1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 16:56:55 +01:00

Compare commits

..

1 Commits

Author SHA1 Message Date
927f8b800e Merge b02d022993 into ee1b8bbdbd 2024-02-28 14:08:55 -05:00
54 changed files with 374 additions and 3127 deletions

View File

@ -34,7 +34,7 @@
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#define EIGEN_DONT_VECTORIZE
#undef EIGEN_USE_SYCL
//#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#define _GRID_FFT_H_
#ifdef HAVE_FFTW
#if defined(USE_MKL) || defined(GRID_SYCL)
#ifdef USE_MKL
#include <fftw/fftw3.h>
#else
#include <fftw3.h>

View File

@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
* type = 1 for the approximation which is infinite at x = 0. */
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
l, invlambda, xi, xisq, *tv, s, opl;
int m, czero, ts;
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
construct_partfrac(d);
construct_contfrac(d);
/* Converting everything to ZOLO_PRECISION for external use only */
/* Converting everything to PRECISION for external use only */
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
zd -> A = (ZOLO_PRECISION) d -> A;
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
zd -> A = (PRECISION) d -> A;
zd -> Delta = (PRECISION) d -> Delta;
zd -> epsilon = (PRECISION) d -> epsilon;
zd -> n = d -> n;
zd -> type = d -> type;
zd -> dn = d -> dn;
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
zd -> deg_num = d -> deg_num;
zd -> deg_denom = d -> deg_denom;
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
free(d -> a);
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
free(d -> ap);
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
free(d -> alpha);
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
free(d -> beta);
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
free(d -> gamma);
free(d);
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
}
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
zolotarev_data* higham(PRECISION epsilon, int n) {
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
int m, czero;
zolotarev_data *zd;
@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
/* Converting everything to PRECISION for external use only */
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
zd -> A = (ZOLO_PRECISION) d -> A;
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
zd -> A = (PRECISION) d -> A;
zd -> Delta = (PRECISION) d -> Delta;
zd -> epsilon = (PRECISION) d -> epsilon;
zd -> n = d -> n;
zd -> type = d -> type;
zd -> dn = d -> dn;
@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
zd -> deg_num = d -> deg_num;
zd -> deg_denom = d -> deg_denom;
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
free(d -> a);
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
free(d -> ap);
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
free(d -> alpha);
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
free(d -> beta);
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
free(d -> gamma);
free(d);
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
#ifdef TEST
#undef ZERO
#define ZERO ((ZOLO_PRECISION) 0)
#define ZERO ((PRECISION) 0)
#undef ONE
#define ONE ((ZOLO_PRECISION) 1)
#define ONE ((PRECISION) 1)
#undef TWO
#define TWO ((ZOLO_PRECISION) 2)
#define TWO ((PRECISION) 2)
/* Evaluate the rational approximation R(x) using the factored form */
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION R;
PRECISION R;
if (rdata -> type == 0) {
R = rdata -> A * x;
@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
/* Evaluate the rational approximation R(x) using the partial fraction form */
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
PRECISION R = rdata -> alpha[rdata -> da - 1];
for (m = 0; m < rdata -> dd; m++)
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
* but with signalling overflow you will get an error message. */
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION R = rdata -> beta[0] * x;
PRECISION R = rdata -> beta[0] * x;
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
return R;
}
/* Evaluate the rational approximation R(x) using Cayley form */
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
int m;
ZOLO_PRECISION T;
PRECISION T;
T = rdata -> type == 0 ? ONE : -ONE;
for (m = 0; m < rdata -> n; m++)
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
int m, n, plotpts = 5000, type = 0;
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
zolotarev_data *rdata;
ZOLO_PRECISION y;
PRECISION y;
FILE *plot_function, *plot_error,
*plot_partfrac, *plot_contfrac, *plot_cayley;
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
}
rdata = type == 2
? higham((ZOLO_PRECISION) eps, n)
: zolotarev((ZOLO_PRECISION) eps, n, type);
? higham((PRECISION) eps, n)
: zolotarev((PRECISION) eps, n, type);
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
"\tPRECISION = " STRINGIFY(PRECISION)
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
"\tDelta = %g (maximum error)\n\n"
"\tA = %g (overall factor)\n",
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
x = 2.4 * (float) m / plotpts - 1.2;
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
/* skip x = 0 for type 1, as R(0) is singular */
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
y = zolotarev_eval((PRECISION) x, rdata);
fprintf(plot_function, "%g %g\n", x, (float) y);
fprintf(plot_error, "%g %g\n",
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta);
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta);
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
/ rdata -> Delta);
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
maxypferr = MAX(maxypferr, fabs(ypferr));

View File

@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
#ifndef ZOLOTAREV_INTERNAL
#ifndef ZOLO_PRECISION
#define ZOLO_PRECISION double
#ifndef PRECISION
#define PRECISION double
#endif
#define ZPRECISION ZOLO_PRECISION
#define ZPRECISION PRECISION
#define ZOLOTAREV_DATA zolotarev_data
#endif
@ -77,8 +77,8 @@ typedef struct {
* zolotarev_data structure. The arguments must satisfy the constraints that
* epsilon > 0, n > 0, and type = 0 or 1. */
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
void zolotarev_free(zolotarev_data *zdata);
#endif
@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/algorithms/blas/BatchedBlas.h>
NAMESPACE_BEGIN(Grid);
gridblasHandle_t GridBLAS::gridblasHandle;
int GridBLAS::gridblasInit;
NAMESPACE_END(Grid);

View File

@ -1,727 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifdef GRID_HIP
#include <hipblas/hipblas.h>
#endif
#ifdef GRID_CUDA
#include <cublas_v2.h>
#endif
#ifdef GRID_SYCL
#include <oneapi/mkl.hpp>
#endif
#if 0
#define GRID_ONE_MKL
#endif
#ifdef GRID_ONE_MKL
#include <oneapi/mkl.hpp>
#endif
///////////////////////////////////////////////////////////////////////
// Need to rearrange lattice data to be in the right format for a
// batched multiply. Might as well make these static, dense packed
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
typedef hipblasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_CUDA
typedef cublasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_SYCL
typedef cl::sycl::queue *gridblasHandle_t;
#endif
#ifdef GRID_ONE_MKL
typedef cl::sycl::queue *gridblasHandle_t;
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
typedef int32_t gridblasHandle_t;
#endif
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
class GridBLAS {
public:
static gridblasHandle_t gridblasHandle;
static int gridblasInit;
static void Init(void)
{
if ( ! gridblasInit ) {
#ifdef GRID_CUDA
std::cout << "cublasCreate"<<std::endl;
cublasCreate(&gridblasHandle);
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
#endif
#ifdef GRID_HIP
std::cout << "hipblasCreate"<<std::endl;
hipblasCreate(&gridblasHandle);
#endif
#ifdef GRID_SYCL
gridblasHandle = theGridAccelerator;
#endif
#ifdef GRID_ONE_MKL
cl::sycl::cpu_selector selector;
cl::sycl::device selectedDevice { selector };
gridblasHandle =new sycl::queue (selectedDevice);
#endif
gridblasInit=1;
}
}
// Force construct once
GridBLAS() { Init(); };
~GridBLAS() { };
/////////////////////////////////////////////////////////////////////////////////////
// BLAS GEMM conventions:
/////////////////////////////////////////////////////////////////////////////////////
// - C = alpha A * B + beta C
// Dimensions:
// - C_m.n
// - A_m.k
// - B_k.n
// - Flops = 8 M N K
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
// M=60, N=12
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
/////////////////////////////////////////////////////////////////////////////////////
void synchronise(void)
{
#ifdef GRID_HIP
auto err = hipDeviceSynchronize();
assert(err==hipSuccess);
#endif
#ifdef GRID_CUDA
auto err = cudaDeviceSynchronize();
assert(err==cudaSuccess);
#endif
#ifdef GRID_SYCL
accelerator_barrier();
#endif
#ifdef GRID_ONE_MKL
gridblasHandle->wait();
#endif
}
void gemmBatched(int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond();
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasZgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex **)&Amk[0], lda,
(hipblasDoubleComplex **)&Bkn[0], ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasZgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex **)&Amk[0], lda,
(cuDoubleComplex **)&Bkn[0], ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
// synchronise();
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasComplex *) &alpha_p[0],
(hipblasComplex **)&Amk[0], lda,
(hipblasComplex **)&Bkn[0], ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda,
(cuComplex **)&Bkn[0], ldb,
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
ComplexF alphaf(real(alpha),imag(alpha));
ComplexF betaf(real(beta),imag(beta));
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexF c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasDgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
/*
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t batchCount64=batchCount;
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
onemkl::transpose::N,
onemkl::transpose::N,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
1,&batchCount64);
*/
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Strided case used by benchmark, but generally unused in Grid
// Keep a code example in double complex, but don't generate the single and real variants for now
////////////////////////////////////////////////////////////////////////////////////////////////
void gemmStridedBatched(int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // pointer list to matrices
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn,
int batchCount)
{
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
int sda = m*k;
int sdb = k*n;
int sdc = m*n;
deviceVector<ComplexD> alpha_p(1);
deviceVector<ComplexD> beta_p(1);
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
#ifdef GRID_HIP
auto err = hipblasZgemmStridedBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda, sda,
(hipblasDoubleComplex *) Bkn, ldb, sdb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc, sdc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasZgemmStridedBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda, sda,
(cuDoubleComplex *) Bkn, ldb, sdb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc, sdc,
batchCount);
#endif
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
oneapi::mkl::transpose::N,
oneapi::mkl::transpose::N,
m,n,k,
alpha,
(const ComplexD *)Amk,lda,sda,
(const ComplexD *)Bkn,ldb,sdb,
beta,
(ComplexD *)Cmn,ldc,sdc,
batchCount);
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
}
double benchmark(int M, int N, int K, int BATCH)
{
int32_t N_A = M*K*BATCH;
int32_t N_B = K*N*BATCH;
int32_t N_C = M*N*BATCH;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
RealD flops = 8.0*M*N*K*BATCH;
int ncall=10;
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemmStridedBatched(M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
BATCH);
}
synchronise();
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
flops = 8.0*M*N*K*BATCH*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
};
NAMESPACE_END(Grid);

View File

@ -176,7 +176,6 @@ template<class T> using cshiftAllocator = std::allocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid);

View File

@ -348,7 +348,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
return offbytes;
}
#undef NVLINK_GET // Define to use get instead of put DMA
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
@ -381,15 +380,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
list.push_back(rrq);
off_node_bytes+=rbytes;
}
#ifdef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
#endif
}
if (dox) {
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
@ -397,12 +390,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
}
}
@ -412,8 +402,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
{
int nreq=list.size();
acceleratorCopySynchronise();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);

View File

@ -40,9 +40,6 @@ int GlobalSharedMemory::_ShmAlloc;
uint64_t GlobalSharedMemory::_ShmAllocBytes;
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
#ifndef ACCELERATOR_AWARE_MPI
void * GlobalSharedMemory::HostCommBuf;
#endif
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
int GlobalSharedMemory::WorldShmRank;
@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
/////////////////////////////////
// Alloc, free shmem region
/////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
void *SharedMemory::HostBufferMalloc(size_t bytes){
void *ptr = (void *)host_heap_top;
host_heap_top += bytes;
host_heap_bytes+= bytes;
if (host_heap_bytes >= host_heap_size) {
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
assert(host_heap_bytes<host_heap_size);
}
return ptr;
}
void SharedMemory::HostBufferFreeAll(void) {
host_heap_top =(size_t)HostCommBuf;
host_heap_bytes=0;
}
#endif
void *SharedMemory::ShmBufferMalloc(size_t bytes){
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
void *ptr = (void *)heap_top;

View File

@ -75,9 +75,7 @@ public:
static int Hugepages;
static std::vector<void *> WorldShmCommBufs;
#ifndef ACCELERATOR_AWARE_MPI
static void *HostCommBuf;
#endif
static Grid_MPI_Comm WorldComm;
static int WorldRank;
static int WorldSize;
@ -122,13 +120,6 @@ private:
size_t heap_bytes;
size_t heap_size;
#ifndef ACCELERATOR_AWARE_MPI
size_t host_heap_top; // set in free all
size_t host_heap_bytes;// set in free all
void *HostCommBuf; // set in SetCommunicator
size_t host_heap_size; // set in SetCommunicator
#endif
protected:
Grid_MPI_Comm ShmComm; // for barriers
@ -160,10 +151,7 @@ public:
void *ShmBufferTranslate(int rank,void * local_p);
void *ShmBufferMalloc(size_t bytes);
void ShmBufferFreeAll(void) ;
#ifndef ACCELERATOR_AWARE_MPI
void *HostBufferMalloc(size_t bytes);
void HostBufferFreeAll(void);
#endif
//////////////////////////////////////////////////////////////////////////
// Make info on Nodes & ranks and Shared memory available
//////////////////////////////////////////////////////////////////////////

View File

@ -39,11 +39,9 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <hip/hip_runtime_api.h>
#endif
#ifdef GRID_SYCL
#ifdef ACCELERATOR_AWARE_MPI
#define GRID_SYCL_LEVEL_ZERO_IPC
#define SHM_SOCKETS
#endif
#include <syscall.h>
#define SHM_SOCKETS
#endif
#include <sys/socket.h>
@ -514,6 +512,46 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
//if defined(GRID_SYCL)
#if 0
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
SharedMemoryZero(ShmCommBuf,bytes);
assert(WorldShmSize == 1);
for(int r=0;r<WorldShmSize;r++){
WorldShmCommBufs[r] = ShmCommBuf;
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -536,9 +574,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
HostCommBuf= malloc(bytes);
#endif
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
@ -703,6 +738,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#else
#ifdef GRID_MPI3_SHMMMAP
@ -926,12 +962,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
}
ShmBufferFreeAll();
#ifndef ACCELERATOR_AWARE_MPI
host_heap_size = heap_size;
HostCommBuf= GlobalSharedMemory::HostCommBuf;
HostBufferFreeAll();
#endif
/////////////////////////////////////////////////////////////////////
// find comm ranks in our SHM group (i.e. which ranks are on our node)
/////////////////////////////////////////////////////////////////////

View File

@ -35,7 +35,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_transpose.h>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
@ -47,4 +46,5 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/PaddedCell.h>

View File

@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
}
}
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -281,29 +281,11 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
return nrm;
}
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
#ifdef GRID_SYCL
uint64_t csum=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// Hack
// Fast integer xor checksum. Can also be used in comms now.
autoView(l_v,left,AcceleratorRead);
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&l_v[0];
csum=svm_xor(base,words);
}
FlightRecorder::CsumLog(csum);
#endif
ComplexD nrm = rankInnerProduct(left,right);
RealD local = real(nrm);
FlightRecorder::NormLog(real(nrm));
grid->GlobalSum(nrm);
FlightRecorder::ReductionLog(local,real(nrm));
return nrm;
}

View File

@ -69,29 +69,28 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
return result;
}
template<class Word> Word svm_xor(Word *vec,uint64_t L)
{
Word xorResult; xorResult = 0;
Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
Word identity; identity=0;
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum ^=vec[index];
});
});
theGridAccelerator->wait();
Word ret = d_sum[0];
free(d_sum,*theGridAccelerator);
return ret;
}
NAMESPACE_END(Grid);
/*
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
{
Double sumResult; zeroit(sumResult);
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
Double identity; zeroit(identity);
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum +=vec[index];
});
});
theGridAccelerator->wait();
Double ret = d_sum[0];
free(d_sum,*theGridAccelerator);
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)

View File

@ -411,7 +411,7 @@ public:
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
SeedFixedIntegers(seeds);
}
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
void SeedFixedIntegers(const std::vector<int> &seeds){
// Everyone generates the same seed_seq based on input seeds
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
@ -428,6 +428,7 @@ public:
// MT implementation does not implement fast discard even though
// in principle this is possible
////////////////////////////////////////////////
#if 1
thread_for( lidx, _grid->lSites(), {
int gidx;
@ -448,12 +449,29 @@ public:
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
if ( britney ) {
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
} else {
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
});
#else
// Everybody loops over global volume.
thread_for( gidx, _grid->_gsites, {
// Where is it?
int rank;
int o_idx;
int i_idx;
Coordinate gcoor;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// If this is one of mine we take it
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
}
});
#endif
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient

View File

@ -280,16 +280,20 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
if( interior && exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
if (Opt == OptInlineAsm ) { ASM_CALL(DhopSiteAsm); return;}
#endif
} else if( interior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1); return;}
#endif
} else if( exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1); return;}
#endif
}
assert(0 && " Kernel optimisation case not covered ");
}
@ -318,13 +322,19 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
if( interior && exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0); return;}
#endif
} else if( interior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0); return;}
#endif
} else if( exterior ) {
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
#ifndef GRID_CUDA
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0); return;}
#endif
}
}

View File

@ -462,7 +462,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
#ifndef GRID_CUDA
@ -496,7 +495,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
autoView(st_v ,st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDag); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag); return;}
#ifndef GRID_CUDA

View File

@ -138,7 +138,7 @@ public:
for(int nu=0;nu<Nd;nu++) {
appendShift(shifts,mu);
appendShift(shifts,nu);
appendShift(shifts,shiftSignal::NO_SHIFT);
appendShift(shifts,NO_SHIFT);
appendShift(shifts,mu,Back(nu));
appendShift(shifts,Back(nu));
appendShift(shifts,Back(mu));
@ -173,6 +173,7 @@ public:
auto gStencil_v = gStencil.View();
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
// for(int site=0;site<Nsites;site++){ // ----------- 3-link constructs
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
U3matrix U0, U1, U2, U3, U4, U5, W;
for(int nu=0;nu<Nd;nu++) {
@ -215,6 +216,7 @@ public:
})
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link
// for(int site=0;site<Nsites;site++){ // ----------- 5-link
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
U3matrix U0, U1, U2, U3, U4, U5, W;
int sigmaIndex = 0;
@ -252,6 +254,7 @@ public:
})
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link
// for(int site=0;site<Nsites;site++){ // ----------- 7-link
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
U3matrix U0, U1, U2, U3, U4, U5, W;
int sigmaIndex = 0;

View File

@ -1133,13 +1133,4 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
NAMESPACE_END(Grid);
#ifdef GRID_SYCL
template<> struct sycl::is_device_copyable<Grid::vComplexF> : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vComplexD> : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vRealF > : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vRealD > : public std::true_type {};
template<> struct sycl::is_device_copyable<Grid::vInteger > : public std::true_type {};
#endif
#endif

View File

@ -141,14 +141,8 @@ public:
////////////////////////////////////////////////
// Some machinery to streamline making a stencil
////////////////////////////////////////////////
class shiftSignal {
public:
enum {
BACKWARD_CONST = 16,
NO_SHIFT = -1
};
};
#define BACKWARD_CONST 16
#define NO_SHIFT -1
// TODO: put a check somewhere that BACKWARD_CONST > Nd!
@ -156,16 +150,16 @@ public:
inline int Back(const int dir) {
// generalShift will use BACKWARD_CONST to determine whether we step forward or
// backward. Trick inspired by SIMULATeQCD.
return dir + shiftSignal::BACKWARD_CONST;
return dir + BACKWARD_CONST;
}
/*! @brief shift one unit in direction dir */
template<typename... Args>
void generalShift(Coordinate& shift, int dir) {
if (dir >= shiftSignal::BACKWARD_CONST) {
dir -= shiftSignal::BACKWARD_CONST;
if (dir >= BACKWARD_CONST) {
dir -= BACKWARD_CONST;
shift[dir]+=-1;
} else if (dir == shiftSignal::NO_SHIFT) {
} else if (dir == NO_SHIFT) {
; // do nothing
} else {
shift[dir]+=1;
@ -175,10 +169,10 @@ void generalShift(Coordinate& shift, int dir) {
/*! @brief follow a path of directions, shifting one unit in each direction */
template<typename... Args>
void generalShift(Coordinate& shift, int dir, Args... args) {
if (dir >= shiftSignal::BACKWARD_CONST) {
dir -= shiftSignal::BACKWARD_CONST;
if (dir >= BACKWARD_CONST) {
dir -= BACKWARD_CONST;
shift[dir]+=-1;
} else if (dir == shiftSignal::NO_SHIFT) {
} else if (dir == NO_SHIFT) {
; // do nothing
} else {
shift[dir]+=1;

View File

@ -70,6 +70,57 @@ struct DefaultImplParams {
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
int off,std::vector<std::pair<int,int> > & table);
/*
template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so) __attribute__((noinline));
template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)
{
int num=table.size();
std::pair<int,int> *table_v = & table[0];
auto rhs_v = rhs.View(AcceleratorRead);
accelerator_forNB( i,num, vobj::Nsimd(), {
compress.Compress(buffer[off+table_v[i].first],rhs_v[so+table_v[i].second]);
});
rhs_v.ViewClose();
}
///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split with compression
///////////////////////////////////////////////////////////////////
template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(const Lattice<vobj> &rhs,
commVector<cobj *> pointers,
int dimension,int plane,
int cbmask,compressor &compress,int type) __attribute__((noinline));
template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
std::vector<cobj *> &pointers,int dimension,int plane,int cbmask,
compressor &compress,int type)
{
assert( (table.size()&0x1)==0);
int num=table.size()/2;
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead);
auto rhs_p = &rhs_v[0];
auto p0=&pointers[0][0];
auto p1=&pointers[1][0];
auto tp=&table[0];
accelerator_forNB(j, num, vobj::Nsimd(), {
compress.CompressExchange(p0,p1, rhs_p, j,
so+tp[2*j ].second,
so+tp[2*j+1].second,
type);
});
rhs_v.ViewClose();
}
*/
void DslashResetCounts(void);
void DslashGetCounts(uint64_t &dirichlet,uint64_t &partial,uint64_t &full);
void DslashLogFull(void);
@ -207,10 +258,6 @@ public:
struct Packet {
void * send_buf;
void * recv_buf;
#ifndef ACCELERATOR_AWARE_MPI
void * host_send_buf; // Allocate this if not MPI_CUDA_AWARE
void * host_recv_buf; // Allocate this if not MPI_CUDA_AWARE
#endif
Integer to_rank;
Integer from_rank;
Integer do_send;
@ -277,7 +324,7 @@ public:
Vector<int> surface_list;
stencilVector<StencilEntry> _entries; // Resident in managed memory
commVector<StencilEntry> _entries_device; // Resident in device memory
commVector<StencilEntry> _entries_device; // Resident in managed memory
std::vector<Packet> Packets;
std::vector<Merge> Mergers;
std::vector<Merge> MergersSHM;
@ -361,16 +408,33 @@ public:
// Use OpenMP Tasks for cleaner ???
// must be called *inside* parallel region
//////////////////////////////////////////
/*
void CommunicateThreaded()
{
#ifdef GRID_OMP
int mythread = omp_get_thread_num();
int nthreads = CartesianCommunicator::nCommThreads;
#else
int mythread = 0;
int nthreads = 1;
#endif
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
for (int i = mythread; i < Packets.size(); i += nthreads) {
uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
}
}
}
*/
////////////////////////////////////////////////////////////////////////
// Non blocking send and receive. Necessarily parallel.
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
// All GPU kernel tasks must complete
// accelerator_barrier(); // All kernels should ALREADY be complete
// _grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
// But the HaloGather had a barrier too.
#ifdef ACCELERATOR_AWARE_MPI
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,
@ -379,54 +443,16 @@ public:
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
#else
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
for(int i=0;i<Packets.size();i++){
// Introduce a host buffer with a cheap slab allocator and zero cost wipe all
Packets[i].host_send_buf = _grid->HostBufferMalloc(Packets[i].xbytes);
Packets[i].host_recv_buf = _grid->HostBufferMalloc(Packets[i].rbytes);
if ( Packets[i].do_send ) {
acceleratorCopyFromDevice(Packets[i].send_buf, Packets[i].host_send_buf,Packets[i].xbytes);
}
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].host_send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].host_recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
#endif
// Get comms started then run checksums
// Having this PRIOR to the dslash seems to make Sunspot work... (!)
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_send )
FlightRecorder::xmitLog(Packets[i].send_buf,Packets[i].xbytes);
}
}
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
_grid->StencilSendToRecvFromComplete(MpiReqs,0); // MPI is done
_grid->StencilSendToRecvFromComplete(MpiReqs,0);
if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet();
else DslashLogFull();
// acceleratorCopySynchronise() is in the StencilSendToRecvFromComplete
// accelerator_barrier();
acceleratorCopySynchronise();
_grid->StencilBarrier();
#ifndef ACCELERATOR_AWARE_MPI
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv ) {
acceleratorCopyToDevice(Packets[i].host_recv_buf, Packets[i].recv_buf,Packets[i].rbytes);
}
}
_grid->HostBufferFreeAll();
#endif
// run any checksums
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv )
FlightRecorder::recvLog(Packets[i].recv_buf,Packets[i].rbytes,Packets[i].from_rank);
}
}
////////////////////////////////////////////////////////////////////////
// Blocking send and receive. Either sequential or parallel.
@ -502,7 +528,6 @@ public:
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
// accelerator_barrier();
_grid->StencilBarrier();// Synch shared memory on a single nodes
assert(source.Grid()==_grid);
@ -515,9 +540,10 @@ public:
compress.Point(point);
HaloGatherDir(source,compress,point,face_idx);
}
accelerator_barrier(); // All my local gathers are complete
accelerator_barrier();
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
}
/////////////////////////
@ -553,7 +579,6 @@ public:
accelerator_forNB(j, words, cobj::Nsimd(), {
coalescedWrite(to[j] ,coalescedRead(from [j]));
});
acceleratorFenceComputeStream();
}
}
@ -644,7 +669,6 @@ public:
for(int i=0;i<dd.size();i++){
decompressor::DecompressFace(decompress,dd[i]);
}
acceleratorFenceComputeStream(); // dependent kernels
}
////////////////////////////////////////
// Set up routines
@ -1200,6 +1224,7 @@ public:
///////////////////////////////////////////////////////////
int do_send = (comms_send|comms_partial_send) && (!shm_send );
int do_recv = (comms_send|comms_partial_send) && (!shm_recv );
AddPacket((void *)&send_buf[comm_off],
(void *)&recv_buf[comm_off],
xmit_to_rank, do_send,

View File

@ -404,12 +404,3 @@ NAMESPACE_BEGIN(Grid);
};
NAMESPACE_END(Grid);
#ifdef GRID_SYCL
template<typename T> struct
sycl::is_device_copyable<T, typename std::enable_if<
Grid::isGridTensor<T>::value && (!std::is_trivially_copyable<T>::value),
void>::type>
: public std::true_type {};
#endif

View File

@ -255,13 +255,17 @@ inline int acceleratorIsCommunicable(void *ptr)
#define GRID_SYCL_LEVEL_ZERO_IPC
NAMESPACE_END(Grid);
// Force deterministic reductions
#define SYCL_REDUCTION_DETERMINISTIC
#if 0
#include <CL/sycl.hpp>
#include <CL/sycl/usm.hpp>
#include <level_zero/ze_api.h>
#include <CL/sycl/backend/level_zero.hpp>
#else
#include <sycl/CL/sycl.hpp>
#include <sycl/usm.hpp>
#include <level_zero/ze_api.h>
#include <sycl/ext/oneapi/backend/level_zero.hpp>
#endif
NAMESPACE_BEGIN(Grid);

View File

@ -1,339 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Init.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@MacBook-Pro.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////
// Grid Norm logging for repro testing
///////////////////////////////////////////////////////
int FlightRecorder::PrintEntireLog;
int FlightRecorder::ContinueOnFail;
int FlightRecorder::LoggingMode;
int FlightRecorder::ChecksumComms;
int FlightRecorder::ChecksumCommsSend;
int32_t FlightRecorder::XmitLoggingCounter;
int32_t FlightRecorder::RecvLoggingCounter;
int32_t FlightRecorder::CsumLoggingCounter;
int32_t FlightRecorder::NormLoggingCounter;
int32_t FlightRecorder::ReductionLoggingCounter;
uint64_t FlightRecorder::ErrorCounter;
std::vector<double> FlightRecorder::NormLogVector;
std::vector<double> FlightRecorder::ReductionLogVector;
std::vector<uint64_t> FlightRecorder::CsumLogVector;
std::vector<uint64_t> FlightRecorder::XmitLogVector;
std::vector<uint64_t> FlightRecorder::RecvLogVector;
void FlightRecorder::ResetCounters(void)
{
XmitLoggingCounter=0;
RecvLoggingCounter=0;
CsumLoggingCounter=0;
NormLoggingCounter=0;
ReductionLoggingCounter=0;
}
void FlightRecorder::Truncate(void)
{
ResetCounters();
XmitLogVector.resize(0);
RecvLogVector.resize(0);
NormLogVector.resize(0);
CsumLogVector.resize(0);
ReductionLogVector.resize(0);
}
void FlightRecorder::SetLoggingMode(FlightRecorder::LoggingMode_t mode)
{
switch ( mode ) {
case LoggingModePrint:
SetLoggingModePrint();
break;
case LoggingModeRecord:
SetLoggingModeRecord();
break;
case LoggingModeVerify:
SetLoggingModeVerify();
break;
case LoggingModeNone:
LoggingMode = mode;
Truncate();
break;
default:
assert(0);
}
}
void FlightRecorder::SetLoggingModePrint(void)
{
std::cout << " FlightRecorder: set to print output " <<std::endl;
Truncate();
LoggingMode = LoggingModePrint;
}
void FlightRecorder::SetLoggingModeRecord(void)
{
std::cout << " FlightRecorder: set to RECORD " <<std::endl;
Truncate();
LoggingMode = LoggingModeRecord;
}
void FlightRecorder::SetLoggingModeVerify(void)
{
std::cout << " FlightRecorder: set to VERIFY " << NormLogVector.size()<< " log entries "<<std::endl;
ResetCounters();
LoggingMode = LoggingModeVerify;
}
uint64_t FlightRecorder::ErrorCount(void)
{
return ErrorCounter;
}
void FlightRecorder::NormLog(double value)
{
uint64_t hex = * ( (uint64_t *)&value );
if(LoggingMode == LoggingModePrint) {
std::cerr<<"FlightRecorder::NormLog : "<< NormLoggingCounter <<" "<<std::hex<< hex<<std::dec <<std::endl;
NormLoggingCounter++;
}
if(LoggingMode == LoggingModeRecord) {
std::cerr<<"FlightRecorder::NormLog RECORDING : "<< NormLoggingCounter <<" "<<std::hex<< hex<<std::dec <<std::endl;
NormLogVector.push_back(value);
NormLoggingCounter++;
}
if(LoggingMode == LoggingModeVerify) {
if(NormLoggingCounter < NormLogVector.size()){
uint64_t hexref = * ( (uint64_t *)&NormLogVector[NormLoggingCounter] );
if ( (value != NormLogVector[NormLoggingCounter]) || std::isnan(value) ) {
std::cerr<<"FlightRecorder::NormLog Oops, I did it again "<< NormLoggingCounter
<<std::hex<<" "<<hex<<" "<<hexref<<std::dec<<" "
<<std::hexfloat<<value<<" "<< NormLogVector[NormLoggingCounter]<<std::endl;
std::cerr << " Oops got norm "<< std::hexfloat<<value<<" expect "<<NormLogVector[NormLoggingCounter] <<std::endl;
fprintf(stderr,"%s:%d Oops, I did it again! Reproduce failure for norm %d/%zu %.16e expect %.16e\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
NormLoggingCounter,NormLogVector.size(),
value, NormLogVector[NormLoggingCounter]); fflush(stderr);
if(!ContinueOnFail)assert(0); // Force takedown of job
ErrorCounter++;
} else {
if ( PrintEntireLog ) {
std::cerr<<"FlightRecorder::NormLog VALID "<< NormLoggingCounter << std::hex
<<" "<<hex<<" "<<hexref
<<" "<<std::hexfloat<<value<<" "<< NormLogVector[NormLoggingCounter]<<std::dec<<std::endl;
}
}
}
if ( NormLogVector.size()==NormLoggingCounter ) {
std::cout << "FlightRecorder:: Verified entire sequence of "<<NormLoggingCounter<<" norms "<<std::endl;
}
NormLoggingCounter++;
}
}
void FlightRecorder::CsumLog(uint64_t hex)
{
if(LoggingMode == LoggingModePrint) {
std::cerr<<"FlightRecorder::CsumLog : "<< CsumLoggingCounter <<" "<<std::hex<< hex<<std::dec <<std::endl;
CsumLoggingCounter++;
}
if(LoggingMode == LoggingModeRecord) {
std::cerr<<"FlightRecorder::CsumLog RECORDING : "<< NormLoggingCounter <<" "<<std::hex<< hex<<std::dec <<std::endl;
CsumLogVector.push_back(hex);
CsumLoggingCounter++;
}
if(LoggingMode == LoggingModeVerify) {
if(CsumLoggingCounter < CsumLogVector.size()) {
uint64_t hexref = CsumLogVector[CsumLoggingCounter] ;
if ( hex != hexref ) {
std::cerr<<"FlightRecorder::CsumLog Oops, I did it again "<< CsumLoggingCounter
<<std::hex<<" "<<hex<<" "<<hexref<<std::dec<<std::endl;
fprintf(stderr,"%s:%d Oops, I did it again! Reproduce failure for csum %d %lx expect %lx\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
CsumLoggingCounter,hex, hexref);
fflush(stderr);
if(!ContinueOnFail) assert(0); // Force takedown of job
ErrorCounter++;
} else {
if ( PrintEntireLog ) {
std::cerr<<"FlightRecorder::CsumLog VALID "<< CsumLoggingCounter << std::hex
<<" "<<hex<<" "<<hexref<<std::dec<<std::endl;
}
}
}
if ( CsumLogVector.size()==CsumLoggingCounter ) {
std::cout << "FlightRecorder:: Verified entire sequence of "<<CsumLoggingCounter<<" checksums "<<std::endl;
}
CsumLoggingCounter++;
}
}
void FlightRecorder::ReductionLog(double local,double global)
{
uint64_t hex_l = * ( (uint64_t *)&local );
uint64_t hex_g = * ( (uint64_t *)&global );
if(LoggingMode == LoggingModePrint) {
std::cerr<<"FlightRecorder::ReductionLog : "<< ReductionLoggingCounter <<" "<< std::hex << hex_l << " -> " <<hex_g<<std::dec <<std::endl;
ReductionLoggingCounter++;
}
if(LoggingMode == LoggingModeRecord) {
std::cerr<<"FlightRecorder::ReductionLog RECORDING : "<< ReductionLoggingCounter <<" "<< std::hex << hex_l << " -> " <<hex_g<<std::dec <<std::endl;
ReductionLogVector.push_back(global);
ReductionLoggingCounter++;
}
if(LoggingMode == LoggingModeVerify) {
if(ReductionLoggingCounter < ReductionLogVector.size()){
if ( global != ReductionLogVector[ReductionLoggingCounter] ) {
fprintf(stderr,"%s:%d Oops, MPI_Allreduce did it again! Reproduce failure for norm %d/%zu glb %.16e lcl %.16e expect glb %.16e\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
ReductionLoggingCounter,ReductionLogVector.size(),
global, local, ReductionLogVector[ReductionLoggingCounter]); fflush(stderr);
if ( !ContinueOnFail ) assert(0);
ErrorCounter++;
} else {
if ( PrintEntireLog ) {
std::cerr<<"FlightRecorder::ReductionLog : VALID "<< ReductionLoggingCounter <<" "<< std::hexfloat << local << "-> "<< global <<std::endl;
}
}
}
if ( ReductionLogVector.size()==ReductionLoggingCounter ) {
std::cout << "FlightRecorder::ReductionLog : Verified entire sequence of "<<ReductionLoggingCounter<<" norms "<<std::endl;
}
ReductionLoggingCounter++;
}
}
void FlightRecorder::xmitLog(void *buf,uint64_t bytes)
{
if ( ChecksumCommsSend ){
uint64_t *ubuf = (uint64_t *)buf;
if(LoggingMode == LoggingModeNone) return;
#ifdef GRID_SYCL
uint64_t _xor = svm_xor(ubuf,bytes/sizeof(uint64_t));
if(LoggingMode == LoggingModePrint) {
std::cerr<<"FlightRecorder::xmitLog : "<< XmitLoggingCounter <<" "<< std::hex << _xor <<std::dec <<std::endl;
XmitLoggingCounter++;
}
if(LoggingMode == LoggingModeRecord) {
std::cerr<<"FlightRecorder::xmitLog RECORD : "<< XmitLoggingCounter <<" "<< std::hex << _xor <<std::dec <<std::endl;
XmitLogVector.push_back(_xor);
XmitLoggingCounter++;
}
if(LoggingMode == LoggingModeVerify) {
if(XmitLoggingCounter < XmitLogVector.size()){
if ( _xor != XmitLogVector[XmitLoggingCounter] ) {
fprintf(stderr,"%s:%d Oops, send buf difference! Reproduce failure for xmit %d/%zu %lx expect glb %lx\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
XmitLoggingCounter,XmitLogVector.size(),
_xor, XmitLogVector[XmitLoggingCounter]); fflush(stderr);
if ( !ContinueOnFail ) assert(0);
ErrorCounter++;
} else {
if ( PrintEntireLog ) {
std::cerr<<"FlightRecorder::XmitLog : VALID "<< XmitLoggingCounter <<" "<< std::hexfloat << _xor << " "<< XmitLogVector[XmitLoggingCounter] <<std::endl;
}
}
}
if ( XmitLogVector.size()==XmitLoggingCounter ) {
std::cout << "FlightRecorder::ReductionLog : Verified entire sequence of "<<XmitLoggingCounter<<" sends "<<std::endl;
}
XmitLoggingCounter++;
}
#endif
} else {
uint64_t word = 1;
deviceVector<uint64_t> dev(1);
acceleratorCopyToDevice(&word,&dev[0],sizeof(uint64_t));
acceleratorCopySynchronise();
MPI_Barrier(MPI_COMM_WORLD);
}
}
void FlightRecorder::recvLog(void *buf,uint64_t bytes,int rank)
{
if ( ChecksumComms ){
uint64_t *ubuf = (uint64_t *)buf;
if(LoggingMode == LoggingModeNone) return;
#ifdef GRID_SYCL
uint64_t _xor = svm_xor(ubuf,bytes/sizeof(uint64_t));
if(LoggingMode == LoggingModePrint) {
std::cerr<<"FlightRecorder::recvLog : "<< RecvLoggingCounter <<" "<< std::hex << _xor <<std::dec <<std::endl;
RecvLoggingCounter++;
}
if(LoggingMode == LoggingModeRecord) {
std::cerr<<"FlightRecorder::recvLog RECORD : "<< RecvLoggingCounter <<" "<< std::hex << _xor <<std::dec <<std::endl;
RecvLogVector.push_back(_xor);
RecvLoggingCounter++;
}
if(LoggingMode == LoggingModeVerify) {
if(RecvLoggingCounter < RecvLogVector.size()){
if ( _xor != RecvLogVector[RecvLoggingCounter] ) {
fprintf(stderr,"%s:%d Oops, recv buf difference! Reproduce failure for recv %d/%zu %lx expect glb %lx from MPI rank %d\n",
GridHostname(),
GlobalSharedMemory::WorldShmRank,
RecvLoggingCounter,RecvLogVector.size(),
_xor, RecvLogVector[RecvLoggingCounter],rank); fflush(stderr);
if ( !ContinueOnFail ) assert(0);
ErrorCounter++;
} else {
if ( PrintEntireLog ) {
std::cerr<<"FlightRecorder::RecvLog : VALID "<< RecvLoggingCounter <<" "<< std::hexfloat << _xor << " "<< RecvLogVector[RecvLoggingCounter] <<std::endl;
}
}
}
if ( RecvLogVector.size()==RecvLoggingCounter ) {
std::cout << "FlightRecorder::ReductionLog : Verified entire sequence of "<<RecvLoggingCounter<<" sends "<<std::endl;
}
RecvLoggingCounter++;
}
#endif
}
}
NAMESPACE_END(Grid);

View File

@ -1,43 +0,0 @@
#pragma once
NAMESPACE_BEGIN(Grid);
class FlightRecorder {
public:
enum LoggingMode_t {
LoggingModeNone,
LoggingModePrint,
LoggingModeRecord,
LoggingModeVerify
};
static int LoggingMode;
static uint64_t ErrorCounter;
static int32_t XmitLoggingCounter;
static int32_t RecvLoggingCounter;
static int32_t CsumLoggingCounter;
static int32_t NormLoggingCounter;
static int32_t ReductionLoggingCounter;
static std::vector<uint64_t> XmitLogVector;
static std::vector<uint64_t> RecvLogVector;
static std::vector<uint64_t> CsumLogVector;
static std::vector<double> NormLogVector;
static std::vector<double> ReductionLogVector;
static int ContinueOnFail;
static int PrintEntireLog;
static int ChecksumComms;
static int ChecksumCommsSend;
static void SetLoggingModePrint(void);
static void SetLoggingModeRecord(void);
static void SetLoggingModeVerify(void);
static void SetLoggingMode(LoggingMode_t mode);
static void NormLog(double value);
static void CsumLog(uint64_t csum);
static void ReductionLog(double lcl, double glbl);
static void Truncate(void);
static void ResetCounters(void);
static uint64_t ErrorCount(void);
static void xmitLog(void *,uint64_t bytes);
static void recvLog(void *,uint64_t bytes,int rank);
};
NAMESPACE_END(Grid);

View File

@ -77,10 +77,6 @@ feenableexcept (unsigned int excepts)
}
#endif
#ifndef HOST_NAME_MAX
#define HOST_NAME_MAX _POSIX_HOST_NAME_MAX
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////
@ -94,12 +90,7 @@ int GridThread::_threads =1;
int GridThread::_hyperthreads=1;
int GridThread::_cores=1;
char hostname[HOST_NAME_MAX+1];
char *GridHostname(void)
{
return hostname;
}
const Coordinate &GridDefaultLatt(void) {return Grid_default_latt;};
const Coordinate &GridDefaultMpi(void) {return Grid_default_mpi;};
const Coordinate GridDefaultSimd(int dims,int nsimd)
@ -402,8 +393,6 @@ void Grid_init(int *argc,char ***argv)
std::cout << GridLogMessage << "MPI is initialised and logging filters activated "<<std::endl;
std::cout << GridLogMessage << "================================================ "<<std::endl;
gethostname(hostname, HOST_NAME_MAX+1);
std::cout << GridLogMessage << "This rank is running on host "<< hostname<<std::endl;
/////////////////////////////////////////////////////////
// Reporting

View File

@ -34,8 +34,6 @@ NAMESPACE_BEGIN(Grid);
void Grid_init(int *argc,char ***argv);
void Grid_finalize(void);
char * GridHostname(void);
// internal, controled with --handle
void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr);
void Grid_debug_handler_init(void);
@ -70,6 +68,5 @@ void GridParseLayout(char **argv,int argc,
void printHash(void);
NAMESPACE_END(Grid);

View File

@ -1,6 +1,6 @@
#pragma once
#ifndef GRID_UTIL_H
#define GRID_UTIL_H
#include <Grid/util/Coordinate.h>
#include <Grid/util/Lexicographic.h>
#include <Grid/util/Init.h>
#include <Grid/util/FlightRecorder.h>
#endif

View File

@ -1,968 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_usqcd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/blas/BatchedBlas.h>
using namespace Grid;
std::vector<int> L_list;
std::vector<int> Ls_list;
std::vector<double> mflop_list;
double mflop_ref;
double mflop_ref_err;
int NN_global;
FILE * FP;
struct time_statistics{
double mean;
double err;
double min;
double max;
void statistics(std::vector<double> v){
double sum = std::accumulate(v.begin(), v.end(), 0.0);
mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
auto result = std::minmax_element(v.begin(), v.end());
min = *result.first;
max = *result.second;
}
};
void comms_header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
<<"bytes\t MB/s uni \t\t MB/s bidi "<<std::endl;
};
struct controls {
int Opt;
int CommsOverlap;
Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
};
class Benchmark {
public:
static void Decomposition (void ) {
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
std::cout<<GridLogMessage<<"\tMPI tasks : "<<GridCmdVectorIntToString(GridDefaultMpi())<<std::endl;
std::cout<<GridLogMessage<<"\tvReal : "<<sizeof(vReal )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vReal::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealF : "<<sizeof(vRealF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvRealD : "<<sizeof(vRealD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vRealD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplex : "<<sizeof(vComplex )*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplex::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexF : "<<sizeof(vComplexF)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexF::Nsimd()))<<std::endl;
std::cout<<GridLogMessage<<"\tvComplexD : "<<sizeof(vComplexD)*8 <<"bits ; " <<GridCmdVectorIntToString(GridDefaultSimd(4,vComplexD::Nsimd()))<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
static void Comms(void)
{
int Nloop=200;
int nmu=0;
int maxlat=32;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
comms_header();
fprintf(FP,"Communications\n\n");
fprintf(FP,"Packet bytes, direction, GB/s per node\n");
for(int lat=16;lat<=maxlat;lat+=8){
// for(int Ls=8;Ls<=8;Ls*=2){
{ int Ls=12;
Coordinate latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
//Grid.ShmBufferFreeAll();
uint64_t bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
// bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
// bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
// int ncomm;
double dbytes;
for(int dir=0;dir<8;dir++) {
int mu =dir % 4;
if (mpi_layout[mu]>1 ) {
std::vector<double> times(Nloop);
for(int i=0;i<Nloop;i++){
dbytes=0;
double start=usecond();
int xmit_to_rank;
int recv_from_rank;
if ( dir == mu ) {
int comm_proc=1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
} else {
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank,
bytes);
dbytes+=bytes;
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "
<<xbytes/timestat.mean
<< "\t\t"
<< bidibytes/timestat.mean<< std::endl;
fprintf(FP,"%ld, %d, %f\n",(long)bytes,dir,bidibytes/timestat.mean/1000.);
}
}
for(int d=0;d<8;d++){
acceleratorFreeDevice(xbuf[d]);
acceleratorFreeDevice(rbuf[d]);
}
}
}
fprintf(FP,"\n\n");
return;
}
static void Memory(void)
{
const int Nvec=8;
typedef Lattice< iVector< vReal,Nvec> > LatticeVec;
typedef iVector<vReal,Nvec> Vec;
Coordinate simd_layout = GridDefaultSimd(Nd,vReal::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
fprintf(FP,"Memory Bandwidth\n\n");
fprintf(FP,"Bytes, GB/s per node\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
// uint64_t NP;
uint64_t NN;
uint64_t lmax=40;
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// NP= Grid.RankCount();
NN =Grid.NodeCount();
Vec rn ; random(sRNG,rn);
LatticeVec z(&Grid); z=Zero();
LatticeVec x(&Grid); x=Zero();
LatticeVec y(&Grid); y=Zero();
double a=2.0;
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=a*x-y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
fprintf(FP,"%ld, %f\n",(long)bytes,bytes/time/NN);
}
fprintf(FP,"\n\n");
};
static void BLAS(void)
{
//int nbasis, int nrhs, int coarseVol
int basis[] = { 16,32,64 };
int rhs[] = { 8,16,32 };
int vol = 4*4*4*4;
GridBLAS blas;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=basis[b];
int N=rhs[r];
int K=basis[b];
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block project)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=basis[b];
int N=rhs[r];
int K=vol;
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block promote)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=rhs[r];
int N=vol;
int K=basis[b];
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
fprintf(FP,"\n\n\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
};
static void SU4(void)
{
const int Nc4=4;
typedef Lattice< iMatrix< vComplexF,Nc4> > LatticeSU4;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking z = y*x SU(4) bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t NN;
uint64_t lmax=32;
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
NN =Grid.NodeCount();
LatticeSU4 z(&Grid); z=Zero();
LatticeSU4 x(&Grid); x=Zero();
LatticeSU4 y(&Grid); y=Zero();
// double a=2.0;
uint64_t Nloop=NLOOP;
double start=usecond();
for(int i=0;i<Nloop;i++){
z=x*y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double flops=vol*Nc4*Nc4*(6+(Nc4-1)*8);// mul,add
double bytes=3.0*vol*Nc4*Nc4*2*sizeof(RealF);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
}
};
static double DWF(int Ls,int L)
{
RealD mass=0.1;
RealD M5 =1.8;
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Nc : "<<Nc<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
typedef DomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
///////// Source preparation ////////////
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
Fermion src (FGrid); random(RNG5,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
Fermion r_e (FrbGrid);
Fermion r_o (FrbGrid);
Fermion r_eo (FGrid);
Action Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
#ifdef AVX512
const int num_cases = 3;
#else
const int num_cases = 2;
#endif
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases [] = {
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ WilsonKernelsStatic::OptHandUnroll, WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ WilsonKernelsStatic::OptInlineAsm , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent }
};
for(int c=0;c<num_cases;c++) {
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using ASM WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential Comms/Compute" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Dw.DhopEO(src_o,r_e,DaggerNo);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dw.DhopEO(src_o,r_e,DaggerNo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
// Nc=3 gives
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
// double flops=(1344.0*volume)/2;
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + 2*Nd*Nc*Ns + 2*Nd*Nc*Ns*2;
double flops=(fps*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage<< "Deo FlopsPerSite is "<<fps<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
return mflops_best;
}
static double Staggered(int L)
{
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark ImprovedStaggered on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
typedef ImprovedStaggeredFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
typename Action::ImplParams params;
Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
///////// Source preparation ////////////
Fermion src (FGrid); random(RNG4,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
Fermion r_e (FrbGrid);
Fermion r_o (FrbGrid);
Fermion r_eo (FGrid);
{
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
const int num_cases = 2;
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases [] = {
{ StaggeredKernelsStatic::OptGeneric , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ StaggeredKernelsStatic::OptHandUnroll, StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
{ StaggeredKernelsStatic::OptInlineAsm , StaggeredKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent }
};
for(int c=0;c<num_cases;c++) {
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
StaggeredKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
if ( StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc StaggeredKernels" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Ds.DhopEO(src_o,r_e,DaggerNo);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Ds.DhopEO(src_o,r_e,DaggerNo);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1146.0*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
static double Clover(int L)
{
double mflops;
double mflops_best = 0;
double mflops_worst= 0;
std::vector<double> mflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global=NN;
uint64_t SHM=NP/NN;
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark Clover on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
std::cout<<GridLogMessage << "* nodes : "<<NN <<std::endl;
std::cout<<GridLogMessage << "* ranks/node : "<<SHM <<std::endl;
std::cout<<GridLogMessage << "* ranks geom : "<<GridCmdVectorIntToString(mpi)<<std::endl;
std::cout<<GridLogMessage << "* Using "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
///////// Lattice Init ////////////
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass=0.1;
RealD csw=1.0;
typedef WilsonCloverFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
Action Dc(Umu,*FGrid,*FrbGrid,mass,csw,csw);
///////// Source preparation ////////////
Fermion src (FGrid); random(RNG4,src);
Fermion r (FGrid);
{
const int num_cases = 1;
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases [] = {
{ WilsonKernelsStatic::OptGeneric , WilsonKernelsStatic::CommsAndCompute ,CartesianCommunicator::CommunicatorPolicyConcurrent },
};
for(int c=0;c<num_cases;c++) {
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 10;
double t0=usecond();
FGrid->Barrier();
for(int i=0;i<nwarm;i++){
Dc.M(src,r);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dc.M(src,r);
t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344+ 24+6*6*8*2)*volume;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per node "<< mflops/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
}
std::cout<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
return mflops_best;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
if (GlobalSharedMemory::WorldRank==0) {
FP = fopen("Benchmark_usqcd.csv","w");
} else {
FP = fopen("/dev/null","w");
}
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
Benchmark::Decomposition();
int do_su4=0;
int do_memory=1;
int do_comms =1;
int do_blas =1;
int sel=4;
std::vector<int> L_list({8,12,16,24,32});
int selm1=sel-1;
std::vector<double> clover;
std::vector<double> dwf4;
std::vector<double> staggered;
int Ls=1;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Clover dslash 4D vectorised (temporarily Wilson)" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
clover.push_back(Benchmark::DWF(1,L_list[l]));
}
Ls=12;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::DWF(Ls,L_list[l]) ;
dwf4.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Improved Staggered dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
double result = Benchmark::Staggered(L_list[l]) ;
staggered.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Clover \t\t DWF4 \t\t Staggered" <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int NN=NN_global;
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Memory();
}
if ( do_blas ) {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::BLAS();
#endif
}
if ( do_su4 ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::SU4();
}
if ( do_comms ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Comms();
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
fprintf(FP,"Per node summary table\n");
fprintf(FP,"\n");
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
fprintf(FP,"\n");
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
}
fprintf(FP,"\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Grid_finalize();
fclose(FP);
}

View File

@ -1,12 +1,12 @@
#!/usr/bin/env bash
set -e
EIGEN_URL='https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.bz2'
EIGEN_SHA256SUM='b4c198460eba6f28d34894e3a5710998818515104d6e74e5cc331ce31e46e626'
EIGEN_URL='https://gitlab.com/libeigen/eigen/-/archive/3.3.7/eigen-3.3.7.tar.bz2'
EIGEN_SHA256SUM='685adf14bd8e9c015b78097c1dc22f2f01343756f196acdc76a678e1ae352e11'
echo "-- deploying Eigen source..."
ARC=$(basename ${EIGEN_URL})
ARC=`basename ${EIGEN_URL}`
wget ${EIGEN_URL} --no-check-certificate
if command -v sha256sum; then
echo "$EIGEN_SHA256SUM $(basename "$EIGEN_URL")" \
@ -14,8 +14,13 @@ if command -v sha256sum; then
else
echo "WARNING: could not verify checksum, please install sha256sum" >&2
fi
./scripts/update_eigen.sh "${ARC}"
rm "${ARC}"
./scripts/update_eigen.sh ${ARC}
rm ${ARC}
# patch for non-portable includes in Eigen 3.3.5
# apparently already fixed in Eigen HEAD so it should not be
# a problem in the future (A.P.)
patch Eigen/unsupported/Eigen/CXX11/Tensor scripts/eigen-3.3.5.Tensor.patch
echo '-- generating Make.inc files...'
./scripts/filelist
echo '-- generating configure script...'

View File

@ -226,14 +226,23 @@ case ${ac_SFW_FP16} in
esac
############### Default to accelerator cshift, but revert to host if UCX is buggy or other reasons
AC_ARG_ENABLE([accelerator-aware-mpi],
[AS_HELP_STRING([--enable-accelerator-aware-mpi=yes|no],[run mpi transfers from device])],
[ac_ACCELERATOR_AWARE_MPI=${enable_accelerator_aware_mpi}], [ac_ACCELERATOR_AWARE_MPI=yes])
AC_ARG_ENABLE([accelerator-cshift],
[AS_HELP_STRING([--enable-accelerator-cshift=yes|no],[run cshift on the device])],
[ac_ACC_CSHIFT=${enable_accelerator_cshift}], [ac_ACC_CSHIFT=yes])
case ${ac_ACCELERATOR_AWARE_MPI} in
AC_ARG_ENABLE([ucx-buggy],
[AS_HELP_STRING([--enable-ucx-buggy=yes|no],[enable workaround for UCX device buffer bugs])],
[ac_UCXBUGGY=${enable_ucx_buggy}], [ac_UCXBUGGY=no])
case ${ac_UCXBUGGY} in
yes)
AC_DEFINE([ACCELERATOR_CSHIFT],[1],[ Cshift runs on host])
AC_DEFINE([ACCELERATOR_AWARE_MPI],[1],[ Stencil can use device pointers]);;
ac_ACC_CSHIFT=no;;
*);;
esac
case ${ac_ACC_CSHIFT} in
yes)
AC_DEFINE([ACCELERATOR_CSHIFT],[1],[ UCX device buffer bugs are not present]);;
*);;
esac

View File

@ -0,0 +1,19 @@
--- ./Eigen/unsupported/Eigen/CXX11/Tensor 2018-07-23 10:33:42.000000000 +0100
+++ Tensor 2018-08-28 16:15:56.000000000 +0100
@@ -25,7 +25,7 @@
#include <utility>
#endif
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
+#include "../../../Eigen/src/Core/util/DisableStupidWarnings.h"
#include "../SpecialFunctions"
#include "src/util/CXX11Meta.h"
@@ -147,6 +147,6 @@
#include "src/Tensor/TensorIO.h"
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
+#include "../../../Eigen/src/Core/util/ReenableStupidWarnings.h"
//#endif // EIGEN_CXX11_TENSOR_MODULE

View File

@ -25,16 +25,12 @@ export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
export FI_CXI_CQ_FILL_PERCENT=10
export FI_CXI_DEFAULT_CQ_SIZE=262144
#export FI_CXI_DEFAULT_CQ_SIZE=131072
#export FI_CXI_CQ_FILL_PERCENT=20
# 12 ppn, 32 nodes, 384 ranks
#
@ -49,12 +45,12 @@ CMD="mpiexec -np 12288 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 8.8.8.24 --grid 128.128.128.384 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1024node.dwf.small.cq
$CMD | tee 1024node.dwf.small
CMD="mpiexec -np 12288 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 16.8.8.12 --grid 256.256.256.384 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1024node.dwf.cq
$CMD | tee 1024node.dwf

View File

@ -17,7 +17,6 @@ source ../sourceme.sh
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
@ -36,25 +35,11 @@ CMD="mpiexec -np 24 -ppn 12 -envall \
./Benchmark_comms_host_device --mpi 2.3.2.2 --grid 32.24.32.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD
$CMD
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.3.2.2 --grid 64.96.64.64 --comms-overlap \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD

View File

@ -1,16 +1,16 @@
TOOLS=$HOME/tools
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-accelerator-cshift \
--disable-gparity \
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-accelerator-aware-mpi=no\
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -lsycl" \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel"
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$TOOLS/lib64/" \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -I$TOOLS/include"

View File

@ -1,2 +0,0 @@
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu

View File

@ -3,24 +3,10 @@
module use /soft/modulefiles
module load intel_compute_runtime/release/agama-devel-682.22
export FI_CXI_DEFAULT_CQ_SIZE=131072
export FI_CXI_CQ_FILL_PERCENT=20
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
#
# -ftarget-register-alloc-mode=pvc:default
# -ftarget-register-alloc-mode=pvc:small
# -ftarget-register-alloc-mode=pvc:large
# -ftarget-register-alloc-mode=pvc:auto
#
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
git config --global http.proxy http://proxy.alcf.anl.gov:3128
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -1,41 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=128
#PBS -l walltime=02:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 16 nodes, 192 ranks
# 12 ppn, 128 nodes, 1536 ranks
CMD="mpiexec -np 1536 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Test_dwf_mixedcg_prec --mpi 4.4.4.24 --grid 128.128.128.384 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 7000 --comms-overlap "
$CMD

View File

@ -1,61 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=01:00:00
#PBS -N dwf
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
#source ../sourceme.sh
cat $PBS_NODEFILE
#export MPICH_COLL_SYNC=1
#export MPICH_ENV_DISPLAY=1
export MPICH_
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
#export LD_LIBRARY_PATH=/soft/restricted/CNDA/updates/2023.05.15.001/oneapi/compiler/eng-20230512/compiler/linux/lib/:$LD_LIBRARY_PATH
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
DIR=repro.$PBS_JOBID
mkdir $DIR
cd $DIR
CMD="mpiexec -np 192 -ppn 12 -envall \
../gpu_tile_compact.sh \
../Test_dwf_mixedcg_prec --mpi 2.4.4.6 --grid 64.128.128.192 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 3000 --debug-stdout --log Message,Iterative"
#--comms-overlap
$CMD
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*

View File

@ -1,82 +0,0 @@
#!/bin/bash
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N repro1gpu
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
cd $PBS_O_WORKDIR
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE
echo $NN nodes in node file
for n in `eval echo {1..$NN}`
do
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
echo Node $n is $THIS_NODE
for g in {0..11}
do
export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
export numa=${NUMA_MAP[$g]}
export gpu_id=${GPU_MAP[$g]}
export tile_id=${TILE_MAP[$g]}
export gpu=$gpu_id.$tile_id
cd $PBS_O_WORKDIR
DIR=repro.1gpu.$PBS_JOBID/node-$n-$THIS_NODE-GPU-$gpu
mkdir -p $DIR
cd $DIR
echo $THIS_NODE > nodefile
echo $gpu > gpu
export ZE_AFFINITY_MASK=$gpu
export ONEAPI_DEVICE_FILTER=gpu,level_zero
CMD="mpiexec -np 1 -ppn 1 -envall --hostfile nodefile \
numactl -N $numa -m $numa ../../Test_dwf_mixedcg_prec --mpi 1.1.1.1 --grid 16.16.32.32 \
--shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message"
echo $CMD
$CMD &
done
done
wait

View File

@ -1,98 +0,0 @@
#!/bin/bash
#PBS -l select=32:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N reproN
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
export GRID_PRINT_ENTIRE_LOG=0
export GRID_CHECKSUM_RECV_BUF=0
export GRID_CHECKSUM_SEND_BUF=0
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE
echo $NN nodes in node file
for n in `eval echo {1..$NN}`
do
cd $PBS_O_WORKDIR
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
echo Node $n is $THIS_NODE
DIR=reproN.$PBS_JOBID/node-$n-$THIS_NODE
mkdir -p $DIR
cd $DIR
echo $THIS_NODE > nodefile
#CMD="mpiexec -np 12 -ppn 12 -envall --hostfile nodefile \
# ../../gpu_tile_compact.sh \
# ../../Test_dwf_mixedcg_prec --mpi 1.2.2.3 --grid 32.64.64.96 \
# --shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message --comms-overlap"
CMD="mpiexec -np 12 -ppn 12 -envall --hostfile nodefile \
../../gpu_tile_compact.sh \
../../Test_dwf_mixedcg_prec --mpi 1.2.2.3 --grid 32.64.64.96 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message --comms-overlap"
echo $CMD > command-line
env > environment
$CMD &
done
# Suspicious wait is allowing jobs to collide and knock out
#wait
sleep 6500
for n in ` eval echo {1..$NN} `
do
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
DIR=reproN.$PBS_JOBID/node-$n-$THIS_NODE
cd $DIR
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*
done

View File

@ -1,40 +0,0 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -l select=16
#PBS -l walltime=01:00:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../../sourceme.sh
cat $PBS_NODEFILE
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 16 nodes, 192 ranks
CMD="mpiexec -np 192 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Test_staggered_cg_prec --mpi 2.4.4.6 --grid 128.128.128.192 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 3000 --comms-overlap"
$CMD

View File

@ -1,70 +0,0 @@
Memory Bandwidth
Bytes, GB/s per node
3145728, 225.900365
50331648, 2858.859504
254803968, 4145.556367
805306368, 4905.772480
1966080000, 4978.312557
GEMM
M, N, K, BATCH, GF/s per rank
16, 8, 16, 256, 1.713639
16, 16, 16, 256, 288.268316
16, 32, 16, 256, 597.053950
32, 8, 32, 256, 557.382591
32, 16, 32, 256, 1100.145311
32, 32, 32, 256, 1885.080449
64, 8, 64, 256, 1725.163599
64, 16, 64, 256, 3389.336566
64, 32, 64, 256, 4168.252422
16, 8, 256, 256, 1326.262134
16, 16, 256, 256, 2318.095475
16, 32, 256, 256, 3555.436503
32, 8, 256, 256, 1920.139170
32, 16, 256, 256, 3486.174753
32, 32, 256, 256, 5320.821724
64, 8, 256, 256, 2539.597502
64, 16, 256, 256, 5003.456775
64, 32, 256, 256, 7837.531562
8, 256, 16, 256, 1427.848170
16, 256, 16, 256, 2222.147815
32, 256, 16, 256, 2877.121715
8, 256, 32, 256, 1922.890086
16, 256, 32, 256, 3199.469082
32, 256, 32, 256, 4845.405343
8, 256, 64, 256, 2639.483343
16, 256, 64, 256, 5012.800299
32, 256, 64, 256, 7216.006882
Communications
Packet bytes, direction, GB/s per node
4718592, 2, 206.570734
4718592, 3, 207.501847
4718592, 6, 189.730277
4718592, 7, 204.301218
15925248, 2, 307.882997
15925248, 3, 287.901076
15925248, 6, 295.603109
15925248, 7, 300.682033
37748736, 2, 331.740364
37748736, 3, 338.610627
37748736, 6, 332.580657
37748736, 7, 336.336579
Per node summary table
L , Wilson, DWF4, Staggered, GF/s per node
8 , 16, 1165, 10
12 , 473, 4901, 163
16 , 1436, 8464, 442
24 , 4133, 10139, 1530
32 , 5726, 11487, 2518
1 Memory Bandwidth
2 Bytes, GB/s per node
3 3145728, 225.900365
4 50331648, 2858.859504
5 254803968, 4145.556367
6 805306368, 4905.772480
7 1966080000, 4978.312557
8 GEMM
9 M, N, K, BATCH, GF/s per rank
10 16, 8, 16, 256, 1.713639
11 16, 16, 16, 256, 288.268316
12 16, 32, 16, 256, 597.053950
13 32, 8, 32, 256, 557.382591
14 32, 16, 32, 256, 1100.145311
15 32, 32, 32, 256, 1885.080449
16 64, 8, 64, 256, 1725.163599
17 64, 16, 64, 256, 3389.336566
18 64, 32, 64, 256, 4168.252422
19 16, 8, 256, 256, 1326.262134
20 16, 16, 256, 256, 2318.095475
21 16, 32, 256, 256, 3555.436503
22 32, 8, 256, 256, 1920.139170
23 32, 16, 256, 256, 3486.174753
24 32, 32, 256, 256, 5320.821724
25 64, 8, 256, 256, 2539.597502
26 64, 16, 256, 256, 5003.456775
27 64, 32, 256, 256, 7837.531562
28 8, 256, 16, 256, 1427.848170
29 16, 256, 16, 256, 2222.147815
30 32, 256, 16, 256, 2877.121715
31 8, 256, 32, 256, 1922.890086
32 16, 256, 32, 256, 3199.469082
33 32, 256, 32, 256, 4845.405343
34 8, 256, 64, 256, 2639.483343
35 16, 256, 64, 256, 5012.800299
36 32, 256, 64, 256, 7216.006882
37 Communications
38 Packet bytes, direction, GB/s per node
39 4718592, 2, 206.570734
40 4718592, 3, 207.501847
41 4718592, 6, 189.730277
42 4718592, 7, 204.301218
43 15925248, 2, 307.882997
44 15925248, 3, 287.901076
45 15925248, 6, 295.603109
46 15925248, 7, 300.682033
47 37748736, 2, 331.740364
48 37748736, 3, 338.610627
49 37748736, 6, 332.580657
50 37748736, 7, 336.336579
51 Per node summary table
52 L , Wilson, DWF4, Staggered, GF/s per node
53 8 , 16, 1165, 10
54 12 , 473, 4901, 163
55 16 , 1436, 8464, 442
56 24 , 4133, 10139, 1530
57 32 , 5726, 11487, 2518

View File

@ -5,12 +5,10 @@ LIME=/p/home/jusers/boyle2/juwels/gm2dwf/boyle/
--enable-gen-simd-width=64 \
--enable-shm=nvlink \
--enable-accelerator=cuda \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$LIME \
--enable-accelerator-cshift \
--disable-accelerator-cshift \
--disable-unified \
CXX=nvcc \
LDFLAGS="-cudart shared " \
CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++17 -cudart shared -lcublas"
CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++14 -cudart shared"

View File

@ -1,5 +1,5 @@
module load GCC
module load GMP
module load MPFR
module load OpenMPI
module load CUDA
module load GCC/9.3.0
module load GMP/6.2.0
module load MPFR/4.1.0
module load OpenMPI/4.1.0rc1
module load CUDA/11.3

View File

@ -16,7 +16,7 @@ CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
--disable-fermion-reps \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -fgpu-sanitize" \
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas"
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 "

View File

@ -1,5 +1,3 @@
export https_proxy=http://proxy-chain.intel.com:911
module load intel-release
module load intel/mpich
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -1,4 +1,4 @@
TOOLS=$HOME/tools
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
@ -11,6 +11,6 @@
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -lsycl" \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel"
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L$TOOLS/lib64/" \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -I$TOOLS/include"

View File

@ -1,2 +0,0 @@
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu

View File

@ -1,81 +0,0 @@
#!/bin/bash
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N repro1gpu
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE
echo $NN nodes in node file
for n in `eval echo {1..$NN}`
do
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
echo Node $n is $THIS_NODE
for g in {0..11}
do
export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
export numa=${NUMA_MAP[$g]}
export gpu_id=${GPU_MAP[$g]}
export tile_id=${TILE_MAP[$g]}
export gpu=$gpu_id.$tile_id
cd $PBS_O_WORKDIR
DIR=repro.1gpu.$PBS_JOBID/node-$n-$THIS_NODE-GPU-$gpu
mkdir -p $DIR
cd $DIR
echo $THIS_NODE > nodefile
echo $gpu > gpu
export ZE_AFFINITY_MASK=$gpu
export ONEAPI_DEVICE_FILTER=gpu,level_zero
CMD="mpiexec -np 1 -ppn 1 -envall --hostfile nodefile \
numactl -N $numa -m $numa ../../Test_dwf_mixedcg_prec --mpi 1.1.1.1 --grid 16.16.32.32 \
--shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message"
echo $CMD
$CMD &
done
done
wait

View File

@ -1,97 +0,0 @@
#!/bin/bash
#PBS -l select=32:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N reproN
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
export GRID_PRINT_ENTIRE_LOG=0
export GRID_CHECKSUM_RECV_BUF=1
export GRID_CHECKSUM_SEND_BUF=0
export MPICH_OFI_NIC_POLICY=GPU
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE
echo $NN nodes in node file
for n in `eval echo {1..$NN}`
do
cd $PBS_O_WORKDIR
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
echo Node $n is $THIS_NODE
DIR=reproN.$PBS_JOBID/node-$n-$THIS_NODE
mkdir -p $DIR
cd $DIR
echo $THIS_NODE > nodefile
#CMD="mpiexec -np 12 -ppn 12 -envall --hostfile nodefile \
# ../../gpu_tile_compact.sh \
# ../../Test_dwf_mixedcg_prec --mpi 1.2.2.3 --grid 32.64.64.96 \
# --shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message --comms-overlap"
CMD="mpiexec -np 12 -ppn 12 -envall --hostfile nodefile \
../../gpu_tile_compact.sh \
../../Test_dwf_mixedcg_prec --mpi 1.2.2.3 --grid 32.64.64.96 \
--shm-mpi 1 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 6000 --debug-stdout --log Message --comms-overlap"
echo $CMD > command-line
env > environment
$CMD &
done
# Suspicious wait is allowing jobs to collide and knock out
#wait
sleep 6500
for n in ` eval echo {1..$NN} `
do
THIS_NODE=`head -n$n $PBS_NODEFILE | tail -n1 `
DIR=reproN.$PBS_JOBID/node-$n-$THIS_NODE
cd $DIR
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*
done

View File

@ -1,3 +1,4 @@
CXXFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib/ CXX=c++-13 MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
BREW=/opt/local/
MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug

View File

@ -30,60 +30,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
using namespace std;
using namespace Grid;
#ifndef HOST_NAME_MAX
#define HOST_NAME_MAX _POSIX_HOST_NAME_MAX
#endif
NAMESPACE_BEGIN(Grid);
template<class Matrix,class Field>
class SchurDiagMooeeOperatorParanoid : public SchurOperatorBase<Field> {
public:
Matrix &_Mat;
SchurDiagMooeeOperatorParanoid (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
// std::cout <<" Mpc starting"<<std::endl;
RealD nn = norm2(in); // std::cout <<" Mpc Prior to dslash norm is "<<nn<<std::endl;
_Mat.Meooe(in,tmp);
nn = norm2(tmp); //std::cout <<" Mpc Prior to Mooeinv "<<nn<<std::endl;
_Mat.MooeeInv(tmp,out);
nn = norm2(out); //std::cout <<" Mpc Prior to dslash norm is "<<nn<<std::endl;
_Mat.Meooe(out,tmp);
nn = norm2(tmp); //std::cout <<" Mpc Prior to Mooee "<<nn<<std::endl;
_Mat.Mooee(in,out);
nn = norm2(out); //std::cout <<" Mpc Prior to axpy "<<nn<<std::endl;
axpy(out,-1.0,tmp,out);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
// std::cout <<" MpcDag starting"<<std::endl;
RealD nn = norm2(in);// std::cout <<" MpcDag Prior to dslash norm is "<<nn<<std::endl;
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
nn = norm2(out);// std::cout <<" MpcDag Prior to dslash norm is "<<nn<<std::endl;
_Mat.MeooeDag(out,tmp);
nn = norm2(tmp);// std::cout <<" MpcDag Prior to Mooee "<<nn<<std::endl;
_Mat.MooeeDag(in,out);
nn = norm2(out);// std::cout <<" MpcDag Prior to axpy "<<nn<<std::endl;
axpy(out,-1.0,tmp,out);
}
template<class d>
struct scal {
d internal;
};
NAMESPACE_END(Grid);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
char hostname[HOST_NAME_MAX+1];
gethostname(hostname, HOST_NAME_MAX+1);
std::string host(hostname);
Grid_init(&argc,&argv);
const int Ls=12;
std::cout << GridLogMessage << "::::: NB: to enable a quick bit reproducibility check use the --checksums flag. " << std::endl;
{
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
@ -122,17 +89,10 @@ int main (int argc, char ** argv)
result_o_2.Checkerboard() = Odd;
result_o_2 = Zero();
SchurDiagMooeeOperatorParanoid<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
SchurDiagMooeeOperatorParanoid<DomainWallFermionF,LatticeFermionF> HermOpEO_f(Ddwf_f);
int nsecs=600;
if( GridCmdOptionExists(argv,argv+argc,"--seconds") ){
std::string arg = GridCmdOptionPayload(argv,argv+argc,"--seconds");
GridCmdOptionInt(arg,nsecs);
}
std::cout << GridLogMessage << "::::::::::::: Starting mixed CG for "<<nsecs <<" seconds" << std::endl;
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
SchurDiagMooeeOperator<DomainWallFermionF,LatticeFermionF> HermOpEO_f(Ddwf_f);
std::cout << GridLogMessage << "::::::::::::: Starting mixed CG" << std::endl;
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(1.0e-8, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
double t1,t2,flops;
double MdagMsiteflops = 1452; // Mobius (real coeffs)
@ -141,26 +101,7 @@ int main (int argc, char ** argv)
std:: cout << " MdagM site flops = "<< 4*MdagMsiteflops<<std::endl;
std:: cout << " CG site flops = "<< CGsiteflops <<std::endl;
int iters;
time_t start = time(NULL);
FlightRecorder::ContinueOnFail = 0;
FlightRecorder::PrintEntireLog = 0;
FlightRecorder::ChecksumComms = 1;
FlightRecorder::ChecksumCommsSend=0;
if(char *s=getenv("GRID_PRINT_ENTIRE_LOG")) FlightRecorder::PrintEntireLog = atoi(s);
if(char *s=getenv("GRID_CHECKSUM_RECV_BUF")) FlightRecorder::ChecksumComms = atoi(s);
if(char *s=getenv("GRID_CHECKSUM_SEND_BUF")) FlightRecorder::ChecksumCommsSend = atoi(s);
int iter=0;
do {
if ( iter == 0 ) {
FlightRecorder::SetLoggingMode(FlightRecorder::LoggingModeRecord);
} else {
FlightRecorder::SetLoggingMode(FlightRecorder::LoggingModeVerify);
}
std::cerr << "******************* SINGLE PRECISION SOLVE "<<iter<<std::endl;
for(int i=0;i<10;i++){
result_o = Zero();
t1=usecond();
mCG(src_o,result_o);
@ -170,24 +111,10 @@ int main (int argc, char ** argv)
flops+= CGsiteflops*FrbGrid->gSites()*iters;
std::cout << " SinglePrecision iterations/sec "<< iters/(t2-t1)*1000.*1000.<<std::endl;
std::cout << " SinglePrecision GF/s "<< flops/(t2-t1)/1000.<<std::endl;
std::cout << " SinglePrecision error count "<< FlightRecorder::ErrorCount()<<std::endl;
assert(FlightRecorder::ErrorCount()==0);
std::cout << " FlightRecorder is OK! "<<std::endl;
iter ++;
} while (time(NULL) < (start + nsecs/10) );
std::cout << GridLogMessage << "::::::::::::: Starting double precision CG" << std::endl;
}
std::cout << GridLogMessage << "::::::::::::: Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
int i=0;
do {
if ( i == 0 ) {
FlightRecorder::SetLoggingMode(FlightRecorder::LoggingModeRecord);
} else {
FlightRecorder::SetLoggingMode(FlightRecorder::LoggingModeVerify);
}
std::cerr << "******************* DOUBLE PRECISION SOLVE "<<i<<std::endl;
for(int i=0;i<1;i++){
result_o_2 = Zero();
t1=usecond();
CG(HermOpEO,src_o,result_o_2);
@ -195,20 +122,46 @@ int main (int argc, char ** argv)
iters = CG.IterationsToComplete;
flops = MdagMsiteflops*4*FrbGrid->gSites()*iters;
flops+= CGsiteflops*FrbGrid->gSites()*iters;
std::cout << " DoublePrecision iterations/sec "<< iters/(t2-t1)*1000.*1000.<<std::endl;
std::cout << " DoublePrecision GF/s "<< flops/(t2-t1)/1000.<<std::endl;
std::cout << " DoublePrecision error count "<< FlightRecorder::ErrorCount()<<std::endl;
assert(FlightRecorder::ErrorCount()==0);
std::cout << " FlightRecorder is OK! "<<std::endl;
i++;
} while (time(NULL) < (start + nsecs) );
}
// MemoryManager::Print();
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << GridLogMessage << "::::::::::::: Diff between mixed and regular CG: " << diff << std::endl;
assert(diff < 1e-4);
#ifdef HAVE_LIME
if( GridCmdOptionExists(argv,argv+argc,"--checksums") ){
std::string file1("./Propagator1");
emptyUserRecord record;
uint32_t nersc_csum;
uint32_t scidac_csuma;
uint32_t scidac_csumb;
typedef SpinColourVectorD FermionD;
typedef vSpinColourVectorD vFermionD;
BinarySimpleMunger<FermionD,FermionD> munge;
std::string format = getFormatString<vFermionD>();
BinaryIO::writeLatticeObject<vFermionD,FermionD>(result_o,file1,munge, 0, format,
nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << " Mixed checksums "<<std::hex << scidac_csuma << " "<<scidac_csumb<<std::endl;
BinaryIO::writeLatticeObject<vFermionD,FermionD>(result_o_2,file1,munge, 0, format,
nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << " CG checksums "<<std::hex << scidac_csuma << " "<<scidac_csumb<<std::endl;
}
#endif
}
MemoryManager::Print();
Grid_finalize();
}