1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-19 00:07:05 +01:00

Compare commits

..

49 Commits

Author SHA1 Message Date
4ac85b3e8f Made checkerboard choice in staggered preconditioned solvers switchable 2018-02-13 11:49:02 -05:00
dd8cd8a8e8 Re-adding staggered operators and Schur solvers, consistent with CPS & MILC preconditioning 2018-02-11 02:46:50 -05:00
0cccb3dc82 Re-added Stag preconditioned opertor and preconditioned solvers, as the current versions are not consistent with CPS or MILC conventions. 2018-02-11 02:39:34 -05:00
5d44346be3 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-10-30 15:49:17 -04:00
3a754fcd51 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-10-27 17:34:35 -04:00
137886c316 Addressed when coor.size() != dim.size() in Lexicographic 2017-10-19 10:28:57 -04:00
ef61b549e6 Merge branch 'feature/Lanczos' into ckelly_develop4 2017-10-10 13:41:43 -04:00
3006663b9c Schur solver for staggered type (hermition Mpc) opertors 2017-08-31 21:32:01 -04:00
0145685f96 Added Staggered Type Preconditioned operator 2017-08-18 01:44:31 -04:00
e73e4b4002 Minor changes fixes 2017-08-11 01:35:25 -04:00
caa6605b43 Still tweaking memory saving routines in Lanczos 2017-08-07 00:01:04 -04:00
522c9248ae Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-08-06 23:58:21 -04:00
191fbf85fc Added ImplicitlyRestartedLanczosCJ to Algorithms.h 2017-07-28 15:33:59 -04:00
93650f3a61 Adding back (temporarily) dense matrix routines until Lanczos is fininalized 2017-07-24 21:49:25 -04:00
cab4b4d063 Deleting old include file references 2017-07-24 20:51:31 -04:00
cf4b30b2dd re-adding ImplcitlyRestartedLanczos 2017-07-24 20:40:25 -04:00
c51d0b4078 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-07-24 20:35:29 -04:00
2f4cbeb4d5 Minor changes 2017-06-12 18:25:18 -04:00
fb7c4fb815 Recovering lapack interface without array allocation 2017-06-07 00:00:59 -04:00
00bb71e5af Checking in before reworking lapack interface 2017-06-06 16:26:41 -04:00
cfed2c1ea0 Broken Lanczos. Going back to an older verion temporarily. 2017-06-06 12:14:45 -04:00
b1b15f0b70 Further fixes from multidimensional array 2017-06-05 23:13:41 -04:00
927c7ae3ed changed allocation for LAPACK temporaries, to avoid crashing with some compilers (reported by Christoph) 2017-05-25 21:43:53 -04:00
05d04ceff8 Adding SimpleLanczos 2017-05-25 12:30:47 -04:00
8313367a50 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-05-25 12:30:06 -04:00
5c479ce663 Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-05-24 18:58:53 -04:00
4bf9d65bf8 Checking in memory saving version of Lanczos 2017-05-24 18:57:32 -04:00
3a056c4dff Re-adding Bisection for SimpleLanczos 2017-05-22 18:23:03 -04:00
b0ba651654 Turning off the final sort for now 2017-05-19 10:49:09 -04:00
25d4c175c3 Cleaning up Lanczos 2017-05-18 18:33:47 -04:00
a8d7986e1c Temporary (hopefully) change to run with GCC for now. 2017-05-05 10:55:07 -04:00
92ec509bfa Commiting to move to Jlab 2017-05-04 19:32:00 -04:00
e80a87ff7f Checking in before modifying 2017-05-04 16:05:07 -04:00
867fe93018 First Rotate reorg done. 2017-05-02 01:26:22 -04:00
09651c3326 Checking in before rearranging Lanczos 2017-05-02 00:47:18 -04:00
f87f2a3f8b Merge branch 'develop' of https://github.com/paboyle/Grid into feature/Lanczos 2017-05-01 12:00:47 -04:00
a07556dd5f Added back the convergence test from evecs of tridiagonal matrix. Bugfixes 2017-04-15 09:32:15 -04:00
f80a847aef Merge branch 'develop' into bugfix/dminus 2017-04-06 23:49:10 -04:00
93cb5d4e97 Working version of Lanczos without the extra copy. 2017-04-06 23:35:30 -04:00
9e48b7dfda MEM_SAVE in Lanczos seems to be working, but not pretty 2017-04-06 22:21:56 -04:00
d0c2c9c71f Merge branch 'develop' of https://github.com/paboyle/Grid into bugfix/dminus 2017-04-04 15:20:17 -04:00
c8cafa77ca Checking in the latest Lacnzos 2017-04-04 15:18:12 -04:00
a3bcad3804 Added preconditioned SYM2 solver (SchurRedBlackDiagTwoSolve) 2017-03-30 20:33:27 -04:00
5a5b66292b Merge branch 'develop' of https://github.com/paboyle/Grid into bugfix/dminus 2017-03-30 10:44:02 -04:00
e63be32ad2 zmobius Meooe5D fixed? 2017-03-28 03:48:50 -04:00
6aa106d906 Fixing zmobius coeffs again 2017-03-27 21:57:07 -04:00
33d59c8869 Adding Zmobius prec test 2017-03-27 21:40:27 -04:00
a833fd8dbf Merge branch 'develop' of https://github.com/paboyle/Grid into bugfix/dminus 2017-03-27 21:37:26 -04:00
e9712bc7fb Zmobius test was wrong! (only mobius) checking in again 2017-03-16 23:04:28 -04:00
386 changed files with 13741 additions and 33317 deletions

7
.gitignore vendored
View File

@ -93,7 +93,6 @@ build*/*
*.xcodeproj/*
build.sh
.vscode
*.code-workspace
# Eigen source #
################
@ -123,10 +122,4 @@ make-bin-BUCK.sh
#####################
lib/qcd/spin/gamma-gen/*.h
lib/qcd/spin/gamma-gen/*.cc
lib/version.h
# vs code editor files #
########################
.vscode/
.vscode/settings.json
settings.json

View File

@ -19,8 +19,6 @@ before_install:
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
install:
- export CWD=`pwd`
- echo $CWD
- export CC=$CC$VERSION
- export CXX=$CXX$VERSION
- echo $PATH
@ -38,23 +36,11 @@ script:
- ./bootstrap.sh
- mkdir build
- cd build
- mkdir lime
- cd lime
- mkdir build
- cd build
- wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz
- tar xf lime-1.3.2.tar.gz
- cd lime-1.3.2
- ./configure --prefix=$CWD/build/lime/install
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- echo make clean
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -5,10 +5,6 @@ include $(top_srcdir)/doxygen.inc
bin_SCRIPTS=grid-config
BUILT_SOURCES = version.h
version.h:
echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d\\"%n" HEAD`" > $(srcdir)/lib/version.h
.PHONY: bench check tests doxygen-run doxygen-doc $(DX_PS_GOAL) $(DX_PDF_GOAL)

View File

@ -187,11 +187,10 @@ Alternatively, some CPU codenames can be directly used:
| `<code>` | Description |
| ----------- | -------------------------------------- |
| `KNL` | [Intel Xeon Phi codename Knights Landing](http://ark.intel.com/products/codename/48999/Knights-Landing) |
| `SKL` | [Intel Skylake with AVX512 extensions](https://ark.intel.com/products/codename/37572/Skylake#@server) |
| `BGQ` | Blue Gene/Q |
#### Notes:
- We currently support AVX512 for the Intel compiler and GCC (KNL and SKL target). Support for clang will appear in future versions of Grid when the AVX512 support in the compiler will be more advanced.
- We currently support AVX512 only for the Intel compiler. Support for GCC and clang will appear in future versions of Grid when the AVX512 support within GCC and clang will be more advanced.
- For BG/Q only [bgclang](http://trac.alcf.anl.gov/projects/llvm-bgq) is supported. We do not presently plan to support more compilers for this platform.
- BG/Q performances are currently rather poor. This is being investigated for future versions.
- The vector size for the `GEN` target can be specified with the `configure` script option `--enable-gen-simd-width`.

36
TODO
View File

@ -1,36 +1,20 @@
TODO:
---------------
Code item work list
a) namespaces & indentation
GRID_BEGIN_NAMESPACE();
GRID_END_NAMESPACE();
-- delete QCD namespace
b) GPU branch
- start branch
- Increase Macro use in core library support; prepare for change
- Audit volume of "device" code
- Virtual function audit
- Start port once Nvidia box is up
- Cut down volume of code for first port? How?
Physics item work list:
Large item work list:
1)- BG/Q port and check ; Andrew says ok.
2)- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
3)- Physical propagator interface
4)- Multigrid Wilson and DWF, compare to other Multigrid implementations
5)- HDCR resume
2)- Christoph's local basis expansion Lanczos
--
3a)- RNG I/O in ILDG/SciDAC (minor)
3b)- Precision conversion and sort out localConvert <-- partial/easy
3c)- Consistent linear solver flop count/rate -- PARTIAL, time but no flop/s yet
4)- Physical propagator interface
5)- Conserved currents
6)- Multigrid Wilson and DWF, compare to other Multigrid implementations
7)- HDCR resume
----------------------------
Recent DONE
-- RNG I/O in ILDG/SciDAC (minor)
-- Precision conversion and sort out localConvert <-- partial/easy
-- Conserved currents (Andrew)
-- Split grid
-- Christoph's local basis expansion Lanczos
-- MultiRHS with spread out extra dim -- Go through filesystem with SciDAC I/O ; <-- DONE ; bmark cori
-- Lanczos Remove DenseVector, DenseMatrix; Use Eigen instead. <-- DONE
-- GaugeFix into central location <-- DONE

View File

@ -1,4 +1,4 @@
Version : 0.8.0
Version : 0.7.0
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
- MPI and MPI3 comms optimisations for KNL and OPA finished

View File

@ -1,108 +0,0 @@
#include <Grid/Grid.h>
#ifdef HAVE_LIME
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
#define MSG cout << GridLogMessage
#define SEP \
"============================================================================="
#ifndef BENCH_IO_LMAX
#define BENCH_IO_LMAX 40
#endif
typedef function<void(const string, LatticeFermion &)> WriterFn;
typedef function<void(LatticeFermion &, const string)> ReaderFn;
string filestem(const int l)
{
return "iobench_l" + to_string(l);
}
void limeWrite(const string filestem, LatticeFermion &vec)
{
emptyUserRecord record;
ScidacWriter binWriter(vec._grid->IsBoss());
binWriter.open(filestem + ".bin");
binWriter.writeScidacFieldRecord(vec, record);
binWriter.close();
}
void limeRead(LatticeFermion &vec, const string filestem)
{
emptyUserRecord record;
ScidacReader binReader;
binReader.open(filestem + ".bin");
binReader.readScidacFieldRecord(vec, record);
binReader.close();
}
void writeBenchmark(const int l, const WriterFn &write)
{
auto mpi = GridDefaultMpi();
auto simd = GridDefaultSimd(Nd, vComplex::Nsimd());
vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
unique_ptr<GridCartesian> gPt(SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
GridCartesian *g = gPt.get();
GridParallelRNG rng(g);
LatticeFermion vec(g);
emptyUserRecord record;
ScidacWriter binWriter(g->IsBoss());
cout << "-- Local volume " << l << "^4" << endl;
random(rng, vec);
write(filestem(l), vec);
}
void readBenchmark(const int l, const ReaderFn &read)
{
auto mpi = GridDefaultMpi();
auto simd = GridDefaultSimd(Nd, vComplex::Nsimd());
vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
unique_ptr<GridCartesian> gPt(SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
GridCartesian *g = gPt.get();
LatticeFermion vec(g);
emptyUserRecord record;
ScidacReader binReader;
cout << "-- Local volume " << l << "^4" << endl;
read(vec, filestem(l));
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
auto simd = GridDefaultSimd(Nd,vComplex::Nsimd());
auto mpi = GridDefaultMpi();
int64_t threads = GridThread::GetThreads();
MSG << "Grid is setup to use " << threads << " threads" << endl;
MSG << SEP << endl;
MSG << "Benchmark Lime write" << endl;
MSG << SEP << endl;
for (int l = 4; l <= BENCH_IO_LMAX; l += 2)
{
writeBenchmark(l, limeWrite);
}
MSG << "Benchmark Lime read" << endl;
MSG << SEP << endl;
for (int l = 4; l <= BENCH_IO_LMAX; l += 2)
{
readBenchmark(l, limeRead);
}
Grid_finalize();
return EXIT_SUCCESS;
}
#else
int main (int argc, char ** argv)
{
return EXIT_SUCCESS;
}
#endif

View File

@ -158,10 +158,8 @@ public:
dbytes=0;
ncomm=0;
#ifdef GRID_OMP
#pragma omp parallel for num_threads(Grid::CartesianCommunicator::nCommThreads)
#endif
for(int dir=0;dir<8;dir++){
parallel_for(int dir=0;dir<8;dir++){
double tbytes;
int mu =dir % 4;
@ -177,14 +175,9 @@ public:
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
#ifdef GRID_OMP
int tid = omp_get_thread_num();
#else
int tid = dir;
#endif
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank,
bytes,tid);
bytes,dir);
#ifdef GRID_OMP
#pragma omp atomic

View File

@ -106,7 +106,7 @@ int main (int argc, char ** argv)
for(int i=0;i<Nloop;i++){
double start=usecond();
std::vector<CommsRequest_t> requests;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
ncomm=0;
for(int mu=0;mu<4;mu++){
@ -169,11 +169,7 @@ int main (int argc, char ** argv)
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=8;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
std::vector<int> latt_size ({lat,lat,lat,lat});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
@ -206,7 +202,7 @@ int main (int argc, char ** argv)
int recv_from_rank;
{
std::vector<CommsRequest_t> requests;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
@ -219,7 +215,7 @@ int main (int argc, char ** argv)
comm_proc = mpi_layout[mu]-1;
{
std::vector<CommsRequest_t> requests;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
@ -294,7 +290,7 @@ int main (int argc, char ** argv)
dbytes=0;
ncomm=0;
std::vector<CommsRequest_t> requests;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
for(int mu=0;mu<4;mu++){
@ -387,7 +383,7 @@ int main (int argc, char ** argv)
for(int i=0;i<Nloop;i++){
double start=usecond();
std::vector<CommsRequest_t> requests;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
dbytes=0;
ncomm=0;
for(int mu=0;mu<4;mu++){
@ -450,7 +446,7 @@ int main (int argc, char ** argv)
}
#ifdef GRID_OMP
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking threaded STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
@ -485,12 +481,11 @@ int main (int argc, char ** argv)
for(int i=0;i<Nloop;i++){
double start=usecond();
std::vector<CommsRequest_t> requests;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
dbytes=0;
ncomm=0;
#pragma omp parallel for num_threads(Grid::CartesianCommunicator::nCommThreads)
for(int dir=0;dir<8;dir++){
parallel_for(int dir=0;dir<8;dir++){
double tbytes;
int mu =dir % 4;
@ -507,9 +502,9 @@ int main (int argc, char ** argv)
int comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
}
int tid = omp_get_thread_num();
tbytes= Grid.StencilSendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes,tid);
(void *)&rbuf[dir][0], recv_from_rank, bytes,dir);
#pragma omp atomic
dbytes+=tbytes;
@ -537,7 +532,7 @@ int main (int argc, char ** argv)
}
}
#endif
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= All done; Bye Bye"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;

View File

@ -48,6 +48,7 @@ int main (int argc, char ** argv)
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> latt4 = GridDefaultLatt();
int Ls=16;
@ -56,10 +57,6 @@ int main (int argc, char ** argv)
std::stringstream ss(argv[i+1]); ss >> Ls;
}
GridLogLayout();
long unsigned int single_site_flops = 8*QCD::Nc*(7+16*QCD::Nc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
@ -190,7 +187,7 @@ int main (int argc, char ** argv)
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=single_site_flops*volume*ncall;
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
@ -229,7 +226,7 @@ int main (int argc, char ** argv)
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=single_site_flops*volume*ncall;
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
@ -280,7 +277,7 @@ int main (int argc, char ** argv)
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=single_site_flops*volume*ncall;
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw s_inner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
@ -358,7 +355,7 @@ int main (int argc, char ** argv)
// sDw.stat.print();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(single_site_flops*volume*ncall)/2.0;
double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "sDeo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "sDeo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
@ -481,7 +478,7 @@ int main (int argc, char ** argv)
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(single_site_flops*volume*ncall)/2.0;
double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;

View File

@ -51,7 +51,6 @@ int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
@ -108,7 +107,6 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
long unsigned int single_site_flops = 8*QCD::Nc*(7+16*QCD::Nc);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
@ -198,7 +196,7 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
if ( ! report ) {
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=single_site_flops*volume*ncall;
double flops=1344*volume*ncall;
std::cout <<"\t"<<NP<< "\t"<<flops/(t1-t0)<< "\t";
}
@ -230,7 +228,7 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
if(!report){
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(single_site_flops*volume*ncall)/2.0;
double flops=(1344.0*volume*ncall)/2;
std::cout<< flops/(t1-t0);
}
}
@ -239,7 +237,6 @@ void benchDw(std::vector<int> & latt4, int Ls, int threads,int report )
#define CHECK_SDW
void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report )
{
long unsigned int single_site_flops = 8*QCD::Nc*(7+16*QCD::Nc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
@ -324,7 +321,7 @@ void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report )
Counter.Report();
} else {
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=single_site_flops*volume*ncall;
double flops=1344*volume*ncall;
std::cout<<"\t"<< flops/(t1-t0);
}
@ -361,7 +358,7 @@ void benchsDw(std::vector<int> & latt4, int Ls, int threads, int report )
CounterSdw.Report();
} else {
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(single_site_flops*volume*ncall)/2.0;
double flops=(1344.0*volume*ncall)/2;
std::cout<<"\t"<< flops/(t1-t0);
}
}

View File

@ -107,7 +107,7 @@ int main (int argc, char ** argv)
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1320*volume*ncall;
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
@ -134,7 +134,7 @@ int main (int argc, char ** argv)
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1320*volume*ncall;
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
@ -174,7 +174,7 @@ int main (int argc, char ** argv)
FGrid_d->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1320*volume*ncall;
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;

View File

@ -55,7 +55,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t lmax=64;
uint64_t lmax=96;
#define NLOOP (10*lmax*lmax*lmax*lmax/vol)
for(int lat=8;lat<=lmax;lat+=8){

View File

@ -1,803 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2018
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
#include "Grid/util/Profiling.h"
template<class vobj>
void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
assert(mat.size()==Lblock*Rblock);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd*Lblock*Rblock);
parallel_for (int r = 0; r < rd * Lblock * Rblock; r++){
lvSum[r] = zero;
}
std::vector<scalar_type > lsSum(ld*Lblock*Rblock,scalar_type(0.0));
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
int idx = i+Lblock*j+Lblock*Rblock*r;
auto right = rhs[j]._odata[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
iScalar<vector_type> temp;
std::vector<iScalar<scalar_type> > extracted(Nsimd);
temp._internal = lvSum[i+Lblock*j+Lblock*Rblock*rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
int ij_dx = i+Lblock*j+Lblock*Rblock*ldx;
lsSum[ij_dx]=lsSum[ij_dx]+extracted[idx]._internal;
}
}}
}
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i+j*Lblock][t] = lsSum[ij_dx];
}
else{
mat[i+j*Lblock][t] = scalar_type(0.0);
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGamma(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
assert(mat.size()==Lblock*Rblock*Ngamma);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Ngamma;
int MFlvol = ld*Lblock*Rblock*Ngamma;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
std::vector<scalar_type > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
auto right = Gamma(gammas[mu])*rhs[j]._odata[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
int idx = mu+i*Ngamma+Lblock*Ngamma*j+Ngamma*Lblock*Rblock*r;
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
std::vector<int> icoor(Nd);
std::vector<iScalar<scalar_type> > extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
int ij_rdx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock*rt;
temp._internal = lvSum[ij_rdx];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
int ij_ldx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx]._internal;
}
}}}
}
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock* lt;
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = lsSum[ij_dx];
}
else{
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = scalar_type(0.0);
}
}}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGamma1(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
assert(mat.size()==Lblock*Rblock*Ngamma);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock;
int MFlvol = ld*Lblock*Rblock;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
auto right = rhs[j]._odata[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s2,s1)() = left()(s1)(0) * right()(s2)(0)
+ left()(s1)(1) * right()(s2)(1)
+ left()(s1)(2) * right()(s2)(2);
}}
int idx = i+Lblock*j+Lblock*Rblock*r;
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
int ij_rdx = i+Lblock*j+Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = i+Lblock*j+Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}
}
std::cout << GridLogMessage << " Entering third parallel loop "<<std::endl;
parallel_for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
else{
for(int mu=0;mu<Ngamma;mu++){
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = scalar_type(0.0);
}
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGammaMom(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
assert(mat.size()==Lblock*Rblock*Ngamma*Nmom);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
auto right = rhs[j]._odata[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s1,s2)() = left()(s1)(0) * right()(s2)(0)
+ left()(s1)(1) * right()(s2)(1)
+ left()(s1)(2) * right()(s2)(2);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
// Trigger unroll
for ( int m=0;m<Nmom;m++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}
}
std::cout << GridLogMessage << " Entering third parallel loop "<<std::endl;
parallel_for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
mat[ mu
+m*Ngamma
+i*Nmom*Ngamma
+j*Nmom*Ngamma*Lblock][t] = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
else{
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat[mu+m*Ngamma+i*Nmom*Ngamma+j*Nmom*Lblock*Ngamma][t] = scalar_type(0.0);
}}
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
/*
template void sliceInnerProductMesonField<SpinColourVector>(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<SpinColourVector> > &lhs,
const std::vector<Lattice<SpinColourVector> > &rhs,
int orthogdim) ;
*/
std::vector<Gamma::Algebra> Gmu4 ( {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT });
std::vector<Gamma::Algebra> Gmu16 ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaZT
});
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
const int Nmom=7;
int nt = latt_size[Tp];
uint64_t vol = 1;
for(int d=0;d<Nd;d++){
vol = vol*latt_size[d];
}
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
int Nm = atoi(argv[1]); // number of all modes (high + low)
std::vector<LatticeFermion> v(Nm,&Grid);
std::vector<LatticeFermion> w(Nm,&Grid);
std::vector<LatticeFermion> gammaV(Nm,&Grid);
std::vector<LatticeComplex> phases(Nmom,&Grid);
for(int i=0;i<Nm;i++) {
random(pRNG,v[i]);
random(pRNG,w[i]);
}
for(int i=0;i<Nmom;i++) {
phases[i] = Complex(1.0);
}
double flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm;
double byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm;
std::vector<ComplexD> ip(nt);
std::vector<std::vector<ComplexD> > MesonFields (Nm*Nm);
std::vector<std::vector<ComplexD> > MesonFields4 (Nm*Nm*4);
std::vector<std::vector<ComplexD> > MesonFields16 (Nm*Nm*16);
std::vector<std::vector<ComplexD> > MesonFields161(Nm*Nm*16);
std::vector<std::vector<ComplexD> > MesonFields16mom (Nm*Nm*16*Nmom);
std::vector<std::vector<ComplexD> > MesonFieldsRef(Nm*Nm);
for(int i=0;i<MesonFields.size();i++ ) MesonFields [i].resize(nt);
for(int i=0;i<MesonFieldsRef.size();i++) MesonFieldsRef[i].resize(nt);
for(int i=0;i<MesonFields4.size();i++ ) MesonFields4 [i].resize(nt);
for(int i=0;i<MesonFields16.size();i++ ) MesonFields16 [i].resize(nt);
for(int i=0;i<MesonFields161.size();i++ ) MesonFields161[i].resize(nt);
for(int i=0;i<MesonFields16mom.size();i++ ) MesonFields16mom [i].resize(nt);
GridLogMessage.TimingMode(1);
std::cout<<GridLogMessage << "Running loop with sliceInnerProductVector"<<std::endl;
double t0 = usecond();
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
sliceInnerProductVector(ip, w[i],v[j],Tp);
for(int t=0;t<nt;t++){
MesonFieldsRef[i+j*Nm][t] = ip[t];
}
}}
double t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with new code for Nt="<<nt<<std::endl;
t0 = usecond();
sliceInnerProductMesonField(MesonFields,w,v,Tp);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Four gammas code for Nt="<<nt<<std::endl;
flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm*4;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 4;
t0 = usecond();
sliceInnerProductMesonFieldGamma(MesonFields4,w,v,Tp,Gmu4);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas code for Nt="<<nt<<std::endl;
flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGamma(MesonFields16,w,v,Tp,Gmu16);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas code1 for Nt="<<nt<<std::endl;
flops = vol * ( 2 * 8.0 + 6.0) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGamma1(MesonFields161, w, v, Tp, Gmu16);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas "<<Nmom<<" momenta "<<std::endl;
flops = vol * ( 2 * 8.0 + 6.0 + 8.0*Nmom) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) *Nmom ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGammaMom(MesonFields16mom,w,v,Tp,Gmu16,phases);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
RealD err = 0;
RealD err2 = 0;
ComplexD diff;
ComplexD diff2;
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
for(int t=0;t<nt;t++){
diff = MesonFields[i+Nm*j][t] - MesonFieldsRef[i+Nm*j][t];
err += real(diff*conj(diff));
}
}}
std::cout<<GridLogMessage << "Norm error "<< err <<std::endl;
err = err*0.;
diff = diff*0.;
for (int mu = 0; mu < 16; mu++){
for (int k = 0; k < gammaV.size(); k++){
gammaV[k] = Gamma(Gmu16[mu]) * v[k];
}
for (int i = 0; i < Nm; i++){
for (int j = 0; j < Nm; j++){
sliceInnerProductVector(ip, w[i], gammaV[j], Tp);
for (int t = 0; t < nt; t++){
MesonFields[i + j * Nm][t] = ip[t];
diff = MesonFields16[mu+i*16+Nm*16*j][t] - MesonFields161[mu+i*16+Nm*16*j][t];
diff2 = MesonFields[i+j*Nm][t] - MesonFields161[mu+i*16+Nm*16*j][t];
err += real(diff*conj(diff));
err2 += real(diff2*conj(diff2));
}
}
}
}
std::cout << GridLogMessage << "Norm error 16 gamma1/16 gamma naive " << err << std::endl;
std::cout << GridLogMessage << "Norm error 16 gamma1/sliceInnerProduct " << err2 << std::endl;
Grid_finalize();
}

View File

@ -35,11 +35,9 @@ using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
#define LMAX (32)
#define LMIN (16)
#define LINC (4)
#define LMAX (64)
int64_t Nloop=2000;
int64_t Nloop=20;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
@ -53,7 +51,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LINC){
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
@ -85,7 +83,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LINC){
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
@ -116,7 +114,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LINC){
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
@ -147,38 +145,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LINC){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
mac(z,x,y);
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 CovShiftForward(z,x,y)"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LINC){
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
@ -190,64 +157,18 @@ int main (int argc, char ** argv)
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
for(int mu=0;mu<4;mu++){
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
z = PeriodicBC::CovShiftForward(x,mu,y);
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
mac(z,x,y);
}
}
#if 1
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 z= x * Cshift(y)"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(8+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LINC){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
LatticeColourMatrix tmp(&Grid);
for(int mu=0;mu<4;mu++){
double tshift=0;
double tmult =0;
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
tshift-=usecond();
tmp = Cshift(y,mu,-1);
tshift+=usecond();
tmult-=usecond();
z = x*tmp;
tmult+=usecond();
}
double stop=usecond();
double time = (stop-start)/Nloop;
tshift = tshift/Nloop;
tmult = tmult /Nloop;
double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << "total us "<<time<<" shift "<<tshift <<" mult "<<tmult<<std::endl;
time = time * 1000; // convert to NS for GB/s
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
}
#endif
Grid_finalize();
}

View File

@ -4,7 +4,7 @@
Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2018
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
@ -32,9 +32,6 @@ using namespace std;
using namespace Grid;
using namespace Grid::QCD;
#include "Grid/util/Profiling.h"
template<class d>
struct scal {
d internal;
@ -48,7 +45,6 @@ struct scal {
};
bool overlapComms = false;
bool perfProfiling = false;
int main (int argc, char ** argv)
{
@ -57,12 +53,6 @@ int main (int argc, char ** argv)
if( GridCmdOptionExists(argv,argv+argc,"--asynch") ){
overlapComms = true;
}
if( GridCmdOptionExists(argv,argv+argc,"--perf") ){
perfProfiling = true;
}
long unsigned int single_site_flops = 8*QCD::Nc*(7+16*QCD::Nc);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
@ -71,15 +61,10 @@ int main (int argc, char ** argv)
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
GridLogLayout();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REALF"<< sizeof(RealF)<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REALD"<< sizeof(RealD)<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REAL"<< sizeof(Real)<<std::endl;
std::cout<<GridLogMessage << "Grid number of colours : "<< QCD::Nc <<std::endl;
std::cout<<GridLogMessage << "Benchmarking Wilson operator in the fundamental representation" << std::endl;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
@ -149,25 +134,9 @@ int main (int argc, char ** argv)
Dw.Dhop(src,result,0);
}
double t1=usecond();
double flops=single_site_flops*volume*ncall;
double flops=1344*volume*ncall;
if (perfProfiling){
std::cout<<GridLogMessage << "Profiling Dw with perf"<<std::endl;
System::profile("kernel", [&]() {
for(int i=0;i<ncall;i++){
Dw.Dhop(src,result,0);
}
});
std::cout<<GridLogMessage << "Generated kernel.data"<<std::endl;
std::cout<<GridLogMessage << "Use with: perf report -i kernel.data"<<std::endl;
}
std::cout<<GridLogMessage << "Called Dw"<<std::endl;
std::cout<<GridLogMessage << "flops per site " << single_site_flops << std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;

View File

@ -62,7 +62,6 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Number of colours "<< QCD::Nc <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking WilsonFermionR::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
@ -70,15 +69,13 @@ int main (int argc, char ** argv)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage << "* OpenMP threads : "<< GridThread::GetThreads() <<std::endl;
std::cout << GridLogMessage << "* MPI tasks : "<< GridCmdVectorIntToString(mpi_layout) << std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout<<GridLogMessage << "================================================================================================="<< std::endl;
std::cout<<GridLogMessage << "= Benchmarking Wilson operator in the fundamental representation" << std::endl;
std::cout<<GridLogMessage << "================================================================================================="<< std::endl;
std::cout<<GridLogMessage << "Volume\t\t\tWilson/MFLOPs\tWilsonDag/MFLOPs\tWilsonEO/MFLOPs\tWilsonDagEO/MFLOPs" << std::endl;
std::cout<<GridLogMessage << "================================================================================================="<< std::endl;
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
std::cout<<GridLogMessage << "= Benchmarking Wilson" << std::endl;
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
std::cout<<GridLogMessage << "Volume\t\t\tWilson/MFLOPs\tWilsonDag/MFLOPs" << std::endl;
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
int Lmax = 32;
int dmin = 0;
@ -100,20 +97,13 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);
LatticeFermion src(&Grid); random(pRNG,src);
LatticeFermion src_o(&RBGrid); pickCheckerboard(Odd,src_o,src);
LatticeFermion result(&Grid); result=zero;
LatticeFermion result_e(&RBGrid); result_e=zero;
LatticeFermion src(&Grid); random(pRNG,src);
LatticeFermion result(&Grid); result=zero;
double volume = std::accumulate(latt_size.begin(),latt_size.end(),1,std::multiplies<int>());
WilsonFermionR Dw(Umu,Grid,RBGrid,mass,params);
// Full operator
bench_wilson(src,result,Dw,volume,DaggerNo);
bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << "\t";
// EO
bench_wilson(src,result,Dw,volume,DaggerNo);
bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << std::endl;
@ -132,26 +122,9 @@ void bench_wilson (
int const dag )
{
int ncall = 1000;
long unsigned int single_site_flops = 8*QCD::Nc*(7+16*QCD::Nc);
double t0 = usecond();
for(int i=0; i<ncall; i++) { Dw.Dhop(src,result,dag); }
double t1 = usecond();
double flops = single_site_flops * volume * ncall;
std::cout << flops/(t1-t0) << "\t\t";
}
void bench_wilson_eo (
LatticeFermion & src,
LatticeFermion & result,
WilsonFermionR & Dw,
double const volume,
int const dag )
{
int ncall = 1000;
long unsigned int single_site_flops = 8*QCD::Nc*(7+16*QCD::Nc);
double t0 = usecond();
for(int i=0; i<ncall; i++) { Dw.DhopEO(src,result,dag); }
double t1 = usecond();
double flops = (single_site_flops * volume * ncall)/2.0;
double flops = 1344 * volume * ncall;
std::cout << flops/(t1-t0) << "\t\t";
}

View File

@ -1,9 +1,11 @@
#!/usr/bin/env bash
EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.5.tar.bz2'
EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2'
echo "-- deploying Eigen source..."
wget ${EIGEN_URL} --no-check-certificate && ./scripts/update_eigen.sh `basename ${EIGEN_URL}` && rm `basename ${EIGEN_URL}`
wget ${EIGEN_URL} --no-check-certificate
./scripts/update_eigen.sh `basename ${EIGEN_URL}`
#rm `basename ${EIGEN_URL}`
echo '-- generating Make.inc files...'
./scripts/filelist

View File

@ -249,9 +249,6 @@ case ${ax_cv_cxx_compiler_vendor} in
AVX512)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics])
SIMD_FLAGS='-mavx512f -mavx512pf -mavx512er -mavx512cd';;
SKL)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics for SkyLake Xeon])
SIMD_FLAGS='-march=skylake-avx512';;
KNC)
AC_DEFINE([IMCI],[1],[IMCI intrinsics for Knights Corner])
SIMD_FLAGS='';;
@ -340,21 +337,17 @@ case ${ac_PRECISION} in
esac
###################### Shared memory allocation technique under MPI3
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmopen|shmget|hugetlbfs|shmnone],
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmget|shmopen|hugetlbfs],
[Select SHM allocation technique])],[ac_SHM=${enable_shm}],[ac_SHM=shmopen])
case ${ac_SHM} in
shmopen)
AC_DEFINE([GRID_MPI3_SHMOPEN],[1],[GRID_MPI3_SHMOPEN] )
;;
shmget)
AC_DEFINE([GRID_MPI3_SHMGET],[1],[GRID_MPI3_SHMGET] )
;;
shmnone)
AC_DEFINE([GRID_MPI3_SHM_NONE],[1],[GRID_MPI3_SHM_NONE] )
shmopen)
AC_DEFINE([GRID_MPI3_SHMOPEN],[1],[GRID_MPI3_SHMOPEN] )
;;
hugetlbfs)
@ -370,11 +363,11 @@ esac
AC_ARG_ENABLE([shmpath],[AC_HELP_STRING([--enable-shmpath=path],
[Select SHM mmap base path for hugetlbfs])],
[ac_SHMPATH=${enable_shmpath}],
[ac_SHMPATH=/var/lib/hugetlbfs/global/pagesize-2MB/])
[ac_SHMPATH=/var/lib/hugetlbfs/pagesize-2MB/])
AC_DEFINE_UNQUOTED([GRID_SHM_PATH],["$ac_SHMPATH"],[Path to a hugetlbfs filesystem for MMAPing])
############### communication type selection
AC_ARG_ENABLE([comms],[AC_HELP_STRING([--enable-comms=none|mpi|mpi-auto],
AC_ARG_ENABLE([comms],[AC_HELP_STRING([--enable-comms=none|mpi|mpi-auto|mpi3|mpi3-auto|shmem],
[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none])
case ${ac_COMMS} in
@ -382,10 +375,22 @@ case ${ac_COMMS} in
AC_DEFINE([GRID_COMMS_NONE],[1],[GRID_COMMS_NONE] )
comms_type='none'
;;
mpi*)
mpi3*)
AC_DEFINE([GRID_COMMS_MPI3],[1],[GRID_COMMS_MPI3] )
comms_type='mpi3'
;;
mpit)
AC_DEFINE([GRID_COMMS_MPIT],[1],[GRID_COMMS_MPIT] )
comms_type='mpit'
;;
mpi*)
AC_DEFINE([GRID_COMMS_MPI],[1],[GRID_COMMS_MPI] )
comms_type='mpi'
;;
shmem)
AC_DEFINE([GRID_COMMS_SHMEM],[1],[GRID_COMMS_SHMEM] )
comms_type='shmem'
;;
*)
AC_MSG_ERROR([${ac_COMMS} unsupported --enable-comms option]);
;;
@ -480,8 +485,8 @@ GRID_LIBS=$LIBS
GRID_SHORT_SHA=`git rev-parse --short HEAD`
GRID_SHA=`git rev-parse HEAD`
GRID_BRANCH=`git rev-parse --abbrev-ref HEAD`
AM_CXXFLAGS="-I${abs_srcdir}/include -I${abs_srcdir}/Eigen/ -I${abs_srcdir}/Eigen/unsupported $AM_CXXFLAGS"
AM_CFLAGS="-I${abs_srcdir}/include -I${abs_srcdir}/Eigen/ -I${abs_srcdir}/Eigen/unsupported $AM_CFLAGS"
AM_CXXFLAGS="-I${abs_srcdir}/include $AM_CXXFLAGS"
AM_CFLAGS="-I${abs_srcdir}/include $AM_CFLAGS"
AM_LDFLAGS="-L${cwd}/lib $AM_LDFLAGS"
AC_SUBST([AM_CFLAGS])
AC_SUBST([AM_CXXFLAGS])

View File

@ -1,146 +0,0 @@
#ifndef A2A_Reduction_hpp_
#define A2A_Reduction_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Environment.hpp>
#include <Grid/Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
////////////////////////////////////////////
// A2A Meson Field Inner Product
////////////////////////////////////////////
template <class FermionField>
void sliceInnerProductMesonField(std::vector<std::vector<ComplexD>> &mat,
const std::vector<Lattice<FermionField>> &lhs,
const std::vector<Lattice<FermionField>> &rhs,
int orthogdim)
{
typedef typename FermionField::scalar_type scalar_type;
typedef typename FermionField::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
assert(mat.size() == Lblock * Rblock);
for (int t = 0; t < mat.size(); t++)
{
assert(mat[t].size() == Nt);
}
int fd = grid->_fdimensions[orthogdim];
int ld = grid->_ldimensions[orthogdim];
int rd = grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type, alignedAllocator<vector_type>> lvSum(rd * Lblock * Rblock);
for(int r=0;r<rd * Lblock * Rblock;r++)
{
lvSum[r]=zero;
}
std::vector<scalar_type> lsSum(ld * Lblock * Rblock, scalar_type(0.0));
int e1 = grid->_slice_nblock[orthogdim];
int e2 = grid->_slice_block[orthogdim];
int stride = grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << " Entering first parallel loop " << std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r = 0; r < rd; r++)
{
int so = r * grid->_ostride[orthogdim]; // base offset for start of plane
for (int n = 0; n < e1; n++)
{
for (int b = 0; b < e2; b++)
{
int ss = so + n * stride + b;
for (int i = 0; i < Lblock; i++)
{
auto left = conjugate(lhs[i]._odata[ss]);
for (int j = 0; j < Rblock; j++)
{
int idx = i + Lblock * j + Lblock * Rblock * r;
auto right = rhs[j]._odata[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
lvSum[idx] = lvSum[idx] + vv;
}
}
}
}
}
// std::cout << GridLogMessage << " Entering second parallel loop " << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt = 0; rt < rd; rt++)
{
std::vector<int> icoor(Nd);
for (int i = 0; i < Lblock; i++)
{
for (int j = 0; j < Rblock; j++)
{
iScalar<vector_type> temp;
std::vector<iScalar<scalar_type>> extracted(Nsimd);
temp._internal = lvSum[i + Lblock * j + Lblock * Rblock * rt];
extract(temp, extracted);
for (int idx = 0; idx < Nsimd; idx++)
{
grid->iCoorFromIindex(icoor, idx);
int ldx = rt + icoor[orthogdim] * rd;
int ij_dx = i + Lblock * j + Lblock * Rblock * ldx;
lsSum[ij_dx] = lsSum[ij_dx] + extracted[idx]._internal;
}
}
}
}
// std::cout << GridLogMessage << " Entering non parallel loop " << std::endl;
for (int t = 0; t < fd; t++)
{
int pt = t/ld; // processor plane
int lt = t%ld;
for (int i = 0; i < Lblock; i++)
{
for (int j = 0; j < Rblock; j++)
{
if (pt == grid->_processor_coor[orthogdim])
{
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i + j * Lblock][t] = lsSum[ij_dx];
}
else
{
mat[i + j * Lblock][t] = scalar_type(0.0);
}
}
}
}
// std::cout << GridLogMessage << " Done " << std::endl;
// defer sum over nodes.
return;
}
END_HADRONS_NAMESPACE
#endif // A2A_Reduction_hpp_

View File

@ -1,210 +0,0 @@
#ifndef A2A_Vectors_hpp_
#define A2A_Vectors_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Environment.hpp>
#include <Grid/Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
////////////////////////////////
// A2A Modes
////////////////////////////////
template <class Field, class Matrix, class Solver>
class A2AModesSchurDiagTwo
{
private:
const std::vector<Field> *evec;
const std::vector<RealD> *eval;
Matrix &action;
Solver &solver;
std::vector<Field> w_high_5d, v_high_5d, w_high_4d, v_high_4d;
const int Nl, Nh;
const bool return_5d;
public:
int getNl (void ) {return Nl;}
int getNh (void ) {return Nh;}
int getN (void ) {return Nh+Nl;}
A2AModesSchurDiagTwo(const std::vector<Field> *_evec, const std::vector<RealD> *_eval,
Matrix &_action,
Solver &_solver,
std::vector<Field> _w_high_5d, std::vector<Field> _v_high_5d,
std::vector<Field> _w_high_4d, std::vector<Field> _v_high_4d,
const int _Nl, const int _Nh,
const bool _return_5d)
: evec(_evec), eval(_eval),
action(_action),
solver(_solver),
w_high_5d(_w_high_5d), v_high_5d(_v_high_5d),
w_high_4d(_w_high_4d), v_high_4d(_v_high_4d),
Nl(_Nl), Nh(_Nh),
return_5d(_return_5d){};
void high_modes(Field &source_5d, Field &w_source_5d, Field &source_4d, int i)
{
int i5d;
LOG(Message) << "A2A high modes for i = " << i << std::endl;
i5d = 0;
if (return_5d) i5d = i;
this->high_mode_v(action, solver, source_5d, v_high_5d[i5d], v_high_4d[i]);
this->high_mode_w(w_source_5d, source_4d, w_high_5d[i5d], w_high_4d[i]);
}
void return_v(int i, Field &vout_5d, Field &vout_4d)
{
if (i < Nl)
{
this->low_mode_v(action, evec->at(i), eval->at(i), vout_5d, vout_4d);
}
else
{
vout_4d = v_high_4d[i - Nl];
if (!(return_5d)) i = Nl;
vout_5d = v_high_5d[i - Nl];
}
}
void return_w(int i, Field &wout_5d, Field &wout_4d)
{
if (i < Nl)
{
this->low_mode_w(action, evec->at(i), eval->at(i), wout_5d, wout_4d);
}
else
{
wout_4d = w_high_4d[i - Nl];
if (!(return_5d)) i = Nl;
wout_5d = w_high_5d[i - Nl];
}
}
void low_mode_v(Matrix &action, const Field &evec, const RealD &eval, Field &vout_5d, Field &vout_4d)
{
GridBase *grid = action.RedBlackGrid();
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
src_o = evec;
src_o.checkerboard = Odd;
pickCheckerboard(Even, sol_e, vout_5d);
pickCheckerboard(Odd, sol_o, vout_5d);
/////////////////////////////////////////////////////
// v_ie = -(1/eval_i) * MeeInv Meo MooInv evec_i
/////////////////////////////////////////////////////
action.MooeeInv(src_o, tmp);
assert(tmp.checkerboard == Odd);
action.Meooe(tmp, sol_e);
assert(sol_e.checkerboard == Even);
action.MooeeInv(sol_e, tmp);
assert(tmp.checkerboard == Even);
sol_e = (-1.0 / eval) * tmp;
assert(sol_e.checkerboard == Even);
/////////////////////////////////////////////////////
// v_io = (1/eval_i) * MooInv evec_i
/////////////////////////////////////////////////////
action.MooeeInv(src_o, tmp);
assert(tmp.checkerboard == Odd);
sol_o = (1.0 / eval) * tmp;
assert(sol_o.checkerboard == Odd);
setCheckerboard(vout_5d, sol_e);
assert(sol_e.checkerboard == Even);
setCheckerboard(vout_5d, sol_o);
assert(sol_o.checkerboard == Odd);
action.ExportPhysicalFermionSolution(vout_5d, vout_4d);
}
void low_mode_w(Matrix &action, const Field &evec, const RealD &eval, Field &wout_5d, Field &wout_4d)
{
GridBase *grid = action.RedBlackGrid();
SchurDiagTwoOperator<Matrix, Field> _HermOpEO(action);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
GridBase *fgrid = action.Grid();
Field tmp_wout(fgrid);
src_o = evec;
src_o.checkerboard = Odd;
pickCheckerboard(Even, sol_e, tmp_wout);
pickCheckerboard(Odd, sol_o, tmp_wout);
/////////////////////////////////////////////////////
// w_ie = - MeeInvDag MoeDag Doo evec_i
/////////////////////////////////////////////////////
_HermOpEO.Mpc(src_o, tmp);
assert(tmp.checkerboard == Odd);
action.MeooeDag(tmp, sol_e);
assert(sol_e.checkerboard == Even);
action.MooeeInvDag(sol_e, tmp);
assert(tmp.checkerboard == Even);
sol_e = (-1.0) * tmp;
/////////////////////////////////////////////////////
// w_io = Doo evec_i
/////////////////////////////////////////////////////
_HermOpEO.Mpc(src_o, sol_o);
assert(sol_o.checkerboard == Odd);
setCheckerboard(tmp_wout, sol_e);
assert(sol_e.checkerboard == Even);
setCheckerboard(tmp_wout, sol_o);
assert(sol_o.checkerboard == Odd);
action.DminusDag(tmp_wout, wout_5d);
action.ExportPhysicalFermionSource(wout_5d, wout_4d);
}
void high_mode_v(Matrix &action, Solver &solver, const Field &source, Field &vout_5d, Field &vout_4d)
{
GridBase *fgrid = action.Grid();
solver(vout_5d, source); // Note: solver is solver(out, in)
action.ExportPhysicalFermionSolution(vout_5d, vout_4d);
}
void high_mode_w(const Field &w_source_5d, const Field &source_4d, Field &wout_5d, Field &wout_4d)
{
wout_5d = w_source_5d;
wout_4d = source_4d;
}
};
// TODO: A2A for coarse eigenvectors
// template <class FineField, class CoarseField, class Matrix, class Solver>
// class A2ALMSchurDiagTwoCoarse : public A2AModesSchurDiagTwo<FineField, Matrix, Solver>
// {
// private:
// const std::vector<FineField> &subspace;
// const std::vector<CoarseField> &evec_coarse;
// const std::vector<RealD> &eval_coarse;
// Matrix &action;
// public:
// A2ALMSchurDiagTwoCoarse(const std::vector<FineField> &_subspace, const std::vector<CoarseField> &_evec_coarse, const std::vector<RealD> &_eval_coarse, Matrix &_action)
// : subspace(_subspace), evec_coarse(_evec_coarse), eval_coarse(_eval_coarse), action(_action){};
// void operator()(int i, FineField &vout, FineField &wout)
// {
// FineField prom_evec(subspace[0]._grid);
// blockPromote(evec_coarse[i], prom_evec, subspace);
// this->low_mode_v(action, prom_evec, eval_coarse[i], vout);
// this->low_mode_w(action, prom_evec, eval_coarse[i], wout);
// }
// };
END_HADRONS_NAMESPACE
#endif // A2A_Vectors_hpp_

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Application.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -28,7 +29,6 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Application.hpp>
#include <Grid/Hadrons/GeneticScheduler.hpp>
#include <Grid/Hadrons/Modules.hpp>
using namespace Grid;
using namespace QCD;
@ -41,12 +41,14 @@ using namespace Hadrons;
* Application implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
#define MACOUT(macro) macro << " (" << #macro << ")"
#define MACOUTS(macro) HADRONS_STR(macro) << " (" << #macro << ")"
Application::Application(void)
{
initLogger();
LOG(Message) << "Modules available:" << std::endl;
auto list = ModuleFactory::getInstance().getBuilderList();
for (auto &m: list)
{
LOG(Message) << " " << m << std::endl;
}
auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim);
locVol_ = 1;
for (unsigned int d = 0; d < dim.size(); ++d)
@ -54,22 +56,9 @@ Application::Application(void)
loc[d] /= mpi[d];
locVol_ *= loc[d];
}
LOG(Message) << "====== HADRONS APPLICATION STARTING ======" << std::endl;
LOG(Message) << "** Dimensions" << std::endl;
LOG(Message) << "Global lattice : " << dim << std::endl;
LOG(Message) << "MPI partition : " << mpi << std::endl;
LOG(Message) << "Local lattice : " << loc << std::endl;
LOG(Message) << std::endl;
LOG(Message) << "** Default parameters (and associated C macro)" << std::endl;
LOG(Message) << "ASCII output precision : " << MACOUT(DEFAULT_ASCII_PREC) << std::endl;
LOG(Message) << "Fermion implementation : " << MACOUTS(FIMPL) << std::endl;
LOG(Message) << "z-Fermion implementation: " << MACOUTS(ZFIMPL) << std::endl;
LOG(Message) << "Scalar implementation : " << MACOUTS(SIMPL) << std::endl;
LOG(Message) << "Gauge implementation : " << MACOUTS(GIMPL) << std::endl;
LOG(Message) << "Eigenvector base size : "
<< MACOUT(HADRONS_DEFAULT_LANCZOS_NBASIS) << std::endl;
LOG(Message) << "Schur decomposition : " << MACOUTS(HADRONS_DEFAULT_SCHUR) << std::endl;
LOG(Message) << std::endl;
LOG(Message) << "Global lattice: " << dim << std::endl;
LOG(Message) << "MPI partition : " << mpi << std::endl;
LOG(Message) << "Local lattice : " << loc << std::endl;
}
Application::Application(const Application::GlobalPar &par)
@ -84,6 +73,12 @@ Application::Application(const std::string parameterFileName)
parameterFileName_ = parameterFileName;
}
// environment shortcut ////////////////////////////////////////////////////////
Environment & Application::env(void) const
{
return Environment::getInstance();
}
// access //////////////////////////////////////////////////////////////////////
void Application::setPar(const Application::GlobalPar &par)
{
@ -99,13 +94,14 @@ const Application::GlobalPar & Application::getPar(void)
// execute /////////////////////////////////////////////////////////////////////
void Application::run(void)
{
if (!parameterFileName_.empty() and (vm().getNModule() == 0))
if (!parameterFileName_.empty() and (env().getNModule() == 0))
{
parseParameterFile(parameterFileName_);
}
vm().printContent();
env().printContent();
schedule();
if (!scheduled_)
{
schedule();
}
printSchedule();
configLoop();
}
@ -128,20 +124,12 @@ void Application::parseParameterFile(const std::string parameterFileName)
LOG(Message) << "Building application from '" << parameterFileName << "'..." << std::endl;
read(reader, "parameters", par);
setPar(par);
if (!push(reader, "modules"))
{
HADRONS_ERROR(Parsing, "Cannot open node 'modules' in parameter file '"
+ parameterFileName + "'");
}
if (!push(reader, "module"))
{
HADRONS_ERROR(Parsing, "Cannot open node 'modules/module' in parameter file '"
+ parameterFileName + "'");
}
push(reader, "modules");
push(reader, "module");
do
{
read(reader, "id", id);
vm().createModule(id.name, id.type, reader);
env().createModule(id.name, id.type, reader);
} while (reader.nextElement("module"));
pop(reader);
pop(reader);
@ -149,63 +137,140 @@ void Application::parseParameterFile(const std::string parameterFileName)
void Application::saveParameterFile(const std::string parameterFileName)
{
XmlWriter writer(parameterFileName);
ObjectId id;
const unsigned int nMod = env().getNModule();
LOG(Message) << "Saving application to '" << parameterFileName << "'..." << std::endl;
if (env().getGrid()->IsBoss())
write(writer, "parameters", getPar());
push(writer, "modules");
for (unsigned int i = 0; i < nMod; ++i)
{
XmlWriter writer(parameterFileName);
ObjectId id;
const unsigned int nMod = vm().getNModule();
write(writer, "parameters", getPar());
push(writer, "modules");
for (unsigned int i = 0; i < nMod; ++i)
{
push(writer, "module");
id.name = vm().getModuleName(i);
id.type = vm().getModule(i)->getRegisteredName();
write(writer, "id", id);
vm().getModule(i)->saveParameters(writer, "options");
pop(writer);
}
pop(writer);
push(writer, "module");
id.name = env().getModuleName(i);
id.type = env().getModule(i)->getRegisteredName();
write(writer, "id", id);
env().getModule(i)->saveParameters(writer, "options");
pop(writer);
}
pop(writer);
pop(writer);
}
// schedule computation ////////////////////////////////////////////////////////
#define MEM_MSG(size)\
sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
#define DEFINE_MEMPEAK \
GeneticScheduler<unsigned int>::ObjFunc memPeak = \
[this](const std::vector<unsigned int> &program)\
{\
unsigned int memPeak;\
bool msg;\
\
msg = HadronsLogMessage.isActive();\
HadronsLogMessage.Active(false);\
env().dryRun(true);\
memPeak = env().executeProgram(program);\
env().dryRun(false);\
env().freeAll();\
HadronsLogMessage.Active(true);\
\
return memPeak;\
}
void Application::schedule(void)
{
if (!scheduled_ and !loadedSchedule_)
DEFINE_MEMPEAK;
// build module dependency graph
LOG(Message) << "Building module graph..." << std::endl;
auto graph = env().makeModuleGraph();
auto con = graph.getConnectedComponents();
// constrained topological sort using a genetic algorithm
LOG(Message) << "Scheduling computation..." << std::endl;
LOG(Message) << " #module= " << graph.size() << std::endl;
LOG(Message) << " population size= " << par_.genetic.popSize << std::endl;
LOG(Message) << " max. generation= " << par_.genetic.maxGen << std::endl;
LOG(Message) << " max. cst. generation= " << par_.genetic.maxCstGen << std::endl;
LOG(Message) << " mutation rate= " << par_.genetic.mutationRate << std::endl;
unsigned int k = 0, gen, prevPeak, nCstPeak = 0;
std::random_device rd;
GeneticScheduler<unsigned int>::Parameters par;
par.popSize = par_.genetic.popSize;
par.mutationRate = par_.genetic.mutationRate;
par.seed = rd();
memPeak_ = 0;
CartesianCommunicator::BroadcastWorld(0, &(par.seed), sizeof(par.seed));
for (unsigned int i = 0; i < con.size(); ++i)
{
program_ = vm().schedule(par_.genetic);
scheduled_ = true;
GeneticScheduler<unsigned int> scheduler(con[i], memPeak, par);
gen = 0;
do
{
LOG(Debug) << "Generation " << gen << ":" << std::endl;
scheduler.nextGeneration();
if (gen != 0)
{
if (prevPeak == scheduler.getMinValue())
{
nCstPeak++;
}
else
{
nCstPeak = 0;
}
}
prevPeak = scheduler.getMinValue();
if (gen % 10 == 0)
{
LOG(Iterative) << "Generation " << gen << ": "
<< MEM_MSG(scheduler.getMinValue()) << std::endl;
}
gen++;
} while ((gen < par_.genetic.maxGen)
and (nCstPeak < par_.genetic.maxCstGen));
auto &t = scheduler.getMinSchedule();
if (scheduler.getMinValue() > memPeak_)
{
memPeak_ = scheduler.getMinValue();
}
for (unsigned int j = 0; j < t.size(); ++j)
{
program_.push_back(t[j]);
}
}
scheduled_ = true;
}
void Application::saveSchedule(const std::string filename)
{
TextWriter writer(filename);
std::vector<std::string> program;
if (!scheduled_)
{
HADRON_ERROR("Computation not scheduled");
}
LOG(Message) << "Saving current schedule to '" << filename << "'..."
<< std::endl;
if (env().getGrid()->IsBoss())
for (auto address: program_)
{
TextWriter writer(filename);
std::vector<std::string> program;
if (!scheduled_)
{
HADRONS_ERROR(Definition, "Computation not scheduled");
}
for (auto address: program_)
{
program.push_back(vm().getModuleName(address));
}
write(writer, "schedule", program);
program.push_back(env().getModuleName(address));
}
write(writer, "schedule", program);
}
void Application::loadSchedule(const std::string filename)
{
DEFINE_MEMPEAK;
TextReader reader(filename);
std::vector<std::string> program;
@ -215,24 +280,24 @@ void Application::loadSchedule(const std::string filename)
program_.clear();
for (auto &name: program)
{
program_.push_back(vm().getModuleAddress(name));
program_.push_back(env().getModuleAddress(name));
}
loadedSchedule_ = true;
scheduled_ = true;
memPeak_ = memPeak(program_);
}
void Application::printSchedule(void)
{
if (!scheduled_)
{
HADRONS_ERROR(Definition, "Computation not scheduled");
HADRON_ERROR("Computation not scheduled");
}
auto peak = vm().memoryNeeded(program_);
LOG(Message) << "Schedule (memory needed: " << sizeString(peak) << "):"
LOG(Message) << "Schedule (memory peak: " << MEM_MSG(memPeak_) << "):"
<< std::endl;
for (unsigned int i = 0; i < program_.size(); ++i)
{
LOG(Message) << std::setw(4) << i + 1 << ": "
<< vm().getModuleName(program_[i]) << std::endl;
<< env().getModuleName(program_[i]) << std::endl;
}
}
@ -245,8 +310,8 @@ void Application::configLoop(void)
{
LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t
<< " " << BIG_SEP << std::endl;
vm().setTrajectory(t);
vm().executeProgram(program_);
env().setTrajectory(t);
env().executeProgram(program_);
}
LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl;
env().freeAll();

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Application.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -30,8 +31,9 @@ See the full license in the file "LICENSE" in the top level distribution directo
#define Hadrons_Application_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/VirtualMachine.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/Environment.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/Modules.hpp>
BEGIN_HADRONS_NAMESPACE
@ -49,13 +51,25 @@ public:
unsigned int, end,
unsigned int, step);
};
class GeneticPar: Serializable
{
public:
GeneticPar(void):
popSize{20}, maxGen{1000}, maxCstGen{100}, mutationRate{.1} {};
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GeneticPar,
unsigned int, popSize,
unsigned int, maxGen,
unsigned int, maxCstGen,
double , mutationRate);
};
class GlobalPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GlobalPar,
TrajRange, trajCounter,
VirtualMachine::GeneticPar, genetic,
std::string, seed);
TrajRange, trajCounter,
GeneticPar, genetic,
std::string, seed);
};
public:
// constructors
@ -86,15 +100,14 @@ public:
void configLoop(void);
private:
// environment shortcut
DEFINE_ENV_ALIAS;
// virtual machine shortcut
DEFINE_VM_ALIAS;
Environment & env(void) const;
private:
long unsigned int locVol_;
std::string parameterFileName_{""};
GlobalPar par_;
VirtualMachine::Program program_;
bool scheduled_{false}, loadedSchedule_{false};
long unsigned int locVol_;
std::string parameterFileName_{""};
GlobalPar par_;
std::vector<unsigned int> program_;
Environment::Size memPeak_;
bool scheduled_{false};
};
/******************************************************************************
@ -104,16 +117,14 @@ private:
template <typename M>
void Application::createModule(const std::string name)
{
vm().createModule<M>(name);
scheduled_ = false;
env().createModule<M>(name);
}
template <typename M>
void Application::createModule(const std::string name,
const typename M::Par &par)
{
vm().createModule<M>(name, par);
scheduled_ = false;
env().createModule<M>(name, par);
}
END_HADRONS_NAMESPACE

View File

@ -1,323 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/EigenPack.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_EigenPack_hpp_
#define Hadrons_EigenPack_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
BEGIN_HADRONS_NAMESPACE
// Lanczos type
#ifndef HADRONS_DEFAULT_LANCZOS_NBASIS
#define HADRONS_DEFAULT_LANCZOS_NBASIS 60
#endif
template <typename F>
class EigenPack
{
public:
typedef F Field;
struct PackRecord
{
std::string operatorXml, solverXml;
};
struct VecRecord: Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(VecRecord,
unsigned int, index,
double, eval);
VecRecord(void): index(0), eval(0.) {}
};
public:
std::vector<RealD> eval;
std::vector<F> evec;
PackRecord record;
public:
EigenPack(void) = default;
virtual ~EigenPack(void) = default;
EigenPack(const size_t size, GridBase *grid)
{
resize(size, grid);
}
void resize(const size_t size, GridBase *grid)
{
eval.resize(size);
evec.resize(size, grid);
}
virtual void read(const std::string fileStem, const bool multiFile, const int traj = -1)
{
if (multiFile)
{
for(int k = 0; k < evec.size(); ++k)
{
basicReadSingle(evec[k], eval[k], evecFilename(fileStem, k, traj), k);
}
}
else
{
basicRead(evec, eval, evecFilename(fileStem, -1, traj), evec.size());
}
}
virtual void write(const std::string fileStem, const bool multiFile, const int traj = -1)
{
if (multiFile)
{
for(int k = 0; k < evec.size(); ++k)
{
basicWriteSingle(evecFilename(fileStem, k, traj), evec[k], eval[k], k);
}
}
else
{
basicWrite(evecFilename(fileStem, -1, traj), evec, eval, evec.size());
}
}
protected:
std::string evecFilename(const std::string stem, const int vec, const int traj)
{
std::string t = (traj < 0) ? "" : ("." + std::to_string(traj));
if (vec == -1)
{
return stem + t + ".bin";
}
else
{
return stem + t + "/v" + std::to_string(vec) + ".bin";
}
}
template <typename T>
void basicRead(std::vector<T> &evec, std::vector<double> &eval,
const std::string filename, const unsigned int size)
{
ScidacReader binReader;
binReader.open(filename);
binReader.skipPastObjectRecord(SCIDAC_FILE_XML);
for(int k = 0; k < size; ++k)
{
VecRecord vecRecord;
LOG(Message) << "Reading eigenvector " << k << std::endl;
binReader.readScidacFieldRecord(evec[k], vecRecord);
if (vecRecord.index != k)
{
HADRONS_ERROR(Io, "Eigenvector " + std::to_string(k) + " has a"
+ " wrong index (expected " + std::to_string(vecRecord.index)
+ ") in file '" + filename + "'");
}
eval[k] = vecRecord.eval;
}
binReader.close();
}
template <typename T>
void basicReadSingle(T &evec, double &eval, const std::string filename,
const unsigned int index)
{
ScidacReader binReader;
VecRecord vecRecord;
binReader.open(filename);
binReader.skipPastObjectRecord(SCIDAC_FILE_XML);
LOG(Message) << "Reading eigenvector " << index << std::endl;
binReader.readScidacFieldRecord(evec, vecRecord);
if (vecRecord.index != index)
{
HADRONS_ERROR(Io, "Eigenvector " + std::to_string(index) + " has a"
+ " wrong index (expected " + std::to_string(vecRecord.index)
+ ") in file '" + filename + "'");
}
eval = vecRecord.eval;
binReader.close();
}
template <typename T>
void basicWrite(const std::string filename, std::vector<T> &evec,
const std::vector<double> &eval, const unsigned int size)
{
ScidacWriter binWriter(evec[0]._grid->IsBoss());
XmlWriter xmlWriter("", "eigenPackPar");
makeFileDir(filename, evec[0]._grid);
xmlWriter.pushXmlString(record.operatorXml);
xmlWriter.pushXmlString(record.solverXml);
binWriter.open(filename);
binWriter.writeLimeObject(1, 1, xmlWriter, "parameters", SCIDAC_FILE_XML);
for(int k = 0; k < size; ++k)
{
VecRecord vecRecord;
vecRecord.index = k;
vecRecord.eval = eval[k];
LOG(Message) << "Writing eigenvector " << k << std::endl;
binWriter.writeScidacFieldRecord(evec[k], vecRecord, DEFAULT_ASCII_PREC);
}
binWriter.close();
}
template <typename T>
void basicWriteSingle(const std::string filename, T &evec,
const double eval, const unsigned int index)
{
ScidacWriter binWriter(evec._grid->IsBoss());
XmlWriter xmlWriter("", "eigenPackPar");
VecRecord vecRecord;
makeFileDir(filename, evec._grid);
xmlWriter.pushXmlString(record.operatorXml);
xmlWriter.pushXmlString(record.solverXml);
binWriter.open(filename);
binWriter.writeLimeObject(1, 1, xmlWriter, "parameters", SCIDAC_FILE_XML);
vecRecord.index = index;
vecRecord.eval = eval;
LOG(Message) << "Writing eigenvector " << index << std::endl;
binWriter.writeScidacFieldRecord(evec, vecRecord, DEFAULT_ASCII_PREC);
binWriter.close();
}
};
template <typename FineF, typename CoarseF>
class CoarseEigenPack: public EigenPack<FineF>
{
public:
typedef CoarseF CoarseField;
public:
std::vector<RealD> evalCoarse;
std::vector<CoarseF> evecCoarse;
public:
CoarseEigenPack(void) = default;
virtual ~CoarseEigenPack(void) = default;
CoarseEigenPack(const size_t sizeFine, const size_t sizeCoarse,
GridBase *gridFine, GridBase *gridCoarse)
{
resize(sizeFine, sizeCoarse, gridFine, gridCoarse);
}
void resize(const size_t sizeFine, const size_t sizeCoarse,
GridBase *gridFine, GridBase *gridCoarse)
{
EigenPack<FineF>::resize(sizeFine, gridFine);
evalCoarse.resize(sizeCoarse);
evecCoarse.resize(sizeCoarse, gridCoarse);
}
void readFine(const std::string fileStem, const bool multiFile, const int traj = -1)
{
if (multiFile)
{
for(int k = 0; k < this->evec.size(); ++k)
{
this->basicReadSingle(this->evec[k], this->eval[k], this->evecFilename(fileStem + "_fine", k, traj), k);
}
}
else
{
this->basicRead(this->evec, this->eval, this->evecFilename(fileStem + "_fine", -1, traj), this->evec.size());
}
}
void readCoarse(const std::string fileStem, const bool multiFile, const int traj = -1)
{
if (multiFile)
{
for(int k = 0; k < evecCoarse.size(); ++k)
{
this->basicReadSingle(evecCoarse[k], evalCoarse[k], this->evecFilename(fileStem + "_coarse", k, traj), k);
}
}
else
{
this->basicRead(evecCoarse, evalCoarse, this->evecFilename(fileStem + "_coarse", -1, traj), evecCoarse.size());
}
}
virtual void read(const std::string fileStem, const bool multiFile, const int traj = -1)
{
readFine(fileStem, multiFile, traj);
readCoarse(fileStem, multiFile, traj);
}
void writeFine(const std::string fileStem, const bool multiFile, const int traj = -1)
{
if (multiFile)
{
for(int k = 0; k < this->evec.size(); ++k)
{
this->basicWriteSingle(this->evecFilename(fileStem + "_fine", k, traj), this->evec[k], this->eval[k], k);
}
}
else
{
this->basicWrite(this->evecFilename(fileStem + "_fine", -1, traj), this->evec, this->eval, this->evec.size());
}
}
void writeCoarse(const std::string fileStem, const bool multiFile, const int traj = -1)
{
if (multiFile)
{
for(int k = 0; k < evecCoarse.size(); ++k)
{
this->basicWriteSingle(this->evecFilename(fileStem + "_coarse", k, traj), evecCoarse[k], evalCoarse[k], k);
}
}
else
{
this->basicWrite(this->evecFilename(fileStem + "_coarse", -1, traj), evecCoarse, evalCoarse, evecCoarse.size());
}
}
virtual void write(const std::string fileStem, const bool multiFile, const int traj = -1)
{
writeFine(fileStem, multiFile, traj);
writeCoarse(fileStem, multiFile, traj);
}
};
template <typename FImpl>
using FermionEigenPack = EigenPack<typename FImpl::FermionField>;
template <typename FImpl, int nBasis>
using CoarseFermionEigenPack = CoarseEigenPack<
typename FImpl::FermionField,
typename LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex,
nBasis>::CoarseField>;
END_HADRONS_NAMESPACE
#endif // Hadrons_EigenPack_hpp_

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Environment.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -34,9 +35,6 @@ using namespace Grid;
using namespace QCD;
using namespace Hadrons;
#define ERROR_NO_ADDRESS(address)\
HADRONS_ERROR(Definition, "no object with address " + std::to_string(address));
/******************************************************************************
* Environment implementation *
******************************************************************************/
@ -49,18 +47,41 @@ Environment::Environment(void)
dim_, GridDefaultSimd(nd_, vComplex::Nsimd()),
GridDefaultMpi()));
gridRb4d_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_.get()));
vol_ = 1.;
for (auto d: dim_)
auto loc = getGrid()->LocalDimensions();
locVol_ = 1;
for (unsigned int d = 0; d < loc.size(); ++d)
{
vol_ *= d;
locVol_ *= loc[d];
}
rng4d_.reset(new GridParallelRNG(grid4d_.get()));
}
// dry run /////////////////////////////////////////////////////////////////////
void Environment::dryRun(const bool isDry)
{
dryRun_ = isDry;
}
bool Environment::isDryRun(void) const
{
return dryRun_;
}
// trajectory number ///////////////////////////////////////////////////////////
void Environment::setTrajectory(const unsigned int traj)
{
traj_ = traj;
}
unsigned int Environment::getTrajectory(void) const
{
return traj_;
}
// grids ///////////////////////////////////////////////////////////////////////
void Environment::createGrid(const unsigned int Ls)
{
if ((Ls > 1) and (grid5d_.find(Ls) == grid5d_.end()))
if (grid5d_.find(Ls) == grid5d_.end())
{
auto g = getGrid();
@ -69,49 +90,6 @@ void Environment::createGrid(const unsigned int Ls)
}
}
void Environment::createCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls)
{
int nd = getNd();
std::vector<int> fineDim = getDim(), coarseDim;
unsigned int cLs;
auto key4d = blockSize, key5d = blockSize;
createGrid(Ls);
coarseDim.resize(nd);
for (int d = 0; d < coarseDim.size(); d++)
{
coarseDim[d] = fineDim[d]/blockSize[d];
if (coarseDim[d]*blockSize[d] != fineDim[d])
{
HADRONS_ERROR(Size, "Fine dimension " + std::to_string(d)
+ " (" + std::to_string(fineDim[d])
+ ") not divisible by coarse dimension ("
+ std::to_string(coarseDim[d]) + ")");
}
}
if (blockSize.size() > nd)
{
cLs = Ls/blockSize[nd];
if (cLs*blockSize[nd] != Ls)
{
HADRONS_ERROR(Size, "Fine Ls (" + std::to_string(Ls)
+ ") not divisible by coarse Ls ("
+ std::to_string(cLs) + ")");
}
key4d.resize(nd);
key5d.push_back(Ls);
}
gridCoarse4d_[key4d].reset(
SpaceTimeGrid::makeFourDimGrid(coarseDim,
GridDefaultSimd(nd, vComplex::Nsimd()), GridDefaultMpi()));
if (Ls > 1)
{
gridCoarse5d_[key5d].reset(
SpaceTimeGrid::makeFiveDimGrid(cLs, gridCoarse4d_[key4d].get()));
}
}
GridCartesian * Environment::getGrid(const unsigned int Ls) const
{
try
@ -127,7 +105,7 @@ GridCartesian * Environment::getGrid(const unsigned int Ls) const
}
catch(std::out_of_range &)
{
HADRONS_ERROR(Definition, "no grid with Ls= " + std::to_string(Ls));
HADRON_ERROR("no grid with Ls= " << Ls);
}
}
@ -146,31 +124,7 @@ GridRedBlackCartesian * Environment::getRbGrid(const unsigned int Ls) const
}
catch(std::out_of_range &)
{
HADRONS_ERROR(Definition, "no red-black grid with Ls= " + std::to_string(Ls));
}
}
GridCartesian * Environment::getCoarseGrid(
const std::vector<int> &blockSize, const unsigned int Ls) const
{
auto key = blockSize;
try
{
if (Ls == 1)
{
key.resize(getNd());
return gridCoarse4d_.at(key).get();
}
else
{
key.push_back(Ls);
return gridCoarse5d_.at(key).get();
}
}
catch(std::out_of_range &)
{
HADRONS_ERROR(Definition, "no coarse grid with Ls= " + std::to_string(Ls));
HADRON_ERROR("no red-black 5D grid with Ls= " << Ls);
}
}
@ -189,11 +143,6 @@ int Environment::getDim(const unsigned int mu) const
return dim_[mu];
}
double Environment::getVolume(void) const
{
return vol_;
}
// random number generator /////////////////////////////////////////////////////
void Environment::setSeed(const std::vector<int> &seed)
{
@ -205,6 +154,291 @@ GridParallelRNG * Environment::get4dRng(void) const
return rng4d_.get();
}
// module management ///////////////////////////////////////////////////////////
void Environment::pushModule(Environment::ModPt &pt)
{
std::string name = pt->getName();
if (!hasModule(name))
{
std::vector<unsigned int> inputAddress;
unsigned int address;
ModuleInfo m;
m.data = std::move(pt);
m.type = typeIdPt(*m.data.get());
m.name = name;
auto input = m.data->getInput();
for (auto &in: input)
{
if (!hasObject(in))
{
addObject(in , -1);
}
m.input.push_back(objectAddress_[in]);
}
auto output = m.data->getOutput();
module_.push_back(std::move(m));
address = static_cast<unsigned int>(module_.size() - 1);
moduleAddress_[name] = address;
for (auto &out: output)
{
if (!hasObject(out))
{
addObject(out, address);
}
else
{
if (object_[objectAddress_[out]].module < 0)
{
object_[objectAddress_[out]].module = address;
}
else
{
HADRON_ERROR("object '" + out
+ "' is already produced by module '"
+ module_[object_[getObjectAddress(out)].module].name
+ "' (while pushing module '" + name + "')");
}
}
}
}
else
{
HADRON_ERROR("module '" + name + "' already exists");
}
}
unsigned int Environment::getNModule(void) const
{
return module_.size();
}
void Environment::createModule(const std::string name, const std::string type,
XmlReader &reader)
{
auto &factory = ModuleFactory::getInstance();
auto pt = factory.create(type, name);
pt->parseParameters(reader, "options");
pushModule(pt);
}
ModuleBase * Environment::getModule(const unsigned int address) const
{
if (hasModule(address))
{
return module_[address].data.get();
}
else
{
HADRON_ERROR("no module with address " + std::to_string(address));
}
}
ModuleBase * Environment::getModule(const std::string name) const
{
return getModule(getModuleAddress(name));
}
unsigned int Environment::getModuleAddress(const std::string name) const
{
if (hasModule(name))
{
return moduleAddress_.at(name);
}
else
{
HADRON_ERROR("no module with name '" + name + "'");
}
}
std::string Environment::getModuleName(const unsigned int address) const
{
if (hasModule(address))
{
return module_[address].name;
}
else
{
HADRON_ERROR("no module with address " + std::to_string(address));
}
}
std::string Environment::getModuleType(const unsigned int address) const
{
if (hasModule(address))
{
return typeName(module_[address].type);
}
else
{
HADRON_ERROR("no module with address " + std::to_string(address));
}
}
std::string Environment::getModuleType(const std::string name) const
{
return getModuleType(getModuleAddress(name));
}
std::string Environment::getModuleNamespace(const unsigned int address) const
{
std::string type = getModuleType(address), ns;
auto pos2 = type.rfind("::");
auto pos1 = type.rfind("::", pos2 - 2);
return type.substr(pos1 + 2, pos2 - pos1 - 2);
}
std::string Environment::getModuleNamespace(const std::string name) const
{
return getModuleNamespace(getModuleAddress(name));
}
bool Environment::hasModule(const unsigned int address) const
{
return (address < module_.size());
}
bool Environment::hasModule(const std::string name) const
{
return (moduleAddress_.find(name) != moduleAddress_.end());
}
Graph<unsigned int> Environment::makeModuleGraph(void) const
{
Graph<unsigned int> moduleGraph;
for (unsigned int i = 0; i < module_.size(); ++i)
{
moduleGraph.addVertex(i);
for (auto &j: module_[i].input)
{
moduleGraph.addEdge(object_[j].module, i);
}
}
return moduleGraph;
}
#define BIG_SEP "==============="
#define SEP "---------------"
#define MEM_MSG(size)\
sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
Environment::Size
Environment::executeProgram(const std::vector<unsigned int> &p)
{
Size memPeak = 0, sizeBefore, sizeAfter;
std::vector<std::set<unsigned int>> freeProg;
bool continueCollect, nothingFreed;
// build garbage collection schedule
freeProg.resize(p.size());
for (unsigned int i = 0; i < object_.size(); ++i)
{
auto pred = [i, this](const unsigned int j)
{
auto &in = module_[j].input;
auto it = std::find(in.begin(), in.end(), i);
return (it != in.end()) or (j == object_[i].module);
};
auto it = std::find_if(p.rbegin(), p.rend(), pred);
if (it != p.rend())
{
freeProg[p.rend() - it - 1].insert(i);
}
}
// program execution
for (unsigned int i = 0; i < p.size(); ++i)
{
// execute module
if (!isDryRun())
{
LOG(Message) << SEP << " Measurement step " << i+1 << "/"
<< p.size() << " (module '" << module_[p[i]].name
<< "') " << SEP << std::endl;
}
(*module_[p[i]].data)();
sizeBefore = getTotalSize();
// print used memory after execution
if (!isDryRun())
{
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeBefore)
<< std::endl;
}
if (sizeBefore > memPeak)
{
memPeak = sizeBefore;
}
// garbage collection for step i
if (!isDryRun())
{
LOG(Message) << "Garbage collection..." << std::endl;
}
nothingFreed = true;
do
{
continueCollect = false;
auto toFree = freeProg[i];
for (auto &j: toFree)
{
// continue garbage collection while there are still
// objects without owners
continueCollect = continueCollect or !hasOwners(j);
if(freeObject(j))
{
// if an object has been freed, remove it from
// the garbage collection schedule
freeProg[i].erase(j);
nothingFreed = false;
}
}
} while (continueCollect);
// any remaining objects in step i garbage collection schedule
// is scheduled for step i + 1
if (i + 1 < p.size())
{
for (auto &j: freeProg[i])
{
freeProg[i + 1].insert(j);
}
}
// print used memory after garbage collection if necessary
if (!isDryRun())
{
sizeAfter = getTotalSize();
if (sizeBefore != sizeAfter)
{
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeAfter)
<< std::endl;
}
else
{
LOG(Message) << "Nothing to free" << std::endl;
}
}
}
return memPeak;
}
Environment::Size Environment::executeProgram(const std::vector<std::string> &p)
{
std::vector<unsigned int> pAddress;
for (auto &n: p)
{
pAddress.push_back(getModuleAddress(n));
}
return executeProgram(pAddress);
}
// general memory management ///////////////////////////////////////////////////
void Environment::addObject(const std::string name, const int moduleAddress)
{
@ -214,25 +448,46 @@ void Environment::addObject(const std::string name, const int moduleAddress)
info.name = name;
info.module = moduleAddress;
info.data = nullptr;
object_.push_back(std::move(info));
objectAddress_[name] = static_cast<unsigned int>(object_.size() - 1);
}
else
{
HADRONS_ERROR(Definition, "object '" + name + "' already exists");
HADRON_ERROR("object '" + name + "' already exists");
}
}
void Environment::setObjectModule(const unsigned int objAddress,
const int modAddress)
void Environment::registerObject(const unsigned int address,
const unsigned int size, const unsigned int Ls)
{
object_[objAddress].module = modAddress;
if (!hasRegisteredObject(address))
{
if (hasObject(address))
{
object_[address].size = size;
object_[address].Ls = Ls;
object_[address].isRegistered = true;
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
else
{
HADRON_ERROR("object with address " + std::to_string(address)
+ " already registered");
}
}
unsigned int Environment::getMaxAddress(void) const
void Environment::registerObject(const std::string name,
const unsigned int size, const unsigned int Ls)
{
return object_.size();
if (!hasObject(name))
{
addObject(name);
}
registerObject(getObjectAddress(name), size, Ls);
}
unsigned int Environment::getObjectAddress(const std::string name) const
@ -243,7 +498,7 @@ unsigned int Environment::getObjectAddress(const std::string name) const
}
else
{
HADRONS_ERROR(Definition, "no object with name '" + name + "'");
HADRON_ERROR("no object with name '" + name + "'");
}
}
@ -255,13 +510,13 @@ std::string Environment::getObjectName(const unsigned int address) const
}
else
{
ERROR_NO_ADDRESS(address);
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
std::string Environment::getObjectType(const unsigned int address) const
{
if (hasObject(address))
if (hasRegisteredObject(address))
{
if (object_[address].type)
{
@ -272,9 +527,14 @@ std::string Environment::getObjectType(const unsigned int address) const
return "<no type>";
}
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address)
+ " exists but is not registered");
}
else
{
ERROR_NO_ADDRESS(address);
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
@ -285,13 +545,18 @@ std::string Environment::getObjectType(const std::string name) const
Environment::Size Environment::getObjectSize(const unsigned int address) const
{
if (hasObject(address))
if (hasRegisteredObject(address))
{
return object_[address].size;
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address)
+ " exists but is not registered");
}
else
{
ERROR_NO_ADDRESS(address);
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
@ -300,24 +565,7 @@ Environment::Size Environment::getObjectSize(const std::string name) const
return getObjectSize(getObjectAddress(name));
}
Environment::Storage Environment::getObjectStorage(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].storage;
}
else
{
ERROR_NO_ADDRESS(address);
}
}
Environment::Storage Environment::getObjectStorage(const std::string name) const
{
return getObjectStorage(getObjectAddress(name));
}
int Environment::getObjectModule(const unsigned int address) const
unsigned int Environment::getObjectModule(const unsigned int address) const
{
if (hasObject(address))
{
@ -325,24 +573,29 @@ int Environment::getObjectModule(const unsigned int address) const
}
else
{
ERROR_NO_ADDRESS(address);
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
int Environment::getObjectModule(const std::string name) const
unsigned int Environment::getObjectModule(const std::string name) const
{
return getObjectModule(getObjectAddress(name));
}
unsigned int Environment::getObjectLs(const unsigned int address) const
{
if (hasCreatedObject(address))
if (hasRegisteredObject(address))
{
return object_[address].Ls;
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address)
+ " exists but is not registered");
}
else
{
ERROR_NO_ADDRESS(address);
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
@ -363,6 +616,30 @@ bool Environment::hasObject(const std::string name) const
return ((it != objectAddress_.end()) and hasObject(it->second));
}
bool Environment::hasRegisteredObject(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].isRegistered;
}
else
{
return false;
}
}
bool Environment::hasRegisteredObject(const std::string name) const
{
if (hasObject(name))
{
return hasRegisteredObject(getObjectAddress(name));
}
else
{
return false;
}
}
bool Environment::hasCreatedObject(const unsigned int address) const
{
if (hasObject(address))
@ -403,27 +680,92 @@ Environment::Size Environment::getTotalSize(void) const
for (auto &o: object_)
{
size += o.size;
if (o.isRegistered)
{
size += o.size;
}
}
return size;
}
void Environment::freeObject(const unsigned int address)
void Environment::addOwnership(const unsigned int owner,
const unsigned int property)
{
if (hasCreatedObject(address))
if (hasObject(property))
{
LOG(Message) << "Destroying object '" << object_[address].name
<< "'" << std::endl;
object_[property].owners.insert(owner);
}
else
{
HADRON_ERROR("no object with address " + std::to_string(property));
}
if (hasObject(owner))
{
object_[owner].properties.insert(property);
}
else
{
HADRON_ERROR("no object with address " + std::to_string(owner));
}
object_[address].size = 0;
object_[address].type = nullptr;
object_[address].data.reset(nullptr);
}
void Environment::freeObject(const std::string name)
void Environment::addOwnership(const std::string owner,
const std::string property)
{
freeObject(getObjectAddress(name));
addOwnership(getObjectAddress(owner), getObjectAddress(property));
}
bool Environment::hasOwners(const unsigned int address) const
{
if (hasObject(address))
{
return (!object_[address].owners.empty());
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
bool Environment::hasOwners(const std::string name) const
{
return hasOwners(getObjectAddress(name));
}
bool Environment::freeObject(const unsigned int address)
{
if (!hasOwners(address))
{
if (!isDryRun() and object_[address].isRegistered)
{
LOG(Message) << "Destroying object '" << object_[address].name
<< "'" << std::endl;
}
for (auto &p: object_[address].properties)
{
object_[p].owners.erase(address);
}
object_[address].size = 0;
object_[address].Ls = 0;
object_[address].isRegistered = false;
object_[address].type = nullptr;
object_[address].owners.clear();
object_[address].properties.clear();
object_[address].data.reset(nullptr);
return true;
}
else
{
return false;
}
}
bool Environment::freeObject(const std::string name)
{
return freeObject(getObjectAddress(name));
}
void Environment::freeAll(void)
@ -434,24 +776,18 @@ void Environment::freeAll(void)
}
}
void Environment::protectObjects(const bool protect)
void Environment::printContent(void)
{
protect_ = protect;
}
bool Environment::objectsProtected(void) const
{
return protect_;
}
// print environment content ///////////////////////////////////////////////////
void Environment::printContent(void) const
{
LOG(Debug) << "Objects: " << std::endl;
LOG(Message) << "Modules: " << std::endl;
for (unsigned int i = 0; i < module_.size(); ++i)
{
LOG(Message) << std::setw(4) << i << ": "
<< getModuleName(i) << std::endl;
}
LOG(Message) << "Objects: " << std::endl;
for (unsigned int i = 0; i < object_.size(); ++i)
{
LOG(Debug) << std::setw(4) << i << ": "
<< getObjectName(i) << " ("
<< sizeString(getObjectSize(i)) << ")" << std::endl;
LOG(Message) << std::setw(4) << i << ": "
<< getObjectName(i) << std::endl;
}
}

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Environment.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -30,12 +31,20 @@ See the full license in the file "LICENSE" in the top level distribution directo
#define Hadrons_Environment_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Graph.hpp>
#ifndef SITE_SIZE_TYPE
#define SITE_SIZE_TYPE unsigned int
#endif
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Global environment *
******************************************************************************/
// forward declaration of Module
class ModuleBase;
class Object
{
public:
@ -57,86 +66,123 @@ private:
std::unique_ptr<T> objPt_{nullptr};
};
#define DEFINE_ENV_ALIAS \
inline Environment & env(void) const\
{\
return Environment::getInstance();\
}
class Environment
{
SINGLETON(Environment);
public:
typedef SITE_SIZE_TYPE Size;
typedef std::unique_ptr<ModuleBase> ModPt;
typedef std::unique_ptr<GridCartesian> GridPt;
typedef std::unique_ptr<GridRedBlackCartesian> GridRbPt;
typedef std::unique_ptr<GridParallelRNG> RngPt;
enum class Storage {object, cache, temporary};
typedef std::unique_ptr<LatticeBase> LatticePt;
private:
struct ModuleInfo
{
const std::type_info *type{nullptr};
std::string name;
ModPt data{nullptr};
std::vector<unsigned int> input;
};
struct ObjInfo
{
Size size{0};
Storage storage{Storage::object};
unsigned int Ls{0};
const std::type_info *type{nullptr}, *derivedType{nullptr};
bool isRegistered{false};
const std::type_info *type{nullptr};
std::string name;
int module{-1};
std::set<unsigned int> owners, properties;
std::unique_ptr<Object> data{nullptr};
};
public:
// dry run
void dryRun(const bool isDry);
bool isDryRun(void) const;
// trajectory number
void setTrajectory(const unsigned int traj);
unsigned int getTrajectory(void) const;
// grids
void createGrid(const unsigned int Ls);
void createCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls = 1);
GridCartesian * getGrid(const unsigned int Ls = 1) const;
GridRedBlackCartesian * getRbGrid(const unsigned int Ls = 1) const;
GridCartesian * getCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls = 1) const;
std::vector<int> getDim(void) const;
int getDim(const unsigned int mu) const;
unsigned int getNd(void) const;
double getVolume(void) const;
// random number generator
void setSeed(const std::vector<int> &seed);
GridParallelRNG * get4dRng(void) const;
// module management
void pushModule(ModPt &pt);
template <typename M>
void createModule(const std::string name);
template <typename M>
void createModule(const std::string name,
const typename M::Par &par);
void createModule(const std::string name,
const std::string type,
XmlReader &reader);
unsigned int getNModule(void) const;
ModuleBase * getModule(const unsigned int address) const;
ModuleBase * getModule(const std::string name) const;
template <typename M>
M * getModule(const unsigned int address) const;
template <typename M>
M * getModule(const std::string name) const;
unsigned int getModuleAddress(const std::string name) const;
std::string getModuleName(const unsigned int address) const;
std::string getModuleType(const unsigned int address) const;
std::string getModuleType(const std::string name) const;
std::string getModuleNamespace(const unsigned int address) const;
std::string getModuleNamespace(const std::string name) const;
bool hasModule(const unsigned int address) const;
bool hasModule(const std::string name) const;
Graph<unsigned int> makeModuleGraph(void) const;
Size executeProgram(const std::vector<unsigned int> &p);
Size executeProgram(const std::vector<std::string> &p);
// general memory management
void addObject(const std::string name,
const int moduleAddress = -1);
template <typename B, typename T, typename ... Ts>
void createDerivedObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args);
template <typename T, typename ... Ts>
void createObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args);
void setObjectModule(const unsigned int objAddress,
const int modAddress);
template <typename B, typename T>
T * getDerivedObject(const unsigned int address) const;
template <typename B, typename T>
T * getDerivedObject(const std::string name) const;
void registerObject(const unsigned int address,
const unsigned int size,
const unsigned int Ls = 1);
void registerObject(const std::string name,
const unsigned int size,
const unsigned int Ls = 1);
template <typename T>
unsigned int lattice4dSize(void) const;
template <typename T>
void registerLattice(const unsigned int address,
const unsigned int Ls = 1);
template <typename T>
void registerLattice(const std::string name,
const unsigned int Ls = 1);
template <typename T>
void setObject(const unsigned int address, T *object);
template <typename T>
void setObject(const std::string name, T *object);
template <typename T>
T * getObject(const unsigned int address) const;
template <typename T>
T * getObject(const std::string name) const;
unsigned int getMaxAddress(void) const;
template <typename T>
T * createLattice(const unsigned int address);
template <typename T>
T * createLattice(const std::string name);
unsigned int getObjectAddress(const std::string name) const;
std::string getObjectName(const unsigned int address) const;
std::string getObjectType(const unsigned int address) const;
std::string getObjectType(const std::string name) const;
Size getObjectSize(const unsigned int address) const;
Size getObjectSize(const std::string name) const;
Storage getObjectStorage(const unsigned int address) const;
Storage getObjectStorage(const std::string name) const;
int getObjectModule(const unsigned int address) const;
int getObjectModule(const std::string name) const;
unsigned int getObjectModule(const unsigned int address) const;
unsigned int getObjectModule(const std::string name) const;
unsigned int getObjectLs(const unsigned int address) const;
unsigned int getObjectLs(const std::string name) const;
bool hasObject(const unsigned int address) const;
bool hasObject(const std::string name) const;
bool hasRegisteredObject(const unsigned int address) const;
bool hasRegisteredObject(const std::string name) const;
bool hasCreatedObject(const unsigned int address) const;
bool hasCreatedObject(const std::string name) const;
bool isObject5d(const unsigned int address) const;
@ -146,28 +192,34 @@ public:
template <typename T>
bool isObjectOfType(const std::string name) const;
Environment::Size getTotalSize(void) const;
void freeObject(const unsigned int address);
void freeObject(const std::string name);
void addOwnership(const unsigned int owner,
const unsigned int property);
void addOwnership(const std::string owner,
const std::string property);
bool hasOwners(const unsigned int address) const;
bool hasOwners(const std::string name) const;
bool freeObject(const unsigned int address);
bool freeObject(const std::string name);
void freeAll(void);
void protectObjects(const bool protect);
bool objectsProtected(void) const;
// print environment content
void printContent(void) const;
void printContent(void);
private:
// general
double vol_;
bool protect_{true};
bool dryRun_{false};
unsigned int traj_, locVol_;
// grids
std::vector<int> dim_;
GridPt grid4d_;
std::map<unsigned int, GridPt> grid5d_;
GridRbPt gridRb4d_;
std::map<unsigned int, GridRbPt> gridRb5d_;
std::map<std::vector<int>, GridPt> gridCoarse4d_;
std::map<std::vector<int>, GridPt> gridCoarse5d_;
unsigned int nd_;
// random number generator
RngPt rng4d_;
// module and related maps
std::vector<ModuleInfo> module_;
std::map<std::string, unsigned int> moduleAddress_;
// lattice store
std::map<unsigned int, LatticePt> lattice_;
// object store
std::vector<ObjInfo> object_;
std::map<std::string, unsigned int> objectAddress_;
@ -186,7 +238,7 @@ Holder<T>::Holder(T *pt)
template <typename T>
T & Holder<T>::get(void) const
{
return *objPt_.get();
return &objPt_.get();
}
template <typename T>
@ -204,116 +256,117 @@ void Holder<T>::reset(T *pt)
/******************************************************************************
* Environment template implementation *
******************************************************************************/
// general memory management ///////////////////////////////////////////////////
template <typename B, typename T, typename ... Ts>
void Environment::createDerivedObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args)
// module management ///////////////////////////////////////////////////////////
template <typename M>
void Environment::createModule(const std::string name)
{
if (!hasObject(name))
{
addObject(name);
}
ModPt pt(new M(name));
unsigned int address = getObjectAddress(name);
if (!object_[address].data or !objectsProtected())
{
MemoryStats memStats;
if (!MemoryProfiler::stats)
{
MemoryProfiler::stats = &memStats;
}
size_t initMem = MemoryProfiler::stats->currentlyAllocated;
object_[address].storage = storage;
object_[address].Ls = Ls;
object_[address].data.reset(new Holder<B>(new T(std::forward<Ts>(args)...)));
object_[address].size = MemoryProfiler::stats->maxAllocated - initMem;
object_[address].type = &typeid(B);
object_[address].derivedType = &typeid(T);
if (MemoryProfiler::stats == &memStats)
{
MemoryProfiler::stats = nullptr;
}
}
// object already exists, no error if it is a cache, error otherwise
else if ((object_[address].storage != Storage::cache) or
(object_[address].storage != storage) or
(object_[address].name != name) or
(object_[address].type != &typeid(B)) or
(object_[address].derivedType != &typeid(T)))
{
HADRONS_ERROR(Definition, "object '" + name + "' already allocated");
}
pushModule(pt);
}
template <typename T, typename ... Ts>
void Environment::createObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args)
template <typename M>
void Environment::createModule(const std::string name,
const typename M::Par &par)
{
createDerivedObject<T, T>(name, storage, Ls, std::forward<Ts>(args)...);
ModPt pt(new M(name));
static_cast<M *>(pt.get())->setPar(par);
pushModule(pt);
}
template <typename B, typename T>
T * Environment::getDerivedObject(const unsigned int address) const
template <typename M>
M * Environment::getModule(const unsigned int address) const
{
if (hasObject(address))
if (auto *pt = dynamic_cast<M *>(getModule(address)))
{
if (hasCreatedObject(address))
{
if (auto h = dynamic_cast<Holder<B> *>(object_[address].data.get()))
{
if (&typeid(T) == &typeid(B))
{
return dynamic_cast<T *>(h->getPt());
}
else
{
if (auto hder = dynamic_cast<T *>(h->getPt()))
{
return hder;
}
else
{
HADRONS_ERROR(Definition, "object with address " + std::to_string(address) +
" cannot be casted to '" + typeName(&typeid(T)) +
"' (has type '" + typeName(&typeid(h->get())) + "')");
}
}
}
else
{
HADRONS_ERROR(Definition, "object with address " + std::to_string(address) +
" does not have type '" + typeName(&typeid(B)) +
"' (has type '" + getObjectType(address) + "')");
}
}
else
{
HADRONS_ERROR(Definition, "object with address " + std::to_string(address) +
" is empty");
}
return pt;
}
else
{
HADRONS_ERROR(Definition, "no object with address " + std::to_string(address));
HADRON_ERROR("module '" + module_[address].name
+ "' does not have type " + typeid(M).name()
+ "(object type: " + getModuleType(address) + ")");
}
}
template <typename B, typename T>
T * Environment::getDerivedObject(const std::string name) const
template <typename M>
M * Environment::getModule(const std::string name) const
{
return getDerivedObject<B, T>(getObjectAddress(name));
return getModule<M>(getModuleAddress(name));
}
template <typename T>
unsigned int Environment::lattice4dSize(void) const
{
return sizeof(typename T::vector_object)/getGrid()->Nsimd();
}
template <typename T>
void Environment::registerLattice(const unsigned int address,
const unsigned int Ls)
{
createGrid(Ls);
registerObject(address, Ls*lattice4dSize<T>(), Ls);
}
template <typename T>
void Environment::registerLattice(const std::string name, const unsigned int Ls)
{
createGrid(Ls);
registerObject(name, Ls*lattice4dSize<T>(), Ls);
}
template <typename T>
void Environment::setObject(const unsigned int address, T *object)
{
if (hasRegisteredObject(address))
{
object_[address].data.reset(new Holder<T>(object));
object_[address].type = &typeid(T);
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address) +
" exists but is not registered");
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
template <typename T>
void Environment::setObject(const std::string name, T *object)
{
setObject(getObjectAddress(name), object);
}
template <typename T>
T * Environment::getObject(const unsigned int address) const
{
return getDerivedObject<T, T>(address);
if (hasRegisteredObject(address))
{
if (auto h = dynamic_cast<Holder<T> *>(object_[address].data.get()))
{
return h->getPt();
}
else
{
HADRON_ERROR("object with address " + std::to_string(address) +
" does not have type '" + typeName(&typeid(T)) +
"' (has type '" + getObjectType(address) + "')");
}
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address) +
" exists but is not registered");
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
template <typename T>
@ -322,10 +375,26 @@ T * Environment::getObject(const std::string name) const
return getObject<T>(getObjectAddress(name));
}
template <typename T>
T * Environment::createLattice(const unsigned int address)
{
GridCartesian *g = getGrid(getObjectLs(address));
setObject(address, new T(g));
return getObject<T>(address);
}
template <typename T>
T * Environment::createLattice(const std::string name)
{
return createLattice<T>(getObjectAddress(name));
}
template <typename T>
bool Environment::isObjectOfType(const unsigned int address) const
{
if (hasObject(address))
if (hasRegisteredObject(address))
{
if (auto h = dynamic_cast<Holder<T> *>(object_[address].data.get()))
{
@ -336,9 +405,14 @@ bool Environment::isObjectOfType(const unsigned int address) const
return false;
}
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address) +
" exists but is not registered");
}
else
{
HADRONS_ERROR(Definition, "no object with address " + std::to_string(address));
HADRON_ERROR("no object with address " + std::to_string(address));
}
}

View File

@ -1,81 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Exceptions.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Exceptions.hpp>
#include <Grid/Hadrons/VirtualMachine.hpp>
#include <Grid/Hadrons/Module.hpp>
#ifndef ERR_SUFF
#define ERR_SUFF " (" + loc + ")"
#endif
#define CONST_EXC(name, init) \
name::name(std::string msg, std::string loc)\
:init\
{}
using namespace Grid;
using namespace Hadrons;
using namespace Exceptions;
// logic errors
CONST_EXC(Logic, logic_error(msg + ERR_SUFF))
CONST_EXC(Definition, Logic("definition error: " + msg, loc))
CONST_EXC(Implementation, Logic("implementation error: " + msg, loc))
CONST_EXC(Range, Logic("range error: " + msg, loc))
CONST_EXC(Size, Logic("size error: " + msg, loc))
// runtime errors
CONST_EXC(Runtime, runtime_error(msg + ERR_SUFF))
CONST_EXC(Argument, Runtime("argument error: " + msg, loc))
CONST_EXC(Io, Runtime("IO error: " + msg, loc))
CONST_EXC(Memory, Runtime("memory error: " + msg, loc))
CONST_EXC(Parsing, Runtime("parsing error: " + msg, loc))
CONST_EXC(Program, Runtime("program error: " + msg, loc))
CONST_EXC(System, Runtime("system error: " + msg, loc))
// abort functions
void Grid::Hadrons::Exceptions::abort(const std::exception& e)
{
auto &vm = VirtualMachine::getInstance();
int mod = vm.getCurrentModule();
LOG(Error) << "FATAL ERROR -- Exception " << typeName(&typeid(e))
<< std::endl;
if (mod >= 0)
{
LOG(Error) << "During execution of module '"
<< vm.getModuleName(mod) << "' (address " << mod << ")"
<< std::endl;
}
LOG(Error) << e.what() << std::endl;
LOG(Error) << "Aborting program" << std::endl;
Grid_finalize();
exit(EXIT_FAILURE);
}

View File

@ -1,75 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Exceptions.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Exceptions_hpp_
#define Hadrons_Exceptions_hpp_
#include <stdexcept>
#ifndef Hadrons_Global_hpp_
#include <Grid/Hadrons/Global.hpp>
#endif
#define HADRONS_SRC_LOC std::string(__FUNCTION__) + " at " \
+ std::string(__FILE__) + ":" + std::to_string(__LINE__)
#define HADRONS_ERROR(exc, msg)\
throw(Exceptions::exc(msg, HADRONS_SRC_LOC));
#define DECL_EXC(name, base) \
class name: public base\
{\
public:\
name(std::string msg, std::string loc);\
}
BEGIN_HADRONS_NAMESPACE
namespace Exceptions
{
// logic errors
DECL_EXC(Logic, std::logic_error);
DECL_EXC(Definition, Logic);
DECL_EXC(Implementation, Logic);
DECL_EXC(Range, Logic);
DECL_EXC(Size, Logic);
// runtime errors
DECL_EXC(Runtime, std::runtime_error);
DECL_EXC(Argument, Runtime);
DECL_EXC(Io, Runtime);
DECL_EXC(Memory, Runtime);
DECL_EXC(Parsing, Runtime);
DECL_EXC(Program, Runtime);
DECL_EXC(System, Runtime);
// abort functions
void abort(const std::exception& e);
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Exceptions_hpp_

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Factory.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -94,7 +95,7 @@ std::unique_ptr<T> Factory<T>::create(const std::string type,
}
catch (std::out_of_range &)
{
HADRONS_ERROR(Argument, "object of type '" + type + "' unknown");
HADRON_ERROR("object of type '" + type + "' unknown");
}
return func(name);

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/GeneticScheduler.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -37,13 +38,13 @@ BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Scheduler based on a genetic algorithm *
******************************************************************************/
template <typename V, typename T>
template <typename T>
class GeneticScheduler
{
public:
typedef std::vector<T> Gene;
typedef std::pair<Gene *, Gene *> GenePair;
typedef std::function<V(const Gene &)> ObjFunc;
typedef std::vector<T> Gene;
typedef std::pair<Gene *, Gene *> GenePair;
typedef std::function<int(const Gene &)> ObjFunc;
struct Parameters
{
double mutationRate;
@ -57,16 +58,14 @@ public:
virtual ~GeneticScheduler(void) = default;
// access
const Gene & getMinSchedule(void);
V getMinValue(void);
// reset population
void initPopulation(void);
int getMinValue(void);
// breed a new generation
void nextGeneration(void);
// heuristic benchmarks
void benchmarkCrossover(const unsigned int nIt);
// print population
friend std::ostream & operator<<(std::ostream &out,
const GeneticScheduler<V, T> &s)
const GeneticScheduler<T> &s)
{
out << "[";
for (auto &p: s.population_)
@ -78,6 +77,8 @@ public:
return out;
}
private:
// evolution steps
void initPopulation(void);
void doCrossover(void);
void doMutation(void);
// genetic operators
@ -86,19 +87,19 @@ private:
void mutation(Gene &m, const Gene &c);
private:
Graph<T> &graph_;
const ObjFunc &func_;
const Parameters par_;
std::multimap<V, Gene> population_;
std::mt19937 gen_;
Graph<T> &graph_;
const ObjFunc &func_;
const Parameters par_;
std::multimap<int, Gene> population_;
std::mt19937 gen_;
};
/******************************************************************************
* template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename V, typename T>
GeneticScheduler<V, T>::GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
template <typename T>
GeneticScheduler<T>::GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
const Parameters &par)
: graph_(graph)
, func_(func)
@ -108,29 +109,29 @@ GeneticScheduler<V, T>::GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
}
// access //////////////////////////////////////////////////////////////////////
template <typename V, typename T>
const typename GeneticScheduler<V, T>::Gene &
GeneticScheduler<V, T>::getMinSchedule(void)
template <typename T>
const typename GeneticScheduler<T>::Gene &
GeneticScheduler<T>::getMinSchedule(void)
{
return population_.begin()->second;
}
template <typename V, typename T>
V GeneticScheduler<V, T>::getMinValue(void)
template <typename T>
int GeneticScheduler<T>::getMinValue(void)
{
return population_.begin()->first;
}
// breed a new generation //////////////////////////////////////////////////////
template <typename V, typename T>
void GeneticScheduler<V, T>::nextGeneration(void)
template <typename T>
void GeneticScheduler<T>::nextGeneration(void)
{
// random initialization of the population if necessary
if (population_.size() != par_.popSize)
{
initPopulation();
}
//LOG(Debug) << "Starting population:\n" << *this << std::endl;
LOG(Debug) << "Starting population:\n" << *this << std::endl;
// random mutations
//PARALLEL_FOR_LOOP
@ -138,7 +139,7 @@ void GeneticScheduler<V, T>::nextGeneration(void)
{
doMutation();
}
//LOG(Debug) << "After mutations:\n" << *this << std::endl;
LOG(Debug) << "After mutations:\n" << *this << std::endl;
// mating
//PARALLEL_FOR_LOOP
@ -146,19 +147,19 @@ void GeneticScheduler<V, T>::nextGeneration(void)
{
doCrossover();
}
//LOG(Debug) << "After mating:\n" << *this << std::endl;
LOG(Debug) << "After mating:\n" << *this << std::endl;
// grim reaper
auto it = population_.begin();
std::advance(it, par_.popSize);
population_.erase(it, population_.end());
//LOG(Debug) << "After grim reaper:\n" << *this << std::endl;
LOG(Debug) << "After grim reaper:\n" << *this << std::endl;
}
// evolution steps /////////////////////////////////////////////////////////////
template <typename V, typename T>
void GeneticScheduler<V, T>::initPopulation(void)
template <typename T>
void GeneticScheduler<T>::initPopulation(void)
{
population_.clear();
for (unsigned int i = 0; i < par_.popSize; ++i)
@ -169,8 +170,8 @@ void GeneticScheduler<V, T>::initPopulation(void)
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::doCrossover(void)
template <typename T>
void GeneticScheduler<T>::doCrossover(void)
{
auto p = selectPair();
Gene &p1 = *(p.first), &p2 = *(p.second);
@ -184,8 +185,8 @@ void GeneticScheduler<V, T>::doCrossover(void)
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::doMutation(void)
template <typename T>
void GeneticScheduler<T>::doMutation(void)
{
std::uniform_real_distribution<double> mdis(0., 1.);
std::uniform_int_distribution<unsigned int> pdis(0, population_.size() - 1);
@ -205,35 +206,40 @@ void GeneticScheduler<V, T>::doMutation(void)
}
// genetic operators ///////////////////////////////////////////////////////////
template <typename V, typename T>
typename GeneticScheduler<V, T>::GenePair GeneticScheduler<V, T>::selectPair(void)
template <typename T>
typename GeneticScheduler<T>::GenePair GeneticScheduler<T>::selectPair(void)
{
std::vector<double> prob;
unsigned int ind;
Gene *p1, *p2;
const double max = population_.rbegin()->first;
for (auto &c: population_)
{
prob.push_back(std::exp((c.first-1.)/max));
}
std::discrete_distribution<unsigned int> dis1(prob.begin(), prob.end());
auto rIt = population_.begin();
ind = dis1(gen_);
std::advance(rIt, ind);
p1 = &(rIt->second);
prob[ind] = 0.;
std::discrete_distribution<unsigned int> dis2(prob.begin(), prob.end());
rIt = population_.begin();
std::advance(rIt, dis2(gen_));
p2 = &(rIt->second);
prob.push_back(1./c.first);
}
do
{
double probCpy;
std::discrete_distribution<unsigned int> dis1(prob.begin(), prob.end());
auto rIt = population_.begin();
ind = dis1(gen_);
std::advance(rIt, ind);
p1 = &(rIt->second);
probCpy = prob[ind];
prob[ind] = 0.;
std::discrete_distribution<unsigned int> dis2(prob.begin(), prob.end());
rIt = population_.begin();
std::advance(rIt, dis2(gen_));
p2 = &(rIt->second);
prob[ind] = probCpy;
} while (p1 == p2);
return std::make_pair(p1, p2);
}
template <typename V, typename T>
void GeneticScheduler<V, T>::crossover(Gene &c1, Gene &c2, const Gene &p1,
template <typename T>
void GeneticScheduler<T>::crossover(Gene &c1, Gene &c2, const Gene &p1,
const Gene &p2)
{
Gene buf;
@ -267,8 +273,8 @@ void GeneticScheduler<V, T>::crossover(Gene &c1, Gene &c2, const Gene &p1,
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::mutation(Gene &m, const Gene &c)
template <typename T>
void GeneticScheduler<T>::mutation(Gene &m, const Gene &c)
{
Gene buf;
std::uniform_int_distribution<unsigned int> dis(0, c.size() - 1);
@ -297,8 +303,8 @@ void GeneticScheduler<V, T>::mutation(Gene &m, const Gene &c)
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::benchmarkCrossover(const unsigned int nIt)
template <typename T>
void GeneticScheduler<T>::benchmarkCrossover(const unsigned int nIt)
{
Gene p1, p2, c1, c2;
double neg = 0., eq = 0., pos = 0., total;

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Global.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -37,38 +38,32 @@ HadronsLogger Hadrons::HadronsLogWarning(1,"Warning");
HadronsLogger Hadrons::HadronsLogMessage(1,"Message");
HadronsLogger Hadrons::HadronsLogIterative(1,"Iterative");
HadronsLogger Hadrons::HadronsLogDebug(1,"Debug");
HadronsLogger Hadrons::HadronsLogIRL(1,"IRL");
void Hadrons::initLogger(void)
// pretty size formatting //////////////////////////////////////////////////////
std::string Hadrons::sizeString(long unsigned int bytes)
{
auto w = std::string("Hadrons").length();
int cw = 8;
GridLogError.setTopWidth(w);
GridLogWarning.setTopWidth(w);
GridLogMessage.setTopWidth(w);
GridLogIterative.setTopWidth(w);
GridLogDebug.setTopWidth(w);
GridLogIRL.setTopWidth(w);
GridLogError.setChanWidth(cw);
GridLogWarning.setChanWidth(cw);
GridLogMessage.setChanWidth(cw);
GridLogIterative.setChanWidth(cw);
GridLogDebug.setChanWidth(cw);
GridLogIRL.setChanWidth(cw);
HadronsLogError.Active(true);
HadronsLogWarning.Active(true);
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
HadronsLogIRL.Active(GridLogIRL.isActive());
HadronsLogError.setChanWidth(cw);
HadronsLogWarning.setChanWidth(cw);
HadronsLogMessage.setChanWidth(cw);
HadronsLogIterative.setChanWidth(cw);
HadronsLogDebug.setChanWidth(cw);
HadronsLogIRL.setChanWidth(cw);
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
long unsigned int s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
// type utilities //////////////////////////////////////////////////////////////
@ -85,91 +80,3 @@ std::string Hadrons::typeName(const std::type_info *info)
return name;
}
// default writers/readers /////////////////////////////////////////////////////
#ifdef HAVE_HDF5
const std::string Hadrons::resultFileExt = "h5";
#else
const std::string Hadrons::resultFileExt = "xml";
#endif
// recursive mkdir /////////////////////////////////////////////////////////////
int Hadrons::mkdir(const std::string dirName)
{
if (!dirName.empty() and access(dirName.c_str(), R_OK|W_OK|X_OK))
{
mode_t mode755;
char tmp[MAX_PATH_LENGTH];
char *p = NULL;
size_t len;
mode755 = S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH;
snprintf(tmp, sizeof(tmp), "%s", dirName.c_str());
len = strlen(tmp);
if(tmp[len - 1] == '/')
{
tmp[len - 1] = 0;
}
for(p = tmp + 1; *p; p++)
{
if(*p == '/')
{
*p = 0;
::mkdir(tmp, mode755);
*p = '/';
}
}
return ::mkdir(tmp, mode755);
}
else
{
return 0;
}
}
std::string Hadrons::basename(const std::string &s)
{
constexpr char sep = '/';
size_t i = s.rfind(sep, s.length());
if (i != std::string::npos)
{
return s.substr(i+1, s.length() - i);
}
else
{
return s;
}
}
std::string Hadrons::dirname(const std::string &s)
{
constexpr char sep = '/';
size_t i = s.rfind(sep, s.length());
if (i != std::string::npos)
{
return s.substr(0, i);
}
else
{
return "";
}
}
void Hadrons::makeFileDir(const std::string filename, GridBase *g)
{
if (g->IsBoss())
{
std::string dir = dirname(filename);
int status = mkdir(dir);
if (status)
{
HADRONS_ERROR(Io, "cannot create directory '" + dir
+ "' ( " + std::strerror(errno) + ")");
}
}
}

View File

@ -4,10 +4,10 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Global.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -35,55 +35,39 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Grid.h>
#include <cxxabi.h>
#ifndef SITE_SIZE_TYPE
#define SITE_SIZE_TYPE size_t
#endif
#define BEGIN_HADRONS_NAMESPACE \
namespace Grid {\
using namespace QCD;\
namespace Hadrons {\
using Grid::operator<<;
#define END_HADRONS_NAMESPACE }}
#ifndef DEFAULT_ASCII_PREC
#define DEFAULT_ASCII_PREC 16
#endif
#define BEGIN_MODULE_NAMESPACE(name)\
namespace name {\
using Grid::operator<<;
#define END_MODULE_NAMESPACE }
/* the 'using Grid::operator<<;' statement prevents a very nasty compilation
* error with GCC 5 (clang & GCC 6 compile fine without it).
*/
#define BEGIN_HADRONS_NAMESPACE \
namespace Grid {\
using namespace QCD;\
namespace Hadrons {\
using Grid::operator<<;\
using Grid::operator>>;
#define END_HADRONS_NAMESPACE }}
#define BEGIN_MODULE_NAMESPACE(name)\
namespace name {\
using Grid::operator<<;\
using Grid::operator>>;
#define END_MODULE_NAMESPACE }
#ifndef FIMPL
#define FIMPL WilsonImplR
#endif
#ifndef ZFIMPL
#define ZFIMPL ZWilsonImplR
#endif
#ifndef SIMPL
#define SIMPL ScalarImplCR
#endif
#ifndef GIMPL
#define GIMPL PeriodicGimplR
#endif
BEGIN_HADRONS_NAMESPACE
// type aliases
#define FERM_TYPE_ALIASES(FImpl, suffix)\
typedef FermionOperator<FImpl> FMat##suffix; \
typedef typename FImpl::FermionField FermionField##suffix; \
typedef typename FImpl::PropagatorField PropagatorField##suffix; \
typedef typename FImpl::SitePropagator::scalar_object SitePropagator##suffix; \
typedef std::vector<SitePropagator##suffix> SlicedPropagator##suffix;
typedef FermionOperator<FImpl> FMat##suffix; \
typedef typename FImpl::FermionField FermionField##suffix; \
typedef typename FImpl::PropagatorField PropagatorField##suffix; \
typedef typename FImpl::SitePropagator SitePropagator##suffix; \
typedef std::vector<typename FImpl::SitePropagator::scalar_object> \
SlicedPropagator##suffix;
#define GAUGE_TYPE_ALIASES(FImpl, suffix)\
typedef typename FImpl::DoubledGaugeField DoubledGaugeField##suffix;
@ -93,15 +77,16 @@ typedef typename SImpl::Field ScalarField##suffix;\
typedef typename SImpl::Field PropagatorField##suffix;
#define SOLVER_TYPE_ALIASES(FImpl, suffix)\
typedef Solver<FImpl> Solver##suffix;
typedef std::function<void(FermionField##suffix &,\
const FermionField##suffix &)> SolverFn##suffix;
#define SINK_TYPE_ALIASES(suffix)\
typedef std::function<SlicedPropagator##suffix\
(const PropagatorField##suffix &)> SinkFn##suffix;
typedef std::function<SlicedPropagator##suffix(const PropagatorField##suffix &)> SinkFn##suffix;
#define FG_TYPE_ALIASES(FImpl, suffix)\
#define FGS_TYPE_ALIASES(FImpl, suffix)\
FERM_TYPE_ALIASES(FImpl, suffix)\
GAUGE_TYPE_ALIASES(FImpl, suffix)
GAUGE_TYPE_ALIASES(FImpl, suffix)\
SOLVER_TYPE_ALIASES(FImpl, suffix)
// logger
class HadronsLogger: public Logger
@ -112,16 +97,18 @@ public:
};
#define LOG(channel) std::cout << HadronsLog##channel
#define HADRONS_DEBUG_VAR(var) LOG(Debug) << #var << "= " << (var) << std::endl;
#define HADRON_ERROR(msg)\
LOG(Error) << msg << " (" << __FUNCTION__ << " at " << __FILE__ << ":"\
<< __LINE__ << ")" << std::endl;\
abort();
#define DEBUG_VAR(var) LOG(Debug) << #var << "= " << (var) << std::endl;
extern HadronsLogger HadronsLogError;
extern HadronsLogger HadronsLogWarning;
extern HadronsLogger HadronsLogMessage;
extern HadronsLogger HadronsLogIterative;
extern HadronsLogger HadronsLogDebug;
extern HadronsLogger HadronsLogIRL;
void initLogger(void);
// singleton pattern
#define SINGLETON(name)\
@ -148,6 +135,9 @@ public:\
private:\
name(void) = default;
// pretty size formating
std::string sizeString(long unsigned int bytes);
// type utilities
template <typename T>
const std::type_info * typeIdPt(const T &x)
@ -176,43 +166,14 @@ std::string typeName(void)
}
// default writers/readers
extern const std::string resultFileExt;
#ifdef HAVE_HDF5
typedef Hdf5Reader ResultReader;
typedef Hdf5Writer ResultWriter;
typedef Hdf5Reader CorrReader;
typedef Hdf5Writer CorrWriter;
#else
typedef XmlReader ResultReader;
typedef XmlWriter ResultWriter;
typedef XmlReader CorrReader;
typedef XmlWriter CorrWriter;
#endif
#define RESULT_FILE_NAME(name) \
name + "." + std::to_string(vm().getTrajectory()) + "." + resultFileExt
// recursive mkdir
#define MAX_PATH_LENGTH 512u
int mkdir(const std::string dirName);
std::string basename(const std::string &s);
std::string dirname(const std::string &s);
void makeFileDir(const std::string filename, GridBase *g);
// default Schur convention
#ifndef HADRONS_DEFAULT_SCHUR
#define HADRONS_DEFAULT_SCHUR DiagTwo
#endif
#define _HADRONS_SCHUR_OP_(conv) Schur##conv##Operator
#define HADRONS_SCHUR_OP(conv) _HADRONS_SCHUR_OP_(conv)
#define HADRONS_DEFAULT_SCHUR_OP HADRONS_SCHUR_OP(HADRONS_DEFAULT_SCHUR)
#define _HADRONS_SCHUR_SOLVE_(conv) SchurRedBlack##conv##Solve
#define HADRONS_SCHUR_SOLVE(conv) _HADRONS_SCHUR_SOLVE_(conv)
#define HADRONS_DEFAULT_SCHUR_SOLVE HADRONS_SCHUR_SOLVE(HADRONS_DEFAULT_SCHUR)
// stringify macro
#define _HADRONS_STR(x) #x
#define HADRONS_STR(x) _HADRONS_STR(x)
END_HADRONS_NAMESPACE
#include <Grid/Hadrons/Exceptions.hpp>
#endif // Hadrons_Global_hpp_

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Graph.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -184,7 +185,7 @@ void Graph<T>::removeVertex(const T &value)
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
HADRON_ERROR("vertex " << value << " does not exists");
}
// remove all edges containing the vertex
@ -213,7 +214,7 @@ void Graph<T>::removeEdge(const Edge &e)
}
else
{
HADRONS_ERROR(Range, "edge does not exists");
HADRON_ERROR("edge " << e << " does not exists");
}
}
@ -259,7 +260,7 @@ void Graph<T>::mark(const T &value, const bool doMark)
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
HADRON_ERROR("vertex " << value << " does not exists");
}
}
@ -297,7 +298,7 @@ bool Graph<T>::isMarked(const T &value) const
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
HADRON_ERROR("vertex " << value << " does not exists");
return false;
}
@ -429,7 +430,7 @@ std::vector<T> Graph<T>::getAdjacentVertices(const T &value) const
{
return ((e.first == value) or (e.second == value));
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
auto eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
@ -441,7 +442,7 @@ std::vector<T> Graph<T>::getAdjacentVertices(const T &value) const
{
adjacentVertex.push_back((*eIt).first);
}
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
eIt = find_if(++eIt, edgeSet_.end(), pred);
}
return adjacentVertex;
@ -457,12 +458,12 @@ std::vector<T> Graph<T>::getChildren(const T &value) const
{
return (e.first == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
auto eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
child.push_back((*eIt).second);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
eIt = find_if(++eIt, edgeSet_.end(), pred);
}
return child;
@ -478,12 +479,12 @@ std::vector<T> Graph<T>::getParents(const T &value) const
{
return (e.second == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
auto eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
parent.push_back((*eIt).first);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
eIt = find_if(++eIt, edgeSet_.end(), pred);
}
return parent;
@ -543,7 +544,7 @@ std::vector<T> Graph<T>::topoSort(void)
{
if (tmpMarked.at(v))
{
HADRONS_ERROR(Range, "cannot topologically sort a cyclic graph");
HADRON_ERROR("cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{
@ -602,7 +603,7 @@ std::vector<T> Graph<T>::topoSort(Gen &gen)
{
if (tmpMarked.at(v))
{
HADRONS_ERROR(Range, "cannot topologically sort a cyclic graph");
HADRON_ERROR("cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/HadronsXmlRun.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -54,23 +55,22 @@ int main(int argc, char *argv[])
// initialization
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// execution
try
Application application(parameterFileName);
application.parseParameterFile(parameterFileName);
if (!scheduleFileName.empty())
{
Application application(parameterFileName);
application.parseParameterFile(parameterFileName);
if (!scheduleFileName.empty())
{
application.loadSchedule(scheduleFileName);
}
application.run();
}
catch (const std::exception& e)
{
Exceptions::abort(e);
application.loadSchedule(scheduleFileName);
}
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;

View File

@ -0,0 +1,72 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/HadronsXmlSchedule.cc
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Application.hpp>
using namespace Grid;
using namespace QCD;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// parse command line
std::string parameterFileName, scheduleFileName;
if (argc < 3)
{
std::cerr << "usage: " << argv[0] << " <parameter file> <schedule output> [Grid options]";
std::cerr << std::endl;
std::exit(EXIT_FAILURE);
}
parameterFileName = argv[1];
scheduleFileName = argv[2];
// initialization
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// execution
Application application;
application.parseParameterFile(parameterFileName);
application.schedule();
application.printSchedule();
application.saveSchedule(scheduleFileName);
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}

View File

@ -1,5 +1,5 @@
lib_LIBRARIES = libHadrons.a
bin_PROGRAMS = HadronsXmlRun
bin_PROGRAMS = HadronsXmlRun HadronsXmlSchedule
include modules.inc
@ -7,28 +7,23 @@ libHadrons_a_SOURCES = \
$(modules_cc) \
Application.cc \
Environment.cc \
Exceptions.cc \
Global.cc \
Module.cc \
VirtualMachine.cc
Module.cc
libHadrons_adir = $(pkgincludedir)/Hadrons
nobase_libHadrons_a_HEADERS = \
$(modules_hpp) \
AllToAllVectors.hpp \
AllToAllReduction.hpp \
Application.hpp \
EigenPack.hpp \
Environment.hpp \
Exceptions.hpp \
Factory.hpp \
GeneticScheduler.hpp \
Global.hpp \
Graph.hpp \
Module.hpp \
Modules.hpp \
ModuleFactory.hpp \
Solver.hpp \
VirtualMachine.hpp
ModuleFactory.hpp
HadronsXmlRun_SOURCES = HadronsXmlRun.cc
HadronsXmlRun_LDADD = libHadrons.a -lGrid
HadronsXmlSchedule_SOURCES = HadronsXmlSchedule.cc
HadronsXmlSchedule_LDADD = libHadrons.a -lGrid

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Module.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -38,6 +39,7 @@ using namespace Hadrons;
// constructor /////////////////////////////////////////////////////////////////
ModuleBase::ModuleBase(const std::string name)
: name_(name)
, env_(Environment::getInstance())
{}
// access //////////////////////////////////////////////////////////////////////
@ -46,10 +48,15 @@ std::string ModuleBase::getName(void) const
return name_;
}
Environment & ModuleBase::env(void) const
{
return env_;
}
// get factory registration name if available
std::string ModuleBase::getRegisteredName(void)
{
HADRONS_ERROR(Definition, "module '" + getName() + "' has no registered type"
HADRON_ERROR("module '" + getName() + "' has a type not registered"
+ " in the factory");
}
@ -57,5 +64,8 @@ std::string ModuleBase::getRegisteredName(void)
void ModuleBase::operator()(void)
{
setup();
execute();
if (!env().isDryRun())
{
execute();
}
}

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Module.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -30,12 +31,37 @@ See the full license in the file "LICENSE" in the top level distribution directo
#define Hadrons_Module_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/VirtualMachine.hpp>
#include <Grid/Hadrons/Environment.hpp>
BEGIN_HADRONS_NAMESPACE
// module registration macros
#define MODULE_REGISTER(mod, base, ns)\
#define MODULE_REGISTER(mod, base)\
class mod: public base\
{\
public:\
typedef base Base;\
using Base::Base;\
virtual std::string getRegisteredName(void)\
{\
return std::string(#mod);\
}\
};\
class mod##ModuleRegistrar\
{\
public:\
mod##ModuleRegistrar(void)\
{\
ModuleFactory &modFac = ModuleFactory::getInstance();\
modFac.registerBuilder(#mod, [&](const std::string name)\
{\
return std::unique_ptr<mod>(new mod(name));\
});\
}\
};\
static mod##ModuleRegistrar mod##ModuleRegistrarInstance;
#define MODULE_REGISTER_NS(mod, base, ns)\
class mod: public base\
{\
public:\
@ -60,74 +86,7 @@ public:\
};\
static ns##mod##ModuleRegistrar ns##mod##ModuleRegistrarInstance;
#define MODULE_REGISTER_TMP(mod, base, ns)\
extern template class base;\
MODULE_REGISTER(mod, ARG(base), ns);
#define ARG(...) __VA_ARGS__
#define MACRO_REDIRECT(arg1, arg2, arg3, macro, ...) macro
#define envGet(type, name)\
*env().template getObject<type>(name)
#define envGetDerived(base, type, name)\
*env().template getDerivedObject<base, type>(name)
#define envGetTmp(type, var)\
type &var = *env().template getObject<type>(getName() + "_tmp_" + #var)
#define envHasType(type, name)\
env().template isObjectOfType<type>(name)
#define envCreate(type, name, Ls, ...)\
env().template createObject<type>(name, Environment::Storage::object, Ls, __VA_ARGS__)
#define envCreateDerived(base, type, name, Ls, ...)\
env().template createDerivedObject<base, type>(name, Environment::Storage::object, Ls, __VA_ARGS__)
#define envCreateLat4(type, name)\
envCreate(type, name, 1, env().getGrid())
#define envCreateLat5(type, name, Ls)\
envCreate(type, name, Ls, env().getGrid(Ls))
#define envCreateLat(...)\
MACRO_REDIRECT(__VA_ARGS__, envCreateLat5, envCreateLat4)(__VA_ARGS__)
#define envCache(type, name, Ls, ...)\
env().template createObject<type>(name, Environment::Storage::cache, Ls, __VA_ARGS__)
#define envCacheLat4(type, name)\
envCache(type, name, 1, env().getGrid())
#define envCacheLat5(type, name, Ls)\
envCache(type, name, Ls, env().getGrid(Ls))
#define envCacheLat(...)\
MACRO_REDIRECT(__VA_ARGS__, envCacheLat5, envCacheLat4)(__VA_ARGS__)
#define envTmp(type, name, Ls, ...)\
env().template createObject<type>(getName() + "_tmp_" + name, \
Environment::Storage::temporary, Ls, __VA_ARGS__)
#define envTmpLat4(type, name)\
envTmp(type, name, 1, env().getGrid())
#define envTmpLat5(type, name, Ls)\
envTmp(type, name, Ls, env().getGrid(Ls))
#define envTmpLat(...)\
MACRO_REDIRECT(__VA_ARGS__, envTmpLat5, envTmpLat4)(__VA_ARGS__)
#define saveResult(ioStem, name, result)\
if (env().getGrid()->IsBoss() and !ioStem.empty())\
{\
makeFileDir(ioStem, env().getGrid());\
{\
ResultWriter _writer(RESULT_FILE_NAME(ioStem));\
write(_writer, name, result);\
}\
}
/******************************************************************************
* Module class *
@ -142,32 +101,23 @@ public:
virtual ~ModuleBase(void) = default;
// access
std::string getName(void) const;
Environment &env(void) const;
// get factory registration name if available
virtual std::string getRegisteredName(void);
// dependencies/products
virtual std::vector<std::string> getInput(void) = 0;
virtual std::vector<std::string> getReference(void)
{
return std::vector<std::string>(0);
};
virtual std::vector<std::string> getOutput(void) = 0;
// parse parameters
virtual void parseParameters(XmlReader &reader, const std::string name) = 0;
virtual void saveParameters(XmlWriter &writer, const std::string name) = 0;
// parameter string
virtual std::string parString(void) const = 0;
// setup
virtual void setup(void) {};
virtual void execute(void) = 0;
// execution
void operator()(void);
protected:
// environment shortcut
DEFINE_ENV_ALIAS;
// virtual machine shortcut
DEFINE_VM_ALIAS;
virtual void execute(void) = 0;
private:
std::string name_;
Environment &env_;
};
// derived class, templating the parameter class
@ -184,11 +134,9 @@ public:
// parse parameters
virtual void parseParameters(XmlReader &reader, const std::string name);
virtual void saveParameters(XmlWriter &writer, const std::string name);
// parameter string
virtual std::string parString(void) const;
// parameter access
const P & par(void) const;
void setPar(const P &par);
const P & par(void) const;
void setPar(const P &par);
private:
P par_;
};
@ -211,8 +159,6 @@ public:
push(writer, "options");
pop(writer);
};
// parameter string (empty)
virtual std::string parString(void) const {return "";};
};
/******************************************************************************
@ -235,16 +181,6 @@ void Module<P>::saveParameters(XmlWriter &writer, const std::string name)
write(writer, name, par_);
}
template <typename P>
std::string Module<P>::parString(void) const
{
XmlWriter writer("", "");
write(writer, par_.SerialisableClassName(), par_);
return writer.string();
}
template <typename P>
const P & Module<P>::par(void) const
{

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/ModuleFactory.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>

View File

@ -1,62 +1,25 @@
#include <Grid/Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TimeMomProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/StochFreeField.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPointNPR.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Grad.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrMag.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/ShiftProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/EMT.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrPhi.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MSink/Smear.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/UnitEm.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MContraction/MesonFieldGamma.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2APionField.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2AMeson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2AMesonField.hpp>
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Grid/Hadrons/Modules/MAction/ScaledDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSolver/LocalCoherenceLanczos.hpp>
#include <Grid/Hadrons/Modules/MSolver/A2AVectors.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/DWF.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TDWF<FIMPL>;

View File

@ -4,10 +4,10 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/DWF.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -56,24 +56,22 @@ template <typename FImpl>
class TDWF: public Module<DWFPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TDWF(const std::string name);
// destructor
virtual ~TDWF(void) {};
virtual ~TDWF(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
extern template class TDWF<FIMPL>;
MODULE_REGISTER_TMP(DWF, TDWF<FIMPL>, MAction);
MODULE_REGISTER_NS(DWF, TDWF<FIMPL>, MAction);
/******************************************************************************
* DWF template implementation *
@ -105,29 +103,35 @@ std::vector<std::string> TDWF<FImpl>::getOutput(void)
template <typename FImpl>
void TDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << " and Ls= "
<< par().Ls << " using gauge field '" << par().gauge << "'"
<< std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
env().createGrid(par().Ls);
auto &U = envGet(LatticeGaugeField, par().gauge);
auto &g4 = *env().getGrid();
auto &grb4 = *env().getRbGrid();
auto &g5 = *env().getGrid(par().Ls);
auto &grb5 = *env().getRbGrid(par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename DomainWallFermion<FImpl>::ImplParams implParams(boundary);
envCreateDerived(FMat, DomainWallFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, implParams);
unsigned int size;
size = 2*env().template lattice4dSize<typename FImpl::DoubledGaugeField>();
env().registerObject(getName(), size, par().Ls);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDWF<FImpl>::execute(void)
{}
{
LOG(Message) << "Setting up domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << " and Ls= "
<< par().Ls << " using gauge field '" << par().gauge << "'"
<< std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
env().createGrid(par().Ls);
auto &U = *env().template getObject<LatticeGaugeField>(par().gauge);
auto &g4 = *env().getGrid();
auto &grb4 = *env().getRbGrid();
auto &g5 = *env().getGrid(par().Ls);
auto &grb5 = *env().getRbGrid(par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename DomainWallFermion<FImpl>::ImplParams implParams(boundary);
FMat *fMatPt = new DomainWallFermion<FImpl>(U, g5, grb5, g4, grb4,
par().mass, par().M5,
implParams);
env().setObject(getName(), fMatPt);
}
END_MODULE_NAMESPACE

View File

@ -1,7 +0,0 @@
#include <Grid/Hadrons/Modules/MAction/MobiusDWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPL>;

View File

@ -1,109 +0,0 @@
#ifndef Hadrons_MAction_MobiusDWF_hpp_
#define Hadrons_MAction_MobiusDWF_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Mobius domain-wall fermion action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class MobiusDWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusDWFPar,
std::string , gauge,
unsigned int, Ls,
double , mass,
double , M5,
double , b,
double , c,
std::string , boundary);
};
template <typename FImpl>
class TMobiusDWF: public Module<MobiusDWFPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
public:
// constructor
TMobiusDWF(const std::string name);
// destructor
virtual ~TMobiusDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(MobiusDWF, TMobiusDWF<FIMPL>, MAction);
/******************************************************************************
* TMobiusDWF implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TMobiusDWF<FImpl>::TMobiusDWF(const std::string name)
: Module<MobiusDWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TMobiusDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TMobiusDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMobiusDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up Mobius domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << ", Ls= " << par().Ls
<< ", b= " << par().b << ", c= " << par().c
<< " using gauge field '" << par().gauge << "'"
<< std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
env().createGrid(par().Ls);
auto &U = envGet(LatticeGaugeField, par().gauge);
auto &g4 = *env().getGrid();
auto &grb4 = *env().getRbGrid();
auto &g5 = *env().getGrid(par().Ls);
auto &grb5 = *env().getRbGrid(par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename MobiusFermion<FImpl>::ImplParams implParams(boundary);
envCreateDerived(FMat, MobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().b, par().c,
implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMobiusDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_MobiusDWF_hpp_

View File

@ -1,7 +0,0 @@
#include <Grid/Hadrons/Modules/MAction/ScaledDWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TScaledDWF<FIMPL>;

View File

@ -1,108 +0,0 @@
#ifndef Hadrons_MAction_ScaledDWF_hpp_
#define Hadrons_MAction_ScaledDWF_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Scaled domain wall fermion *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class ScaledDWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ScaledDWFPar,
std::string , gauge,
unsigned int, Ls,
double , mass,
double , M5,
double , scale,
std::string , boundary);
};
template <typename FImpl>
class TScaledDWF: public Module<ScaledDWFPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
public:
// constructor
TScaledDWF(const std::string name);
// destructor
virtual ~TScaledDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(ScaledDWF, TScaledDWF<FIMPL>, MAction);
/******************************************************************************
* TScaledDWF implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TScaledDWF<FImpl>::TScaledDWF(const std::string name)
: Module<ScaledDWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TScaledDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TScaledDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TScaledDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up scaled domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << ", Ls= " << par().Ls
<< ", scale= " << par().scale
<< " using gauge field '" << par().gauge << "'"
<< std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
env().createGrid(par().Ls);
auto &U = envGet(LatticeGaugeField, par().gauge);
auto &g4 = *env().getGrid();
auto &grb4 = *env().getRbGrid();
auto &g5 = *env().getGrid(par().Ls);
auto &grb5 = *env().getRbGrid(par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename MobiusFermion<FImpl>::ImplParams implParams(boundary);
envCreateDerived(FMat, ScaledShamirFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().scale,
implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TScaledDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_ScaledDWF_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/Wilson.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TWilson<FIMPL>;

View File

@ -4,10 +4,10 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/Wilson.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -54,23 +54,22 @@ template <typename FImpl>
class TWilson: public Module<WilsonPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TWilson(const std::string name);
// destructor
virtual ~TWilson(void) {};
virtual ~TWilson(void) = default;
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Wilson, TWilson<FIMPL>, MAction);
MODULE_REGISTER_NS(Wilson, TWilson<FIMPL>, MAction);
/******************************************************************************
* TWilson template implementation *
@ -102,24 +101,29 @@ std::vector<std::string> TWilson<FImpl>::getOutput(void)
template <typename FImpl>
void TWilson<FImpl>::setup(void)
{
LOG(Message) << "Setting up Wilson fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
auto &U = envGet(LatticeGaugeField, par().gauge);
auto &grid = *env().getGrid();
auto &gridRb = *env().getRbGrid();
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename WilsonFermion<FImpl>::ImplParams implParams(boundary);
envCreateDerived(FMat, WilsonFermion<FImpl>, getName(), 1, U, grid, gridRb,
par().mass, implParams);
unsigned int size;
size = 2*env().template lattice4dSize<typename FImpl::DoubledGaugeField>();
env().registerObject(getName(), size);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilson<FImpl>::execute()
{}
{
LOG(Message) << "Setting up TWilson fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
auto &U = *env().template getObject<LatticeGaugeField>(par().gauge);
auto &grid = *env().getGrid();
auto &gridRb = *env().getRbGrid();
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename WilsonFermion<FImpl>::ImplParams implParams(boundary);
FMat *fMatPt = new WilsonFermion<FImpl>(U, grid, gridRb, par().mass,
implParams);
env().setObject(getName(), fMatPt);
}
END_MODULE_NAMESPACE

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/WilsonClover.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TWilsonClover<FIMPL>;

View File

@ -1,137 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/WilsonClover.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_WilsonClover_hpp_
#define Hadrons_MAction_WilsonClover_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Wilson clover quark action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class WilsonCloverPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonCloverPar,
std::string, gauge,
double , mass,
double , csw_r,
double , csw_t,
WilsonAnisotropyCoefficients ,clover_anisotropy,
std::string, boundary
);
};
template <typename FImpl>
class TWilsonClover: public Module<WilsonCloverPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
public:
// constructor
TWilsonClover(const std::string name);
// destructor
virtual ~TWilsonClover(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(WilsonClover, TWilsonClover<FIMPL>, MAction);
/******************************************************************************
* TWilsonClover template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWilsonClover<FImpl>::TWilsonClover(const std::string name)
: Module<WilsonCloverPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWilsonClover<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TWilsonClover<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilsonClover<FImpl>::setup(void)
{
LOG(Message) << "Setting up Wilson clover fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
LOG(Message) << "Clover term csw_r: " << par().csw_r
<< " csw_t: " << par().csw_t
<< std::endl;
auto &U = envGet(LatticeGaugeField, par().gauge);
auto &grid = *env().getGrid();
auto &gridRb = *env().getRbGrid();
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename WilsonCloverFermion<FImpl>::ImplParams implParams(boundary);
envCreateDerived(FMat, WilsonCloverFermion<FImpl>, getName(), 1, U, grid, gridRb, par().mass,
par().csw_r,
par().csw_t,
par().clover_anisotropy,
implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilsonClover<FImpl>::execute()
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WilsonClover_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/ZMobiusDWF.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPL>;

View File

@ -1,143 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MAction/ZMobiusDWF.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_ZMobiusDWF_hpp_
#define Hadrons_MAction_ZMobiusDWF_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* z-Mobius domain-wall fermion action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class ZMobiusDWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ZMobiusDWFPar,
std::string , gauge,
unsigned int , Ls,
double , mass,
double , M5,
double , b,
double , c,
std::vector<std::complex<double>>, omega,
std::string , boundary);
};
template <typename FImpl>
class TZMobiusDWF: public Module<ZMobiusDWFPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
public:
// constructor
TZMobiusDWF(const std::string name);
// destructor
virtual ~TZMobiusDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(ZMobiusDWF, TZMobiusDWF<ZFIMPL>, MAction);
/******************************************************************************
* TZMobiusDWF implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TZMobiusDWF<FImpl>::TZMobiusDWF(const std::string name)
: Module<ZMobiusDWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TZMobiusDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TZMobiusDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TZMobiusDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up z-Mobius domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << ", Ls= " << par().Ls
<< ", b= " << par().b << ", c= " << par().c
<< " using gauge field '" << par().gauge << "'"
<< std::endl;
LOG(Message) << "Omegas: " << std::endl;
for (unsigned int i = 0; i < par().omega.size(); ++i)
{
LOG(Message) << " omega[" << i << "]= " << par().omega[i] << std::endl;
}
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
env().createGrid(par().Ls);
auto &U = envGet(LatticeGaugeField, par().gauge);
auto &g4 = *env().getGrid();
auto &grb4 = *env().getRbGrid();
auto &g5 = *env().getGrid(par().Ls);
auto &grb5 = *env().getRbGrid(par().Ls);
auto omega = par().omega;
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename ZMobiusFermion<FImpl>::ImplParams implParams(boundary);
envCreateDerived(FMat, ZMobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, omega,
par().b, par().c, implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TZMobiusDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_ZMobiusDWF_hpp_

View File

@ -1,8 +0,0 @@
#include <Grid/Hadrons/Modules/MContraction/A2AMeson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AMeson<FIMPL>;
template class Grid::Hadrons::MContraction::TA2AMeson<ZFIMPL>;

View File

@ -1,207 +0,0 @@
#ifndef Hadrons_MContraction_A2AMeson_hpp_
#define Hadrons_MContraction_A2AMeson_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AMeson *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2AMesonPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonPar,
int, Nl,
int, N,
std::string, A2A1,
std::string, A2A2,
std::string, gammas,
std::string, output);
};
template <typename FImpl>
class TA2AMeson : public Module<A2AMesonPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
class Result : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma_snk,
Gamma::Algebra, gamma_src,
std::vector<Complex>, corr);
};
public:
// constructor
TA2AMeson(const std::string name);
// destructor
virtual ~TA2AMeson(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(A2AMeson, ARG(TA2AMeson<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMeson, ARG(TA2AMeson<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMeson implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMeson<FImpl>::TA2AMeson(const std::string name)
: Module<A2AMesonPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMeson<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A1 + "_class", par().A2A2 + "_class"};
in.push_back(par().A2A1 + "_w_high_4d");
in.push_back(par().A2A2 + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMeson<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl>
void TA2AMeson<FImpl>::parseGammaString(std::vector<GammaPair> &gammaList)
{
gammaList.clear();
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMeson<FImpl>::setup(void)
{
int nt = env().getDim(Tp);
int N = par().N;
int Ls_ = env().getObjectLs(par().A2A1 + "_class");
envTmp(std::vector<FermionField>, "w1", 1, N, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v1", 1, N, FermionField(env().getGrid(1)));
envTmpLat(FermionField, "tmpv_5d", Ls_);
envTmpLat(FermionField, "tmpw_5d", Ls_);
envTmp(std::vector<ComplexD>, "MF_x", 1, nt);
envTmp(std::vector<ComplexD>, "MF_y", 1, nt);
envTmp(std::vector<ComplexD>, "tmp", 1, nt);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMeson<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson contractions" << std::endl;
Result result;
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.gamma_snk = gammaList[0].first;
result.gamma_src = gammaList[0].second;
result.corr.resize(nt);
int Nl = par().Nl;
int N = par().N;
LOG(Message) << "N for A2A cont: " << N << std::endl;
envGetTmp(std::vector<ComplexD>, MF_x);
envGetTmp(std::vector<ComplexD>, MF_y);
envGetTmp(std::vector<ComplexD>, tmp);
for (unsigned int t = 0; t < nt; ++t)
{
tmp[t] = TensorRemove(MF_x[t] * MF_y[t] * 0.0);
}
Gamma gSnk(gammaList[0].first);
Gamma gSrc(gammaList[0].second);
auto &a2a1_fn = envGet(A2ABase, par().A2A1 + "_class");
envGetTmp(std::vector<FermionField>, w1);
envGetTmp(std::vector<FermionField>, v1);
envGetTmp(FermionField, tmpv_5d);
envGetTmp(FermionField, tmpw_5d);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
for (int i = 0; i < N; i++)
{
a2a1_fn.return_v(i, tmpv_5d, v1[i]);
a2a1_fn.return_w(i, tmpw_5d, w1[i]);
}
LOG(Message) << "Found v and w vectors for N = " << N << std::endl;
for (unsigned int i = 0; i < N; i++)
{
v1[i] = gSnk * v1[i];
}
int ty;
for (unsigned int i = 0; i < N; i++)
{
for (unsigned int j = 0; j < N; j++)
{
mySliceInnerProductVector(MF_x, w1[i], v1[j], Tp);
mySliceInnerProductVector(MF_y, w1[j], v1[i], Tp);
for (unsigned int t = 0; t < nt; ++t)
{
for (unsigned int tx = 0; tx < nt; tx++)
{
ty = (tx + t) % nt;
tmp[t] += TensorRemove((MF_x[tx]) * (MF_y[ty]));
}
}
}
if (i % 10 == 0)
{
LOG(Message) << "MF for i = " << i << " of " << N << std::endl;
}
}
double NTinv = 1.0 / static_cast<double>(nt);
for (unsigned int t = 0; t < nt; ++t)
{
result.corr[t] = NTinv * tmp[t];
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMeson_hpp_

View File

@ -1,8 +0,0 @@
#include <Grid/Hadrons/Modules/MContraction/A2AMesonField.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AMesonField<FIMPL>;
template class Grid::Hadrons::MContraction::TA2AMesonField<ZFIMPL>;

View File

@ -1,279 +0,0 @@
#ifndef Hadrons_MContraction_A2AMesonField_hpp_
#define Hadrons_MContraction_A2AMesonField_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2Autils.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AMesonField *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2AMesonFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldPar,
int, cacheBlock,
int, schurBlock,
int, Nmom,
int, N,
int, Nl,
std::string, A2A,
std::string, output);
};
template <typename FImpl>
class TA2AMesonField : public Module<A2AMesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
public:
// constructor
TA2AMesonField(const std::string name);
// destructor
virtual ~TA2AMesonField(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMesonField, ARG(TA2AMesonField<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMesonField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMesonField<FImpl>::TA2AMesonField(const std::string name)
: Module<A2AMesonFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A + "_class"};
in.push_back(par().A2A + "_w_high_4d");
in.push_back(par().A2A + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::setup(void)
{
auto &a2a = envGet(A2ABase, par().A2A + "_class");
int nt = env().getDim(Tp);
int Nl = par().Nl;
int N = par().N;
int Ls_ = env().getObjectLs(par().A2A + "_class");
// Four D fields
envTmp(std::vector<FermionField>, "w", 1, par().schurBlock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v", 1, par().schurBlock, FermionField(env().getGrid(1)));
// 5D tmp
envTmpLat(FermionField, "tmp_5d", Ls_);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field" << std::endl;
auto &a2a = envGet(A2ABase, par().A2A + "_class");
// 2+6+4+4 = 16 gammas
// Ordering defined here
std::vector<Gamma::Algebra> gammas ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
});
///////////////////////////////////////////////
// Square assumption for now Nl = Nr = N
///////////////////////////////////////////////
int nt = env().getDim(Tp);
int nx = env().getDim(Xp);
int ny = env().getDim(Yp);
int nz = env().getDim(Zp);
int N = par().N;
int Nl = par().Nl;
int ngamma = gammas.size();
int schurBlock = par().schurBlock;
int cacheBlock = par().cacheBlock;
int nmom = par().Nmom;
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
GridBase *grid = env().getGrid(1);
std::vector<LatticeComplex> phases(nmom,grid);
for(int m=0;m<nmom;m++){
phases[m] = Complex(1.0); // All zero momentum for now
}
Eigen::Tensor<ComplexD,5> mesonField (nmom,ngamma,nt,N,N);
LOG(Message) << "N = Nh+Nl for A2A MesonField is " << N << std::endl;
envGetTmp(std::vector<FermionField>, w);
envGetTmp(std::vector<FermionField>, v);
envGetTmp(FermionField, tmp_5d);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops = 0.0;
double bytes = 0.0;
double vol = nx*ny*nz*nt;
double t_schur=0;
double t_contr=0;
double t_int_0=0;
double t_int_1=0;
double t_int_2=0;
double t_int_3=0;
double t0 = usecond();
int N_i = N;
int N_j = N;
for(int i=0;i<N_i;i+=schurBlock){ //loop over SchurBlocking to suppress 5D matrix overhead
for(int j=0;j<N_j;j+=schurBlock){
///////////////////////////////////////////////////////////////
// Get the W and V vectors for this schurBlock^2 set of terms
///////////////////////////////////////////////////////////////
int N_ii = MIN(N_i-i,schurBlock);
int N_jj = MIN(N_j-j,schurBlock);
t_schur-=usecond();
for(int ii =0;ii < N_ii;ii++) a2a.return_w(i+ii, tmp_5d, w[ii]);
for(int jj =0;jj < N_jj;jj++) a2a.return_v(j+jj, tmp_5d, v[jj]);
t_schur+=usecond();
LOG(Message) << "Found w vectors " << i <<" .. " << i+N_ii-1 << std::endl;
LOG(Message) << "Found v vectors " << j <<" .. " << j+N_jj-1 << std::endl;
///////////////////////////////////////////////////////////////
// Series of cache blocked chunks of the contractions within this SchurBlock
///////////////////////////////////////////////////////////////
for(int ii=0;ii<N_ii;ii+=cacheBlock){
for(int jj=0;jj<N_jj;jj+=cacheBlock){
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
Eigen::Tensor<ComplexD,5> mesonFieldBlocked(nmom,ngamma,nt,N_iii,N_jjj);
t_contr-=usecond();
A2Autils<FImpl>::MesonField(mesonFieldBlocked,
&w[ii],
&v[jj], gammas, phases,Tp);
t_contr+=usecond();
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj* ngamma;
///////////////////////////////////////////////////////////////
// Copy back to full meson field tensor
///////////////////////////////////////////////////////////////
parallel_for_nest2(int iii=0;iii< N_iii;iii++) {
for(int jjj=0;jjj< N_jjj;jjj++) {
for(int m =0;m< nmom;m++) {
for(int g =0;g< ngamma;g++) {
for(int t =0;t< nt;t++) {
mesonField(m,g,t,i+ii+iii,j+jj+jjj) = mesonFieldBlocked(m,g,t,iii,jjj);
}}}
}}
}}
}}
double nodes=grid->NodeCount();
double t1 = usecond();
LOG(Message) << " Contraction of MesonFields took "<<(t1-t0)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Schur "<<(t_schur)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Contr "<<(t_contr)/1.0e6<< " seconds " << std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator (two end)
// < PI_ij(t0) PI_ji (t0+t) >
/////////////////////////////////////////////////////////////////////////
std::vector<ComplexD> corr(nt,ComplexD(0.0));
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
int m=0; // first momentum
int g=0; // first gamma in above ordering is gamma5 for pion
for(int t0=0;t0<nt;t0++){
for(int t=0;t<nt;t++){
int tt = (t0+t)%nt;
corr[t] += mesonField(m,g,t0,i,j)* mesonField(m,g,tt,j,i);
}}
}}
for(int t=0;t<nt;t++) corr[t] = corr[t]/ (double)nt;
for(int t=0;t<nt;t++) LOG(Message) << " " << t << " " << corr[t]<<std::endl;
// saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMesonField_hpp_

View File

@ -1,8 +0,0 @@
#include <Grid/Hadrons/Modules/MContraction/A2APionField.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2APionField<FIMPL>;
template class Grid::Hadrons::MContraction::TA2APionField<ZFIMPL>;

View File

@ -1,502 +0,0 @@
#ifndef Hadrons_MContraction_A2APionField_hpp_
#define Hadrons_MContraction_A2APionField_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2Autils.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2APionField *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2APionFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2APionFieldPar,
int, cacheBlock,
int, schurBlock,
int, Nmom,
std::string, A2A_i,
std::string, A2A_j,
std::string, output);
};
template <typename FImpl>
class TA2APionField : public Module<A2APionFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
typedef iSinglet<vector_type> Scalar_v;
typedef iSinglet<scalar_type> Scalar_s;
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
public:
// constructor
TA2APionField(const std::string name);
// destructor
virtual ~TA2APionField(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(A2APionField, ARG(TA2APionField<FIMPL>), MContraction);
MODULE_REGISTER(ZA2APionField, ARG(TA2APionField<ZFIMPL>), MContraction);
/******************************************************************************
* TA2APionField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2APionField<FImpl>::TA2APionField(const std::string name)
: Module<A2APionFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2APionField<FImpl>::getInput(void)
{
std::vector<std::string> in;
in.push_back(par().A2A_i + "_class");
in.push_back(par().A2A_i + "_w_high_4d");
in.push_back(par().A2A_i + "_v_high_4d");
in.push_back(par().A2A_j + "_class");
in.push_back(par().A2A_j + "_w_high_4d");
in.push_back(par().A2A_j + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TA2APionField<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2APionField<FImpl>::setup(void)
{
// Four D fields
envTmp(std::vector<FermionField>, "wi", 1, par().schurBlock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "vi", 1, par().schurBlock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "wj", 1, par().schurBlock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "vj", 1, par().schurBlock, FermionField(env().getGrid(1)));
// 5D tmp
int Ls_i = env().getObjectLs(par().A2A_i + "_class");
envTmpLat(FermionField, "tmp_5d", Ls_i);
int Ls_j= env().getObjectLs(par().A2A_j + "_class");
assert ( Ls_i == Ls_j );
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2APionField<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A Pion fields" << std::endl;
auto &a2a_i = envGet(A2ABase, par().A2A_i + "_class");
auto &a2a_j = envGet(A2ABase, par().A2A_j + "_class");
///////////////////////////////////////////////
// Square assumption for now Nl = Nr = N
///////////////////////////////////////////////
int nt = env().getDim(Tp);
int nx = env().getDim(Xp);
int ny = env().getDim(Yp);
int nz = env().getDim(Zp);
// int N_i = a2a_i.par().N;
// int N_j = a2a_j.par().N;
int N_i = a2a_i.getN();
int N_j = a2a_j.getN();
int nmom=par().Nmom;
int schurBlock = par().schurBlock;
int cacheBlock = par().cacheBlock;
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
GridBase *grid = env().getGrid(1);
std::vector<LatticeComplex> phases(nmom,grid);
for(int m=0;m<nmom;m++){
phases[m] = Complex(1.0); // All zero momentum for now
}
///////////////////////////////////////////////////////////////////////
// i and j represent different flavours, hits, with different ranks.
// in general non-square case.
///////////////////////////////////////////////////////////////////////
Eigen::Tensor<ComplexD,4> pionFieldWVmom_ij (nmom,nt,N_i,N_j);
Eigen::Tensor<ComplexD,3> pionFieldWV_ij (nt,N_i,N_j);
Eigen::Tensor<ComplexD,4> pionFieldWVmom_ji (nmom,nt,N_j,N_i);
Eigen::Tensor<ComplexD,3> pionFieldWV_ji (nt,N_j,N_i);
LOG(Message) << "Rank for A2A PionField is " << N_i << " x "<<N_j << std::endl;
envGetTmp(std::vector<FermionField>, wi);
envGetTmp(std::vector<FermionField>, vi);
envGetTmp(std::vector<FermionField>, wj);
envGetTmp(std::vector<FermionField>, vj);
envGetTmp(FermionField, tmp_5d);
LOG(Message) << "Finding v and w vectors " << std::endl;
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops = 0.0;
double bytes = 0.0;
double vol = nx*ny*nz*nt;
double vol3 = nx*ny*nz;
double t_schur=0;
double t_contr_vwm=0;
double t_contr_vw=0;
double t_contr_ww=0;
double t_contr_vv=0;
double tt0 = usecond();
for(int i=0;i<N_i;i+=schurBlock){ //loop over SchurBlocking to suppress 5D matrix overhead
for(int j=0;j<N_j;j+=schurBlock){
///////////////////////////////////////////////////////////////
// Get the W and V vectors for this schurBlock^2 set of terms
///////////////////////////////////////////////////////////////
int N_ii = MIN(N_i-i,schurBlock);
int N_jj = MIN(N_j-j,schurBlock);
t_schur-=usecond();
for(int ii =0;ii < N_ii;ii++) a2a_i.return_w(i+ii, tmp_5d, wi[ii]);
for(int jj =0;jj < N_jj;jj++) a2a_j.return_w(j+jj, tmp_5d, wj[jj]);
for(int ii =0;ii < N_ii;ii++) a2a_i.return_v(i+ii, tmp_5d, vi[ii]);
for(int jj =0;jj < N_jj;jj++) a2a_j.return_v(j+jj, tmp_5d, vj[jj]);
t_schur+=usecond();
LOG(Message) << "Found i w&v vectors " << i <<" .. " << i+N_ii-1 << std::endl;
LOG(Message) << "Found j w&v vectors " << j <<" .. " << j+N_jj-1 << std::endl;
///////////////////////////////////////////////////////////////
// Series of cache blocked chunks of the contractions within this SchurBlock
///////////////////////////////////////////////////////////////
for(int ii=0;ii<N_ii;ii+=cacheBlock){
for(int jj=0;jj<N_jj;jj+=cacheBlock){
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
Eigen::Tensor<ComplexD,4> pionFieldWVmomB_ij(nmom,nt,N_iii,N_jjj);
Eigen::Tensor<ComplexD,4> pionFieldWVmomB_ji(nmom,nt,N_jjj,N_iii);
Eigen::Tensor<ComplexD,3> pionFieldWVB_ij(nt,N_iii,N_jjj);
Eigen::Tensor<ComplexD,3> pionFieldWVB_ji(nt,N_jjj,N_iii);
t_contr_vwm-=usecond();
A2Autils<FImpl>::PionFieldWVmom(pionFieldWVmomB_ij, &wi[ii], &vj[jj], phases,Tp);
A2Autils<FImpl>::PionFieldWVmom(pionFieldWVmomB_ji, &wj[jj], &vi[ii], phases,Tp);
t_contr_vwm+=usecond();
t_contr_vw-=usecond();
A2Autils<FImpl>::PionFieldWV(pionFieldWVB_ij, &wi[ii], &vj[jj],Tp);
A2Autils<FImpl>::PionFieldWV(pionFieldWVB_ji, &wj[jj], &vi[ii],Tp);
t_contr_vw+=usecond();
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj;
///////////////////////////////////////////////////////////////
// Copy back to full meson field tensor
///////////////////////////////////////////////////////////////
parallel_for_nest2(int iii=0;iii< N_iii;iii++) {
for(int jjj=0;jjj< N_jjj;jjj++) {
for(int m =0;m< nmom;m++) {
for(int t =0;t< nt;t++) {
pionFieldWVmom_ij(m,t,i+ii+iii,j+jj+jjj) = pionFieldWVmomB_ij(m,t,iii,jjj);
pionFieldWVmom_ji(m,t,j+jj+jjj,i+ii+iii) = pionFieldWVmomB_ji(m,t,jjj,iii);
}}
for(int t =0;t< nt;t++) {
pionFieldWV_ij(t,i+ii+iii,j+jj+jjj) = pionFieldWVB_ij(t,iii,jjj);
pionFieldWV_ji(t,j+jj+jjj,i+ii+iii) = pionFieldWVB_ji(t,jjj,iii);
}
}}
}}
}}
double nodes=grid->NodeCount();
double tt1 = usecond();
LOG(Message) << " Contraction of PionFields took "<<(tt1-tt0)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Schur "<<(t_schur)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Contr WVmom "<<(t_contr_vwm)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Contr WV "<<(t_contr_vw)/1.0e6<< " seconds " << std::endl;
double t_kernel = t_contr_vwm;
LOG(Message) << " Arith "<<flops/(t_kernel)/1.0e3/nodes<< " Gflop/s / node " << std::endl;
LOG(Message) << " Arith "<<bytes/(t_kernel)/1.0e3/nodes<< " GB/s /node " << std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator (two end)
// < PI_ij(t0) PI_ji (t0+t) >
/////////////////////////////////////////////////////////////////////////
std::vector<ComplexD> corrMom(nt,ComplexD(0.0));
for(int i=0;i<N_i;i++){
for(int j=0;j<N_j;j++){
int m=0; // first momentum
for(int t0=0;t0<nt;t0++){
for(int t=0;t<nt;t++){
int tt = (t0+t)%nt;
corrMom[t] += pionFieldWVmom_ij(m,t0,i,j)* pionFieldWVmom_ji(m,tt,j,i);
}}
}}
for(int t=0;t<nt;t++) corrMom[t] = corrMom[t]/ (double)nt;
for(int t=0;t<nt;t++) LOG(Message) << " C_vwm " << t << " " << corrMom[t]<<std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator (two end) from zero mom contraction
// < PI_ij(t0) PI_ji (t0+t) >
/////////////////////////////////////////////////////////////////////////
std::vector<ComplexD> corr(nt,ComplexD(0.0));
for(int i=0;i<N_i;i++){
for(int j=0;j<N_j;j++){
for(int t0=0;t0<nt;t0++){
for(int t=0;t<nt;t++){
int tt = (t0+t)%nt;
corr[t] += pionFieldWV_ij(t0,i,j)* pionFieldWV_ji(tt,j,i);
}}
}}
for(int t=0;t<nt;t++) corr[t] = corr[t]/ (double)nt;
for(int t=0;t<nt;t++) LOG(Message) << " C_vw " << t << " " << corr[t]<<std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator from zero mom contraction with revers
// charge flow
/////////////////////////////////////////////////////////////////////////
std::vector<ComplexD> corr_wwvv(nt,ComplexD(0.0));
wi.resize(N_i,grid);
vi.resize(N_i,grid);
wj.resize(N_j,grid);
vj.resize(N_j,grid);
for(int i =0;i < N_i;i++) a2a_i.return_v(i, tmp_5d, vi[i]);
for(int i =0;i < N_i;i++) a2a_i.return_w(i, tmp_5d, wi[i]);
for(int j =0;j < N_j;j++) a2a_j.return_v(j, tmp_5d, vj[j]);
for(int j =0;j < N_j;j++) a2a_j.return_w(j, tmp_5d, wj[j]);
Eigen::Tensor<ComplexD,3> pionFieldWW_ij (nt,N_i,N_j);
Eigen::Tensor<ComplexD,3> pionFieldVV_ji (nt,N_j,N_i);
Eigen::Tensor<ComplexD,3> pionFieldWW_ji (nt,N_j,N_i);
Eigen::Tensor<ComplexD,3> pionFieldVV_ij (nt,N_i,N_j);
A2Autils<FImpl>::PionFieldWW(pionFieldWW_ij, &wi[0], &wj[0],Tp);
A2Autils<FImpl>::PionFieldVV(pionFieldVV_ji, &vj[0], &vi[0],Tp);
A2Autils<FImpl>::PionFieldWW(pionFieldWW_ji, &wj[0], &wi[0],Tp);
A2Autils<FImpl>::PionFieldVV(pionFieldVV_ij, &vi[0], &vj[0],Tp);
for(int i=0;i<N_i;i++){
for(int j=0;j<N_j;j++){
for(int t0=0;t0<nt;t0++){
for(int t=0;t<nt;t++){
int tt = (t0+t)%nt;
corr_wwvv[t] += pionFieldWW_ij(t0,i,j)* pionFieldVV_ji(tt,j,i);
corr_wwvv[t] += pionFieldWW_ji(t0,j,i)* pionFieldVV_ij(tt,i,j);
}}
}}
for(int t=0;t<nt;t++) corr_wwvv[t] = corr_wwvv[t] / vol /2.0 ; // (ij+ji noise contribs if i!=j ).
for(int t=0;t<nt;t++) LOG(Message) << " C_wwvv " << t << " " << corr_wwvv[t]<<std::endl;
/////////////////////////////////////////////////////////////////////////
// This is only correct if there are NO low modes
// Use the "ii" case to construct possible Z wall source one end trick
/////////////////////////////////////////////////////////////////////////
std::vector<ComplexD> corr_z2(nt,ComplexD(0.0));
Eigen::Tensor<ComplexD,3> pionFieldWW (nt,N_i,N_i);
Eigen::Tensor<ComplexD,3> pionFieldVV (nt,N_i,N_i);
A2Autils<FImpl>::PionFieldWW(pionFieldWW, &wi[0], &wi[0],Tp);
A2Autils<FImpl>::PionFieldVV(pionFieldVV, &vi[0], &vi[0],Tp);
for(int i=0;i<N_i;i++){
for(int t0=0;t0<nt;t0++){
for(int t=0;t<nt;t++){
int tt = (t0+t)%nt;
corr_z2[t] += pionFieldWW(t0,i,i) * pionFieldVV(tt,i,i) /vol ;
}}
}
LOG(Message) << " C_z2 WARNING only correct if Nl == 0 "<<std::endl;
for(int t=0;t<nt;t++) LOG(Message) << " C_z2 " << t << " " << corr_z2[t]<<std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build a bag contraction
/////////////////////////////////////////////////////////////////////////
Eigen::Tensor<ComplexD,2> DeltaF2_fig8 (nt,16);
Eigen::Tensor<ComplexD,2> DeltaF2_trtr (nt,16);
Eigen::Tensor<ComplexD,1> denom0 (nt);
Eigen::Tensor<ComplexD,1> denom1 (nt);
const int dT=16;
A2Autils<FImpl>::DeltaFeq2 (dT,dT,DeltaF2_fig8,DeltaF2_trtr,
denom0,denom1,
pionFieldWW_ij,&vi[0],&vj[0],Tp);
{
int g=0; // O_{VV+AA}
for(int t=0;t<nt;t++)
LOG(Message) << " Bag [" << t << ","<<g<<"] "
<< (DeltaF2_fig8(t,g)+DeltaF2_trtr(t,g))
/ ( 8.0/3.0 * denom0[t]*denom1[t])
<<std::endl;
}
/////////////////////////////////////////////////////////////////////////
// Test: Build a bag contraction the Z2 way
// Build a wall bag comparison assuming no low modes
/////////////////////////////////////////////////////////////////////////
LOG(Message) << " Bag_z2 WARNING only correct if Nl == 0 "<<std::endl;
int t0=0;
int t1=dT;
int Nl=0;
LatticePropagator Qd0(grid);
LatticePropagator Qd1(grid);
LatticePropagator Qs0(grid);
LatticePropagator Qs1(grid);
for(int s=0;s<4;s++){
for(int c=0;c<3;c++){
int idx0 = Nl+t0*12+s*3+c;
int idx1 = Nl+t1*12+s*3+c;
FermToProp<FImpl>(Qd0, vi[idx0], s, c);
FermToProp<FImpl>(Qd1, vi[idx1], s, c);
FermToProp<FImpl>(Qs0, vj[idx0], s, c);
FermToProp<FImpl>(Qs1, vj[idx1], s, c);
}
}
std::vector<Gamma::Algebra> gammas ( {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::Gamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
});
auto G5 = Gamma::Algebra::Gamma5;
LatticePropagator anti_d0 = adj( Gamma(G5) * Qd0 * Gamma(G5));
LatticePropagator anti_d1 = adj( Gamma(G5) * Qd1 * Gamma(G5));
LatticeComplex TR1(grid);
LatticeComplex TR2(grid);
LatticeComplex Wick1(grid);
LatticeComplex Wick2(grid);
LatticePropagator PR1(grid);
LatticePropagator PR2(grid);
PR1 = Qs0 * Gamma(G5) * anti_d0;
PR2 = Qs1 * Gamma(G5) * anti_d1;
for(int g=0;g<Nd*Nd;g++){
auto g1 = gammas[g];
Gamma G1 (g1);
TR1 = trace( PR1 * G1 );
TR2 = trace( PR2 * G1 );
Wick1 = TR1*TR2;
Wick2 = trace( PR1* G1 * PR2 * G1 );
std::vector<TComplex> C1;
std::vector<TComplex> C2;
std::vector<TComplex> C3;
sliceSum(Wick1,C1, Tp);
sliceSum(Wick2,C2, Tp);
sliceSum(TR1 ,C3, Tp);
/*
if(g<5){
for(int t=0;t<C1.size();t++){
LOG(Message) << " Wick1["<<g<<","<<t<< "] "<< C1[t]<<std::endl;
}
for(int t=0;t<C2.size();t++){
LOG(Message) << " Wick2["<<g<<","<<t<< "] "<< C2[t]<<std::endl;
}
}
if( (g==9) || (g==7) ){ // P and At in above ordering
for(int t=0;t<C3.size();t++){
LOG(Message) << " <G|P>["<<g<<","<<t<< "] "<< C3[t]<<std::endl;
}
}
*/
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2APionField_hpp_

File diff suppressed because it is too large Load Diff

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Baryon.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TBaryon<FIMPL,FIMPL,FIMPL>;

View File

@ -4,10 +4,10 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Baryon.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -68,18 +68,15 @@ public:
// constructor
TBaryon(const std::string name);
// destructor
virtual ~TBaryon(void) {};
virtual ~TBaryon(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Baryon, ARG(TBaryon<FIMPL, FIMPL, FIMPL>), MContraction);
MODULE_REGISTER_NS(Baryon, ARG(TBaryon<FIMPL, FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TBaryon implementation *
@ -102,18 +99,11 @@ std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getInput(void)
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {};
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
@ -122,15 +112,16 @@ void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl;
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q2);
envGetTmp(LatticeComplex, c);
Result result;
CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
PropagatorField3 &q3 = *env().template getObject<PropagatorField3>(par().q2);
LatticeComplex c(env().getGrid());
Result result;
// FIXME: do contractions
// saveResult(par().output, "meson", result);
// write(writer, "meson", result);
}
END_MODULE_NAMESPACE

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/DiscLoop.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TDiscLoop<FIMPL>;

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/DiscLoop.hpp
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -65,18 +64,17 @@ public:
// constructor
TDiscLoop(const std::string name);
// destructor
virtual ~TDiscLoop(void) {};
virtual ~TDiscLoop(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(DiscLoop, TDiscLoop<FIMPL>, MContraction);
MODULE_REGISTER_NS(DiscLoop, TDiscLoop<FIMPL>, MContraction);
/******************************************************************************
* TDiscLoop implementation *
@ -99,7 +97,7 @@ std::vector<std::string> TDiscLoop<FImpl>::getInput(void)
template <typename FImpl>
std::vector<std::string> TDiscLoop<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
std::vector<std::string> out = {getName()};
return out;
}
@ -108,7 +106,7 @@ std::vector<std::string> TDiscLoop<FImpl>::getOutput(void)
template <typename FImpl>
void TDiscLoop<FImpl>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
@ -119,21 +117,24 @@ void TDiscLoop<FImpl>::execute(void)
<< "' using '" << par().q_loop << "' with " << par().gamma
<< " insertion." << std::endl;
auto &q_loop = envGet(PropagatorField, par().q_loop);
CorrWriter writer(par().output);
PropagatorField &q_loop = *env().template getObject<PropagatorField>(par().q_loop);
LatticeComplex c(env().getGrid());
Gamma gamma(par().gamma);
std::vector<TComplex> buf;
Result result;
envGetTmp(LatticeComplex, c);
c = trace(gamma*q_loop);
sliceSum(c, buf, Tp);
result.gamma = par().gamma;
result.corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[t] = TensorRemove(buf[t]);
}
saveResult(par().output, "disc", result);
write(writer, "disc", result);
}
END_MODULE_NAMESPACE

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Gamma3pt.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TGamma3pt<FIMPL,FIMPL,FIMPL>;

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Gamma3pt.hpp
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -52,14 +51,6 @@ BEGIN_HADRONS_NAMESPACE
* q1
*
* trace(g5*q1*adj(q2)*g5*gamma*q3)
*
* options:
* - q1: sink smeared propagator, source at i
* - q2: propagator, source at i
* - q3: propagator, source at f
* - gamma: gamma matrix to insert
* - tSnk: sink position for propagator q1.
*
*/
/******************************************************************************
@ -75,7 +66,6 @@ public:
std::string, q2,
std::string, q3,
Gamma::Algebra, gamma,
unsigned int, tSnk,
std::string, output);
};
@ -96,18 +86,17 @@ public:
// constructor
TGamma3pt(const std::string name);
// destructor
virtual ~TGamma3pt(void) {};
virtual ~TGamma3pt(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Gamma3pt, ARG(TGamma3pt<FIMPL, FIMPL, FIMPL>), MContraction);
MODULE_REGISTER_NS(Gamma3pt, ARG(TGamma3pt<FIMPL, FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TGamma3pt implementation *
@ -130,7 +119,7 @@ std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getInput(void)
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {};
std::vector<std::string> out = {getName()};
return out;
}
@ -139,7 +128,7 @@ std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getOutput(void)
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
@ -151,21 +140,17 @@ void TGamma3pt<FImpl1, FImpl2, FImpl3>::execute(void)
<< par().q3 << "', with " << par().gamma << " insertion."
<< std::endl;
// Initialise variables. q2 and q3 are normal propagators, q1 may be
// sink smeared.
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField2, par().q3);
CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
PropagatorField3 &q3 = *env().template getObject<PropagatorField3>(par().q3);
LatticeComplex c(env().getGrid());
Gamma g5(Gamma::Algebra::Gamma5);
Gamma gamma(par().gamma);
std::vector<TComplex> buf;
Result result;
// Extract relevant timeslice of sinked propagator q1, then contract &
// sum over all spacial positions of gamma insertion.
SitePropagator1 q1Snk = q1[par().tSnk];
envGetTmp(LatticeComplex, c);
c = trace(g5*q1Snk*adj(q2)*(g5*gamma)*q3);
c = trace(g5*q1*adj(q2)*(g5*gamma)*q3);
sliceSum(c, buf, Tp);
result.gamma = par().gamma;
@ -174,7 +159,8 @@ void TGamma3pt<FImpl1, FImpl2, FImpl3>::execute(void)
{
result.corr[t] = TensorRemove(buf[t]);
}
saveResult(par().output, "gamma3pt", result);
write(writer, "gamma3pt", result);
}
END_MODULE_NAMESPACE

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Meson.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TMeson<FIMPL,FIMPL>;

View File

@ -4,10 +4,12 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Meson.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -45,11 +47,12 @@ BEGIN_HADRONS_NAMESPACE
- q1: input propagator 1 (string)
- q2: input propagator 2 (string)
- gammas: gamma products to insert at sink & source, pairs of gamma matrices
(space-separated strings) in round brackets (i.e. (g_sink g_src)),
in a sequence (e.g. "(Gamma5 Gamma5)(Gamma5 GammaT)").
(space-separated strings) in angled brackets (i.e. <g_sink g_src>),
in a sequence (e.g. "<Gamma5 Gamma5><Gamma5 GammaT>").
Special values: "all" - perform all possible contractions.
- sink: module to compute the sink to use in contraction (string).
- mom: momentum insertion, space-separated float sequence (e.g ".1 .2 1. 0."),
given as multiples of (2*pi) / L.
*/
/******************************************************************************
@ -90,19 +93,16 @@ public:
// constructor
TMeson(const std::string name);
// destructor
virtual ~TMeson(void) {};
virtual ~TMeson(void) = default;
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
protected:
// execution
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Meson, ARG(TMeson<FIMPL, FIMPL>), MContraction);
MODULE_REGISTER_NS(Meson, ARG(TMeson<FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TMeson implementation *
@ -125,7 +125,7 @@ std::vector<std::string> TMeson<FImpl1, FImpl2>::getInput(void)
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TMeson<FImpl1, FImpl2>::getOutput(void)
{
std::vector<std::string> output = {};
std::vector<std::string> output = {getName()};
return output;
}
@ -151,15 +151,9 @@ void TMeson<FImpl1, FImpl2>::parseGammaString(std::vector<GammaPair> &gammaList)
{
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
#define mesonConnected(q1, q2, gSnk, gSrc) \
@ -172,6 +166,7 @@ void TMeson<FImpl1, FImpl2>::execute(void)
<< " quarks '" << par().q1 << "' and '" << par().q2 << "'"
<< std::endl;
CorrWriter writer(par().output);
std::vector<TComplex> buf;
std::vector<Result> result;
Gamma g5(Gamma::Algebra::Gamma5);
@ -186,11 +181,11 @@ void TMeson<FImpl1, FImpl2>::execute(void)
result[i].gamma_src = gammaList[i].second;
result[i].corr.resize(nt);
}
if (envHasType(SlicedPropagator1, par().q1) and
envHasType(SlicedPropagator2, par().q2))
if (env().template isObjectOfType<SlicedPropagator1>(par().q1) and
env().template isObjectOfType<SlicedPropagator2>(par().q2))
{
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(SlicedPropagator2, par().q2);
SlicedPropagator1 &q1 = *env().template getObject<SlicedPropagator1>(par().q1);
SlicedPropagator2 &q2 = *env().template getObject<SlicedPropagator2>(par().q2);
LOG(Message) << "(propagator already sinked)" << std::endl;
for (unsigned int i = 0; i < result.size(); ++i)
@ -206,10 +201,10 @@ void TMeson<FImpl1, FImpl2>::execute(void)
}
else
{
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
envGetTmp(LatticeComplex, c);
LOG(Message) << "(using sink '" << par().sink << "')" << std::endl;
for (unsigned int i = 0; i < result.size(); ++i)
{
@ -217,17 +212,18 @@ void TMeson<FImpl1, FImpl2>::execute(void)
Gamma gSrc(gammaList[i].second);
std::string ns;
ns = vm().getModuleNamespace(env().getObjectModule(par().sink));
ns = env().getModuleNamespace(env().getObjectModule(par().sink));
if (ns == "MSource")
{
PropagatorField1 &sink = envGet(PropagatorField1, par().sink);
PropagatorField1 &sink =
*env().template getObject<PropagatorField1>(par().sink);
c = trace(mesonConnected(q1, q2, gSnk, gSrc)*sink);
sliceSum(c, buf, Tp);
}
else if (ns == "MSink")
{
SinkFnScalar &sink = envGet(SinkFnScalar, par().sink);
SinkFnScalar &sink = *env().template getObject<SinkFnScalar>(par().sink);
c = trace(mesonConnected(q1, q2, gSnk, gSrc));
buf = sink(c);
@ -238,7 +234,7 @@ void TMeson<FImpl1, FImpl2>::execute(void)
}
}
}
saveResult(par().output, "meson", result);
write(writer, "meson", result);
}
END_MODULE_NAMESPACE

View File

@ -1,8 +0,0 @@
#include <Grid/Hadrons/Modules/MContraction/MesonFieldGamma.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TMesonFieldGamma<FIMPL>;
template class Grid::Hadrons::MContraction::TMesonFieldGamma<ZFIMPL>;

View File

@ -1,269 +0,0 @@
#ifndef Hadrons_MContraction_MesonFieldGamma_hpp_
#define Hadrons_MContraction_MesonFieldGamma_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <Grid/Hadrons/AllToAllReduction.hpp>
#include <Grid/Grid_Eigen_Dense.h>
#include <fstream>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* MesonFieldGamma *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class MesonFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFieldPar,
int, Nl,
int, N,
int, Nblock,
std::string, A2A1,
std::string, A2A2,
std::string, gammas,
std::string, output);
};
template <typename FImpl>
class TMesonFieldGamma : public Module<MesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
class Result : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<std::vector<std::vector<ComplexD>>>, MesonField);
};
public:
// constructor
TMesonFieldGamma(const std::string name);
// destructor
virtual ~TMesonFieldGamma(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<Gamma::Algebra> &gammaList);
virtual void vectorOfWs(std::vector<FermionField> &w, int i, int Nblock, FermionField &tmpw_5d, std::vector<FermionField> &vec_w);
virtual void vectorOfVs(std::vector<FermionField> &v, int j, int Nblock, FermionField &tmpv_5d, std::vector<FermionField> &vec_v);
virtual void gammaMult(std::vector<FermionField> &v, Gamma gamma);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(MesonFieldGamma, ARG(TMesonFieldGamma<FIMPL>), MContraction);
MODULE_REGISTER(ZMesonFieldGamma, ARG(TMesonFieldGamma<ZFIMPL>), MContraction);
/******************************************************************************
* TMesonFieldGamma implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TMesonFieldGamma<FImpl>::TMesonFieldGamma(const std::string name)
: Module<MesonFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TMesonFieldGamma<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A1 + "_class", par().A2A2 + "_class"};
in.push_back(par().A2A1 + "_w_high_4d");
in.push_back(par().A2A2 + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TMesonFieldGamma<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::parseGammaString(std::vector<Gamma::Algebra> &gammaList)
{
gammaList.clear();
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
gammaList.push_back(((Gamma::Algebra)i));
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<Gamma::Algebra>(par().gammas);
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::vectorOfWs(std::vector<FermionField> &w, int i, int Nblock, FermionField &tmpw_5d, std::vector<FermionField> &vec_w)
{
for (unsigned int ni = 0; ni < Nblock; ni++)
{
vec_w[ni] = w[i + ni];
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::vectorOfVs(std::vector<FermionField> &v, int j, int Nblock, FermionField &tmpv_5d, std::vector<FermionField> &vec_v)
{
for (unsigned int nj = 0; nj < Nblock; nj++)
{
vec_v[nj] = v[j+nj];
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::gammaMult(std::vector<FermionField> &v, Gamma gamma)
{
int Nblock = v.size();
for (unsigned int nj = 0; nj < Nblock; nj++)
{
v[nj] = gamma * v[nj];
}
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMesonFieldGamma<FImpl>::setup(void)
{
int nt = env().getDim(Tp);
int N = par().N;
int Nblock = par().Nblock;
int Ls_ = env().getObjectLs(par().A2A1 + "_class");
envTmpLat(FermionField, "tmpv_5d", Ls_);
envTmpLat(FermionField, "tmpw_5d", Ls_);
envTmp(std::vector<FermionField>, "w", 1, N, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v", 1, N, FermionField(env().getGrid(1)));
envTmp(Eigen::MatrixXcd, "MF", 1, Eigen::MatrixXcd::Zero(nt, N * N));
envTmp(std::vector<FermionField>, "w_block", 1, Nblock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v_block", 1, Nblock, FermionField(env().getGrid(1)));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMesonFieldGamma<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field for gamma = " << par().gammas << ", taking w from " << par().A2A1 << " and v from " << par().A2A2 << std::endl;
int N = par().N;
int nt = env().getDim(Tp);
int Nblock = par().Nblock;
std::vector<Result> result;
std::vector<Gamma::Algebra> gammaResultList;
std::vector<Gamma> gammaList;
parseGammaString(gammaResultList);
result.resize(gammaResultList.size());
Gamma g5(Gamma::Algebra::Gamma5);
gammaList.resize(gammaResultList.size(), g5);
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].gamma = gammaResultList[i];
result[i].MesonField.resize(N, std::vector<std::vector<ComplexD>>(N, std::vector<ComplexD>(nt)));
Gamma gamma(gammaResultList[i]);
gammaList[i] = gamma;
}
auto &a2a1 = envGet(A2ABase, par().A2A1 + "_class");
auto &a2a2 = envGet(A2ABase, par().A2A2 + "_class");
envGetTmp(FermionField, tmpv_5d);
envGetTmp(FermionField, tmpw_5d);
envGetTmp(std::vector<FermionField>, v);
envGetTmp(std::vector<FermionField>, w);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
for (int i = 0; i < N; i++)
{
a2a2.return_v(i, tmpv_5d, v[i]);
a2a1.return_w(i, tmpw_5d, w[i]);
}
LOG(Message) << "Found v and w vectors for N = " << N << std::endl;
std::vector<std::vector<ComplexD>> MesonField_ij;
LOG(Message) << "Before blocked MFs, Nblock = " << Nblock << std::endl;
envGetTmp(std::vector<FermionField>, v_block);
envGetTmp(std::vector<FermionField>, w_block);
MesonField_ij.resize(Nblock * Nblock, std::vector<ComplexD>(nt));
envGetTmp(Eigen::MatrixXcd, MF);
LOG(Message) << "Before blocked MFs, Nblock = " << Nblock << std::endl;
for (unsigned int i = 0; i < N; i += Nblock)
{
vectorOfWs(w, i, Nblock, tmpw_5d, w_block);
for (unsigned int j = 0; j < N; j += Nblock)
{
vectorOfVs(v, j, Nblock, tmpv_5d, v_block);
for (unsigned int k = 0; k < result.size(); k++)
{
gammaMult(v_block, gammaList[k]);
sliceInnerProductMesonField(MesonField_ij, w_block, v_block, Tp);
for (unsigned int nj = 0; nj < Nblock; nj++)
{
for (unsigned int ni = 0; ni < Nblock; ni++)
{
MF.col((i + ni) + (j + nj) * N) = Eigen::VectorXcd::Map(&MesonField_ij[nj * Nblock + ni][0], MesonField_ij[nj * Nblock + ni].size());
}
}
}
}
if (i % 10 == 0)
{
LOG(Message) << "MF for i = " << i << " of " << N << std::endl;
}
}
LOG(Message) << "Before Global sum, Nblock = " << Nblock << std::endl;
v_block[0]._grid->GlobalSumVector(MF.data(), MF.size());
LOG(Message) << "After Global sum, Nblock = " << Nblock << std::endl;
for (unsigned int i = 0; i < N; i++)
{
for (unsigned int j = 0; j < N; j++)
{
for (unsigned int k = 0; k < result.size(); k++)
{
for (unsigned int t = 0; t < nt; t++)
{
result[k].MesonField[i][j][t] = MF.col(i + N * j)[t];
}
}
}
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_MesonFieldGm_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WardIdentity.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TWardIdentity<FIMPL>;

View File

@ -1,224 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WardIdentity.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WardIdentity_hpp_
#define Hadrons_MContraction_WardIdentity_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Ward Identity contractions
-----------------------------
* options:
- q: propagator, 5D if available (string)
- action: action module used for propagator solution (string)
- mass: mass of quark (double)
- test_axial: whether or not to test PCAC relation.
*/
/******************************************************************************
* WardIdentity *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class WardIdentityPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WardIdentityPar,
std::string, q,
std::string, action,
double, mass,
bool, test_axial);
};
template <typename FImpl>
class TWardIdentity: public Module<WardIdentityPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TWardIdentity(const std::string name);
// destructor
virtual ~TWardIdentity(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(WardIdentity, TWardIdentity<FIMPL>, MContraction);
/******************************************************************************
* TWardIdentity implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWardIdentity<FImpl>::TWardIdentity(const std::string name)
: Module<WardIdentityPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWardIdentity<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().action};
return in;
}
template <typename FImpl>
std::vector<std::string> TWardIdentity<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWardIdentity<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().q);
if (Ls_ != env().getObjectLs(par().action))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and propagator");
}
envTmpLat(PropagatorField, "tmp");
envTmpLat(PropagatorField, "vector_WI");
if (par().test_axial)
{
envTmpLat(PropagatorField, "psi");
envTmpLat(LatticeComplex, "PP");
envTmpLat(LatticeComplex, "axial_defect");
envTmpLat(LatticeComplex, "PJ5q");
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWardIdentity<FImpl>::execute(void)
{
LOG(Message) << "Performing Ward Identity checks for quark '" << par().q
<< "'." << std::endl;
auto &q = envGet(PropagatorField, par().q);
auto &act = envGet(FMat, par().action);
Gamma g5(Gamma::Algebra::Gamma5);
// Compute D_mu V_mu, D here is backward derivative.
envGetTmp(PropagatorField, tmp);
envGetTmp(PropagatorField, vector_WI);
vector_WI = zero;
for (unsigned int mu = 0; mu < Nd; ++mu)
{
act.ContractConservedCurrent(q, q, tmp, Current::Vector, mu);
tmp -= Cshift(tmp, mu, -1);
vector_WI += tmp;
}
// Test ward identity D_mu V_mu = 0;
LOG(Message) << "Vector Ward Identity check Delta_mu V_mu = "
<< norm2(vector_WI) << std::endl;
if (par().test_axial)
{
envGetTmp(PropagatorField, psi);
envGetTmp(LatticeComplex, PP);
envGetTmp(LatticeComplex, axial_defect);
envGetTmp(LatticeComplex, PJ5q);
std::vector<TComplex> axial_buf;
// Compute <P|D_mu A_mu>, D is backwards derivative.
axial_defect = zero;
for (unsigned int mu = 0; mu < Nd; ++mu)
{
act.ContractConservedCurrent(q, q, tmp, Current::Axial, mu);
tmp -= Cshift(tmp, mu, -1);
axial_defect += trace(g5*tmp);
}
// Get <P|J5q> for 5D (zero for 4D) and <P|P>.
PJ5q = zero;
if (Ls_ > 1)
{
// <P|P>
ExtractSlice(tmp, q, 0, 0);
psi = 0.5 * (tmp - g5*tmp);
ExtractSlice(tmp, q, Ls_ - 1, 0);
psi += 0.5 * (tmp + g5*tmp);
PP = trace(adj(psi)*psi);
// <P|5Jq>
ExtractSlice(tmp, q, Ls_/2 - 1, 0);
psi = 0.5 * (tmp + g5*tmp);
ExtractSlice(tmp, q, Ls_/2, 0);
psi += 0.5 * (tmp - g5*tmp);
PJ5q = trace(adj(psi)*psi);
}
else
{
PP = trace(adj(q)*q);
}
// Test ward identity <P|D_mu A_mu> = 2m<P|P> + 2<P|J5q>
LOG(Message) << "|D_mu A_mu|^2 = " << norm2(axial_defect) << std::endl;
LOG(Message) << "|PP|^2 = " << norm2(PP) << std::endl;
LOG(Message) << "|PJ5q|^2 = " << norm2(PJ5q) << std::endl;
LOG(Message) << "Axial Ward Identity defect Delta_mu A_mu = "
<< norm2(axial_defect) << std::endl;
// Axial defect by timeslice.
axial_defect -= 2.*(par().mass*PP + PJ5q);
LOG(Message) << "Check Axial defect by timeslice" << std::endl;
sliceSum(axial_defect, axial_buf, Tp);
for (int t = 0; t < axial_buf.size(); ++t)
{
LOG(Message) << "t = " << t << ": "
<< TensorRemove(axial_buf[t]) << std::endl;
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WardIdentity_hpp_

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonian.hpp
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -77,7 +76,6 @@ public:
std::string, q2,
std::string, q3,
std::string, q4,
unsigned int, tSnk,
std::string, output);
};
@ -97,19 +95,17 @@ public:\
/* constructor */ \
T##modname(const std::string name);\
/* destructor */ \
virtual ~T##modname(void) {};\
virtual ~T##modname(void) = default;\
/* dependency relation */ \
virtual std::vector<std::string> getInput(void);\
virtual std::vector<std::string> getOutput(void);\
public:\
std::vector<std::string> VA_label = {"V", "A"};\
protected:\
/* setup */ \
virtual void setup(void);\
/* execution */ \
virtual void execute(void);\
std::vector<std::string> VA_label = {"V", "A"};\
};\
MODULE_REGISTER(modname, T##modname, MContraction);
MODULE_REGISTER_NS(modname, T##modname, MContraction);
END_MODULE_NAMESPACE

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianEye.cc
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -55,8 +54,6 @@ using namespace MContraction;
*
* S: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1]*q4*gL[mu][p_2])
* E: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1])*trace(q4*gL[mu][p_2])
*
* Note q1 must be sink smeared.
*/
/******************************************************************************
@ -77,7 +74,7 @@ std::vector<std::string> TWeakHamiltonianEye::getInput(void)
std::vector<std::string> TWeakHamiltonianEye::getOutput(void)
{
std::vector<std::string> out = {};
std::vector<std::string> out = {getName()};
return out;
}
@ -85,15 +82,7 @@ std::vector<std::string> TWeakHamiltonianEye::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp1");
envTmpLat(LatticeComplex, "tmp2");
envTmp(std::vector<PropagatorField>, "S_body", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "S_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "E_body", 1, ndim, LatticeComplex(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "E_loop", 1, ndim, LatticeComplex(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
@ -104,30 +93,28 @@ void TWeakHamiltonianEye::execute(void)
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(SlicedPropagator, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_eye_diag);
unsigned int ndim = env().getNd();
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_eye_diag);
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp1);
envGetTmp(LatticeComplex, tmp2);
envGetTmp(std::vector<PropagatorField>, S_body);
envGetTmp(std::vector<PropagatorField>, S_loop);
envGetTmp(std::vector<LatticeComplex>, E_body);
envGetTmp(std::vector<LatticeComplex>, E_loop);
// Get sink timeslice of q1.
SitePropagator q1Snk = q1[par().tSnk];
PropagatorField tmp1(env().getGrid());
LatticeComplex tmp2(env().getGrid());
std::vector<PropagatorField> S_body(ndim, tmp1);
std::vector<PropagatorField> S_loop(ndim, tmp1);
std::vector<LatticeComplex> E_body(ndim, tmp2);
std::vector<LatticeComplex> E_loop(ndim, tmp2);
// Setup for S-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
S_body[mu] = MAKE_SE_BODY(q1Snk, q2, q3, GammaL(Gamma::gmu[mu]));
S_body[mu] = MAKE_SE_BODY(q1, q2, q3, GammaL(Gamma::gmu[mu]));
S_loop[mu] = MAKE_SE_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
@ -146,6 +133,5 @@ void TWeakHamiltonianEye::execute(void)
SUM_MU(expbuf, E_body[mu]*E_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[E_diag], "HW_E")
// IO
saveResult(par().output, "HW_Eye", result);
write(writer, "HW_Eye", result);
}

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.cc
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -77,7 +76,7 @@ std::vector<std::string> TWeakHamiltonianNonEye::getInput(void)
std::vector<std::string> TWeakHamiltonianNonEye::getOutput(void)
{
std::vector<std::string> out = {};
std::vector<std::string> out = {getName()};
return out;
}
@ -85,15 +84,7 @@ std::vector<std::string> TWeakHamiltonianNonEye::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp1");
envTmpLat(LatticeComplex, "tmp2");
envTmp(std::vector<PropagatorField>, "C_i_side_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "C_f_side_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "W_i_side_loop", 1, ndim, LatticeComplex(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "W_f_side_loop", 1, ndim, LatticeComplex(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
@ -104,22 +95,23 @@ void TWeakHamiltonianNonEye::execute(void)
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(PropagatorField, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_noneye_diag);
unsigned int ndim = env().getNd();
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp1);
envGetTmp(LatticeComplex, tmp2);
envGetTmp(std::vector<PropagatorField>, C_i_side_loop);
envGetTmp(std::vector<PropagatorField>, C_f_side_loop);
envGetTmp(std::vector<LatticeComplex>, W_i_side_loop);
envGetTmp(std::vector<LatticeComplex>, W_f_side_loop);
PropagatorField tmp1(env().getGrid());
LatticeComplex tmp2(env().getGrid());
std::vector<PropagatorField> C_i_side_loop(ndim, tmp1);
std::vector<PropagatorField> C_f_side_loop(ndim, tmp1);
std::vector<LatticeComplex> W_i_side_loop(ndim, tmp2);
std::vector<LatticeComplex> W_f_side_loop(ndim, tmp2);
// Setup for C-type contractions.
for (int mu = 0; mu < ndim; ++mu)
@ -143,6 +135,5 @@ void TWeakHamiltonianNonEye::execute(void)
SUM_MU(expbuf, W_i_side_loop[mu]*W_f_side_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[W_diag], "HW_W")
// IO
saveResult(par().output, "HW_NonEye", result);
write(writer, "HW_NonEye", result);
}

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.cc
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -79,7 +78,7 @@ std::vector<std::string> TWeakNeutral4ptDisc::getInput(void)
std::vector<std::string> TWeakNeutral4ptDisc::getOutput(void)
{
std::vector<std::string> out = {};
std::vector<std::string> out = {getName()};
return out;
}
@ -87,13 +86,7 @@ std::vector<std::string> TWeakNeutral4ptDisc::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
void TWeakNeutral4ptDisc::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp");
envTmpLat(LatticeComplex, "curr");
envTmp(std::vector<PropagatorField>, "meson", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "loop", 1, ndim, PropagatorField(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
@ -104,20 +97,21 @@ void TWeakNeutral4ptDisc::execute(void)
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(PropagatorField, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_neut_disc_diag);
unsigned int ndim = env().getNd();
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp);
envGetTmp(LatticeComplex, curr);
envGetTmp(std::vector<PropagatorField>, meson);
envGetTmp(std::vector<PropagatorField>, loop);
PropagatorField tmp(env().getGrid());
std::vector<PropagatorField> meson(ndim, tmp);
std::vector<PropagatorField> loop(ndim, tmp);
LatticeComplex curr(env().getGrid());
// Setup for type 1 contractions.
for (int mu = 0; mu < ndim; ++mu)
@ -137,6 +131,5 @@ void TWeakNeutral4ptDisc::execute(void)
expbuf *= curr;
MAKE_DIAG(expbuf, corrbuf, result[neut_disc_2_diag], "HW_disc0_2")
// IO
saveResult(par().output, "HW_disc0", result);
write(writer, "HW_disc0", result);
}

View File

@ -4,10 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp
Copyright (C) 2015-2018
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MFermion/FreeProp.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MFermion;
template class Grid::Hadrons::MFermion::TFreeProp<FIMPL>;

View File

@ -1,187 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MFermion/FreeProp.hpp
Copyright (C) 2015-2018
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MFermion_FreeProp_hpp_
#define Hadrons_MFermion_FreeProp_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* FreeProp *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MFermion)
class FreePropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FreePropPar,
std::string, source,
std::string, action,
double, mass,
std::string, twist);
};
template <typename FImpl>
class TFreeProp: public Module<FreePropPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
public:
// constructor
TFreeProp(const std::string name);
// destructor
virtual ~TFreeProp(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(FreeProp, TFreeProp<FIMPL>, MFermion);
/******************************************************************************
* TFreeProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TFreeProp<FImpl>::TFreeProp(const std::string name)
: Module<FreePropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TFreeProp<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().source, par().action};
return in;
}
template <typename FImpl>
std::vector<std::string> TFreeProp<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName(), getName() + "_5d"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFreeProp<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().action);
envCreateLat(PropagatorField, getName());
envTmpLat(FermionField, "source", Ls_);
envTmpLat(FermionField, "sol", Ls_);
envTmpLat(FermionField, "tmp");
if (Ls_ > 1)
{
envCreateLat(PropagatorField, getName() + "_5d", Ls_);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFreeProp<FImpl>::execute(void)
{
LOG(Message) << "Computing free fermion propagator '" << getName() << "'"
<< std::endl;
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
auto &prop = envGet(PropagatorField, propName);
auto &fullSrc = envGet(PropagatorField, par().source);
auto &mat = envGet(FMat, par().action);
RealD mass = par().mass;
envGetTmp(FermionField, source);
envGetTmp(FermionField, sol);
envGetTmp(FermionField, tmp);
LOG(Message) << "Calculating a free Propagator with mass " << mass
<< " using the action '" << par().action
<< "' on source '" << par().source << "'" << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < FImpl::Dimension; ++c)
{
LOG(Message) << "Calculation for spin= " << s << ", color= " << c
<< std::endl;
// source conversion for 4D sources
if (!env().isObject5d(par().source))
{
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
else
{
PropToFerm<FImpl>(tmp, fullSrc, s, c);
mat.ImportPhysicalFermionSource(tmp, source);
}
}
// source conversion for 5D sources
else
{
if (Ls_ != env().getObjectLs(par().source))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and source");
}
else
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
}
sol = zero;
std::vector<Real> twist = strToVec<Real>(par().twist);
if(twist.size() != Nd) HADRONS_ERROR(Size, "number of twist angles does not match number of dimensions");
mat.FreePropagator(source,sol,mass,twist);
FermToProp<FImpl>(prop, sol, s, c);
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
PropagatorField &p4d = envGet(PropagatorField, getName());
mat.ExportPhysicalFermionSolution(sol, tmp);
FermToProp<FImpl>(p4d, tmp, s, c);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MFermion_FreeProp_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MFermion/GaugeProp.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MFermion;
template class Grid::Hadrons::MFermion::TGaugeProp<FIMPL>;
template class Grid::Hadrons::MFermion::TGaugeProp<ZFIMPL>;

View File

@ -1,41 +1,9 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MFermion/GaugeProp.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MFermion_GaugeProp_hpp_
#define Hadrons_MFermion_GaugeProp_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
@ -56,28 +24,25 @@ template <typename FImpl>
class TGaugeProp: public Module<GaugePropPar>
{
public:
FG_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TGaugeProp(const std::string name);
// destructor
virtual ~TGaugeProp(void) {};
virtual ~TGaugeProp(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
Solver *solver_{nullptr};
SolverFn *solver_{nullptr};
};
MODULE_REGISTER_TMP(GaugeProp, TGaugeProp<FIMPL>, MFermion);
MODULE_REGISTER_TMP(ZGaugeProp, TGaugeProp<ZFIMPL>, MFermion);
MODULE_REGISTER_NS(GaugeProp, TGaugeProp<FIMPL>, MFermion);
/******************************************************************************
* TGaugeProp implementation *
@ -110,13 +75,10 @@ template <typename FImpl>
void TGaugeProp<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().solver);
envCreateLat(PropagatorField, getName());
envTmpLat(FermionField, "source", Ls_);
envTmpLat(FermionField, "sol", Ls_);
envTmpLat(FermionField, "tmp");
env().template registerLattice<PropagatorField>(getName());
if (Ls_ > 1)
{
envCreateLat(PropagatorField, getName() + "_5d", Ls_);
env().template registerLattice<PropagatorField>(getName() + "_5d", Ls_);
}
}
@ -125,36 +87,41 @@ template <typename FImpl>
void TGaugeProp<FImpl>::execute(void)
{
LOG(Message) << "Computing quark propagator '" << getName() << "'"
<< std::endl;
<< std::endl;
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
auto &prop = envGet(PropagatorField, propName);
auto &fullSrc = envGet(PropagatorField, par().source);
auto &solver = envGet(Solver, par().solver);
auto &mat = solver.getFMat();
FermionField source(env().getGrid(Ls_)), sol(env().getGrid(Ls_)),
tmp(env().getGrid());
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
PropagatorField &prop = *env().template createLattice<PropagatorField>(propName);
PropagatorField &fullSrc = *env().template getObject<PropagatorField>(par().source);
SolverFn &solver = *env().template getObject<SolverFn>(par().solver);
if (Ls_ > 1)
{
env().template createLattice<PropagatorField>(getName());
}
envGetTmp(FermionField, source);
envGetTmp(FermionField, sol);
envGetTmp(FermionField, tmp);
LOG(Message) << "Inverting using solver '" << par().solver
<< "' on source '" << par().source << "'" << std::endl;
<< "' on source '" << par().source << "'" << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < FImpl::Dimension; ++c)
for (unsigned int c = 0; c < Nc; ++c)
{
LOG(Message) << "Inversion for spin= " << s << ", color= " << c
<< std::endl;
<< std::endl;
// source conversion for 4D sources
LOG(Message) << "Import source" << std::endl;
if (!env().isObject5d(par().source))
{
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, fullSrc, s, c);
PropToFerm(source, fullSrc, s, c);
}
else
{
PropToFerm<FImpl>(tmp, fullSrc, s, c);
mat.ImportPhysicalFermionSource(tmp, source);
source = zero;
PropToFerm(tmp, fullSrc, s, c);
InsertSlice(tmp, source, 0, 0);
InsertSlice(tmp, source, Ls_-1, 0);
axpby_ssp_pplus(source, 0., source, 1., source, 0, 0);
axpby_ssp_pminus(source, 0., source, 1., source, Ls_-1, Ls_-1);
}
}
// source conversion for 5D sources
@ -162,24 +129,26 @@ void TGaugeProp<FImpl>::execute(void)
{
if (Ls_ != env().getObjectLs(par().source))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and source");
HADRON_ERROR("Ls mismatch between quark action and source");
}
else
{
PropToFerm<FImpl>(source, fullSrc, s, c);
PropToFerm(source, fullSrc, s, c);
}
}
LOG(Message) << "Solve" << std::endl;
sol = zero;
solver(sol, source);
LOG(Message) << "Export solution" << std::endl;
FermToProp<FImpl>(prop, sol, s, c);
FermToProp(prop, sol, s, c);
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
PropagatorField &p4d = envGet(PropagatorField, getName());
mat.ExportPhysicalFermionSolution(sol, tmp);
FermToProp<FImpl>(p4d, tmp, s, c);
PropagatorField &p4d =
*env().template getObject<PropagatorField>(getName());
axpby_ssp_pminus(sol, 0., sol, 1., sol, 0, 0);
axpby_ssp_pplus(sol, 1., sol, 1., sol, 0, Ls_-1);
ExtractSlice(tmp, sol, 0, 0);
FermToProp(p4d, tmp, s, c);
}
}
}

View File

@ -1,79 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/FundtoHirep.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MGauge/FundtoHirep.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
// constructor /////////////////////////////////////////////////////////////////
template <class Rep>
TFundtoHirep<Rep>::TFundtoHirep(const std::string name)
: Module<FundtoHirepPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <class Rep>
std::vector<std::string> TFundtoHirep<Rep>::getInput(void)
{
std::vector<std::string> in = {par().gaugeconf};
return in;
}
template <class Rep>
std::vector<std::string> TFundtoHirep<Rep>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename Rep>
void TFundtoHirep<Rep>::setup(void)
{
envCreateLat(Rep::LatticeField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <class Rep>
void TFundtoHirep<Rep>::execute(void)
{
LOG(Message) << "Transforming Representation" << std::endl;
auto &U = envGet(LatticeGaugeField, par().gaugeconf);
auto &URep = envGet(Rep::LatticeField, getName());
Rep TargetRepresentation(U._grid);
TargetRepresentation.update_representation(U);
URep = TargetRepresentation.U;
}

View File

@ -1,76 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/FundtoHirep.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGauge_FundtoHirep_hpp_
#define Hadrons_MGauge_FundtoHirep_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load a NERSC configuration *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
class FundtoHirepPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FundtoHirepPar,
std::string, gaugeconf);
};
template <class Rep>
class TFundtoHirep: public Module<FundtoHirepPar>
{
public:
// constructor
TFundtoHirep(const std::string name);
// destructor
virtual ~TFundtoHirep(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
void setup(void);
// execution
void execute(void);
};
//MODULE_REGISTER_TMP(FundtoAdjoint, TFundtoHirep<AdjointRepresentation>, MGauge);
//MODULE_REGISTER_TMP(FundtoTwoIndexSym, TFundtoHirep<TwoIndexSymmetricRepresentation>, MGauge);
//MODULE_REGISTER_TMP(FundtoTwoIndexAsym, TFundtoHirep<TwoIndexAntiSymmetricRepresentation>, MGauge);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_FundtoHirep_hpp_

View File

@ -2,9 +2,10 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadNersc.cc
Source file: extras/Hadrons/Modules/MGauge/Load.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -25,29 +26,30 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MIO;
using namespace MGauge;
/******************************************************************************
* TLoadNersc implementation *
* TLoad implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TLoadNersc::TLoadNersc(const std::string name)
: Module<LoadNerscPar>(name)
TLoad::TLoad(const std::string name)
: Module<LoadPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TLoadNersc::getInput(void)
std::vector<std::string> TLoad::getInput(void)
{
std::vector<std::string> in;
return in;
}
std::vector<std::string> TLoadNersc::getOutput(void)
std::vector<std::string> TLoad::getOutput(void)
{
std::vector<std::string> out = {getName()};
@ -55,20 +57,22 @@ std::vector<std::string> TLoadNersc::getOutput(void)
}
// setup ///////////////////////////////////////////////////////////////////////
void TLoadNersc::setup(void)
void TLoad::setup(void)
{
envCreateLat(LatticeGaugeField, getName());
env().registerLattice<LatticeGaugeField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TLoadNersc::execute(void)
void TLoad::execute(void)
{
FieldMetaData header;
std::string fileName = par().file + "."
+ std::to_string(vm().getTrajectory());
FieldMetaData header;
std::string fileName = par().file + "."
+ std::to_string(env().getTrajectory());
LOG(Message) << "Loading NERSC configuration from file '" << fileName
<< "'" << std::endl;
auto &U = envGet(LatticeGaugeField, getName());
LatticeGaugeField &U = *env().createLattice<LatticeGaugeField>(getName());
NerscIO::readConfiguration(U, header, fileName);
LOG(Message) << "NERSC header:" << std::endl;
dump_meta_data(header, LOG(Message));
}

View File

@ -2,9 +2,10 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadNersc.hpp
Source file: extras/Hadrons/Modules/MGauge/Load.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -25,8 +26,9 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadNersc_hpp_
#define Hadrons_MIO_LoadNersc_hpp_
#ifndef Hadrons_MGauge_Load_hpp_
#define Hadrons_MGauge_Load_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
@ -35,24 +37,24 @@ See the full license in the file "LICENSE" in the top level distribution directo
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load a NERSC configuration *
* Load a NERSC configuration *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
BEGIN_MODULE_NAMESPACE(MGauge)
class LoadNerscPar: Serializable
class LoadPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadNerscPar,
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadPar,
std::string, file);
};
class TLoadNersc: public Module<LoadNerscPar>
class TLoad: public Module<LoadPar>
{
public:
// constructor
TLoadNersc(const std::string name);
TLoad(const std::string name);
// destructor
virtual ~TLoadNersc(void) {};
virtual ~TLoad(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
@ -62,10 +64,10 @@ public:
virtual void execute(void);
};
MODULE_REGISTER(LoadNersc, TLoadNersc, MIO);
MODULE_REGISTER_NS(Load, TLoad, MGauge);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadNersc_hpp_
#endif // Hadrons_MGauge_Load_hpp_

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/Random.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -43,9 +44,7 @@ TRandom::TRandom(const std::string name)
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TRandom::getInput(void)
{
std::vector<std::string> in;
return in;
return std::vector<std::string>();
}
std::vector<std::string> TRandom::getOutput(void)
@ -58,14 +57,13 @@ std::vector<std::string> TRandom::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
void TRandom::setup(void)
{
envCreateLat(LatticeGaugeField, getName());
env().registerLattice<LatticeGaugeField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TRandom::execute(void)
{
LOG(Message) << "Generating random gauge configuration" << std::endl;
auto &U = envGet(LatticeGaugeField, getName());
LatticeGaugeField &U = *env().createLattice<LatticeGaugeField>(getName());
SU3::HotConfiguration(*env().get4dRng(), U);
}

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/Random.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -46,18 +47,17 @@ public:
// constructor
TRandom(const std::string name);
// destructor
virtual ~TRandom(void) {};
virtual ~TRandom(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(Random, TRandom, MGauge);
MODULE_REGISTER_NS(Random, TRandom, MGauge);
END_MODULE_NAMESPACE

View File

@ -4,11 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/StochEm.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <j.harrison@soton.ac.uk>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -59,27 +57,32 @@ std::vector<std::string> TStochEm::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
void TStochEm::setup(void)
{
weightDone_ = env().hasCreatedObject("_" + getName() + "_weight");
envCacheLat(EmComp, "_" + getName() + "_weight");
envCreateLat(EmField, getName());
if (!env().hasRegisteredObject("_" + getName() + "_weight"))
{
env().registerLattice<EmComp>("_" + getName() + "_weight");
}
env().registerLattice<EmField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TStochEm::execute(void)
{
LOG(Message) << "Generating stochastic EM potential..." << std::endl;
std::vector<Real> improvements = strToVec<Real>(par().improvement);
PhotonR photon(par().gauge, par().zmScheme, improvements, par().G0_qedInf);
auto &a = envGet(EmField, getName());
auto &w = envGet(EmComp, "_" + getName() + "_weight");
PhotonR photon(par().gauge, par().zmScheme);
EmField &a = *env().createLattice<EmField>(getName());
EmComp *w;
if (!weightDone_)
if (!env().hasCreatedObject("_" + getName() + "_weight"))
{
LOG(Message) << "Caching stochastic EM potential weight (gauge: "
LOG(Message) << "Caching stochatic EM potential weight (gauge: "
<< par().gauge << ", zero-mode scheme: "
<< par().zmScheme << ")..." << std::endl;
photon.StochasticWeight(w);
w = env().createLattice<EmComp>("_" + getName() + "_weight");
photon.StochasticWeight(*w);
}
photon.StochasticField(a, *env().get4dRng(), w);
else
{
w = env().getObject<EmComp>("_" + getName() + "_weight");
}
LOG(Message) << "Generating stochatic EM potential..." << std::endl;
photon.StochasticField(a, *env().get4dRng(), *w);
}

View File

@ -4,11 +4,9 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/StochEm.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <j.harrison@soton.ac.uk>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -46,9 +44,7 @@ class StochEmPar: Serializable
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(StochEmPar,
PhotonR::Gauge, gauge,
PhotonR::ZmScheme, zmScheme,
std::string, improvement,
Real, G0_qedInf);
PhotonR::ZmScheme, zmScheme);
};
class TStochEm: public Module<StochEmPar>
@ -60,20 +56,17 @@ public:
// constructor
TStochEm(const std::string name);
// destructor
virtual ~TStochEm(void) {};
virtual ~TStochEm(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
bool weightDone_;
};
MODULE_REGISTER(StochEm, TStochEm, MGauge);
MODULE_REGISTER_NS(StochEm, TStochEm, MGauge);
END_MODULE_NAMESPACE

View File

@ -1,7 +0,0 @@
#include <Grid/Hadrons/Modules/MGauge/StoutSmearing.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
template class Grid::Hadrons::MGauge::TStoutSmearing<GIMPL>;

View File

@ -1,104 +0,0 @@
#ifndef Hadrons_MGauge_StoutSmearing_hpp_
#define Hadrons_MGauge_StoutSmearing_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Stout smearing *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
class StoutSmearingPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(StoutSmearingPar,
std::string, gauge,
unsigned int, steps,
double, rho);
};
template <typename GImpl>
class TStoutSmearing: public Module<StoutSmearingPar>
{
public:
typedef typename GImpl::Field GaugeField;
public:
// constructor
TStoutSmearing(const std::string name);
// destructor
virtual ~TStoutSmearing(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(StoutSmearing, TStoutSmearing<GIMPL>, MGauge);
/******************************************************************************
* TStoutSmearing implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename GImpl>
TStoutSmearing<GImpl>::TStoutSmearing(const std::string name)
: Module<StoutSmearingPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename GImpl>
std::vector<std::string> TStoutSmearing<GImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename GImpl>
std::vector<std::string> TStoutSmearing<GImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename GImpl>
void TStoutSmearing<GImpl>::setup(void)
{
envCreateLat(GaugeField, getName());
envTmpLat(GaugeField, "buf");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename GImpl>
void TStoutSmearing<GImpl>::execute(void)
{
LOG(Message) << "Smearing '" << par().gauge << "' with " << par().steps
<< " step" << ((par().steps > 1) ? "s" : "")
<< " of stout smearing and rho= " << par().rho << std::endl;
Smear_Stout<GImpl> smearer(par().rho);
auto &U = envGet(GaugeField, par().gauge);
auto &Usmr = envGet(GaugeField, getName());
envGetTmp(GaugeField, buf);
buf = U;
for (unsigned int n = 0; n < par().steps; ++n)
{
smearer.smear(Usmr, buf);
buf = Usmr;
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_StoutSmearing_hpp_

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/Unit.cc
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -56,14 +57,13 @@ std::vector<std::string> TUnit::getOutput(void)
// setup ///////////////////////////////////////////////////////////////////////
void TUnit::setup(void)
{
envCreateLat(LatticeGaugeField, getName());
env().registerLattice<LatticeGaugeField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TUnit::execute(void)
{
LOG(Message) << "Creating unit gauge configuration" << std::endl;
auto &U = envGet(LatticeGaugeField, getName());
LatticeGaugeField &U = *env().createLattice<LatticeGaugeField>(getName());
SU3::ColdConfiguration(*env().get4dRng(), U);
}

View File

@ -4,7 +4,8 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/Unit.hpp
Copyright (C) 2015-2018
Copyright (C) 2015
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
@ -46,18 +47,17 @@ public:
// constructor
TUnit(const std::string name);
// destructor
virtual ~TUnit(void) {};
virtual ~TUnit(void) = default;
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(Unit, TUnit, MGauge);
MODULE_REGISTER_NS(Unit, TUnit, MGauge);
END_MODULE_NAMESPACE

View File

@ -1,69 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/StochEm.cc
Copyright (C) 2015
Copyright (C) 2016
Author: James Harrison <j.harrison@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MGauge/UnitEm.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
/******************************************************************************
* TStochEm implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TUnitEm::TUnitEm(const std::string name)
: Module<NoPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TUnitEm::getInput(void)
{
return std::vector<std::string>();
}
std::vector<std::string> TUnitEm::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TUnitEm::setup(void)
{
envCreateLat(EmField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
void TUnitEm::execute(void)
{
PhotonR photon(0, 0); // Just chose arbitrary input values here
auto &a = envGet(EmField, getName());
LOG(Message) << "Generating unit EM potential..." << std::endl;
photon.UnitField(a);
}

View File

@ -1,69 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MGauge/StochEm.hpp
Copyright (C) 2015
Copyright (C) 2016
Author: James Harrison <j.harrison@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGauge_UnitEm_hpp_
#define Hadrons_MGauge_UnitEm_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* StochEm *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
class TUnitEm: public Module<NoPar>
{
public:
typedef PhotonR::GaugeField EmField;
typedef PhotonR::GaugeLinkField EmComp;
public:
// constructor
TUnitEm(const std::string name);
// destructor
virtual ~TUnitEm(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(UnitEm, TUnitEm, MGauge);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_UnitEm_hpp_

View File

@ -1,40 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadBinary.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MIO;
template class Grid::Hadrons::MIO::TLoadBinary<GIMPL>;
template class Grid::Hadrons::MIO::TLoadBinary<ScalarNxNAdjImplR<2>>;
template class Grid::Hadrons::MIO::TLoadBinary<ScalarNxNAdjImplR<3>>;
template class Grid::Hadrons::MIO::TLoadBinary<ScalarNxNAdjImplR<4>>;
template class Grid::Hadrons::MIO::TLoadBinary<ScalarNxNAdjImplR<5>>;
template class Grid::Hadrons::MIO::TLoadBinary<ScalarNxNAdjImplR<6>>;

View File

@ -1,140 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadBinary.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadBinary_hpp_
#define Hadrons_MIO_LoadBinary_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load a binary configurations *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadBinaryPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadBinaryPar,
std::string, file,
std::string, format);
};
template <typename Impl>
class TLoadBinary: public Module<LoadBinaryPar>
{
public:
typedef typename Impl::Field Field;
typedef typename Impl::Simd Simd;
typedef typename Field::vector_object vobj;
typedef typename vobj::scalar_object sobj;
typedef typename sobj::DoublePrecision sobj_double;
typedef BinarySimpleMunger<sobj_double, sobj> Munger;
public:
// constructor
TLoadBinary(const std::string name);
// destructor
virtual ~TLoadBinary(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(LoadBinary, TLoadBinary<GIMPL>, MIO);
MODULE_REGISTER_TMP(LoadBinaryScalarSU2, TLoadBinary<ScalarNxNAdjImplR<2>>, MIO);
MODULE_REGISTER_TMP(LoadBinaryScalarSU3, TLoadBinary<ScalarNxNAdjImplR<3>>, MIO);
MODULE_REGISTER_TMP(LoadBinaryScalarSU4, TLoadBinary<ScalarNxNAdjImplR<4>>, MIO);
MODULE_REGISTER_TMP(LoadBinaryScalarSU5, TLoadBinary<ScalarNxNAdjImplR<5>>, MIO);
MODULE_REGISTER_TMP(LoadBinaryScalarSU6, TLoadBinary<ScalarNxNAdjImplR<6>>, MIO);
/******************************************************************************
* TLoadBinary implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename Impl>
TLoadBinary<Impl>::TLoadBinary(const std::string name)
: Module<LoadBinaryPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename Impl>
std::vector<std::string> TLoadBinary<Impl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename Impl>
std::vector<std::string> TLoadBinary<Impl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename Impl>
void TLoadBinary<Impl>::setup(void)
{
envCreateLat(Field, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename Impl>
void TLoadBinary<Impl>::execute(void)
{
Munger munge;
uint32_t nersc_csum, scidac_csuma, scidac_csumb;
auto &U = envGet(Field, getName());
std::string filename = par().file + "."
+ std::to_string(vm().getTrajectory());
LOG(Message) << "Loading " << par().format
<< " binary configuration from file '" << filename
<< "'" << std::endl;
BinaryIO::readLatticeObject<vobj, sobj_double>(U, filename, munge, 0,
par().format, nersc_csum,
scidac_csuma, scidac_csumb);
LOG(Message) << "Checksums:" << std::endl;
LOG(Message) << " NERSC " << nersc_csum << std::endl;
LOG(Message) << " SciDAC A " << scidac_csuma << std::endl;
LOG(Message) << " SciDAC B " << scidac_csumb << std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadBinary_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadCoarseEigenPack.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MIO;
template class Grid::Hadrons::MIO::TLoadCoarseEigenPack<CoarseFermionEigenPack<FIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>>;

View File

@ -1,135 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadCoarseEigenPack_hpp_
#define Hadrons_MIO_LoadCoarseEigenPack_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/EigenPack.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load local coherence eigen vectors/values package *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadCoarseEigenPackPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadCoarseEigenPackPar,
std::string, filestem,
bool, multiFile,
unsigned int, sizeFine,
unsigned int, sizeCoarse,
unsigned int, Ls,
std::vector<int>, blockSize);
};
template <typename Pack>
class TLoadCoarseEigenPack: public Module<LoadCoarseEigenPackPar>
{
public:
typedef CoarseEigenPack<typename Pack::Field, typename Pack::CoarseField> BasePack;
template <typename vtype>
using iImplScalar = iScalar<iScalar<iScalar<vtype>>>;
typedef iImplScalar<typename Pack::Field::vector_type> SiteComplex;
public:
// constructor
TLoadCoarseEigenPack(const std::string name);
// destructor
virtual ~TLoadCoarseEigenPack(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(LoadCoarseFermionEigenPack, ARG(TLoadCoarseEigenPack<CoarseFermionEigenPack<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>>), MIO);
/******************************************************************************
* TLoadCoarseEigenPack implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename Pack>
TLoadCoarseEigenPack<Pack>::TLoadCoarseEigenPack(const std::string name)
: Module<LoadCoarseEigenPackPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename Pack>
std::vector<std::string> TLoadCoarseEigenPack<Pack>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename Pack>
std::vector<std::string> TLoadCoarseEigenPack<Pack>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename Pack>
void TLoadCoarseEigenPack<Pack>::setup(void)
{
env().createGrid(par().Ls);
env().createCoarseGrid(par().blockSize, par().Ls);
envCreateDerived(BasePack, Pack, getName(), par().Ls, par().sizeFine,
par().sizeCoarse, env().getRbGrid(par().Ls),
env().getCoarseGrid(par().blockSize, par().Ls));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename Pack>
void TLoadCoarseEigenPack<Pack>::execute(void)
{
auto cg = env().getCoarseGrid(par().blockSize, par().Ls);
auto &epack = envGetDerived(BasePack, Pack, getName());
Lattice<SiteComplex> dummy(cg);
epack.read(par().filestem, par().multiFile, vm().getTrajectory());
LOG(Message) << "Block Gramm-Schmidt pass 1"<< std::endl;
blockOrthogonalise(dummy, epack.evec);
LOG(Message) << "Block Gramm-Schmidt pass 2"<< std::endl;
blockOrthogonalise(dummy, epack.evec);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadCoarseEigenPack_hpp_

Some files were not shown because too many files have changed in this diff Show More