||||
|   void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)  | ||||
|   { | ||||
|     assert(evals_fine.size() == nbasis); | ||||
|     assert(subspace.size() == nbasis); | ||||
|     GRID_ASSERT(evals_fine.size() == nbasis); | ||||
|     GRID_ASSERT(subspace.size() == nbasis); | ||||
|     ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL | ||||
|     ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -380,7 +380,7 @@ public: | ||||
|   void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,  | ||||
| 		RealD MaxIt, RealD betastp, int MinRes) | ||||
|   { | ||||
|     assert(nbasis<=Nm); | ||||
|     GRID_ASSERT(nbasis<=Nm); | ||||
|     Chebyshev<FineField>      Cheby(cheby_parms); | ||||
|     FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp); | ||||
|     PlainHermOp<FineField>    Op(_FineOp); | ||||
| @@ -400,8 +400,8 @@ public: | ||||
|     IRL.calc(evals_fine,subspace,src,Nconv,false); | ||||
|      | ||||
|     // Shrink down to number saved | ||||
|     assert(Nstop>=nbasis); | ||||
|     assert(Nconv>=nbasis); | ||||
|     GRID_ASSERT(Nstop>=nbasis); | ||||
|     GRID_ASSERT(Nconv>=nbasis); | ||||
|     evals_fine.resize(nbasis); | ||||
|     subspace.resize(nbasis,_FineGrid); | ||||
|   } | ||||
| @@ -433,7 +433,7 @@ public: | ||||
|     ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); | ||||
|     int Nconv=0; | ||||
|     IRL.calc(evals_coarse,evec_coarse,src,Nconv,false); | ||||
|     assert(Nconv>=Nstop); | ||||
|     GRID_ASSERT(Nconv>=Nstop); | ||||
|     evals_coarse.resize(Nstop); | ||||
|     evec_coarse.resize (Nstop,_CoarseGrid); | ||||
|     for (int i=0;i<Nstop;i++){ | ||||
|   | ||||
| @@ -35,7 +35,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // throw an assert when the MR fails to converge. | ||||
|   bool ErrorOnNoConverge; // throw an GRID_ASSERT when the MR fails to converge. | ||||
|                           // Defaults true. | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
| @@ -59,7 +59,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
| @@ -136,7 +136,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) | ||||
|           assert(true_residual / Tolerance < 10000.0); | ||||
|           GRID_ASSERT(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
|         IterationsToComplete = k; | ||||
|  | ||||
| @@ -148,7 +148,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|               << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|  | ||||
|     IterationsToComplete = k; | ||||
|   } | ||||
|   | ||||
| @@ -37,7 +37,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge, | ||||
|   bool ErrorOnNoConverge; // Throw an GRID_ASSERT when MPFGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
| @@ -91,7 +91,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     GRID_ASSERT(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
| @@ -150,7 +150,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|     std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) { | ||||
| @@ -197,7 +197,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     GRID_ASSERT(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   | ||||
| @@ -60,6 +60,32 @@ public: | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class NormalResidual : public LinearFunction<Field>{ | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 		 LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     Field res(in.Grid()); | ||||
|     Field tmp(in.Grid()); | ||||
|  | ||||
|     MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix); | ||||
|     _Guess(in,res); | ||||
|     _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ; | ||||
|     _Matrix.Mdag(res,out);             // out = Mdag res | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class HPDSolver : public LinearFunction<Field> { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   | ||||
| @@ -20,7 +20,7 @@ template<class Field> class PowerMethod | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 100;  | ||||
|     const int _MAX_ITER_EST_ = 200;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
| @@ -30,18 +30,17 @@ template<class Field> class PowerMethod | ||||
|       RealD vden = norm2(src_n);  | ||||
|       RealD na = vnum/vden;  | ||||
|  | ||||
|       std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|       std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|        | ||||
|       if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
|  	evalMaxApprox = na;  | ||||
| 	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|  	return evalMaxApprox;  | ||||
|       }  | ||||
|       //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
| 	// 	evalMaxApprox = na;  | ||||
| 	// 	return evalMaxApprox;  | ||||
|       //      }  | ||||
|       evalMaxApprox = na;  | ||||
|       src_n = tmp; | ||||
|     } | ||||
|     assert(0); | ||||
|     return 0; | ||||
|     std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|     return evalMaxApprox; | ||||
|   } | ||||
| }; | ||||
| } | ||||
|   | ||||
							
								
								
									
										76
									
								
								Grid/algorithms/iterative/PowerSpectrum.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								Grid/algorithms/iterative/PowerSpectrum.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,76 @@ | ||||
| #pragma once | ||||
| namespace Grid { | ||||
|  | ||||
| class Band | ||||
| { | ||||
|   RealD lo, hi; | ||||
| public: | ||||
|   Band(RealD _lo,RealD _hi) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|   } | ||||
|   RealD operator() (RealD x){ | ||||
|     if ( x>lo && x<hi ){ | ||||
|       return 1.0; | ||||
|     } else { | ||||
|       return 0.0; | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| class PowerSpectrum | ||||
| {  | ||||
|  public:  | ||||
|  | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
|  | ||||
|   std::vector<RealD> ranges; | ||||
|   std::vector<int> order; | ||||
|    | ||||
|   PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { }; | ||||
|  | ||||
|   template<class Field> | ||||
|   RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)  | ||||
|   {  | ||||
|     GridBase *grid = src.Grid();  | ||||
|     int N=ranges.size(); | ||||
|     RealD hi = ranges[N-1]; | ||||
|  | ||||
|     RealD lo_band = 0.0; | ||||
|     RealD hi_band; | ||||
|     RealD nn=norm2(src); | ||||
|     RealD ss=0.0; | ||||
|  | ||||
|     Field tmp = src; | ||||
|  | ||||
|     for(int b=0;b<N;b++){ | ||||
|       hi_band = ranges[b]; | ||||
|       Band Notch(lo_band,hi_band); | ||||
|        | ||||
|       Chebyshev<Field> polynomial; | ||||
|       polynomial.Init(0.0,hi,order[b],Notch); | ||||
|       polynomial.JacksonSmooth(); | ||||
|  | ||||
|       polynomial(HermOp,src,tmp) ; | ||||
|  | ||||
|       RealD p=norm2(tmp); | ||||
|       ss=ss+p; | ||||
|       std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl; | ||||
|        | ||||
|       lo_band=hi_band; | ||||
|     } | ||||
|     std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl; | ||||
|     std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl; | ||||
|  | ||||
|     return 0; | ||||
|   }; | ||||
| }; | ||||
|    | ||||
| } | ||||
| @@ -112,7 +112,7 @@ public: | ||||
|     } | ||||
|  | ||||
|     std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl; | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -118,7 +118,7 @@ public: | ||||
|  | ||||
|     } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|     //    GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
| @@ -221,7 +221,7 @@ public: | ||||
|       int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history. | ||||
|       for(int back=0;back<northog;back++){ | ||||
|  | ||||
| 	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0); | ||||
| 	int peri_back=(k-back)%mmax;   	  GRID_ASSERT((k-back)>=0); | ||||
|  | ||||
| 	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back]; | ||||
| 	p[peri_kp]=p[peri_kp]+b*p[peri_back]; | ||||
| @@ -231,7 +231,7 @@ public: | ||||
|       qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|     } | ||||
|     assert(0); // never reached | ||||
|     GRID_ASSERT(0); // never reached | ||||
|     return cp; | ||||
|   } | ||||
| }; | ||||
|   | ||||
| @@ -74,7 +74,7 @@ public: | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|     //    psi=Zero(); | ||||
|     RealD cp, ssq,rsq; | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
| @@ -113,7 +113,7 @@ public: | ||||
|  | ||||
|     } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|     //    GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
| @@ -224,7 +224,7 @@ public: | ||||
|       int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history. | ||||
|       for(int back=0;back<northog;back++){ | ||||
|  | ||||
| 	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0); | ||||
| 	int peri_back=(k-back)%mmax;   	  GRID_ASSERT((k-back)>=0); | ||||
|  | ||||
| 	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back]; | ||||
| 	p[peri_kp]=p[peri_kp]+b*p[peri_back]; | ||||
| @@ -234,7 +234,7 @@ public: | ||||
|       qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|     } | ||||
|     assert(0); // never reached | ||||
|     GRID_ASSERT(0); // never reached | ||||
|     return cp; | ||||
|   } | ||||
| }; | ||||
|   | ||||
| @@ -79,7 +79,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|  | ||||
|     LinOp.Op(x,r); r = b - r; | ||||
|  | ||||
|     assert(normb> 0.0); | ||||
|     GRID_ASSERT(normb> 0.0); | ||||
|  | ||||
|     resid = norm2(r)/normb; | ||||
|     if (resid <= Tolerance) { | ||||
| @@ -105,8 +105,8 @@ class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|     for (int i = 1; i <= MaxIterations; i++) { | ||||
|  | ||||
|       // Breakdown tests | ||||
|       assert( rho != 0.0); | ||||
|       assert( xi  != 0.0); | ||||
|       GRID_ASSERT( rho != 0.0); | ||||
|       GRID_ASSERT( xi  != 0.0); | ||||
|  | ||||
|       v = (1. / rho) * v_tld; | ||||
|       y = (1. / rho) * y; | ||||
| @@ -134,10 +134,10 @@ class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|       ep=Zep.real(); | ||||
|       std::cout << "Zep "<<Zep <<std::endl; | ||||
|       // Complex Audit | ||||
|       assert(abs(ep)>0); | ||||
|       GRID_ASSERT(abs(ep)>0); | ||||
|  | ||||
|       beta = ep / delta; | ||||
|       assert(abs(beta)>0); | ||||
|       GRID_ASSERT(abs(beta)>0); | ||||
|  | ||||
|       v_tld = p_tld - beta * v; | ||||
|       y = v_tld; | ||||
| @@ -158,7 +158,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|       std::cout << "theta "<<theta<<std::endl; | ||||
|       std::cout << "gamma "<<gamma<<std::endl; | ||||
|  | ||||
|       assert(abs(gamma)> 0.0); | ||||
|       GRID_ASSERT(abs(gamma)> 0.0); | ||||
|  | ||||
|       eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1); | ||||
|  | ||||
| @@ -178,7 +178,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|       } | ||||
|       std::cout << "Iteration "<<i<<" resid " << resid<<std::endl; | ||||
|     } | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|     return;                            // no convergence | ||||
|   } | ||||
| #else | ||||
|   | ||||
| @@ -327,9 +327,9 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm. | ||||
|     } | ||||
| @@ -347,17 +347,17 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o,tmp);        GRID_ASSERT(  tmp.Checkerboard()   ==Even); | ||||
|       src_e = src_e-tmp;               GRID_ASSERT(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); GRID_ASSERT(  sol_o.Checkerboard() ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  GRID_ASSERT(sol_o.Checkerboard()==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
| @@ -396,13 +396,13 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);        | ||||
|  | ||||
|     } | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
| @@ -416,17 +416,17 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o,tmp);          GRID_ASSERT(  tmp.Checkerboard()   ==Even); | ||||
|       src_e_i = src_e-tmp;               GRID_ASSERT(  src_e_i.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e_i,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); GRID_ASSERT(  sol_o.Checkerboard() ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  GRID_ASSERT(sol_o.Checkerboard()==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
| @@ -461,9 +461,9 @@ namespace Grid { | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
|         _Matrix.MooeeInv(src_e, tmp);   GRID_ASSERT(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    GRID_ASSERT(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  GRID_ASSERT( src_o.Checkerboard() == Odd  );      | ||||
|       } | ||||
|        | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
| @@ -478,18 +478,18 @@ namespace Grid { | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even ); | ||||
|         src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe(sol_o, tmp);         GRID_ASSERT(     tmp.Checkerboard() == Even ); | ||||
|         src_e_i = src_e - tmp;             GRID_ASSERT( src_e_i.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(src_e_i, sol_e);  GRID_ASSERT(   sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  ); | ||||
|         setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o); GRID_ASSERT( sol_o.Checkerboard() == Odd  ); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  GRID_ASSERT(sol_o.Checkerboard() == Odd); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o) | ||||
| @@ -539,13 +539,13 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);      | ||||
|       Mtmp=src_o-Mtmp;                  | ||||
|       _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(Mtmp,tmp);      GRID_ASSERT( tmp.Checkerboard() ==Odd);      | ||||
|        | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);        | ||||
|     } | ||||
|  | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
| @@ -560,12 +560,12 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o,tmp);    GRID_ASSERT(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;             GRID_ASSERT(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e);  GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o);  GRID_ASSERT(  sol_o.Checkerboard() ==Odd ); | ||||
|     }; | ||||
|  | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
| @@ -612,12 +612,12 @@ namespace Grid { | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);        | ||||
|     } | ||||
|  | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
| @@ -638,12 +638,12 @@ namespace Grid { | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o_i,tmp);    GRID_ASSERT(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;               GRID_ASSERT(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd ); | ||||
|       setCheckerboard(sol,sol_e);    GRID_ASSERT(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o_i);  GRID_ASSERT(  sol_o_i.Checkerboard() ==Odd ); | ||||
|     }; | ||||
|  | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
| @@ -684,9 +684,9 @@ namespace Grid { | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
|         _Matrix.MooeeInv(src_e, tmp);   GRID_ASSERT(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    GRID_ASSERT(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  GRID_ASSERT( src_o.Checkerboard() == Odd  );      | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
| @@ -707,12 +707,12 @@ namespace Grid { | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even ); | ||||
|         tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe(sol_o_i, tmp);    GRID_ASSERT(   tmp.Checkerboard() == Even ); | ||||
|         tmp = src_e - tmp;              GRID_ASSERT( src_e.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(tmp, sol_e);   GRID_ASSERT( sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  ); | ||||
|         setCheckerboard(sol, sol_e);    GRID_ASSERT(   sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o_i);  GRID_ASSERT( sol_o_i.Checkerboard() == Odd  ); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|   | ||||
| @@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| inline RealD AggregatePowerLaw(RealD x) | ||||
| @@ -95,7 +97,7 @@ public: | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     ConjugateGradient<FineField> CG(1.0e-3,400,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
| @@ -108,7 +110,7 @@ public: | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<1;i++){ | ||||
|       for(int i=0;i<4;i++){ | ||||
|  | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
|  | ||||
| @@ -124,6 +126,53 @@ public: | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis) | ||||
|   { | ||||
|     RealD scale; | ||||
|  | ||||
|     TrivialPrecon<FineField> simple_fine; | ||||
|     PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField src(FineGrid); | ||||
|     FineField guess(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<2;i++){ | ||||
| 	//  void operator() (const Field &src, Field &psi){ | ||||
| #if 1 | ||||
| 	std::cout << GridLogMessage << " inverting on noise "<<std::endl; | ||||
| 	src = noise; | ||||
| 	guess=Zero(); | ||||
| 	GCR(src,guess); | ||||
| 	subspace[b] = guess; | ||||
| #else | ||||
| 	std::cout << GridLogMessage << " inverting on zero "<<std::endl; | ||||
| 	src=Zero(); | ||||
| 	guess = noise; | ||||
| 	GCR(src,guess); | ||||
| 	subspace[b] = guess; | ||||
| #endif | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
| @@ -160,14 +209,21 @@ public: | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       ComplexD ip; | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|  | ||||
|       hermop.Op(Mn,tmp); | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       ip= innerProduct(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
|  | ||||
|       hermop.AdjOp(Mn,tmp);  | ||||
|       ip = innerProduct(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
| @@ -213,8 +269,18 @@ public: | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
|  | ||||
|  | ||||
| 	  ComplexD ip; | ||||
|  | ||||
| 	  hermop.Op(Mn,tmp); | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  ip= innerProduct(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
|  | ||||
| 	  hermop.AdjOp(Mn,tmp);  | ||||
| 	  ip = innerProduct(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl; | ||||
| 	   | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| @@ -226,8 +292,72 @@ public: | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|     GRID_ASSERT(b==nn); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo1, | ||||
| 				       int orderfilter, | ||||
| 				       double lo2, | ||||
| 				       int orderstep) | ||||
|   { | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl; | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); | ||||
|     std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl; | ||||
|       Chebyshev<FineField> Cheb(lo1,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     for(int n=1;n<nn;n++){ | ||||
|       std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl; | ||||
|       Chebyshev<FineField> Cheb(lo2,hi,orderstep); | ||||
|       Cheb(hermop,subspace[n-1],Mn); | ||||
|  | ||||
|       for(int m=0;m<n;m++){ | ||||
| 	ComplexD c = innerProduct(subspace[m],Mn); | ||||
| 	Mn = Mn - c*subspace[m]; | ||||
|       } | ||||
|        | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); | ||||
|       Mn=Mn*scale; | ||||
|        | ||||
|       subspace[n]=Mn; | ||||
|        | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
|   | ||||
| @@ -99,7 +99,7 @@ public: | ||||
|   CoarseMatrix AselfInvEven; | ||||
|   CoarseMatrix AselfInvOdd; | ||||
|  | ||||
|   Vector<RealD> dag_factor; | ||||
|   deviceVector<RealD> dag_factor; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
| @@ -124,9 +124,13 @@ public: | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|        | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
| @@ -161,7 +165,7 @@ public: | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|   }; | ||||
|  | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
| @@ -190,9 +194,14 @@ public: | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
| @@ -201,10 +210,10 @@ public: | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     Vector<int> points(geom.npoint, 0); | ||||
|     for(int p=0; p<geom.npoint; p++) | ||||
|       points[p] = geom.points_dagger[p]; | ||||
|  | ||||
|     deviceVector<int> points(geom.npoint); | ||||
|     for(int p=0; p<geom.npoint; p++) {  | ||||
|       acceleratorPut(points[p],geom.points_dagger[p]); | ||||
|     } | ||||
|     auto points_p = &points[0]; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
| @@ -236,7 +245,7 @@ public: | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|  | ||||
|   void MdirComms(const CoarseVector &in) | ||||
| @@ -251,8 +260,14 @@ public: | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|  | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
| @@ -285,7 +300,7 @@ public: | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|     }); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|   void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) | ||||
|   { | ||||
| @@ -294,7 +309,7 @@ public: | ||||
|     if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {  | ||||
|       std::cout <<"MdirAll out size "<< out.size()<<std::endl; | ||||
|       std::cout <<"MdirAll ndir "<< ndir<<std::endl; | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|     for(int p=0;p<ndir;p++){ | ||||
|       MdirCalc(in,out[p],p); | ||||
| @@ -358,7 +373,7 @@ public: | ||||
|     conformable(in.Grid(), _cbgrid);    // verifies half grid | ||||
|     conformable(in.Grid(), out.Grid()); // drops the cb check | ||||
|  | ||||
|     assert(in.Checkerboard() == Even); | ||||
|     GRID_ASSERT(in.Checkerboard() == Even); | ||||
|     out.Checkerboard() = Odd; | ||||
|  | ||||
|     DhopInternal(StencilEven, Aodd, in, out, dag); | ||||
| @@ -368,7 +383,7 @@ public: | ||||
|     conformable(in.Grid(), _cbgrid);    // verifies half grid | ||||
|     conformable(in.Grid(), out.Grid()); // drops the cb check | ||||
|  | ||||
|     assert(in.Checkerboard() == Odd); | ||||
|     GRID_ASSERT(in.Checkerboard() == Odd); | ||||
|     out.Checkerboard() = Even; | ||||
|  | ||||
|     DhopInternal(StencilOdd, Aeven, in, out, dag); | ||||
| @@ -376,7 +391,7 @@ public: | ||||
|  | ||||
|   void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) { | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     assert(in.Checkerboard() == Odd || in.Checkerboard() == Even); | ||||
|     GRID_ASSERT(in.Checkerboard() == Odd || in.Checkerboard() == Even); | ||||
|  | ||||
|     CoarseMatrix *Aself = nullptr; | ||||
|     if(in.Grid()->_isCheckerBoarded) { | ||||
| @@ -391,7 +406,7 @@ public: | ||||
|       Aself = (inv) ? &AselfInv : &A[geom.npoint-1]; | ||||
|       DselfInternal(Stencil, *Aself, in, out, dag); | ||||
|     } | ||||
|     assert(Aself != nullptr); | ||||
|     GRID_ASSERT(Aself != nullptr); | ||||
|   } | ||||
|  | ||||
|   void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a, | ||||
| @@ -469,14 +484,20 @@ public: | ||||
|  | ||||
|     // determine in what order we need the points | ||||
|     int npoint = geom.npoint-1; | ||||
|     Vector<int> points(npoint, 0); | ||||
|     for(int p=0; p<npoint; p++) | ||||
|       points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p; | ||||
|  | ||||
|     deviceVector<int> points(npoint); | ||||
|     for(int p=0; p<npoint; p++) { | ||||
|       int val = (dag && !hermitian) ? geom.points_dagger[p] : p; | ||||
|       acceleratorPut(points[p], val); | ||||
|     } | ||||
|     auto points_p = &points[0]; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead)); | ||||
|     deviceVector<Aview> AcceleratorViewContainer(geom.npoint); | ||||
|     hostVector<Aview>   hAcceleratorViewContainer(geom.npoint); | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) { | ||||
|       hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead); | ||||
|       acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]); | ||||
|     } | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
| @@ -539,7 +560,7 @@ public: | ||||
|       }); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|     for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|    | ||||
|   CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	: | ||||
| @@ -590,11 +611,13 @@ public: | ||||
|     } | ||||
|  | ||||
|     // GPU readable prefactor | ||||
|     std::vector<RealD> h_dag_factor(nbasis*nbasis); | ||||
|     thread_for(i, nbasis*nbasis, { | ||||
|       int j = i/nbasis; | ||||
|       int k = i%nbasis; | ||||
|       dag_factor[i] = dag_factor_eigen(j, k); | ||||
|       h_dag_factor[i] = dag_factor_eigen(j, k); | ||||
|     }); | ||||
|     acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD)); | ||||
|   } | ||||
|  | ||||
|   void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| @@ -674,7 +697,7 @@ public: | ||||
|     evenmask = where(mod(bcb,2)==(Integer)0,one,zero); | ||||
|     oddmask  = one-evenmask; | ||||
|  | ||||
|     assert(self_stencil!=-1); | ||||
|     GRID_ASSERT(self_stencil!=-1); | ||||
|  | ||||
|     for(int i=0;i<nbasis;i++){ | ||||
|  | ||||
|   | ||||
| @@ -99,7 +99,7 @@ public: | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     assert(nfound==geom.npoint); | ||||
|     GRID_ASSERT(nfound==geom.npoint); | ||||
|     ExchangeCoarseLinks(); | ||||
|   } | ||||
|   */ | ||||
| @@ -124,7 +124,7 @@ public: | ||||
|   } | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     assert(hermitian); | ||||
|     GRID_ASSERT(hermitian); | ||||
|     Mult(_A,in,out); | ||||
|     //    if ( hermitian ) M(in,out); | ||||
|     //    else Mult(_Adag,in,out); | ||||
| @@ -441,8 +441,20 @@ public: | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #else | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Galerkin projection of matrix | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     CoarsenOperator(linop,Subspace,Subspace); | ||||
|   } | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Petrov - Galerkin projection of matrix | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & U, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & V) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
| @@ -458,11 +470,9 @@ public: | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|     blockOrthogonalise(InnerProd,V.subspace); | ||||
|     blockOrthogonalise(InnerProd,U.subspace); | ||||
|  | ||||
|     //    for(int s=0;s<Subspace.subspace.size();s++){ | ||||
|       //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl; | ||||
|     //    } | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
| @@ -542,7 +552,7 @@ public: | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	tphaseBZ-=usecond(); | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
| 	phaV = phaF[p]*V.subspace[i]; | ||||
| 	tphaseBZ+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| @@ -555,7 +565,7 @@ public: | ||||
| 	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl; | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	blockProject(coarseInner,MphaV,U.subspace); | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| @@ -609,7 +619,7 @@ public: | ||||
|       //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]); | ||||
|     } | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ GRID_ASSERT(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|   | ||||
| @@ -80,12 +80,12 @@ public: | ||||
|   // Can be used to do I/O on the operator matrices externally | ||||
|   void SetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     GRID_ASSERT(A.size()==geom_srhs.npoint); | ||||
|     GridtoBLAS(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void GetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     GRID_ASSERT(A.size()==geom_srhs.npoint); | ||||
|     BLAStoGrid(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void CopyMatrix (GeneralCoarseOp &_Op) | ||||
| @@ -178,14 +178,14 @@ public: | ||||
| 	for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	  int i=s*orhs*geom.npoint+point; | ||||
|  	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite | ||||
| 	  assert(nbr<BLAS_B.size()); | ||||
| 	  GRID_ASSERT(nbr<BLAS_B.size()); | ||||
| 	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr]; | ||||
| 	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume | ||||
| 	} | ||||
| 	j++; | ||||
|       } | ||||
|     } | ||||
|     assert(j==unpadded_sites); | ||||
|     GRID_ASSERT(j==unpadded_sites); | ||||
|   } | ||||
|   template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to) | ||||
|   { | ||||
| @@ -194,7 +194,7 @@ public: | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Fg = from.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Fg->_isCheckerBoarded); | ||||
|   int nd = Fg->_ndimension; | ||||
|  | ||||
|   to.resize(Fg->lSites()); | ||||
| @@ -241,10 +241,10 @@ public: | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Tg = grid.Grid(); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Tg->_isCheckerBoarded); | ||||
|   int nd = Tg->_ndimension; | ||||
|    | ||||
|   assert(in.size()==Tg->lSites()); | ||||
|   GRID_ASSERT(in.size()==Tg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Tg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
| @@ -669,7 +669,7 @@ Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|  | ||||
|     int64_t nrhs  =pin.Grid()->GlobalDimensions()[0]; | ||||
|     assert(nrhs>=1); | ||||
|     GRID_ASSERT(nrhs>=1); | ||||
|  | ||||
|     RealD flops,bytes; | ||||
|     int64_t osites=in.Grid()->oSites(); // unpadded | ||||
| @@ -721,7 +721,7 @@ Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us | ||||
|     //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|   }; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ GRID_ASSERT(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|   | ||||
| @@ -67,8 +67,8 @@ public: | ||||
|   } | ||||
|  | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
|     GRID_ASSERT(disp == -1 || disp == 0 || disp == 1); | ||||
|     GRID_ASSERT(base+0 <= dir && dir < base+4); | ||||
|  | ||||
|     // directions faster index = new indexing | ||||
|     // 4d (base = 0): | ||||
| @@ -131,7 +131,7 @@ public: | ||||
| 	return p; | ||||
|       } | ||||
|     } | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|     return -1; | ||||
|   } | ||||
|   void BuildShifts(void) | ||||
|   | ||||
| @@ -57,7 +57,7 @@ public: | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
| @@ -69,7 +69,7 @@ public: | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop | ||||
|   void construct(pointer __p, const _Tp& __val) { assert(0);}; | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| @@ -106,7 +106,7 @@ public: | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
| @@ -154,7 +154,7 @@ public: | ||||
|     if ( (_Tp*)ptr == (_Tp *) NULL ) { | ||||
|       printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes ); | ||||
|     } | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
| @@ -174,19 +174,10 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Template typedefs | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
| // Cshift on device | ||||
| template<class T> using cshiftAllocator = devAllocator<T>; | ||||
| #else | ||||
| // Cshift on host | ||||
| template<class T> using cshiftAllocator = std::allocator<T>; | ||||
| #endif | ||||
|  | ||||
| template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector    = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector  = std::vector<T,cshiftAllocator<T> >; | ||||
| template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview | ||||
| template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate | ||||
| template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page | ||||
| template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector | ||||
|  | ||||
| /* | ||||
| template<class T> class vecView | ||||
| @@ -197,8 +188,9 @@ template<class T> class vecView | ||||
|   ViewMode mode; | ||||
|   void * cpu_ptr; | ||||
|  public: | ||||
|   // Rvalue accessor | ||||
|   accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; | ||||
|   vecView(std::vector<T> &refer_to_me,ViewMode _mode) | ||||
|   vecView(Vector<T> &refer_to_me,ViewMode _mode) | ||||
|   { | ||||
|     cpu_ptr = &refer_to_me[0]; | ||||
|     size = refer_to_me.size(); | ||||
| @@ -214,22 +206,12 @@ template<class T> class vecView | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode) | ||||
| template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode) | ||||
| { | ||||
|   vecView<T> ret(vec,_mode); // does the open | ||||
|   return ret;                // must be closed | ||||
| } | ||||
|  | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class VectorViewCloser | ||||
| { | ||||
|   View v;  // Take a copy of view and call view close when I go out of scope automatically | ||||
|  public: | ||||
|   VectorViewCloser(View &_v) : v(_v) {}; | ||||
|   ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);} | ||||
| }; | ||||
|  | ||||
| #define autoVecView(v_v,v,mode)					\ | ||||
|   auto v_v = VectorView(v,mode);				\ | ||||
|   ViewCloser<decltype(v_v)> _autoView##v_v(v_v); | ||||
|   | ||||
| @@ -292,7 +292,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type) | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)  | ||||
| { | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
|   GRID_ASSERT(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   if (ncache == 0) return ptr; | ||||
| @@ -345,7 +345,7 @@ void *MemoryManager::Lookup(size_t bytes,int type) | ||||
| void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)  | ||||
| { | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
|   GRID_ASSERT(omp_in_parallel()==0); | ||||
| #endif  | ||||
|   for(int e=0;e<ncache;e++){ | ||||
|     if ( entries[e].valid && ( entries[e].bytes == bytes ) ) { | ||||
|   | ||||
| @@ -1,16 +1,15 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifndef GRID_UVM | ||||
|  | ||||
| #warning "Using explicit device memory copies" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define MAXLINE 512 | ||||
| static char print_buffer [ MAXLINE ]; | ||||
|  | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer; | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl; | ||||
| //#define dprintf(...)  | ||||
|  | ||||
| //#define mprintf(...)  | ||||
|  | ||||
| //////////////////////////////////////////////////////////// | ||||
| // For caching copies of data on device | ||||
| @@ -51,12 +50,12 @@ int   MemoryManager::EntryPresent(uint64_t CpuPtr) | ||||
| { | ||||
|   if(AccViewTable.empty()) return 0; | ||||
|  | ||||
|   auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1)); | ||||
|   auto count = AccViewTable.count(CpuPtr);  GRID_ASSERT((count==0)||(count==1)); | ||||
|   return count; | ||||
| } | ||||
| void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   assert(!EntryPresent(CpuPtr)); | ||||
|   GRID_ASSERT(!EntryPresent(CpuPtr)); | ||||
|   AcceleratorViewEntry AccCache; | ||||
|   AccCache.CpuPtr = CpuPtr; | ||||
|   AccCache.AccPtr = (uint64_t)NULL; | ||||
| @@ -70,9 +69,9 @@ void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,View | ||||
| } | ||||
| MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr) | ||||
| { | ||||
|   assert(EntryPresent(CpuPtr)); | ||||
|   GRID_ASSERT(EntryPresent(CpuPtr)); | ||||
|   auto AccCacheIterator = AccViewTable.find(CpuPtr); | ||||
|   assert(AccCacheIterator!=AccViewTable.end()); | ||||
|   GRID_ASSERT(AccCacheIterator!=AccViewTable.end()); | ||||
|   return AccCacheIterator; | ||||
| } | ||||
| void MemoryManager::EntryErase(uint64_t CpuPtr) | ||||
| @@ -82,7 +81,7 @@ void MemoryManager::EntryErase(uint64_t CpuPtr) | ||||
| } | ||||
| void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==0); | ||||
|   GRID_ASSERT(AccCache.LRU_valid==0); | ||||
|   if (AccCache.transient) {  | ||||
|     LRU.push_back(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = --LRU.end(); | ||||
| @@ -95,7 +94,7 @@ void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache) | ||||
| } | ||||
| void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==1); | ||||
|   GRID_ASSERT(AccCache.LRU_valid==1); | ||||
|   LRU.erase(AccCache.LRU_entry); | ||||
|   AccCache.LRU_valid = 0; | ||||
|   DeviceLRUBytes-=AccCache.bytes; | ||||
| @@ -109,19 +108,19 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
|   // Remove from Accelerator, remove entry, without flush | ||||
|   // Cannot be locked. If allocated Must be in LRU pool. | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|   GRID_ASSERT(AccCache.state!=Empty); | ||||
|    | ||||
|   dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   GRID_ASSERT(AccCache.accLock==0); | ||||
|   GRID_ASSERT(AccCache.cpuLock==0); | ||||
|   GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     DeviceDestroy++; | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t) NULL; | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| @@ -139,9 +138,9 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
|   //                          Take these OUT LRU queue when CPU locked? | ||||
|   //                          Cannot take out the table as cpuLock data is important. | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|   GRID_ASSERT(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n", | ||||
|   mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld", | ||||
| 	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, | ||||
| 	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);  | ||||
|   if (AccCache.accLock!=0) return; | ||||
| @@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
|     AccCache.AccPtr=(uint64_t)NULL; | ||||
|     AccCache.state=CpuDirty; // CPU primary now | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|     dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   //  uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   DeviceEvictions++; | ||||
| @@ -163,28 +162,30 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
| } | ||||
| void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==AccDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   GRID_ASSERT(AccCache.state==AccDirty); | ||||
|   GRID_ASSERT(AccCache.cpuLock==0); | ||||
|   GRID_ASSERT(AccCache.accLock==0); | ||||
|   GRID_ASSERT(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
| void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==CpuDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   GRID_ASSERT(AccCache.state==CpuDirty); | ||||
|   GRID_ASSERT(AccCache.cpuLock==0); | ||||
|   GRID_ASSERT(AccCache.accLock==0); | ||||
|   GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx", | ||||
| 	  (uint64_t)AccCache.bytes, | ||||
| 	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
| @@ -193,10 +194,10 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
|  | ||||
| void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state!=Empty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   GRID_ASSERT(AccCache.state!=Empty); | ||||
|   GRID_ASSERT(AccCache.cpuLock==0); | ||||
|   GRID_ASSERT(AccCache.accLock==0); | ||||
|   GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
| @@ -210,33 +211,36 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| void MemoryManager::ViewClose(void* Ptr,ViewMode mode) | ||||
| { | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr); | ||||
|     dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr); | ||||
|     AcceleratorViewClose((uint64_t)Ptr); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     CpuViewClose((uint64_t)Ptr); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
| } | ||||
| void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr); | ||||
|     dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr); | ||||
|     return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|     return NULL; | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::EvictVictims(uint64_t bytes) | ||||
| { | ||||
|   assert(bytes<DeviceMaxBytes); | ||||
|   if(bytes>=DeviceMaxBytes) { | ||||
|     printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes); | ||||
|   } | ||||
|   GRID_ASSERT(bytes<DeviceMaxBytes); | ||||
|   while(bytes+DeviceLRUBytes > DeviceMaxBytes){ | ||||
|     if ( DeviceLRUBytes > 0){ | ||||
|       assert(LRU.size()>0); | ||||
|       GRID_ASSERT(LRU.size()>0); | ||||
|       uint64_t victim = LRU.back(); // From the LRU | ||||
|       auto AccCacheIterator = EntryLookup(victim); | ||||
|       auto & AccCache = AccCacheIterator->second; | ||||
| @@ -260,19 +264,19 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|   if (!AccCache.AccPtr) { | ||||
|     EvictVictims(bytes);  | ||||
|   }  | ||||
|   assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); | ||||
|   GRID_ASSERT((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); | ||||
|  | ||||
|   assert(AccCache.cpuLock==0);  // Programming error | ||||
|   GRID_ASSERT(AccCache.cpuLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n", | ||||
|     dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld", | ||||
| 		    (uint64_t)AccCache.CpuPtr, | ||||
| 		    (uint64_t)CpuPtr, | ||||
| 		    (uint64_t)AccCache.bytes, | ||||
| 	            (uint64_t)bytes, | ||||
| 		    (uint64_t)AccCache.accLock); | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes  ==bytes); | ||||
|     GRID_ASSERT(AccCache.CpuPtr == CpuPtr); | ||||
|     GRID_ASSERT(AccCache.bytes  ==bytes); | ||||
|   } | ||||
| /* | ||||
|  *  State transitions and actions | ||||
| @@ -289,7 +293,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|  *  AccWrite AccDirty   AccDirty       -        -  | ||||
|  */ | ||||
|   if(AccCache.state==Empty) { | ||||
|     assert(AccCache.LRU_valid==0); | ||||
|     GRID_ASSERT(AccCache.LRU_valid==0); | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
| @@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|       AccCache.state  = Consistent; // Empty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock= 1; | ||||
|     dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock); | ||||
|     dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock); | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     if(mode==AcceleratorWriteDiscard) { | ||||
|       CpuDiscard(AccCache); | ||||
| @@ -318,30 +322,30 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|       AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock++; | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock); | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = Consistent; // Consistent + AccRead => Consistent | ||||
|     AccCache.accLock++; | ||||
|     dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|     dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock); | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty | ||||
|     AccCache.accLock++; | ||||
|     dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); | ||||
|     dprintf("AccDirty entry ++accLock= %d",AccCache.accLock); | ||||
|   } else { | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   assert(AccCache.accLock>0); | ||||
|   GRID_ASSERT(AccCache.accLock>0); | ||||
|   // If view is opened on device must remove from LRU | ||||
|   if(AccCache.LRU_valid==1){ | ||||
|     // must possibly remove from LRU as now locked on GPU | ||||
|     dprintf("AccCache entry removed from LRU \n"); | ||||
|     dprintf("AccCache entry removed from LRU "); | ||||
|     LRUremove(AccCache); | ||||
|   } | ||||
|  | ||||
| @@ -358,16 +362,16 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr) | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock>0); | ||||
|   GRID_ASSERT(AccCache.cpuLock==0); | ||||
|   GRID_ASSERT(AccCache.accLock>0); | ||||
|  | ||||
|   AccCache.accLock--; | ||||
|   // Move to LRU queue if not locked and close on device | ||||
|   if(AccCache.accLock==0) { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     LRUinsert(AccCache); | ||||
|   } else { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|   } | ||||
| } | ||||
| void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
| @@ -375,8 +379,8 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock>0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   GRID_ASSERT(AccCache.cpuLock>0); | ||||
|   GRID_ASSERT(AccCache.accLock==0); | ||||
|  | ||||
|   AccCache.cpuLock--; | ||||
| } | ||||
| @@ -409,12 +413,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V | ||||
|   //    EvictVictims(bytes); | ||||
|   //  } | ||||
|  | ||||
|   assert((mode==CpuRead)||(mode==CpuWrite)); | ||||
|   assert(AccCache.accLock==0);  // Programming error | ||||
|   GRID_ASSERT((mode==CpuRead)||(mode==CpuWrite)); | ||||
|   GRID_ASSERT(AccCache.accLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes==bytes); | ||||
|     GRID_ASSERT(AccCache.CpuPtr == CpuPtr); | ||||
|     GRID_ASSERT(AccCache.bytes==bytes); | ||||
|   } | ||||
|  | ||||
|   if(AccCache.state==Empty) { | ||||
| @@ -429,20 +433,20 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V | ||||
|     AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     if(mode==CpuWrite) | ||||
|       AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty | ||||
|     else  | ||||
|       AccCache.state = Consistent; // Consistent +CpuRead  => Consistent | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     Flush(AccCache); | ||||
|     if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush | ||||
|     else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush | ||||
|     AccCache.cpuLock++; | ||||
|   } else { | ||||
|     assert(0); // should be unreachable | ||||
|     GRID_ASSERT(0); // should be unreachable | ||||
|   } | ||||
|  | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
| @@ -524,12 +528,12 @@ void MemoryManager::Audit(std::string s) | ||||
|   std::cout << " Memory Manager::Audit() from "<<s<<std::endl; | ||||
|   for(auto it=LRU.begin();it!=LRU.end();it++){ | ||||
|     uint64_t cpuPtr = *it; | ||||
|     assert(EntryPresent(cpuPtr)); | ||||
|     GRID_ASSERT(EntryPresent(cpuPtr)); | ||||
|     auto AccCacheIterator = EntryLookup(cpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     LruBytes2+=AccCache.bytes; | ||||
|     assert(AccCache.LRU_valid==1); | ||||
|     assert(AccCache.LRU_entry==it); | ||||
|     GRID_ASSERT(AccCache.LRU_valid==1); | ||||
|     GRID_ASSERT(AccCache.LRU_entry==it); | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl; | ||||
|  | ||||
| @@ -548,7 +552,7 @@ void MemoryManager::Audit(std::string s) | ||||
|     if( AccCache.LRU_valid ) LruCnt++; | ||||
|      | ||||
|     if ( AccCache.cpuLock || AccCache.accLock ) { | ||||
|       assert(AccCache.LRU_valid==0); | ||||
|       GRID_ASSERT(AccCache.LRU_valid==0); | ||||
|  | ||||
|       std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| @@ -557,16 +561,16 @@ void MemoryManager::Audit(std::string s) | ||||
| 		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl; | ||||
|     } | ||||
|  | ||||
|     assert( AccCache.cpuLock== 0 ) ; | ||||
|     assert( AccCache.accLock== 0 ) ; | ||||
|     GRID_ASSERT( AccCache.cpuLock== 0 ) ; | ||||
|     GRID_ASSERT( AccCache.accLock== 0 ) ; | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl; | ||||
|   assert(LruBytes1==LruBytes2); | ||||
|   assert(LruBytes1==DeviceLRUBytes); | ||||
|   GRID_ASSERT(LruBytes1==LruBytes2); | ||||
|   GRID_ASSERT(LruBytes1==DeviceLRUBytes); | ||||
|   std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl; | ||||
|   assert(AccBytes==DeviceBytes); | ||||
|   GRID_ASSERT(AccBytes==DeviceBytes); | ||||
|   std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl; | ||||
|   assert(LruCnt == LRU.size()); | ||||
|   GRID_ASSERT(LruCnt == LRU.size()); | ||||
|   std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl; | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -10,16 +10,16 @@ void check_huge_pages(void *Buf,uint64_t BYTES) | ||||
| { | ||||
| #ifdef __linux__ | ||||
|   int fd = open("/proc/self/pagemap", O_RDONLY); | ||||
|   assert(fd >= 0); | ||||
|   GRID_ASSERT(fd >= 0); | ||||
|   const int page_size = 4096; | ||||
|   uint64_t virt_pfn = (uint64_t)Buf / page_size; | ||||
|   off_t offset = sizeof(uint64_t) * virt_pfn; | ||||
|   uint64_t npages = (BYTES + page_size-1) / page_size; | ||||
|   uint64_t pagedata[npages]; | ||||
|   std::vector<uint64_t> pagedata(npages); | ||||
|   uint64_t ret = lseek(fd, offset, SEEK_SET); | ||||
|   assert(ret == offset); | ||||
|   ret = ::read(fd, pagedata, sizeof(uint64_t)*npages); | ||||
|   assert(ret == sizeof(uint64_t) * npages); | ||||
|   GRID_ASSERT(ret == offset); | ||||
|   ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages); | ||||
|   GRID_ASSERT(ret == sizeof(uint64_t) * npages); | ||||
|   int nhugepages = npages / 512; | ||||
|   int n4ktotal, nnothuge; | ||||
|   n4ktotal = 0; | ||||
|   | ||||
| @@ -82,6 +82,7 @@ public: | ||||
|   bool _isCheckerBoarded;  | ||||
|   int        LocallyPeriodic; | ||||
|   Coordinate _checker_dim_mask; | ||||
|   int              _checker_dim; | ||||
|  | ||||
| public: | ||||
|  | ||||
| @@ -89,9 +90,8 @@ public: | ||||
|   // Checkerboarding interface is virtual and overridden by  | ||||
|   // GridCartesian / GridRedBlackCartesian | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   virtual int CheckerBoarded(int dim)=0; | ||||
|   virtual int CheckerBoarded(int dim) =0; | ||||
|   virtual int CheckerBoard(const Coordinate &site)=0; | ||||
|   virtual int CheckerDim(void){ return 0; }; | ||||
|   virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0; | ||||
|   virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0; | ||||
|   virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0; | ||||
| @@ -165,7 +165,7 @@ public: | ||||
|     // | ||||
|     if ( _simd_layout[dimension] > 2 ) {  | ||||
|       for(int d=0;d<_ndimension;d++){ | ||||
| 	if ( d != dimension ) assert ( (_simd_layout[d]==1)  ); | ||||
| 	if ( d != dimension ) GRID_ASSERT ( (_simd_layout[d]==1)  ); | ||||
|       } | ||||
|       permute_type = RotateBit; // How to specify distance; this is not just direction. | ||||
|       return permute_type; | ||||
| @@ -187,7 +187,7 @@ public: | ||||
|   inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };  | ||||
|   inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
|   inline const Coordinate &LocalStarts(void)            { return _lstart;    }; | ||||
|   inline const Coordinate &FullDimensions(void)         { return _fdimensions;}; | ||||
|   inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;}; | ||||
|   inline const Coordinate &LocalDimensions(void)        { return _ldimensions;}; | ||||
| @@ -216,11 +216,11 @@ public: | ||||
|   // Global addressing | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){ | ||||
|     assert(gidx< gSites()); | ||||
|     GRID_ASSERT(gidx< gSites()); | ||||
|     Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|   } | ||||
|   void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){ | ||||
|     assert(lidx<lSites()); | ||||
|     GRID_ASSERT(lidx<lSites()); | ||||
|     Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|   } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){ | ||||
|   | ||||
| @@ -38,7 +38,7 @@ class GridCartesian: public GridBase { | ||||
|  | ||||
| public: | ||||
|   int dummy; | ||||
|   Coordinate _checker_dim_mask; | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|   virtual int  CheckerBoardFromOindexTable (int Oindex) { | ||||
|     return 0; | ||||
|   } | ||||
| @@ -46,7 +46,7 @@ public: | ||||
|   { | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoarded(int dim){ | ||||
|   virtual int CheckerBoarded(int dim) { | ||||
|     return 0; | ||||
|   } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
| @@ -106,6 +106,7 @@ public: | ||||
|     _rdimensions.resize(_ndimension); | ||||
|     _simd_layout.resize(_ndimension); | ||||
|     _checker_dim_mask.resize(_ndimension);; | ||||
|     _checker_dim = -1; | ||||
|     _lstart.resize(_ndimension); | ||||
|     _lend.resize(_ndimension); | ||||
|  | ||||
| @@ -127,10 +128,10 @@ public: | ||||
|         // Use a reduced simd grid | ||||
|         _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions | ||||
|         //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl; | ||||
|         assert(_ldimensions[d] * _processors[d] == _gdimensions[d]); | ||||
|         GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]); | ||||
|  | ||||
|         _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition | ||||
|         assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); | ||||
|         GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); | ||||
|  | ||||
|         _lstart[d] = _processor_coor[d] * _ldimensions[d]; | ||||
|         _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1; | ||||
|   | ||||
| @@ -57,17 +57,17 @@ class GridRedBlackCartesian : public GridBase | ||||
| { | ||||
| public: | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|   int              _checker_dim; | ||||
|   //  int              _checker_dim; | ||||
|   std::vector<int> _checker_board; | ||||
|  | ||||
|   virtual int CheckerDim(void){ return _checker_dim; }; | ||||
|   virtual int isCheckerBoarded(void) const { return 1; }; | ||||
|   virtual int CheckerBoarded(int dim){ | ||||
|     if( dim==_checker_dim) return 1; | ||||
|     else return 0; | ||||
|   } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     int linear=0; | ||||
|     assert(site.size()==_ndimension); | ||||
|     GRID_ASSERT(site.size()==_ndimension); | ||||
|     for(int d=0;d<_ndimension;d++){  | ||||
|       if(_checker_dim_mask[d]) | ||||
| 	linear=linear+site[d]; | ||||
| @@ -160,11 +160,11 @@ public: | ||||
|  | ||||
|       _isCheckerBoarded = true; | ||||
|     _checker_dim = checker_dim; | ||||
|     assert(checker_dim_mask[checker_dim] == 1); | ||||
|     GRID_ASSERT(checker_dim_mask[checker_dim] == 1); | ||||
|     _ndimension = dimensions.size(); | ||||
|     assert(checker_dim_mask.size() == _ndimension); | ||||
|     assert(processor_grid.size() == _ndimension); | ||||
|     assert(simd_layout.size() == _ndimension); | ||||
|     GRID_ASSERT(checker_dim_mask.size() == _ndimension); | ||||
|     GRID_ASSERT(processor_grid.size() == _ndimension); | ||||
|     GRID_ASSERT(simd_layout.size() == _ndimension); | ||||
|  | ||||
|     _fdimensions.resize(_ndimension); | ||||
|     _gdimensions.resize(_ndimension); | ||||
| @@ -190,20 +190,20 @@ public: | ||||
|  | ||||
|         if (d == _checker_dim) | ||||
| 	  { | ||||
| 	    assert((_gdimensions[d] & 0x1) == 0); | ||||
| 	    GRID_ASSERT((_gdimensions[d] & 0x1) == 0); | ||||
| 	    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard | ||||
| 	    _gsites /= 2; | ||||
| 	  } | ||||
|         _ldimensions[d] = _gdimensions[d] / _processors[d]; | ||||
|         assert(_ldimensions[d] * _processors[d] == _gdimensions[d]); | ||||
|         GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]); | ||||
|         _lstart[d] = _processor_coor[d] * _ldimensions[d]; | ||||
|         _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1; | ||||
|  | ||||
|         // Use a reduced simd grid | ||||
|         _simd_layout[d] = simd_layout[d]; | ||||
|         _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer | ||||
|         assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); | ||||
|         assert(_rdimensions[d] > 0); | ||||
|         GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); | ||||
|         GRID_ASSERT(_rdimensions[d] > 0); | ||||
|  | ||||
|         // all elements of a simd vector must have same checkerboard. | ||||
|         // If Ls vectorised, this must still be the case; e.g. dwf rb5d | ||||
|   | ||||
| @@ -57,18 +57,29 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return | ||||
| // very VERY rarely (Log, serial RNG) we need world without a grid | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| #ifdef USE_GRID_REDUCTION | ||||
| void CartesianCommunicator::GlobalSum(ComplexF &c) | ||||
| { | ||||
|   GlobalSumP2P(c); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(ComplexD &c) | ||||
| { | ||||
|   GlobalSumP2P(c); | ||||
| } | ||||
| #else | ||||
| void CartesianCommunicator::GlobalSum(ComplexF &c) | ||||
| { | ||||
|   GlobalSumVector((float *)&c,2); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N) | ||||
| { | ||||
|   GlobalSumVector((float *)c,2*N); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(ComplexD &c) | ||||
| { | ||||
|   GlobalSumVector((double *)&c,2); | ||||
| } | ||||
| #endif | ||||
| void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N) | ||||
| { | ||||
|   GlobalSumVector((float *)c,2*N); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N) | ||||
| { | ||||
|   GlobalSumVector((double *)c,2*N); | ||||
|   | ||||
| @@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| /////////////////////////////////// | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| #define NVLINK_GET | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern bool Stencil_force_mpi ; | ||||
| @@ -106,7 +108,7 @@ public: | ||||
|   // very VERY rarely (Log, serial RNG) we need world without a grid | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   static int  RankWorld(void) ; | ||||
|   static void BroadcastWorld(int root,void* data, int bytes); | ||||
|   static void BroadcastWorld(int root,void* data, uint64_t bytes); | ||||
|   static void BarrierWorld(void); | ||||
|    | ||||
|   //////////////////////////////////////////////////////////// | ||||
| @@ -128,6 +130,35 @@ public: | ||||
|   void GlobalXOR(uint32_t &); | ||||
|   void GlobalXOR(uint64_t &); | ||||
|  | ||||
|   template<class obj> void GlobalSumP2P(obj &o) | ||||
|   { | ||||
|     std::vector<obj> column; | ||||
|     obj accum = o; | ||||
|     int source,dest; | ||||
|     for(int d=0;d<_ndimension;d++){ | ||||
|       column.resize(_processors[d]); | ||||
|       column[0] = accum; | ||||
|       std::vector<MpiCommsRequest_t> list; | ||||
|       for(int p=1;p<_processors[d];p++){ | ||||
| 	ShiftedRanks(d,p,source,dest); | ||||
| 	SendToRecvFromBegin(list, | ||||
| 			    &column[0], | ||||
| 			    dest, | ||||
| 			    &column[p], | ||||
| 			    source, | ||||
| 			    sizeof(obj),d*100+p); | ||||
|  | ||||
|       } | ||||
|       if (!list.empty()) // avoid triggering GRID_ASSERT in comms == none | ||||
| 	CommsComplete(list); | ||||
|       for(int p=1;p<_processors[d];p++){ | ||||
| 	accum = accum + column[p]; | ||||
|       } | ||||
|     } | ||||
|     Broadcast(0,accum); | ||||
|     o=accum; | ||||
|   } | ||||
|  | ||||
|   template<class obj> void GlobalSum(obj &o){ | ||||
|     typedef typename obj::scalar_type scalar_type; | ||||
|     int words = sizeof(obj)/sizeof(scalar_type); | ||||
| @@ -138,32 +169,44 @@ public: | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Face exchange, buffer swap in translational invariant way | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void CommsComplete(std::vector<CommsRequest_t> &list); | ||||
|   void SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
|   void CommsComplete(std::vector<MpiCommsRequest_t> &list); | ||||
|   void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list, | ||||
| 			   void *xmit, | ||||
| 			   int dest, | ||||
| 			   void *recv, | ||||
| 			   int from, | ||||
| 			   int bytes,int dir); | ||||
| 			   uint64_t bytes,int dir); | ||||
|    | ||||
|   void SendToRecvFrom(void *xmit, | ||||
| 		      int xmit_to_rank, | ||||
| 		      void *recv, | ||||
| 		      int recv_from_rank, | ||||
| 		      int bytes); | ||||
| 		      uint64_t bytes); | ||||
|    | ||||
|   int IsOffNode(int rank); | ||||
|   double StencilSendToRecvFrom(void *xmit, | ||||
| 			       int xmit_to_rank,int do_xmit, | ||||
| 			       void *recv, | ||||
| 			       int recv_from_rank,int do_recv, | ||||
| 			       int bytes,int dir); | ||||
| 			       uint64_t bytes,int dir); | ||||
|  | ||||
|   double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 				      void *xmit, | ||||
| 				      int xmit_to_rank,int do_xmit, | ||||
| 				      void *recv, | ||||
| 				      int recv_from_rank,int do_recv, | ||||
| 				      uint64_t xbytes,uint64_t rbytes,int dir); | ||||
|  | ||||
|   // Could do a PollHtoD and have a CommsMerge dependence | ||||
|   void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list); | ||||
|   void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list); | ||||
|  | ||||
|   double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 				    void *xmit, | ||||
| 				    void *xmit,void *xmit_comp, | ||||
| 				    int xmit_to_rank,int do_xmit, | ||||
| 				    void *recv, | ||||
| 				    void *recv,void *recv_comp, | ||||
| 				    int recv_from_rank,int do_recv, | ||||
| 				    int xbytes,int rbytes,int dir); | ||||
| 				    uint64_t xbytes,uint64_t rbytes,int dir); | ||||
|    | ||||
|    | ||||
|   void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i); | ||||
| @@ -177,20 +220,20 @@ public: | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Broadcast a buffer and composite larger | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void Broadcast(int root,void* data, int bytes); | ||||
|   void Broadcast(int root,void* data, uint64_t bytes); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // All2All down one dimension | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){ | ||||
|     assert(dim>=0); | ||||
|     assert(dim<_ndimension); | ||||
|     assert(in.size()==out.size()); | ||||
|     GRID_ASSERT(dim>=0); | ||||
|     GRID_ASSERT(dim<_ndimension); | ||||
|     GRID_ASSERT(in.size()==out.size()); | ||||
|     int numnode = _processors[dim]; | ||||
|     uint64_t bytes=sizeof(T); | ||||
|     uint64_t words=in.size()/numnode; | ||||
|     assert(numnode * words == in.size()); | ||||
|     assert(words < (1ULL<<31)); | ||||
|     GRID_ASSERT(numnode * words == in.size()); | ||||
|     GRID_ASSERT(words < (1ULL<<31)); | ||||
|     AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes); | ||||
|   } | ||||
|   void AllToAll(int dim  ,void *in,void *out,uint64_t words,uint64_t bytes); | ||||
|   | ||||
| @@ -28,9 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| void GridAbort(void) { MPI_Abort(MPI_COMM_WORLD,SIGABRT); } | ||||
| extern void * Grid_backtrace_buffer[_NBACKTRACE]; | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| Grid_MPI_Comm       CartesianCommunicator::communicator_world; | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
| uint64_t checksum_index = 1; | ||||
| #endif | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // First initialise of comms system | ||||
| @@ -55,11 +63,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv) | ||||
| #endif | ||||
|     //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE | ||||
|     if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) { | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|  | ||||
|     if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) { | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|   } | ||||
|  | ||||
| @@ -80,20 +88,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv) | ||||
| void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest) | ||||
| { | ||||
|   int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) | ||||
| { | ||||
|   int rank; | ||||
|   int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|   return rank; | ||||
| } | ||||
| void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor) | ||||
| { | ||||
|   coor.resize(_ndimension); | ||||
|   int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -120,8 +128,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| ////////////////////////////////// | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) | ||||
| { | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension); | ||||
|   _ndimension = processors.size();  GRID_ASSERT(_ndimension>=1); | ||||
|   int parent_ndimension = parent._ndimension; GRID_ASSERT(_ndimension >= parent._ndimension); | ||||
|   Coordinate parent_processor_coor(_ndimension,0); | ||||
|   Coordinate parent_processors    (_ndimension,1); | ||||
|   Coordinate shm_processors       (_ndimension,1); | ||||
| @@ -145,7 +153,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|     childsize *= processors[d]; | ||||
|   } | ||||
|   int Nchild = Nparent/childsize; | ||||
|   assert (childsize * Nchild == Nparent); | ||||
|   GRID_ASSERT (childsize * Nchild == Nparent); | ||||
|  | ||||
|   Coordinate ccoor(_ndimension); // coor within subcommunicator | ||||
|   Coordinate scoor(_ndimension); // coor of split within parent | ||||
| @@ -171,12 +179,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|     // Split the communicator | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split); | ||||
|     assert(ierr==0); | ||||
|     GRID_ASSERT(ierr==0); | ||||
|  | ||||
|   } else { | ||||
|     srank = 0; | ||||
|     int ierr = MPI_Comm_dup (parent.communicator,&comm_split); | ||||
|     assert(ierr==0); | ||||
|     GRID_ASSERT(ierr==0); | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -201,7 +209,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|     } | ||||
|   } | ||||
|   for(int d=0;d<processors.size();d++){ | ||||
|     assert(_processor_coor[d] == ccoor[d] ); | ||||
|     GRID_ASSERT(_processor_coor[d] == ccoor[d] ); | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -243,7 +251,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors | ||||
|   for(int i=0;i<_ndimension*2;i++){ | ||||
|     MPI_Comm_dup(communicator,&communicator_halo[i]); | ||||
|   } | ||||
|   assert(Size==_Nprocessors); | ||||
|   GRID_ASSERT(Size==_Nprocessors); | ||||
| } | ||||
|  | ||||
| CartesianCommunicator::~CartesianCommunicator() | ||||
| @@ -257,82 +265,103 @@ CartesianCommunicator::~CartesianCommunicator() | ||||
|     } | ||||
|   } | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(uint32_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(uint64_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalXOR(uint64_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(float &f) | ||||
| { | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(double &d) | ||||
| { | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| #ifdef USE_GRID_REDUCTION | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(float *f,int N) | ||||
| { | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
|   FlightRecorder::StepLog("GlobalSumP2P"); | ||||
|   CartesianCommunicator::GlobalSumP2P(f); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(double &d) | ||||
| { | ||||
|   FlightRecorder::StepLog("GlobalSumP2P"); | ||||
|   CartesianCommunicator::GlobalSumP2P(d); | ||||
| } | ||||
| #else | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   FlightRecorder::StepLog("AllReduce float"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(double &d) | ||||
| { | ||||
|   FlightRecorder::StepLog("AllReduce double"); | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| #endif | ||||
| void CartesianCommunicator::GlobalSum(uint32_t &u){ | ||||
|   FlightRecorder::StepLog("AllReduce uint32_t"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(uint64_t &u){ | ||||
|   FlightRecorder::StepLog("AllReduce uint64_t"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){ | ||||
|   FlightRecorder::StepLog("AllReduceVector"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalXOR(uint64_t &u){ | ||||
|   FlightRecorder::StepLog("GlobalXOR"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(float &f) | ||||
| { | ||||
|   FlightRecorder::StepLog("GlobalMax"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(double &d) | ||||
| { | ||||
|   FlightRecorder::StepLog("GlobalMax"); | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(float *f,int N) | ||||
| { | ||||
|   FlightRecorder::StepLog("GlobalSumVector(float *)"); | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(double *d,int N) | ||||
| { | ||||
|   FlightRecorder::StepLog("GlobalSumVector(double *)"); | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| 						uint64_t bytes,int dir) | ||||
| { | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|  | ||||
|   GRID_ASSERT(dest != _processor); | ||||
|   GRID_ASSERT(from != _processor); | ||||
|   int tag; | ||||
|  | ||||
|   tag= dir+from*32; | ||||
|   int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq); | ||||
|   assert(ierr==0); | ||||
|   int ierr=MPI_Irecv(recv,(int)( bytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator,&rrq); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|   list.push_back(rrq); | ||||
|    | ||||
|   tag= dir+_processor*32; | ||||
|   ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq); | ||||
|   assert(ierr==0); | ||||
|   ierr =MPI_Isend(xmit,(int)(bytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator,&xrq); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|   list.push_back(xrq); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list) | ||||
| void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
| @@ -340,7 +369,7 @@ void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list) | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|   list.resize(0); | ||||
| } | ||||
|  | ||||
| @@ -349,50 +378,63 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int dest, | ||||
| 					   void *recv, | ||||
| 					   int from, | ||||
| 					   int bytes) | ||||
| 					   uint64_t bytes) | ||||
| { | ||||
|   std::vector<CommsRequest_t> reqs(0); | ||||
|   unsigned long  xcrc = crc32(0L, Z_NULL, 0); | ||||
|   unsigned long  rcrc = crc32(0L, Z_NULL, 0); | ||||
|   std::vector<MpiCommsRequest_t> reqs(0); | ||||
|  | ||||
|   int myrank = _processor; | ||||
|   int ierr; | ||||
|  | ||||
|   // Enforce no UVM in comms, device or host OK | ||||
|   assert(acceleratorIsCommunicable(xmit)); | ||||
|   assert(acceleratorIsCommunicable(recv)); | ||||
|   GRID_ASSERT(acceleratorIsCommunicable(xmit)); | ||||
|   GRID_ASSERT(acceleratorIsCommunicable(recv)); | ||||
|  | ||||
|   // Give the CPU to MPI immediately; can use threads to overlap optionally | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes); | ||||
|   ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank, | ||||
| 		    recv,bytes,MPI_CHAR,from, from, | ||||
|   ierr=MPI_Sendrecv(xmit,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,dest,myrank, | ||||
| 		    recv,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,from, from, | ||||
| 		    communicator,MPI_STATUS_IGNORE); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|  | ||||
|   //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes); | ||||
|   //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush | ||||
| } | ||||
| // Basic Halo comms primitive | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int dest, int dox, | ||||
| 						     void *recv, | ||||
| 						     int from, int dor, | ||||
| 						     int bytes,int dir) | ||||
| 						     uint64_t bytes,int dir) | ||||
| { | ||||
|   std::vector<CommsRequest_t> list; | ||||
|   double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   offbytes       += StencilSendToRecvFromBegin(list,xmit,xmit,dest,dox,recv,recv,from,dor,bytes,bytes,dir); | ||||
|   StencilSendToRecvFromComplete(list,dir); | ||||
|   return offbytes; | ||||
| } | ||||
| int CartesianCommunicator::IsOffNode(int rank) | ||||
| { | ||||
|   int grank = ShmRanks[rank]; | ||||
|   if ( grank == MPI_UNDEFINED ) return true; | ||||
|   else return false; | ||||
| } | ||||
|  | ||||
| #undef NVLINK_GET // Define to use get instead of put DMA | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {}; | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {}; | ||||
| double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 							   void *xmit, | ||||
| 							   int dest,int dox, | ||||
| 							   void *recv, | ||||
| 							   int from,int dor, | ||||
| 							   uint64_t xbytes,uint64_t rbytes,int dir) | ||||
| { | ||||
|   return 0.0; // Do nothing -- no preparation required | ||||
| } | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 void *xmit,void *xmit_comp, | ||||
| 							 int dest,int dox, | ||||
| 							 void *recv, | ||||
| 							 void *recv,void *recv_comp, | ||||
| 							 int from,int dor, | ||||
| 							 int xbytes,int rbytes,int dir) | ||||
| 							 uint64_t xbytes,uint64_t rbytes,int dir) | ||||
| { | ||||
|   int ncomm  =communicator_halo.size(); | ||||
|   int commdir=dir%ncomm; | ||||
| @@ -405,62 +447,431 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|   int gfrom = ShmRanks[from]; | ||||
|   int gme   = ShmRanks[_processor]; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|   assert(gme  == ShmRank); | ||||
|   GRID_ASSERT(dest != _processor); | ||||
|   GRID_ASSERT(from != _processor); | ||||
|   GRID_ASSERT(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|    | ||||
|   if ( dor ) { | ||||
|     if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+from*32; | ||||
|       ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq); | ||||
|       assert(ierr==0); | ||||
|       //      std::cout << " StencilSendToRecvFrom "<<dir<<" MPI_Irecv "<<std::hex<<recv<<std::dec<<std::endl; | ||||
|       ierr=MPI_Irecv(recv_comp,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq); | ||||
|       GRID_ASSERT(ierr==0); | ||||
|       list.push_back(rrq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
| #ifdef NVLINK_GET | ||||
|     else {  | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|       GRID_ASSERT(shm!=NULL); | ||||
|       //      std::cout << " StencilSendToRecvFrom "<<dir<<" CopyDeviceToDevice recv "<<std::hex<<recv<<" remote "<<shm <<std::dec<<std::endl; | ||||
|       acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
|     } | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   // This is a NVLINK PUT   | ||||
|   if (dox) { | ||||
|     //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+_processor*32; | ||||
|       ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
|       assert(ierr==0); | ||||
|       ierr =MPI_Isend(xmit_comp,(int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq); | ||||
|       GRID_ASSERT(ierr==0); | ||||
|       list.push_back(xrq); | ||||
|       off_node_bytes+=xbytes; | ||||
|     } else { | ||||
| #ifndef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|       GRID_ASSERT(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|   return off_node_bytes; | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|   /*finishes Get/Put*/ | ||||
|   acceleratorCopySynchronise(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|   list.resize(0); | ||||
|   this->StencilBarrier();  | ||||
| } | ||||
|  | ||||
| #else /* NOT     ... ACCELERATOR_AWARE_MPI */ | ||||
| /////////////////////////////////////////// | ||||
| // Pipeline mode through host memory | ||||
| /////////////////////////////////////////// | ||||
|   /* | ||||
|    * In prepare (phase 1): | ||||
|    * PHASE 1: (prepare) | ||||
|    * - post MPI receive buffers asynch | ||||
|    * - post device - host send buffer transfer asynch | ||||
|    * PHASE 2: (Begin) | ||||
|    * - complete all copies | ||||
|    * - post MPI send asynch | ||||
|    * - post device - device transfers | ||||
|    * PHASE 3: (Complete) | ||||
|    * - MPI_waitall | ||||
|    * - host-device transfers | ||||
|    * | ||||
|    ********************************* | ||||
|    * NB could split this further: | ||||
|    *-------------------------------- | ||||
|    * PHASE 1: (Prepare) | ||||
|    * - post MPI receive buffers asynch | ||||
|    * - post device - host send buffer transfer asynch | ||||
|    * PHASE 2: (BeginInterNode) | ||||
|    * - complete all copies  | ||||
|    * - post MPI send asynch | ||||
|    * PHASE 3: (BeginIntraNode) | ||||
|    * - post device - device transfers | ||||
|    * PHASE 4: (Complete) | ||||
|    * - MPI_waitall | ||||
|    * - host-device transfers asynch | ||||
|    * - (complete all copies)  | ||||
|    */ | ||||
| double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 							   void *xmit, | ||||
| 							   int dest,int dox, | ||||
| 							   void *recv, | ||||
| 							   int from,int dor, | ||||
| 							   uint64_t xbytes,uint64_t rbytes,int dir) | ||||
| { | ||||
| /* | ||||
|  * Bring sequence from Stencil.h down to lower level. | ||||
|  * Assume using XeLink is ok | ||||
|  */   | ||||
|   int ncomm  =communicator_halo.size(); | ||||
|   int commdir=dir%ncomm; | ||||
|  | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   int ierr; | ||||
|   int gdest = ShmRanks[dest]; | ||||
|   int gfrom = ShmRanks[from]; | ||||
|   int gme   = ShmRanks[_processor]; | ||||
|  | ||||
|   GRID_ASSERT(dest != _processor); | ||||
|   GRID_ASSERT(from != _processor); | ||||
|   GRID_ASSERT(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|  | ||||
|   void * host_recv = NULL; | ||||
|   void * host_xmit = NULL; | ||||
|  | ||||
|   /* | ||||
|    * PHASE 1: (Prepare) | ||||
|    * - post MPI receive buffers asynch | ||||
|    * - post device - host send buffer transfer asynch | ||||
|    */ | ||||
|    | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|   rbytes += 8; | ||||
|   xbytes += 8; | ||||
| #endif | ||||
|  | ||||
|   if ( dor ) { | ||||
|     if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+from*32; | ||||
|       host_recv = this->HostBufferMalloc(rbytes); | ||||
|       ierr=MPI_Irecv(host_recv,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq); | ||||
|       GRID_ASSERT(ierr==0); | ||||
|       CommsRequest_t srq; | ||||
|       srq.PacketType = InterNodeRecv; | ||||
|       srq.bytes      = rbytes; | ||||
|       srq.req        = rrq; | ||||
|       srq.host_buf   = host_recv; | ||||
|       srq.device_buf = recv; | ||||
|       srq.tag        = tag; | ||||
|       list.push_back(srq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   if (dox) { | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|  | ||||
|       tag= dir+_processor*32; | ||||
|  | ||||
|       host_xmit = this->HostBufferMalloc(xbytes); | ||||
|       CommsRequest_t srq; | ||||
|  | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|       uint64_t xbytes_data = xbytes - 8; | ||||
|       srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes_data); // Make this Asynch | ||||
|       GRID_ASSERT(xbytes % 8 == 0); | ||||
|       // flip one bit so that a zero buffer is not consistent | ||||
|       uint64_t xsum = checksum_gpu((uint64_t*)xmit, xbytes_data / 8) ^ (checksum_index + 1 + 1000 * tag);  | ||||
|       *(uint64_t*)(((char*)host_xmit) + xbytes_data) = xsum; | ||||
| #else | ||||
|       srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch | ||||
| #endif | ||||
|        | ||||
|       //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
|       //      GRID_ASSERT(ierr==0); | ||||
|       //      off_node_bytes+=xbytes; | ||||
|  | ||||
|       srq.PacketType = InterNodeXmit; | ||||
|       srq.bytes      = xbytes; | ||||
|       //      srq.req        = xrq; | ||||
|       srq.host_buf   = host_xmit; | ||||
|       srq.device_buf = xmit; | ||||
|       srq.tag        = tag; | ||||
|       srq.dest       = dest; | ||||
|       srq.commdir    = commdir; | ||||
|       list.push_back(srq); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   return off_node_bytes; | ||||
| } | ||||
| /* | ||||
|  * In the interest of better pipelining, poll for completion on each DtoH and  | ||||
|  * start MPI_ISend in the meantime | ||||
|  */ | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int pending = 0; | ||||
|   do { | ||||
|  | ||||
|     pending = 0; | ||||
|  | ||||
|     for(int idx = 0; idx<list.size();idx++){ | ||||
|  | ||||
|       if ( list[idx].PacketType==InterNodeRecv ) { | ||||
|  | ||||
| 	int flag = 0; | ||||
| 	MPI_Status status; | ||||
| 	int ierr = MPI_Test(&list[idx].req,&flag,&status); | ||||
| 	assert(ierr==0); | ||||
|  | ||||
| 	if ( flag ) { | ||||
| 	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl; | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|  	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes - 8); | ||||
| #else | ||||
| 	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes); | ||||
| #endif | ||||
| 	  list[idx].PacketType=InterNodeReceiveHtoD; | ||||
| 	} else { | ||||
| 	  pending ++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl; | ||||
|   } while ( pending ); | ||||
|    | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int pending = 0; | ||||
|   do { | ||||
|  | ||||
|     pending = 0; | ||||
|  | ||||
|     for(int idx = 0; idx<list.size();idx++){ | ||||
|  | ||||
|       if ( list[idx].PacketType==InterNodeXmit ) { | ||||
|  | ||||
| 	if ( acceleratorEventIsComplete(list[idx].ev) ) { | ||||
|  | ||||
| 	  void *host_xmit = list[idx].host_buf; | ||||
| 	  uint64_t xbytes = list[idx].bytes; | ||||
| 	  int dest        = list[idx].dest; | ||||
| 	  int tag         = list[idx].tag; | ||||
| 	  int commdir     = list[idx].commdir; | ||||
| 	  /////////////////// | ||||
| 	  // Send packet | ||||
| 	  /////////////////// | ||||
|  | ||||
| 	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl; | ||||
| 	   | ||||
| 	  MPI_Request xrq; | ||||
| 	  int ierr =MPI_Isend(host_xmit, (int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq); | ||||
| 	  GRID_ASSERT(ierr==0); | ||||
|  | ||||
| 	  list[idx].req        = xrq; // Update the MPI request in the list | ||||
|  | ||||
| 	  list[idx].PacketType=InterNodeXmitISend; | ||||
|  | ||||
| 	} else { | ||||
| 	  // not done, so return to polling loop | ||||
| 	  pending++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } while (pending); | ||||
| }   | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit,void *xmit_comp, | ||||
| 							 int dest,int dox, | ||||
| 							 void *recv,void *recv_comp, | ||||
| 							 int from,int dor, | ||||
| 							 uint64_t xbytes,uint64_t rbytes,int dir) | ||||
| { | ||||
|   int ncomm  =communicator_halo.size(); | ||||
|   int commdir=dir%ncomm; | ||||
|  | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   int ierr; | ||||
|   int gdest = ShmRanks[dest]; | ||||
|   int gfrom = ShmRanks[from]; | ||||
|   int gme   = ShmRanks[_processor]; | ||||
|  | ||||
|   GRID_ASSERT(dest != _processor); | ||||
|   GRID_ASSERT(from != _processor); | ||||
|   GRID_ASSERT(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|  | ||||
|   void * host_xmit = NULL; | ||||
|  | ||||
|   //////////////////////////////// | ||||
|   // Receives already posted | ||||
|   // Copies already started | ||||
|   //////////////////////////////// | ||||
|   /*   | ||||
|    * PHASE 2: (Begin) | ||||
|    * - complete all copies | ||||
|    * - post MPI send asynch | ||||
|    */ | ||||
| #ifdef NVLINK_GET | ||||
|   if ( dor ) { | ||||
|  | ||||
|     if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) { | ||||
|       // Intranode | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       GRID_ASSERT(shm!=NULL); | ||||
|  | ||||
|       CommsRequest_t srq; | ||||
|  | ||||
|       srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
|  | ||||
|       srq.PacketType = IntraNodeRecv; | ||||
|       srq.bytes      = xbytes; | ||||
|       //      srq.req        = xrq; | ||||
|       srq.host_buf   = NULL; | ||||
|       srq.device_buf = xmit; | ||||
|       srq.tag        = -1; | ||||
|       srq.dest       = dest; | ||||
|       srq.commdir    = dir; | ||||
|       list.push_back(srq); | ||||
|     } | ||||
|   }   | ||||
| #else | ||||
|   if (dox) { | ||||
|  | ||||
|     if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) { | ||||
|       // Intranode | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       GRID_ASSERT(shm!=NULL); | ||||
|  | ||||
|       CommsRequest_t srq; | ||||
|        | ||||
|       srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
|  | ||||
|       srq.PacketType = IntraNodeXmit; | ||||
|       srq.bytes      = xbytes; | ||||
|       //      srq.req        = xrq; | ||||
|       srq.host_buf   = NULL; | ||||
|       srq.device_buf = xmit; | ||||
|       srq.tag        = -1; | ||||
|       srq.dest       = dest; | ||||
|       srq.commdir    = dir; | ||||
|       list.push_back(srq); | ||||
|        | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
|   return off_node_bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|   acceleratorCopySynchronise(); // Complete all pending copy transfers D2D | ||||
|  | ||||
|   acceleratorCopySynchronise(); | ||||
|   std::vector<MPI_Status> status; | ||||
|   std::vector<MPI_Request> MpiRequests; | ||||
|      | ||||
|   if (nreq==0) return; | ||||
|   for(int r=0;r<list.size();r++){ | ||||
|     // Must check each Send buf is clear to reuse | ||||
|     if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req); | ||||
|     //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed | ||||
|   } | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
|   int nreq=MpiRequests.size(); | ||||
|  | ||||
|   if (nreq>0) { | ||||
|     status.resize(MpiRequests.size()); | ||||
|     int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing. | ||||
|     GRID_ASSERT(ierr==0); | ||||
|   } | ||||
|    | ||||
|   //  for(int r=0;r<nreq;r++){ | ||||
|   //    if ( list[r].PacketType==InterNodeRecv ) { | ||||
|   //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes); | ||||
|   //    } | ||||
|   //  } | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|   for(int r=0;r<list.size();r++){ | ||||
|     if ( list[r].PacketType == InterNodeReceiveHtoD ) { | ||||
|       uint64_t rbytes_data = list[r].bytes - 8; | ||||
|       uint64_t expected_cs = *(uint64_t*)(((char*)list[r].host_buf) + rbytes_data); | ||||
|       uint64_t computed_cs = checksum_gpu((uint64_t*)list[r].device_buf, rbytes_data / 8) ^ (checksum_index + 1 + 1000 * list[r].tag); // | ||||
|       if (expected_cs != computed_cs) { | ||||
| 	// TODO: error message, backtrace, quit | ||||
|  | ||||
| 	fprintf(stderr, "GRID_CHECKSUM_COMMS error:\n"); | ||||
| 	fprintf(stderr, " processor = %d\n", (int)_processor); | ||||
| 	for(int d=0;d<_processors.size();d++) | ||||
| 	  fprintf(stderr, " processor_coord[%d] = %d\n", d, _processor_coor[d]); | ||||
| 	fprintf(stderr, " hostname: %s\n", GridHostname()); | ||||
| 	fprintf(stderr, " expected_cs: %ld\n", expected_cs); | ||||
| 	fprintf(stderr, " computed_cs: %ld\n", computed_cs); | ||||
| 	fprintf(stderr, " dest: %d\n", list[r].dest); | ||||
| 	fprintf(stderr, " tag: %d\n", list[r].tag); | ||||
| 	fprintf(stderr, " commdir: %d\n", list[r].commdir); | ||||
| 	fprintf(stderr, " bytes: %ld\n", (uint64_t)list[r].bytes); | ||||
|  | ||||
| 	fflush(stderr); | ||||
|  | ||||
| 	// backtrace | ||||
| 	int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE); | ||||
| 	backtrace_symbols_fd(Grid_backtrace_buffer,symbols, 2); | ||||
|  | ||||
| 	exit(1); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   checksum_index += 1; | ||||
| #endif | ||||
|    | ||||
|   list.resize(0);               // Delete the list | ||||
|   this->HostBufferFreeAll();    // Clean up the buffer allocs | ||||
| #ifndef NVLINK_GET | ||||
|   this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers. | ||||
| #endif    | ||||
| } | ||||
| #endif | ||||
| //////////////////////////////////////////// | ||||
| // END PIPELINE MODE / NO CUDA AWARE MPI | ||||
| //////////////////////////////////////////// | ||||
|  | ||||
| void CartesianCommunicator::StencilBarrier(void) | ||||
| { | ||||
|   FlightRecorder::StepLog("NodeBarrier"); | ||||
|   MPI_Barrier  (ShmComm); | ||||
| } | ||||
| //void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| @@ -468,17 +879,19 @@ void CartesianCommunicator::StencilBarrier(void) | ||||
| //} | ||||
| void CartesianCommunicator::Barrier(void) | ||||
| { | ||||
|   FlightRecorder::StepLog("GridBarrier"); | ||||
|   int ierr = MPI_Barrier(communicator); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::Broadcast(int root,void* data, int bytes) | ||||
| void CartesianCommunicator::Broadcast(int root,void* data,uint64_t bytes) | ||||
| { | ||||
|   FlightRecorder::StepLog("Broadcast"); | ||||
|   int ierr=MPI_Bcast(data, | ||||
| 		     bytes, | ||||
| 		     (int)bytes, | ||||
| 		     MPI_BYTE, | ||||
| 		     root, | ||||
| 		     communicator); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| int CartesianCommunicator::RankWorld(void){ | ||||
|   int r; | ||||
| @@ -486,23 +899,25 @@ int CartesianCommunicator::RankWorld(void){ | ||||
|   return r; | ||||
| } | ||||
| void CartesianCommunicator::BarrierWorld(void){ | ||||
|   FlightRecorder::StepLog("BarrierWorld"); | ||||
|   int ierr = MPI_Barrier(communicator_world); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) | ||||
| { | ||||
|   FlightRecorder::StepLog("BroadcastWorld"); | ||||
|   int ierr= MPI_Bcast(data, | ||||
| 		      bytes, | ||||
| 		      (int)bytes, | ||||
| 		      MPI_BYTE, | ||||
| 		      root, | ||||
| 		      communicator_world); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   Coordinate row(_ndimension,1); | ||||
|   assert(dim>=0 && dim<_ndimension); | ||||
|   GRID_ASSERT(dim>=0 && dim<_ndimension); | ||||
|  | ||||
|   //  Split the communicator | ||||
|   row[dim] = _processors[dim]; | ||||
| @@ -513,6 +928,7 @@ void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words, | ||||
| } | ||||
| void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   FlightRecorder::StepLog("AllToAll"); | ||||
|   // MPI is a pain and uses "int" arguments | ||||
|   // 64*64*64*128*16 == 500Million elements of data. | ||||
|   // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug. | ||||
| @@ -522,8 +938,8 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t | ||||
|   int ibytes; | ||||
|   iwords = words; | ||||
|   ibytes = bytes; | ||||
|   assert(words == iwords); // safe to cast to int ? | ||||
|   assert(bytes == ibytes); // safe to cast to int ? | ||||
|   GRID_ASSERT(words == iwords); // safe to cast to int ? | ||||
|   GRID_ASSERT(bytes == ibytes); // safe to cast to int ? | ||||
|   MPI_Type_contiguous(ibytes,MPI_BYTE,&object); | ||||
|   MPI_Type_commit(&object); | ||||
|   MPI_Alltoall(in,iwords,object,out,iwords,object,communicator); | ||||
|   | ||||
| @@ -34,6 +34,8 @@ NAMESPACE_BEGIN(Grid); | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| Grid_MPI_Comm       CartesianCommunicator::communicator_world; | ||||
|  | ||||
| void GridAbort(void) { abort(); } | ||||
|  | ||||
| void CartesianCommunicator::Init(int *argc, char *** arv) | ||||
| { | ||||
|   GlobalSharedMemory::Init(communicator_world); | ||||
| @@ -54,14 +56,14 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| { | ||||
|   _shm_processors = Coordinate(processors.size(),1); | ||||
|   _processors = processors; | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   _ndimension = processors.size();  GRID_ASSERT(_ndimension>=1); | ||||
|   _processor_coor.resize(_ndimension); | ||||
|    | ||||
|   // Require 1^N processor grid for fake | ||||
|   _Nprocessors=1; | ||||
|   _processor = 0; | ||||
|   for(int d=0;d<_ndimension;d++) { | ||||
|     assert(_processors[d]==1); | ||||
|     GRID_ASSERT(_processors[d]==1); | ||||
|     _processor_coor[d] = 0; | ||||
|   } | ||||
|   SetCommunicator(communicator_world); | ||||
| @@ -87,19 +89,19 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int dest, | ||||
| 					   void *recv, | ||||
| 					   int from, | ||||
| 					   int bytes) | ||||
| 					   uint64_t bytes) | ||||
| { | ||||
|   assert(0); | ||||
|   GRID_ASSERT(0); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);} | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ GRID_ASSERT(list.size()==0);} | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| 						uint64_t bytes,int dir) | ||||
| { | ||||
|   assert(0); | ||||
|   GRID_ASSERT(0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| @@ -113,8 +115,8 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t | ||||
|  | ||||
| int  CartesianCommunicator::RankWorld(void){return 0;} | ||||
| void CartesianCommunicator::Barrier(void){} | ||||
| void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {} | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { } | ||||
| void CartesianCommunicator::Broadcast(int root,void* data, uint64_t bytes) {} | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) { } | ||||
| void CartesianCommunicator::BarrierWorld(void) { } | ||||
| int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;} | ||||
| void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; } | ||||
| @@ -124,20 +126,33 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest | ||||
|   dest=0; | ||||
| } | ||||
|  | ||||
| int CartesianCommunicator::IsOffNode(int rank) { return false; } | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int xmit_to_rank,int dox, | ||||
| 						     void *recv, | ||||
| 						     int recv_from_rank,int dor, | ||||
| 						     int bytes, int dir) | ||||
| 						     uint64_t bytes, int dir) | ||||
| { | ||||
|   return 2.0*bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {}; | ||||
| void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {}; | ||||
| double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list, | ||||
| 							   void *xmit, | ||||
| 							   int xmit_to_rank,int dox, | ||||
| 							   void *recv, | ||||
| 							   int recv_from_rank,int dor, | ||||
| 							   uint64_t xbytes,uint64_t rbytes, int dir) | ||||
| { | ||||
|   return 0.0; | ||||
| } | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 void *xmit, void *xmit_comp, | ||||
| 							 int xmit_to_rank,int dox, | ||||
| 							 void *recv, | ||||
| 							 void *recv, void *recv_comp, | ||||
| 							 int recv_from_rank,int dor, | ||||
| 							 int xbytes,int rbytes, int dir) | ||||
| 							 uint64_t xbytes,uint64_t rbytes, int dir) | ||||
| { | ||||
|   return xbytes+rbytes; | ||||
| } | ||||
|   | ||||
| @@ -58,8 +58,8 @@ int                 GlobalSharedMemory::WorldNode; | ||||
|  | ||||
| void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| { | ||||
|   assert(_ShmAlloc); | ||||
|   assert(_ShmAllocBytes>0); | ||||
|   GRID_ASSERT(_ShmAlloc); | ||||
|   GRID_ASSERT(_ShmAllocBytes>0); | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|     munmap(WorldShmCommBufs[r],_ShmAllocBytes); | ||||
|   } | ||||
| @@ -80,7 +80,7 @@ void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|     GRID_ASSERT(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| @@ -100,7 +100,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(heap_bytes<heap_size); | ||||
|     GRID_ASSERT(heap_bytes<heap_size); | ||||
|   } | ||||
|   //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl; | ||||
|   return ptr; | ||||
| @@ -127,13 +127,13 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD | ||||
|   if ( str ) { | ||||
|     std::vector<int> IntShmDims; | ||||
|     GridCmdOptionIntVector(std::string(str),IntShmDims); | ||||
|     assert(IntShmDims.size() == WorldDims.size()); | ||||
|     GRID_ASSERT(IntShmDims.size() == WorldDims.size()); | ||||
|     long ShmSize = 1; | ||||
|     for (int dim=0;dim<WorldDims.size();dim++) { | ||||
|       ShmSize *= (ShmDims[dim] = IntShmDims[dim]); | ||||
|       assert(divides(ShmDims[dim],WorldDims[dim])); | ||||
|       GRID_ASSERT(divides(ShmDims[dim],WorldDims[dim])); | ||||
|     } | ||||
|     assert(ShmSize == WorldShmSize); | ||||
|     GRID_ASSERT(ShmSize == WorldShmSize); | ||||
|     return; | ||||
|   } | ||||
|    | ||||
|   | ||||
| @@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #if defined (GRID_COMMS_MPI3)  | ||||
| typedef MPI_Comm    Grid_MPI_Comm; | ||||
| typedef MPI_Request MpiCommsRequest_t; | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| typedef MPI_Request CommsRequest_t; | ||||
| #else | ||||
| /* | ||||
|  * Enable state transitions as each packet flows. | ||||
|  */ | ||||
| enum PacketType_t { | ||||
|   FaceGather, | ||||
|   InterNodeXmit, | ||||
|   InterNodeRecv, | ||||
|   IntraNodeXmit, | ||||
|   IntraNodeRecv, | ||||
|   InterNodeXmitISend, | ||||
|   InterNodeReceiveHtoD | ||||
| }; | ||||
| /* | ||||
|  *Package arguments needed for various actions along packet flow | ||||
|  */ | ||||
| typedef struct { | ||||
|   PacketType_t PacketType; | ||||
|   void *host_buf; | ||||
|   void *device_buf; | ||||
|   int dest; | ||||
|   int tag; | ||||
|   int commdir; | ||||
|   unsigned long bytes; | ||||
|   acceleratorEvent_t ev; | ||||
|   MpiCommsRequest_t req; | ||||
| } CommsRequest_t; | ||||
| #endif | ||||
|  | ||||
| #else  | ||||
| typedef int MpiCommsRequest_t; | ||||
| typedef int CommsRequest_t; | ||||
| typedef int Grid_MPI_Comm; | ||||
| #endif | ||||
| @@ -105,7 +137,7 @@ public: | ||||
|   /////////////////////////////////////////////////// | ||||
|   static void SharedMemoryAllocate(uint64_t bytes, int flags); | ||||
|   static void SharedMemoryFree(void); | ||||
|   static void SharedMemoryCopy(void *dest,void *src,size_t bytes); | ||||
|   //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes); | ||||
|   static void SharedMemoryZero(void *dest,size_t bytes); | ||||
|  | ||||
| }; | ||||
|   | ||||
| @@ -42,6 +42,7 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| #define GRID_SYCL_LEVEL_ZERO_IPC | ||||
| #define SHM_SOCKETS | ||||
| #else | ||||
| #endif  | ||||
| #include <syscall.h> | ||||
| #endif | ||||
| @@ -66,7 +67,7 @@ public: | ||||
|   { | ||||
|     int errnum; | ||||
|  | ||||
|     sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0); | ||||
|     sock = socket(AF_UNIX, SOCK_DGRAM, 0);  GRID_ASSERT(sock>0); | ||||
|  | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
| @@ -157,7 +158,7 @@ public: | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| { | ||||
|   assert(_ShmSetup==0); | ||||
|   GRID_ASSERT(_ShmSetup==0); | ||||
|   WorldComm = comm; | ||||
|   MPI_Comm_rank(WorldComm,&WorldRank); | ||||
|   MPI_Comm_size(WorldComm,&WorldSize); | ||||
| @@ -183,7 +184,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|  | ||||
|   // WorldNodes | ||||
|   WorldNodes = WorldSize/WorldShmSize; | ||||
|   assert( (WorldNodes * WorldShmSize) == WorldSize ); | ||||
|   GRID_ASSERT( (WorldNodes * WorldShmSize) == WorldSize ); | ||||
|  | ||||
|  | ||||
|   // FIXME: Check all WorldShmSize are the same ? | ||||
| @@ -208,7 +209,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   MyGroup.resize(WorldShmSize); | ||||
|   for(int rank=0;rank<WorldSize;rank++){ | ||||
|     if(WorldShmRanks[rank]!=MPI_UNDEFINED){ | ||||
|       assert(g<WorldShmSize); | ||||
|       GRID_ASSERT(g<WorldShmSize); | ||||
|       MyGroup[g++] = rank; | ||||
|     } | ||||
|   } | ||||
| @@ -224,7 +225,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   // global sum leaders over comm world | ||||
|   /////////////////////////////////////////////////////////////////// | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////// | ||||
|   // find the group leaders world rank | ||||
| @@ -245,7 +246,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|       WorldNode=g; | ||||
|     } | ||||
|   } | ||||
|   assert(WorldNode!=-1); | ||||
|   GRID_ASSERT(WorldNode!=-1); | ||||
|   _ShmSetup=1; | ||||
| } | ||||
| // Gray encode support  | ||||
| @@ -287,7 +288,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   // Assert power of two shm_size. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE); | ||||
|   assert(log2size != -1); | ||||
|   GRID_ASSERT(log2size != -1); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Identify the hypercube coordinate of this node using hostname | ||||
| @@ -308,7 +309,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   // Parse ICE-XA hostname to get hypercube location | ||||
|   gethostname(name,namelen); | ||||
|   int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ; | ||||
|   assert(nscan==3); | ||||
|   GRID_ASSERT(nscan==3); | ||||
|  | ||||
|   int nlo = N%9; | ||||
|   int nhi = N/9; | ||||
| @@ -332,8 +333,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm);  | ||||
|   hypercoor=hypercoor-rootcoor; | ||||
|   assert(hypercoor<WorldSize); | ||||
|   assert(hypercoor>=0); | ||||
|   GRID_ASSERT(hypercoor<WorldSize); | ||||
|   GRID_ASSERT(hypercoor>=0); | ||||
|  | ||||
|   ////////////////////////////////////// | ||||
|   // Printing | ||||
| @@ -381,7 +382,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   for(int i=0;i<ndimension;i++){ | ||||
|     Nprocessors*=processors[i]; | ||||
|   } | ||||
|   assert(WorldSize==Nprocessors); | ||||
|   GRID_ASSERT(WorldSize==Nprocessors); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish mapping between lexico physics coord and WorldRank | ||||
| @@ -400,7 +401,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   // Build the new communicator | ||||
|   ///////////////////////////////////////////////////////////////// | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| { | ||||
| @@ -430,7 +431,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
|   for(int i=0;i<ndimension;i++){ | ||||
|     Nprocessors*=processors[i]; | ||||
|   } | ||||
|   assert(WorldSize==Nprocessors); | ||||
|   //  std::cerr << " WorldSize "<<WorldSize << " Nprocessors "<<Nprocessors<<" "<<processors<<std::endl;  | ||||
|   GRID_ASSERT(WorldSize==Nprocessors); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish mapping between lexico physics coord and WorldRank | ||||
| @@ -446,7 +448,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
|   // Build the new communicator | ||||
|   ///////////////////////////////////////////////////////////////// | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
|   GRID_ASSERT(ierr==0); | ||||
| } | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // SHMGET | ||||
| @@ -455,8 +457,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the shared windows for our group | ||||
| @@ -517,8 +519,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the pointer array for shared windows for our group | ||||
| @@ -537,19 +539,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   HostCommBuf= malloc(bytes); | ||||
|   // printf("Host buffer allocate for GPU non-aware MPI\n"); | ||||
|   HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host | ||||
| #endif   | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     std::cerr << "SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
|     std::cout << Mheader " acceleratorAllocDevice "<< bytes  | ||||
| 	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|   std::cout<< "Setting up IPC"<<std::endl; | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout<< Mheader "Setting up IPC"<<std::endl; | ||||
|   } | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -569,8 +574,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; | ||||
|  | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|     auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|        | ||||
|     ze_ipc_mem_handle_t ihandle; | ||||
|     clone_mem_t handle; | ||||
| @@ -580,8 +585,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
|       } | ||||
|       memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int)); | ||||
|       handle.pid = getpid(); | ||||
| @@ -626,7 +629,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| 			 MPI_BYTE, | ||||
| 			 r, | ||||
| 			 WorldShmComm); | ||||
|       assert(ierr==0); | ||||
|       GRID_ASSERT(ierr==0); | ||||
|     } | ||||
|      | ||||
|     /////////////////////////////////////////////////////////////// | ||||
| @@ -640,12 +643,12 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef SHM_SOCKETS | ||||
|       myfd=UnixSockets::RecvFileDescriptor(); | ||||
| #else | ||||
|       std::cout<<"mapping seeking remote pid/fd " | ||||
| 	       <<handle.pid<<"/" | ||||
| 	       <<handle.fd<<std::endl; | ||||
|       //      std::cout<<"mapping seeking remote pid/fd " | ||||
|       //	       <<handle.pid<<"/" | ||||
|       //	       <<handle.fd<<std::endl; | ||||
|  | ||||
|       int pidfd = syscall(SYS_pidfd_open,handle.pid,0); | ||||
|       std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n"; | ||||
|       //      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n"; | ||||
|       //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0); | ||||
|       myfd  = syscall(438,pidfd,handle.fd,0); | ||||
|       int err_t = errno; | ||||
| @@ -655,7 +658,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|       std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n"; | ||||
|       //      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n"; | ||||
|       memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle)); | ||||
|       memcpy((void *)&ihandle,(void *)&myfd,sizeof(int)); | ||||
|  | ||||
| @@ -664,11 +667,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| 	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl; | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;  | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl; | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl; | ||||
|       } | ||||
|       assert(thisBuf!=nullptr); | ||||
|       GRID_ASSERT(thisBuf!=nullptr); | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| @@ -709,8 +709,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -740,13 +740,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);  | ||||
|     if ( ptr == (void *)MAP_FAILED ) {     | ||||
|       printf("mmap %s failed\n",shm_name); | ||||
|       perror("failed mmap");      assert(0);     | ||||
|       perror("failed mmap");      GRID_ASSERT(0);     | ||||
|     } | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     GRID_ASSERT(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|   } | ||||
|   std::cout<< Mheader " Intra-node IPC setup is complete "<<std::endl; | ||||
|   _ShmAlloc=1; | ||||
|   _ShmAllocBytes  = bytes; | ||||
| }; | ||||
| @@ -756,8 +757,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -768,7 +769,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   // Hugetlbf and others map filesystems as mappable huge pages | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   char shm_name [NAME_MAX]; | ||||
|   assert(WorldShmSize == 1); | ||||
|   GRID_ASSERT(WorldShmSize == 1); | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|      | ||||
|     int fd=-1; | ||||
| @@ -782,9 +783,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);  | ||||
|     if ( ptr == (void *)MAP_FAILED ) {     | ||||
|       printf("mmap %s failed\n",shm_name); | ||||
|       perror("failed mmap");      assert(0);     | ||||
|       perror("failed mmap");      GRID_ASSERT(0);     | ||||
|     } | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     GRID_ASSERT(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
| @@ -803,8 +804,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| {  | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0);  | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0);  | ||||
|   MPI_Barrier(WorldShmComm); | ||||
|   WorldShmCommBufs.resize(WorldShmSize); | ||||
|  | ||||
| @@ -835,7 +836,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| 	perror("failed mmap");      | ||||
| 	assert(0);     | ||||
|       } | ||||
|       assert(((uint64_t)ptr&0x3F)==0); | ||||
|       GRID_ASSERT(((uint64_t)ptr&0x3F)==0); | ||||
|        | ||||
|       WorldShmCommBufs[r] =ptr; | ||||
|       close(fd); | ||||
| @@ -856,8 +857,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|       if ( fd<0 ) {	perror("failed shm_open");	assert(0);      } | ||||
|        | ||||
|       void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); | ||||
|       if ( ptr == MAP_FAILED ) {       perror("failed mmap");      assert(0);    } | ||||
|       assert(((uint64_t)ptr&0x3F)==0); | ||||
|       if ( ptr == MAP_FAILED ) {       perror("failed mmap");      GRID_ASSERT(0);    } | ||||
|       GRID_ASSERT(((uint64_t)ptr&0x3F)==0); | ||||
|       WorldShmCommBufs[r] =ptr; | ||||
|  | ||||
|       close(fd); | ||||
| @@ -880,14 +881,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
|   bzero(dest,bytes); | ||||
| #endif | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| #else    | ||||
|   bcopy(src,dest,bytes); | ||||
| #endif | ||||
| } | ||||
| //void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| //{ | ||||
| //#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
| //  acceleratorCopyToDevice(src,dest,bytes); | ||||
| //#else    | ||||
| //  bcopy(src,dest,bytes); | ||||
| //#endif | ||||
| //} | ||||
| //////////////////////////////////////////////////////// | ||||
| // Global shared functionality finished | ||||
| // Now move to per communicator functionality | ||||
| @@ -914,7 +915,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Map ShmRank to WorldShmRank and use the right buffer | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   assert (GlobalSharedMemory::ShmAlloc()==1); | ||||
|   GRID_ASSERT (GlobalSharedMemory::ShmAlloc()==1); | ||||
|   heap_size = GlobalSharedMemory::ShmAllocBytes(); | ||||
|   for(int r=0;r<ShmSize;r++){ | ||||
|  | ||||
| @@ -923,6 +924,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|     MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm); | ||||
|  | ||||
|     ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr]; | ||||
|     //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl; | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| @@ -953,7 +955,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   //SharedMemoryTest(); | ||||
|   //  SharedMemoryTest(); | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////// | ||||
| // On node barrier | ||||
| @@ -975,19 +977,18 @@ void SharedMemory::SharedMemoryTest(void) | ||||
|        check[0]=GlobalSharedMemory::WorldNode; | ||||
|        check[1]=r; | ||||
|        check[2]=magic; | ||||
|        GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t)); | ||||
|        acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t)); | ||||
|     } | ||||
|   } | ||||
|   ShmBarrier(); | ||||
|   for(uint64_t r=0;r<ShmSize;r++){ | ||||
|     ShmBarrier(); | ||||
|     GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t)); | ||||
|     ShmBarrier(); | ||||
|     assert(check[0]==GlobalSharedMemory::WorldNode); | ||||
|     assert(check[1]==r); | ||||
|     assert(check[2]==magic); | ||||
|     ShmBarrier(); | ||||
|     acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t)); | ||||
|     GRID_ASSERT(check[0]==GlobalSharedMemory::WorldNode); | ||||
|     GRID_ASSERT(check[1]==r); | ||||
|     GRID_ASSERT(check[2]==magic); | ||||
|   } | ||||
|   ShmBarrier(); | ||||
|   std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl; | ||||
| } | ||||
|  | ||||
| void *SharedMemory::ShmBuffer(int rank) | ||||
| @@ -1002,12 +1003,14 @@ void *SharedMemory::ShmBuffer(int rank) | ||||
| void *SharedMemory::ShmBufferTranslate(int rank,void * local_p) | ||||
| { | ||||
|   int gpeer = ShmRanks[rank]; | ||||
|   assert(gpeer!=ShmRank); // never send to self | ||||
|   GRID_ASSERT(gpeer!=ShmRank); // never send to self | ||||
|   //  std::cout << "ShmBufferTranslate for rank " << rank<<" peer "<<gpeer<<std::endl; | ||||
|   if (gpeer == MPI_UNDEFINED){ | ||||
|     return NULL; | ||||
|   } else {  | ||||
|     uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank]; | ||||
|     uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset; | ||||
|     //    std::cout << "ShmBufferTranslate : local,offset,remote "<<std::hex<<local_p<<" "<<offset<<" "<<remote<<std::dec<<std::endl; | ||||
|     return (void *) remote; | ||||
|   } | ||||
| } | ||||
|   | ||||
| @@ -34,7 +34,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| { | ||||
|   assert(_ShmSetup==0); | ||||
|   GRID_ASSERT(_ShmSetup==0); | ||||
|   WorldComm = 0; | ||||
|   WorldRank = 0; | ||||
|   WorldSize = 1; | ||||
| @@ -62,8 +62,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl; | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
| @@ -92,8 +92,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   GRID_ASSERT(_ShmSetup==1); | ||||
|   GRID_ASSERT(_ShmAlloc==0); | ||||
|   int mmap_flag =0; | ||||
| #ifdef MAP_ANONYMOUS | ||||
|   mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS; | ||||
| @@ -122,17 +122,17 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
| { | ||||
|   acceleratorMemSet(dest,0,bytes); | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| { | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| } | ||||
| //void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| //{ | ||||
| //  acceleratorCopyToDevice(src,dest,bytes); | ||||
| //} | ||||
| //////////////////////////////////////////////////////// | ||||
| // Global shared functionality finished | ||||
| // Now move to per communicator functionality | ||||
| //////////////////////////////////////////////////////// | ||||
| void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
| { | ||||
|   assert(GlobalSharedMemory::ShmAlloc()==1); | ||||
|   GRID_ASSERT(GlobalSharedMemory::ShmAlloc()==1); | ||||
|   ShmRanks.resize(1); | ||||
|   ShmCommBufs.resize(1); | ||||
|   ShmRanks[0] = 0; | ||||
|   | ||||
| @@ -51,7 +51,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #endif  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr))  | ||||
| { | ||||
|   | ||||
| @@ -30,12 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| extern deviceVector<std::pair<int,int> > Cshift_table_device;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
| @@ -45,16 +44,13 @@ inline std::pair<int,int> *MapCshiftTable(void) | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
| @@ -94,17 +90,10 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for(i,ent,{ | ||||
|       buffer_p[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -129,7 +118,6 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
|   int n1=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask ==0x3){ | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| @@ -140,21 +128,10 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #endif | ||||
|   } else {  | ||||
|     Coordinate rdim=rhs.Grid()->_rdimensions; | ||||
|     Coordinate cdm =rhs.Grid()->_checker_dim_mask; | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| @@ -175,33 +152,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there is no need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
| @@ -245,17 +202,10 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector< | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     autoView( rhs_v, rhs, AcceleratorWriteDiscard); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       rhs_v[table[i].first]=buffer_p[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -278,8 +228,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
|   if(cbmask ==0x3 ) { | ||||
|     int _slice_stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|     int _slice_block = rhs.Grid()->_slice_block[dimension]; | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v , rhs, AcceleratorWrite); | ||||
|     autoView( rhs_v , rhs, AcceleratorWriteDiscard); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
| @@ -287,21 +236,13 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView( rhs_v , rhs, CpuWrite); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|     }); | ||||
| #endif | ||||
|   } else {  | ||||
|  | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     std::cout << "Scatter_plane merge GRID_ASSERT(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl; | ||||
|     assert(0); // This will fail if hit on GPU | ||||
|     GRID_ASSERT(0); // This will fail if hit on GPU | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| @@ -360,19 +301,11 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
|     autoView(lhs_v , lhs, AcceleratorWriteDiscard); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
|       coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     autoView(lhs_v , lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       lhs_v[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -412,19 +345,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuRead); | ||||
|     autoView( lhs_v, lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -29,9 +29,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef _GRID_CSHIFT_MPI_H_ | ||||
| #define _GRID_CSHIFT_MPI_H_ | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
| extern uint64_t checksum_index; | ||||
| #endif | ||||
|  | ||||
| const int Cshift_verbose=0; | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
| @@ -45,6 +49,20 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|   // Map to always positive shift modulo global full dimension. | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   if( shift ==0 ) { | ||||
|     ret = rhs; | ||||
|     return ret; | ||||
|   } | ||||
|   // | ||||
|   // Potential easy fast cases: | ||||
|   // Shift is a multiple of the local lattice extent. | ||||
|   // Then need only to shift whole subvolumes | ||||
|   int L = rhs.Grid()->_ldimensions[dimension]; | ||||
|   if ( (shift%L )==0 && !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|     Cshift_simple(ret,rhs,dimension,shift); | ||||
|     return ret; | ||||
|   } | ||||
|    | ||||
|   ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|          | ||||
|   // the permute type | ||||
| @@ -55,20 +73,69 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|   if ( !comm_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     //    std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
|   } else if ( splice_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl; | ||||
|     //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift); | ||||
|   } else { | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     //    std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<class vobj> void Cshift_simple(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   int comm_proc, xmit_to_rank, recv_from_rank; | ||||
|    | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int ld              = rhs.Grid()->_ldimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|  | ||||
|   comm_proc = ((shift)/ld)%pd; | ||||
|  | ||||
|   grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|   if(comm_dim) { | ||||
|  | ||||
|     int64_t bytes = sizeof(vobj) * grid->oSites(); | ||||
|  | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(ret_v , ret, AcceleratorWrite); | ||||
|     void *send_buf  = (void *)&rhs_v[0]; | ||||
|     void *recv_buf  = (void *)&ret_v[0]; | ||||
|  | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|     grid->SendToRecvFrom(send_buf, | ||||
| 			 xmit_to_rank, | ||||
| 			 recv_buf, | ||||
| 			 recv_from_rank, | ||||
| 			 bytes); | ||||
| #else | ||||
|     static hostVector<vobj> hrhs; hrhs.resize(grid->oSites()); | ||||
|     static hostVector<vobj> hret; hret.resize(grid->oSites()); | ||||
|  | ||||
|     void *hsend_buf = (void *)&hrhs[0]; | ||||
|     void *hrecv_buf = (void *)&hret[0]; | ||||
|  | ||||
|     acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes); | ||||
|  | ||||
|     grid->SendToRecvFrom(hsend_buf, | ||||
| 			 xmit_to_rank, | ||||
| 			 hrecv_buf, | ||||
| 			 recv_from_rank, | ||||
| 			 bytes); | ||||
|  | ||||
|     acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   int sshift[2]; | ||||
| @@ -94,18 +161,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     //std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     //    std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x3); | ||||
|   } else { | ||||
|     //std::cout << "Two pass Cshift_comms" <<std::endl; | ||||
|     //    std::cout << "Two pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
| #define ACCELERATOR_CSHIFT_NO_COPY | ||||
| #ifdef ACCELERATOR_CSHIFT_NO_COPY | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
| @@ -119,14 +184,19 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   GRID_ASSERT(simd_layout==1); | ||||
|   GRID_ASSERT(comm_dim==1); | ||||
|   GRID_ASSERT(shift>=0); | ||||
|   GRID_ASSERT(shift<fd); | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
|   static deviceVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   int pad = (8 + sizeof(vobj) - 1) / sizeof(vobj); | ||||
|   static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size+pad); | ||||
|   static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size+pad); | ||||
| #endif | ||||
|    | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
| @@ -141,9 +211,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|       FlightRecorder::StepLog("Cshift_Copy_plane"); | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|       FlightRecorder::StepLog("Cshift_Copy_plane_complete"); | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
| @@ -151,39 +223,84 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       FlightRecorder::StepLog("Cshift_Gather_plane"); | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|       FlightRecorder::StepLog("Cshift_Gather_plane_complete"); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|        | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|       grid->Barrier(); | ||||
|  | ||||
|       FlightRecorder::StepLog("Cshift_SendRecv"); | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
| #else | ||||
|       // bouncy bouncy | ||||
|       acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes); | ||||
|  | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|       GRID_ASSERT(bytes % 8 == 0); | ||||
|       checksum_index++; | ||||
|       uint64_t xsum = checksum_gpu((uint64_t*)&send_buf[0], bytes / 8) ^ (1 + checksum_index); | ||||
|       *(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum; | ||||
|       bytes += 8; | ||||
| #endif | ||||
|  | ||||
|       grid->SendToRecvFrom((void *)&hsend_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&hrecv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|  | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|       bytes -= 8; | ||||
|       acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes); | ||||
|       uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes); | ||||
|       uint64_t computed_cs = checksum_gpu((uint64_t*)&recv_buf[0], bytes / 8) ^ (1 + checksum_index); | ||||
|       std::cout << GridLogComms<< " Cshift: " | ||||
| 		<<" dim"<<dimension | ||||
| 		<<" shift "<<shift | ||||
| 		<< " rank "<< grid->ThisRank() | ||||
| 		<<" Coor "<<grid->ThisProcessorCoor() | ||||
| 		<<" send "<<xsum<<" to   "<<xmit_to_rank | ||||
| 		<<" recv "<<computed_cs<<" from "<<recv_from_rank | ||||
| 		<<std::endl; | ||||
|       GRID_ASSERT(expected_cs == computed_cs); | ||||
| #else | ||||
|       acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes); | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|       FlightRecorder::StepLog("Cshift_SendRecv_complete"); | ||||
|  | ||||
|       xbytes+=bytes; | ||||
|       //      grid->Barrier(); | ||||
|       grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|       FlightRecorder::StepLog("Cshift_barrier_complete"); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
|   if (Cshift_verbose){ | ||||
|     std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -201,14 +318,14 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|   //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //	    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //	    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   GRID_ASSERT(comm_dim==1); | ||||
|   GRID_ASSERT(simd_layout==2); | ||||
|   GRID_ASSERT(shift>=0); | ||||
|   GRID_ASSERT(shift<fd); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
| @@ -224,8 +341,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|  | ||||
| @@ -233,6 +350,18 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|   buffer_size += (8 + sizeof(vobj) - 1) / sizeof(vobj); | ||||
| #endif | ||||
|  | ||||
|   static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size); | ||||
|   static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size); | ||||
|  | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
|   buffer_size -= (8 + sizeof(vobj) - 1) / sizeof(vobj); | ||||
| #endif | ||||
| #endif | ||||
|    | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
| @@ -275,252 +404,62 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|       GRID_ASSERT (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
| 	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
|  | ||||
| 	xbytes+=bytes; | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size); | ||||
|   vobj *send_buf; | ||||
|   vobj *recv_buf; | ||||
|   { | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     size_t bytes = buffer_size*sizeof(vobj); | ||||
|     send_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|     | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int pd = grid->_processors[dimension]; | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   { | ||||
|     size_t bytes = sizeof(scalar_object)*buffer_size; | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     // FIXME call local permute copy if none are offnode. | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
|       int inner_bit = (Nsimd>>(permute_type+1)); | ||||
|       int ic= (i&inner_bit)? 1:0; | ||||
|  | ||||
|       int my_coor          = rd*ic + x; | ||||
|       int nbr_coor         = my_coor+sshift; | ||||
|       int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors | ||||
|  | ||||
|       int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer | ||||
|       int nbr_ox   = (nbr_coor%rd);       // outer coord of peer | ||||
|       int nbr_lane = (i&(~inner_bit)); | ||||
|  | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
|       // bouncy bouncy | ||||
| 	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes); | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
| 	assert(bytes % 8 == 0); | ||||
| 	checksum_index++; | ||||
| 	uint64_t xsum = checksum_gpu((uint64_t*)send_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index); | ||||
| 	*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum; | ||||
| 	bytes += 8; | ||||
| #endif | ||||
| 	grid->SendToRecvFrom((void *)&hsend_buf[0], | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     (void *)&hrecv_buf[0], | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
| #ifdef GRID_CHECKSUM_COMMS | ||||
| 	bytes -= 8; | ||||
| 	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes); | ||||
| 	uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes); | ||||
| 	uint64_t computed_cs = checksum_gpu((uint64_t*)recv_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index); | ||||
|  | ||||
| 	//	grid->Barrier(); | ||||
| 	std::cout << GridLogComms<< " Cshift_comms_simd: " | ||||
| 		<<" dim"<<dimension | ||||
| 		<<" shift "<<shift | ||||
| 		<< " rank "<< grid->ThisRank() | ||||
| 		<<" Coor "<<grid->ThisProcessorCoor() | ||||
| 		<<" send "<<xsum<<" to   "<<xmit_to_rank | ||||
| 		<<" recv "<<computed_cs<<" from "<<recv_from_rank | ||||
| 		<<std::endl; | ||||
| 	assert(expected_cs == computed_cs); | ||||
| #else | ||||
| 	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes); | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|  | ||||
| 	xbytes+=bytes; | ||||
| 	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
| @@ -530,17 +469,16 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
|   if(Cshift_verbose){ | ||||
|     std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   } | ||||
| } | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| deviceVector<std::pair<int,int> > Cshift_table_device;  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -245,7 +245,7 @@ template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = | ||||
| inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   if ((cb == Odd) || (cb == Even)) { | ||||
|     assert(cb == lat.Checkerboard()); | ||||
|     GRID_ASSERT(cb == lat.Checkerboard()); | ||||
|   } | ||||
|   cb = lat.Checkerboard(); | ||||
| } | ||||
|   | ||||
| @@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice | ||||
|   }); | ||||
| } | ||||
|  | ||||
| #define FAST_AXPY_NORM | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpy_norm"); | ||||
|     return axpy_norm_fast(ret,a,x,y); | ||||
| #ifdef FAST_AXPY_NORM | ||||
|   return axpy_norm_fast(ret,a,x,y); | ||||
| #else | ||||
|   ret = a*x+y; | ||||
|   RealD nn=norm2(ret); | ||||
|   return nn; | ||||
| #endif | ||||
| } | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpby_norm"); | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
| #ifdef FAST_AXPY_NORM | ||||
|   return axpby_norm_fast(ret,a,b,x,y); | ||||
| #else | ||||
|   ret = a*x+b*y; | ||||
|   RealD nn=norm2(ret); | ||||
|   return nn; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| /// Trace product | ||||
|   | ||||
| @@ -120,12 +120,12 @@ public: | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     GRID_ASSERT(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     GRID_ASSERT( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|      | ||||
|     auto exprCopy = expr; | ||||
| @@ -144,12 +144,12 @@ public: | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     GRID_ASSERT(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     GRID_ASSERT( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     auto exprCopy = expr; | ||||
| @@ -168,12 +168,12 @@ public: | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     GRID_ASSERT(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     GRID_ASSERT( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
| @@ -191,11 +191,11 @@ public: | ||||
|   Lattice(const LatticeUnaryExpression<Op,T1> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     GRID_ASSERT(this->_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     GRID_ASSERT( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
| @@ -206,11 +206,11 @@ public: | ||||
|   Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     GRID_ASSERT(this->_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     GRID_ASSERT( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
| @@ -221,11 +221,11 @@ public: | ||||
|   Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     GRID_ASSERT(this->_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     GRID_ASSERT( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
| @@ -237,16 +237,19 @@ public: | ||||
|     vobj vtmp; | ||||
|     vtmp = r; | ||||
| #if 1 | ||||
|     deviceVector<vobj> vvtmp(1); | ||||
|     acceleratorPut(vvtmp[0],vtmp); | ||||
|     vobj *vvtmp_p = & vvtmp[0]; | ||||
|     auto me  = View(AcceleratorWrite); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
| 	auto stmp=coalescedRead(*vvtmp_p); | ||||
| 	coalescedWrite(me[ss],stmp); | ||||
|     }); | ||||
| #else     | ||||
|     auto me  = View(CpuWrite); | ||||
|     thread_for(ss,me.size(),{ | ||||
|        me[ss]= r; | ||||
|       }); | ||||
| #else     | ||||
|     auto me  = View(AcceleratorWrite); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
| 	auto stmp=coalescedRead(vtmp); | ||||
| 	coalescedWrite(me[ss],stmp); | ||||
|     }); | ||||
| #endif     | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
| @@ -261,7 +264,7 @@ public: | ||||
|   Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {  | ||||
|     this->_grid = grid; | ||||
|     resize(this->_grid->oSites()); | ||||
|     assert((((uint64_t)&this->_odata[0])&0xF) ==0); | ||||
|     GRID_ASSERT((((uint64_t)&this->_odata[0])&0xF) ==0); | ||||
|     this->checkerboard=0; | ||||
|     SetViewMode(mode); | ||||
|   } | ||||
|   | ||||
| @@ -53,36 +53,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|   typedef decltype(basis[0]) Field; | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|   hostVector<View>  h_basis_v(basis.size()); | ||||
|   deviceVector<View> d_basis_v(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj; | ||||
|   typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; | ||||
|  | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|        | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|     h_basis_v[k] = basis[k].View(AcceleratorWrite); | ||||
|     acceleratorPut(d_basis_v[k],h_basis_v[k]); | ||||
|   } | ||||
|  | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|     { | ||||
|       vobj* B = &Bt[Nm * thread_num()]; | ||||
|       thread_for_in_region(ss, grid->oSites(),{ | ||||
| 	  for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|        | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    for(int k=k0; k<k1; ++k){ | ||||
| 	      B[j] +=Qt(j,k) * basis_v[k][ss]; | ||||
| 	    } | ||||
| 	  } | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    basis_v[j][ss] = B[j]; | ||||
| 	  } | ||||
| 	}); | ||||
|     } | ||||
| #else | ||||
|   View *basis_vp = &basis_v[0]; | ||||
|   View *basis_vp = &d_basis_v[0]; | ||||
|  | ||||
|   int nrot = j1-j0; | ||||
|   if (!nrot) // edge case not handled gracefully by Cuda | ||||
| @@ -91,17 +74,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|   uint64_t oSites   =grid->oSites(); | ||||
|   uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead | ||||
|  | ||||
|   Vector <vobj> Bt(siteBlock * nrot);  | ||||
|   deviceVector <vobj> Bt(siteBlock * nrot);  | ||||
|   auto Bp=&Bt[0]; | ||||
|  | ||||
|   // GPU readable copy of matrix | ||||
|   Vector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   hostVector<Coeff_t> h_Qt_jv(Nm*Nm); | ||||
|   deviceVector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   Coeff_t *Qt_p = & Qt_jv[0]; | ||||
|   thread_for(i,Nm*Nm,{ | ||||
|       int j = i/Nm; | ||||
|       int k = i%Nm; | ||||
|       Qt_p[i]=Qt(j,k); | ||||
|       h_Qt_jv[i]=Qt(j,k); | ||||
|   }); | ||||
|   acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t)); | ||||
|  | ||||
|   // Block the loop to keep storage footprint down | ||||
|   for(uint64_t s=0;s<oSites;s+=siteBlock){ | ||||
| @@ -137,9 +122,8 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
| 	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
|       }); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
|   for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| @@ -152,16 +136,19 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in | ||||
|  | ||||
|   result.Checkerboard() = basis[0].Checkerboard(); | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   hostVector<View>  h_basis_v(basis.size()); | ||||
|   deviceVector<View> d_basis_v(basis.size()); | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorRead)); | ||||
|     h_basis_v[k]=basis[k].View(AcceleratorRead); | ||||
|     acceleratorPut(d_basis_v[k],h_basis_v[k]); | ||||
|   } | ||||
|   vobj zz=Zero(); | ||||
|   Vector<double> Qt_jv(Nm); | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); | ||||
|  | ||||
|   auto basis_vp=& basis_v[0]; | ||||
|   vobj zz=Zero(); | ||||
|   deviceVector<double> Qt_jv(Nm); | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k)); | ||||
|  | ||||
|   auto basis_vp=& d_basis_v[0]; | ||||
|   autoView(result_v,result,AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ | ||||
|     vobj zzz=Zero(); | ||||
| @@ -171,7 +158,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in | ||||
|     } | ||||
|     coalescedWrite(result_v[ss], B); | ||||
|   }); | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
|   for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| @@ -179,9 +166,9 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s | ||||
| { | ||||
|   int vlen = idx.size(); | ||||
|  | ||||
|   assert(vlen>=1); | ||||
|   assert(vlen<=sort_vals.size()); | ||||
|   assert(vlen<=_v.size()); | ||||
|   GRID_ASSERT(vlen>=1); | ||||
|   GRID_ASSERT(vlen<=sort_vals.size()); | ||||
|   GRID_ASSERT(vlen<=_v.size()); | ||||
|  | ||||
|   for (size_t i=0;i<vlen;i++) { | ||||
|  | ||||
| @@ -199,7 +186,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s | ||||
| 	if (idx[j]==i) | ||||
| 	  break; | ||||
|  | ||||
|       assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i); | ||||
|       GRID_ASSERT(idx[i] > i);     GRID_ASSERT(j!=idx.size());      GRID_ASSERT(idx[j]==i); | ||||
|  | ||||
|       swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy | ||||
|       std::swap(sort_vals[i],sort_vals[idx[i]]); | ||||
| @@ -237,7 +224,7 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo | ||||
| template<class Field> | ||||
| void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) { | ||||
|   result = Zero(); | ||||
|   assert(_v.size()==eval.size()); | ||||
|   GRID_ASSERT(_v.size()==eval.size()); | ||||
|   int N = (int)_v.size(); | ||||
|   for (int i=0;i<N;i++) { | ||||
|     Field& tmp = _v[i]; | ||||
|   | ||||
| @@ -32,8 +32,8 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs) | ||||
| { | ||||
|   assert(lhs.Grid() == rhs.Grid()); | ||||
|   assert(lhs.Checkerboard() == rhs.Checkerboard()); | ||||
|   GRID_ASSERT(lhs.Grid() == rhs.Grid()); | ||||
|   GRID_ASSERT(lhs.Checkerboard() == rhs.Checkerboard()); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -42,7 +42,7 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1); | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
| @@ -86,7 +86,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice< | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1); | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
| @@ -140,7 +140,7 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> | ||||
|    | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|   | ||||
| @@ -98,8 +98,8 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== l.Grid()->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|   GRID_ASSERT( l.Checkerboard()== l.Grid()->CheckerBoard(site)); | ||||
|   GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   int rank,odx,idx; | ||||
|   // Optional to broadcast from node 0. | ||||
| @@ -135,7 +135,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){ | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard() == l.Grid()->CheckerBoard(site)); | ||||
|   GRID_ASSERT( l.Checkerboard() == l.Grid()->CheckerBoard(site)); | ||||
|  | ||||
|   int rank,odx,idx; | ||||
|   grid->GlobalCoorToRankIndex(rank,odx,idx,site); | ||||
| @@ -159,14 +159,14 @@ template<class vobj,class sobj> | ||||
| inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   GridBase *grid = l.getGrid(); | ||||
|   assert(l.mode==CpuRead); | ||||
|   GRID_ASSERT(l.mode==CpuRead); | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|   //  GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   int odx,idx; | ||||
| @@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
|   for(int w=0;w<words;w++){ | ||||
|     pt[w] = getlane(vp[w],idx); | ||||
|   } | ||||
|        | ||||
|   //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl; | ||||
|   return; | ||||
| }; | ||||
| template<class vobj,class sobj> | ||||
| @@ -195,15 +195,15 @@ template<class vobj,class sobj> | ||||
| inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   GridBase *grid=l.getGrid(); | ||||
|   assert(l.mode==CpuWrite); | ||||
|   GRID_ASSERT(l.mode==CpuWrite); | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|   //  GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|   GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   int odx,idx; | ||||
|   | ||||
| @@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites) | ||||
|   //  const int Nsimd = vobj::Nsimd(); | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   std::vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
| @@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites) | ||||
|  | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   std::vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
| @@ -290,23 +290,45 @@ template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
|   bool ok; | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // Hack | ||||
|     // Fast integer xor checksum. Can also be used in comms now. | ||||
|     autoView(l_v,left,AcceleratorRead); | ||||
|     Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|     uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|     csum=svm_xor(base,words); | ||||
|   } | ||||
|   FlightRecorder::CsumLog(csum); | ||||
|   //  uint64_t csum=0; | ||||
|   //  uint64_t csum2=0; | ||||
|   //  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   //  { | ||||
|   // Hack | ||||
|   // Fast integer xor checksum. Can also be used in comms now. | ||||
|   //    autoView(l_v,left,AcceleratorRead); | ||||
|   //    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|   //    uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|   //    csum=svm_xor(base,words); | ||||
|   //    ok = FlightRecorder::CsumLog(csum); | ||||
|   //    if ( !ok ) { | ||||
|   //      csum2=svm_xor(base,words); | ||||
|   //      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl; | ||||
|   //    } else { | ||||
|   //      csum2=svm_xor(base,words); | ||||
|   //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl; | ||||
|   //    } | ||||
|   //    GRID_ASSERT(ok); | ||||
|   // } | ||||
| #endif | ||||
|   FlightRecorder::StepLog("rank inner product"); | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   //  ComplexD nrmck=nrm; | ||||
|   RealD local = real(nrm); | ||||
|   FlightRecorder::NormLog(real(nrm));  | ||||
|   grid->GlobalSum(nrm); | ||||
|   ok = FlightRecorder::NormLog(real(nrm)); | ||||
|   if ( !ok ) { | ||||
|     ComplexD nrm2 = rankInnerProduct(left,right); | ||||
|     RealD local2 = real(nrm2); | ||||
|     std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl; | ||||
|     GRID_ASSERT(ok); | ||||
|   } | ||||
|   FlightRecorder::StepLog("Start global sum"); | ||||
|   grid->GlobalSumP2P(nrm); | ||||
|   //  grid->GlobalSum(nrm); | ||||
|   FlightRecorder::StepLog("Finished global sum"); | ||||
|   //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl; | ||||
|   FlightRecorder::ReductionLog(local,real(nrm));  | ||||
|   return nrm; | ||||
| } | ||||
| @@ -343,18 +365,6 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|   autoView( x_v, x, AcceleratorRead); | ||||
|   autoView( y_v, y, AcceleratorRead); | ||||
|   autoView( z_v, z, AcceleratorWrite); | ||||
| #if 0 | ||||
|   typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
|       auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sum(inner_tmp_v,sites))); | ||||
| #else | ||||
|   typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t; | ||||
|   deviceVector<inner_t> inner_tmp; | ||||
|   inner_tmp.resize(sites); | ||||
| @@ -365,9 +375,13 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   bool ok; | ||||
|   nrm = real(TensorRemove(sumD(inner_tmp_v,sites))); | ||||
| #endif | ||||
|   ok = FlightRecorder::NormLog(real(nrm)); | ||||
|   GRID_ASSERT(ok); | ||||
|   RealD local = real(nrm); | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::ReductionLog(local,real(nrm)); | ||||
|   return nrm;  | ||||
| } | ||||
|   | ||||
| @@ -377,7 +391,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti | ||||
|   conformable(left,right); | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   Vector<ComplexD> tmp(2); | ||||
|   std::vector<ComplexD> tmp(2); | ||||
|  | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
| @@ -387,8 +401,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti | ||||
|   // GPU | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) norm_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   Vector<norm_t>  norm_tmp(sites); | ||||
|   deviceVector<inner_t> inner_tmp(sites); | ||||
|   deviceVector<norm_t>  norm_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   auto norm_tmp_v = &norm_tmp[0]; | ||||
|   { | ||||
| @@ -438,7 +452,9 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) | ||||
| // sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc... | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim) | ||||
| template<class vobj> inline void sliceSum(const Lattice<vobj> &Data, | ||||
| 					  std::vector<typename vobj::scalar_object> &result, | ||||
| 					  int orthogdim) | ||||
| { | ||||
|   /////////////////////////////////////////////////////// | ||||
|   // FIXME precision promoted summation | ||||
| @@ -448,20 +464,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_object::scalar_type scalar_type; | ||||
|   GridBase  *grid = Data.Grid(); | ||||
|   assert(grid!=NULL); | ||||
|   GRID_ASSERT(grid!=NULL); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert(orthogdim >= 0); | ||||
|   assert(orthogdim < Nd); | ||||
|   GRID_ASSERT(orthogdim >= 0); | ||||
|   GRID_ASSERT(orthogdim < Nd); | ||||
|  | ||||
|   int fd=grid->_fdimensions[orthogdim]; | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   Vector<vobj> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars | ||||
|   std::vector<vobj> lvSum(rd); // will locally sum vectors first | ||||
|   std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars | ||||
|   ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node  | ||||
| @@ -509,6 +525,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   scalar_type * ptr = (scalar_type *) &result[0]; | ||||
|   int words = fd*sizeof(sobj)/sizeof(scalar_type); | ||||
|   grid->GlobalSumVector(ptr, words); | ||||
|   //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl; | ||||
|    | ||||
| } | ||||
| template<class vobj> inline | ||||
| std::vector<typename vobj::scalar_object>  | ||||
| @@ -519,28 +537,41 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim) | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| /* | ||||
| Reimplement | ||||
|  | ||||
| 1) | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
|  | ||||
| 2) | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
|  | ||||
| 3) | ||||
| -- Make Slice Mul Matrix call sliceMaddMatrix | ||||
|  */ | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| { | ||||
|   typedef typename vobj::vector_type   vector_type; | ||||
|   typedef typename vobj::scalar_type   scalar_type; | ||||
|   GridBase  *grid = lhs.Grid(); | ||||
|   assert(grid!=NULL); | ||||
|   GRID_ASSERT(grid!=NULL); | ||||
|   conformable(grid,rhs.Grid()); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert(orthogdim >= 0); | ||||
|   assert(orthogdim < Nd); | ||||
|   GRID_ASSERT(orthogdim >= 0); | ||||
|   GRID_ASSERT(orthogdim < Nd); | ||||
|  | ||||
|   int fd=grid->_fdimensions[orthogdim]; | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   Vector<vector_type> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   std::vector<vector_type> lvSum(rd); // will locally sum vectors first | ||||
|   std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD   | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node for IO to file | ||||
| @@ -670,203 +701,96 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice | ||||
|   } | ||||
| }; | ||||
|  | ||||
| /* | ||||
| inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog) | ||||
| { | ||||
|   int NN    = BlockSolverGrid->_ndimension; | ||||
|   int nsimd = BlockSolverGrid->Nsimd(); | ||||
|    | ||||
|   std::vector<int> latt_phys(0); | ||||
|   std::vector<int> simd_phys(0); | ||||
|   std::vector<int>  mpi_phys(0); | ||||
|   std::vector<int> latt_phys(NN-1); | ||||
|   Coordinate simd_phys; | ||||
|   std::vector<int>  mpi_phys(NN-1); | ||||
|   Coordinate checker_dim_mask(NN-1); | ||||
|   int checker_dim=-1; | ||||
|  | ||||
|   int dd; | ||||
|   for(int d=0;d<NN;d++){ | ||||
|     if( d!=Orthog ) {  | ||||
|       latt_phys.push_back(BlockSolverGrid->_fdimensions[d]); | ||||
|       simd_phys.push_back(BlockSolverGrid->_simd_layout[d]); | ||||
|       mpi_phys.push_back(BlockSolverGrid->_processors[d]); | ||||
|       latt_phys[dd]=BlockSolverGrid->_fdimensions[d]; | ||||
|       mpi_phys[dd] =BlockSolverGrid->_processors[d]; | ||||
|       checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d]; | ||||
|       if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd; | ||||
|       dd++; | ||||
|     } | ||||
|   } | ||||
|   return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);  | ||||
|   simd_phys=GridDefaultSimd(latt_phys.size(),nsimd); | ||||
|   GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys); | ||||
|   if(BlockSolverGrid->_isCheckerBoarded) { | ||||
|     GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim); | ||||
|     delete tmp; | ||||
|     return (GridBase *) ret; | ||||
|   } else {  | ||||
|     return (GridBase *) tmp; | ||||
|   } | ||||
| } | ||||
| */ | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   GridBase *FullGrid = X.Grid(); | ||||
|   GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   Lattice<vobj> Ys(SliceGrid); | ||||
|   Lattice<vobj> Rs(SliceGrid); | ||||
|   Lattice<vobj> Xs(SliceGrid); | ||||
|   Lattice<vobj> RR(FullGrid); | ||||
|  | ||||
|   RR = R; // Copies checkerboard for insert | ||||
|    | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   autoView( Y_v, Y, CpuRead); | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   thread_region | ||||
|   { | ||||
|     Vector<vobj> s_x(Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region(2, n,nblock, { | ||||
|      for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = Y_v[o+i*ostride]; | ||||
| 	for(int j=0;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|   int Nslice = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|   for(int i=0;i<Nslice;i++){ | ||||
|     ExtractSlice(Ys,Y,i,Orthog); | ||||
|     ExtractSlice(Rs,R,i,Orthog); | ||||
|     Rs=Ys; | ||||
|     for(int j=0;j<Nslice;j++){ | ||||
|       ExtractSlice(Xs,X,j,Orthog); | ||||
|       Rs = Rs + Xs*(scale*aa(j,i)); | ||||
|     } | ||||
|     InsertSlice(Rs,RR,i,Orthog); | ||||
|   } | ||||
|   R=RR; // Copy back handles arguments aliasing case | ||||
|   delete SliceGrid; | ||||
| }; | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl=1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   // thread_for2d_in_region | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|  | ||||
|     thread_for_collapse_in_region( 2 ,n,nblock,{ | ||||
|     for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = s_x[0]*(scale*aa(0,i)); | ||||
| 	for(int j=1;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|   } | ||||
|   R=Zero(); | ||||
|   sliceMaddMatrix(R,aa,X,R,Orthog,scale); | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog); | ||||
|  | ||||
|   Lattice<vobj> ls(SliceGrid); | ||||
|   Lattice<vobj> rs(SliceGrid); | ||||
|    | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|    | ||||
|   int Nblock = FullGrid->GlobalDimensions()[Orthog]; | ||||
|    | ||||
|   //  Lattice<vobj> Lslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|    | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_typeD; | ||||
|  | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> Left(Nblock); | ||||
|     std::vector<vobj> Right(Nblock); | ||||
|     Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region( 2, n,nblock,{ | ||||
|     for(int b=0;b<block;b++){ | ||||
|  | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	Left [i] = lhs_v[o+i*ostride]; | ||||
| 	Right[i] = rhs_v[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
|       for(int j=0;j<Nblock;j++){ | ||||
| 	auto tmp = innerProduct(Left[i],Right[j]); | ||||
| 	auto rtmp = TensorRemove(tmp); | ||||
| 	auto red  =  Reduce(rtmp); | ||||
| 	mat_thread(i,j) += std::complex<double>(real(red),imag(red)); | ||||
|       }} | ||||
|     }}); | ||||
|     thread_critical | ||||
|     { | ||||
|       mat += mat_thread; | ||||
|   int Nslice = lhs.Grid()->GlobalDimensions()[Orthog]; | ||||
|   mat = Eigen::MatrixXcd::Zero(Nslice,Nslice); | ||||
|   for(int s=0;s<Nslice;s++){ | ||||
|     ExtractSlice(ls,lhs,s,Orthog); | ||||
|     for(int ss=0;ss<Nslice;ss++){ | ||||
|       ExtractSlice(rs,rhs,ss,Orthog); | ||||
|       mat(s,ss) = innerProduct(ls,rs); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   for(int i=0;i<Nblock;i++){ | ||||
|   for(int j=0;j<Nblock;j++){ | ||||
|     ComplexD sum = mat(i,j); | ||||
|     FullGrid->GlobalSum(sum); | ||||
|     mat(i,j)=sum; | ||||
|   }} | ||||
|  | ||||
|   return; | ||||
|   delete SliceGrid; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -208,28 +208,18 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi | ||||
|  | ||||
|   Integer numThreads, numBlocks; | ||||
|   int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|   assert(ok); | ||||
|   GRID_ASSERT(ok); | ||||
|  | ||||
|   Integer smemSize = numThreads * sizeof(sobj); | ||||
|   // Move out of UVM | ||||
|   // Turns out I had messed up the synchronise after move to compute stream | ||||
|   // as running this on the default stream fools the synchronise | ||||
| #undef UVM_BLOCK_BUFFER   | ||||
| #ifndef UVM_BLOCK_BUFFER   | ||||
|   commVector<sobj> buffer(numBlocks); | ||||
|   deviceVector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   acceleratorCopyFromDevice(buffer_v,&result,sizeof(result)); | ||||
| #else | ||||
|   Vector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   result = *buffer_v; | ||||
| #endif | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| @@ -244,7 +234,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi | ||||
|    | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<vector> buffer(osites); | ||||
|   deviceVector<vector> buffer(osites); | ||||
|   vector *dat = (vector *)lat; | ||||
|   vector *buf = &buffer[0]; | ||||
|   iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0]; | ||||
|   | ||||
| @@ -4,33 +4,28 @@ NAMESPACE_BEGIN(Grid); | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|   static Vector<sobj> mysum; | ||||
|   mysum.resize(1); | ||||
|   sobj *mysum_p = & mysum[0]; | ||||
|  | ||||
|   sobj identity; zeroit(identity); | ||||
|   mysum[0] = identity; | ||||
|   sobj ret ;  | ||||
|  | ||||
|   sobj ret; zeroit(ret); | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|  | ||||
|   const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() }); | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|     auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{osites}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> item, auto &sum) { | ||||
|       auto osite   = item[0]; | ||||
|       sum +=Reduce(lat[osite]); | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   ret = mysum[0]; | ||||
|   //  free(mysum,*theGridAccelerator); | ||||
|   {  | ||||
|     sycl::buffer<sobj, 1> abuff(&ret, {1}); | ||||
|     theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|       auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>()); | ||||
|       cgh.parallel_for(sycl::range<1>{osites}, | ||||
|                       Reduction, | ||||
|                       [=] (sycl::id<1> item, auto &sum) { | ||||
|                         auto osite   = item[0]; | ||||
|                         sum +=Reduce(lat[osite]); | ||||
|                       }); | ||||
|     }); | ||||
|   } | ||||
|   sobjD dret; convertType(dret,ret); | ||||
|   return dret; | ||||
| } | ||||
| @@ -76,59 +71,41 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite | ||||
|  | ||||
| template<class Word> Word svm_xor(Word *vec,uint64_t L) | ||||
| { | ||||
|   Word xorResult; xorResult = 0; | ||||
|   static Vector<Word> d_sum; | ||||
|   d_sum.resize(1); | ||||
|   Word *d_sum_p=&d_sum[0]; | ||||
|   Word identity;  identity=0; | ||||
|   d_sum[0] = identity; | ||||
|   const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() }); | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|     auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{L}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> index, auto &sum) { | ||||
| 	 sum^=vec[index]; | ||||
|      }); | ||||
|    }); | ||||
|   Word ret = 0; | ||||
|   {  | ||||
|     sycl::buffer<Word, 1> abuff(&ret, {1}); | ||||
|     theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|       auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>()); | ||||
|       cgh.parallel_for(sycl::range<1>{L}, | ||||
|                       Reduction, | ||||
|                       [=] (sycl::id<1> index, auto &sum) { | ||||
|                         sum ^=vec[index]; | ||||
|                       }); | ||||
|     }); | ||||
|   } | ||||
|   theGridAccelerator->wait(); | ||||
|   return ret; | ||||
| } | ||||
| template<class Word> Word checksum_gpu(Word *vec,uint64_t L) | ||||
| { | ||||
|   Word identity;  identity=0; | ||||
|   Word ret = 0; | ||||
|   {  | ||||
|     sycl::buffer<Word, 1> abuff(&ret, {1}); | ||||
|     theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|       auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>()); | ||||
|       cgh.parallel_for(sycl::range<1>{L}, | ||||
|                        Reduction, | ||||
|                        [=] (sycl::id<1> index, auto &sum) { | ||||
| 			 auto l = index % 61; | ||||
|                          sum ^= vec[index]<<l | vec[index]>>(64-l); | ||||
|                        }); | ||||
|     }); | ||||
|   } | ||||
|   theGridAccelerator->wait(); | ||||
|   Word ret = d_sum[0]; | ||||
|   //  free(d_sum,*theGridAccelerator); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::vector_type  vector; | ||||
|   typedef typename vobj::scalar_type  scalar; | ||||
|  | ||||
|   typedef typename vobj::scalar_typeD scalarD; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|  | ||||
|   sobjD ret; | ||||
|   scalarD *ret_p = (scalarD *)&ret; | ||||
|    | ||||
|   const int nsimd = vobj::Nsimd(); | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<scalar> buffer(osites*nsimd); | ||||
|   scalar *buf = &buffer[0]; | ||||
|   vector *dat = (vector *)lat; | ||||
|  | ||||
|   for(int w=0;w<words;w++) { | ||||
|  | ||||
|     accelerator_for(ss,osites,nsimd,{ | ||||
| 	int lane = acceleratorSIMTlane(nsimd); | ||||
| 	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane); | ||||
|     }); | ||||
|     //Precision change at this point is to late to gain precision | ||||
|     ret_p[w] = svm_reduce(buf,nsimd*osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
| */ | ||||
|   | ||||
| @@ -53,10 +53,10 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine) | ||||
|  | ||||
|   // trivially extended in higher dims, with locality guaranteeing RNG state is local to node | ||||
|   int lowerdims   = fine->_ndimension - coarse->_ndimension; | ||||
|   assert(lowerdims >= 0); | ||||
|   GRID_ASSERT(lowerdims >= 0); | ||||
|   for(int d=0;d<lowerdims;d++){ | ||||
|     assert(fine->_simd_layout[d]==1); | ||||
|     assert(fine->_processors[d]==1); | ||||
|     GRID_ASSERT(fine->_simd_layout[d]==1); | ||||
|     GRID_ASSERT(fine->_processors[d]==1); | ||||
|   } | ||||
|  | ||||
|   int multiplicity=1; | ||||
| @@ -66,9 +66,9 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine) | ||||
|   // local and global volumes subdivide cleanly after SIMDization | ||||
|   for(int d=0;d<rngdims;d++){ | ||||
|     int fd= d+lowerdims; | ||||
|     assert(coarse->_processors[d]  == fine->_processors[fd]); | ||||
|     assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]); | ||||
|     assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);  | ||||
|     GRID_ASSERT(coarse->_processors[d]  == fine->_processors[fd]); | ||||
|     GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[fd]); | ||||
|     GRID_ASSERT(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);  | ||||
|  | ||||
|     multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];  | ||||
|   } | ||||
| @@ -83,18 +83,18 @@ inline int RNGfillable_general(GridBase *coarse,GridBase *fine) | ||||
|   int rngdims = coarse->_ndimension; | ||||
|      | ||||
|   // trivially extended in higher dims, with locality guaranteeing RNG state is local to node | ||||
|   int lowerdims   = fine->_ndimension - coarse->_ndimension;  assert(lowerdims >= 0); | ||||
|   int lowerdims   = fine->_ndimension - coarse->_ndimension;  GRID_ASSERT(lowerdims >= 0); | ||||
|   // assumes that the higher dimensions are not using more processors | ||||
|   // all further divisions are local | ||||
|   for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1); | ||||
|   for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]); | ||||
|   for(int d=0;d<lowerdims;d++) GRID_ASSERT(fine->_processors[d]==1); | ||||
|   for(int d=0;d<rngdims;d++) GRID_ASSERT(coarse->_processors[d] == fine->_processors[d+lowerdims]); | ||||
|  | ||||
|   // then divide the number of local sites | ||||
|   // check that the total number of sims agree, meanse the iSites are the same | ||||
|   assert(fine->Nsimd() == coarse->Nsimd()); | ||||
|   GRID_ASSERT(fine->Nsimd() == coarse->Nsimd()); | ||||
|  | ||||
|   // check that the two grids divide cleanly | ||||
|   assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() ); | ||||
|   GRID_ASSERT( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() ); | ||||
|  | ||||
|   return fine->lSites() / coarse->lSites(); | ||||
| } | ||||
| @@ -177,7 +177,7 @@ public: | ||||
|  | ||||
|     skip = skip<<shift; | ||||
|  | ||||
|     assert((skip >> shift)==site); // check for overflow | ||||
|     GRID_ASSERT((skip >> shift)==site); // check for overflow | ||||
|  | ||||
|     eng.discard(skip); | ||||
| #else | ||||
| @@ -218,7 +218,7 @@ public: | ||||
|     GetState(saved,_generators[gen]); | ||||
|   } | ||||
|   void SetState(std::vector<RngStateType> & saved,RngEngine &eng){ | ||||
|     assert(saved.size()==RngStateCount); | ||||
|     GRID_ASSERT(saved.size()==RngStateCount); | ||||
|     std::stringstream ss; | ||||
|     for(int i=0;i<RngStateCount;i++){ | ||||
|       ss<< saved[i]<<" "; | ||||
|   | ||||
| @@ -21,9 +21,18 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
| template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_cub_small(const vobj *Data, | ||||
| 					std::vector<vobj> &lvSum, | ||||
| 					const int rd, | ||||
| 					const int e1, | ||||
| 					const int e2, | ||||
| 					const int stride, | ||||
| 					const int ostride, | ||||
| 					const int Nsimd) | ||||
| { | ||||
|   size_t subvol_size = e1*e2; | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   deviceVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|   vobj zero_init; | ||||
|   zeroit(zero_init); | ||||
| @@ -46,7 +55,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V | ||||
|   d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); | ||||
|    | ||||
|   //copy offsets to device | ||||
|   acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|   acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|    | ||||
|    | ||||
|   gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); | ||||
| @@ -79,7 +88,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|   acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|    | ||||
|   //sync after copy | ||||
|   accelerator_barrier(); | ||||
| @@ -94,7 +103,15 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V | ||||
|  | ||||
|  | ||||
| #if defined(GRID_SYCL) | ||||
| template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
| 					 std::vector <vobj> &lvSum, | ||||
| 					 const int  &rd, | ||||
| 					 const int &e1, | ||||
| 					 const int &e2, | ||||
| 					 const int &stride, | ||||
| 					 const int &ostride, | ||||
| 					 const int &Nsimd) | ||||
| { | ||||
|   size_t subvol_size = e1*e2; | ||||
|  | ||||
| @@ -105,7 +122,7 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
|     mysum[r] = vobj_zero;  | ||||
|   } | ||||
|  | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|   deviceVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|  | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|  | ||||
| @@ -124,11 +141,11 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
|   }); | ||||
|  | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|       theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|           auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>()); | ||||
|           cgh.parallel_for(cl::sycl::range<1>{subvol_size}, | ||||
|       theGridAccelerator->submit([&](sycl::handler &cgh) { | ||||
|           auto Reduction = sycl::reduction(&mysum[r],std::plus<>()); | ||||
|           cgh.parallel_for(sycl::range<1>{subvol_size}, | ||||
|           Reduction, | ||||
|           [=](cl::sycl::id<1> item, auto &sum) { | ||||
|           [=](sycl::id<1> item, auto &sum) { | ||||
|               auto s = item[0]; | ||||
|               sum += rb_p[r*subvol_size+s]; | ||||
|           }); | ||||
| @@ -144,14 +161,23 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_large(const vobj *Data, | ||||
| 				    std::vector<vobj> &lvSum, | ||||
| 				    const int rd, | ||||
| 				    const int e1, | ||||
| 				    const int e2, | ||||
| 				    const int stride, | ||||
| 				    const int ostride, | ||||
| 				    const int Nsimd) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector; | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|   const int osites = rd*e1*e2; | ||||
|   commVector<vector>buffer(osites); | ||||
|   deviceVector<vector>buffer(osites); | ||||
|   vector *dat = (vector *)Data; | ||||
|   vector *buf = &buffer[0]; | ||||
|   Vector<vector> lvSum_small(rd); | ||||
|   std::vector<vector> lvSum_small(rd); | ||||
|   vector *lvSum_ptr = (vector *)&lvSum[0]; | ||||
|  | ||||
|   for (int w = 0; w < words; w++) { | ||||
| @@ -168,13 +194,18 @@ template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vecto | ||||
|     for (int r = 0; r < rd; r++) { | ||||
|       lvSum_ptr[w+words*r]=lvSum_small[r]; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|    | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, | ||||
| 				  std::vector<vobj> &lvSum, | ||||
| 				  const int rd, | ||||
| 				  const int e1, | ||||
| 				  const int e2, | ||||
| 				  const int stride, | ||||
| 				  const int ostride, | ||||
| 				  const int Nsimd) | ||||
| { | ||||
|   autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case. | ||||
|     if constexpr (sizeof(vobj) <= 256) {  | ||||
| @@ -192,7 +223,15 @@ template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| template<class vobj> | ||||
| inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, | ||||
| 				  std::vector<vobj> &lvSum, | ||||
| 				  const int &rd, | ||||
| 				  const int &e1, | ||||
| 				  const int &e2, | ||||
| 				  const int &stride, | ||||
| 				  const int &ostride, | ||||
| 				  const int &Nsimd) | ||||
| { | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
| @@ -208,16 +247,20 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, | ||||
| 						   std::vector<vobj> &lvSum, | ||||
| 						   const int &rd, | ||||
| 						   const int &e1, | ||||
| 						   const int &e2, | ||||
| 						   const int &stride, | ||||
| 						   const int &ostride, | ||||
| 						   const int &Nsimd)  | ||||
| { | ||||
|   #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|    | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #else | ||||
| #else | ||||
|   sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|  | ||||
|   #endif | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -31,32 +31,61 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| inline void subdivides(GridBase *coarse,GridBase *fine) | ||||
| { | ||||
|   assert(coarse->_ndimension == fine->_ndimension); | ||||
|   GRID_ASSERT(coarse->_ndimension == fine->_ndimension); | ||||
|  | ||||
|   int _ndimension = coarse->_ndimension; | ||||
|  | ||||
|   // local and global volumes subdivide cleanly after SIMDization | ||||
|   for(int d=0;d<_ndimension;d++){ | ||||
|     assert(coarse->_processors[d]  == fine->_processors[d]); | ||||
|     assert(coarse->_simd_layout[d] == fine->_simd_layout[d]); | ||||
|     assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);  | ||||
|     GRID_ASSERT(coarse->_processors[d]  == fine->_processors[d]); | ||||
|     GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[d]); | ||||
|     GRID_ASSERT((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);  | ||||
|   } | ||||
| } | ||||
|  | ||||
|   | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // remove and insert a half checkerboard | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full) | ||||
| { | ||||
|   acceleratorPickCheckerboard(cb,half,full); | ||||
|   half.Checkerboard() = cb; | ||||
|  | ||||
|   autoView( half_v, half, CpuWrite); | ||||
|   autoView( full_v, full, CpuRead); | ||||
|   thread_for(ss, full.Grid()->oSites(),{ | ||||
|     int cbos; | ||||
|     Coordinate coor; | ||||
|     full.Grid()->oCoorFromOindex(coor,ss); | ||||
|     cbos=half.Grid()->CheckerBoard(coor); | ||||
|  | ||||
|     if (cbos==cb) { | ||||
|       int ssh=half.Grid()->oIndex(coor); | ||||
|       half_v[ssh] = full_v[ss]; | ||||
|     } | ||||
|   }); | ||||
| } | ||||
| template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half) | ||||
| { | ||||
|   acceleratorSetCheckerboard(full,half); | ||||
|   int cb = half.Checkerboard(); | ||||
|   autoView( half_v , half, CpuRead); | ||||
|   autoView( full_v , full, CpuWrite); | ||||
|   thread_for(ss,full.Grid()->oSites(),{ | ||||
|  | ||||
|     Coordinate coor; | ||||
|     int cbos; | ||||
|  | ||||
|     full.Grid()->oCoorFromOindex(coor,ss); | ||||
|     cbos=half.Grid()->CheckerBoard(coor); | ||||
|        | ||||
|     if (cbos==cb) { | ||||
|       int ssh=half.Grid()->oIndex(coor); | ||||
|       full_v[ss]=half_v[ssh]; | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int dummy=0) | ||||
| template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0) | ||||
| { | ||||
|   half.Checkerboard() = cb; | ||||
|   autoView(half_v, half, AcceleratorWrite); | ||||
| @@ -66,7 +95,6 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj | ||||
|   unsigned long ndim_half          = half.Grid()->_ndimension; | ||||
|   Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask; | ||||
|   Coordinate ostride_half          = half.Grid()->_ostride; | ||||
|   int checker_dim_half             = half.Grid()->CheckerDim(); | ||||
|   accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{ | ||||
|      | ||||
|     Coordinate coor; | ||||
| @@ -91,7 +119,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj | ||||
|     } | ||||
|   }); | ||||
| } | ||||
| template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int dummy=0) | ||||
| template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0) | ||||
| { | ||||
|   int cb = half.Checkerboard(); | ||||
|   autoView(half_v , half, AcceleratorRead); | ||||
| @@ -101,7 +129,6 @@ template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full, | ||||
|   unsigned long ndim_half          = half.Grid()->_ndimension; | ||||
|   Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask; | ||||
|   Coordinate ostride_half          = half.Grid()->_ostride; | ||||
|   int checker_dim_half             = half.Grid()->CheckerDim(); | ||||
|   accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{ | ||||
|  | ||||
|     Coordinate coor; | ||||
| @@ -282,7 +309,7 @@ inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &co | ||||
|                                const VLattice &Basis) | ||||
| { | ||||
|   int NBatch = fineData.size(); | ||||
|   assert(coarseData.size() == NBatch); | ||||
|   GRID_ASSERT(coarseData.size() == NBatch); | ||||
|  | ||||
|   GridBase * fine  = fineData[0].Grid(); | ||||
|   GridBase * coarse= coarseData[0].Grid(); | ||||
| @@ -317,7 +344,7 @@ template<class vobj,class vobj2,class CComplex> | ||||
|   GridBase * coarse= coarseA.Grid(); | ||||
|  | ||||
|   fineZ.Checkerboard()=fineX.Checkerboard(); | ||||
|   assert(fineX.Checkerboard()==fineY.Checkerboard()); | ||||
|   GRID_ASSERT(fineX.Checkerboard()==fineY.Checkerboard()); | ||||
|   subdivides(coarse,fine); // require they map | ||||
|   conformable(fineX,fineY); | ||||
|   conformable(fineX,fineZ); | ||||
| @@ -329,7 +356,7 @@ template<class vobj,class vobj2,class CComplex> | ||||
|   // FIXME merge with subdivide checking routine as this is redundant | ||||
|   for(int d=0 ; d<_ndimension;d++){ | ||||
|     block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d]; | ||||
|     assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]); | ||||
|     GRID_ASSERT(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]); | ||||
|   } | ||||
|  | ||||
|   autoView( fineZ_  , fineZ, AcceleratorWrite); | ||||
| @@ -586,7 +613,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|   int  _ndimension = coarse->_ndimension; | ||||
|  | ||||
|   // checks | ||||
|   assert( nbasis == Basis.size() ); | ||||
|   GRID_ASSERT( nbasis == Basis.size() ); | ||||
|   subdivides(coarse,fine);  | ||||
|   for(int i=0;i<nbasis;i++){ | ||||
|     conformable(Basis[i].Grid(),fine); | ||||
| @@ -660,7 +687,7 @@ inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis> | ||||
|                                const VLattice &Basis) | ||||
| { | ||||
|   int NBatch = coarseData.size(); | ||||
|   assert(fineData.size() == NBatch); | ||||
|   GRID_ASSERT(fineData.size() == NBatch); | ||||
|  | ||||
|   GridBase * fine   = fineData[0].Grid(); | ||||
|   GridBase * coarse = coarseData[0].Grid(); | ||||
| @@ -688,12 +715,12 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out) | ||||
|   int ni = ig->_ndimension; | ||||
|   int no = og->_ndimension; | ||||
|  | ||||
|   assert(ni == no); | ||||
|   GRID_ASSERT(ni == no); | ||||
|  | ||||
|   for(int d=0;d<no;d++){ | ||||
|     assert(ig->_processors[d]  == og->_processors[d]); | ||||
|     assert(ig->_ldimensions[d] == og->_ldimensions[d]); | ||||
|     assert(ig->lSites() == og->lSites()); | ||||
|     GRID_ASSERT(ig->_processors[d]  == og->_processors[d]); | ||||
|     GRID_ASSERT(ig->_ldimensions[d] == og->_ldimensions[d]); | ||||
|     GRID_ASSERT(ig->lSites() == og->lSites()); | ||||
|   } | ||||
|  | ||||
|   autoView(in_v,in,CpuRead); | ||||
| @@ -725,16 +752,16 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|  | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Fg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   int nd = nF; | ||||
|   assert(nF == nT); | ||||
|   GRID_ASSERT(nF == nT); | ||||
|  | ||||
|   for(int d=0;d<nd;d++){ | ||||
|     assert(Fg->_processors[d]  == Tg->_processors[d]); | ||||
|     GRID_ASSERT(Fg->_processors[d]  == Tg->_processors[d]); | ||||
|   } | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
| @@ -794,12 +821,12 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Fg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nF+1 == nT); | ||||
|   GRID_ASSERT(nF+1 == nT); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
| @@ -863,12 +890,12 @@ void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, in | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Fg->_isCheckerBoarded); | ||||
|   GRID_ASSERT(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nT+1 == nF); | ||||
|   GRID_ASSERT(nT+1 == nF); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
| @@ -928,16 +955,16 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice | ||||
|   int nl = lg->_ndimension; | ||||
|   int nh = hg->_ndimension; | ||||
|  | ||||
|   assert(nl+1 == nh); | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|   assert(hg->_processors[orthog]==1); | ||||
|   GRID_ASSERT(nl+1 == nh); | ||||
|   GRID_ASSERT(orthog<nh); | ||||
|   GRID_ASSERT(orthog>=0); | ||||
|   GRID_ASSERT(hg->_processors[orthog]==1); | ||||
|  | ||||
|   int dl; dl = 0; | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d != orthog) { | ||||
|       assert(lg->_processors[dl]  == hg->_processors[d]); | ||||
|       assert(lg->_ldimensions[dl] == hg->_ldimensions[d]); | ||||
|       GRID_ASSERT(lg->_processors[dl]  == hg->_processors[d]); | ||||
|       GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]); | ||||
|       dl++; | ||||
|     } | ||||
|   } | ||||
| @@ -954,8 +981,14 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice | ||||
|     hcoor[orthog] = slice; | ||||
|     for(int d=0;d<nh;d++){ | ||||
|       if ( d!=orthog ) {  | ||||
| 	hcoor[d]=lcoor[ddl++]; | ||||
| 	hcoor[d]=lcoor[ddl]; | ||||
| 	if ( hg->_checker_dim == d ) { | ||||
| 	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite | ||||
| 	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite | ||||
| 	} | ||||
| 	ddl++; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     peekLocalSite(s,lowDimv,lcoor); | ||||
|     pokeLocalSite(s,higherDimv,hcoor); | ||||
| @@ -972,16 +1005,17 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|   int nl = lg->_ndimension; | ||||
|   int nh = hg->_ndimension; | ||||
|  | ||||
|   assert(nl+1 == nh); | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|   assert(hg->_processors[orthog]==1); | ||||
|   GRID_ASSERT(nl+1 == nh); | ||||
|   GRID_ASSERT(orthog<nh); | ||||
|   GRID_ASSERT(orthog>=0); | ||||
|   GRID_ASSERT(hg->_processors[orthog]==1); | ||||
|   lowDim.Checkerboard() = higherDim.Checkerboard(); | ||||
|  | ||||
|   int dl; dl = 0; | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d != orthog) { | ||||
|       assert(lg->_processors[dl]  == hg->_processors[d]); | ||||
|       assert(lg->_ldimensions[dl] == hg->_ldimensions[d]); | ||||
|       GRID_ASSERT(lg->_processors[dl]  == hg->_processors[d]); | ||||
|       GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]); | ||||
|       dl++; | ||||
|     } | ||||
|   } | ||||
| @@ -993,11 +1027,16 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     int ddl=0; | ||||
|     hcoor[orthog] = slice; | ||||
|     int ddl=0; | ||||
|     for(int d=0;d<nh;d++){ | ||||
|       if ( d!=orthog ) {  | ||||
| 	hcoor[d]=lcoor[ddl++]; | ||||
| 	hcoor[d]=lcoor[ddl]; | ||||
| 	if ( hg->_checker_dim == d ) { | ||||
| 	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite | ||||
| 	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite | ||||
| 	} | ||||
| 	ddl++; | ||||
|       } | ||||
|     } | ||||
|     peekLocalSite(s,higherDimv,hcoor); | ||||
| @@ -1017,14 +1056,14 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int | ||||
|   int nl = lg->_ndimension; | ||||
|   int nh = hg->_ndimension; | ||||
|  | ||||
|   assert(nl == nh); | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|   GRID_ASSERT(nl == nh); | ||||
|   GRID_ASSERT(orthog<nh); | ||||
|   GRID_ASSERT(orthog>=0); | ||||
|  | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d!=orthog ) { | ||||
|       assert(lg->_processors[d]  == hg->_processors[d]); | ||||
|       assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|       GRID_ASSERT(lg->_processors[d]  == hg->_processors[d]); | ||||
|       GRID_ASSERT(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|     } | ||||
|   } | ||||
|   Coordinate sz = lg->_ldimensions; | ||||
| @@ -1054,7 +1093,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) | ||||
|  | ||||
|   subdivides(cg,fg);  | ||||
|  | ||||
|   assert(cg->_ndimension==fg->_ndimension); | ||||
|   GRID_ASSERT(cg->_ndimension==fg->_ndimension); | ||||
|  | ||||
|   Coordinate ratio(cg->_ndimension); | ||||
|  | ||||
| @@ -1118,7 +1157,7 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in) | ||||
|  | ||||
|       int lex; | ||||
|       Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions); | ||||
|       assert(lex < out.size()); | ||||
|       GRID_ASSERT(lex < out.size()); | ||||
|       out_ptrs[lane] = &out[lex]; | ||||
|     } | ||||
|      | ||||
| @@ -1182,7 +1221,7 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out) | ||||
|   typedef typename vobj::vector_type vtype; | ||||
|    | ||||
|   GridBase* grid = out.Grid(); | ||||
|   assert(in.size()==grid->lSites()); | ||||
|   GRID_ASSERT(in.size()==grid->lSites()); | ||||
|    | ||||
|   const int ndim     = grid->Nd(); | ||||
|   constexpr int nsimd    = vtype::Nsimd(); | ||||
| @@ -1229,7 +1268,7 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out) | ||||
|   typedef typename vobj::vector_type vtype; | ||||
|    | ||||
|   GridBase* grid = out._grid; | ||||
|   assert(in.size()==grid->lSites()); | ||||
|   GRID_ASSERT(in.size()==grid->lSites()); | ||||
|    | ||||
|   int ndim     = grid->Nd(); | ||||
|   int nsimd    = vtype::Nsimd(); | ||||
| @@ -1290,9 +1329,9 @@ void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
| template<class VobjOut, class VobjIn> | ||||
| void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
| { | ||||
|   assert(out.Grid()->Nd() == in.Grid()->Nd()); | ||||
|   GRID_ASSERT(out.Grid()->Nd() == in.Grid()->Nd()); | ||||
|   for(int d=0;d<out.Grid()->Nd();d++){ | ||||
|     assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]); | ||||
|     GRID_ASSERT(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]); | ||||
|   } | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   GridBase *in_grid=in.Grid(); | ||||
| @@ -1343,9 +1382,9 @@ class precisionChangeWorkspace{ | ||||
| public: | ||||
|   precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){ | ||||
|     //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device | ||||
|     assert(out_grid->Nd() == in_grid->Nd()); | ||||
|     GRID_ASSERT(out_grid->Nd() == in_grid->Nd()); | ||||
|     for(int d=0;d<out_grid->Nd();d++){ | ||||
|       assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]); | ||||
|       GRID_ASSERT(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]); | ||||
|     } | ||||
|     int Nsimd_out = out_grid->Nsimd(); | ||||
|  | ||||
| @@ -1510,7 +1549,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|  | ||||
|   int full_vecs   = full.size(); | ||||
|  | ||||
|   assert(full_vecs>=1); | ||||
|   GRID_ASSERT(full_vecs>=1); | ||||
|  | ||||
|   GridBase * full_grid = full[0].Grid(); | ||||
|   GridBase *split_grid = split.Grid(); | ||||
| @@ -1528,18 +1567,18 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|   ////////////////////////////// | ||||
|   // Checks | ||||
|   ////////////////////////////// | ||||
|   assert(full_grid->_ndimension==split_grid->_ndimension); | ||||
|   GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension); | ||||
|   for(int n=0;n<full_vecs;n++){ | ||||
|     assert(full[n].Checkerboard() == cb); | ||||
|     GRID_ASSERT(full[n].Checkerboard() == cb); | ||||
|     for(int d=0;d<ndim;d++){ | ||||
|       assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]); | ||||
|       assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]); | ||||
|       GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]); | ||||
|       GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   int   nvector   =full_nproc/split_nproc;  | ||||
|   assert(nvector*split_nproc==full_nproc); | ||||
|   assert(nvector == full_vecs); | ||||
|   GRID_ASSERT(nvector*split_nproc==full_nproc); | ||||
|   GRID_ASSERT(nvector == full_vecs); | ||||
|  | ||||
|   Coordinate ratio(ndim); | ||||
|   for(int d=0;d<ndim;d++){ | ||||
| @@ -1583,7 +1622,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|  | ||||
|       int fvol   = lsites; | ||||
|        | ||||
|       int chunk  = (nvec*fvol)/sP;          assert(chunk*sP == nvec*fvol); | ||||
|       int chunk  = (nvec*fvol)/sP;          GRID_ASSERT(chunk*sP == nvec*fvol); | ||||
|  | ||||
|       // Loop over reordered data post A2A | ||||
|       thread_for(c, chunk, { | ||||
| @@ -1636,7 +1675,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|  | ||||
|   int full_vecs   = full.size(); | ||||
|  | ||||
|   assert(full_vecs>=1); | ||||
|   GRID_ASSERT(full_vecs>=1); | ||||
|  | ||||
|   GridBase * full_grid = full[0].Grid(); | ||||
|   GridBase *split_grid = split.Grid(); | ||||
| @@ -1654,18 +1693,18 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|   ////////////////////////////// | ||||
|   // Checks | ||||
|   ////////////////////////////// | ||||
|   assert(full_grid->_ndimension==split_grid->_ndimension); | ||||
|   GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension); | ||||
|   for(int n=0;n<full_vecs;n++){ | ||||
|     assert(full[n].Checkerboard() == cb); | ||||
|     GRID_ASSERT(full[n].Checkerboard() == cb); | ||||
|     for(int d=0;d<ndim;d++){ | ||||
|       assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]); | ||||
|       assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]); | ||||
|       GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]); | ||||
|       GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   int   nvector   =full_nproc/split_nproc;  | ||||
|   assert(nvector*split_nproc==full_nproc); | ||||
|   assert(nvector == full_vecs); | ||||
|   GRID_ASSERT(nvector*split_nproc==full_nproc); | ||||
|   GRID_ASSERT(nvector == full_vecs); | ||||
|  | ||||
|   Coordinate ratio(ndim); | ||||
|   for(int d=0;d<ndim;d++){ | ||||
| @@ -1701,7 +1740,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|       auto lsites= rsites/M;                // Decreases rsites by M | ||||
|        | ||||
|       int fvol   = lsites; | ||||
|       int chunk  = (nvec*fvol)/sP;          assert(chunk*sP == nvec*fvol); | ||||
|       int chunk  = (nvec*fvol)/sP;          GRID_ASSERT(chunk*sP == nvec*fvol); | ||||
| 	 | ||||
|       { | ||||
| 	// Loop over reordered data post A2A | ||||
|   | ||||
| @@ -106,6 +106,47 @@ public: | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| #ifdef GRID_LOG_VIEWS | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class ViewCloser | ||||
| { | ||||
|   View v;  // Take a copy of view and call view close when I go out of scope automatically | ||||
|   const char* filename; int line, mode; | ||||
| public: | ||||
|   ViewCloser(View &_v, const char* _filename, int _line, int _mode) : | ||||
|     v(_v), filename(_filename), line(_line), mode(_mode) { | ||||
|      | ||||
|     switch (mode){ | ||||
|     case AcceleratorRead: | ||||
|     case AcceleratorWrite: | ||||
|     case CpuRead: | ||||
|     case CpuWrite: | ||||
|       ViewLogger::LogOpen(filename, line, 1, mode, &v[0], v.size() * sizeof(v[0])); | ||||
|       break; | ||||
|     }  | ||||
|      | ||||
|   }; | ||||
|   ~ViewCloser() { | ||||
|      | ||||
|     switch (mode) { | ||||
|     case AcceleratorWriteDiscard: | ||||
|     case AcceleratorWrite: | ||||
|     case CpuWrite: | ||||
|       ViewLogger::LogClose(filename, line, -1, mode, &v[0], v.size() * sizeof(v[0])); | ||||
|       break; | ||||
|     } | ||||
|      | ||||
|     v.ViewClose(); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| #define autoView(l_v,l,mode)				\ | ||||
| 	  auto l_v = l.View(mode);			\ | ||||
| 	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v,__FILE__,__LINE__,mode); | ||||
|  | ||||
| #else | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class ViewCloser | ||||
| @@ -119,6 +160,7 @@ class ViewCloser | ||||
| #define autoView(l_v,l,mode)				\ | ||||
| 	  auto l_v = l.View(mode);			\ | ||||
| 	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v); | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Lattice expression types used by ET to assemble the AST | ||||
|   | ||||
| @@ -54,7 +54,7 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, | ||||
| template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf, | ||||
| 					      Lattice<vobj> &lat, | ||||
| 					      int x, | ||||
| 					      int dim, | ||||
| @@ -82,10 +82,10 @@ template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|   int rNsimda= Nsimd/simd[dim]; // should be equal | ||||
|   assert(rNsimda==rNsimd); | ||||
|   GRID_ASSERT(rNsimda==rNsimd); | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|   //  GRID_ASSERT(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
| @@ -140,7 +140,7 @@ template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf, | ||||
| template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf, | ||||
| 					     const Lattice<vobj> &lat, | ||||
| 					     int x, | ||||
| 					     int dim, | ||||
| @@ -172,7 +172,7 @@ template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf, | ||||
|    | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|   //  GRID_ASSERT(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
| @@ -247,7 +247,7 @@ public: | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate procs     =unpadded_grid->ProcessorGrid(); | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if ( procs[d] > 1 ) assert(local[d]>=depth); | ||||
|       if ( procs[d] > 1 ) GRID_ASSERT(local[d]>=depth); | ||||
|     } | ||||
|   } | ||||
|   void DeleteGrids(void) | ||||
| @@ -448,9 +448,9 @@ public: | ||||
|     int nld   = to.Grid()->_ldimensions[dimension]; | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|  | ||||
|     assert(depth<=lds[dimension]); // A must be on neighbouring node | ||||
|     assert(depth>0);   // A caller bug if zero | ||||
|     assert(ld+2*depth==nld); | ||||
|     GRID_ASSERT(depth<=lds[dimension]); // A must be on neighbouring node | ||||
|     GRID_ASSERT(depth>0);   // A caller bug if zero | ||||
|     GRID_ASSERT(ld+2*depth==nld); | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Face size and byte calculations | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
| @@ -460,15 +460,21 @@ public: | ||||
|     } | ||||
|     buffer_size = buffer_size  / Nsimd; | ||||
|     int rNsimd = Nsimd / simd[dimension]; | ||||
|     assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); | ||||
|     GRID_ASSERT( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); | ||||
|  | ||||
|     static cshiftVector<vobj> send_buf;  | ||||
|     static cshiftVector<vobj> recv_buf; | ||||
|     static deviceVector<vobj> send_buf;  | ||||
|     static deviceVector<vobj> recv_buf; | ||||
|     send_buf.resize(buffer_size*2*depth);     | ||||
|     recv_buf.resize(buffer_size*2*depth); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|     static hostVector<vobj> hsend_buf;  | ||||
|     static hostVector<vobj> hrecv_buf; | ||||
|     hsend_buf.resize(buffer_size*2*depth);     | ||||
|     hrecv_buf.resize(buffer_size*2*depth); | ||||
| #endif     | ||||
|  | ||||
|     std::vector<CommsRequest_t> fwd_req;    | ||||
|     std::vector<CommsRequest_t> bwd_req;    | ||||
|     std::vector<MpiCommsRequest_t> fwd_req;    | ||||
|     std::vector<MpiCommsRequest_t> bwd_req;    | ||||
|  | ||||
|     int words = buffer_size; | ||||
|     int bytes = words * sizeof(vobj); | ||||
| @@ -495,9 +501,16 @@ public: | ||||
|       t_gather+=usecond()-t; | ||||
|  | ||||
|       t=usecond(); | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&send_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
| #else | ||||
|       acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes); | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&hsend_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
| #endif | ||||
|       t_comms+=usecond()-t; | ||||
|      } | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
| @@ -508,9 +521,16 @@ public: | ||||
|       t_gather+= usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
| #else | ||||
|       acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes); | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
| #endif       | ||||
|       t_comms+=usecond()-t; | ||||
|     } | ||||
|  | ||||
| @@ -533,6 +553,11 @@ public: | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(fwd_req); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes); | ||||
|     } | ||||
| #endif | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
| @@ -543,6 +568,11 @@ public: | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(bwd_req); | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes); | ||||
|     } | ||||
| #endif | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
|   | ||||
| @@ -69,6 +69,7 @@ GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL"); | ||||
| GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL"); | ||||
| GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE"); | ||||
| GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN"); | ||||
| GridLogger GridLogComms      (1, "Comms",  GridLogColours, "BLUE"); | ||||
| GridLogger GridLogDslash     (1, "Dslash", GridLogColours, "BLUE"); | ||||
| GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE"); | ||||
| GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE"); | ||||
| @@ -84,6 +85,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) { | ||||
|   GridLogDebug.Active(0); | ||||
|   GridLogPerformance.Active(0); | ||||
|   GridLogDslash.Active(0); | ||||
|   GridLogComms.Active(0); | ||||
|   GridLogIntegrator.Active(1); | ||||
|   GridLogColours.Active(0); | ||||
|   GridLogHMC.Active(1); | ||||
| @@ -97,6 +99,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) { | ||||
|     if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1); | ||||
|     if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1); | ||||
|     if (logstreams[i] == std::string("Dslash"))      GridLogDslash.Active(1); | ||||
|     if (logstreams[i] == std::string("Comms"))       GridLogComms.Active(1); | ||||
|     if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0); | ||||
|     if (logstreams[i] == std::string("NoHMC"))       GridLogHMC.Active(0); | ||||
|     if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1); | ||||
|   | ||||
| @@ -33,10 +33,6 @@ | ||||
| #ifndef GRID_LOG_H | ||||
| #define GRID_LOG_H | ||||
|  | ||||
| #ifdef HAVE_EXECINFO_H | ||||
| #include <execinfo.h> | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -180,6 +176,7 @@ extern GridLogger GridLogError; | ||||
| extern GridLogger GridLogWarning; | ||||
| extern GridLogger GridLogMessage; | ||||
| extern GridLogger GridLogDebug; | ||||
| extern GridLogger GridLogComms; | ||||
| extern GridLogger GridLogPerformance; | ||||
| extern GridLogger GridLogDslash; | ||||
| extern GridLogger GridLogIterative; | ||||
| @@ -226,8 +223,6 @@ inline void Grid_pass(Args&&... args) { | ||||
|     std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| #define _NBACKTRACE (256) | ||||
| extern void * Grid_backtrace_buffer[_NBACKTRACE]; | ||||
|  | ||||
| #define BACKTRACEFILE() {						\ | ||||
|     char string[20];							\ | ||||
|   | ||||
| @@ -293,9 +293,9 @@ class BinaryIO { | ||||
|     // Flatten the file | ||||
|     uint64_t lsites = grid->lSites(); | ||||
|     if ( control & BINARYIO_MASTER_APPEND )  { | ||||
|       assert(iodata.size()==1); | ||||
|       GRID_ASSERT(iodata.size()==1); | ||||
|     } else { | ||||
|       assert(lsites==iodata.size()); | ||||
|       GRID_ASSERT(lsites==iodata.size()); | ||||
|     } | ||||
|     for(int d=0;d<ndim;d++){ | ||||
|       gStart[d] = lLattice[d]*pcoor[d]; | ||||
| @@ -326,20 +326,20 @@ class BinaryIO { | ||||
|     // Sobj in MPI phrasing | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     int ierr; | ||||
|     ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject);    assert(ierr==0); | ||||
|     ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject);    GRID_ASSERT(ierr==0); | ||||
|     ierr = MPI_Type_commit(&mpiObject); | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     // File global array data type | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray);    assert(ierr==0); | ||||
|     ierr=MPI_Type_commit(&fileArray);    assert(ierr==0); | ||||
|     ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray);    GRID_ASSERT(ierr==0); | ||||
|     ierr=MPI_Type_commit(&fileArray);    GRID_ASSERT(ierr==0); | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     // local lattice array | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray);    assert(ierr==0); | ||||
|     ierr=MPI_Type_commit(&localArray);    assert(ierr==0); | ||||
|     ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray);    GRID_ASSERT(ierr==0); | ||||
|     ierr=MPI_Type_commit(&localArray);    GRID_ASSERT(ierr==0); | ||||
| #endif | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -349,8 +349,8 @@ class BinaryIO { | ||||
|     int ieee32    = (format == std::string("IEEE32")); | ||||
|     int ieee64big = (format == std::string("IEEE64BIG")); | ||||
|     int ieee64    = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE")); | ||||
|     assert(ieee64||ieee32|ieee64big||ieee32big); | ||||
|     assert((ieee64+ieee32+ieee64big+ieee32big)==1); | ||||
|     GRID_ASSERT(ieee64||ieee32|ieee64big||ieee32big); | ||||
|     GRID_ASSERT((ieee64+ieee32+ieee64big+ieee32big)==1); | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     // Do the I/O | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -361,9 +361,9 @@ class BinaryIO { | ||||
|       if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) { | ||||
| #ifdef USE_MPI_IO | ||||
| 	std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl; | ||||
| 	ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);    assert(ierr==0); | ||||
| 	ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);    assert(ierr==0); | ||||
| 	ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status);    assert(ierr==0); | ||||
| 	ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);    GRID_ASSERT(ierr==0); | ||||
| 	ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);    GRID_ASSERT(ierr==0); | ||||
| 	ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status);    GRID_ASSERT(ierr==0); | ||||
| 	MPI_File_close(&fh); | ||||
| 	MPI_Type_free(&fileArray); | ||||
| 	MPI_Type_free(&localArray); | ||||
| @@ -384,13 +384,14 @@ class BinaryIO { | ||||
|           fin.seekg(offset + myrank * lsites * sizeof(fobj)); | ||||
|         } | ||||
|         fin.read((char *)&iodata[0], iodata.size() * sizeof(fobj)); | ||||
|         assert(fin.fail() == 0); | ||||
|         GRID_ASSERT(fin.fail() == 0); | ||||
|         fin.close(); | ||||
|       } | ||||
|       timer.Stop(); | ||||
|        | ||||
|       grid->Barrier(); | ||||
|  | ||||
| 	  timer.Stop(); | ||||
|  | ||||
|       bstimer.Start(); | ||||
|       ScidacChecksum(grid,iodata,scidac_csuma,scidac_csumb); | ||||
|       if (ieee32big) be32toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size()); | ||||
| @@ -435,11 +436,11 @@ class BinaryIO { | ||||
|  | ||||
|         std::cout << GridLogDebug << "MPI write I/O set view " << file << std::endl; | ||||
|         ierr = MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); | ||||
|         assert(ierr == 0); | ||||
|         GRID_ASSERT(ierr == 0); | ||||
|  | ||||
|         std::cout << GridLogDebug << "MPI write I/O write all " << file << std::endl; | ||||
|         ierr = MPI_File_write_all(fh, &iodata[0], 1, localArray, &status); | ||||
|         assert(ierr == 0); | ||||
|         GRID_ASSERT(ierr == 0); | ||||
|  | ||||
|         MPI_Offset os; | ||||
|         MPI_File_get_position(fh, &os); | ||||
| @@ -506,6 +507,7 @@ class BinaryIO { | ||||
|   offset  = fout.tellp(); | ||||
| 	fout.close(); | ||||
|       } | ||||
|       grid->Barrier(); | ||||
|       timer.Stop(); | ||||
|     } | ||||
|      | ||||
|   | ||||
| @@ -289,7 +289,7 @@ class GridLimeReader : public BinaryIO { | ||||
| 	return; | ||||
|       }       | ||||
|     } | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|   //////////////////////////////////////////// | ||||
|   // Read a generic serialisable object | ||||
| @@ -314,7 +314,7 @@ class GridLimeReader : public BinaryIO { | ||||
|       } | ||||
|  | ||||
|     }   | ||||
|     assert(0); | ||||
|     GRID_ASSERT(0); | ||||
|   } | ||||
|  | ||||
|   template<class serialisable_object> | ||||
| @@ -348,7 +348,7 @@ class GridLimeWriter : public BinaryIO | ||||
|      filename= _filename; | ||||
|      if ( boss_node ) { | ||||
|        File = fopen(filename.c_str(), "w"); | ||||
|        LimeW = limeCreateWriter(File); assert(LimeW != NULL ); | ||||
|        LimeW = limeCreateWriter(File); GRID_ASSERT(LimeW != NULL ); | ||||
|      } | ||||
|    } | ||||
|    ///////////////////////////////////////////// | ||||
| @@ -368,7 +368,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     if ( boss_node ) { | ||||
|       LimeRecordHeader *h; | ||||
|       h = limeCreateHeader(MB, ME, const_cast<char *>(message.c_str()), PayloadSize); | ||||
|       assert(limeWriteRecordHeader(h, LimeW) >= 0); | ||||
|       GRID_ASSERT(limeWriteRecordHeader(h, LimeW) >= 0); | ||||
|       limeDestroyHeader(h); | ||||
|     } | ||||
|     return LIME_SUCCESS; | ||||
| @@ -386,11 +386,11 @@ class GridLimeWriter : public BinaryIO | ||||
|       //    std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl; | ||||
|       int err; | ||||
|       LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes);  | ||||
|       assert(h!= NULL); | ||||
|       GRID_ASSERT(h!= NULL); | ||||
|        | ||||
|       err=limeWriteRecordHeader(h, LimeW);                    assert(err>=0); | ||||
|       err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0); | ||||
|       err=limeWriterCloseRecord(LimeW);                       assert(err>=0); | ||||
|       err=limeWriteRecordHeader(h, LimeW);                    GRID_ASSERT(err>=0); | ||||
|       err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); GRID_ASSERT(err>=0); | ||||
|       err=limeWriterCloseRecord(LimeW);                       GRID_ASSERT(err>=0); | ||||
|       limeDestroyHeader(h); | ||||
|     } | ||||
|   } | ||||
| @@ -431,7 +431,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|      | ||||
|     GridBase *grid = field.Grid(); | ||||
|     assert(boss_node == field.Grid()->IsBoss() ); | ||||
|     GRID_ASSERT(boss_node == field.Grid()->IsBoss() ); | ||||
|  | ||||
|     FieldNormMetaData FNMD; FNMD.norm2 = norm2(field); | ||||
|  | ||||
| @@ -473,7 +473,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     if ( boss_node ) { | ||||
|       fseek(File,0,SEEK_END);              | ||||
|       uint64_t offset2 = ftello(File);     //    std::cout << " now at offset "<<offset2 << std::endl; | ||||
|       assert( (offset2-offset1) == PayloadSize); | ||||
|       GRID_ASSERT( (offset2-offset1) == PayloadSize); | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
| @@ -481,7 +481,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|     if ( boss_node ) {  | ||||
|       err=limeWriterCloseRecord(LimeW);  assert(err>=0); | ||||
|       err=limeWriterCloseRecord(LimeW);  GRID_ASSERT(err>=0); | ||||
|     } | ||||
|     //////////////////////////////////////// | ||||
|     // Write checksum element, propagaing forward from the BinaryIO | ||||
| @@ -621,8 +621,8 @@ class IldgWriter : public ScidacWriter { | ||||
|     uint64_t PayloadSize = LFN.size(); | ||||
|     int err; | ||||
|     createLimeRecordHeader(ILDG_DATA_LFN, 0 , 0, PayloadSize); | ||||
|     err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); assert(err>=0); | ||||
|     err=limeWriterCloseRecord(LimeW); assert(err>=0); | ||||
|     err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); GRID_ASSERT(err>=0); | ||||
|     err=limeWriterCloseRecord(LimeW); GRID_ASSERT(err>=0); | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
| @@ -656,7 +656,7 @@ class IldgWriter : public ScidacWriter { | ||||
|     header.sequence_number = sequence; | ||||
|     header.ildg_lfn = LFN; | ||||
|  | ||||
|     assert ( (format == std::string("IEEE32BIG"))   | ||||
|     GRID_ASSERT ( (format == std::string("IEEE32BIG"))   | ||||
|            ||(format == std::string("IEEE64BIG")) ); | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
| @@ -676,8 +676,8 @@ class IldgWriter : public ScidacWriter { | ||||
|     ildgfmt.ly = header.dimension[1]; | ||||
|     ildgfmt.lz = header.dimension[2]; | ||||
|     ildgfmt.lt = header.dimension[3]; | ||||
|     assert(header.nd==4); | ||||
|     assert(header.nd==header.dimension.size()); | ||||
|     GRID_ASSERT(header.nd==4); | ||||
|     GRID_ASSERT(header.nd==header.dimension.size()); | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////////////////// | ||||
|     // Field norm tests | ||||
| @@ -734,7 +734,7 @@ class IldgReader : public GridLimeReader { | ||||
|  | ||||
|     Coordinate dims = Umu.Grid()->FullDimensions(); | ||||
|  | ||||
|     assert(dims.size()==4); | ||||
|     GRID_ASSERT(dims.size()==4); | ||||
|  | ||||
|     // Metadata holders | ||||
|     ildgFormat     ildgFormat_    ; | ||||
| @@ -793,10 +793,10 @@ class IldgReader : public GridLimeReader { | ||||
| 	  if ( ildgFormat_.precision == 64 ) format = std::string("IEEE64BIG"); | ||||
| 	  if ( ildgFormat_.precision == 32 ) format = std::string("IEEE32BIG"); | ||||
|  | ||||
| 	  assert( ildgFormat_.lx == dims[0]); | ||||
| 	  assert( ildgFormat_.ly == dims[1]); | ||||
| 	  assert( ildgFormat_.lz == dims[2]); | ||||
| 	  assert( ildgFormat_.lt == dims[3]); | ||||
| 	  GRID_ASSERT( ildgFormat_.lx == dims[0]); | ||||
| 	  GRID_ASSERT( ildgFormat_.ly == dims[1]); | ||||
| 	  GRID_ASSERT( ildgFormat_.lz == dims[2]); | ||||
| 	  GRID_ASSERT( ildgFormat_.lt == dims[3]); | ||||
|  | ||||
| 	  found_ildgFormat = 1; | ||||
| 	} | ||||
| @@ -813,10 +813,10 @@ class IldgReader : public GridLimeReader { | ||||
|  | ||||
| 	  format = FieldMetaData_.floating_point; | ||||
|  | ||||
| 	  assert(FieldMetaData_.dimension[0] == dims[0]); | ||||
| 	  assert(FieldMetaData_.dimension[1] == dims[1]); | ||||
| 	  assert(FieldMetaData_.dimension[2] == dims[2]); | ||||
| 	  assert(FieldMetaData_.dimension[3] == dims[3]); | ||||
| 	  GRID_ASSERT(FieldMetaData_.dimension[0] == dims[0]); | ||||
| 	  GRID_ASSERT(FieldMetaData_.dimension[1] == dims[1]); | ||||
| 	  GRID_ASSERT(FieldMetaData_.dimension[2] == dims[2]); | ||||
| 	  GRID_ASSERT(FieldMetaData_.dimension[3] == dims[3]); | ||||
|  | ||||
| 	  found_FieldMetaData = 1; | ||||
| 	} | ||||
| @@ -866,13 +866,13 @@ class IldgReader : public GridLimeReader { | ||||
|     // Minimally must find binary segment and checksum | ||||
|     // Since this is an ILDG reader require ILDG format | ||||
|     ////////////////////////////////////////////////////// | ||||
|     assert(found_ildgLFN); | ||||
|     assert(found_ildgBinary); | ||||
|     assert(found_ildgFormat); | ||||
|     assert(found_scidacChecksum); | ||||
|     GRID_ASSERT(found_ildgLFN); | ||||
|     GRID_ASSERT(found_ildgBinary); | ||||
|     GRID_ASSERT(found_ildgFormat); | ||||
|     GRID_ASSERT(found_scidacChecksum); | ||||
|  | ||||
|     // Must find something with the lattice dimensions | ||||
|     assert(found_FieldMetaData||found_ildgFormat); | ||||
|     GRID_ASSERT(found_FieldMetaData||found_ildgFormat); | ||||
|  | ||||
|     if ( found_FieldMetaData ) { | ||||
|  | ||||
| @@ -880,9 +880,9 @@ class IldgReader : public GridLimeReader { | ||||
|  | ||||
|     } else {  | ||||
|  | ||||
|       assert(found_ildgFormat); | ||||
|       GRID_ASSERT(found_ildgFormat); | ||||
|       const std::string stNC = std::to_string( Nc ) ; | ||||
|       assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") ); | ||||
|       GRID_ASSERT ( ildgFormat_.field == std::string("su"+stNC+"gauge") ); | ||||
|  | ||||
|       /////////////////////////////////////////////////////////////////////////////////////// | ||||
|       // Populate our Grid metadata as best we can | ||||
| @@ -927,20 +927,20 @@ class IldgReader : public GridLimeReader { | ||||
|       FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16); | ||||
|       FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16); | ||||
|       scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb); | ||||
|       assert( scidac_csuma ==FieldMetaData_.scidac_checksuma); | ||||
|       assert( scidac_csumb ==FieldMetaData_.scidac_checksumb); | ||||
|       GRID_ASSERT( scidac_csuma ==FieldMetaData_.scidac_checksuma); | ||||
|       GRID_ASSERT( scidac_csumb ==FieldMetaData_.scidac_checksumb); | ||||
|       std::cout << GridLogMessage<<"SciDAC checksums match " << std::endl; | ||||
|     } else {  | ||||
|       std::cout << GridLogWarning<<"SciDAC checksums not found. This is unsafe. " << std::endl; | ||||
|       assert(0); // Can I insist always checksum ? | ||||
|       GRID_ASSERT(0); // Can I insist always checksum ? | ||||
|     } | ||||
|  | ||||
|     if ( found_FieldMetaData || found_usqcdInfo ) { | ||||
|       FieldMetaData checker; | ||||
|       stats Stats; | ||||
|       Stats(Umu,checker); | ||||
|       assert(fabs(checker.plaquette  - FieldMetaData_.plaquette )<1.0e-5); | ||||
|       assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5); | ||||
|       GRID_ASSERT(fabs(checker.plaquette  - FieldMetaData_.plaquette )<1.0e-5); | ||||
|       GRID_ASSERT(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5); | ||||
|       std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl; | ||||
|     } | ||||
|   } | ||||
|   | ||||
| @@ -203,7 +203,7 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| inline void reconstruct3(LorentzColourMatrix & cm) | ||||
| { | ||||
|   assert( Nc < 4 && Nc > 1 ) ; | ||||
|   GRID_ASSERT( Nc < 4 && Nc > 1 ) ; | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     #if Nc == 2 | ||||
|       cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ; | ||||
| @@ -240,7 +240,7 @@ struct BinarySimpleUnmunger { | ||||
|     sobj_stype *in_buffer = (sobj_stype *)∈ | ||||
|     size_t fobj_words = sizeof(out) / sizeof(fobj_stype); | ||||
|     size_t sobj_words = sizeof(in) / sizeof(sobj_stype); | ||||
|     assert(fobj_words == sobj_words); | ||||
|     GRID_ASSERT(fobj_words == sobj_words); | ||||
|      | ||||
|     for (unsigned int word = 0; word < sobj_words; word++) | ||||
|       out_buffer[word] = in_buffer[word];  // type conversion on the fly | ||||
| @@ -259,7 +259,7 @@ struct BinarySimpleMunger { | ||||
|     sobj_stype *out_buffer = (sobj_stype *)&out; | ||||
|     size_t fobj_words = sizeof(in) / sizeof(fobj_stype); | ||||
|     size_t sobj_words = sizeof(out) / sizeof(sobj_stype); | ||||
|     assert(fobj_words == sobj_words); | ||||
|     GRID_ASSERT(fobj_words == sobj_words); | ||||
|      | ||||
|     for (unsigned int word = 0; word < sobj_words; word++) | ||||
|       out_buffer[word] = in_buffer[word];  // type conversion on the fly | ||||
|   | ||||
| @@ -76,7 +76,7 @@ public: | ||||
|     removeWhitespace(line); | ||||
|     std::cout << GridLogMessage << "* " << line << std::endl; | ||||
|  | ||||
|     assert(line==std::string("BEGIN_HEADER")); | ||||
|     GRID_ASSERT(line==std::string("BEGIN_HEADER")); | ||||
|  | ||||
|     do { | ||||
|       getline(fin,line); // read one line | ||||
| @@ -106,9 +106,9 @@ public: | ||||
|     field.dimension[2] = std::stol(header["DIMENSION_3"]); | ||||
|     field.dimension[3] = std::stol(header["DIMENSION_4"]); | ||||
|  | ||||
|     assert(grid->_ndimension == 4); | ||||
|     GRID_ASSERT(grid->_ndimension == 4); | ||||
|     for(int d=0;d<4;d++){ | ||||
|       assert(grid->_fdimensions[d]==field.dimension[d]); | ||||
|       GRID_ASSERT(grid->_fdimensions[d]==field.dimension[d]); | ||||
|     } | ||||
|  | ||||
|     field.link_trace = std::stod(header["LINK_TRACE"]); | ||||
| @@ -183,7 +183,7 @@ public: | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|     } else { | ||||
|       assert(0); | ||||
|       GRID_ASSERT(0); | ||||
|     } | ||||
|  | ||||
|     GaugeStats Stats; Stats(Umu,clone); | ||||
| @@ -205,9 +205,9 @@ public: | ||||
|       std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl; | ||||
|       exit(0); | ||||
|     } | ||||
|     if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); | ||||
|     assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 ); | ||||
|     assert(nersc_csum == header.checksum ); | ||||
|     if(exitOnReadPlaquetteMismatch()) GRID_ASSERT(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); | ||||
|     GRID_ASSERT(fabs(clone.link_trace-header.link_trace) < 1.0e-6 ); | ||||
|     GRID_ASSERT(nersc_csum == header.checksum ); | ||||
|        | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl; | ||||
|   } | ||||
| @@ -246,7 +246,7 @@ public: | ||||
|     GridBase *grid = Umu.Grid(); | ||||
|  | ||||
|     GridMetaData(grid,header); | ||||
|     assert(header.nd==4); | ||||
|     GRID_ASSERT(header.nd==4); | ||||
|     GaugeStats Stats; Stats(Umu,header); | ||||
|     MachineCharacteristics(header); | ||||
|  | ||||
| @@ -302,7 +302,7 @@ public: | ||||
|     GridBase *grid = parallel.Grid(); | ||||
|  | ||||
|     GridMetaData(grid,header); | ||||
|     assert(header.nd==4); | ||||
|     GRID_ASSERT(header.nd==4); | ||||
|     header.link_trace=0.0; | ||||
|     header.plaquette=0.0; | ||||
|     MachineCharacteristics(header); | ||||
| @@ -355,16 +355,16 @@ public: | ||||
|     std::string data_type(header.data_type); | ||||
|  | ||||
| #ifdef RNG_RANLUX | ||||
|     assert(format == std::string("UINT64")); | ||||
|     assert(data_type == std::string("RANLUX48")); | ||||
|     GRID_ASSERT(format == std::string("UINT64")); | ||||
|     GRID_ASSERT(data_type == std::string("RANLUX48")); | ||||
| #endif | ||||
| #ifdef RNG_MT19937 | ||||
|     assert(format == std::string("UINT32")); | ||||
|     assert(data_type == std::string("MT19937")); | ||||
|     GRID_ASSERT(format == std::string("UINT32")); | ||||
|     GRID_ASSERT(data_type == std::string("MT19937")); | ||||
| #endif | ||||
| #ifdef RNG_SITMO | ||||
|     assert(format == std::string("UINT64")); | ||||
|     assert(data_type == std::string("SITMO")); | ||||
|     GRID_ASSERT(format == std::string("UINT64")); | ||||
|     GRID_ASSERT(data_type == std::string("SITMO")); | ||||
| #endif | ||||
|  | ||||
|     // depending on datatype, set up munger; | ||||
| @@ -376,7 +376,7 @@ public: | ||||
|       std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl; | ||||
|       exit(0); | ||||
|     } | ||||
|     assert(nersc_csum == header.checksum ); | ||||
|     GRID_ASSERT(nersc_csum == header.checksum ); | ||||
|  | ||||
|     std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl; | ||||
|   } | ||||
|   | ||||
| @@ -49,7 +49,7 @@ public: | ||||
|     { | ||||
|       std::ifstream fin(file, std::ios::in | std::ios::binary); | ||||
|       fin.read(reinterpret_cast<char*>(&header), sizeof(OpenQcdHeader)); | ||||
|       assert(!fin.fail()); | ||||
|       GRID_ASSERT(!fin.fail()); | ||||
|       field.data_start = fin.tellg(); | ||||
|       fin.close(); | ||||
|     } | ||||
| @@ -57,10 +57,10 @@ public: | ||||
|     header.plaq /= normalisationFactor; | ||||
|  | ||||
|     // sanity check (should trigger on endian issues) | ||||
|     assert(0 < header.Nt && header.Nt <= 1024); | ||||
|     assert(0 < header.Nx && header.Nx <= 1024); | ||||
|     assert(0 < header.Ny && header.Ny <= 1024); | ||||
|     assert(0 < header.Nz && header.Nz <= 1024); | ||||
|     GRID_ASSERT(0 < header.Nt && header.Nt <= 1024); | ||||
|     GRID_ASSERT(0 < header.Nx && header.Nx <= 1024); | ||||
|     GRID_ASSERT(0 < header.Ny && header.Ny <= 1024); | ||||
|     GRID_ASSERT(0 < header.Nz && header.Nz <= 1024); | ||||
|  | ||||
|     field.dimension[0] = header.Nx; | ||||
|     field.dimension[1] = header.Ny; | ||||
| @@ -71,9 +71,9 @@ public: | ||||
|     std::cout << GridLogDebug << "grid dimensions: " << grid->_fdimensions << std::endl; | ||||
|     std::cout << GridLogDebug << "file dimensions: " << field.dimension << std::endl; | ||||
|  | ||||
|     assert(grid->_ndimension == Nd); | ||||
|     GRID_ASSERT(grid->_ndimension == Nd); | ||||
|     for(int d = 0; d < Nd; d++) | ||||
|       assert(grid->_fdimensions[d] == field.dimension[d]); | ||||
|       GRID_ASSERT(grid->_fdimensions[d] == field.dimension[d]); | ||||
|  | ||||
|     field.plaquette = header.plaq; | ||||
|  | ||||
| @@ -86,10 +86,10 @@ public: | ||||
|                                        std::string                           file) { | ||||
|     typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubleStoredGaugeField; | ||||
|  | ||||
|     assert(Ns == 4 and Nd == 4 and Nc == 3); | ||||
|     GRID_ASSERT(Ns == 4 and Nd == 4 and Nc == 3); | ||||
|  | ||||
|     auto grid = dynamic_cast<GridCartesian*>(Umu.Grid()); | ||||
|     assert(grid != nullptr); assert(grid->_ndimension == Nd); | ||||
|     GRID_ASSERT(grid != nullptr); GRID_ASSERT(grid->_ndimension == Nd); | ||||
|  | ||||
|     uint64_t offset = readHeader(file, Umu.Grid(), header); | ||||
|  | ||||
| @@ -171,7 +171,7 @@ public: | ||||
|  | ||||
|     if(plaq_diff >= tol) | ||||
|       std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl; | ||||
|     assert(plaq_diff < tol); | ||||
|     GRID_ASSERT(plaq_diff < tol); | ||||
|  | ||||
|     std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl; | ||||
|   } | ||||
|   | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user