mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-31 12:04:33 +00:00 
			
		
		
		
	Compare commits
	
		
			3 Commits
		
	
	
		
			feature/rm
			...
			feature/a2
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 9bfd641b22 | ||
|  | be40aaf751 | ||
|  | e069fd5ed8 | 
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -114,4 +114,3 @@ gh-pages/ | ||||
| ##################### | ||||
| Grid/qcd/spin/gamma-gen/*.h | ||||
| Grid/qcd/spin/gamma-gen/*.cc | ||||
| Grid/util/Version.h | ||||
|   | ||||
| @@ -1,5 +0,0 @@ | ||||
| Version : 0.8.0 | ||||
|  | ||||
| - Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended | ||||
| - MPI and MPI3 comms optimisations for KNL and OPA finished | ||||
| - Half precision comms | ||||
|   | ||||
| @@ -30,34 +30,8 @@ directory | ||||
| #ifndef DISABLE_WARNINGS_H | ||||
| #define DISABLE_WARNINGS_H | ||||
|  | ||||
|  | ||||
|  | ||||
| #if defined __GNUC__ && __GNUC__>=6 | ||||
| #pragma GCC diagnostic ignored "-Wignored-attributes" | ||||
| #endif | ||||
|  | ||||
|  //disables and intel compiler specific warning (in json.hpp) | ||||
| #pragma warning disable 488   | ||||
|  | ||||
| #ifdef __NVCC__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma clang diagnostic ignored "-Wdeprecated-register" | ||||
| #pragma diag_suppress unsigned_compare_with_zero | ||||
| #pragma diag_suppress cast_to_qualified_type | ||||
|  | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma diag_suppress extra_semicolon | ||||
|  | ||||
| //Eigen only | ||||
| #endif | ||||
|  | ||||
| // Disable vectorisation in Eigen on the Power8/9 and PowerPC | ||||
| #ifdef  __ALTIVEC__ | ||||
| #define  EIGEN_DONT_VECTORIZE | ||||
| #endif | ||||
| #ifdef  __VSX__ | ||||
| #define  EIGEN_DONT_VECTORIZE | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -42,7 +42,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridQCDcore.h> | ||||
| #include <Grid/qcd/action/Action.h> | ||||
| #include <Grid/qcd/utils/GaugeFix.h> | ||||
| #include <Grid/qcd/utils/CovariantSmearing.h> | ||||
| #include <Grid/qcd/smearing/Smearing.h> | ||||
| #include <Grid/parallelIO/MetaData.h> | ||||
| #include <Grid/qcd/hmc/HMC_aggregate.h> | ||||
|   | ||||
| @@ -38,19 +38,16 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_BASE_H | ||||
| #define GRID_BASE_H | ||||
|  | ||||
|  | ||||
| #include <Grid/DisableWarnings.h> | ||||
| #include <Grid/Namespace.h> | ||||
| #include <Grid/GridStd.h> | ||||
| #include <Grid/threads/Pragmas.h> | ||||
|  | ||||
| #include <Grid/perfmon/Timer.h> | ||||
| #include <Grid/perfmon/PerfCount.h> | ||||
| #include <Grid/util/Util.h> | ||||
| #include <Grid/log/Log.h> | ||||
| #include <Grid/allocator/Allocator.h> | ||||
| #include <Grid/allocator/AlignedAllocator.h> | ||||
| #include <Grid/simd/Simd.h> | ||||
| #include <Grid/threads/ThreadReduction.h> | ||||
| #include <Grid/serialisation/Serialisation.h> | ||||
| #include <Grid/threads/Threads.h> | ||||
| #include <Grid/util/Util.h> | ||||
| #include <Grid/util/Sha.h> | ||||
| #include <Grid/communicator/Communicator.h>  | ||||
| #include <Grid/cartesian/Cartesian.h>     | ||||
| @@ -60,6 +57,5 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/stencil/Stencil.h>       | ||||
| #include <Grid/parallelIO/BinaryIO.h> | ||||
| #include <Grid/algorithms/Algorithms.h>    | ||||
| NAMESPACE_CHECK(GridCore) | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -38,6 +38,5 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/qcd/spin/Spin.h> | ||||
| #include <Grid/qcd/utils/Utils.h> | ||||
| #include <Grid/qcd/representations/Representations.h> | ||||
| NAMESPACE_CHECK(GridQCDCore); | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -6,9 +6,7 @@ | ||||
| /////////////////// | ||||
| #include <cassert> | ||||
| #include <complex> | ||||
| #include <memory> | ||||
| #include <vector> | ||||
| #include <array> | ||||
| #include <string> | ||||
| #include <iostream> | ||||
| #include <iomanip> | ||||
|   | ||||
| @@ -1,59 +1,14 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #pragma once | ||||
| // Force Eigen to use MKL if Grid has been configured with --enable-mkl | ||||
| #ifdef USE_MKL | ||||
| #define EIGEN_USE_MKL_ALL | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic push | ||||
| #pragma GCC diagnostic ignored "-Wdeprecated-declarations" | ||||
| #endif | ||||
|  | ||||
| /* NVCC save and restore compile environment*/ | ||||
| #ifdef __NVCC__ | ||||
| #pragma push | ||||
| #pragma diag_suppress code_is_unreachable | ||||
| #pragma push_macro("__CUDA_ARCH__") | ||||
| #pragma push_macro("__NVCC__") | ||||
| #pragma push_macro("__CUDACC__") | ||||
| #undef __CUDA_ARCH__ | ||||
| #undef __NVCC__ | ||||
| #undef __CUDACC__ | ||||
| #define __NVCC__REDEFINE__ | ||||
| #endif  | ||||
|  | ||||
| /* SYCL save and restore compile environment*/ | ||||
| #ifdef GRID_SYCL | ||||
| #pragma push | ||||
| #pragma push_macro("__SYCL_DEVICE_ONLY__") | ||||
| #undef __SYCL_DEVICE_ONLY__ | ||||
| #define EIGEN_DONT_VECTORIZE | ||||
| //#undef EIGEN_USE_SYCL | ||||
| #define __SYCL__REDEFINE__ | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #include <Grid/Eigen/Dense> | ||||
| #include <Grid/Eigen/unsupported/CXX11/Tensor> | ||||
|  | ||||
| /* NVCC restore */ | ||||
| #ifdef __NVCC__REDEFINE__ | ||||
| #pragma pop_macro("__CUDACC__") | ||||
| #pragma pop_macro("__NVCC__") | ||||
| #pragma pop_macro("GRID_SIMT") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| /*SYCL restore*/ | ||||
| #ifdef __SYCL__REDEFINE__ | ||||
| #pragma pop_macro("__SYCL_DEVICE_ONLY__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic pop | ||||
| #endif | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1 +0,0 @@ | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
| @@ -21,7 +21,7 @@ if BUILD_HDF5 | ||||
|   extra_headers+=serialisation/Hdf5Type.h | ||||
| endif | ||||
|  | ||||
| all: version-cache Version.h | ||||
| all: version-cache | ||||
|  | ||||
| version-cache: | ||||
| 	@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\ | ||||
| @@ -42,7 +42,7 @@ version-cache: | ||||
| 	fi;\ | ||||
| 	rm -f vertmp | ||||
|  | ||||
| Version.h: version-cache | ||||
| Version.h: | ||||
| 	cp version-cache Version.h | ||||
|  | ||||
| .PHONY: version-cache | ||||
|   | ||||
| @@ -29,46 +29,34 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_ALGORITHMS_H | ||||
| #define GRID_ALGORITHMS_H | ||||
|  | ||||
| NAMESPACE_CHECK(algorithms); | ||||
| #include <Grid/algorithms/SparseMatrix.h> | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
| #include <Grid/algorithms/Preconditioner.h> | ||||
| NAMESPACE_CHECK(SparseMatrix); | ||||
|  | ||||
| #include <Grid/algorithms/approx/Zolotarev.h> | ||||
| #include <Grid/algorithms/approx/Chebyshev.h> | ||||
| #include <Grid/algorithms/approx/JacobiPolynomial.h> | ||||
| #include <Grid/algorithms/approx/Remez.h> | ||||
| #include <Grid/algorithms/approx/MultiShiftFunction.h> | ||||
| #include <Grid/algorithms/approx/Forecast.h> | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| NAMESPACE_CHECK(approx); | ||||
|  | ||||
| #include <Grid/algorithms/iterative/Deflation.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradient.h> | ||||
| NAMESPACE_CHECK(ConjGrad); | ||||
| #include <Grid/algorithms/iterative/BiCGSTAB.h> | ||||
| NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/ConjugateResidual.h> | ||||
| #include <Grid/algorithms/iterative/NormalEquations.h> | ||||
| #include <Grid/algorithms/iterative/SchurRedBlack.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/BlockConjugateGradient.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> | ||||
| #include <Grid/algorithms/iterative/MinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> | ||||
| #include <Grid/algorithms/iterative/PowerMethod.h> | ||||
|  | ||||
| NAMESPACE_CHECK(PowerMethod); | ||||
| #include <Grid/algorithms/CoarsenedMatrix.h> | ||||
| NAMESPACE_CHECK(CoarsendMatrix); | ||||
| #include <Grid/algorithms/FFT.h> | ||||
|  | ||||
|  | ||||
| // EigCg | ||||
| // Pcg | ||||
| // Hdcg | ||||
| // GCR | ||||
| // etc.. | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -32,31 +32,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #define  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj,class CComplex> | ||||
| inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner, | ||||
| 				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask, | ||||
| 				    const Lattice<vobj> &fineX, | ||||
| 				    const Lattice<vobj> &fineY) | ||||
| { | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) dotp; | ||||
|  | ||||
|   GridBase *coarse(CoarseInner.Grid()); | ||||
|   GridBase *fine  (fineX.Grid()); | ||||
|  | ||||
|   Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard(); | ||||
|   Lattice<dotp> fine_inner_msk(fine); | ||||
|  | ||||
|   // Multiply could be fused with innerProduct | ||||
|   // Single block sum kernel could do both masks. | ||||
|   fine_inner = localInnerProduct(fineX,fineY); | ||||
|   mult(fine_inner_msk, fine_inner,FineMask); | ||||
|   blockSum(CoarseInner,fine_inner_msk); | ||||
| } | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   class Geometry { | ||||
|     //    int dimension; | ||||
|   public: | ||||
|     int npoint; | ||||
|     std::vector<int> directions   ; | ||||
| @@ -73,15 +52,42 @@ public: | ||||
|       directions.resize(npoint); | ||||
|       displacements.resize(npoint); | ||||
|       for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
| 	directions[2*d  ] = d+base; | ||||
| 	directions[2*d+1] = d+base; | ||||
| 	displacements[2*d  ] = +1; | ||||
| 	displacements[2*d+1] = -1; | ||||
|       } | ||||
|       directions   [2*_d]=0; | ||||
|       displacements[2*_d]=0; | ||||
|        | ||||
|       //// report back | ||||
|       std::cout<<GridLogMessage<<"directions    :"; | ||||
|       for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " "; | ||||
|       std::cout <<std::endl; | ||||
|       std::cout<<GridLogMessage<<"displacements :"; | ||||
|       for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " "; | ||||
|       std::cout<<std::endl; | ||||
|     } | ||||
|    | ||||
|     /* | ||||
|       // Original cleaner code | ||||
|     Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) { | ||||
|       for(int d=0;d<dimension;d++){ | ||||
| 	directions[2*d  ] = d; | ||||
| 	directions[2*d+1] = d; | ||||
| 	displacements[2*d  ] = +1; | ||||
| 	displacements[2*d+1] = -1; | ||||
|       } | ||||
|       directions   [2*dimension]=0; | ||||
|       displacements[2*dimension]=0; | ||||
|     } | ||||
|     std::vector<int> GetDelta(int point) { | ||||
|       std::vector<int> delta(dimension,0); | ||||
|       delta[directions[point]] = displacements[point]; | ||||
|       return delta; | ||||
|     }; | ||||
|     */     | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   template<class Fobj,class CComplex,int nbasis> | ||||
| @@ -98,7 +104,7 @@ public: | ||||
|     GridBase *FineGrid; | ||||
|     std::vector<Lattice<Fobj> > subspace; | ||||
|     int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|  | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|       FineGrid(_FineGrid), | ||||
| @@ -109,28 +115,102 @@ public: | ||||
|    | ||||
|     void Orthogonalise(void){ | ||||
|       CoarseScalar InnerProd(CoarseGrid);  | ||||
|     std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|       std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl; | ||||
|       blockOrthogonalise(InnerProd,subspace); | ||||
|       std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl; | ||||
|       blockOrthogonalise(InnerProd,subspace); | ||||
|       //      std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl; | ||||
|       //      CheckOrthogonal(); | ||||
|     }  | ||||
|     void CheckOrthogonal(void){ | ||||
|       CoarseVector iProj(CoarseGrid);  | ||||
|       CoarseVector eProj(CoarseGrid);  | ||||
|       for(int i=0;i<nbasis;i++){ | ||||
| 	blockProject(iProj,subspace[i],subspace); | ||||
| 	eProj=zero;  | ||||
| 	parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){ | ||||
| 	  eProj._odata[ss](i)=CComplex(1.0); | ||||
| 	} | ||||
| 	eProj=eProj - iProj; | ||||
| 	std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl; | ||||
|       } | ||||
|       std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl; | ||||
|     } | ||||
|     void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|       blockProject(CoarseVec,FineVec,subspace); | ||||
|     } | ||||
|     void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|       FineVec.checkerboard = subspace[0].checkerboard; | ||||
|       blockPromote(CoarseVec,FineVec,subspace); | ||||
|     } | ||||
|     void CreateSubspaceRandom(GridParallelRNG &RNG){ | ||||
|       for(int i=0;i<nbasis;i++){ | ||||
| 	random(RNG,subspace[i]); | ||||
| 	std::cout<<GridLogMessage<<" norm subspace["<<i<<"] "<<norm2(subspace[i])<<std::endl; | ||||
|       } | ||||
|       Orthogonalise(); | ||||
|     } | ||||
|  | ||||
|     /* | ||||
|     virtual void CreateSubspaceLanczos(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)  | ||||
|     { | ||||
|       // Run a Lanczos with sloppy convergence | ||||
| 	const int Nstop = nn; | ||||
| 	const int Nk = nn+20; | ||||
| 	const int Np = nn+20; | ||||
| 	const int Nm = Nk+Np; | ||||
| 	const int MaxIt= 10000; | ||||
| 	RealD resid = 1.0e-3; | ||||
|  | ||||
| 	Chebyshev<FineField> Cheb(0.5,64.0,21); | ||||
| 	ImplicitlyRestartedLanczos<FineField> IRL(hermop,Cheb,Nstop,Nk,Nm,resid,MaxIt); | ||||
| 	//	IRL.lock = 1; | ||||
|  | ||||
| 	FineField noise(FineGrid); gaussian(RNG,noise); | ||||
| 	FineField tmp(FineGrid);  | ||||
| 	std::vector<RealD>     eval(Nm); | ||||
| 	std::vector<FineField> evec(Nm,FineGrid); | ||||
|  | ||||
| 	int Nconv; | ||||
| 	IRL.calc(eval,evec, | ||||
| 		 noise, | ||||
| 		 Nconv); | ||||
|  | ||||
|     	// pull back nn vectors | ||||
| 	for(int b=0;b<nn;b++){ | ||||
|  | ||||
| 	  subspace[b]   = evec[b]; | ||||
|  | ||||
| 	  std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl; | ||||
|  | ||||
| 	  hermop.Op(subspace[b],tmp);  | ||||
| 	  std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
| 	  noise = tmp -  sqrt(eval[b])*subspace[b] ; | ||||
|  | ||||
| 	  std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<"  ;  [ M - Lambda ]_"<<b<<" vec_"<<b<<"  = " <<norm2(noise)<<std::endl; | ||||
|  | ||||
| 	  noise = tmp +  eval[b]*subspace[b] ; | ||||
|  | ||||
| 	  std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<"  ;  [ M - Lambda ]_"<<b<<" vec_"<<b<<"  = " <<norm2(noise)<<std::endl; | ||||
|  | ||||
| 	} | ||||
| 	Orthogonalise(); | ||||
| 	for(int b=0;b<nn;b++){ | ||||
| 	  std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl; | ||||
| 	} | ||||
|     } | ||||
|     */ | ||||
|     virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) { | ||||
|  | ||||
|       RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|       ConjugateGradient<FineField> CG(1.0e-2,10000); | ||||
|       FineField noise(FineGrid); | ||||
|       FineField Mn(FineGrid); | ||||
|  | ||||
|       for(int b=0;b<nn;b++){ | ||||
| 	 | ||||
|       subspace[b] = Zero(); | ||||
| 	gaussian(RNG,noise); | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
| @@ -151,110 +231,11 @@ public: | ||||
| 	subspace[b]   = noise; | ||||
|  | ||||
|       } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
|  | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
|  | ||||
|       // Tn=T1 = (xscale M + mscale)in | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
|  | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
|  | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_forNB(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
|  | ||||
| 	// Possible more fine grained control is needed than a linear sweep, | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
|       Orthogonalise(); | ||||
|  | ||||
|     } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
|  | ||||
|   }; | ||||
|  | ||||
|   // Fine Object == (per site) type of fine field | ||||
|   // nbasis      == number of deflation vectors | ||||
|   template<class Fobj,class CComplex,int nbasis> | ||||
| @@ -262,10 +243,9 @@ class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis | ||||
|   public: | ||||
|      | ||||
|     typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<CComplex >                  CoarseComplexField; | ||||
|     typedef Lattice<siteVector>                 CoarseVector; | ||||
|     typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|  | ||||
|     typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|     typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
| @@ -274,226 +254,79 @@ public: | ||||
|     //////////////////// | ||||
|     Geometry         geom; | ||||
|     GridBase *       _grid;  | ||||
|   int hermitian; | ||||
|  | ||||
|   CartesianStencil<siteVector,siteVector,int> Stencil;  | ||||
|     CartesianStencil<siteVector,siteVector> Stencil;  | ||||
|  | ||||
|     std::vector<CoarseMatrix> A; | ||||
|  | ||||
|        | ||||
|     /////////////////////// | ||||
|     // Interface | ||||
|     /////////////////////// | ||||
|     GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     RealD M (const CoarseVector &in, CoarseVector &out){ | ||||
|  | ||||
|       conformable(_grid,in._grid); | ||||
|       conformable(in._grid,out._grid); | ||||
|  | ||||
|       SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|       Stencil.HaloExchange(in,compressor); | ||||
|     autoView( in_v , in, AcceleratorRead); | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       parallel_for(int ss=0;ss<Grid()->oSites();ss++){ | ||||
|         siteVector res = zero; | ||||
| 	siteVector nbr; | ||||
| 	int ptype; | ||||
| 	StencilEntry *SE; | ||||
|  | ||||
| 	for(int point=0;point<geom.npoint;point++){ | ||||
|  | ||||
| 	  SE=Stencil.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
| 	if(SE->_is_local) {  | ||||
| 	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
| 	  if(SE->_is_local&&SE->_permute) {  | ||||
| 	    permute(nbr,in._odata[SE->_offset],ptype); | ||||
| 	  } else if(SE->_is_local) {  | ||||
| 	    nbr = in._odata[SE->_offset]; | ||||
| 	  } else { | ||||
| 	  nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]); | ||||
| 	    nbr = Stencil.CommBuf()[SE->_offset]; | ||||
| 	  } | ||||
| 	acceleratorSynchronise(); | ||||
|  | ||||
| 	for(int bb=0;bb<nbasis;bb++) { | ||||
| 	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
| 	  res = res + A[point]._odata[ss]*nbr; | ||||
| 	} | ||||
| 	vstream(out._odata[ss],res); | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|       return norm2(out); | ||||
|     }; | ||||
|  | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     if(hermitian) { | ||||
|       // corresponds to Petrov-Galerkin coarsening | ||||
|     RealD Mdag (const CoarseVector &in, CoarseVector &out){  | ||||
|       return M(in,out); | ||||
|     } else { | ||||
|       // corresponds to Galerkin coarsening | ||||
|       CoarseVector tmp(Grid()); | ||||
|       G5C(tmp, in);  | ||||
|       M(tmp, out); | ||||
|       G5C(out, out); | ||||
|     } | ||||
|   }; | ||||
|   void MdirComms(const CoarseVector &in) | ||||
|   { | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|   } | ||||
|   void MdirCalc(const CoarseVector &in, CoarseVector &out, int point) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(_grid,out.Grid()); | ||||
|  | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( in_v  , in, AcceleratorRead); | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       SE=Stencil.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
|       if(SE->_is_local) {  | ||||
| 	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|       } else { | ||||
| 	nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]); | ||||
|       } | ||||
|       acceleratorSynchronise(); | ||||
|  | ||||
|       for(int bb=0;bb<nbasis;bb++) { | ||||
| 	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|     }); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|   void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) | ||||
|   { | ||||
|     this->MdirComms(in); | ||||
|     int ndir=geom.npoint-1; | ||||
|     if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {  | ||||
|       std::cout <<"MdirAll out size "<< out.size()<<std::endl; | ||||
|       std::cout <<"MdirAll ndir "<< ndir<<std::endl; | ||||
|       assert(0); | ||||
|     } | ||||
|     for(int p=0;p<ndir;p++){ | ||||
|       MdirCalc(in,out[p],p); | ||||
|     } | ||||
|   }; | ||||
|   void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){ | ||||
|  | ||||
|     this->MdirComms(in); | ||||
|  | ||||
|     int ndim = in.Grid()->Nd(); | ||||
|  | ||||
|     ////////////// | ||||
|     // 4D action like wilson | ||||
|     // 0+ => 0  | ||||
|     // 0- => 1 | ||||
|     // 1+ => 2  | ||||
|     // 1- => 3 | ||||
|     // etc.. | ||||
|     ////////////// | ||||
|     // 5D action like DWF | ||||
|     // 1+ => 0  | ||||
|     // 1- => 1 | ||||
|     // 2+ => 2  | ||||
|     // 2- => 3 | ||||
|     // etc.. | ||||
|     auto point = [dir, disp, ndim](){ | ||||
|       if(dir == 0 and disp == 0) | ||||
| 	return 8; | ||||
|       else if ( ndim==4 ) {  | ||||
| 	return (4 * dir + 1 - disp) / 2; | ||||
|       } else {  | ||||
| 	return (4 * (dir-1) + 1 - disp) / 2; | ||||
|       } | ||||
|     }(); | ||||
|  | ||||
|     MdirCalc(in,out,point); | ||||
|  | ||||
|     }; | ||||
|  | ||||
|   void Mdiag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     int point=geom.npoint-1; | ||||
|     MdirCalc(in, out, point); // No comms | ||||
|   }; | ||||
|     // Defer support for further coarsening for now | ||||
|     void Mdiag    (const CoarseVector &in,  CoarseVector &out){}; | ||||
|     void Mdir     (const CoarseVector &in,  CoarseVector &out,int dir, int disp){}; | ||||
|  | ||||
|    | ||||
|  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:  | ||||
|     CoarsenedMatrix(GridCartesian &CoarseGrid) 	:  | ||||
|  | ||||
|       _grid(&CoarseGrid), | ||||
|       geom(CoarseGrid._ndimension), | ||||
|     hermitian(hermitian_), | ||||
|     Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0), | ||||
|       Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|       A(geom.npoint,&CoarseGrid) | ||||
|     { | ||||
|     }; | ||||
|  | ||||
|     void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     typedef Lattice<typename Fobj::tensor_reduced> FineComplexField; | ||||
|     typedef typename Fobj::scalar_type scalar_type; | ||||
| 			 Aggregation<Fobj,CComplex,nbasis> & Subspace){ | ||||
|  | ||||
|     FineComplexField one(FineGrid); one=scalar_type(1.0,0.0); | ||||
|     FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0); | ||||
|  | ||||
|     std::vector<FineComplexField> masks(geom.npoint,FineGrid); | ||||
|     FineComplexField imask(FineGrid); // contributions from within this block | ||||
|     FineComplexField omask(FineGrid); // contributions from outwith this block | ||||
|  | ||||
|     FineComplexField evenmask(FineGrid); | ||||
|     FineComplexField oddmask(FineGrid);  | ||||
|       FineField iblock(FineGrid); // contributions from within this block | ||||
|       FineField oblock(FineGrid); // contributions from outwith this block | ||||
|  | ||||
|       FineField     phi(FineGrid); | ||||
|       FineField     tmp(FineGrid); | ||||
|     FineField     zz(FineGrid); zz=Zero(); | ||||
|       FineField     zz(FineGrid); zz=zero; | ||||
|       FineField    Mphi(FineGrid); | ||||
|     FineField    Mphie(FineGrid); | ||||
|     FineField    Mphio(FineGrid); | ||||
|     std::vector<FineField>     Mphi_p(geom.npoint,FineGrid); | ||||
|  | ||||
|       Lattice<iScalar<vInteger> > coor(FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcoor(FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero(); | ||||
|  | ||||
|       CoarseVector iProj(Grid());  | ||||
|       CoarseVector oProj(Grid());  | ||||
|     CoarseVector SelfProj(Grid());  | ||||
|     CoarseComplexField iZProj(Grid());  | ||||
|     CoarseComplexField oZProj(Grid());  | ||||
|  | ||||
|       CoarseScalar InnerProd(Grid());  | ||||
|  | ||||
|       // Orthogonalise the subblocks over the basis | ||||
| @@ -502,134 +335,146 @@ public: | ||||
|       // Compute the matrix elements of linop between this orthonormal | ||||
|       // set of vectors. | ||||
|       int self_stencil=-1; | ||||
|     for(int p=0;p<geom.npoint;p++) | ||||
|     {  | ||||
|       int dir   = geom.directions[p]; | ||||
|       int disp  = geom.displacements[p]; | ||||
|       A[p]=Zero(); | ||||
|       for(int p=0;p<geom.npoint;p++){  | ||||
| 	A[p]=zero; | ||||
| 	if( geom.displacements[p]==0){ | ||||
| 	  self_stencil=p; | ||||
| 	} | ||||
|       } | ||||
|       assert(self_stencil!=-1); | ||||
|  | ||||
|       for(int i=0;i<nbasis;i++){ | ||||
| 	phi=Subspace.subspace[i]; | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"("<<i<<").."<<std::endl; | ||||
|  | ||||
| 	for(int p=0;p<geom.npoint;p++){  | ||||
|  | ||||
| 	  int dir   = geom.directions[p]; | ||||
| 	  int disp  = geom.displacements[p]; | ||||
|  | ||||
| 	  Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]); | ||||
|  | ||||
| 	  LatticeCoordinate(coor,dir); | ||||
|  | ||||
|       /////////////////////////////////////////////////////// | ||||
|       // Work out even and odd block checkerboarding for fast diagonal term | ||||
|       /////////////////////////////////////////////////////// | ||||
|       if ( disp==1 ) { | ||||
| 	bcb   = bcb + div(coor,block); | ||||
|       } | ||||
| 	 | ||||
| 	  if ( disp==0 ){ | ||||
| 	  masks[p]= Zero(); | ||||
|       } else if ( disp==1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(block-1),one,zero); | ||||
|       } else if ( disp==-1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(Integer)0,one,zero); | ||||
| 	    linop.OpDiag(phi,Mphi); | ||||
| 	  } | ||||
| 	  else  { | ||||
| 	    linop.OpDir(phi,Mphi,dir,disp);  | ||||
| 	  } | ||||
|     evenmask = where(mod(bcb,2)==(Integer)0,one,zero); | ||||
|     oddmask  = one-evenmask; | ||||
|  | ||||
|     assert(self_stencil!=-1); | ||||
|  | ||||
|     for(int i=0;i<nbasis;i++){ | ||||
|  | ||||
|       phi=Subspace.subspace[i]; | ||||
|  | ||||
|       //      std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl; | ||||
|       linop.OpDirAll(phi,Mphi_p); | ||||
|       linop.OpDiag  (phi,Mphi_p[geom.npoint-1]); | ||||
|  | ||||
|       for(int p=0;p<geom.npoint;p++){  | ||||
|  | ||||
| 	Mphi = Mphi_p[p]; | ||||
|  | ||||
| 	int dir   = geom.directions[p]; | ||||
| 	int disp  = geom.displacements[p]; | ||||
|  | ||||
| 	if ( (disp==-1) || (!hermitian ) ) { | ||||
|  | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  // Pick out contributions coming from this cell and neighbour cell | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  omask = masks[p]; | ||||
| 	  imask = one-omask; | ||||
| 	  if ( disp==0 ) { | ||||
| 	    iblock = Mphi; | ||||
| 	    oblock = zero; | ||||
| 	  } else if ( disp==1 ) { | ||||
| 	    oblock = where(mod(coor,block)==(block-1),Mphi,zz); | ||||
| 	    iblock = where(mod(coor,block)!=(block-1),Mphi,zz); | ||||
| 	  } else if ( disp==-1 ) { | ||||
| 	    oblock = where(mod(coor,block)==(Integer)0,Mphi,zz); | ||||
| 	    iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz); | ||||
| 	  } else { | ||||
| 	    assert(0); | ||||
| 	  } | ||||
|  | ||||
| 	  Subspace.ProjectToSubspace(iProj,iblock); | ||||
| 	  Subspace.ProjectToSubspace(oProj,oblock); | ||||
| 	  //	  blockProject(iProj,iblock,Subspace.subspace); | ||||
| 	  //	  blockProject(oProj,oblock,Subspace.subspace); | ||||
| 	  parallel_for(int ss=0;ss<Grid()->oSites();ss++){ | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	     | ||||
| 	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi); | ||||
| 	     | ||||
| 	    autoView( iZProj_v , iZProj, AcceleratorRead) ; | ||||
| 	    autoView( oZProj_v , oZProj, AcceleratorRead) ; | ||||
| 	    autoView( A_p     ,  A[p], AcceleratorWrite); | ||||
| 	    autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); }); | ||||
|  | ||||
| 	      if( disp!= 0 ) { | ||||
| 		A[p]._odata[ss](j,i) = oProj._odata[ss](j); | ||||
| 	      } | ||||
| 	      A[self_stencil]._odata[ss](j,i) =	A[self_stencil]._odata[ss](j,i) + iProj._odata[ss](j); | ||||
| 	    } | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       /////////////////////////////////////////// | ||||
|       // Faster alternate self coupling.. use hermiticity to save 2x | ||||
|       /////////////////////////////////////////// | ||||
|       { | ||||
| 	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie); | ||||
| 	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio); | ||||
|  | ||||
| 	{ | ||||
| 	  autoView( tmp_      , tmp, AcceleratorWrite); | ||||
| 	  autoView( evenmask_ , evenmask, AcceleratorRead); | ||||
| 	  autoView( oddmask_  ,  oddmask, AcceleratorRead); | ||||
| 	  autoView( Mphie_    ,  Mphie, AcceleratorRead); | ||||
| 	  autoView( Mphio_    ,  Mphio, AcceleratorRead); | ||||
| 	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{  | ||||
| 	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|  | ||||
| 	blockProject(SelfProj,tmp,Subspace.subspace); | ||||
|  | ||||
| 	autoView( SelfProj_ , SelfProj, AcceleratorRead); | ||||
| 	autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j)); | ||||
| 	  } | ||||
| 	}); | ||||
|  | ||||
|       } | ||||
|     } | ||||
|     if(hermitian) { | ||||
|       std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl; | ||||
|       ForceHermitian(); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void ForceHermitian(void) { | ||||
|     CoarseMatrix Diff  (Grid()); | ||||
| #if 0 | ||||
|       /////////////////////////// | ||||
|       // test code worth preserving in if block | ||||
|       /////////////////////////// | ||||
|       std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl; | ||||
|       for(int p=0;p<geom.npoint;p++){ | ||||
|       int dir   = geom.directions[p]; | ||||
|       int disp  = geom.displacements[p]; | ||||
|       if(disp==-1) { | ||||
| 	// Find the opposite link | ||||
| 	for(int pp=0;pp<geom.npoint;pp++){ | ||||
| 	  int dirp   = geom.directions[pp]; | ||||
| 	  int dispp  = geom.displacements[pp]; | ||||
| 	  if ( (dirp==dir) && (dispp==1) ){ | ||||
| 	    //	    Diff = adj(Cshift(A[p],dir,1)) - A[pp];  | ||||
| 	    //	    std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl; | ||||
| 	    A[pp] = adj(Cshift(A[p],dir,1)); | ||||
| 	std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl; | ||||
| 	std::cout<<GridLogMessage<< A[p] << std::endl; | ||||
|       } | ||||
|       std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl; | ||||
|  | ||||
|       phi=Subspace.subspace[0]; | ||||
|       std::vector<int> bc(FineGrid->_ndimension,0); | ||||
|  | ||||
|       blockPick(Grid(),phi,tmp,bc);      // Pick out a block | ||||
|       linop.Op(tmp,Mphi);                // Apply big dop | ||||
|       blockProject(iProj,Mphi,Subspace.subspace); // project it and print it | ||||
|       std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl; | ||||
|       std::cout<<GridLogMessage<< iProj <<std::endl; | ||||
|       std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl; | ||||
| #endif | ||||
|       //      ForceHermitian(); | ||||
|       AssertHermitian(); | ||||
|       // ForceDiagonal(); | ||||
|     } | ||||
|     void ForceDiagonal(void) { | ||||
|  | ||||
|  | ||||
|       std::cout<<GridLogMessage<<"**************************************************"<<std::endl; | ||||
|       std::cout<<GridLogMessage<<"****   Forcing coarse operator to be diagonal ****"<<std::endl; | ||||
|       std::cout<<GridLogMessage<<"**************************************************"<<std::endl; | ||||
|       for(int p=0;p<8;p++){ | ||||
| 	A[p]=zero; | ||||
|       } | ||||
|  | ||||
|       GridParallelRNG  RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34})); | ||||
|       Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val); | ||||
|  | ||||
|       Complex one(1.0); | ||||
|  | ||||
|       iMatrix<CComplex,nbasis> ident;  ident=one; | ||||
|  | ||||
|       val = val*adj(val); | ||||
|       val = val + 1.0; | ||||
|  | ||||
|       A[8] = val*ident; | ||||
|  | ||||
|       //      for(int s=0;s<Grid()->oSites();s++) { | ||||
|       //	A[8]._odata[s]=val._odata[s]; | ||||
|       //      } | ||||
|     } | ||||
|     void ForceHermitian(void) { | ||||
|       for(int d=0;d<4;d++){ | ||||
| 	int dd=d+1; | ||||
| 	A[2*d] = adj(Cshift(A[2*d+1],dd,1)); | ||||
|       } | ||||
|       //      A[8] = 0.5*(A[8] + adj(A[8])); | ||||
|     } | ||||
|     void AssertHermitian(void) { | ||||
|       CoarseMatrix AA    (Grid()); | ||||
|       CoarseMatrix AAc   (Grid()); | ||||
|       CoarseMatrix Diff  (Grid()); | ||||
|       for(int d=0;d<4;d++){ | ||||
| 	 | ||||
| 	int dd=d+1; | ||||
| 	AAc = Cshift(A[2*d+1],dd,1); | ||||
| 	AA  = A[2*d]; | ||||
| 	 | ||||
| 	Diff = AA - adj(AAc); | ||||
|  | ||||
| 	std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl; | ||||
| 	   | ||||
|       } | ||||
|       Diff = A[8] - adj(A[8]); | ||||
|       std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl; | ||||
|       std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl; | ||||
|     } | ||||
|      | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
|  | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
| @@ -36,7 +37,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   template<class scalar> struct FFTW { }; | ||||
|  | ||||
| @@ -113,9 +115,9 @@ private: | ||||
|     double flops_call; | ||||
|     uint64_t usec; | ||||
|      | ||||
|   Coordinate dimensions; | ||||
|   Coordinate processors; | ||||
|   Coordinate processor_coor; | ||||
|     std::vector<int> dimensions; | ||||
|     std::vector<int> processors; | ||||
|     std::vector<int> processor_coor; | ||||
|      | ||||
|   public: | ||||
|      | ||||
| @@ -135,7 +137,7 @@ public: | ||||
|     { | ||||
|       flops=0; | ||||
|       usec =0; | ||||
|     Coordinate layout(Nd,1); | ||||
|       std::vector<int> layout(Nd,1); | ||||
|       sgrid = new GridCartesian(dimensions,layout,processors); | ||||
|     }; | ||||
|      | ||||
| @@ -144,10 +146,10 @@ public: | ||||
|     } | ||||
|      | ||||
|     template<class vobj> | ||||
|   void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){ | ||||
|     void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,std::vector<int> mask,int sign){ | ||||
|  | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|       conformable(result._grid,vgrid); | ||||
|       conformable(source._grid,vgrid); | ||||
|       Lattice<vobj> tmp(vgrid); | ||||
|       tmp = source; | ||||
|       for(int d=0;d<Nd;d++){ | ||||
| @@ -160,7 +162,7 @@ public: | ||||
|  | ||||
|     template<class vobj> | ||||
|     void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){ | ||||
|     Coordinate mask(Nd,1); | ||||
|       std::vector<int> mask(Nd,1); | ||||
|       FFT_dim_mask(result,source,mask,sign); | ||||
|     } | ||||
|  | ||||
| @@ -170,14 +172,14 @@ public: | ||||
| #ifndef HAVE_FFTW | ||||
|       assert(0); | ||||
| #else | ||||
|     conformable(result.Grid(),vgrid); | ||||
|     conformable(source.Grid(),vgrid); | ||||
|       conformable(result._grid,vgrid); | ||||
|       conformable(source._grid,vgrid); | ||||
|  | ||||
|       int L = vgrid->_ldimensions[dim]; | ||||
|       int G = vgrid->_fdimensions[dim]; | ||||
|        | ||||
|     Coordinate layout(Nd,1); | ||||
|     Coordinate pencil_gd(vgrid->_fdimensions); | ||||
|       std::vector<int> layout(Nd,1); | ||||
|       std::vector<int> pencil_gd(vgrid->_fdimensions); | ||||
|        | ||||
|       pencil_gd[dim] = G*processors[dim]; | ||||
|        | ||||
| @@ -189,7 +191,7 @@ public: | ||||
|       typedef typename sobj::scalar_type   scalar; | ||||
|        | ||||
|       Lattice<sobj> pgbuf(&pencil_g); | ||||
|     autoView(pgbuf_v , pgbuf, CpuWrite); | ||||
|        | ||||
|  | ||||
|       typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; | ||||
|       typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan; | ||||
| @@ -215,8 +217,8 @@ public: | ||||
|        | ||||
|       FFTW_plan p; | ||||
|       { | ||||
|       FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; | ||||
|       FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0]; | ||||
|         FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[0]; | ||||
|         FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[0]; | ||||
|         p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany, | ||||
|                                              in,inembed, | ||||
|                                              istride,idist, | ||||
| @@ -226,23 +228,26 @@ public: | ||||
|       } | ||||
|        | ||||
|       // Barrel shift and collect global pencil | ||||
|     Coordinate lcoor(Nd), gcoor(Nd); | ||||
|       std::vector<int> lcoor(Nd), gcoor(Nd); | ||||
|       result = source; | ||||
|       int pc = processor_coor[dim]; | ||||
|       for(int p=0;p<processors[dim];p++) { | ||||
|         PARALLEL_REGION | ||||
|         { | ||||
| 	autoView(r_v,result,CpuRead); | ||||
| 	autoView(p_v,pgbuf,CpuWrite); | ||||
| 	thread_for(idx, sgrid->lSites(),{ | ||||
|           Coordinate cbuf(Nd); | ||||
|           std::vector<int> cbuf(Nd); | ||||
|           sobj s; | ||||
|            | ||||
|           PARALLEL_FOR_LOOP_INTERN | ||||
|           for(int idx=0;idx<sgrid->lSites();idx++) { | ||||
|             sgrid->LocalIndexToLocalCoor(idx,cbuf); | ||||
| 	  peekLocalSite(s,r_v,cbuf); | ||||
|             peekLocalSite(s,result,cbuf); | ||||
| 	    cbuf[dim]+=((pc+p) % processors[dim])*L; | ||||
| 	  pokeLocalSite(s,p_v,cbuf); | ||||
|         }); | ||||
| 	    //            cbuf[dim]+=p*L; | ||||
|             pokeLocalSite(s,pgbuf,cbuf); | ||||
|           } | ||||
|       if (p != processors[dim] - 1) { | ||||
|         } | ||||
|         if (p != processors[dim] - 1) | ||||
|         { | ||||
|           result = Cshift(result,dim,L); | ||||
|         } | ||||
|       } | ||||
| @@ -251,15 +256,20 @@ public: | ||||
|       int NN=pencil_g.lSites(); | ||||
|       GridStopWatch timer; | ||||
|       timer.Start(); | ||||
|     thread_for( idx,NN,{ | ||||
|         Coordinate cbuf(Nd); | ||||
|       PARALLEL_REGION | ||||
|       { | ||||
|         std::vector<int> cbuf(Nd); | ||||
|          | ||||
|         PARALLEL_FOR_LOOP_INTERN | ||||
|         for(int idx=0;idx<NN;idx++) { | ||||
|           pencil_g.LocalIndexToLocalCoor(idx, cbuf); | ||||
|           if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0 | ||||
| 	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx]; | ||||
| 	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx]; | ||||
|             FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx]; | ||||
|             FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx]; | ||||
|             FFTW<scalar>::fftw_execute_dft(p,in,out); | ||||
|           } | ||||
|     }); | ||||
|         } | ||||
|       } | ||||
|       timer.Stop(); | ||||
|        | ||||
|       // performance counting | ||||
| @@ -270,18 +280,19 @@ public: | ||||
|       flops+= flops_call*NN; | ||||
|        | ||||
|       // writing out result | ||||
|       PARALLEL_REGION | ||||
|       { | ||||
|       autoView(pgbuf_v,pgbuf,CpuRead); | ||||
|       autoView(result_v,result,CpuWrite); | ||||
|       thread_for(idx,sgrid->lSites(),{ | ||||
| 	Coordinate clbuf(Nd), cgbuf(Nd); | ||||
|         std::vector<int> clbuf(Nd), cgbuf(Nd); | ||||
|         sobj s; | ||||
|          | ||||
|         PARALLEL_FOR_LOOP_INTERN | ||||
|         for(int idx=0;idx<sgrid->lSites();idx++) { | ||||
|           sgrid->LocalIndexToLocalCoor(idx,clbuf); | ||||
|           cgbuf = clbuf; | ||||
|           cgbuf[dim] = clbuf[dim]+L*pc; | ||||
| 	peekLocalSite(s,pgbuf_v,cgbuf); | ||||
| 	pokeLocalSite(s,result_v,clbuf); | ||||
|       }); | ||||
|           peekLocalSite(s,pgbuf,cgbuf); | ||||
|           pokeLocalSite(s,result,clbuf); | ||||
|         } | ||||
|       } | ||||
|       result = result*div; | ||||
|        | ||||
| @@ -290,7 +301,6 @@ public: | ||||
| #endif | ||||
|     } | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -26,15 +26,16 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once  | ||||
| #ifndef  GRID_ALGORITHM_LINEAR_OP_H | ||||
| #define  GRID_ALGORITHM_LINEAR_OP_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // LinearOperators Take a something and return a something. | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // | ||||
| // Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real): | ||||
|   // Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real): | ||||
|   //SBase | ||||
|   //   i)  F(a x + b y) = aF(x) + b F(y). | ||||
|   //  ii)  <x|Op|y> = <y|AdjOp|x>^\ast | ||||
| @@ -43,10 +44,10 @@ NAMESPACE_BEGIN(Grid); | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     template<class Field> class LinearOperatorBase { | ||||
|     public: | ||||
|  | ||||
|       // Support for coarsening to a multigrid | ||||
|       virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base | ||||
|       virtual void OpDir  (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base | ||||
|   virtual void OpDirAll  (const Field &in, std::vector<Field> &out) = 0; // Abstract base | ||||
|  | ||||
|       virtual void Op     (const Field &in, Field &out) = 0; // Abstract base | ||||
|       virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base | ||||
| @@ -83,9 +84,6 @@ public: | ||||
|       void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
| 	_Mat.Mdir(in,out,dir,disp); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	_Mat.M(in,out); | ||||
|       } | ||||
| @@ -93,13 +91,11 @@ public: | ||||
| 	_Mat.Mdag(in,out); | ||||
|       } | ||||
|       void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     _Mat.MdagM(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
| 	_Mat.MdagM(in,out,n1,n2); | ||||
|       } | ||||
|       void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MdagM(in,out); | ||||
| 	RealD n1,n2; | ||||
| 	HermOpAndNorm(in,out,n1,n2); | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| @@ -121,9 +117,6 @@ public: | ||||
| 	_Mat.Mdir(in,out,dir,disp); | ||||
| 	assert(0); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	_Mat.M(in,out); | ||||
| 	assert(0); | ||||
| @@ -133,14 +126,17 @@ public: | ||||
| 	assert(0); | ||||
|       } | ||||
|       void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
| 	_Mat.MdagM(in,out,n1,n2); | ||||
| 	out = out + _shift*in; | ||||
|  | ||||
| 	ComplexD dot;	 | ||||
| 	dot= innerProduct(in,out); | ||||
| 	n1=real(dot); | ||||
| 	n2=norm2(out); | ||||
|       } | ||||
|       void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.MdagM(in,out); | ||||
|     out = out + _shift*in; | ||||
| 	RealD n1,n2; | ||||
| 	HermOpAndNorm(in,out,n1,n2); | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| @@ -159,9 +155,6 @@ public: | ||||
|       void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
| 	_Mat.Mdir(in,out,dir,disp); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	_Mat.M(in,out); | ||||
|       } | ||||
| @@ -169,7 +162,8 @@ public: | ||||
| 	_Mat.M(in,out); | ||||
|       } | ||||
|       void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
| 	_Mat.M(in,out); | ||||
| 	 | ||||
| 	ComplexD dot= innerProduct(in,out); n1=real(dot); | ||||
| 	n2=norm2(out); | ||||
|       } | ||||
| @@ -178,35 +172,6 @@ public: | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| template<class Matrix,class Field> | ||||
| class NonHermitianLinearOperator : public LinearOperatorBase<Field> { | ||||
|   Matrix &_Mat; | ||||
| public: | ||||
|   NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     _Mat.Mdiag(in,out); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     _Mat.Mdir(in,out,dir,disp); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     _Mat.MdirAll(in,out); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     _Mat.M(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     _Mat.Mdag(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     assert(0); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     assert(0); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // Even Odd Schur decomp operators; there are several | ||||
|     // ways to introduce the even odd checkerboarding | ||||
| @@ -215,24 +180,21 @@ public: | ||||
|     template<class Field> | ||||
|       class SchurOperatorBase :  public LinearOperatorBase<Field> { | ||||
|     public: | ||||
|   virtual  void Mpc      (const Field &in, Field &out) =0; | ||||
|   virtual  void MpcDag   (const Field &in, Field &out) =0; | ||||
|   virtual  void MpcDagMpc(const Field &in, Field &out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = in.Checkerboard(); | ||||
|     Mpc(in,tmp); | ||||
|     MpcDag(tmp,out); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) =0; | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out) =0; | ||||
|       virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
|       Field tmp(in._grid); | ||||
|       tmp.checkerboard = in.checkerboard; | ||||
| 	ni=Mpc(in,tmp); | ||||
| 	no=MpcDag(tmp,out); | ||||
|       } | ||||
|       virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     MpcDagMpc(in,out); | ||||
|     ComplexD dot= innerProduct(in,out);  | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|       out.checkerboard = in.checkerboard; | ||||
| 	MpcDagMpc(in,out,n1,n2); | ||||
|       } | ||||
|       virtual void HermOp(const Field &in, Field &out){ | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     MpcDagMpc(in,out); | ||||
| 	RealD n1,n2; | ||||
| 	HermOpAndNorm(in,out,n1,n2); | ||||
|       } | ||||
|       void Op     (const Field &in, Field &out){ | ||||
| 	Mpc(in,out); | ||||
| @@ -247,33 +209,35 @@ class SchurOperatorBase :  public LinearOperatorBase<Field> { | ||||
|       void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
| 	assert(0); | ||||
|       } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|     }; | ||||
|     template<class Matrix,class Field> | ||||
|       class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> { | ||||
|  public: | ||||
|     protected: | ||||
|       Matrix &_Mat; | ||||
|     public: | ||||
|       SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|     virtual  void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       tmp.Checkerboard() = !in.Checkerboard(); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in._grid); | ||||
|       tmp.checkerboard = !in.checkerboard; | ||||
| 	//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << "  _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl; | ||||
|  | ||||
| 	_Mat.Meooe(in,tmp); | ||||
| 	_Mat.MooeeInv(tmp,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
|  | ||||
|       //std::cout << "cb in " << in.checkerboard << "  cb out " << out.checkerboard << std::endl; | ||||
| 	_Mat.Mooee(in,out); | ||||
|       axpy(out,-1.0,tmp,out); | ||||
| 	return axpy_norm(out,-1.0,tmp,out); | ||||
|       } | ||||
|     virtual void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MeooeDag(in,tmp); | ||||
|         _Mat.MooeeInvDag(tmp,out); | ||||
| 	_Mat.MeooeDag(out,tmp); | ||||
|  | ||||
| 	_Mat.MooeeDag(in,out); | ||||
|       axpy(out,-1.0,tmp,out); | ||||
| 	return axpy_norm(out,-1.0,tmp,out); | ||||
|       } | ||||
|     }; | ||||
|     template<class Matrix,class Field> | ||||
| @@ -283,23 +247,25 @@ template<class Matrix,class Field> | ||||
|     public: | ||||
|       SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|     virtual void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.Meooe(in,out); | ||||
| 	_Mat.MooeeInv(out,tmp); | ||||
| 	_Mat.Meooe(tmp,out); | ||||
| 	_Mat.MooeeInv(out,tmp); | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|  | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     virtual void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MooeeInvDag(in,out); | ||||
| 	_Mat.MeooeDag(out,tmp); | ||||
| 	_Mat.MooeeInvDag(tmp,out); | ||||
| 	_Mat.MeooeDag(out,tmp); | ||||
|       axpy(out,-1.0,tmp,in); | ||||
|  | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     }; | ||||
|     template<class Matrix,class Field> | ||||
| @@ -309,159 +275,30 @@ template<class Matrix,class Field> | ||||
|     public: | ||||
|       SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){}; | ||||
|  | ||||
|     virtual void Mpc      (const Field &in, Field &out) { | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MooeeInv(in,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
| 	_Mat.MooeeInv(tmp,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
|  | ||||
|       axpy(out,-1.0,tmp,in); | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|       Field tmp(in.Grid()); | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	Field tmp(in._grid); | ||||
|  | ||||
| 	_Mat.MeooeDag(in,out); | ||||
| 	_Mat.MooeeInvDag(out,tmp); | ||||
| 	_Mat.MeooeDag(tmp,out); | ||||
| 	_Mat.MooeeInvDag(out,tmp); | ||||
|  | ||||
|       axpy(out,-1.0,tmp,in); | ||||
| 	return axpy_norm(out,-1.0,tmp,in); | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| template<class Field> | ||||
| class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>  | ||||
| { | ||||
|  public: | ||||
|   virtual void  Mpc      (const Field& in, Field& out) = 0; | ||||
|   virtual void  MpcDag   (const Field& in, Field& out) = 0; | ||||
|   virtual void  MpcDagMpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = in.Checkerboard(); | ||||
|     Mpc(in,tmp); | ||||
|     MpcDag(tmp,out); | ||||
|   } | ||||
|   virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) { | ||||
|     assert(0); | ||||
|   } | ||||
|   virtual void HermOp(const Field& in, Field& out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void Op(const Field& in, Field& out) { | ||||
|     Mpc(in, out); | ||||
|   } | ||||
|   void AdjOp(const Field& in, Field& out) {  | ||||
|     MpcDag(in, out); | ||||
|   } | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag(const Field& in, Field& out) { | ||||
|     assert(0); // must coarsen the unpreconditioned system | ||||
|   } | ||||
|   void OpDir(const Field& in, Field& out, int dir, int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll(const Field& in, std::vector<Field>& out){ | ||||
|     assert(0); | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| template<class Matrix, class Field> | ||||
| class NonHermitianSchurDiagMooeeOperator :  public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  public: | ||||
|   Matrix& _Mat; | ||||
|  NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){}; | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|     tmp.Checkerboard() = !in.Checkerboard(); | ||||
|      | ||||
|     _Mat.Meooe(in, tmp); | ||||
|     _Mat.MooeeInv(tmp, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|      | ||||
|     _Mat.Mooee(in, out); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, out); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MeooeDag(in, tmp); | ||||
|     _Mat.MooeeInvDag(tmp, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
| 	   | ||||
|     _Mat.MooeeDag(in, out); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, out); | ||||
|   } | ||||
| }; | ||||
|      | ||||
| template<class Matrix,class Field> | ||||
| class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  protected: | ||||
|   Matrix &_Mat; | ||||
|    | ||||
|  public: | ||||
|   NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){}; | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
| 	   | ||||
|     _Mat.Meooe(in, out); | ||||
|     _Mat.MooeeInv(out, tmp); | ||||
|     _Mat.Meooe(tmp, out); | ||||
|     _Mat.MooeeInv(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MooeeInvDag(in, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
|     _Mat.MooeeInvDag(tmp, out); | ||||
|     _Mat.MeooeDag(out, tmp); | ||||
|      | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class Matrix, class Field> | ||||
| class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>  | ||||
| { | ||||
|  protected: | ||||
|   Matrix& _Mat; | ||||
|    | ||||
|  public: | ||||
|  NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){}; | ||||
|  | ||||
|   virtual void Mpc(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MooeeInv(in, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|     _Mat.MooeeInv(tmp, out); | ||||
|     _Mat.Meooe(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
|   virtual void MpcDag(const Field& in, Field& out) { | ||||
|     Field tmp(in.Grid()); | ||||
|      | ||||
|     _Mat.MeooeDag(in, out); | ||||
|     _Mat.MooeeInvDag(out, tmp); | ||||
|     _Mat.MeooeDag(tmp, out); | ||||
|     _Mat.MooeeInvDag(out, tmp); | ||||
|  | ||||
|     axpy(out, -1.0, tmp, in); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta | ||||
| // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi | ||||
|     // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi | ||||
|     /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ; | ||||
|     template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ; | ||||
| @@ -474,38 +311,61 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|       Matrix &_Mat; | ||||
|       Field tmp; | ||||
|       RealD mass; | ||||
|       double tMpc; | ||||
|       double tIP; | ||||
|       double tMeo; | ||||
|       double taxpby_norm; | ||||
|       uint64_t ncall; | ||||
|     public: | ||||
|       void Report(void) | ||||
|       { | ||||
| 	std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl; | ||||
| 	std::cout << GridLogMessage << " HermOpAndNorm.IP  "<< tIP /ncall<<" usec "<<std::endl; | ||||
| 	std::cout << GridLogMessage << " Mpc.MeoMoe        "<< tMeo/ncall<<" usec "<<std::endl; | ||||
| 	std::cout << GridLogMessage << " Mpc.axpby_norm    "<< taxpby_norm/ncall<<" usec "<<std::endl; | ||||
|       } | ||||
|       SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())  | ||||
|       {  | ||||
| 	assert( _Mat.isTrivialEE() ); | ||||
| 	mass = _Mat.Mass(); | ||||
| 	tMpc=0; | ||||
| 	tIP =0; | ||||
|         tMeo=0; | ||||
|         taxpby_norm=0; | ||||
| 	ncall=0; | ||||
|       } | ||||
|       virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     Mpc(in,out); | ||||
| 	ncall++; | ||||
| 	tMpc-=usecond(); | ||||
| 	n2 = Mpc(in,out); | ||||
| 	tMpc+=usecond(); | ||||
| 	tIP-=usecond(); | ||||
| 	ComplexD dot= innerProduct(in,out); | ||||
| 	tIP+=usecond(); | ||||
| 	n1 = real(dot); | ||||
|     n2 =0.0; | ||||
|       } | ||||
|       virtual void HermOp(const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|     //    _Mat.Meooe(in,out); | ||||
|     //    _Mat.Meooe(out,tmp); | ||||
|     //    axpby(out,-1.0,mass*mass,tmp,in); | ||||
|   } | ||||
|   virtual  void Mpc      (const Field &in, Field &out)  | ||||
|   { | ||||
|     Field tmp(in.Grid()); | ||||
|     Field tmp2(in.Grid()); | ||||
| 	 | ||||
|     //    _Mat.Mooee(in,out); | ||||
|     //    _Mat.Mooee(out,tmp); | ||||
|  | ||||
| 	ncall++; | ||||
| 	tMpc-=usecond(); | ||||
| 	_Mat.Meooe(in,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
| 	tMpc+=usecond(); | ||||
| 	taxpby_norm-=usecond(); | ||||
| 	axpby(out,-1.0,mass*mass,tmp,in); | ||||
| 	taxpby_norm+=usecond(); | ||||
|       } | ||||
|   virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|       virtual  RealD Mpc      (const Field &in, Field &out) { | ||||
| 	tMeo-=usecond(); | ||||
| 	_Mat.Meooe(in,out); | ||||
| 	_Mat.Meooe(out,tmp); | ||||
| 	tMeo+=usecond(); | ||||
| 	taxpby_norm-=usecond(); | ||||
| 	RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in); | ||||
| 	taxpby_norm+=usecond(); | ||||
| 	return nn; | ||||
|       } | ||||
|       virtual  RealD MpcDag   (const Field &in, Field &out){ | ||||
| 	return Mpc(in,out); | ||||
|       } | ||||
|       virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
| 	assert(0);// Never need with staggered | ||||
| @@ -513,18 +373,13 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|     }; | ||||
|     template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>; | ||||
|  | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for functions of operators | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     template<class Field> class OperatorFunction { | ||||
|     public: | ||||
|       virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0; | ||||
|   virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) { | ||||
|     assert(in.size()==out.size()); | ||||
|     for(int k=0;k<in.size();k++){ | ||||
|       (*this)(Linop,in[k],out[k]); | ||||
|     } | ||||
|   }; | ||||
|     }; | ||||
|  | ||||
|     template<class Field> class LinearFunction { | ||||
| @@ -604,15 +459,13 @@ class Polynomial : public OperatorFunction<Field> { | ||||
|   private: | ||||
|     std::vector<RealD> Coeffs; | ||||
|   public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { }; | ||||
|  | ||||
|     // Implement the required interface | ||||
|     void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     Field AtoN(in.Grid()); | ||||
|     Field Mtmp(in.Grid()); | ||||
|       Field AtoN(in._grid); | ||||
|       Field Mtmp(in._grid); | ||||
|       AtoN = in; | ||||
|       out = AtoN*Coeffs[0]; | ||||
|       for(int n=1;n<Coeffs.size();n++){ | ||||
| @@ -623,4 +476,6 @@ public: | ||||
|     }; | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,7 +28,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| #ifndef GRID_PRECONDITIONER_H | ||||
| #define GRID_PRECONDITIONER_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   template<class Field> class Preconditioner :  public LinearFunction<Field> {  | ||||
|     virtual void operator()(const Field &src, Field & psi)=0; | ||||
| @@ -42,5 +42,5 @@ public: | ||||
|     TrivialPrecon(void){}; | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #define  GRID_ALGORITHM_SPARSE_MATRIX_H | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Interface defining what I expect of a general sparse matrix, such as a Fermion action | ||||
| @@ -38,16 +38,15 @@ template<class Field> class SparseMatrixBase { | ||||
|     public: | ||||
|       virtual GridBase *Grid(void) =0; | ||||
|       // Full checkerboar operations | ||||
|   virtual void  M    (const Field &in, Field &out)=0; | ||||
|   virtual void  Mdag (const Field &in, Field &out)=0; | ||||
|   virtual void  MdagM(const Field &in, Field &out) { | ||||
|     Field tmp (in.Grid()); | ||||
|     M(in,tmp); | ||||
|     Mdag(tmp,out); | ||||
|       virtual RealD M    (const Field &in, Field &out)=0; | ||||
|       virtual RealD Mdag (const Field &in, Field &out)=0; | ||||
|       virtual void  MdagM(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
| 	Field tmp (in._grid); | ||||
| 	ni=M(in,tmp); | ||||
| 	no=Mdag(tmp,out); | ||||
|       } | ||||
|       virtual  void Mdiag    (const Field &in, Field &out)=0; | ||||
|       virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0; | ||||
|     }; | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -56,14 +55,6 @@ public: | ||||
|     template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> { | ||||
|     public: | ||||
|       virtual GridBase *RedBlackGrid(void)=0; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Query the even even properties to make algorithmic decisions | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   virtual RealD  Mass(void)        { return 0.0; }; | ||||
|   virtual int    ConstEE(void)     { return 1; }; // Disable assumptions unless overridden | ||||
|   virtual int    isTrivialEE(void) { return 0; }; // by a derived class that knows better | ||||
|  | ||||
|       // half checkerboard operaions | ||||
|       virtual  void Meooe    (const Field &in, Field &out)=0; | ||||
|       virtual  void Mooee    (const Field &in, Field &out)=0; | ||||
| @@ -75,6 +66,6 @@ public: | ||||
|  | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -32,7 +32,7 @@ Author: Christoph Lehner <clehner@bnl.gov> | ||||
|  | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| struct ChebyParams : Serializable { | ||||
|   GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams, | ||||
| @@ -47,8 +47,6 @@ struct ChebyParams : Serializable { | ||||
|   template<class Field> | ||||
|   class Chebyshev : public OperatorFunction<Field> { | ||||
|   private: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     std::vector<RealD> Coeffs; | ||||
|     int order; | ||||
|     RealD hi; | ||||
| @@ -57,7 +55,7 @@ private: | ||||
|   public: | ||||
|     void csv(std::ostream &out){ | ||||
|       RealD diff = hi-lo; | ||||
|     RealD delta = diff*1.0e-9; | ||||
|       RealD delta = (hi-lo)*1.0e-9; | ||||
|       for (RealD x=lo; x<hi; x+=delta) { | ||||
| 	delta*=1.1; | ||||
| 	RealD f = approx(x); | ||||
| @@ -95,24 +93,6 @@ public: | ||||
|       Coeffs[order-1] = 1.; | ||||
|     }; | ||||
|  | ||||
|   // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's. | ||||
|   // Similar kick effect below the threshold as Lanczos filter approach | ||||
|   void InitLowPass(RealD _lo,RealD _hi,int _order) | ||||
|   { | ||||
|     lo=_lo; | ||||
|     hi=_hi; | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order); | ||||
|     for(int j=0;j<order;j++){ | ||||
|       RealD k=(order-1.0); | ||||
|       RealD s=std::cos( j*M_PI*(k+0.5)/order ); | ||||
|       Coeffs[j] = s * 2.0/order; | ||||
|     } | ||||
|      | ||||
|   }; | ||||
|  | ||||
|     void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD)) | ||||
|     { | ||||
|       lo=_lo; | ||||
| @@ -232,10 +212,12 @@ public: | ||||
|     // Implement the required interface | ||||
|     void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     GridBase *grid=in.Grid(); | ||||
|       GridBase *grid=in._grid; | ||||
|  | ||||
|       // std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl; | ||||
|       //std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl; | ||||
|  | ||||
|       int vol=grid->gSites(); | ||||
|     typedef typename Field::vector_type vector_type; | ||||
|  | ||||
|       Field T0(grid); T0 = in;   | ||||
|       Field T1(grid);  | ||||
| @@ -250,34 +232,20 @@ public: | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       Linop.HermOp(T0,y); | ||||
|     axpby(T1,xscale,mscale,y,in); | ||||
|       T1=y*xscale+in*mscale; | ||||
|  | ||||
|       // sum = .5 c[0] T0 + c[1] T1 | ||||
|     //    out = ()*T0 + Coeffs[1]*T1; | ||||
|     axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1); | ||||
|       out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1; | ||||
|       for(int n=2;n<order;n++){ | ||||
| 	 | ||||
| 	Linop.HermOp(*Tn,y); | ||||
| #if 0 | ||||
|       auto y_v = y.View(); | ||||
|       auto Tn_v = Tn->View(); | ||||
|       auto Tnp_v = Tnp->View(); | ||||
|       auto Tnm_v = Tnm->View(); | ||||
|       constexpr int Nsimd = vector_type::Nsimd(); | ||||
|       accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|       }); | ||||
|       if ( Coeffs[n] != 0.0) { | ||||
| 	axpy(out,Coeffs[n],*Tnp,out); | ||||
|       } | ||||
| #else | ||||
|       axpby(y,xscale,mscale,y,(*Tn)); | ||||
|       axpby(*Tnp,2.0,-1.0,y,(*Tnm)); | ||||
|       if ( Coeffs[n] != 0.0) { | ||||
| 	axpy(out,Coeffs[n],*Tnp,out); | ||||
|       } | ||||
| #endif | ||||
|  | ||||
| 	y=xscale*y+mscale*(*Tn); | ||||
|  | ||||
| 	*Tnp=2.0*y-(*Tnm); | ||||
|  | ||||
| 	out=out+Coeffs[n]* (*Tnp); | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	Field *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| @@ -353,7 +321,7 @@ public: | ||||
|     // shift_Multiply in Rudy's code | ||||
|     void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)  | ||||
|     { | ||||
|     GridBase *grid=in.Grid(); | ||||
|       GridBase *grid=in._grid; | ||||
|       Field tmp(grid); | ||||
|  | ||||
|       RealD aa= alpha*alpha; | ||||
| @@ -370,7 +338,7 @@ public: | ||||
|     // Implement the required interface | ||||
|     void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|  | ||||
|     GridBase *grid=in.Grid(); | ||||
|       GridBase *grid=in._grid; | ||||
|  | ||||
|       int vol=grid->gSites(); | ||||
|  | ||||
| @@ -405,5 +373,5 @@ public: | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -31,7 +31,7 @@ See the full license in the file "LICENSE" in the top level distribution directo | ||||
| #ifndef INCLUDED_FORECAST_H | ||||
| #define INCLUDED_FORECAST_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   // Abstract base class. | ||||
|   // Takes a matrix (Mat), a source (phi), and a vector of Fields (chi) | ||||
| @@ -57,10 +57,10 @@ public: | ||||
|         Field chi(phi); // forecasted solution | ||||
|  | ||||
|         // Trivial cases | ||||
|     if(degree == 0){ chi = Zero(); return chi; } | ||||
|         if(degree == 0){ chi = zero; return chi; } | ||||
|         else if(degree == 1){ return prev_solns[0]; } | ||||
|  | ||||
|     //    RealD dot; | ||||
|         RealD dot; | ||||
|         ComplexD xp; | ||||
|         Field r(phi); // residual | ||||
|         Field Mv(phi); | ||||
| @@ -92,7 +92,7 @@ public: | ||||
|         for(int j=0; j<degree; j++){ | ||||
|         for(int k=j+1; k<degree; k++){ | ||||
|           G[j][k] = innerProduct(v[j],MdagMv[k]); | ||||
| 	G[k][j] = conjugate(G[j][k]); | ||||
|           G[k][j] = std::conj(G[j][k]); | ||||
|         }} | ||||
|  | ||||
|         // Gauss-Jordan elimination with partial pivoting | ||||
| @@ -100,7 +100,7 @@ public: | ||||
|  | ||||
|           // Perform partial pivoting | ||||
|           int k = i; | ||||
|       for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } } | ||||
|           for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } } | ||||
|           if(k != i){ | ||||
|             xp = b[k]; | ||||
|             b[k] = b[i]; | ||||
| @@ -121,7 +121,7 @@ public: | ||||
|         } | ||||
|  | ||||
|         // Use Gaussian elimination to solve equations and calculate initial guess | ||||
|     chi = Zero(); | ||||
|         chi = zero; | ||||
|         r = phi; | ||||
|         for(int i=degree-1; i>=0; i--){ | ||||
|           a[i] = 0.0; | ||||
| @@ -136,7 +136,7 @@ public: | ||||
|         for(int i=0; i<degree; i++){ | ||||
|           tmp = -b[i]; | ||||
|           for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; } | ||||
|       tmp = conjugate(tmp)*tmp; | ||||
|           tmp = std::conj(tmp)*tmp; | ||||
|           true_r += std::sqrt(tmp.real()); | ||||
|         } | ||||
|  | ||||
| @@ -147,6 +147,6 @@ public: | ||||
|       }; | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,129 +0,0 @@ | ||||
| #ifndef GRID_JACOBIPOLYNOMIAL_H | ||||
| #define GRID_JACOBIPOLYNOMIAL_H | ||||
|  | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| class JacobiPolynomial : public OperatorFunction<Field> { | ||||
|  private: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   int order; | ||||
|   RealD hi; | ||||
|   RealD lo; | ||||
|   RealD alpha; | ||||
|   RealD beta; | ||||
|  | ||||
|  public: | ||||
|   void csv(std::ostream &out){ | ||||
|     csv(out,lo,hi); | ||||
|   } | ||||
|   void csv(std::ostream &out,RealD llo,RealD hhi){ | ||||
|     RealD diff = hhi-llo; | ||||
|     RealD delta = diff*1.0e-5; | ||||
|     for (RealD x=llo-delta; x<=hhi; x+=delta) { | ||||
|       RealD f = approx(x); | ||||
|       out<< x<<" "<<f <<std::endl; | ||||
|     } | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   JacobiPolynomial(){}; | ||||
|   JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta) | ||||
|   { | ||||
|       lo=_lo; | ||||
|       hi=_hi; | ||||
|       alpha=_alpha; | ||||
|       beta=_beta; | ||||
|       order=_order; | ||||
|   }; | ||||
|  | ||||
|   RealD approx(RealD x) // Convenience for plotting the approximation                                                        | ||||
|   { | ||||
|     RealD Tn; | ||||
|     RealD Tnm; | ||||
|     RealD Tnp; | ||||
|  | ||||
|     RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo)); | ||||
|  | ||||
|     RealD T0=1.0; | ||||
|     RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y; | ||||
|  | ||||
|     Tn =T1; | ||||
|     Tnm=T0; | ||||
|     for(int n=2;n<=order;n++){ | ||||
|       RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta); | ||||
|       RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta); | ||||
|       RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta); | ||||
|       RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta); | ||||
|       Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp; | ||||
|       Tnm=Tn; | ||||
|       Tn =Tnp; | ||||
|     } | ||||
|     return Tnp; | ||||
|   }; | ||||
|  | ||||
|   // Implement the required interface                                                                                        | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) { | ||||
|     GridBase *grid=in.Grid(); | ||||
|  | ||||
|     int vol=grid->gSites(); | ||||
|  | ||||
|     Field T0(grid); | ||||
|     Field T1(grid); | ||||
|     Field T2(grid); | ||||
|     Field y(grid); | ||||
|  | ||||
|  | ||||
|     Field *Tnm = &T0; | ||||
|     Field *Tn  = &T1; | ||||
|     Field *Tnp = &T2; | ||||
|  | ||||
|     //    RealD T0=1.0;                                                                                                      | ||||
|     T0=in; | ||||
|  | ||||
|     //    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));                                                                            | ||||
|     //           = x * 2/(hi-lo) - (hi+lo)/(hi-lo)                                                                           | ||||
|     Linop.HermOp(T0,y); | ||||
|     RealD xscale = 2.0/(hi-lo); | ||||
|     RealD mscale = -(hi+lo)/(hi-lo); | ||||
|     Linop.HermOp(T0,y); | ||||
|     y=y*xscale+in*mscale; | ||||
|  | ||||
|     // RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y; | ||||
|     RealD halfAmB  = (alpha-beta)*0.5; | ||||
|     RealD halfApBp2= (alpha+beta+2.0)*0.5; | ||||
|     T1 = halfAmB * in + halfApBp2*y; | ||||
|  | ||||
|     for(int n=2;n<=order;n++){ | ||||
|  | ||||
|       Linop.HermOp(*Tn,y); | ||||
|       y=xscale*y+mscale*(*Tn); | ||||
|  | ||||
|       RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta); | ||||
|       RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta); | ||||
|       RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta); | ||||
|       RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta); | ||||
|  | ||||
|       //      Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;                                                              | ||||
|       cny=cny/cnp; | ||||
|       cn1=cn1/cnp; | ||||
|       cn1=cn1/cnp; | ||||
|       cnm=cnm/cnp; | ||||
|  | ||||
|       *Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm); | ||||
|  | ||||
|       // Cycle pointers to avoid copies                                                                                      | ||||
|       Field *swizzle = Tnm; | ||||
|       Tnm    =Tn; | ||||
|       Tn     =Tnp; | ||||
|       Tnp    =swizzle; | ||||
|     } | ||||
|     out=*Tnp; | ||||
|  | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -27,8 +27,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
| double MultiShiftFunction::approx(double x) | ||||
| { | ||||
|   double a = norm; | ||||
| @@ -54,4 +53,4 @@ void MultiShiftFunction::csv(std::ostream &out) | ||||
|   } | ||||
|   return; | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef MULTI_SHIFT_FUNCTION | ||||
| #define MULTI_SHIFT_FUNCTION | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| class MultiShiftFunction { | ||||
| public: | ||||
| @@ -63,5 +63,5 @@ public: | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -298,7 +298,7 @@ void AlgRemez::stpini(bigfloat *step) { | ||||
| // Search for error maxima and minima | ||||
| void AlgRemez::search(bigfloat *step) { | ||||
|   bigfloat a, q, xm, ym, xn, yn, xx0, xx1; | ||||
|   int i, meq, emsign, ensign, steps; | ||||
|   int i, j, meq, emsign, ensign, steps; | ||||
|  | ||||
|   meq = neq + 1; | ||||
|   bigfloat *yy = new bigfloat[meq]; | ||||
| @@ -306,6 +306,7 @@ void AlgRemez::search(bigfloat *step) { | ||||
|   bigfloat eclose = 1.0e30; | ||||
|   bigfloat farther = 0l; | ||||
|  | ||||
|   j = 1; | ||||
|   xx0 = apstrt; | ||||
|  | ||||
|   for (i = 0; i < meq; i++) { | ||||
|   | ||||
| @@ -1,473 +0,0 @@ | ||||
| #include<math.h> | ||||
| #include<stdio.h> | ||||
| #include<stdlib.h> | ||||
| #include<string> | ||||
| #include<iostream> | ||||
| #include<iomanip> | ||||
| #include<cassert> | ||||
|  | ||||
| #include<Grid/algorithms/approx/RemezGeneral.h> | ||||
|  | ||||
|  | ||||
| // Constructor | ||||
| AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision, | ||||
| 				 bigfloat (*f)(bigfloat x, void *data), void *data): f(f),  | ||||
| 										     data(data),  | ||||
| 										     prec(precision), | ||||
| 										     apstrt(lower), apend(upper), apwidt(upper - lower), | ||||
| 										     n(0), d(0), pow_n(0), pow_d(0) | ||||
| { | ||||
|   bigfloat::setDefaultPrecision(prec); | ||||
|  | ||||
|   std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n"; | ||||
|   std::cout<<"Precision of arithmetic is "<<precision<<std::endl; | ||||
| } | ||||
|  | ||||
| //Determine the properties of the numerator and denominator polynomials | ||||
| void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){ | ||||
|   pow_n = num_degree; | ||||
|   pow_d = den_degree; | ||||
|  | ||||
|   if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0); | ||||
|  | ||||
|   if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0); | ||||
|   if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0); | ||||
|  | ||||
|   num_type = num_type_in; | ||||
|   den_type = den_type_in; | ||||
|  | ||||
|   num_pows.resize(pow_n+1); | ||||
|   den_pows.resize(pow_d+1); | ||||
|  | ||||
|   int n_in = 0; | ||||
|   bool odd = num_type == PolyType::Full || num_type == PolyType::Odd; | ||||
|   bool even = num_type == PolyType::Full || num_type == PolyType::Even; | ||||
|   for(int i=0;i<=pow_n;i++){ | ||||
|     num_pows[i] = -1; | ||||
|     if(i % 2 == 0 && even) num_pows[i] = n_in++; | ||||
|     if(i % 2 == 1 && odd) num_pows[i] = n_in++; | ||||
|   } | ||||
|  | ||||
|   std::cout << n_in << " terms in numerator" << std::endl; | ||||
|   --n_in; //power is 1 less than the number of terms, eg  pow=1   a x^1  + b x^0 | ||||
|  | ||||
|   int d_in = 0; | ||||
|   odd = den_type == PolyType::Full || den_type == PolyType::Odd; | ||||
|   even = den_type == PolyType::Full || den_type == PolyType::Even; | ||||
|   for(int i=0;i<=pow_d;i++){ | ||||
|     den_pows[i] = -1; | ||||
|     if(i % 2 == 0 && even) den_pows[i] = d_in++; | ||||
|     if(i % 2 == 1 && odd) den_pows[i] = d_in++; | ||||
|   } | ||||
|  | ||||
|   std::cout << d_in << " terms in denominator" << std::endl; | ||||
|   --d_in; | ||||
|  | ||||
|   n = n_in; | ||||
|   d = d_in; | ||||
| } | ||||
|  | ||||
| //Setup algorithm | ||||
| void AlgRemezGeneral::reinitializeAlgorithm(){ | ||||
|   spread = 1.0e37; | ||||
|   iter = 0; | ||||
|  | ||||
|   neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1 | ||||
|  | ||||
|   param.resize(neq); | ||||
|   yy.resize(neq+1); | ||||
|  | ||||
|   //Initialize linear equation temporaries | ||||
|   A.resize(neq*neq); | ||||
|   B.resize(neq); | ||||
|   IPS.resize(neq); | ||||
|  | ||||
|   //Initialize maximum and minimum errors | ||||
|   xx.resize(neq+2); | ||||
|   mm.resize(neq+1); | ||||
|   initialGuess(); | ||||
|  | ||||
|   //Initialize search steps | ||||
|   step.resize(neq+1); | ||||
|   stpini(); | ||||
| } | ||||
|  | ||||
| double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,  | ||||
| 				       const PolyType num_type_in, const PolyType den_type_in,  | ||||
| 				       const double _tolerance, const int report_freq){ | ||||
|   //Setup the properties of the polynomial | ||||
|   setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in); | ||||
|  | ||||
|   //Setup the algorithm | ||||
|   reinitializeAlgorithm(); | ||||
|  | ||||
|   bigfloat tolerance = _tolerance; | ||||
|  | ||||
|   //Iterate until convergance | ||||
|   while (spread > tolerance) {  | ||||
|     if (iter++ % report_freq==0) | ||||
|       std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;  | ||||
|  | ||||
|     equations(); | ||||
|     if (delta < tolerance) { | ||||
|       std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n"; | ||||
|       assert(0); | ||||
|     };     | ||||
|     assert( delta>= tolerance ); | ||||
|  | ||||
|     search(); | ||||
|   } | ||||
|  | ||||
|   int sign; | ||||
|   double error = (double)getErr(mm[0],&sign); | ||||
|   std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl; | ||||
|  | ||||
|   // Return the maximum error in the approximation | ||||
|   return error; | ||||
| } | ||||
|  | ||||
|  | ||||
| // Initial values of maximal and minimal errors | ||||
| void AlgRemezGeneral::initialGuess(){ | ||||
|   // Supply initial guesses for solution points | ||||
|   long ncheb = neq;			// Degree of Chebyshev error estimate | ||||
|  | ||||
|   // Find ncheb+1 extrema of Chebyshev polynomial | ||||
|   bigfloat a = ncheb; | ||||
|   bigfloat r; | ||||
|  | ||||
|   mm[0] = apstrt; | ||||
|   for (long i = 1; i < ncheb; i++) { | ||||
|     r = 0.5 * (1 - cos((M_PI * i)/(double) a)); | ||||
|     //r *= sqrt_bf(r); | ||||
|     r = (exp((double)r)-1.0)/(exp(1.0)-1.0); | ||||
|     mm[i] = apstrt + r * apwidt; | ||||
|   } | ||||
|   mm[ncheb] = apend; | ||||
|  | ||||
|   a = 2.0 * ncheb; | ||||
|   for (long i = 0; i <= ncheb; i++) { | ||||
|     r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a)); | ||||
|     //r *= sqrt_bf(r); // Squeeze to low end of interval | ||||
|     r = (exp((double)r)-1.0)/(exp(1.0)-1.0); | ||||
|     xx[i] = apstrt + r * apwidt; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Initialise step sizes | ||||
| void AlgRemezGeneral::stpini(){ | ||||
|   xx[neq+1] = apend; | ||||
|   delta = 0.25; | ||||
|   step[0] = xx[0] - apstrt; | ||||
|   for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1]; | ||||
|   step[neq] = step[neq-1]; | ||||
| } | ||||
|  | ||||
| // Search for error maxima and minima | ||||
| void AlgRemezGeneral::search(){ | ||||
|   bigfloat a, q, xm, ym, xn, yn, xx1; | ||||
|   int emsign, ensign, steps; | ||||
|  | ||||
|   int meq = neq + 1; | ||||
|  | ||||
|   bigfloat eclose = 1.0e30; | ||||
|   bigfloat farther = 0l; | ||||
|  | ||||
|   bigfloat xx0 = apstrt; | ||||
|  | ||||
|   for (int i = 0; i < meq; i++) { | ||||
|     steps = 0; | ||||
|     xx1 = xx[i]; // Next zero | ||||
|     if (i == meq-1) xx1 = apend; | ||||
|     xm = mm[i]; | ||||
|     ym = getErr(xm,&emsign); | ||||
|     q = step[i]; | ||||
|     xn = xm + q; | ||||
|     if (xn < xx0 || xn >= xx1) {	// Cannot skip over adjacent boundaries | ||||
|       q = -q; | ||||
|       xn = xm; | ||||
|       yn = ym; | ||||
|       ensign = emsign; | ||||
|     } else { | ||||
|       yn = getErr(xn,&ensign); | ||||
|       if (yn < ym) { | ||||
| 	q = -q; | ||||
| 	xn = xm; | ||||
| 	yn = ym; | ||||
| 	ensign = emsign; | ||||
|       } | ||||
|     } | ||||
|    | ||||
|     while(yn >= ym) {		// March until error becomes smaller. | ||||
|       if (++steps > 10) | ||||
|       	break; | ||||
|        | ||||
|       ym = yn; | ||||
|       xm = xn; | ||||
|       emsign = ensign; | ||||
|       a = xm + q; | ||||
|       if (a == xm || a <= xx0 || a >= xx1) | ||||
| 	break;// Must not skip over the zeros either side.       | ||||
|  | ||||
|       xn = a; | ||||
|       yn = getErr(xn,&ensign); | ||||
|     } | ||||
|  | ||||
|     mm[i] = xm;			// Position of maximum | ||||
|     yy[i] = ym;			// Value of maximum | ||||
|  | ||||
|     if (eclose > ym) eclose = ym; | ||||
|     if (farther < ym) farther = ym; | ||||
|  | ||||
|     xx0 = xx1; // Walk to next zero. | ||||
|   } // end of search loop | ||||
|  | ||||
|   q = (farther - eclose);	// Decrease step size if error spread increased | ||||
|  | ||||
|   if (eclose != 0.0) q /= eclose; // Relative error spread | ||||
|  | ||||
|   if (q >= spread) | ||||
|     delta *= 0.5; // Spread is increasing; decrease step size | ||||
|    | ||||
|   spread = q; | ||||
|  | ||||
|   for (int i = 0; i < neq; i++) { | ||||
|     q = yy[i+1]; | ||||
|     if (q != 0.0) q = yy[i] / q  - (bigfloat)1l; | ||||
|     else q = 0.0625; | ||||
|     if (q > (bigfloat)0.25) q = 0.25; | ||||
|     q *= mm[i+1] - mm[i]; | ||||
|     step[i] = q * delta; | ||||
|   } | ||||
|   step[neq] = step[neq-1]; | ||||
|    | ||||
|   for (int i = 0; i < neq; i++) {	// Insert new locations for the zeros. | ||||
|     xm = xx[i] - step[i]; | ||||
|  | ||||
|     if (xm <= apstrt) | ||||
|       continue; | ||||
|  | ||||
|     if (xm >= apend) | ||||
|       continue; | ||||
|  | ||||
|     if (xm <= mm[i]) | ||||
|       xm = (bigfloat)0.5 * (mm[i] + xx[i]);     | ||||
|  | ||||
|     if (xm >= mm[i+1]) | ||||
|       xm = (bigfloat)0.5 * (mm[i+1] + xx[i]); | ||||
|      | ||||
|     xx[i] = xm; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Solve the equations | ||||
| void AlgRemezGeneral::equations(){ | ||||
|   bigfloat x, y, z; | ||||
|   bigfloat *aa; | ||||
|    | ||||
|   for (int i = 0; i < neq; i++) {	// set up the equations for solution by simq() | ||||
|     int ip = neq * i;		// offset to 1st element of this row of matrix | ||||
|     x = xx[i];			// the guess for this row | ||||
|     y = func(x);		// right-hand-side vector | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     aa = A.data()+ip; | ||||
|     int t = 0; | ||||
|     for (int j = 0; j <= pow_n; j++) { | ||||
|       if(num_pows[j] != -1){ *aa++ = z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == n+1); | ||||
|  | ||||
|     z = (bigfloat)1l; | ||||
|     t = 0; | ||||
|     for (int j = 0; j < pow_d; j++) { | ||||
|       if(den_pows[j] != -1){ *aa++ = -y * z; t++; } | ||||
|       z *= x; | ||||
|     } | ||||
|     assert(t == d); | ||||
|  | ||||
|     B[i] = y * z;		// Right hand side vector | ||||
|   } | ||||
|  | ||||
|   // Solve the simultaneous linear equations. | ||||
|   if (simq()){ | ||||
|     std::cout<<"simq failed\n"; | ||||
|     exit(0); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| // Evaluate the rational form P(x)/Q(x) using coefficients | ||||
| // from the solution vector param | ||||
| bigfloat AlgRemezGeneral::approx(const bigfloat x) const{ | ||||
|   // Work backwards toward the constant term. | ||||
|   int c = n; | ||||
|   bigfloat yn = param[c--];		// Highest order numerator coefficient | ||||
|   for (int i = pow_n-1; i >= 0; i--) yn = x * yn  +  (num_pows[i] != -1 ? param[c--] : bigfloat(0l));   | ||||
|  | ||||
|   c = n+d; | ||||
|   bigfloat yd = 1l; //Highest degree coefficient is 1.0 | ||||
|   for (int i = pow_d-1; i >= 0; i--) yd = x * yd  +  (den_pows[i] != -1 ? param[c--] : bigfloat(0l));  | ||||
|  | ||||
|   return(yn/yd); | ||||
| } | ||||
|  | ||||
| // Compute size and sign of the approximation error at x | ||||
| bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{ | ||||
|   bigfloat f = func(x); | ||||
|   bigfloat e = approx(x) - f; | ||||
|   if (f != 0) e /= f; | ||||
|   if (e < (bigfloat)0.0) { | ||||
|     *sign = -1; | ||||
|     e = -e; | ||||
|   } | ||||
|   else *sign = 1; | ||||
|    | ||||
|   return(e); | ||||
| } | ||||
|  | ||||
| // Solve the system AX=B | ||||
| int AlgRemezGeneral::simq(){ | ||||
|  | ||||
|   int ip, ipj, ipk, ipn; | ||||
|   int idxpiv; | ||||
|   int kp, kp1, kpk, kpn; | ||||
|   int nip, nkp; | ||||
|   bigfloat em, q, rownrm, big, size, pivot, sum; | ||||
|   bigfloat *aa; | ||||
|   bigfloat *X = param.data(); | ||||
|  | ||||
|   int n = neq; | ||||
|   int nm1 = n - 1; | ||||
|   // Initialize IPS and X | ||||
|    | ||||
|   int ij = 0; | ||||
|   for (int i = 0; i < n; i++) { | ||||
|     IPS[i] = i; | ||||
|     rownrm = 0.0; | ||||
|     for(int j = 0; j < n; j++) { | ||||
|       q = abs_bf(A[ij]); | ||||
|       if(rownrm < q) rownrm = q; | ||||
|       ++ij; | ||||
|     } | ||||
|     if (rownrm == (bigfloat)0l) { | ||||
|       std::cout<<"simq rownrm=0\n"; | ||||
|       return(1); | ||||
|     } | ||||
|     X[i] = (bigfloat)1.0 / rownrm; | ||||
|   } | ||||
|    | ||||
|   for (int k = 0; k < nm1; k++) { | ||||
|     big = 0.0; | ||||
|     idxpiv = 0; | ||||
|      | ||||
|     for (int i = k; i < n; i++) { | ||||
|       ip = IPS[i]; | ||||
|       ipk = n*ip + k; | ||||
|       size = abs_bf(A[ipk]) * X[ip]; | ||||
|       if (size > big) { | ||||
| 	big = size; | ||||
| 	idxpiv = i; | ||||
|       } | ||||
|     } | ||||
|      | ||||
|     if (big == (bigfloat)0l) { | ||||
|       std::cout<<"simq big=0\n"; | ||||
|       return(2); | ||||
|     } | ||||
|     if (idxpiv != k) { | ||||
|       int j = IPS[k]; | ||||
|       IPS[k] = IPS[idxpiv]; | ||||
|       IPS[idxpiv] = j; | ||||
|     } | ||||
|     kp = IPS[k]; | ||||
|     kpk = n*kp + k; | ||||
|     pivot = A[kpk]; | ||||
|     kp1 = k+1; | ||||
|     for (int i = kp1; i < n; i++) { | ||||
|       ip = IPS[i]; | ||||
|       ipk = n*ip + k; | ||||
|       em = -A[ipk] / pivot; | ||||
|       A[ipk] = -em; | ||||
|       nip = n*ip; | ||||
|       nkp = n*kp; | ||||
|       aa = A.data()+nkp+kp1; | ||||
|       for (int j = kp1; j < n; j++) { | ||||
| 	ipj = nip + j; | ||||
| 	A[ipj] = A[ipj] + em * *aa++; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   kpn = n * IPS[n-1] + n - 1;	// last element of IPS[n] th row | ||||
|   if (A[kpn] == (bigfloat)0l) { | ||||
|     std::cout<<"simq A[kpn]=0\n"; | ||||
|     return(3); | ||||
|   } | ||||
|  | ||||
|    | ||||
|   ip = IPS[0]; | ||||
|   X[0] = B[ip]; | ||||
|   for (int i = 1; i < n; i++) { | ||||
|     ip = IPS[i]; | ||||
|     ipj = n * ip; | ||||
|     sum = 0.0; | ||||
|     for (int j = 0; j < i; j++) { | ||||
|       sum += A[ipj] * X[j]; | ||||
|       ++ipj; | ||||
|     } | ||||
|     X[i] = B[ip] - sum; | ||||
|   } | ||||
|    | ||||
|   ipn = n * IPS[n-1] + n - 1; | ||||
|   X[n-1] = X[n-1] / A[ipn]; | ||||
|    | ||||
|   for (int iback = 1; iback < n; iback++) { | ||||
|     //i goes (n-1),...,1 | ||||
|     int i = nm1 - iback; | ||||
|     ip = IPS[i]; | ||||
|     nip = n*ip; | ||||
|     sum = 0.0; | ||||
|     aa = A.data()+nip+i+1; | ||||
|     for (int j= i + 1; j < n; j++)  | ||||
|       sum += *aa++ * X[j]; | ||||
|     X[i] = (X[i] - sum) / A[nip+i]; | ||||
|   } | ||||
|    | ||||
|   return(0); | ||||
| } | ||||
|  | ||||
| void AlgRemezGeneral::csv(std::ostream & os) const{ | ||||
|   os << "Numerator" << std::endl; | ||||
|   for(int i=0;i<=pow_n;i++){ | ||||
|     os << getCoeffNum(i) << "*x^" << i; | ||||
|     if(i!=pow_n) os << " + "; | ||||
|   } | ||||
|   os << std::endl; | ||||
|  | ||||
|   os << "Denominator" << std::endl; | ||||
|   for(int i=0;i<=pow_d;i++){ | ||||
|     os << getCoeffDen(i) << "*x^" << i; | ||||
|     if(i!=pow_d) os << " + "; | ||||
|   } | ||||
|   os << std::endl; | ||||
|  | ||||
|   //For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc | ||||
|   int sign; | ||||
|   os << "Errors at maxima: coordinate, error, (sign)" << std::endl; | ||||
|   for(int i=0;i<neq+1;i++){  | ||||
|     os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl; | ||||
|   } | ||||
|  | ||||
|   os << "Scan over range:" << std::endl; | ||||
|   int npt = 60; | ||||
|   bigfloat dlt = (apend - apstrt)/bigfloat(npt-1); | ||||
|  | ||||
|   for (bigfloat x=apstrt; x<=apend; x = x + dlt) { | ||||
|     double f = evaluateFunc(x); | ||||
|     double r = evaluateApprox(x); | ||||
|     os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl; | ||||
|   } | ||||
|   return; | ||||
| } | ||||
| @@ -1,170 +0,0 @@ | ||||
| /* | ||||
|   C.Kelly Jan 2020 based on implementation by M. Clark May 2005 | ||||
|  | ||||
|   AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial  | ||||
|   It includes optional restriction to odd/even polynomials for the numerator and/or denominator | ||||
| */ | ||||
|  | ||||
| #ifndef INCLUDED_ALG_REMEZ_GENERAL_H | ||||
| #define INCLUDED_ALG_REMEZ_GENERAL_H | ||||
|  | ||||
| #include <stddef.h> | ||||
| #include <Grid/GridStd.h> | ||||
|  | ||||
| #ifdef HAVE_LIBGMP | ||||
| #include "bigfloat.h" | ||||
| #else | ||||
| #include "bigfloat_double.h" | ||||
| #endif | ||||
|  | ||||
|  | ||||
| class AlgRemezGeneral{ | ||||
|  public: | ||||
|   enum PolyType { Even, Odd, Full }; | ||||
|  | ||||
|  private: | ||||
|  | ||||
|   // In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer | ||||
|   bigfloat (*f)(bigfloat x, void *data); | ||||
|   void *data; | ||||
|  | ||||
|   // The approximation parameters | ||||
|   std::vector<bigfloat> param; | ||||
|   bigfloat norm; | ||||
|  | ||||
|   // The number of non-zero terms in the numerator and denominator | ||||
|   int n, d; | ||||
|   // The numerator and denominator degree (i.e.  the largest power) | ||||
|   int pow_n, pow_d; | ||||
|    | ||||
|   // Specify if the numerator and/or denominator are odd/even polynomials | ||||
|   PolyType num_type; | ||||
|   PolyType den_type; | ||||
|   std::vector<int> num_pows; //contains the mapping, with -1 if not present | ||||
|   std::vector<int> den_pows; | ||||
|  | ||||
|   // The bounds of the approximation | ||||
|   bigfloat apstrt, apwidt, apend; | ||||
|  | ||||
|   // Variables used to calculate the approximation | ||||
|   int nd1, iter; | ||||
|   std::vector<bigfloat> xx; | ||||
|   std::vector<bigfloat> mm; | ||||
|   std::vector<bigfloat> step; | ||||
|  | ||||
|   bigfloat delta, spread; | ||||
|    | ||||
|   // Variables used in search | ||||
|   std::vector<bigfloat> yy; | ||||
|  | ||||
|   // Variables used in solving linear equations | ||||
|   std::vector<bigfloat> A; | ||||
|   std::vector<bigfloat> B; | ||||
|   std::vector<int> IPS; | ||||
|  | ||||
|   // The number of equations we must solve at each iteration (n+d+1) | ||||
|   int neq; | ||||
|  | ||||
|   // The precision of the GNU MP library | ||||
|   long prec; | ||||
|  | ||||
|   // Initialize member variables associated with the polynomial's properties | ||||
|   void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in); | ||||
|  | ||||
|   // Initial values of maximal and minmal errors | ||||
|   void initialGuess(); | ||||
|  | ||||
|   // Initialise step sizes | ||||
|   void stpini(); | ||||
|  | ||||
|   // Initialize the algorithm | ||||
|   void reinitializeAlgorithm(); | ||||
|  | ||||
|   // Solve the equations | ||||
|   void equations(); | ||||
|  | ||||
|   // Search for error maxima and minima | ||||
|   void search();  | ||||
|  | ||||
|   // Calculate function required for the approximation | ||||
|   inline bigfloat func(bigfloat x) const{ | ||||
|     return f(x, data); | ||||
|   } | ||||
|  | ||||
|   // Compute size and sign of the approximation error at x | ||||
|   bigfloat getErr(bigfloat x, int *sign) const; | ||||
|  | ||||
|   // Solve the system AX=B   where X = param | ||||
|   int simq(); | ||||
|  | ||||
|   // Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param | ||||
|   bigfloat approx(bigfloat x) const; | ||||
|  | ||||
|  public: | ||||
|    | ||||
|   AlgRemezGeneral(double lower, double upper, long prec, | ||||
| 		  bigfloat (*f)(bigfloat x, void *data), void *data); | ||||
|  | ||||
|   inline int getDegree(void) const{  | ||||
|     assert(n==d); | ||||
|     return n; | ||||
|   } | ||||
|   // Reset the bounds of the approximation | ||||
|   inline void setBounds(double lower, double upper) { | ||||
|     apstrt = lower; | ||||
|     apend = upper; | ||||
|     apwidt = apend - apstrt; | ||||
|   } | ||||
|  | ||||
|   // Get the bounds of the approximation | ||||
|   inline void getBounds(double &lower, double &upper) const{  | ||||
|     lower=(double)apstrt; | ||||
|     upper=(double)apend; | ||||
|   } | ||||
|  | ||||
|   // Run the algorithm to generate the rational approximation | ||||
|   double generateApprox(int num_degree, int den_degree,  | ||||
| 			PolyType num_type, PolyType den_type, | ||||
| 			const double tolerance = 1e-15, const int report_freq = 1000); | ||||
|    | ||||
|   inline double generateApprox(int num_degree, int den_degree,  | ||||
| 			       const double tolerance = 1e-15, const int report_freq = 1000){ | ||||
|     return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq); | ||||
|   } | ||||
|    | ||||
|   // Evaluate the rational form P(x)/Q(x) using coefficients from the | ||||
|   // solution vector param | ||||
|   inline double evaluateApprox(double x) const{ | ||||
|     return (double)approx((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param | ||||
|   inline double evaluateInverseApprox(double x) const{ | ||||
|     return 1.0/(double)approx((bigfloat)x); | ||||
|   }   | ||||
|  | ||||
|   // Calculate function required for the approximation | ||||
|   inline double evaluateFunc(double x) const{ | ||||
|     return (double)func((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Calculate inverse function required for the approximation | ||||
|   inline double evaluateInverseFunc(double x) const{ | ||||
|     return 1.0/(double)func((bigfloat)x); | ||||
|   } | ||||
|  | ||||
|   // Dump csv of function, approx and error | ||||
|   void csv(std::ostream &os = std::cout) const; | ||||
|  | ||||
|   // Get the coefficient of the term x^i in the numerator | ||||
|   inline double getCoeffNum(const int i) const{     | ||||
|     return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]); | ||||
|   } | ||||
|   // Get the coefficient of the term x^i in the denominator | ||||
|   inline double getCoeffDen(const int i) const{  | ||||
|     if(i == pow_d) return 1.0; | ||||
|     else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);  | ||||
|   } | ||||
| }; | ||||
|  | ||||
| #endif | ||||
| @@ -1,183 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/ZMobius.cc | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
|  | ||||
| //Compute the tanh approximation | ||||
| inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){ | ||||
|   int Ls = w.size(); | ||||
|  | ||||
|   ComplexD fxp = 1., fmp = 1.; | ||||
|   for(int i=0;i<Ls;i++){ | ||||
|     fxp = fxp * ( w[i] + x ); | ||||
|     fmp = fmp * ( w[i] - x ); | ||||
|   } | ||||
|   return ((fxp - fmp)/(fxp + fmp)).real(); | ||||
| } | ||||
| inline double epsilonMobius(const double x, const std::vector<RealD> &w){ | ||||
|   int Ls = w.size(); | ||||
|  | ||||
|   double fxp = 1., fmp = 1.; | ||||
|   for(int i=0;i<Ls;i++){ | ||||
|     fxp = fxp * ( w[i] + x ); | ||||
|     fmp = fmp * ( w[i] - x ); | ||||
|   } | ||||
|   return (fxp - fmp)/(fxp + fmp); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| //Compute the tanh approximation in a form suitable for the Remez | ||||
| bigfloat epsilonMobius(bigfloat x, void* data){ | ||||
|   const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data ); | ||||
|   bigfloat fxp(1.0); | ||||
|   bigfloat fmp(1.0); | ||||
|  | ||||
|   for(int i=0;i<omega.size();i++){ | ||||
|     fxp = fxp * ( bigfloat(omega[i]) + x); | ||||
|     fmp = fmp * ( bigfloat(omega[i]) - x); | ||||
|   } | ||||
|   return (fxp - fmp)/(fxp + fmp); | ||||
| } | ||||
|  | ||||
| //Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound | ||||
| //Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   assert(omega_in.size() == Ls_in); | ||||
|   omega_out.resize(Ls_out); | ||||
|  | ||||
|   //Use the Remez algorithm to generate the appropriate rational polynomial | ||||
|   //For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)   | ||||
|   AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);  | ||||
|   remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100); | ||||
|   remez.csv(std::cout); | ||||
|  | ||||
|   //The rational approximation has the form  [ f(x) - f(-x) ] / [ f(x) + f(-x) ]  where  f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x ) | ||||
|   //cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7  pg 102 | ||||
|   //omega_i are therefore the negative of the complex roots of f(x) | ||||
|  | ||||
|   //We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial | ||||
|   // \rho(\lambda) = det( A - \lambda I )    where I is the unit matrix | ||||
|   //The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n   is the companion matrix  | ||||
|   // A = | 0    1   0    0 0 .... 0 | | ||||
|   //     | 0    0   1    0 0 .... 0 | | ||||
|   //     | :    :   :    : :      : | | ||||
|   //     | 0    0   0    0 0      1 | ||||
|   //     | -a0 -a1 -a2  ...  ... -an| | ||||
|  | ||||
|  | ||||
|   //Note the Remez defines the largest power to have unit coefficient | ||||
|   std::vector<RealD> coeffs(Ls_out+1); | ||||
|   for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers | ||||
|   for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers | ||||
|  | ||||
|   std::vector<std::complex<RealD> > roots(Ls_out); | ||||
|  | ||||
|   //Form the companion matrix | ||||
|   Eigen::MatrixXd compn(Ls_out,Ls_out); | ||||
|   for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.; | ||||
|   compn(Ls_out - 1, 0) = -coeffs[0]; | ||||
|    | ||||
|   for(int j=1;j<Ls_out;j++){ | ||||
|     for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.; | ||||
|     compn(Ls_out - 1, j) = -coeffs[j]; | ||||
|   } | ||||
|  | ||||
|   //Eigensolve | ||||
|   Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false); | ||||
|  | ||||
|   const auto & ev = slv.eigenvalues(); | ||||
|   for(int i=0;i<Ls_out;i++) | ||||
|     omega_out[i] = -ev(i); | ||||
|  | ||||
|   //Sort ascending (smallest at start of vector!) | ||||
|   std::sort(omega_out.begin(), omega_out.end(),  | ||||
| 	    [&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); }); | ||||
|  | ||||
|   //McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension | ||||
|   std::vector<ComplexD> omega_tmp = omega_out; | ||||
|   int s_low=0, s_high=Ls_out-1, ss=0; | ||||
|   for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega | ||||
|     int s_to; | ||||
|     if(ss % 2 == 0){ | ||||
|       s_to = s_low++; | ||||
|     }else{ | ||||
|       s_to = s_high--; | ||||
|     } | ||||
|     omega_out[s_to] = omega_tmp[s_from]; | ||||
|     ++ss; | ||||
|   } | ||||
|    | ||||
|   std::cout << "Resulting omega_i:" << std::endl;   | ||||
|   for(int i=0;i<Ls_out;i++) | ||||
|     std::cout << omega_out[i] << std::endl; | ||||
|  | ||||
|   std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl; | ||||
|   std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n"; | ||||
|    | ||||
|   int npt = 60; | ||||
|   double dlt = lambda_bound/double(npt-1); | ||||
|  | ||||
|   for (int i =0; i<npt; i++){ | ||||
|     double x = i*dlt; | ||||
|     double r = remez.evaluateApprox(x); | ||||
|     double p = epsilonMobius(x, omega_out); | ||||
|     double e = epsilonMobius(x, omega_in); | ||||
|  | ||||
|     std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl; | ||||
|   } | ||||
|  | ||||
| } | ||||
|    | ||||
| //mobius_param = b+c   with b-c=1 | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){ | ||||
|   std::vector<RealD> omega_in(Ls_in, 1./mobius_param); | ||||
|   computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound); | ||||
| } | ||||
|  | ||||
| //ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,  | ||||
| 			 const RealD mobius_param_out, const int Ls_out,  | ||||
| 			 const RealD mobius_param_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound){ | ||||
|   computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound); | ||||
|   for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out; | ||||
| } | ||||
| //Assumes mobius_param_out == mobius_param_in | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){ | ||||
|   computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,57 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/approx/ZMobius.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_ZMOBIUS_APPROX_H | ||||
| #define GRID_ZMOBIUS_APPROX_H | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
|  | ||||
| //Compute the Zmobius Omega parameters suitable for eigenvalue range   -lambda_bound <= lambda <= lambda_bound | ||||
| //Note omega_i = 1/(b_i + c_i)   where b_i and c_i are the Mobius parameters | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, | ||||
| 			 const std::vector<RealD> &omega_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound); | ||||
|    | ||||
| //mobius_param = b+c   with b-c=1 | ||||
| void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound); | ||||
|  | ||||
| //ZMobius class takes  gamma_i = (b+c) omega_i as its input, where b, c are factored out | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,  | ||||
| 			 const RealD mobius_param_out, const int Ls_out,  | ||||
| 			 const RealD mobius_param_in, const int Ls_in, | ||||
| 			 const RealD lambda_bound); | ||||
|  | ||||
| //Assumes mobius_param_out == mobius_param_in | ||||
| void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound); | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -58,8 +58,8 @@ | ||||
|  | ||||
| /* Compute the partial fraction expansion coefficients (alpha) from the | ||||
|  * factored form */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
| namespace Grid { | ||||
| namespace Approx { | ||||
|  | ||||
| static void construct_partfrac(izd *z) { | ||||
|   int dn = z -> dn, dd = z -> dd, type = z -> type; | ||||
| @@ -516,9 +516,7 @@ zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   free(d); | ||||
|   return zd; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| }} | ||||
|  | ||||
| #ifdef TEST | ||||
|  | ||||
| @@ -587,7 +585,6 @@ static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   return (ONE - T) / (ONE + T); | ||||
| } | ||||
|  | ||||
|  | ||||
| /* Test program. Apart from printing out the parameters for R(x) it produces | ||||
|  * the following data files for plotting (unless NPLOT is defined): | ||||
|  * | ||||
| @@ -726,5 +723,5 @@ int main(int argc, char** argv) { | ||||
|   return EXIT_SUCCESS; | ||||
| } | ||||
|  | ||||
| #endif /* TEST */ | ||||
|  | ||||
| #endif /* TEST */ | ||||
|   | ||||
| @@ -1,13 +1,13 @@ | ||||
| /* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */ | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| #include <Grid/Namespace.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| NAMESPACE_BEGIN(Approx); | ||||
| namespace Grid { | ||||
| namespace Approx { | ||||
| #endif | ||||
|  | ||||
| #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> | ||||
|  | ||||
|  | ||||
| #ifndef ZOLOTAREV_INTERNAL | ||||
| #ifndef PRECISION | ||||
| #define PRECISION double | ||||
| @@ -83,6 +83,5 @@ void zolotarev_free(zolotarev_data *zdata); | ||||
| #endif | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| }} | ||||
| #endif | ||||
|   | ||||
| @@ -10,12 +10,10 @@ | ||||
| #ifndef INCLUDED_BIGFLOAT_H | ||||
| #define INCLUDED_BIGFLOAT_H | ||||
|  | ||||
| #define __GMP_WITHIN_CONFIGURE | ||||
|  | ||||
| #include <gmp.h> | ||||
| #include <mpf2mpfr.h> | ||||
| #include <mpfr.h> | ||||
| #undef  __GMP_WITHIN_CONFIGURE | ||||
|  | ||||
| class bigfloat { | ||||
|  | ||||
| private: | ||||
|   | ||||
| @@ -25,10 +25,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
|  | ||||
| #ifndef INCLUDED_BIGFLOAT_DOUBLE_H | ||||
| #define INCLUDED_BIGFLOAT_DOUBLE_H | ||||
|  | ||||
| #include <math.h> | ||||
|  | ||||
| typedef double mfloat;  | ||||
| @@ -190,6 +186,4 @@ public: | ||||
|   //  friend bigfloat& random(void); | ||||
| }; | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -90,8 +90,8 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     grid             = src.Grid(); | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     grid             = src._grid; | ||||
|  | ||||
|     RealD f; | ||||
|     RealD rtzp,rtz,a,d,b; | ||||
|   | ||||
| @@ -1,234 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/BiCGSTAB.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: juettner <juettner@soton.ac.uk> | ||||
| Author: David Murphy <djmurphy@mit.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef GRID_BICGSTAB_H | ||||
| #define GRID_BICGSTAB_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| // single input vec, single output vec. | ||||
| ///////////////////////////////////////////////////////////// | ||||
|  | ||||
| template <class Field> | ||||
| class BiCGSTAB : public OperatorFunction<Field>  | ||||
| { | ||||
|   public: | ||||
|     using OperatorFunction<Field>::operator(); | ||||
|      | ||||
|     bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|                              // Defaults true. | ||||
|     RealD Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|    | ||||
|     BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :  | ||||
|       Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|     void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)  | ||||
|     { | ||||
|       psi.Checkerboard() = src.Checkerboard(); | ||||
|       conformable(psi, src); | ||||
|  | ||||
|       RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1); | ||||
|       RealD a(0), bo(0), b(0), ssq(0); | ||||
|  | ||||
|       Field p(src); | ||||
|       Field r(src); | ||||
|       Field rhat(src); | ||||
|       Field v(src); | ||||
|       Field s(src); | ||||
|       Field t(src); | ||||
|       Field h(src); | ||||
|  | ||||
|       v = Zero(); | ||||
|       p = Zero(); | ||||
|  | ||||
|       // Initial residual computation & set up | ||||
|       RealD guess = norm2(psi); | ||||
|       assert(std::isnan(guess) == 0); | ||||
|      | ||||
|       Linop.Op(psi, v); | ||||
|       b = norm2(v); | ||||
|  | ||||
|       r = src - v; | ||||
|       rhat = r; | ||||
|       a = norm2(r); | ||||
|       ssq = norm2(src); | ||||
|  | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:   src " << ssq << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:    mp " << b << std::endl; | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB:     r " << a << std::endl; | ||||
|  | ||||
|       RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|       // Check if guess is really REALLY good :) | ||||
|       if(a <= rsq){ return; } | ||||
|  | ||||
|       std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl; | ||||
|  | ||||
|       GridStopWatch LinalgTimer; | ||||
|       GridStopWatch InnerTimer; | ||||
|       GridStopWatch AxpyNormTimer; | ||||
|       GridStopWatch LinearCombTimer; | ||||
|       GridStopWatch MatrixTimer; | ||||
|       GridStopWatch SolverTimer; | ||||
|  | ||||
|       SolverTimer.Start(); | ||||
|       int k; | ||||
|       for (k = 1; k <= MaxIterations; k++)  | ||||
|       { | ||||
|         rho_prev = rho; | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Crho  = innerProduct(rhat,r); | ||||
|         InnerTimer.Stop(); | ||||
|         rho = Crho.real(); | ||||
|  | ||||
|         beta = (rho / rho_prev) * (alpha / omega); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
|         bo = beta * omega; | ||||
| 	{ | ||||
| 	  autoView( p_v , p, AcceleratorWrite); | ||||
| 	  autoView( r_v , r, AcceleratorRead); | ||||
| 	  autoView( v_v , v, AcceleratorRead); | ||||
| 	  accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|         LinearCombTimer.Stop(); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         MatrixTimer.Start(); | ||||
|         Linop.Op(p,v); | ||||
|         MatrixTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Calpha = innerProduct(rhat,v); | ||||
|         InnerTimer.Stop(); | ||||
|         alpha = rho / Calpha.real(); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
| 	{ | ||||
| 	  autoView( p_v , p, AcceleratorRead); | ||||
| 	  autoView( r_v , r, AcceleratorRead); | ||||
| 	  autoView( v_v , v, AcceleratorRead); | ||||
| 	  autoView( psi_v,psi, AcceleratorRead); | ||||
| 	  autoView( h_v  ,  h, AcceleratorWrite); | ||||
| 	  autoView( s_v  ,  s, AcceleratorWrite); | ||||
| 	  accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss)); | ||||
| 	    }); | ||||
| 	  accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss)); | ||||
|  	  }); | ||||
|         } | ||||
|         LinearCombTimer.Stop(); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         MatrixTimer.Start(); | ||||
|         Linop.Op(s,t); | ||||
|         MatrixTimer.Stop(); | ||||
|  | ||||
|         LinalgTimer.Start(); | ||||
|         InnerTimer.Start(); | ||||
|         ComplexD Comega = innerProduct(t,s); | ||||
|         InnerTimer.Stop(); | ||||
|         omega = Comega.real() / norm2(t); | ||||
|  | ||||
|         LinearCombTimer.Start(); | ||||
| 	{ | ||||
| 	  autoView( psi_v,psi, AcceleratorWrite); | ||||
| 	  autoView( r_v , r, AcceleratorWrite); | ||||
| 	  autoView( h_v , h, AcceleratorRead); | ||||
| 	  autoView( s_v , s, AcceleratorRead); | ||||
| 	  autoView( t_v , t, AcceleratorRead); | ||||
| 	  accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	      coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss)); | ||||
| 	      coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|         LinearCombTimer.Stop(); | ||||
| 	 | ||||
|         cp = norm2(r); | ||||
|         LinalgTimer.Stop(); | ||||
|  | ||||
|         std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|  | ||||
|         // Stopping condition | ||||
|         if(cp <= rsq)  | ||||
|         { | ||||
|           SolverTimer.Stop(); | ||||
|           Linop.Op(psi, v); | ||||
|           p = v - src; | ||||
|  | ||||
|           RealD srcnorm = sqrt(norm2(src)); | ||||
|           RealD resnorm = sqrt(norm2(p)); | ||||
|           RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|           std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl; | ||||
|           std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl; | ||||
|           std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl; | ||||
|           std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|           std::cout << GridLogMessage << "Time breakdown " << std::endl; | ||||
|           std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl; | ||||
|           std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl; | ||||
|  | ||||
|           if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); } | ||||
|  | ||||
|           IterationsToComplete = k;	 | ||||
|  | ||||
|           return; | ||||
|         } | ||||
|       } | ||||
|        | ||||
|       std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl; | ||||
|  | ||||
|       if(ErrorOnNoConverge){ assert(0); } | ||||
|       IterationsToComplete = k; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,158 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| Author: David Murphy <djmurphy@mit.edu> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #ifndef GRID_BICGSTAB_MIXED_PREC_H | ||||
| #define GRID_BICGSTAB_MIXED_PREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Mixed precision restarted defect correction BiCGSTAB | ||||
| template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>  | ||||
| { | ||||
|   public:                                                 | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
|     Integer MaxOuterIterations; | ||||
|     GridBase* SinglePrecGrid; // Grid for single-precision fields | ||||
|     RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|     LinearOperatorBase<FieldF> &Linop_f; | ||||
|     LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|     Integer TotalInnerIterations; //Number of inner CG iterations | ||||
|     Integer TotalOuterIterations; //Number of restarts | ||||
|     Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step | ||||
|  | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
|      | ||||
|     MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,  | ||||
|         LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :  | ||||
|       Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),  | ||||
|       MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {}; | ||||
|  | ||||
|     void useGuesser(LinearFunction<FieldF>& g){ | ||||
|       guesser = &g; | ||||
|     } | ||||
|    | ||||
|     void operator() (const FieldD& src_d_in, FieldD& sol_d) | ||||
|     { | ||||
|       TotalInnerIterations = 0; | ||||
|      | ||||
|       GridStopWatch TotalTimer; | ||||
|       TotalTimer.Start(); | ||||
|        | ||||
|       int cb = src_d_in.Checkerboard(); | ||||
|       sol_d.Checkerboard() = cb; | ||||
|        | ||||
|       RealD src_norm = norm2(src_d_in); | ||||
|       RealD stop = src_norm * Tolerance*Tolerance; | ||||
|  | ||||
|       GridBase* DoublePrecGrid = src_d_in.Grid(); | ||||
|       FieldD tmp_d(DoublePrecGrid); | ||||
|       tmp_d.Checkerboard() = cb; | ||||
|        | ||||
|       FieldD tmp2_d(DoublePrecGrid); | ||||
|       tmp2_d.Checkerboard() = cb; | ||||
|        | ||||
|       FieldD src_d(DoublePrecGrid); | ||||
|       src_d = src_d_in; //source for next inner iteration, computed from residual during operation | ||||
|        | ||||
|       RealD inner_tol = InnerTolerance; | ||||
|        | ||||
|       FieldF src_f(SinglePrecGrid); | ||||
|       src_f.Checkerboard() = cb; | ||||
|        | ||||
|       FieldF sol_f(SinglePrecGrid); | ||||
|       sol_f.Checkerboard() = cb; | ||||
|        | ||||
|       BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|       CG_f.ErrorOnNoConverge = false; | ||||
|  | ||||
|       GridStopWatch InnerCGtimer; | ||||
|  | ||||
|       GridStopWatch PrecChangeTimer; | ||||
|        | ||||
|       Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|          | ||||
|       for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++) | ||||
|       { | ||||
|         // Compute double precision rsd and also new RHS vector. | ||||
|         Linop_d.Op(sol_d, tmp_d); | ||||
|         RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector | ||||
|          | ||||
|         std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl; | ||||
|  | ||||
|         if(norm < OuterLoopNormMult * stop){ | ||||
|           std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl; | ||||
|           break; | ||||
|         } | ||||
|         while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(src_f, src_d); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         sol_f = Zero(); | ||||
|  | ||||
|         //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|         if(guesser != NULL){ (*guesser)(src_f, sol_f); } | ||||
|  | ||||
|         //Inner CG | ||||
|         CG_f.Tolerance = inner_tol; | ||||
|         InnerCGtimer.Start(); | ||||
|         CG_f(Linop_f, src_f, sol_f); | ||||
|         InnerCGtimer.Stop(); | ||||
|         TotalInnerIterations += CG_f.IterationsToComplete; | ||||
|          | ||||
|         //Convert sol back to double and add to double prec solution | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(tmp_d, sol_f); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         axpy(sol_d, 1.0, tmp_d, sol_d); | ||||
|       } | ||||
|        | ||||
|       //Final trial CG | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl; | ||||
|        | ||||
|       BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations); | ||||
|       CG_d(Linop_d, src_d_in, sol_d); | ||||
|       TotalFinalStepIterations = CG_d.IterationsToComplete; | ||||
|  | ||||
|       TotalTimer.Stop(); | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; | ||||
|       std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -27,11 +27,13 @@ See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H | ||||
| #define GRID_BLOCK_CONJUGATE_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec }; | ||||
| namespace Grid { | ||||
|  | ||||
| enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Block conjugate gradient. Dimension zero should be the block direction | ||||
| @@ -40,6 +42,7 @@ template <class Field> | ||||
| class BlockConjugateGradient : public OperatorFunction<Field> { | ||||
|  public: | ||||
|  | ||||
|  | ||||
|   typedef typename Field::scalar_type scomplex; | ||||
|  | ||||
|   int blockDim ; | ||||
| @@ -51,16 +54,21 @@ class BlockConjugateGradient : public OperatorFunction<Field> { | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   Integer PrintInterval; //GridLogMessages or Iterative | ||||
|   RealD TrueResidual; | ||||
|    | ||||
|   BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), CGtype(cgtype),   blockDim(_Orthog),  MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100) | ||||
|     : Tolerance(tol), CGtype(cgtype),   blockDim(_Orthog),  MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv) | ||||
|   {}; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Thin QR factorisation (google it) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
| 		 Eigen::MatrixXcd &C, | ||||
| 		 Eigen::MatrixXcd &Cinv, | ||||
| 		 Field & Q, | ||||
| 		 const Field & R) | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim; this is an assumption | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //Dimensions | ||||
|   // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock | ||||
| @@ -77,20 +85,22 @@ class BlockConjugateGradient : public OperatorFunction<Field> { | ||||
|   // Cdag C = Rdag R ; passes. | ||||
|   // QdagQ  = 1      ; passes | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
| 		 Eigen::MatrixXcd &C, | ||||
| 		 Eigen::MatrixXcd &Cinv, | ||||
| 		 Field & Q, | ||||
| 		 const Field & R) | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim; this is an assumption | ||||
|   sliceInnerProductMatrix(m_rr,R,R,Orthog); | ||||
|  | ||||
|   // Force manifest hermitian to avoid rounding related | ||||
|   m_rr = 0.5*(m_rr+m_rr.adjoint()); | ||||
|  | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
| #if 0 | ||||
|   std::cout << " Calling Cholesky  ldlt on m_rr "  << m_rr <<std::endl; | ||||
|   Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();  | ||||
|   std::cout << " Called Cholesky  ldlt on m_rr "  << L_ldlt <<std::endl; | ||||
|   auto  D_ldlt = m_rr.ldlt().vectorD();  | ||||
|   std::cout << " Called Cholesky  ldlt on m_rr "  << D_ldlt <<std::endl; | ||||
| #endif | ||||
|  | ||||
|   //  std::cout << " Calling Cholesky  llt on m_rr "  <<std::endl; | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
|   //  std::cout << " Called Cholesky  llt on m_rr "  << L <<std::endl; | ||||
|   C    = L.adjoint(); | ||||
|   Cinv = C.inverse(); | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -102,25 +112,6 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   sliceMulMatrix(Q,Cinv,R,Orthog); | ||||
| } | ||||
| // see comments above | ||||
| void ThinQRfact (Eigen::MatrixXcd &m_rr, | ||||
| 		 Eigen::MatrixXcd &C, | ||||
| 		 Eigen::MatrixXcd &Cinv, | ||||
| 		 std::vector<Field> & Q, | ||||
| 		 const std::vector<Field> & R) | ||||
| { | ||||
|   InnerProductMatrix(m_rr,R,R); | ||||
|  | ||||
|   m_rr = 0.5*(m_rr+m_rr.adjoint()); | ||||
|  | ||||
|   Eigen::MatrixXcd L    = m_rr.llt().matrixL();  | ||||
|  | ||||
|   C    = L.adjoint(); | ||||
|   Cinv = C.inverse(); | ||||
|  | ||||
|   MulMatrix(Q,Cinv,R); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Call one of several implementations | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -128,20 +119,14 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) | ||||
| { | ||||
|   if ( CGtype == BlockCGrQ ) { | ||||
|     BlockCGrQsolve(Linop,Src,Psi); | ||||
|   } else if (CGtype == BlockCG ) { | ||||
|     BlockCGsolve(Linop,Src,Psi); | ||||
|   } else if (CGtype == CGmultiRHS ) { | ||||
|     CGmultiRHSsolve(Linop,Src,Psi); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
| } | ||||
| virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)  | ||||
| { | ||||
|   if ( CGtype == BlockCGrQVec ) { | ||||
|     BlockCGrQsolveVec(Linop,Src,Psi); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // BlockCGrQ implementation: | ||||
| @@ -153,12 +138,11 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel | ||||
| void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)  | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim; this is an assumption | ||||
|   Nblock = B.Grid()->_fdimensions[Orthog]; | ||||
| /* FAKE */ | ||||
|   Nblock=8; | ||||
|   Nblock = B._grid->_fdimensions[Orthog]; | ||||
|  | ||||
|   std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   X.Checkerboard() = B.Checkerboard(); | ||||
|   X.checkerboard = B.checkerboard; | ||||
|   conformable(X, B); | ||||
|  | ||||
|   Field tmp(B); | ||||
| @@ -218,10 +202,15 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl; | ||||
|  | ||||
|   //1.  QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it) | ||||
|  | ||||
|   Linop.HermOp(X, AD); | ||||
|   tmp = B - AD;   | ||||
|  | ||||
|   //std::cout << GridLogMessage << " initial tmp " << norm2(tmp)<< std::endl; | ||||
|   ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); | ||||
|   //std::cout << GridLogMessage << " initial Q " << norm2(Q)<< std::endl; | ||||
|   //std::cout << GridLogMessage << " m_rr " << m_rr<<std::endl; | ||||
|   //std::cout << GridLogMessage << " m_C " << m_C<<std::endl; | ||||
|   //std::cout << GridLogMessage << " m_Cinv " << m_Cinv<<std::endl; | ||||
|   D=Q; | ||||
|  | ||||
|   std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl; | ||||
| @@ -243,12 +232,14 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|     MatrixTimer.Start(); | ||||
|     Linop.HermOp(D, Z);       | ||||
|     MatrixTimer.Stop(); | ||||
|     //std::cout << GridLogMessage << " norm2 Z " <<norm2(Z)<<std::endl; | ||||
|  | ||||
|     //4. M  = [D^dag Z]^{-1} | ||||
|     sliceInnerTimer.Start(); | ||||
|     sliceInnerProductMatrix(m_DZ,D,Z,Orthog); | ||||
|     sliceInnerTimer.Stop(); | ||||
|     m_M       = m_DZ.inverse(); | ||||
|     //std::cout << GridLogMessage << " m_DZ " <<m_DZ<<std::endl; | ||||
|      | ||||
|     //5. X  = X + D MC | ||||
|     m_tmp     = m_M * m_C; | ||||
| @@ -266,7 +257,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|      | ||||
|     //7. D  = Q + D S^dag | ||||
|     m_tmp = m_S.adjoint(); | ||||
|  | ||||
|     sliceMaddTimer.Start(); | ||||
|     sliceMaddMatrix(D,m_tmp,D,Q,Orthog); | ||||
|     sliceMaddTimer.Stop(); | ||||
| @@ -307,8 +297,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|  | ||||
|       Linop.HermOp(X, AD); | ||||
|       AD = AD-B; | ||||
|       TrueResidual = std::sqrt(norm2(AD)/norm2(B)); | ||||
|       std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl; | ||||
|       std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| @@ -328,17 +317,163 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X) | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Block conjugate gradient; Original O'Leary Dimension zero should be the block direction | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| void BlockCGsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)  | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim; this is an assumption | ||||
|   Nblock = Src._grid->_fdimensions[Orthog]; | ||||
|  | ||||
|   std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   Psi.checkerboard = Src.checkerboard; | ||||
|   conformable(Psi, Src); | ||||
|  | ||||
|   Field P(Src); | ||||
|   Field AP(Src); | ||||
|   Field R(Src); | ||||
|    | ||||
|   Eigen::MatrixXcd m_pAp    = Eigen::MatrixXcd::Identity(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   Eigen::MatrixXcd m_alpha      = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_beta   = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   // Initial residual computation & set up | ||||
|   std::vector<RealD> residuals(Nblock); | ||||
|   std::vector<RealD> ssq(Nblock); | ||||
|  | ||||
|   sliceNorm(ssq,Src,Orthog); | ||||
|   RealD sssum=0; | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|  | ||||
|   sliceNorm(residuals,Src,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   sliceNorm(residuals,Psi,Orthog); | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   // Initial search dir is guess | ||||
|   Linop.HermOp(Psi, AP); | ||||
|    | ||||
|  | ||||
|   /************************************************************************ | ||||
|    * Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980) | ||||
|    ************************************************************************ | ||||
|    * O'Leary : R = B - A X | ||||
|    * O'Leary : P = M R ; preconditioner M = 1 | ||||
|    * O'Leary : alpha = PAP^{-1} RMR | ||||
|    * O'Leary : beta  = RMR^{-1}_old RMR_new | ||||
|    * O'Leary : X=X+Palpha | ||||
|    * O'Leary : R_new=R_old-AP alpha | ||||
|    * O'Leary : P=MR_new+P beta | ||||
|    */ | ||||
|  | ||||
|   R = Src - AP;   | ||||
|   P = R; | ||||
|   sliceInnerProductMatrix(m_rr,R,R,Orthog); | ||||
|  | ||||
|   GridStopWatch sliceInnerTimer; | ||||
|   GridStopWatch sliceMaddTimer; | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch SolverTimer; | ||||
|   SolverTimer.Start(); | ||||
|  | ||||
|   int k; | ||||
|   for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
|     RealD rrsum=0; | ||||
|     for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b)); | ||||
|  | ||||
|     std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum | ||||
| 	      <<" / "<<std::sqrt(rrsum/sssum) <<std::endl; | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     Linop.HermOp(P, AP); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     // Alpha | ||||
|     sliceInnerTimer.Start(); | ||||
|     sliceInnerProductMatrix(m_pAp,P,AP,Orthog); | ||||
|     sliceInnerTimer.Stop(); | ||||
|     m_pAp_inv = m_pAp.inverse(); | ||||
|     m_alpha   = m_pAp_inv * m_rr ; | ||||
|  | ||||
|     // Psi, R update | ||||
|     sliceMaddTimer.Start(); | ||||
|     sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog);     // add alpha *  P to psi | ||||
|     sliceMaddMatrix(R  ,m_alpha,AP,  R,Orthog,-1.0);// sub alpha * AP to resid | ||||
|     sliceMaddTimer.Stop(); | ||||
|  | ||||
|     // Beta | ||||
|     m_rr_inv = m_rr.inverse(); | ||||
|     sliceInnerTimer.Start(); | ||||
|     sliceInnerProductMatrix(m_rr,R,R,Orthog); | ||||
|     sliceInnerTimer.Stop(); | ||||
|     m_beta = m_rr_inv *m_rr; | ||||
|  | ||||
|     // Search update | ||||
|     sliceMaddTimer.Start(); | ||||
|     sliceMaddMatrix(AP,m_beta,P,R,Orthog); | ||||
|     sliceMaddTimer.Stop(); | ||||
|     P= AP; | ||||
|  | ||||
|     /********************* | ||||
|      * convergence monitor | ||||
|      ********************* | ||||
|      */ | ||||
|     RealD max_resid=0; | ||||
|     RealD rr; | ||||
|     for(int b=0;b<Nblock;b++){ | ||||
|       rr = real(m_rr(b,b))/ssq[b]; | ||||
|       if ( rr > max_resid ) max_resid = rr; | ||||
|     } | ||||
|      | ||||
|     if ( max_resid < Tolerance*Tolerance ) {  | ||||
|  | ||||
|       SolverTimer.Stop(); | ||||
|  | ||||
|       std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl; | ||||
|       for(int b=0;b<Nblock;b++){ | ||||
| 	std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid " | ||||
| 		  << std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl; | ||||
|       } | ||||
|       std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl; | ||||
|  | ||||
|       Linop.HermOp(Psi, AP); | ||||
|       AP = AP-Src; | ||||
|       std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl; | ||||
| 	     | ||||
|       IterationsToComplete = k; | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) assert(0); | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // multiRHS conjugate gradient. Dimension zero should be the block direction | ||||
| // Use this for spread out across nodes | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)  | ||||
| { | ||||
|   int Orthog = blockDim; // First dimension is block dim | ||||
|   Nblock = Src.Grid()->_fdimensions[Orthog]; | ||||
|   Nblock = Src._grid->_fdimensions[Orthog]; | ||||
|  | ||||
|   std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   Psi.Checkerboard() = Src.Checkerboard(); | ||||
|   Psi.checkerboard = Src.checkerboard; | ||||
|   conformable(Psi, Src); | ||||
|  | ||||
|   Field P(Src); | ||||
| @@ -444,8 +579,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field & | ||||
|  | ||||
|       Linop.HermOp(Psi, AP); | ||||
|       AP = AP-Src; | ||||
|       TrueResidual = std::sqrt(norm2(AP)/norm2(Src)); | ||||
|       std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl; | ||||
|       std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| @@ -466,233 +600,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field & | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
|  | ||||
| void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){ | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|   for(int bp=0;bp<Nblock;bp++) { | ||||
|     m(b,bp) = innerProduct(X[b],Y[bp]);   | ||||
|   }} | ||||
| } | ||||
| void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   // Deal with case AP aliases with either Y or X | ||||
|   std::vector<Field> tmp(Nblock,X[0]); | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     tmp[b]   = Y[b]; | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = tmp[b]; | ||||
|   } | ||||
| } | ||||
| void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){ | ||||
|   // Should make this cache friendly with site outermost, parallel_for | ||||
|   for(int b=0;b<Nblock;b++){ | ||||
|     AP[b] = Zero(); | ||||
|     for(int bp=0;bp<Nblock;bp++) { | ||||
|       AP[b] += scomplex(m(bp,b))*X[bp];  | ||||
|     } | ||||
|   } | ||||
| } | ||||
| double normv(const std::vector<Field> &P){ | ||||
|   double nn = 0.0; | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     nn+=norm2(P[b]); | ||||
|   } | ||||
|   return nn; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // BlockCGrQvec implementation: | ||||
| //-------------------------- | ||||
| // X is guess/Solution | ||||
| // B is RHS | ||||
| // Solve A X_i = B_i    ;        i refers to Nblock index | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)  | ||||
| { | ||||
|   Nblock = B.size(); | ||||
|   assert(Nblock == X.size()); | ||||
|  | ||||
|   std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl; | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){  | ||||
|     X[b].Checkerboard() = B[b].Checkerboard(); | ||||
|     conformable(X[b], B[b]); | ||||
|     conformable(X[b], X[0]);  | ||||
|   } | ||||
|  | ||||
|   Field Fake(B[0]); | ||||
|  | ||||
|   std::vector<Field> tmp(Nblock,Fake); | ||||
|   std::vector<Field>   Q(Nblock,Fake); | ||||
|   std::vector<Field>   D(Nblock,Fake); | ||||
|   std::vector<Field>   Z(Nblock,Fake); | ||||
|   std::vector<Field>  AD(Nblock,Fake); | ||||
|  | ||||
|   Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(Nblock,Nblock); | ||||
|   Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(Nblock,Nblock); | ||||
|  | ||||
|   // Initial residual computation & set up | ||||
|   std::vector<RealD> residuals(Nblock); | ||||
|   std::vector<RealD> ssq(Nblock); | ||||
|  | ||||
|   RealD sssum=0; | ||||
|   for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);} | ||||
|   for(int b=0;b<Nblock;b++) sssum+=ssq[b]; | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);} | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);} | ||||
|   for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } | ||||
|  | ||||
|   /************************************************************************ | ||||
|    * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001) | ||||
|    ************************************************************************ | ||||
|    * Dimensions: | ||||
|    * | ||||
|    *   X,B==(Nferm x Nblock) | ||||
|    *   A==(Nferm x Nferm) | ||||
|    *   | ||||
|    * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site | ||||
|    *  | ||||
|    * QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it) | ||||
|    * for k:  | ||||
|    *   Z  = AD | ||||
|    *   M  = [D^dag Z]^{-1} | ||||
|    *   X  = X + D MC | ||||
|    *   QS = Q - ZM | ||||
|    *   D  = Q + D S^dag | ||||
|    *   C  = S C | ||||
|    */ | ||||
|   /////////////////////////////////////// | ||||
|   // Initial block: initial search dir is guess | ||||
|   /////////////////////////////////////// | ||||
|   std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl; | ||||
|  | ||||
|   //1.  QC = R = B-AX, D = Q     ; QC => Thin QR factorisation (google it) | ||||
|   for(int b=0;b<Nblock;b++) { | ||||
|     Linop.HermOp(X[b], AD[b]); | ||||
|     tmp[b] = B[b] - AD[b];   | ||||
|   } | ||||
|  | ||||
|   ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); | ||||
|  | ||||
|   for(int b=0;b<Nblock;b++) D[b]=Q[b]; | ||||
|  | ||||
|   std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl; | ||||
|  | ||||
|   /////////////////////////////////////// | ||||
|   // Timers | ||||
|   /////////////////////////////////////// | ||||
|   GridStopWatch sliceInnerTimer; | ||||
|   GridStopWatch sliceMaddTimer; | ||||
|   GridStopWatch QRTimer; | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch SolverTimer; | ||||
|   SolverTimer.Start(); | ||||
|  | ||||
|   int k; | ||||
|   for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
|     //3. Z  = AD | ||||
|     MatrixTimer.Start(); | ||||
|     for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);       | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     //4. M  = [D^dag Z]^{-1} | ||||
|     sliceInnerTimer.Start(); | ||||
|     InnerProductMatrix(m_DZ,D,Z); | ||||
|     sliceInnerTimer.Stop(); | ||||
|     m_M       = m_DZ.inverse(); | ||||
|      | ||||
|     //5. X  = X + D MC | ||||
|     m_tmp     = m_M * m_C; | ||||
|     sliceMaddTimer.Start(); | ||||
|     MaddMatrix(X,m_tmp, D,X);      | ||||
|     sliceMaddTimer.Stop(); | ||||
|  | ||||
|     //6. QS = Q - ZM | ||||
|     sliceMaddTimer.Start(); | ||||
|     MaddMatrix(tmp,m_M,Z,Q,-1.0); | ||||
|     sliceMaddTimer.Stop(); | ||||
|     QRTimer.Start(); | ||||
|     ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp); | ||||
|     QRTimer.Stop(); | ||||
|      | ||||
|     //7. D  = Q + D S^dag | ||||
|     m_tmp = m_S.adjoint(); | ||||
|     sliceMaddTimer.Start(); | ||||
|     MaddMatrix(D,m_tmp,D,Q); | ||||
|     sliceMaddTimer.Stop(); | ||||
|  | ||||
|     //8. C  = S C | ||||
|     m_C = m_S*m_C; | ||||
|      | ||||
|     /********************* | ||||
|      * convergence monitor | ||||
|      ********************* | ||||
|      */ | ||||
|     m_rr = m_C.adjoint() * m_C; | ||||
|  | ||||
|     RealD max_resid=0; | ||||
|     RealD rrsum=0; | ||||
|     RealD rr; | ||||
|  | ||||
|     for(int b=0;b<Nblock;b++) { | ||||
|       rrsum+=real(m_rr(b,b)); | ||||
|       rr = real(m_rr(b,b))/ssq[b]; | ||||
|       if ( rr > max_resid ) max_resid = rr; | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl; | ||||
|  | ||||
|     if ( max_resid < Tolerance*Tolerance ) {  | ||||
|  | ||||
|       SolverTimer.Stop(); | ||||
|  | ||||
|       std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl; | ||||
|  | ||||
|       for(int b=0;b<Nblock;b++){ | ||||
| 	std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl; | ||||
|       } | ||||
|       std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl; | ||||
|  | ||||
|       for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]); | ||||
|       for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b]; | ||||
|       TrueResidual = std::sqrt(normv(AD)/normv(B)); | ||||
|       std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl; | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed()  <<std::endl; | ||||
| 	     | ||||
|       IterationsToComplete = k; | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl; | ||||
|  | ||||
|   if (ErrorOnNoConverge) assert(0); | ||||
|   IterationsToComplete = k; | ||||
| } | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,248 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the CAGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   CommunicationAvoidingGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                   Integer maxit, | ||||
|                                                   Integer restart_length, | ||||
|                                                   bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl; | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // this should probably be made a class member so that it is only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     ComplexD scale = 1.0/gamma[0]; | ||||
|     v[0] = scale * r; | ||||
|  | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(v, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) { | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(v[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu     = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &v, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + v[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -31,7 +31,7 @@ directory | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_H | ||||
| #define GRID_CONJUGATE_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Base classes for iterative processes based on operators | ||||
| @@ -41,15 +41,11 @@ NAMESPACE_BEGIN(Grid); | ||||
| template <class Field> | ||||
| class ConjugateGradient : public OperatorFunction<Field> { | ||||
|  public: | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
|                            // Defaults true. | ||||
|   RealD Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   RealD TrueResidual; | ||||
|    | ||||
|   ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|       : Tolerance(tol), | ||||
| @@ -58,12 +54,11 @@ public: | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|  | ||||
|     psi.checkerboard = src.checkerboard; | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD cp, c, a, d, b, ssq, qq; | ||||
|     //RealD b_pred; | ||||
|     RealD cp, c, a, d, b, ssq, qq, b_pred; | ||||
|  | ||||
|     Field p(src); | ||||
|     Field mmp(src); | ||||
| @@ -73,6 +68,7 @@ public: | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|      | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, b); | ||||
|  | ||||
|     r = src - mmp; | ||||
| @@ -82,14 +78,6 @@ public: | ||||
|     cp = a; | ||||
|     ssq = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src | ||||
|     if (ssq == 0.){ | ||||
|       psi = Zero(); | ||||
|       IterationsToComplete = 1; | ||||
|       TrueResidual = 0.; | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:   src " << ssq << std::endl; | ||||
|     std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient:    mp " << d << std::endl; | ||||
| @@ -101,9 +89,6 @@ public: | ||||
|  | ||||
|     // Check if guess is really REALLY good :) | ||||
|     if (cp <= rsq) { | ||||
|       TrueResidual = std::sqrt(a/ssq); | ||||
|       std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl; | ||||
|       IterationsToComplete = 0;	 | ||||
|       return; | ||||
|     } | ||||
|  | ||||
| @@ -119,7 +104,7 @@ public: | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|     int k; | ||||
|     for (k = 1; k <= MaxIterations; k++) { | ||||
|     for (k = 1; k <= MaxIterations*1000; k++) { | ||||
|       c = cp; | ||||
|  | ||||
|       MatrixTimer.Start(); | ||||
| @@ -140,20 +125,15 @@ public: | ||||
|       b = cp / c; | ||||
|  | ||||
|       LinearCombTimer.Start(); | ||||
|       { | ||||
| 	autoView( psi_v , psi, AcceleratorWrite); | ||||
| 	autoView( p_v   , p,   AcceleratorWrite); | ||||
| 	autoView( r_v   , r,   AcceleratorWrite); | ||||
| 	accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{ | ||||
| 	    coalescedWrite(psi_v[ss], a      *  p_v(ss) + psi_v(ss)); | ||||
| 	    coalescedWrite(p_v[ss]  , b      *  p_v(ss) + r_v  (ss)); | ||||
| 	}); | ||||
|       parallel_for(int ss=0;ss<src._grid->oSites();ss++){ | ||||
| 	vstream(psi[ss], a      *  p[ss] + psi[ss]); | ||||
| 	vstream(p  [ss], b      *  p[ss] + r[ss]); | ||||
|       } | ||||
|       LinearCombTimer.Stop(); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k | ||||
|                 << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
| @@ -161,43 +141,37 @@ public: | ||||
|         Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|         p = mmp - src; | ||||
|  | ||||
|         RealD srcnorm = std::sqrt(norm2(src)); | ||||
|         RealD resnorm = std::sqrt(norm2(p)); | ||||
|         RealD srcnorm = sqrt(norm2(src)); | ||||
|         RealD resnorm = sqrt(norm2(p)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k  | ||||
| 		  << "\tComputed residual " << std::sqrt(cp / ssq) | ||||
| 		  << "\tTrue residual " << true_residual | ||||
| 		  << "\tTarget " << Tolerance << std::endl; | ||||
|         std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl; | ||||
|         std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogIterative << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|         std::cout << GridLogMessage << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
| 	TrueResidual = true_residual; | ||||
|  | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|     // Failed. Calculate true residual before giving up                                                          | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|     p = mmp - src; | ||||
|  | ||||
|     TrueResidual = sqrt(norm2(p)/ssq); | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl; | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge" | ||||
|               << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     IterationsToComplete = k; | ||||
|  | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,12 +28,10 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   //Mixed precision restarted defect correction CG | ||||
|   template<class FieldD,class FieldF,  | ||||
|     typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
|     typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> { | ||||
|   public:                                                 | ||||
|     RealD   Tolerance; | ||||
| @@ -52,12 +50,7 @@ NAMESPACE_BEGIN(Grid); | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
|      | ||||
|     MixedPrecisionConjugateGradient(RealD tol,  | ||||
| 				    Integer maxinnerit,  | ||||
| 				    Integer maxouterit,  | ||||
| 				    GridBase* _sp_grid,  | ||||
| 				    LinearOperatorBase<FieldF> &_Linop_f,  | ||||
| 				    LinearOperatorBase<FieldD> &_Linop_d) : | ||||
|     MixedPrecisionConjugateGradient(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d) : | ||||
|       Linop_f(_Linop_f), Linop_d(_Linop_d), | ||||
|       Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), | ||||
|       OuterLoopNormMult(100.), guesser(NULL){ }; | ||||
| @@ -72,18 +65,18 @@ NAMESPACE_BEGIN(Grid); | ||||
|       GridStopWatch TotalTimer; | ||||
|       TotalTimer.Start(); | ||||
|      | ||||
|     int cb = src_d_in.Checkerboard(); | ||||
|     sol_d.Checkerboard() = cb; | ||||
|       int cb = src_d_in.checkerboard; | ||||
|       sol_d.checkerboard = cb; | ||||
|      | ||||
|       RealD src_norm = norm2(src_d_in); | ||||
|       RealD stop = src_norm * Tolerance*Tolerance; | ||||
|  | ||||
|     GridBase* DoublePrecGrid = src_d_in.Grid(); | ||||
|       GridBase* DoublePrecGrid = src_d_in._grid; | ||||
|       FieldD tmp_d(DoublePrecGrid); | ||||
|     tmp_d.Checkerboard() = cb; | ||||
|       tmp_d.checkerboard = cb; | ||||
|      | ||||
|       FieldD tmp2_d(DoublePrecGrid); | ||||
|     tmp2_d.Checkerboard() = cb; | ||||
|       tmp2_d.checkerboard = cb; | ||||
|      | ||||
|       FieldD src_d(DoublePrecGrid); | ||||
|       src_d = src_d_in; //source for next inner iteration, computed from residual during operation | ||||
| @@ -91,10 +84,10 @@ NAMESPACE_BEGIN(Grid); | ||||
|       RealD inner_tol = InnerTolerance; | ||||
|      | ||||
|       FieldF src_f(SinglePrecGrid); | ||||
|     src_f.Checkerboard() = cb; | ||||
|       src_f.checkerboard = cb; | ||||
|      | ||||
|       FieldF sol_f(SinglePrecGrid); | ||||
|     sol_f.Checkerboard() = cb; | ||||
|       sol_f.checkerboard = cb; | ||||
|      | ||||
|       ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|       CG_f.ErrorOnNoConverge = false; | ||||
| @@ -122,7 +115,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| 	precisionChange(src_f, src_d); | ||||
| 	PrecChangeTimer.Stop(); | ||||
|        | ||||
|       sol_f = Zero(); | ||||
| 	zeroit(sol_f); | ||||
|  | ||||
| 	//Optionally improve inner solver guess (eg using known eigenvectors) | ||||
| 	if(guesser != NULL) | ||||
| @@ -156,6 +149,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H | ||||
| #define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for iterative processes based on operators | ||||
| @@ -41,29 +41,22 @@ class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>, | ||||
|                                         public OperatorFunction<Field> | ||||
|     { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     RealD   Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|     int verbose; | ||||
|     MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|     ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :  | ||||
| 	MaxIterations(maxit), | ||||
| 	shifts(_shifts) | ||||
|     {  | ||||
|       verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|     } | ||||
|  | ||||
| void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) | ||||
| { | ||||
|     GridBase *grid = src.Grid(); | ||||
|   GridBase *grid = src._grid; | ||||
|   int nshift = shifts.order; | ||||
|   std::vector<Field> results(nshift,grid); | ||||
|   (*this)(Linop,src,results,psi); | ||||
| @@ -85,7 +78,7 @@ public: | ||||
| void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi) | ||||
| { | ||||
|    | ||||
|     GridBase *grid = src.Grid(); | ||||
|   GridBase *grid = src._grid; | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////// | ||||
|   // Convenience references to the info stored in "MultiShiftFunction" | ||||
| @@ -129,17 +122,6 @@ public: | ||||
|   // Residuals "r" are src | ||||
|   // First search direction "p" is also src | ||||
|   cp = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|   for(int s=0;s<nshift;s++){ | ||||
|     rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|     std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s | ||||
| @@ -285,7 +267,6 @@ public: | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|        | ||||
|       if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| @@ -315,8 +296,7 @@ public: | ||||
| 	axpy(r,-alpha[s],src,tmp); | ||||
| 	RealD rn = norm2(r); | ||||
| 	RealD cn = norm2(src); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl; | ||||
|       } | ||||
|  | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
| @@ -338,5 +318,5 @@ public: | ||||
| } | ||||
|  | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,11 +28,9 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu> | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H | ||||
| #define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| template<class FieldD,class FieldF,  | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> { | ||||
|   public: | ||||
|     bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge. | ||||
| @@ -76,7 +74,7 @@ public: | ||||
|       LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f; | ||||
|       bool using_fallback = false; | ||||
|        | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|       psi.checkerboard = src.checkerboard; | ||||
|       conformable(psi, src); | ||||
|  | ||||
|       RealD cp, c, a, d, b, ssq, qq, b_pred; | ||||
| @@ -110,17 +108,17 @@ public: | ||||
|       // Check if guess is really REALLY good :) | ||||
|       if (cp <= rsq) { | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n"; | ||||
|       std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|       //Single prec initialization | ||||
|       FieldF r_f(SinglePrecGrid); | ||||
|     r_f.Checkerboard() = r.Checkerboard(); | ||||
|       r_f.checkerboard = r.checkerboard; | ||||
|       precisionChange(r_f, r); | ||||
|  | ||||
|       FieldF psi_f(r_f); | ||||
|     psi_f = Zero(); | ||||
|       psi_f = zero; | ||||
|  | ||||
|       FieldF p_f(r_f); | ||||
|       FieldF mmp_f(r_f); | ||||
| @@ -180,12 +178,12 @@ public: | ||||
| 	  Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	  p = mmp - src; | ||||
|  | ||||
| 	RealD srcnorm = std::sqrt(norm2(src)); | ||||
| 	RealD resnorm = std::sqrt(norm2(p)); | ||||
| 	  RealD srcnorm = sqrt(norm2(src)); | ||||
| 	  RealD resnorm = sqrt(norm2(p)); | ||||
| 	  RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
| 	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl; | ||||
| 	std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl; | ||||
| 	  std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
| @@ -219,7 +217,7 @@ public: | ||||
| 	  Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	  r = src - mmp; | ||||
|  | ||||
| 	psi_f = Zero(); | ||||
| 	  psi_f = zero; | ||||
| 	  precisionChange(r_f, r); | ||||
| 	  cp = norm2(r); | ||||
| 	  MaxResidSinceLastRelUp = cp; | ||||
| @@ -251,7 +249,7 @@ public: | ||||
|   }; | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| }; | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CONJUGATE_RESIDUAL_H | ||||
| #define GRID_CONJUGATE_RESIDUAL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for iterative processes based on operators | ||||
| @@ -39,8 +39,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|   template<class Field>  | ||||
|     class ConjugateResidual : public OperatorFunction<Field> { | ||||
|   public:                                                 | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|     RealD   Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     int verbose; | ||||
| @@ -51,14 +49,14 @@ public: | ||||
|  | ||||
|     void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){ | ||||
|  | ||||
|     RealD a, b; // c, d; | ||||
|       RealD a, b, c, d; | ||||
|       RealD cp, ssq,rsq; | ||||
|        | ||||
|       RealD rAr, rAAr, rArp; | ||||
|       RealD pAp, pAAp; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|     psi=Zero(); | ||||
|       GridBase *grid = src._grid; | ||||
|       psi=zero; | ||||
|       Field r(grid),  p(grid), Ap(grid), Ar(grid); | ||||
|        | ||||
|       r=src; | ||||
| @@ -97,8 +95,8 @@ public: | ||||
| 	  axpy(r,-1.0,src,Ap); | ||||
| 	  RealD true_resid = norm2(r)/ssq; | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k | ||||
| 		 << " computed residual "<<std::sqrt(cp/ssq) | ||||
| 		 << " true residual "<<std::sqrt(true_resid) | ||||
| 		   << " computed residual "<<sqrt(cp/ssq) | ||||
| 	           << " true residual "<<sqrt(true_resid) | ||||
| 	           << " target "       <<Tolerance <<std::endl; | ||||
| 	  return; | ||||
| 	} | ||||
| @@ -109,5 +107,5 @@ public: | ||||
|       assert(0); | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -33,13 +33,9 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class ZeroGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|     virtual void operator()(const Field &src, Field &guess) { guess = Zero(); }; | ||||
| }; | ||||
| template<class Field> | ||||
| class DoNothingGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   virtual void operator()(const Field &src, Field &guess) {  }; | ||||
|   virtual void operator()(const Field &src, Field &guess) { guess = zero; }; | ||||
| }; | ||||
|  | ||||
| template<class Field> | ||||
| class SourceGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
| @@ -60,14 +56,14 @@ public: | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {}; | ||||
|  | ||||
|   virtual void operator()(const Field &src,Field &guess) { | ||||
|     guess = Zero(); | ||||
|     guess = zero; | ||||
|     assert(evec.size()==eval.size()); | ||||
|     auto N = evec.size(); | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess); | ||||
|     } | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|     guess.checkerboard = src.checkerboard; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -90,15 +86,15 @@ public: | ||||
|    | ||||
|   void operator()(const FineField &src,FineField &guess) {  | ||||
|     int N = (int)evec_coarse.size(); | ||||
|     CoarseField src_coarse(evec_coarse[0].Grid()); | ||||
|     CoarseField guess_coarse(evec_coarse[0].Grid());    guess_coarse = Zero(); | ||||
|     CoarseField src_coarse(evec_coarse[0]._grid); | ||||
|     CoarseField guess_coarse(evec_coarse[0]._grid);    guess_coarse = zero; | ||||
|     blockProject(src_coarse,src,subspace);     | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const CoarseField & tmp = evec_coarse[i]; | ||||
|       axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse); | ||||
|     } | ||||
|     blockPromote(guess_coarse,guess,subspace); | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|     guess.checkerboard = src.checkerboard; | ||||
|   }; | ||||
| }; | ||||
|  | ||||
|   | ||||
| @@ -1,258 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the FCAGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
|   FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                           Integer maxit, | ||||
|                                                           LinearFunction<Field> &Prec, | ||||
|                                                           Integer restart_length, | ||||
|                                                           bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) | ||||
|       , Preconditioner(Prec) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl; | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, z, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(z, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) { | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(v[iter], z[iter]); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(z[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &z, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + z[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -1,256 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the FGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   LinearFunction<Field> &Preconditioner; | ||||
|  | ||||
|   FlexibleGeneralisedMinimalResidual(RealD   tol, | ||||
|                                      Integer maxit, | ||||
|                                      LinearFunction<Field> &Prec, | ||||
|                                      Integer restart_length, | ||||
|                                      bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) | ||||
|       , Preconditioner(Prec) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Precon  " <<         PrecTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, z, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(z, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) { | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(v[iter], z[iter]); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(z[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &z, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + z[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -1,244 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> | ||||
| class GeneralisedMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the GMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   GeneralisedMinimalResidual(RealD   tol, | ||||
|                              Integer maxit, | ||||
|                              Integer restart_length, | ||||
|                              bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "GeneralisedMinimalResidual:   src " << ssq   << std::endl; | ||||
|  | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: Total   " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: Matrix  " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: Linalg  " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: QR      " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     Field w(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     // this should probably be made a class member so that it is only allocated once, not in every restart | ||||
|     std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(v, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) { | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(v[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<Field> const &v, Field &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + v[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -35,7 +35,120 @@ Author: Christoph Lehner <clehner@bnl.gov> | ||||
| //#include <zlib.h> | ||||
| #include <sys/stat.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Move following 100 LOC to lattice/Lattice_basis.h | ||||
|   //////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)  | ||||
| { | ||||
|   for(int j=0; j<k; ++j){ | ||||
|     auto ip = innerProduct(basis[j],w); | ||||
|     w = w - ip*basis[j]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0]._grid; | ||||
|        | ||||
|   parallel_region | ||||
|   { | ||||
|  | ||||
|     std::vector < vobj , commAllocator<vobj> > B(Nm); // Thread private | ||||
|         | ||||
|     parallel_for_internal(int ss=0;ss < grid->oSites();ss++){ | ||||
|       for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|        | ||||
|       for(int j=j0; j<j1; ++j){ | ||||
| 	for(int k=k0; k<k1; ++k){ | ||||
| 	  B[j] +=Qt(j,k) * basis[k]._odata[ss]; | ||||
| 	} | ||||
|       } | ||||
|       for(int j=j0; j<j1; ++j){ | ||||
| 	  basis[j]._odata[ss] = B[j]; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| template<class Field> | ||||
| void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0]._grid; | ||||
|  | ||||
|   result.checkerboard = basis[0].checkerboard; | ||||
|   parallel_for(int ss=0;ss < grid->oSites();ss++){ | ||||
|     vobj B = zero; | ||||
|     for(int k=k0; k<k1; ++k){ | ||||
|       B +=Qt(j,k) * basis[k]._odata[ss]; | ||||
|     } | ||||
|     result._odata[ss] = B; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)  | ||||
| { | ||||
|   int vlen = idx.size(); | ||||
|  | ||||
|   assert(vlen>=1); | ||||
|   assert(vlen<=sort_vals.size()); | ||||
|   assert(vlen<=_v.size()); | ||||
|  | ||||
|   for (size_t i=0;i<vlen;i++) { | ||||
|  | ||||
|     if (idx[i] != i) { | ||||
|  | ||||
|       ////////////////////////////////////// | ||||
|       // idx[i] is a table of desired sources giving a permutation. | ||||
|       // Swap v[i] with v[idx[i]]. | ||||
|       // Find  j>i for which _vnew[j] = _vold[i], | ||||
|       // track the move idx[j] => idx[i] | ||||
|       // track the move idx[i] => i | ||||
|       ////////////////////////////////////// | ||||
|       size_t j; | ||||
|       for (j=i;j<idx.size();j++) | ||||
| 	if (idx[j]==i) | ||||
| 	  break; | ||||
|  | ||||
|       assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i); | ||||
|  | ||||
|       std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy | ||||
|       std::swap(sort_vals[i],sort_vals[idx[i]]); | ||||
|  | ||||
|       idx[j] = idx[i]; | ||||
|       idx[i] = i; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)  | ||||
| { | ||||
|   std::vector<int> idx(sort_vals.size()); | ||||
|   std::iota(idx.begin(), idx.end(), 0); | ||||
|  | ||||
|   // sort indexes based on comparing values in v | ||||
|   std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) { | ||||
|     return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]); | ||||
|   }); | ||||
|   return idx; | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)  | ||||
| { | ||||
|   std::vector<int> idx = basisSortGetIndex(sort_vals); | ||||
|   if (reverse) | ||||
|     std::reverse(idx.begin(), idx.end()); | ||||
|    | ||||
|   basisReorderInPlace(_v,sort_vals,idx); | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////// | ||||
| // Implicitly restarted lanczos | ||||
| @@ -146,7 +259,7 @@ public: | ||||
| 			    RealD _eresid, // resid in lmdue deficit  | ||||
| 			    int _MaxIter, // Max iterations | ||||
| 			    RealD _betastp=0.0, // if beta(k) < betastp: converged | ||||
| 			    int _MinRestart=0, int _orth_period = 1, | ||||
| 			    int _MinRestart=1, int _orth_period = 1, | ||||
| 			    IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) : | ||||
|     SimpleTester(HermOp), _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(Tester), | ||||
|     Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm), | ||||
| @@ -162,7 +275,7 @@ public: | ||||
| 			       RealD _eresid, // resid in lmdue deficit  | ||||
| 			       int _MaxIter, // Max iterations | ||||
| 			       RealD _betastp=0.0, // if beta(k) < betastp: converged | ||||
| 			       int _MinRestart=0, int _orth_period = 1, | ||||
| 			       int _MinRestart=1, int _orth_period = 1, | ||||
| 			       IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) : | ||||
|     SimpleTester(HermOp),  _PolyOp(PolyOp),      _HermOp(HermOp), _Tester(SimpleTester), | ||||
|     Nstop(_Nstop)  ,      Nk(_Nk),      Nm(_Nm), | ||||
| @@ -176,7 +289,7 @@ public: | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = std::sqrt(nn); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
| @@ -208,10 +321,10 @@ until convergence | ||||
| */ | ||||
|   void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     assert(grid == evec[0].Grid()); | ||||
|     GridBase *grid = src._grid; | ||||
|     assert(grid == evec[0]._grid); | ||||
|      | ||||
|     //    GridLogIRL.TimingMode(1); | ||||
|     GridLogIRL.TimingMode(1); | ||||
|     std::cout << GridLogIRL <<"**************************************************************************"<< std::endl; | ||||
|     std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 /  "<< MaxIter<< std::endl; | ||||
|     std::cout << GridLogIRL <<"**************************************************************************"<< std::endl; | ||||
| @@ -236,17 +349,14 @@ until convergence | ||||
|     { | ||||
|       auto src_n = src; | ||||
|       auto tmp = src; | ||||
|       std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl; | ||||
|       const int _MAX_ITER_IRL_MEVAPP_ = 50; | ||||
|       for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) { | ||||
| 	normalise(src_n); | ||||
| 	_HermOp(src_n,tmp); | ||||
| 	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0); | ||||
| 	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl; | ||||
| 	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. | ||||
| 	RealD vden = norm2(src_n); | ||||
| 	RealD na = vnum/vden; | ||||
| 	if (fabs(evalMaxApprox/na - 1.0) < 0.0001) | ||||
| 	if (fabs(evalMaxApprox/na - 1.0) < 0.05) | ||||
| 	  i=_MAX_ITER_IRL_MEVAPP_; | ||||
| 	evalMaxApprox = na; | ||||
| 	std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
| @@ -336,7 +446,7 @@ until convergence | ||||
|       assert(k2<Nm);      assert(k2<Nm);      assert(k1>0); | ||||
|  | ||||
|       basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis | ||||
|       std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl; | ||||
|       std::cout<<GridLogIRL <<"basisRotated  by Qt"<<std::endl; | ||||
|        | ||||
|       //////////////////////////////////////////////////// | ||||
|       // Compressed vector f and beta(k2) | ||||
| @@ -344,7 +454,7 @@ until convergence | ||||
|       f *= Qt(k2-1,Nm-1); | ||||
|       f += lme[k2-1] * evec[k2]; | ||||
|       beta_k = norm2(f); | ||||
|       beta_k = std::sqrt(beta_k); | ||||
|       beta_k = sqrt(beta_k); | ||||
|       std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl; | ||||
| 	   | ||||
|       RealD betar = 1.0/beta_k; | ||||
| @@ -367,7 +477,7 @@ until convergence | ||||
|  | ||||
| 	std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl; | ||||
|  | ||||
| 	Field B(grid); B.Checkerboard() = evec[0].Checkerboard(); | ||||
| 	Field B(grid); B.checkerboard = evec[0].checkerboard; | ||||
|  | ||||
| 	//  power of two search pattern;  not every evalue in eval2 is assessed. | ||||
| 	int allconv =1; | ||||
| @@ -405,7 +515,7 @@ until convergence | ||||
| 	 | ||||
|   converged: | ||||
|     { | ||||
|       Field B(grid); B.Checkerboard() = evec[0].Checkerboard(); | ||||
|       Field B(grid); B.checkerboard = evec[0].checkerboard; | ||||
|       basisRotate(evec,Qt,0,Nk,0,Nk,Nm);	     | ||||
|       std::cout << GridLogIRL << " Rotated basis"<<std::endl; | ||||
|       Nconv=0; | ||||
| @@ -444,11 +554,11 @@ until convergence | ||||
| /* Saad PP. 195 | ||||
| 1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0 | ||||
| 2. For k = 1,2,...,m Do: | ||||
| 3. wk:=Avk - b_k v_{k-1}       | ||||
| 4. ak:=(wk,vk)       //  | ||||
| 5. wk:=wk-akvk       // wk orthog vk  | ||||
| 6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop | ||||
| 7. vk+1 := wk/b_k+1 | ||||
| 3. wk:=Avk−βkv_{k−1}       | ||||
| 4. αk:=(wk,vk)       //  | ||||
| 5. wk:=wk−αkvk       // wk orthog vk  | ||||
| 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop | ||||
| 7. vk+1 := wk/βk+1 | ||||
| 8. EndDo | ||||
|  */ | ||||
|   void step(std::vector<RealD>& lmd, | ||||
| @@ -456,7 +566,6 @@ until convergence | ||||
| 	    std::vector<Field>& evec, | ||||
| 	    Field& w,int Nm,int k) | ||||
|   { | ||||
|     std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl; | ||||
|     const RealD tiny = 1.0e-20; | ||||
|     assert( k< Nm ); | ||||
|  | ||||
| @@ -468,20 +577,20 @@ until convergence | ||||
|  | ||||
|     if(k>0) w -= lme[k-1] * evec[k-1]; | ||||
|  | ||||
|     ComplexD zalph = innerProduct(evec_k,w); | ||||
|     ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk) | ||||
|     RealD     alph = real(zalph); | ||||
|  | ||||
|     w = w - alph * evec_k; | ||||
|     w = w - alph * evec_k;// 5. wk:=wk−αkvk | ||||
|  | ||||
|     RealD beta = normalise(w);  | ||||
|     RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop | ||||
|     // 7. vk+1 := wk/βk+1 | ||||
|  | ||||
|     lmd[k] = alph; | ||||
|     lme[k] = beta; | ||||
|  | ||||
|     if ( (k>0) && ( (k % orth_period) == 0 )) { | ||||
|       std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl; | ||||
|     if (k>0 && k % orth_period == 0) { | ||||
|       orthogonalize(w,evec,k); // orthonormalise | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl; | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<std::endl; | ||||
|     } | ||||
|  | ||||
|     if(k < Nm-1) evec[k+1] = w; | ||||
| @@ -489,8 +598,6 @@ until convergence | ||||
|     std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     if ( beta < tiny )  | ||||
|       std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl; | ||||
|  | ||||
|     std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,  | ||||
| @@ -700,7 +807,7 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme, | ||||
|      | ||||
|     // determination of 2x2 leading submatrix | ||||
|     RealD dsub = lmd[kmax-1]-lmd[kmax-2]; | ||||
|     RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]); | ||||
|     RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]); | ||||
|     RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub))); | ||||
|     // (Dsh: shift) | ||||
|      | ||||
| @@ -731,6 +838,5 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme, | ||||
|   abort(); | ||||
| } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -29,7 +29,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_LOCAL_COHERENCE_IRL_H | ||||
| #define GRID_LOCAL_COHERENCE_IRL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
|  | ||||
| struct LanczosParams : Serializable { | ||||
|  public: | ||||
| @@ -58,7 +59,7 @@ public: | ||||
| 				  RealD        , coarse_relax_tol, | ||||
| 				  std::vector<int>, blockSize, | ||||
| 				  std::string, config, | ||||
| 				  std::vector < ComplexD  >, omega, | ||||
| 				  std::vector < std::complex<double>  >, omega, | ||||
| 				  RealD, mass, | ||||
| 				  RealD, M5); | ||||
| }; | ||||
| @@ -82,11 +83,11 @@ public: | ||||
|   }; | ||||
|  | ||||
|   void operator()(const CoarseField& in, CoarseField& out) { | ||||
|     GridBase *FineGrid = subspace[0].Grid();     | ||||
|     int   checkerboard = subspace[0].Checkerboard(); | ||||
|     GridBase *FineGrid = subspace[0]._grid;     | ||||
|     int   checkerboard = subspace[0].checkerboard; | ||||
|        | ||||
|     FineField fin (FineGrid);     fin.Checkerboard()= checkerboard; | ||||
|     FineField fout(FineGrid);   fout.Checkerboard() = checkerboard; | ||||
|     FineField fin (FineGrid);     fin.checkerboard= checkerboard; | ||||
|     FineField fout(FineGrid);   fout.checkerboard = checkerboard; | ||||
|  | ||||
|     blockPromote(in,fin,subspace);       std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl; | ||||
|     _Linop.HermOp(fin,fout);             std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl; | ||||
| @@ -117,11 +118,11 @@ public: | ||||
|  | ||||
|   void operator()(const CoarseField& in, CoarseField& out) { | ||||
|      | ||||
|     GridBase *FineGrid = subspace[0].Grid();     | ||||
|     int   checkerboard = subspace[0].Checkerboard(); | ||||
|     GridBase *FineGrid = subspace[0]._grid;     | ||||
|     int   checkerboard = subspace[0].checkerboard; | ||||
|  | ||||
|     FineField fin (FineGrid); fin.Checkerboard() =checkerboard; | ||||
|     FineField fout(FineGrid);fout.Checkerboard() =checkerboard; | ||||
|     FineField fin (FineGrid); fin.checkerboard =checkerboard; | ||||
|     FineField fout(FineGrid);fout.checkerboard =checkerboard; | ||||
|      | ||||
|     blockPromote(in,fin,subspace);             std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl; | ||||
|     _poly(_Linop,fin,fout);                    std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl; | ||||
| @@ -181,10 +182,10 @@ public: | ||||
|   } | ||||
|   int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) | ||||
|   { | ||||
|     GridBase *FineGrid = _subspace[0].Grid();     | ||||
|     int checkerboard   = _subspace[0].Checkerboard(); | ||||
|     FineField fB(FineGrid);fB.Checkerboard() =checkerboard; | ||||
|     FineField fv(FineGrid);fv.Checkerboard() =checkerboard; | ||||
|     GridBase *FineGrid = _subspace[0]._grid;     | ||||
|     int checkerboard   = _subspace[0].checkerboard; | ||||
|     FineField fB(FineGrid);fB.checkerboard =checkerboard; | ||||
|     FineField fv(FineGrid);fv.checkerboard =checkerboard; | ||||
|  | ||||
|     blockPromote(B,fv,_subspace);   | ||||
|      | ||||
| @@ -304,11 +305,11 @@ public: | ||||
|     int Nk = nbasis; | ||||
|     subspace.resize(Nk,_FineGrid); | ||||
|     subspace[0]=1.0; | ||||
|     subspace[0].Checkerboard()=_checkerboard; | ||||
|     subspace[0].checkerboard=_checkerboard; | ||||
|     normalise(subspace[0]); | ||||
|     PlainHermOp<FineField>    Op(_FineOp); | ||||
|     for(int k=1;k<Nk;k++){ | ||||
|       subspace[k].Checkerboard()=_checkerboard; | ||||
|       subspace[k].checkerboard=_checkerboard; | ||||
|       Op(subspace[k-1],subspace[k]); | ||||
|       normalise(subspace[k]); | ||||
|     } | ||||
| @@ -359,11 +360,7 @@ public: | ||||
|  | ||||
|     ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); | ||||
|  | ||||
|     FineField src(_FineGrid);  | ||||
|     typedef typename FineField::scalar_type Scalar; | ||||
|     // src=1.0;  | ||||
|     src=Scalar(1.0);  | ||||
|     src.Checkerboard() = _checkerboard; | ||||
|     FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard; | ||||
|  | ||||
|     int Nconv; | ||||
|     IRL.calc(evals_fine,subspace,src,Nconv,false); | ||||
| @@ -405,5 +402,5 @@ public: | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,157 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/MinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_MINIMAL_RESIDUAL_H | ||||
| #define GRID_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class Field> class MinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // throw an assert when the MR fails to converge. | ||||
|                           // Defaults true. | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   RealD   overRelaxParam; | ||||
|   Integer IterationsToComplete; // Number of iterations the MR took to finish. | ||||
|                                 // Filled in upon completion | ||||
|  | ||||
|   MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     ComplexD a, c; | ||||
|     RealD    d; | ||||
|  | ||||
|     Field Mr(src); | ||||
|     Field r(src); | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     Linop.Op(psi, Mr); | ||||
|  | ||||
|     r = src - Mr; | ||||
|  | ||||
|     RealD cp = norm2(r); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:   src " << ssq << std::endl; | ||||
|     std::cout << GridLogIterative << "MinimalResidual:  cp,r " << cp << std::endl; | ||||
|  | ||||
|     if (cp <= rsq) { | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     GridStopWatch SolverTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|     int k; | ||||
|     for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
|       MatrixTimer.Start(); | ||||
|       Linop.Op(r, Mr); | ||||
|       MatrixTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       c = innerProduct(Mr, r); | ||||
|  | ||||
|       d = norm2(Mr); | ||||
|  | ||||
|       a = c / d; | ||||
|  | ||||
|       a = a * overRelaxParam; | ||||
|  | ||||
|       psi = psi + r * a; | ||||
|  | ||||
|       r = r - Mr * a; | ||||
|  | ||||
|       cp = norm2(r); | ||||
|  | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       std::cout << GridLogIterative << "MinimalResidual: Iteration " << k | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|       std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         Linop.Op(psi, Mr); | ||||
|         r = src - Mr; | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "MinimalResidual Converged on iteration " << k | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Total   " << SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Matrix  " << MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) | ||||
|           assert(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
|         IterationsToComplete = k; | ||||
|  | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "MinimalResidual did NOT converge" | ||||
|               << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|  | ||||
|     IterationsToComplete = k; | ||||
|   } | ||||
| }; | ||||
| } // namespace Grid | ||||
| #endif | ||||
| @@ -1,276 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Daniel Richtmann <daniel.richtmann@ur.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
| #define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
| template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> | ||||
| class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> { | ||||
|  public: | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge, | ||||
|                           // defaults to true | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|  | ||||
|   Integer MaxIterations; | ||||
|   Integer RestartLength; | ||||
|   Integer MaxNumberOfRestarts; | ||||
|   Integer IterationCount; // Number of iterations the MPFGMRES took to finish, | ||||
|                           // filled in upon completion | ||||
|  | ||||
|   GridStopWatch MatrixTimer; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|   GridStopWatch QrTimer; | ||||
|   GridStopWatch CompSolutionTimer; | ||||
|   GridStopWatch ChangePrecTimer; | ||||
|  | ||||
|   Eigen::MatrixXcd H; | ||||
|  | ||||
|   std::vector<ComplexD> y; | ||||
|   std::vector<ComplexD> gamma; | ||||
|   std::vector<ComplexD> c; | ||||
|   std::vector<ComplexD> s; | ||||
|  | ||||
|   GridBase* SinglePrecGrid; | ||||
|  | ||||
|   LinearFunction<FieldF> &Preconditioner; | ||||
|  | ||||
|   MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD   tol, | ||||
|                                                    Integer maxit, | ||||
|                                                    GridBase * sp_grid, | ||||
|                                                    LinearFunction<FieldF> &Prec, | ||||
|                                                    Integer restart_length, | ||||
|                                                    bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , RestartLength(restart_length) | ||||
|       , MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1)) | ||||
|       , ErrorOnNoConverge(err_on_no_conv) | ||||
|       , H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base | ||||
|       , y(RestartLength + 1, 0.) | ||||
|       , gamma(RestartLength + 1, 0.) | ||||
|       , c(RestartLength + 1, 0.) | ||||
|       , s(RestartLength + 1, 0.) | ||||
|       , SinglePrecGrid(sp_grid) | ||||
|       , Preconditioner(Prec) {}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) { | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     conformable(psi, src); | ||||
|  | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|  | ||||
|     RealD cp; | ||||
|     RealD ssq = norm2(src); | ||||
|     RealD rsq = Tolerance * Tolerance * ssq; | ||||
|  | ||||
|     FieldD r(src.Grid()); | ||||
|  | ||||
|     std::cout << std::setprecision(4) << std::scientific; | ||||
|     std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl; | ||||
|     std::cout << GridLogIterative << "MPFGMRES:   src " << ssq   << std::endl; | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatrixTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|     QrTimer.Reset(); | ||||
|     CompSolutionTimer.Reset(); | ||||
|     ChangePrecTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     IterationCount = 0; | ||||
|  | ||||
|     for (int k=0; k<MaxNumberOfRestarts; k++) { | ||||
|  | ||||
|       cp = outerLoopBody(LinOp, src, psi, rsq); | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
|  | ||||
|         SolverTimer.Stop(); | ||||
|  | ||||
|         LinOp.Op(psi,r); | ||||
|         axpy(r,-1.0,src,r); | ||||
|  | ||||
|         RealD srcnorm       = sqrt(ssq); | ||||
|         RealD resnorm       = sqrt(norm2(r)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage        << "MPFGMRES: Converged on iteration " << IterationCount | ||||
|                   << " computed residual " << sqrt(cp / ssq) | ||||
|                   << " true residual "     << true_residual | ||||
|                   << " target "            << Tolerance << std::endl; | ||||
|  | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total      " <<       SolverTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon     " <<         PrecTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix     " <<       MatrixTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg     " <<       LinalgTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR         " <<           QrTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol    " << CompSolutionTimer.Elapsed() << std::endl; | ||||
|         std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " <<   ChangePrecTimer.Elapsed() << std::endl; | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) { | ||||
|  | ||||
|     RealD cp = 0; | ||||
|  | ||||
|     FieldD w(src.Grid()); | ||||
|     FieldD r(src.Grid()); | ||||
|  | ||||
|     // these should probably be made class members so that they are only allocated once, not in every restart | ||||
|     std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero(); | ||||
|     std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(psi, w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r = src - w; | ||||
|  | ||||
|     gamma[0] = sqrt(norm2(r)); | ||||
|  | ||||
|     v[0] = (1. / gamma[0]) * r; | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for (int i=0; i<RestartLength; i++) { | ||||
|  | ||||
|       IterationCount++; | ||||
|  | ||||
|       arnoldiStep(LinOp, v, z, w, i); | ||||
|  | ||||
|       qrUpdate(i); | ||||
|  | ||||
|       cp = norm(gamma[i+1]); | ||||
|  | ||||
|       std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount | ||||
|                 << " residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|       if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) { | ||||
|  | ||||
|         computeSolution(z, psi, i); | ||||
|  | ||||
|         return cp; | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     assert(0); // Never reached | ||||
|     return cp; | ||||
|   } | ||||
|  | ||||
|   void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) { | ||||
|  | ||||
|     FieldF v_f(SinglePrecGrid); | ||||
|     FieldF z_f(SinglePrecGrid); | ||||
|  | ||||
|     ChangePrecTimer.Start(); | ||||
|     precisionChange(v_f, v[iter]); | ||||
|     precisionChange(z_f, z[iter]); | ||||
|     ChangePrecTimer.Stop(); | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(v_f, z_f); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     ChangePrecTimer.Start(); | ||||
|     precisionChange(z[iter], z_f); | ||||
|     ChangePrecTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     LinOp.Op(z[iter], w); | ||||
|     MatrixTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     for (int i = 0; i <= iter; ++i) { | ||||
|       H(iter, i) = innerProduct(v[i], w); | ||||
|       w = w - ComplexD(H(iter, i)) * v[i]; | ||||
|     } | ||||
|  | ||||
|     H(iter, iter + 1) = sqrt(norm2(w)); | ||||
|     v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w; | ||||
|     LinalgTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void qrUpdate(int iter) { | ||||
|  | ||||
|     QrTimer.Start(); | ||||
|     for (int i = 0; i < iter ; ++i) { | ||||
|       auto tmp       = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i)     = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1)); | ||||
|       H(iter, i + 1) = tmp; | ||||
|     } | ||||
|  | ||||
|     // Compute new Givens Rotation | ||||
|     auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1))); | ||||
|     c[iter]     = H(iter, iter) / nu; | ||||
|     s[iter]     = H(iter, iter + 1) / nu; | ||||
|  | ||||
|     // Apply new Givens rotation | ||||
|     H(iter, iter)     = nu; | ||||
|     H(iter, iter + 1) = 0.; | ||||
|  | ||||
|     gamma[iter + 1] = -s[iter] * gamma[iter]; | ||||
|     gamma[iter]     = conjugate(c[iter]) * gamma[iter]; | ||||
|     QrTimer.Stop(); | ||||
|   } | ||||
|  | ||||
|   void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) { | ||||
|  | ||||
|     CompSolutionTimer.Start(); | ||||
|     for (int i = iter; i >= 0; i--) { | ||||
|       y[i] = gamma[i]; | ||||
|       for (int k = i + 1; k <= iter; k++) | ||||
|         y[i] = y[i] - ComplexD(H(k, i)) * y[k]; | ||||
|       y[i] = y[i] / ComplexD(H(i, i)); | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i <= iter; i++) | ||||
|       psi = psi + z[i] * y[i]; | ||||
|     CompSolutionTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
| } | ||||
| #endif | ||||
| @@ -28,85 +28,33 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_NORMAL_EQUATIONS_H | ||||
| #define GRID_NORMAL_EQUATIONS_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Take a matrix and form an NE solver calling a Herm solver | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class NormalEquations { | ||||
|   template<class Field> class NormalEquations : public OperatorFunction<Field>{ | ||||
|   private: | ||||
|     SparseMatrixBase<Field> & _Matrix; | ||||
|     OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
|  | ||||
|   public: | ||||
|  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|  NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 		 LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|   NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver)  | ||||
|     :  _Matrix(Matrix), _HermitianSolver(HermitianSolver) {};  | ||||
|  | ||||
|     void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     Field src(in.Grid()); | ||||
|     Field tmp(in.Grid()); | ||||
|       Field src(in._grid); | ||||
|  | ||||
|     MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix); | ||||
|       _Matrix.Mdag(in,src); | ||||
|     _Guess(src,out); | ||||
|     _HermitianSolver(MdagMOp,src,out);  // Mdag M out = Mdag in | ||||
|       _HermitianSolver(src,out);  // Mdag M out = Mdag in | ||||
|   | ||||
|     }      | ||||
|   }; | ||||
|  | ||||
| template<class Field> class HPDSolver { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  HPDSolver(LinearOperatorBase<Field> &Matrix, | ||||
| 	   OperatorFunction<Field> &HermitianSolver, | ||||
| 	   LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     _Guess(in,out); | ||||
|     _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
| } | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> class MdagMSolver { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   LinearFunction<Field>   & _Guess; | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Wrap the usual normal equations trick | ||||
|   ///////////////////////////////////////////////////// | ||||
|  MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver, | ||||
| 	     LinearFunction<Field> &Guess)  | ||||
|    :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};  | ||||
|  | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix); | ||||
|     _Guess(in,out); | ||||
|  | ||||
|     _HermitianSolver(MdagMOp,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -1,45 +0,0 @@ | ||||
| #pragma once | ||||
| namespace Grid { | ||||
| template<class Field> class PowerMethod   | ||||
| {  | ||||
|  public:  | ||||
|  | ||||
|   template<typename T>  static RealD normalise(T& v)  | ||||
|   { | ||||
|     RealD nn = norm2(v); | ||||
|     nn = sqrt(nn); | ||||
|     v = v * (1.0/nn); | ||||
|     return nn; | ||||
|   } | ||||
|  | ||||
|   RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)  | ||||
|   {  | ||||
|     GridBase *grid = src.Grid();  | ||||
|      | ||||
|     // quickly get an idea of the largest eigenvalue to more properly normalize the residuum  | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 50;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
|       normalise(src_n);  | ||||
|       HermOp.HermOp(src_n,tmp);  | ||||
|       RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.  | ||||
|       RealD vden = norm2(src_n);  | ||||
|       RealD na = vnum/vden;  | ||||
|        | ||||
|       if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
|  	evalMaxApprox = na;  | ||||
| 	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|  	return evalMaxApprox;  | ||||
|       }  | ||||
|       evalMaxApprox = na;  | ||||
|       src_n = tmp; | ||||
|     } | ||||
|     assert(0); | ||||
|     return 0; | ||||
|   } | ||||
| }; | ||||
| } | ||||
| @@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_PREC_CONJUGATE_RESIDUAL_H | ||||
| #define GRID_PREC_CONJUGATE_RESIDUAL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Base classes for iterative processes based on operators | ||||
| @@ -56,7 +56,7 @@ public: | ||||
|       RealD rAr, rAAr, rArp; | ||||
|       RealD pAp, pAAp; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|       GridBase *grid = src._grid; | ||||
|       Field r(grid),  p(grid), Ap(grid), Ar(grid), z(grid); | ||||
|        | ||||
|       psi=zero; | ||||
| @@ -115,5 +115,5 @@ public: | ||||
|       assert(0); | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -36,50 +36,41 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| //NB. Likely not original reference since they are focussing on a preconditioner variant. | ||||
| //    but VPGCR was nicely written up in their paper | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "  | ||||
| namespace Grid { | ||||
|  | ||||
|   template<class Field> | ||||
| class PrecGeneralisedConjugateResidual : public LinearFunction<Field> { | ||||
|     class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> { | ||||
|   public:                                                 | ||||
|  | ||||
|     RealD   Tolerance; | ||||
|     Integer MaxIterations; | ||||
|     int verbose; | ||||
|     int mmax; | ||||
|     int nstep; | ||||
|     int steps; | ||||
|   int level; | ||||
|     GridStopWatch PrecTimer; | ||||
|     GridStopWatch MatTimer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|  | ||||
|     LinearFunction<Field> &Preconditioner; | ||||
|   LinearOperatorBase<Field> &Linop; | ||||
|  | ||||
|   void Level(int lv) { level=lv; }; | ||||
|  | ||||
|   PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|    PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|       Tolerance(tol),  | ||||
|       MaxIterations(maxit), | ||||
|     Linop(_Linop), | ||||
|       Preconditioner(Prec), | ||||
|       mmax(_mmax), | ||||
|       nstep(_nstep) | ||||
|     {  | ||||
|     level=1; | ||||
|       verbose=1; | ||||
|     }; | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|     void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|       psi=zero; | ||||
|       RealD cp, ssq,rsq; | ||||
|       ssq=norm2(src); | ||||
|       rsq=Tolerance*Tolerance*ssq; | ||||
|        | ||||
|     Field r(src.Grid()); | ||||
|       Field r(src._grid); | ||||
|  | ||||
|         PrecTimer.Reset(); | ||||
|          MatTimer.Reset(); | ||||
| @@ -91,9 +82,9 @@ public: | ||||
|       steps=0; | ||||
|       for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|       cp=GCRnStep(src,psi,rsq); | ||||
| 	cp=GCRnStep(Linop,src,psi,rsq); | ||||
|  | ||||
|       GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"VPGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<std::endl; | ||||
|  | ||||
| 	if(cp<rsq) { | ||||
|  | ||||
| @@ -102,33 +93,31 @@ public: | ||||
| 	  Linop.HermOp(psi,r); | ||||
| 	  axpy(r,-1.0,src,r); | ||||
| 	  RealD tr = norm2(r); | ||||
| 	GCRLogLevel<<"PGCR: Converged on iteration " <<steps | ||||
| 	  std::cout<<GridLogMessage<<"PrecGeneralisedConjugateResidual: Converged on iteration " <<steps | ||||
| 		   << " computed residual "<<sqrt(cp/ssq) | ||||
| 	           << " true residual "    <<sqrt(tr/ssq) | ||||
| 	           << " target "           <<Tolerance <<std::endl; | ||||
|  | ||||
| 	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	/* | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl; | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl; | ||||
| 	  GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl; | ||||
| 	*/ | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Precon "<<   PrecTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Matrix "<<    MatTimer.Elapsed() <<std::endl; | ||||
| 	  std::cout<<GridLogMessage<<"VPGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl; | ||||
| 	  return; | ||||
| 	} | ||||
|  | ||||
|       } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|       std::cout<<GridLogMessage<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|       assert(0); | ||||
|     } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|     RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|       RealD cp; | ||||
|     RealD a, b; | ||||
|       RealD a, b, c, d; | ||||
|       RealD zAz, zAAz; | ||||
|     RealD rq; | ||||
|       RealD rAq, rq; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|       GridBase *grid = src._grid; | ||||
|  | ||||
|       Field r(grid); | ||||
|       Field z(grid); | ||||
| @@ -143,8 +132,6 @@ public: | ||||
|       std::vector<Field> p(mmax,grid); | ||||
|       std::vector<RealD> qq(mmax); | ||||
|        | ||||
|     GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl; | ||||
|  | ||||
|       ////////////////////////////////// | ||||
|       // initial guess x0 is taken as nonzero. | ||||
|       // r0=src-A x0 = src | ||||
| @@ -152,26 +139,32 @@ public: | ||||
|       MatTimer.Start(); | ||||
|       Linop.HermOpAndNorm(psi,Az,zAz,zAAz);  | ||||
|       MatTimer.Stop(); | ||||
|      | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|       r=src-Az; | ||||
|     LinalgTimer.Stop(); | ||||
|     GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl; | ||||
|        | ||||
|       ///////////////////// | ||||
|       // p = Prec(r) | ||||
|       ///////////////////// | ||||
|  | ||||
|       PrecTimer.Start(); | ||||
|       Preconditioner(r,z); | ||||
|       PrecTimer.Stop(); | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|     Linop.HermOpAndNorm(z,Az,zAz,zAAz);  | ||||
|       Linop.HermOp(z,tmp);  | ||||
|       MatTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|       ttmp=tmp; | ||||
|       tmp=tmp-r; | ||||
|  | ||||
|       /* | ||||
|       std::cout<<GridLogMessage<<r<<std::endl; | ||||
|       std::cout<<GridLogMessage<<z<<std::endl; | ||||
|       std::cout<<GridLogMessage<<ttmp<<std::endl; | ||||
|       std::cout<<GridLogMessage<<tmp<<std::endl; | ||||
|       */ | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.HermOpAndNorm(z,Az,zAz,zAAz);  | ||||
|       MatTimer.Stop(); | ||||
|  | ||||
|       //p[0],q[0],qq[0]  | ||||
|       p[0]= z; | ||||
| @@ -179,7 +172,6 @@ public: | ||||
|       qq[0]= zAAz; | ||||
|  | ||||
|       cp =norm2(r); | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|       for(int k=0;k<nstep;k++){ | ||||
|  | ||||
| @@ -189,21 +181,18 @@ public: | ||||
| 	int peri_k = k %mmax; | ||||
| 	int peri_kp= kp%mmax; | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
| 	rq= real(innerProduct(r,q[peri_k])); // what if rAr not real? | ||||
| 	a = rq/qq[peri_k]; | ||||
|  | ||||
| 	axpy(psi,a,p[peri_k],psi);          | ||||
|  | ||||
| 	cp = axpy_norm(r,-a,q[peri_k],r);   | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl;  | ||||
|  | ||||
| 	if((k==nstep-1)||(cp<rsq)){ | ||||
| 	  return cp; | ||||
| 	} | ||||
|  | ||||
| 	std::cout<<GridLogMessage<< " VPGCR_step["<<steps<<"]  resid " <<sqrt(cp/rsq)<<std::endl;  | ||||
|  | ||||
| 	PrecTimer.Start(); | ||||
| 	Preconditioner(r,z);// solve Az = r | ||||
| @@ -211,9 +200,10 @@ public: | ||||
|  | ||||
| 	MatTimer.Start(); | ||||
| 	Linop.HermOpAndNorm(z,Az,zAz,zAAz); | ||||
| 	Linop.HermOp(z,tmp); | ||||
| 	MatTimer.Stop(); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|         tmp=tmp-r; | ||||
| 	std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;  | ||||
|  | ||||
| 	q[peri_kp]=Az; | ||||
| 	p[peri_kp]=z; | ||||
| @@ -229,11 +219,12 @@ public: | ||||
|  | ||||
| 	} | ||||
| 	qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|  | ||||
|       } | ||||
|       assert(0); // never reached | ||||
|       return cp; | ||||
|     } | ||||
|   }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,241 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_PREC_GCR_NON_HERM_H | ||||
| #define GRID_PREC_GCR_NON_HERM_H | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| //VPGCR Abe and Zhang, 2005. | ||||
| //INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING | ||||
| //Computing and Information Volume 2, Number 2, Pages 147-161 | ||||
| //NB. Likely not original reference since they are focussing on a preconditioner variant. | ||||
| //    but VPGCR was nicely written up in their paper | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "  | ||||
|  | ||||
| template<class Field> | ||||
| class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> { | ||||
| public:                                                 | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|   int mmax; | ||||
|   int nstep; | ||||
|   int steps; | ||||
|   int level; | ||||
|   GridStopWatch PrecTimer; | ||||
|   GridStopWatch MatTimer; | ||||
|   GridStopWatch LinalgTimer; | ||||
|  | ||||
|   LinearFunction<Field>     &Preconditioner; | ||||
|   LinearOperatorBase<Field> &Linop; | ||||
|  | ||||
|   void Level(int lv) { level=lv; }; | ||||
|  | ||||
|   PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     Linop(_Linop), | ||||
|     Preconditioner(Prec), | ||||
|     mmax(_mmax), | ||||
|     nstep(_nstep) | ||||
|   {  | ||||
|     level=1; | ||||
|     verbose=1; | ||||
|   }; | ||||
|  | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi=Zero(); | ||||
|     RealD cp, ssq,rsq; | ||||
|     ssq=norm2(src); | ||||
|     rsq=Tolerance*Tolerance*ssq; | ||||
|        | ||||
|     Field r(src.Grid()); | ||||
|  | ||||
|     PrecTimer.Reset(); | ||||
|     MatTimer.Reset(); | ||||
|     LinalgTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch SolverTimer; | ||||
|     SolverTimer.Start(); | ||||
|  | ||||
|     steps=0; | ||||
|     for(int k=0;k<MaxIterations;k++){ | ||||
|  | ||||
|       cp=GCRnStep(src,psi,rsq); | ||||
|  | ||||
|       GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl; | ||||
|  | ||||
|       if(cp<rsq) { | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	Linop.Op(psi,r); | ||||
| 	axpy(r,-1.0,src,r); | ||||
| 	RealD tr = norm2(r); | ||||
| 	GCRLogLevel<<"PGCR: Converged on iteration " <<steps | ||||
| 		 << " computed residual "<<sqrt(cp/ssq) | ||||
| 		 << " true residual "    <<sqrt(tr/ssq) | ||||
| 		 << " target "           <<Tolerance <<std::endl; | ||||
|  | ||||
| 	GCRLogLevel<<"PGCR Time elapsed: Total  "<< SolverTimer.Elapsed() <<std::endl; | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl; | ||||
|     //    assert(0); | ||||
|   } | ||||
|  | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|     RealD cp; | ||||
|     ComplexD a, b, zAz; | ||||
|     RealD zAAz; | ||||
|     ComplexD rq; | ||||
|  | ||||
|     GridBase *grid = src.Grid(); | ||||
|  | ||||
|     Field r(grid); | ||||
|     Field z(grid); | ||||
|     Field tmp(grid); | ||||
|     Field ttmp(grid); | ||||
|     Field Az(grid); | ||||
|  | ||||
|     //////////////////////////////// | ||||
|     // history for flexible orthog | ||||
|     //////////////////////////////// | ||||
|     std::vector<Field> q(mmax,grid); | ||||
|     std::vector<Field> p(mmax,grid); | ||||
|     std::vector<RealD> qq(mmax); | ||||
|        | ||||
|     GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl; | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // initial guess x0 is taken as nonzero. | ||||
|     // r0=src-A x0 = src | ||||
|     ////////////////////////////////// | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(psi,Az); | ||||
|     zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|     MatTimer.Stop(); | ||||
|      | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|     r=src-Az; | ||||
|     LinalgTimer.Stop(); | ||||
|     GCRLogLevel<< "PGCR true residual r = src - A psi   "<<norm2(r) <<std::endl; | ||||
|      | ||||
|     ///////////////////// | ||||
|     // p = Prec(r) | ||||
|     ///////////////////// | ||||
|  | ||||
|     PrecTimer.Start(); | ||||
|     Preconditioner(r,z); | ||||
|     PrecTimer.Stop(); | ||||
|  | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(z,Az); | ||||
|     MatTimer.Stop(); | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|  | ||||
|     zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|  | ||||
|     //p[0],q[0],qq[0]  | ||||
|     p[0]= z; | ||||
|     q[0]= Az; | ||||
|     qq[0]= zAAz; | ||||
|      | ||||
|     cp =norm2(r); | ||||
|     LinalgTimer.Stop(); | ||||
|  | ||||
|     for(int k=0;k<nstep;k++){ | ||||
|  | ||||
|       steps++; | ||||
|  | ||||
|       int kp     = k+1; | ||||
|       int peri_k = k %mmax; | ||||
|       int peri_kp= kp%mmax; | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|       rq= innerProduct(q[peri_k],r); // what if rAr not real? | ||||
|       a = rq/qq[peri_k]; | ||||
|  | ||||
|       axpy(psi,a,p[peri_k],psi);          | ||||
|  | ||||
|       cp = axpy_norm(r,-a,q[peri_k],r); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       GCRLogLevel<< "PGCR step["<<steps<<"]  resid " << cp << " target " <<rsq<<std::endl;  | ||||
|  | ||||
|       if((k==nstep-1)||(cp<rsq)){ | ||||
| 	return cp; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       PrecTimer.Start(); | ||||
|       Preconditioner(r,z);// solve Az = r | ||||
|       PrecTimer.Stop(); | ||||
|  | ||||
|       MatTimer.Start(); | ||||
|       Linop.Op(z,Az); | ||||
|       MatTimer.Stop(); | ||||
|       zAz = innerProduct(Az,psi); | ||||
|       zAAz= norm2(Az); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|  | ||||
|       q[peri_kp]=Az; | ||||
|       p[peri_kp]=z; | ||||
|  | ||||
|       int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history. | ||||
|       for(int back=0;back<northog;back++){ | ||||
|  | ||||
| 	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0); | ||||
|  | ||||
| 	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back]; | ||||
| 	p[peri_kp]=p[peri_kp]+b*p[peri_back]; | ||||
| 	q[peri_kp]=q[peri_kp]+b*q[peri_back]; | ||||
|  | ||||
|       } | ||||
|       qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm | ||||
|       LinalgTimer.Stop(); | ||||
|     } | ||||
|     assert(0); // never reached | ||||
|     return cp; | ||||
|   } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,371 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field>  | ||||
| RealD innerG5ProductReal(Field &l, Field &r) | ||||
| { | ||||
|   Gamma G5(Gamma::Algebra::Gamma5); | ||||
|   Field tmp(l.Grid()); | ||||
|   //  tmp = G5*r; | ||||
|   G5R5(tmp,r); | ||||
|   ComplexD ip =innerProduct(l,tmp); | ||||
|   std::cout << "innerProductRealG5R5 "<<ip<<std::endl; | ||||
|   return ip.real(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge;  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationCount; | ||||
|  | ||||
|   QuasiMinimalResidual(RealD   tol, | ||||
| 		       Integer maxit, | ||||
| 		       bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , ErrorOnNoConverge(err_on_no_conv)  | ||||
|   {}; | ||||
|  | ||||
| #if 1 | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     RealD resid; | ||||
|     IterationCount=0; | ||||
|  | ||||
|     RealD  rho, rho_1, xi, gamma, gamma_1, theta, theta_1; | ||||
|     RealD  eta, delta, ep, beta;  | ||||
|  | ||||
|     GridBase *Grid = b.Grid(); | ||||
|     Field r(Grid), d(Grid), s(Grid); | ||||
|     Field v(Grid), w(Grid), y(Grid),  z(Grid); | ||||
|     Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid); | ||||
|     Field p(Grid), q(Grid), p_tld(Grid); | ||||
|  | ||||
|     Real normb = norm2(b); | ||||
|  | ||||
|     LinOp.Op(x,r); r = b - r; | ||||
|  | ||||
|     assert(normb> 0.0); | ||||
|  | ||||
|     resid = norm2(r)/normb; | ||||
|     if (resid <= Tolerance) { | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     v_tld = r; | ||||
|     y = v_tld; | ||||
|     rho = norm2(y); | ||||
|  | ||||
|     // Take Gamma5 conjugate | ||||
|     //    Gamma G5(Gamma::Algebra::Gamma5); | ||||
|     //    G5R5(w_tld,r); | ||||
|     //    w_tld = G5* v_tld; | ||||
|     w_tld=v_tld; | ||||
|     z = w_tld; | ||||
|     xi = norm2(z); | ||||
|  | ||||
|     gamma = 1.0; | ||||
|     eta   = -1.0; | ||||
|     theta = 0.0; | ||||
|  | ||||
|     for (int i = 1; i <= MaxIterations; i++) { | ||||
|  | ||||
|       // Breakdown tests | ||||
|       assert( rho != 0.0); | ||||
|       assert( xi  != 0.0); | ||||
|  | ||||
|       v = (1. / rho) * v_tld; | ||||
|       y = (1. / rho) * y; | ||||
|  | ||||
|       w = (1. / xi) * w_tld; | ||||
|       z = (1. / xi) * z; | ||||
|  | ||||
|       ComplexD Zdelta = innerProduct(z, y); // Complex? | ||||
|       std::cout << "Zdelta "<<Zdelta<<std::endl; | ||||
|       delta = Zdelta.real(); | ||||
|  | ||||
|       y_tld = y;  | ||||
|       z_tld = z; | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	p = y_tld - (xi  * delta / ep) * p; | ||||
| 	q = z_tld - (rho * delta / ep) * q; | ||||
|       } else { | ||||
| 	p = y_tld; | ||||
| 	q = z_tld; | ||||
|       } | ||||
|  | ||||
|       LinOp.Op(p,p_tld);      //     p_tld = A * p; | ||||
|       ComplexD Zep = innerProduct(q, p_tld); | ||||
|       ep=Zep.real(); | ||||
|       std::cout << "Zep "<<Zep <<std::endl; | ||||
|       // Complex Audit | ||||
|       assert(abs(ep)>0); | ||||
|  | ||||
|       beta = ep / delta; | ||||
|       assert(abs(beta)>0); | ||||
|  | ||||
|       v_tld = p_tld - beta * v; | ||||
|       y = v_tld; | ||||
|  | ||||
|       rho_1 = rho; | ||||
|       rho   = norm2(y); | ||||
|       LinOp.AdjOp(q,w_tld); | ||||
|       w_tld = w_tld - beta * w; | ||||
|       z = w_tld; | ||||
|  | ||||
|       xi = norm2(z); | ||||
|  | ||||
|       gamma_1 = gamma; | ||||
|       theta_1 = theta; | ||||
|  | ||||
|       theta   = rho / (gamma_1 * beta); | ||||
|       gamma   = 1.0 / sqrt(1.0 + theta * theta); | ||||
|       std::cout << "theta "<<theta<<std::endl; | ||||
|       std::cout << "gamma "<<gamma<<std::endl; | ||||
|  | ||||
|       assert(abs(gamma)> 0.0); | ||||
|  | ||||
|       eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1); | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d; | ||||
| 	s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s; | ||||
|       } else { | ||||
| 	d = eta * p; | ||||
| 	s = eta * p_tld; | ||||
|       } | ||||
|  | ||||
|       x =x+d;                            // update approximation vector | ||||
|       r =r-s;                            // compute residual | ||||
|  | ||||
|       if ((resid = norm2(r) / normb) <= Tolerance) { | ||||
| 	return; | ||||
|       } | ||||
|       std::cout << "Iteration "<<i<<" resid " << resid<<std::endl; | ||||
|     } | ||||
|     assert(0); | ||||
|     return;                            // no convergence | ||||
|   } | ||||
| #else | ||||
|   // QMRg5 SMP thesis | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     // Real scalars | ||||
|     GridBase *grid = b.Grid(); | ||||
|  | ||||
|     Field    r(grid); | ||||
|     Field    p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid); | ||||
|     Field    v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid); | ||||
|     Field    tmp(grid); | ||||
|  | ||||
|     RealD    w; | ||||
|     RealD    z1, z2; | ||||
|     RealD    delta_m, delta_m_minus_1; | ||||
|     RealD    c_m_plus_1, c_m, c_m_minus_1; | ||||
|     RealD    s_m_plus_1, s_m, s_m_minus_1; | ||||
|     RealD    alpha, beta, gamma, epsilon; | ||||
|     RealD    mu, nu, rho, theta, xi, chi; | ||||
|     RealD    mod2r, mod2b; | ||||
|     RealD    tau2, target2; | ||||
|  | ||||
|     mod2b=norm2(b); | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial residual | ||||
|     ///////////////////////// | ||||
|     LinOp.Op(x,tmp); | ||||
|     r = b - tmp; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // \mu = \rho = |r_0| | ||||
|     ///////////////////////// | ||||
|     mod2r = norm2(r); | ||||
|     rho = sqrt( mod2r); | ||||
|     mu=rho; | ||||
|      | ||||
|     std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|     ///////////////////////// | ||||
|     // Zero negative history | ||||
|     ///////////////////////// | ||||
|     v_m_plus_1  = Zero(); | ||||
|     v_m_minus_1 = Zero(); | ||||
|     p_m_minus_1 = Zero(); | ||||
|     p_m_minus_2 = Zero(); | ||||
|  | ||||
|     // v0 | ||||
|     v_m = (1.0/rho)*r; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial coeffs | ||||
|     ///////////////////////// | ||||
|     delta_m_minus_1 = 1.0; | ||||
|     c_m_minus_1     = 1.0; | ||||
|     c_m             = 1.0; | ||||
|     s_m_minus_1     = 0.0; | ||||
|     s_m             = 0.0; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Set up convergence check | ||||
|     ///////////////////////// | ||||
|     tau2    = mod2r; | ||||
|     target2 = mod2b * Tolerance*Tolerance; | ||||
|   | ||||
|     for(int iter = 0 ; iter < MaxIterations; iter++){ | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \delta_m = (v_m, \gamma_5 v_m)  | ||||
|       ///////////////////////// | ||||
|       delta_m = innerG5ProductReal(v_m,v_m); | ||||
|       std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // tmp = A v_m | ||||
|       ///////////////////////// | ||||
|       LinOp.Op(v_m,tmp); | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \alpha = (v_m, \gamma_5 temp) / \delta_m  | ||||
|       ///////////////////////// | ||||
|       alpha = innerG5ProductReal(v_m,tmp); | ||||
|       alpha = alpha/delta_m ; | ||||
|       std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \beta = \rho \delta_m / \delta_{m-1} | ||||
|       ///////////////////////// | ||||
|       beta = rho * delta_m / delta_m_minus_1; | ||||
|       std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1} | ||||
|       ///////////////////////// | ||||
|       v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       // \rho = || \tilde{v}_{m+1} || | ||||
|       /////////////////////////////// | ||||
|       rho = sqrt( norm2(v_m_plus_1) ); | ||||
|       std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       //      v_{m+1} = \tilde{v}_{m+1} | ||||
|       /////////////////////////////// | ||||
|       v_m_plus_1 = (1.0 / rho) * v_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       // QMR recurrence coefficients. | ||||
|       //////////////////////////////// | ||||
|       theta      = s_m_minus_1 * beta; | ||||
|       gamma      = c_m_minus_1 * beta; | ||||
|       epsilon    =  c_m * gamma + s_m * alpha; | ||||
|       xi         = -s_m * gamma + c_m * alpha; | ||||
|       nu         = sqrt( xi*xi + rho*rho ); | ||||
|       c_m_plus_1 = fabs(xi) / nu; | ||||
|       if ( xi == 0.0 ) { | ||||
| 	s_m_plus_1 = 1.0; | ||||
|       } else { | ||||
| 	s_m_plus_1 = c_m_plus_1 * rho / xi; | ||||
|       } | ||||
|       chi = c_m_plus_1 * xi + s_m_plus_1 * rho; | ||||
|  | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl; | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< chi   <<std::endl; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       //p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi | ||||
|       //////////////////////////////// | ||||
|       p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2; | ||||
|  | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       //      \psi = \psi + c_{m+1} \mu p_m	 | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       x = x + ( c_m_plus_1 * mu ) * p_m; | ||||
|  | ||||
|       //////////////////////////////////////// | ||||
|       // | ||||
|       //////////////////////////////////////// | ||||
|       mu              = -s_m_plus_1 * mu; | ||||
|       delta_m_minus_1 = delta_m; | ||||
|       c_m_minus_1     = c_m; | ||||
|       c_m             = c_m_plus_1; | ||||
|       s_m_minus_1     = s_m; | ||||
|       s_m             = s_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////////// | ||||
|       // Could use pointer swizzle games. | ||||
|       //////////////////////////////////// | ||||
|       v_m_minus_1 = v_m; | ||||
|       v_m         = v_m_plus_1; | ||||
|       p_m_minus_2 = p_m_minus_1; | ||||
|       p_m_minus_1 = p_m; | ||||
|  | ||||
|  | ||||
|       ///////////////////////////////////// | ||||
|       // Convergence checks | ||||
|       ///////////////////////////////////// | ||||
|       z1 = RealD(iter+1.0); | ||||
|       z2 = z1 + 1.0; | ||||
|       tau2 = tau2 *( z2 / z1 ) * s_m * s_m; | ||||
|       std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl; | ||||
|       std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl; | ||||
|  | ||||
|       // Compute true residual | ||||
|       mod2r = tau2; | ||||
|       if ( 1 || (tau2 < (100.0 * target2)) ) { | ||||
| 	LinOp.Op(x,tmp); | ||||
| 	r = b - tmp; | ||||
| 	mod2r = norm2(r); | ||||
| 	std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       if ( mod2r < target2 ) {  | ||||
|  | ||||
| 	std::cout << " QuasiMinimumResidual has converged"<<std::endl; | ||||
| 	return; | ||||
|  | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|  | ||||
|   } | ||||
| #endif | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -27,7 +27,51 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| 
 | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
| namespace QCD { | ||||
| 
 | ||||
| 
 | ||||
| template<class Field> | ||||
| class PauliVillarsSolverUnprec | ||||
| { | ||||
|  public: | ||||
|   ConjugateGradient<Field> & CG; | ||||
|   PauliVillarsSolverUnprec(  ConjugateGradient<Field> &_CG) : CG(_CG){}; | ||||
| 
 | ||||
|   template<class Matrix> | ||||
|   void operator() (Matrix &_Matrix,const Field &src,Field &sol) | ||||
|   { | ||||
|     RealD m = _Matrix.Mass(); | ||||
|     Field A  (_Matrix.FermionGrid()); | ||||
| 
 | ||||
|     MdagMLinearOperator<Matrix,Field> HermOp(_Matrix); | ||||
| 
 | ||||
|     _Matrix.SetMass(1.0); | ||||
|     _Matrix.Mdag(src,A); | ||||
|     CG(HermOp,A,sol); | ||||
|     _Matrix.SetMass(m); | ||||
|   }; | ||||
| }; | ||||
| 
 | ||||
| template<class Field> | ||||
| class PauliVillarsSolverRBprec | ||||
| { | ||||
|  public: | ||||
|   ConjugateGradient<Field> & CG; | ||||
|   PauliVillarsSolverRBprec(  ConjugateGradient<Field> &_CG) : CG(_CG){}; | ||||
| 
 | ||||
|   template<class Matrix> | ||||
|   void operator() (Matrix &_Matrix,const Field &src,Field &sol) | ||||
|   { | ||||
|     RealD m = _Matrix.Mass(); | ||||
|     Field A  (_Matrix.FermionGrid()); | ||||
| 
 | ||||
|     _Matrix.SetMass(1.0); | ||||
|     SchurRedBlackDiagMooeeSolve<Field> SchurSolver(CG); | ||||
|     SchurSolver(_Matrix,src,sol); | ||||
|     _Matrix.SetMass(m); | ||||
|   }; | ||||
| }; | ||||
| 
 | ||||
| template<class Field,class PVinverter> class Reconstruct5DfromPhysical { | ||||
|  private: | ||||
| @@ -41,12 +85,20 @@ template<class Field,class PVinverter> class Reconstruct5DfromPhysical { | ||||
|  // of the Mobius exact AMA corrections.
 | ||||
|  //
 | ||||
|  // TODO : understand absence of contact term in eqns in Hantao's thesis
 | ||||
|  //        sol4 is contact term subtracted, but thesis & Brower's paper suggests not.
 | ||||
|  //        sol4 is contact term subtracted.
 | ||||
|  //
 | ||||
|  // Step 1: Localise PV inverse in a routine. [DONE]
 | ||||
|  // Options
 | ||||
|  // a) Defect correction approach:
 | ||||
|  //    1) Compute defect from current soln (initially guess).
 | ||||
|  //       This is ...... outerToInner check !!!!
 | ||||
|  //    2) Deflated Zmobius solve to get 4d soln
 | ||||
|  //       Ensure deflation is working
 | ||||
|  //    3) Refine 5d Outer using the inner 4d delta soln
 | ||||
|  // 
 | ||||
|  // Step 1: localise PV inverse in a routine. [DONE]
 | ||||
|  // Step 2: Schur based PV inverse            [DONE]
 | ||||
|  // Step 3: Fourier accelerated PV inverse    [DONE]
 | ||||
|  //
 | ||||
|  // Step 3: Fourier accelerated PV inverse
 | ||||
|  // Step 4: 
 | ||||
|  /////////////////////////////////////////////////////
 | ||||
|   | ||||
|   Reconstruct5DfromPhysical(PVinverter &_PauliVillarsSolver)  | ||||
| @@ -130,5 +182,5 @@ template<class Field,class PVinverter> class Reconstruct5DfromPhysical { | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| NAMESPACE_END(Grid); | ||||
| 
 | ||||
| } | ||||
| } | ||||
| @@ -86,26 +86,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|    */ | ||||
| namespace Grid { | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Use base class to share code | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Take a matrix and form a Red Black solver calling a Herm solver | ||||
|   // Use of RB info prevents making SchurRedBlackSolve conform to standard interface | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackBase { | ||||
|   protected: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|   // Now make the norm reflect extra factor of Mee | ||||
|   template<class Field> class SchurRedBlackStaggeredSolve { | ||||
|   private: | ||||
|     OperatorFunction<Field> & _HermitianRBSolver; | ||||
|     int CBfactorise; | ||||
|     bool subGuess; | ||||
|     bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver | ||||
|   public: | ||||
|  | ||||
|     SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)  : | ||||
|     _HermitianRBSolver(HermitianRBSolver), | ||||
|     useSolnAsInitGuess(_solnAsInitGuess) | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)  : | ||||
|      _HermitianRBSolver(HermitianRBSolver)  | ||||
|     {  | ||||
|       CBfactorise=0; | ||||
|       subtractGuess(initSubGuess); | ||||
| @@ -119,90 +116,12 @@ namespace Grid { | ||||
|       return subGuess; | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Shared code | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     template<class Matrix> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out){ | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|     void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)  | ||||
|     { | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|  | ||||
|     template<class Guesser> | ||||
|     void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)  | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|       int nblock = in.size(); | ||||
|  | ||||
|       std::vector<Field> src_o(nblock,grid); | ||||
|       std::vector<Field> sol_o(nblock,grid); | ||||
|        | ||||
|       std::vector<Field> guess_save; | ||||
|  | ||||
|       Field resid(fgrid); | ||||
|       Field tmp(grid); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // Prepare RedBlack source | ||||
|       //////////////////////////////////////////////// | ||||
|       for(int b=0;b<nblock;b++){ | ||||
| 	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
|       } | ||||
|       //////////////////////////////////////////////// | ||||
|       // Make the guesses | ||||
|       //////////////////////////////////////////////// | ||||
|       if ( subGuess ) guess_save.resize(nblock,grid); | ||||
|  | ||||
|       for(int b=0;b<nblock;b++){ | ||||
|         if(useSolnAsInitGuess) { | ||||
|           pickCheckerboard(Odd, sol_o[b], out[b]); | ||||
|         } else { | ||||
|           guess(src_o[b],sol_o[b]);  | ||||
|         } | ||||
|  | ||||
| 	if ( subGuess ) {  | ||||
| 	  guess_save[b] = sol_o[b]; | ||||
| 	} | ||||
|       } | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the block solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl; | ||||
|       RedBlackSolve(_Matrix,src_o,sol_o); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // A2A boolean behavioural control & reconstruct other checkerboard | ||||
|       //////////////////////////////////////////////// | ||||
|       for(int b=0;b<nblock;b++) { | ||||
|  | ||||
| 	if (subGuess)   sol_o[b] = sol_o[b] - guess_save[b]; | ||||
|  | ||||
| 	///////// Needs even source ////////////// | ||||
| 	pickCheckerboard(Even,tmp,in[b]); | ||||
| 	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]); | ||||
|  | ||||
| 	///////////////////////////////////////////////// | ||||
| 	// Check unprec residual if possible | ||||
| 	///////////////////////////////////////////////// | ||||
| 	if ( ! subGuess ) { | ||||
| 	  _Matrix.M(out[b],resid);  | ||||
| 	  resid = resid-in[b]; | ||||
| 	  RealD ns = norm2(in[b]); | ||||
| 	  RealD nr = norm2(resid); | ||||
| 	 | ||||
| 	  std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl; | ||||
| 	} | ||||
|  | ||||
|       } | ||||
|     } | ||||
|     template<class Guesser> | ||||
|     template<class Matrix, class Guesser> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out, Guesser &guess){ | ||||
|  | ||||
|       // FIXME CGdiagonalMee not implemented virtual function | ||||
| @@ -210,42 +129,154 @@ namespace Grid { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field resid(fgrid); | ||||
|       Field src_o(grid); | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|   | ||||
|       Field src_e(grid); | ||||
|       Field src_o(grid); | ||||
|       Field sol_e(grid); | ||||
|       Field sol_o(grid); | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|       Field resid(fgrid); | ||||
|        | ||||
|       //////////////////////////////////////////////// | ||||
|       // RedBlack source | ||||
|       //////////////////////////////////////////////// | ||||
|       RedBlackSource(_Matrix,in,src_e,src_o); | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       // Construct the guess | ||||
|       //////////////////////////////// | ||||
|       if(useSolnAsInitGuess) { | ||||
|       std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve " <<std::endl; | ||||
|       pickCheckerboard(Even,src_e,in); | ||||
|       pickCheckerboard(Odd ,src_o,in); | ||||
|       pickCheckerboard(Even,sol_e,out); | ||||
|       pickCheckerboard(Odd ,sol_o,out); | ||||
|       } else { | ||||
|         guess(src_o,sol_o); | ||||
|       } | ||||
|       std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve checkerboards picked" <<std::endl; | ||||
|      | ||||
|       Field  guess_save(grid); | ||||
|       guess_save = sol_o; | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       //src_o = tmp;     assert(src_o.checkerboard ==Odd); | ||||
|       _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm. | ||||
|  | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the red-black solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       RedBlackSolve(_Matrix,src_o,sol_o); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl; | ||||
|       guess(src_o, sol_o); | ||||
|       Mtmp = sol_o; | ||||
|       _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd); | ||||
|       std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver called  the Mpc solver" <<std::endl; | ||||
|       // Fionn A2A boolean behavioural control | ||||
|       //////////////////////////////////////////////// | ||||
|       if (subGuess)      sol_o= sol_o-guess_save; | ||||
|       if (subGuess)        sol_o = sol_o-Mtmp; | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // RedBlack solution needs the even source | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       RedBlackSolution(_Matrix,sol_o,src_e,out); | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|       std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver reconstructed other CB" <<std::endl; | ||||
|       setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd ); | ||||
|       std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver inserted solution" <<std::endl; | ||||
|  | ||||
|       // Verify the unprec residual | ||||
|       if ( ! subGuess ) { | ||||
|         _Matrix.M(out,resid);  | ||||
|         resid = resid-in; | ||||
|         RealD ns = norm2(in); | ||||
|         RealD nr = norm2(resid); | ||||
|         std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl; | ||||
|       } else { | ||||
|         std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl; | ||||
|       } | ||||
|     }      | ||||
|   }; | ||||
|   template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Take a matrix and form a Red Black solver calling a Herm solver | ||||
|   // Use of RB info prevents making SchurRedBlackSolve conform to standard interface | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagMooeeSolve { | ||||
|   private: | ||||
|     OperatorFunction<Field> & _HermitianRBSolver; | ||||
|     int CBfactorise; | ||||
|     bool subGuess; | ||||
|   public: | ||||
|  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0, const bool initSubGuess = false)  :  _HermitianRBSolver(HermitianRBSolver)  | ||||
|   {  | ||||
|     CBfactorise=cb; | ||||
|     subtractGuess(initSubGuess); | ||||
|   }; | ||||
|     void subtractGuess(const bool initSubGuess) | ||||
|     { | ||||
|       subGuess = initSubGuess; | ||||
|     } | ||||
|     bool isSubtractGuess(void) | ||||
|     { | ||||
|       return subGuess; | ||||
|     } | ||||
|     template<class Matrix> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out){ | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|     template<class Matrix, class Guesser> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){ | ||||
|  | ||||
|       // FIXME CGdiagonalMee not implemented virtual function | ||||
|       // FIXME use CBfactorise to control schur decomp | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|   | ||||
|       Field src_e(grid); | ||||
|       Field src_o(grid); | ||||
|       Field sol_e(grid); | ||||
|       Field sol_o(grid); | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|       Field resid(fgrid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,in); | ||||
|       pickCheckerboard(Odd ,src_o,in); | ||||
|       pickCheckerboard(Even,sol_e,out); | ||||
|       pickCheckerboard(Odd ,sol_o,out); | ||||
|      | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);        | ||||
|  | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the red-black solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl; | ||||
|       guess(src_o,sol_o); | ||||
|       Mtmp = sol_o; | ||||
|       _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd); | ||||
|       // Fionn A2A boolean behavioural control | ||||
|       if (subGuess)        sol_o = sol_o-Mtmp; | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|       setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd ); | ||||
|  | ||||
|       // Verify the unprec residual | ||||
|       if ( ! subGuess ) { | ||||
| @@ -254,368 +285,219 @@ namespace Grid { | ||||
|         RealD ns = norm2(in); | ||||
|         RealD nr = norm2(resid); | ||||
|  | ||||
|         std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl; | ||||
|         std::cout<<GridLogMessage << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl; | ||||
|       } else { | ||||
|         std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl; | ||||
|         std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl; | ||||
|       } | ||||
|     }      | ||||
|      | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Override in derived.  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource  (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)                =0; | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)          =0; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)                           =0; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)=0; | ||||
|  | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> { | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Take a matrix and form a Red Black solver calling a Herm solver | ||||
|   // Use of RB info prevents making SchurRedBlackSolve conform to standard interface | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagTwoSolve { | ||||
|   private: | ||||
|     OperatorFunction<Field> & _HermitianRBSolver; | ||||
|     int CBfactorise; | ||||
|     bool subGuess; | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)  | ||||
|       :    SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)  : | ||||
|      _HermitianRBSolver(HermitianRBSolver)  | ||||
|     {  | ||||
|       CBfactorise = 0; | ||||
|       subtractGuess(initSubGuess); | ||||
|     }; | ||||
|     void subtractGuess(const bool initSubGuess) | ||||
|     { | ||||
|       subGuess = initSubGuess; | ||||
|     } | ||||
|     bool isSubtractGuess(void) | ||||
|     { | ||||
|       return subGuess; | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
|     // Override RedBlack specialisation | ||||
|     ////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
|     template<class Matrix> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out){ | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|     template<class Matrix,class Guesser> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){ | ||||
|  | ||||
|       // FIXME CGdiagonalMee not implemented virtual function | ||||
|       // FIXME use CBfactorise to control schur decomp | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|   | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|  | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|  | ||||
|       _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm. | ||||
|     } | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field   sol_e(grid); | ||||
|       Field src_e(grid); | ||||
|  | ||||
|       src_e = src_e_c; // Const correctness | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|   template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal has Mooee on it. | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> { | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|         const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|  | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
|     // Override RedBlack specialisation | ||||
|     ////////////////////////////////////////////////////// | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field src_o(grid); | ||||
|       Field sol_e(grid); | ||||
|       Field sol_o(grid); | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|       Field resid(fgrid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|       pickCheckerboard(Even,src_e,in); | ||||
|       pickCheckerboard(Odd ,src_o,in); | ||||
|       pickCheckerboard(Even,sol_e,out); | ||||
|       pickCheckerboard(Odd ,sol_o,out); | ||||
|      | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);        | ||||
|  | ||||
|     } | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   tmp(grid); | ||||
|       Field  sol_e(grid); | ||||
|       Field  src_e_i(grid); | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even); | ||||
|       src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd ); | ||||
|     } | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>  | ||||
|   { | ||||
|     public: | ||||
|       typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|       NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false, | ||||
|           const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {}; | ||||
|  | ||||
|       ////////////////////////////////////////////////////// | ||||
|       // Override RedBlack specialisation | ||||
|       ////////////////////////////////////////////////////// | ||||
|       virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field  tmp(grid); | ||||
|         Field Mtmp(grid); | ||||
|  | ||||
|         pickCheckerboard(Even, src_e, src); | ||||
|         pickCheckerboard(Odd , src_o, src); | ||||
|  | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
|       } | ||||
|        | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field     tmp(grid); | ||||
|         Field   sol_e(grid); | ||||
|         Field src_e_i(grid); | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the red-black solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl; | ||||
| //      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd); | ||||
|       guess(src_o,tmp); | ||||
|       Mtmp = tmp; | ||||
|       _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd); | ||||
|       // Fionn A2A boolean behavioural control | ||||
|       if (subGuess)      tmp = tmp-Mtmp; | ||||
|       _Matrix.MooeeInv(tmp,sol_o);       assert(  sol_o.checkerboard   ==Odd); | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even ); | ||||
|         src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even ); | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|         setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  ); | ||||
|       setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd ); | ||||
|  | ||||
|       // Verify the unprec residual | ||||
|       if ( ! subGuess ) { | ||||
|         _Matrix.M(out,resid);  | ||||
|         resid = resid-in; | ||||
|         RealD ns = norm2(in); | ||||
|         RealD nr = norm2(resid); | ||||
|  | ||||
|         std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl; | ||||
|       } else { | ||||
|         std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl; | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd); | ||||
|       } | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  | ||||
|     }      | ||||
|   }; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Site diagonal is identity, right preconditioned by Mee^inv | ||||
|   // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta | ||||
|   //=> psi = MeeInv phi | ||||
|   // Take a matrix and form a Red Black solver calling a Herm solver | ||||
|   // Use of RB info prevents making SchurRedBlackSolve conform to standard interface | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> { | ||||
|   template<class Field> class SchurRedBlackDiagTwoMixed { | ||||
|   private: | ||||
|     LinearFunction<Field> & _HermitianRBSolver; | ||||
|     int CBfactorise; | ||||
|     bool subGuess; | ||||
|   public: | ||||
|     typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|     ///////////////////////////////////////////////////// | ||||
|     // Wrap the usual normal equations Schur trick | ||||
|     ///////////////////////////////////////////////////// | ||||
|   SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false, | ||||
|       const bool _solnAsInitGuess = false)   | ||||
|     : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {}; | ||||
|  | ||||
|     virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) | ||||
|   SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)  : | ||||
|      _HermitianRBSolver(HermitianRBSolver)  | ||||
|     {  | ||||
|       CBfactorise=0; | ||||
|       subtractGuess(initSubGuess); | ||||
|     }; | ||||
|     void subtractGuess(const bool initSubGuess) | ||||
|     { | ||||
|       subGuess = initSubGuess; | ||||
|     } | ||||
|     bool isSubtractGuess(void) | ||||
|     { | ||||
|       return subGuess; | ||||
|     } | ||||
|  | ||||
|     template<class Matrix> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out){ | ||||
|       ZeroGuesser<Field> guess; | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|     template<class Matrix, class Guesser> | ||||
|     void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){ | ||||
|  | ||||
|       // FIXME CGdiagonalMee not implemented virtual function | ||||
|       // FIXME use CBfactorise to control schur decomp | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|   | ||||
|       Field src_e(grid); | ||||
|       Field src_o(grid); | ||||
|       Field sol_e(grid); | ||||
|       Field sol_o(grid); | ||||
|       Field   tmp(grid); | ||||
|       Field  Mtmp(grid); | ||||
|       Field resid(fgrid); | ||||
|  | ||||
|       pickCheckerboard(Even,src_e,src); | ||||
|       pickCheckerboard(Odd ,src_o,src); | ||||
|       pickCheckerboard(Even,src_e,in); | ||||
|       pickCheckerboard(Odd ,src_o,in); | ||||
|       pickCheckerboard(Even,sol_e,out); | ||||
|       pickCheckerboard(Odd ,sol_o,out); | ||||
|      | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|       ///////////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);      | ||||
|       _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even); | ||||
|       _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);      | ||||
|       tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);      | ||||
|  | ||||
|       // get the right MpcDag | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);        | ||||
|     } | ||||
|       _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);        | ||||
|  | ||||
|     virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       GridBase *fgrid= _Matrix.Grid(); | ||||
|  | ||||
|       Field   sol_o_i(grid); | ||||
|       Field   tmp(grid); | ||||
|       Field   sol_e(grid); | ||||
|  | ||||
|       //////////////////////////////////////////////// | ||||
|       // MooeeInv due to pecond | ||||
|       //////////////////////////////////////////////// | ||||
|       _Matrix.MooeeInv(sol_o,tmp); | ||||
|       sol_o_i = tmp; | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       // Call the red-black solver | ||||
|       ////////////////////////////////////////////////////////////// | ||||
|       std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl; | ||||
| //      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd); | ||||
| //      _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd); | ||||
|       guess(src_o,tmp); | ||||
|       Mtmp = tmp; | ||||
|       _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd); | ||||
|       // Fionn A2A boolean behavioural control | ||||
|       if (subGuess)      tmp = tmp-Mtmp; | ||||
|       _Matrix.MooeeInv(tmp,sol_o);        assert(  sol_o.checkerboard   ==Odd); | ||||
|  | ||||
|       /////////////////////////////////////////////////// | ||||
|       // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|       /////////////////////////////////////////////////// | ||||
|       _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even); | ||||
|       tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even); | ||||
|       _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even); | ||||
|       _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even); | ||||
|       src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even); | ||||
|       _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even); | ||||
|       | ||||
|       setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even); | ||||
|       setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd ); | ||||
|     }; | ||||
|       setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even); | ||||
|       setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd ); | ||||
|  | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o) | ||||
|     { | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); | ||||
|     }; | ||||
|     virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o) | ||||
|     { | ||||
|       SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix); | ||||
|       this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  | ||||
|       // Verify the unprec residual | ||||
|       if ( ! subGuess ) { | ||||
|         _Matrix.M(out,resid);  | ||||
|         resid = resid-in; | ||||
|         RealD ns = norm2(in); | ||||
|         RealD nr = norm2(resid); | ||||
|  | ||||
|         std::cout << GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid " << std::sqrt(nr / ns) << " nr " << nr << " ns " << ns << std::endl; | ||||
|       } else { | ||||
|         std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl; | ||||
|       } | ||||
|     }      | ||||
|   }; | ||||
|  | ||||
|   template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>  | ||||
|   { | ||||
|     public: | ||||
|       typedef CheckerBoardedSparseMatrixBase<Field> Matrix; | ||||
|  | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Wrap the usual normal equations Schur trick | ||||
|       ///////////////////////////////////////////////////// | ||||
|       NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false, | ||||
|           const bool _solnAsInitGuess = false)   | ||||
|       : SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {}; | ||||
|  | ||||
|       virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field  tmp(grid); | ||||
|         Field Mtmp(grid); | ||||
|  | ||||
|         pickCheckerboard(Even, src_e, src); | ||||
|         pickCheckerboard(Odd , src_o, src); | ||||
|        | ||||
|         ///////////////////////////////////////////////////// | ||||
|         // src_o = Mdag * (source_o - Moe MeeInv source_e) | ||||
|         ///////////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even ); | ||||
|         _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );      | ||||
|         src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );      | ||||
| } | ||||
|  | ||||
|       virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol) | ||||
|       { | ||||
|         GridBase* grid  = _Matrix.RedBlackGrid(); | ||||
|         GridBase* fgrid = _Matrix.Grid(); | ||||
|  | ||||
|         Field sol_o_i(grid); | ||||
|         Field     tmp(grid); | ||||
|         Field   sol_e(grid); | ||||
|  | ||||
|         //////////////////////////////////////////////// | ||||
|         // MooeeInv due to pecond | ||||
|         //////////////////////////////////////////////// | ||||
|         _Matrix.MooeeInv(sol_o, tmp); | ||||
|         sol_o_i = tmp; | ||||
|  | ||||
|         /////////////////////////////////////////////////// | ||||
|         // sol_e = M_ee^-1 * ( src_e - Meo sol_o )... | ||||
|         /////////////////////////////////////////////////// | ||||
|         _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even ); | ||||
|         tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even ); | ||||
|         _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even ); | ||||
|         | ||||
|         setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even ); | ||||
|         setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  ); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o); | ||||
|       }; | ||||
|  | ||||
|       virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o,  std::vector<Field>& sol_o) | ||||
|       { | ||||
|         NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix); | ||||
|         this->_HermitianRBSolver(_OpEO, src_o, sol_o);  | ||||
|       } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,11 +1,70 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <fcntl.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| MemoryStats *MemoryProfiler::stats = nullptr; | ||||
| bool         MemoryProfiler::debug = false; | ||||
|  | ||||
| int PointerCache::victim; | ||||
|  | ||||
| PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache]; | ||||
|  | ||||
| void *PointerCache::Insert(void *ptr,size_t bytes) { | ||||
|  | ||||
|   if (bytes < 4096 ) return ptr; | ||||
|  | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   void * ret = NULL; | ||||
|   int v = -1; | ||||
|  | ||||
|   for(int e=0;e<Ncache;e++) { | ||||
|     if ( Entries[e].valid==0 ) { | ||||
|       v=e;  | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   if ( v==-1 ) { | ||||
|     v=victim; | ||||
|     victim = (victim+1)%Ncache; | ||||
|   } | ||||
|  | ||||
|   if ( Entries[v].valid ) { | ||||
|     ret = Entries[v].address; | ||||
|     Entries[v].valid = 0; | ||||
|     Entries[v].address = NULL; | ||||
|     Entries[v].bytes = 0; | ||||
|   } | ||||
|  | ||||
|   Entries[v].address=ptr; | ||||
|   Entries[v].bytes  =bytes; | ||||
|   Entries[v].valid  =1; | ||||
|  | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| void *PointerCache::Lookup(size_t bytes) { | ||||
|  | ||||
|  if (bytes < 4096 ) return NULL; | ||||
|  | ||||
| #ifdef _OPENMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   for(int e=0;e<Ncache;e++){ | ||||
|     if ( Entries[e].valid && ( Entries[e].bytes == bytes ) ) { | ||||
|       Entries[e].valid = 0; | ||||
|       return Entries[e].address; | ||||
|     } | ||||
|   } | ||||
|   return NULL; | ||||
| } | ||||
|  | ||||
|  | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES) | ||||
| { | ||||
| #ifdef __linux__ | ||||
| @@ -63,5 +122,4 @@ std::string sizeString(const size_t bytes) | ||||
|   return std::string(buf); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -26,9 +26,107 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef GRID_ALIGNED_ALLOCATOR_H | ||||
| #define GRID_ALIGNED_ALLOCATOR_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef HAVE_MALLOC_MALLOC_H | ||||
| #include <malloc/malloc.h> | ||||
| #endif | ||||
| #ifdef HAVE_MALLOC_H | ||||
| #include <malloc.h> | ||||
| #endif | ||||
|  | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
| #include <mm_malloc.h> | ||||
| #endif | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   class PointerCache { | ||||
|   private: | ||||
|  | ||||
|     static const int Ncache=8; | ||||
|     static int victim; | ||||
|  | ||||
|     typedef struct {  | ||||
|       void *address; | ||||
|       size_t bytes; | ||||
|       int valid; | ||||
|     } PointerCacheEntry; | ||||
|      | ||||
|     static PointerCacheEntry Entries[Ncache]; | ||||
|  | ||||
|   public: | ||||
|  | ||||
|  | ||||
|     static void *Insert(void *ptr,size_t bytes) ; | ||||
|     static void *Lookup(size_t bytes) ; | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   std::string sizeString(size_t bytes); | ||||
|  | ||||
|   struct MemoryStats | ||||
|   { | ||||
|     size_t totalAllocated{0}, maxAllocated{0},  | ||||
|            currentlyAllocated{0}, totalFreed{0}; | ||||
|   }; | ||||
|      | ||||
|   class MemoryProfiler | ||||
|   { | ||||
|   public: | ||||
|     static MemoryStats *stats; | ||||
|     static bool        debug; | ||||
|   }; | ||||
|  | ||||
|   #define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")" | ||||
|   #define profilerDebugPrint \ | ||||
|   if (MemoryProfiler::stats)\ | ||||
|   {\ | ||||
|     auto s = MemoryProfiler::stats;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \ | ||||
|               << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \ | ||||
|               << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \ | ||||
|               << std::endl;\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \ | ||||
|               << std::endl;\ | ||||
|   } | ||||
|  | ||||
|   #define profilerAllocate(bytes)\ | ||||
|   if (MemoryProfiler::stats)\ | ||||
|   {\ | ||||
|     auto s = MemoryProfiler::stats;\ | ||||
|     s->totalAllocated     += (bytes);\ | ||||
|     s->currentlyAllocated += (bytes);\ | ||||
|     s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated);\ | ||||
|   }\ | ||||
|   if (MemoryProfiler::debug)\ | ||||
|   {\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl;\ | ||||
|     profilerDebugPrint;\ | ||||
|   } | ||||
|  | ||||
|   #define profilerFree(bytes)\ | ||||
|   if (MemoryProfiler::stats)\ | ||||
|   {\ | ||||
|     auto s = MemoryProfiler::stats;\ | ||||
|     s->totalFreed         += (bytes);\ | ||||
|     s->currentlyAllocated -= (bytes);\ | ||||
|   }\ | ||||
|   if (MemoryProfiler::debug)\ | ||||
|   {\ | ||||
|     std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl;\ | ||||
|     profilerDebugPrint;\ | ||||
|   } | ||||
|  | ||||
|   void check_huge_pages(void *Buf,uint64_t BYTES); | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // A lattice of something, but assume the something is SIMDized. | ||||
| //////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template<typename _Tp> | ||||
| class alignedAllocator { | ||||
| @@ -53,29 +151,68 @@ public: | ||||
|   {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|  | ||||
|     _Tp *ptr = (_Tp *) PointerCache::Lookup(bytes); | ||||
|     //    if ( ptr != NULL )  | ||||
|     //      std::cout << "alignedAllocator "<<__n << " cache hit "<< std::hex << ptr <<std::dec <<std::endl; | ||||
|  | ||||
|     ////////////////// | ||||
|     // Hack 2MB align; could make option probably doesn't need configurability | ||||
|     ////////////////// | ||||
| //define GRID_ALLOC_ALIGN (128) | ||||
| #define GRID_ALLOC_ALIGN (2*1024*1024) | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN); | ||||
| #else | ||||
|     if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes); | ||||
| #endif | ||||
|     //    std::cout << "alignedAllocator " << std::hex << ptr <<std::dec <<std::endl; | ||||
|     // First touch optimise in threaded loop | ||||
|     uint8_t *cp = (uint8_t *)ptr; | ||||
| #ifdef GRID_OMP | ||||
| #pragma omp parallel for | ||||
| #endif | ||||
|     for(size_type n=0;n<bytes;n+=4096){ | ||||
|       cp[n]=0; | ||||
|     } | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|   void deallocate(pointer __p, size_type __n) {  | ||||
|     size_type bytes = __n * sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::CpuFree((void *)__p,bytes); | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor, eventually it must be avoided | ||||
|   //void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; | ||||
|   void construct(pointer __p, const _Tp& __val) { assert(0);}; | ||||
|     profilerFree(bytes); | ||||
|  | ||||
|     pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes); | ||||
|  | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     if ( __freeme ) _mm_free((void *)__freeme);  | ||||
| #else | ||||
|     if ( __freeme ) free((void *)__freeme); | ||||
| #endif | ||||
|   } | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // MPI3 : comms must use shm region | ||||
| // SHMEM: comms must use symmetric heap | ||||
| ////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef GRID_COMMS_SHMEM | ||||
| extern "C" {  | ||||
| #include <mpp/shmem.h> | ||||
| extern void * shmem_align(size_t, size_t); | ||||
| extern void  shmem_free(void *); | ||||
| } | ||||
| #define PARANOID_SYMMETRIC_HEAP | ||||
| #endif | ||||
|  | ||||
| template<typename _Tp> | ||||
| class uvmAllocator { | ||||
| class commAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
| @@ -85,47 +222,94 @@ public: | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef uvmAllocator<_Tp1> other; }; | ||||
|   uvmAllocator() throw() { } | ||||
|   uvmAllocator(const uvmAllocator&) throw() { } | ||||
|   template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { } | ||||
|   ~uvmAllocator() throw() { } | ||||
|   template<typename _Tp1>  struct rebind { typedef commAllocator<_Tp1> other; }; | ||||
|   commAllocator() throw() { } | ||||
|   commAllocator(const commAllocator&) throw() { } | ||||
|   template<typename _Tp1> commAllocator(const commAllocator<_Tp1>&) throw() { } | ||||
|   ~commAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
| #ifdef GRID_COMMS_SHMEM | ||||
|   pointer allocate(size_type __n, const void* _p= 0) | ||||
|   { | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|  | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
| #ifdef CRAY | ||||
|     _Tp *ptr = (_Tp *) shmem_align(bytes,64); | ||||
| #else | ||||
|     _Tp *ptr = (_Tp *) shmem_align(64,bytes); | ||||
| #endif | ||||
| #ifdef PARANOID_SYMMETRIC_HEAP | ||||
|     static void * bcast; | ||||
|     static long  psync[_SHMEM_REDUCE_SYNC_SIZE]; | ||||
|  | ||||
|     bcast = (void *) ptr; | ||||
|     shmem_broadcast32((void *)&bcast,(void *)&bcast,sizeof(void *)/4,0,0,0,shmem_n_pes(),psync); | ||||
|  | ||||
|     if ( bcast != ptr ) { | ||||
|       std::printf("inconsistent alloc pe %d %lx %lx \n",shmem_my_pe(),bcast,ptr);std::fflush(stdout); | ||||
|       //      BACKTRACEFILE(); | ||||
|       exit(0); | ||||
|     } | ||||
|     assert( bcast == (void *) ptr); | ||||
| #endif  | ||||
|     return ptr; | ||||
|   } | ||||
|   void deallocate(pointer __p, size_type __n) {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|     profilerFree(bytes); | ||||
|     shmem_free((void *)__p); | ||||
|   } | ||||
| #else | ||||
|   pointer allocate(size_type __n, const void* _p= 0)  | ||||
|   { | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::SharedFree((void *)__p,bytes); | ||||
|   } | ||||
|      | ||||
|   // FIXME: hack for the copy constructor, eventually it must be avoided | ||||
|   void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; | ||||
|   //void construct(pointer __p, const _Tp& __val) { }; | ||||
|     profilerAllocate(bytes); | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     _Tp * ptr = (_Tp *) _mm_malloc(bytes, GRID_ALLOC_ALIGN); | ||||
| #else | ||||
|     _Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN, bytes); | ||||
| #endif | ||||
|     uint8_t *cp = (uint8_t *)ptr; | ||||
|     if ( ptr ) {  | ||||
|     // One touch per 4k page, static OMP loop to catch same loop order | ||||
| #ifdef GRID_OMP | ||||
| #pragma omp parallel for schedule(static) | ||||
| #endif | ||||
|       for(size_type n=0;n<bytes;n+=4096){ | ||||
| 	cp[n]=0; | ||||
|       } | ||||
|     } | ||||
|     return ptr; | ||||
|   } | ||||
|   void deallocate(pointer __p, size_type __n) { | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|  | ||||
|     profilerFree(bytes); | ||||
| #ifdef HAVE_MM_MALLOC_H | ||||
|     _mm_free((void *)__p);  | ||||
| #else | ||||
|     free((void *)__p); | ||||
| #endif | ||||
|   } | ||||
| #endif | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; } | ||||
| template<typename _Tp>  inline bool operator==(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Template typedefs | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<class T> using commAllocator = uvmAllocator<T>; | ||||
| template<class T> using Vector     = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,uvmAllocator<T> >; | ||||
| //template<class T> using Matrix     = std::vector<std::vector<T,alignedAllocator<T> > >; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| template<class T> using Vector     = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector = std::vector<T,commAllocator<T> >;               | ||||
| template<class T> using Matrix     = std::vector<std::vector<T,alignedAllocator<T> > >; | ||||
|      | ||||
| }; // namespace Grid | ||||
| #endif | ||||
|   | ||||
| @@ -1,4 +0,0 @@ | ||||
| #pragma once | ||||
| #include <Grid/allocator/MemoryStats.h> | ||||
| #include <Grid/allocator/MemoryManager.h> | ||||
| #include <Grid/allocator/AlignedAllocator.h> | ||||
| @@ -1,244 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /*Allocation types, saying which pointer cache should be used*/ | ||||
| #define Cpu      (0) | ||||
| #define CpuSmall (1) | ||||
| #define Acc      (2) | ||||
| #define AccSmall (3) | ||||
| #define Shared   (4) | ||||
| #define SharedSmall (5) | ||||
| uint64_t total_shared; | ||||
| uint64_t total_device; | ||||
| uint64_t total_host;; | ||||
| void MemoryManager::PrintBytes(void) | ||||
| { | ||||
|   std::cout << " MemoryManager : "<<total_shared<<" shared      bytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<total_host  <<" cpu         bytes "<<std::endl; | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Data tables for recently freed pooiniter caches | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax]; | ||||
| int MemoryManager::Victim[MemoryManager::NallocType]; | ||||
| int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Actual allocation and deallocation utils | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| void *MemoryManager::AcceleratorAllocate(size_t bytes) | ||||
| { | ||||
|   void *ptr = (void *) Lookup(bytes,Acc); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocDevice(bytes); | ||||
|     total_device+=bytes; | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   void *__freeme = Insert(ptr,bytes,Acc); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeDevice(__freeme); | ||||
|     total_device-=bytes; | ||||
|     //    PrintBytes(); | ||||
|   } | ||||
| } | ||||
| void *MemoryManager::SharedAllocate(size_t bytes) | ||||
| { | ||||
|   void *ptr = (void *) Lookup(bytes,Shared); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|     total_shared+=bytes; | ||||
|     //    std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl; | ||||
|     //    PrintBytes(); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::SharedFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   void *__freeme = Insert(ptr,bytes,Shared); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeShared(__freeme); | ||||
|     total_shared-=bytes; | ||||
|     //    PrintBytes(); | ||||
|   } | ||||
| } | ||||
| #ifdef GRID_UVM | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|     total_host+=bytes; | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeShared(__freeme); | ||||
|     total_host-=bytes; | ||||
|   } | ||||
| } | ||||
| #else | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocCpu(bytes); | ||||
|     total_host+=bytes; | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeCpu(__freeme); | ||||
|     total_host-=bytes; | ||||
|   } | ||||
| } | ||||
| #endif | ||||
|  | ||||
| ////////////////////////////////////////// | ||||
| // call only once | ||||
| ////////////////////////////////////////// | ||||
| void MemoryManager::Init(void) | ||||
| { | ||||
|  | ||||
|   char * str; | ||||
|   int Nc; | ||||
|   int NcS; | ||||
|    | ||||
|   str= getenv("GRID_ALLOC_NCACHE_LARGE"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[Cpu]=Nc; | ||||
|       Ncache[Acc]=Nc; | ||||
|       Ncache[Shared]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_SMALL"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[CpuSmall]=Nc; | ||||
|       Ncache[AccSmall]=Nc; | ||||
|       Ncache[SharedSmall]=Nc; | ||||
|     } | ||||
|   } | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl; | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl; | ||||
| #endif | ||||
|  | ||||
| #ifdef GRID_UVM | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl; | ||||
| #ifdef GRID_CUDA | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl; | ||||
| #endif | ||||
| #else | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl; | ||||
| #ifdef GRID_CUDA | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl; | ||||
| #endif | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,int type)  | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   bool small = (bytes < GRID_ALLOC_SMALL_LIMIT); | ||||
|   int cache = type + small; | ||||
|   return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);   | ||||
| #else | ||||
|   return ptr; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)  | ||||
| { | ||||
|   assert(ncache>0); | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   void * ret = NULL; | ||||
|   int v = -1; | ||||
|  | ||||
|   for(int e=0;e<ncache;e++) { | ||||
|     if ( entries[e].valid==0 ) { | ||||
|       v=e;  | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   if ( v==-1 ) { | ||||
|     v=victim; | ||||
|     victim = (victim+1)%ncache; | ||||
|   } | ||||
|  | ||||
|   if ( entries[v].valid ) { | ||||
|     ret = entries[v].address; | ||||
|     entries[v].valid = 0; | ||||
|     entries[v].address = NULL; | ||||
|     entries[v].bytes = 0; | ||||
|   } | ||||
|  | ||||
|   entries[v].address=ptr; | ||||
|   entries[v].bytes  =bytes; | ||||
|   entries[v].valid  =1; | ||||
|  | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,int type) | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   bool small = (bytes < GRID_ALLOC_SMALL_LIMIT); | ||||
|   int cache = type+small; | ||||
|   return Lookup(bytes,Entries[cache],Ncache[cache]); | ||||
| #else | ||||
|   return NULL; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)  | ||||
| { | ||||
|   assert(ncache>0); | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|   for(int e=0;e<ncache;e++){ | ||||
|     if ( entries[e].valid && ( entries[e].bytes == bytes ) ) { | ||||
|       entries[e].valid = 0; | ||||
|       return entries[e].address; | ||||
|     } | ||||
|   } | ||||
|   return NULL; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,181 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/MemoryManager.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
| #include <list>  | ||||
| #include <unordered_map>   | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Move control to configure.ac and Config.h? | ||||
|  | ||||
| #define ALLOCATION_CACHE | ||||
| #define GRID_ALLOC_ALIGN (2*1024*1024) | ||||
| #define GRID_ALLOC_SMALL_LIMIT (4096) | ||||
|  | ||||
| /*Pinning pages is costly*/ | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // Advise the LatticeAccelerator class | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| enum ViewAdvise { | ||||
|  AdviseDefault       = 0x0,    // Regular data | ||||
|  AdviseInfrequentUse = 0x1     // Advise that the data is used infrequently.  This can | ||||
|                                // significantly influence performance of bulk storage. | ||||
|   | ||||
|  // AdviseTransient      = 0x2,   // Data will mostly be read.  On some architectures | ||||
|                                // enables read-only copies of memory to be kept on | ||||
|                                // host and device. | ||||
|  | ||||
|  // AdviseAcceleratorWriteDiscard = 0x4  // Field will be written in entirety on device | ||||
|  | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| // View Access Mode | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| enum ViewMode { | ||||
|   AcceleratorRead  = 0x01, | ||||
|   AcceleratorWrite = 0x02, | ||||
|   AcceleratorWriteDiscard = 0x04, | ||||
|   CpuRead  = 0x08, | ||||
|   CpuWrite = 0x10, | ||||
|   CpuWriteDiscard = 0x10 // same for now | ||||
| }; | ||||
|  | ||||
| class MemoryManager { | ||||
| private: | ||||
|  | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // For caching recently freed allocations | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   typedef struct {  | ||||
|     void *address; | ||||
|     size_t bytes; | ||||
|     int valid; | ||||
|   } AllocationCacheEntry; | ||||
|  | ||||
|   static const int NallocCacheMax=128;  | ||||
|   static const int NallocType=6; | ||||
|   static AllocationCacheEntry Entries[NallocType][NallocCacheMax]; | ||||
|   static int Victim[NallocType]; | ||||
|   static int Ncache[NallocType]; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Free pool | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void *Insert(void *ptr,size_t bytes,int type) ; | ||||
|   static void *Lookup(size_t bytes,int type) ; | ||||
|   static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ; | ||||
|   static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ; | ||||
|  | ||||
|   static void *AcceleratorAllocate(size_t bytes); | ||||
|   static void  AcceleratorFree    (void *ptr,size_t bytes); | ||||
|   static void PrintBytes(void); | ||||
|  public: | ||||
|   static void Init(void); | ||||
|   static void *SharedAllocate(size_t bytes); | ||||
|   static void  SharedFree    (void *ptr,size_t bytes); | ||||
|   static void *CpuAllocate(size_t bytes); | ||||
|   static void  CpuFree    (void *ptr,size_t bytes); | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Footprint tracking | ||||
|   //////////////////////////////////////////////////////// | ||||
|   static uint64_t     DeviceBytes; | ||||
|   static uint64_t     DeviceLRUBytes; | ||||
|   static uint64_t     DeviceMaxBytes; | ||||
|   static uint64_t     HostToDeviceBytes; | ||||
|   static uint64_t     DeviceToHostBytes; | ||||
|   static uint64_t     HostToDeviceXfer; | ||||
|   static uint64_t     DeviceToHostXfer; | ||||
|   | ||||
|  private: | ||||
| #ifndef GRID_UVM | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Data tables for ViewCache | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   typedef std::list<uint64_t> LRU_t; | ||||
|   typedef typename LRU_t::iterator LRUiterator; | ||||
|   typedef struct {  | ||||
|     int        LRU_valid; | ||||
|     LRUiterator LRU_entry; | ||||
|     uint64_t CpuPtr; | ||||
|     uint64_t AccPtr; | ||||
|     size_t   bytes; | ||||
|     uint32_t transient; | ||||
|     uint32_t state; | ||||
|     uint32_t accLock; | ||||
|     uint32_t cpuLock; | ||||
|   } AcceleratorViewEntry; | ||||
|    | ||||
|   typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t; | ||||
|   typedef typename AccViewTable_t::iterator AccViewTableIterator ; | ||||
|  | ||||
|   static AccViewTable_t AccViewTable; | ||||
|   static LRU_t LRU; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Device motion | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void  Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void  EvictVictims(uint64_t bytes); // Frees up <bytes> | ||||
|   static void  Evict(AcceleratorViewEntry &AccCache); | ||||
|   static void  Flush(AcceleratorViewEntry &AccCache); | ||||
|   static void  Clone(AcceleratorViewEntry &AccCache); | ||||
|   static void  AccDiscard(AcceleratorViewEntry &AccCache); | ||||
|   static void  CpuDiscard(AcceleratorViewEntry &AccCache); | ||||
|  | ||||
|   //  static void  LRUupdate(AcceleratorViewEntry &AccCache); | ||||
|   static void  LRUinsert(AcceleratorViewEntry &AccCache); | ||||
|   static void  LRUremove(AcceleratorViewEntry &AccCache); | ||||
|    | ||||
|   // manage entries in the table | ||||
|   static int                  EntryPresent(uint64_t CpuPtr); | ||||
|   static void                 EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void                 EntryErase (uint64_t CpuPtr); | ||||
|   static AccViewTableIterator EntryLookup(uint64_t CpuPtr); | ||||
|   static void                 EntrySet   (uint64_t CpuPtr,AcceleratorViewEntry &entry); | ||||
|  | ||||
|   static void     AcceleratorViewClose(uint64_t AccPtr); | ||||
|   static uint64_t AcceleratorViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   static void     CpuViewClose(uint64_t Ptr); | ||||
|   static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
| #endif | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|  | ||||
|  public: | ||||
|   static void Print(void); | ||||
|   static int   isOpen   (void* CpuPtr); | ||||
|   static void  ViewClose(void* CpuPtr,ViewMode mode); | ||||
|   static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -1,468 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| #ifndef GRID_UVM | ||||
|  | ||||
| #warning "Using explicit device memory copies" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #define dprintf(...) | ||||
|  | ||||
| //////////////////////////////////////////////////////////// | ||||
| // For caching copies of data on device | ||||
| //////////////////////////////////////////////////////////// | ||||
| MemoryManager::AccViewTable_t MemoryManager::AccViewTable; | ||||
| MemoryManager::LRU_t MemoryManager::LRU; | ||||
|    | ||||
| //////////////////////////////////////////////////////// | ||||
| // Footprint tracking | ||||
| //////////////////////////////////////////////////////// | ||||
| uint64_t  MemoryManager::DeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceLRUBytes; | ||||
| uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128; | ||||
| uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
|  | ||||
| //////////////////////////////////// | ||||
| // Priority ordering for unlocked entries | ||||
| //  Empty | ||||
| //  CpuDirty  | ||||
| //  Consistent | ||||
| //  AccDirty | ||||
| //////////////////////////////////// | ||||
| #define Empty         (0x0)  /*Entry unoccupied  */ | ||||
| #define CpuDirty      (0x1)  /*CPU copy is golden, Acc buffer MAY not be allocated*/ | ||||
| #define Consistent    (0x2)  /*ACC copy AND CPU copy are valid */ | ||||
| #define AccDirty      (0x4)  /*ACC copy is golden */ | ||||
| #define EvictNext     (0x8)  /*Priority for eviction*/ | ||||
|  | ||||
| ///////////////////////////////////////////////// | ||||
| // Mechanics of data table maintenance | ||||
| ///////////////////////////////////////////////// | ||||
| int   MemoryManager::EntryPresent(uint64_t CpuPtr) | ||||
| { | ||||
|   if(AccViewTable.empty()) return 0; | ||||
|  | ||||
|   auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1)); | ||||
|   return count; | ||||
| } | ||||
| void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   assert(!EntryPresent(CpuPtr)); | ||||
|   AcceleratorViewEntry AccCache; | ||||
|   AccCache.CpuPtr = CpuPtr; | ||||
|   AccCache.AccPtr = (uint64_t)NULL; | ||||
|   AccCache.bytes  = bytes; | ||||
|   AccCache.state  = CpuDirty; | ||||
|   AccCache.LRU_valid=0; | ||||
|   AccCache.transient=0; | ||||
|   AccCache.accLock=0; | ||||
|   AccCache.cpuLock=0; | ||||
|   AccViewTable[CpuPtr] = AccCache; | ||||
| } | ||||
| MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr) | ||||
| { | ||||
|   assert(EntryPresent(CpuPtr)); | ||||
|   auto AccCacheIterator = AccViewTable.find(CpuPtr); | ||||
|   assert(AccCacheIterator!=AccViewTable.end()); | ||||
|   return AccCacheIterator; | ||||
| } | ||||
| void MemoryManager::EntryErase(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCache = EntryLookup(CpuPtr); | ||||
|   AccViewTable.erase(CpuPtr); | ||||
| } | ||||
| void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==0); | ||||
|   if (AccCache.transient) {  | ||||
|     LRU.push_back(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = --LRU.end(); | ||||
|   } else { | ||||
|     LRU.push_front(AccCache.CpuPtr); | ||||
|     AccCache.LRU_entry = LRU.begin(); | ||||
|   } | ||||
|   AccCache.LRU_valid = 1; | ||||
|   DeviceLRUBytes+=AccCache.bytes; | ||||
| } | ||||
| void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.LRU_valid==1); | ||||
|   LRU.erase(AccCache.LRU_entry); | ||||
|   AccCache.LRU_valid = 0; | ||||
|   DeviceLRUBytes-=AccCache.bytes; | ||||
| } | ||||
| ///////////////////////////////////////////////// | ||||
| // Accelerator cache motion & consistency logic | ||||
| ///////////////////////////////////////////////// | ||||
| void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // Remove from Accelerator, remove entry, without flush | ||||
|   // Cannot be locked. If allocated Must be in LRU pool. | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   //  dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     //    dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| } | ||||
|  | ||||
| void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Make CPU consistent, remove from Accelerator, remove entry | ||||
|   // Cannot be locked. If allocated must be in LRU pool. | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   //  dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   if(AccCache.state==AccDirty) { | ||||
|     Flush(AccCache); | ||||
|   } | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     //    dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| } | ||||
| void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==AccDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   //  dprintf("MemoryManager: Flush  %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
| void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state==CpuDirty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   //  dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| } | ||||
|  | ||||
| void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   assert(AccCache.state!=Empty); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr==(uint64_t)NULL){ | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   AccCache.state=AccDirty; | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| void MemoryManager::ViewClose(void* Ptr,ViewMode mode) | ||||
| { | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     AcceleratorViewClose((uint64_t)Ptr); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     CpuViewClose((uint64_t)Ptr); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|   } | ||||
| } | ||||
| void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else {  | ||||
|     assert(0); | ||||
|     return NULL; | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::EvictVictims(uint64_t bytes) | ||||
| { | ||||
|   while(bytes+DeviceLRUBytes > DeviceMaxBytes){ | ||||
|     if ( DeviceLRUBytes > 0){ | ||||
|       assert(LRU.size()>0); | ||||
|       uint64_t victim = LRU.back(); | ||||
|       auto AccCacheIterator = EntryLookup(victim); | ||||
|       auto & AccCache = AccCacheIterator->second; | ||||
|       Evict(AccCache); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EvictVictims(bytes); | ||||
|     EntryCreate(CpuPtr,bytes,mode,hint); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|    | ||||
|   assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); | ||||
|  | ||||
|   assert(AccCache.cpuLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes  ==bytes); | ||||
|   } | ||||
| /* | ||||
|  *  State transitions and actions | ||||
|  * | ||||
|  *  Action  State   StateNext         Flush    Clone | ||||
|  * | ||||
|  *  AccRead  Empty   Consistent        -        Y | ||||
|  *  AccWrite Empty   AccDirty          -        Y | ||||
|  *  AccRead  CpuDirty Consistent       -        Y | ||||
|  *  AccWrite CpuDirty AccDirty         -        Y | ||||
|  *  AccRead  Consistent Consistent     -        -  | ||||
|  *  AccWrite Consistent AccDirty       -        -  | ||||
|  *  AccRead  AccDirty   AccDirty       -        -  | ||||
|  *  AccWrite AccDirty   AccDirty       -        -  | ||||
|  */ | ||||
|   if(AccCache.state==Empty) { | ||||
|     assert(AccCache.LRU_valid==0); | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
|     AccCache.state  = CpuDirty;   // Cpu starts primary | ||||
|     if(mode==AcceleratorWriteDiscard){ | ||||
|       CpuDiscard(AccCache); | ||||
|       AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty | ||||
|     } else if(mode==AcceleratorWrite){ | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = AccDirty;   // Empty + AcceleratorWrite=> AccDirty | ||||
|     } else { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = Consistent; // Empty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock= 1; | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     if(mode==AcceleratorWriteDiscard) { | ||||
|       CpuDiscard(AccCache); | ||||
|       AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty | ||||
|     } else if(mode==AcceleratorWrite) { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = AccDirty;   // CpuDirty + AcceleratorWrite=> AccDirty | ||||
|     } else { | ||||
|       Clone(AccCache); | ||||
|       AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock++; | ||||
|     //    printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = Consistent; // Consistent + AccRead => Consistent | ||||
|     AccCache.accLock++; | ||||
|     //    printf("Consistent entry into device accLock %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty | ||||
|     AccCache.accLock++; | ||||
|     //    printf("AccDirty entry into device accLock %d\n",AccCache.accLock); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|   // If view is opened on device remove from LRU | ||||
|   if(AccCache.LRU_valid==1){ | ||||
|     // must possibly remove from LRU as now locked on GPU | ||||
|     LRUremove(AccCache); | ||||
|   } | ||||
|  | ||||
|   int transient =hint; | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
|  | ||||
|   return AccCache.AccPtr; | ||||
| } | ||||
| //////////////////////////////////// | ||||
| // look up & decrement lock count | ||||
| //////////////////////////////////// | ||||
| void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.accLock>0); | ||||
|  | ||||
|   AccCache.accLock--; | ||||
|  | ||||
|   // Move to LRU queue if not locked and close on device | ||||
|   if(AccCache.accLock==0) { | ||||
|     LRUinsert(AccCache); | ||||
|   } | ||||
| } | ||||
| void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
| { | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|  | ||||
|   assert(AccCache.cpuLock>0); | ||||
|   assert(AccCache.accLock==0); | ||||
|  | ||||
|   AccCache.cpuLock--; | ||||
| } | ||||
| /* | ||||
|  *  Action  State   StateNext         Flush    Clone | ||||
|  * | ||||
|  *  CpuRead  Empty   CpuDirty          -        - | ||||
|  *  CpuWrite Empty   CpuDirty          -        - | ||||
|  *  CpuRead  CpuDirty CpuDirty         -        - | ||||
|  *  CpuWrite CpuDirty CpuDirty         -        -  | ||||
|  *  CpuRead  Consistent Consistent     -        -  | ||||
|  *  CpuWrite Consistent CpuDirty       -        -  | ||||
|  *  CpuRead  AccDirty   Consistent     Y        - | ||||
|  *  CpuWrite AccDirty   CpuDirty       Y        - | ||||
|  */ | ||||
| uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EvictVictims(bytes); | ||||
|     EntryCreate(CpuPtr,bytes,mode,transient); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|    | ||||
|   assert((mode==CpuRead)||(mode==CpuWrite)); | ||||
|   assert(AccCache.accLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes==bytes); | ||||
|   } | ||||
|  | ||||
|   if(AccCache.state==Empty) { | ||||
|     AccCache.CpuPtr = CpuPtr; | ||||
|     AccCache.AccPtr = (uint64_t)NULL; | ||||
|     AccCache.bytes  = bytes; | ||||
|     AccCache.state  = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.accLock= 0; | ||||
|     AccCache.cpuLock= 1; | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     // AccPtr dont care, deferred allocate | ||||
|     AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     if(mode==CpuWrite) | ||||
|       AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty | ||||
|     else  | ||||
|       AccCache.state = Consistent; // Consistent +CpuRead  => Consistent | ||||
|     AccCache.cpuLock++; | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     assert(AccCache.AccPtr != (uint64_t)NULL); | ||||
|     Flush(AccCache); | ||||
|     if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush | ||||
|     else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush | ||||
|     AccCache.cpuLock++; | ||||
|   } else { | ||||
|     assert(0); // should be unreachable | ||||
|   } | ||||
|  | ||||
|   AccCache.transient= transient? EvictNext : 0; | ||||
|  | ||||
|   return AccCache.CpuPtr; | ||||
| } | ||||
| void  MemoryManager::NotifyDeletion(void *_ptr) | ||||
| { | ||||
|   // Look up in ViewCache | ||||
|   uint64_t ptr = (uint64_t)_ptr; | ||||
|   if(EntryPresent(ptr)) { | ||||
|     auto e = EntryLookup(ptr); | ||||
|     AccDiscard(e->second); | ||||
|   } | ||||
| } | ||||
| void  MemoryManager::Print(void) | ||||
| { | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << "Memory Manager                             " << std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceBytes   << " bytes allocated on device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device       " << std::endl; | ||||
|   std::cout << GridLogDebug << HostToDeviceXfer << " transfers        to   device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceToHostXfer << " transfers        from device " << std::endl; | ||||
|   std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to   device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl; | ||||
|   std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 	      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 	      << "\t" << AccCache.cpuLock | ||||
| 	      << "\t" << AccCache.accLock | ||||
| 	      << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|   } | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|  | ||||
| }; | ||||
| int   MemoryManager::isOpen   (void* _CpuPtr)  | ||||
| {  | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if ( EntryPresent(CpuPtr) ){ | ||||
|     auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     return AccCache.cpuLock+AccCache.accLock; | ||||
|   } else {  | ||||
|     return 0; | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -1,24 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifdef GRID_UVM | ||||
|  | ||||
| #warning "Grid is assuming unified virtual memory address space" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management is 1:1 address space mapping | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| uint64_t  MemoryManager::DeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceLRUBytes; | ||||
| uint64_t  MemoryManager::DeviceMaxBytes = 1024*1024*128; | ||||
| uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
|  | ||||
| void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; | ||||
| void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; | ||||
| int   MemoryManager::isOpen   (void* CpuPtr) { return 0;} | ||||
| void  MemoryManager::Print(void){}; | ||||
| void  MemoryManager::NotifyDeletion(void *ptr){}; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,67 +0,0 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <fcntl.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| MemoryStats *MemoryProfiler::stats = nullptr; | ||||
| bool         MemoryProfiler::debug = false; | ||||
|  | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES) | ||||
| { | ||||
| #ifdef __linux__ | ||||
|   int fd = open("/proc/self/pagemap", O_RDONLY); | ||||
|   assert(fd >= 0); | ||||
|   const int page_size = 4096; | ||||
|   uint64_t virt_pfn = (uint64_t)Buf / page_size; | ||||
|   off_t offset = sizeof(uint64_t) * virt_pfn; | ||||
|   uint64_t npages = (BYTES + page_size-1) / page_size; | ||||
|   uint64_t pagedata[npages]; | ||||
|   uint64_t ret = lseek(fd, offset, SEEK_SET); | ||||
|   assert(ret == offset); | ||||
|   ret = ::read(fd, pagedata, sizeof(uint64_t)*npages); | ||||
|   assert(ret == sizeof(uint64_t) * npages); | ||||
|   int nhugepages = npages / 512; | ||||
|   int n4ktotal, nnothuge; | ||||
|   n4ktotal = 0; | ||||
|   nnothuge = 0; | ||||
|   for (int i = 0; i < nhugepages; ++i) { | ||||
|     uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size; | ||||
|     for (int j = 0; j < 512; ++j) { | ||||
|       uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size; | ||||
|       ++n4ktotal; | ||||
|       if (pageaddr != baseaddr + j * page_size) | ||||
| 	++nnothuge; | ||||
|     } | ||||
|   } | ||||
|   int rank = CartesianCommunicator::RankWorld(); | ||||
|   printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| std::string sizeString(const size_t bytes) | ||||
| { | ||||
|   constexpr unsigned int bufSize = 256; | ||||
|   const char             *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"}; | ||||
|   char                   buf[256]; | ||||
|   size_t                 s     = 0; | ||||
|   double                 count = bytes; | ||||
|    | ||||
|   while (count >= 1024 && s < 7) | ||||
|     { | ||||
|       s++; | ||||
|       count /= 1024; | ||||
|     } | ||||
|   if (count - floor(count) == 0.0) | ||||
|     { | ||||
|       snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]); | ||||
|     } | ||||
|   else | ||||
|     { | ||||
|       snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]); | ||||
|     } | ||||
|    | ||||
|   return std::string(buf); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,95 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/MemoryStats.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| std::string sizeString(size_t bytes); | ||||
|  | ||||
| struct MemoryStats | ||||
| { | ||||
|   size_t totalAllocated{0}, maxAllocated{0},  | ||||
|     currentlyAllocated{0}, totalFreed{0}; | ||||
| }; | ||||
|      | ||||
| class MemoryProfiler | ||||
| { | ||||
| public: | ||||
|   static MemoryStats *stats; | ||||
|   static bool        debug; | ||||
| }; | ||||
|  | ||||
| #define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")" | ||||
| #define profilerDebugPrint						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \ | ||||
|       std::cout << GridLogDebug << "[Memory debug] total  : " << memString(s->totalAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] max    : " << memString(s->maxAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \ | ||||
| 		<< std::endl;						\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] freed  : " << memString(s->totalFreed) \ | ||||
| 		<< std::endl;						\ | ||||
|     } | ||||
|  | ||||
| #define profilerAllocate(bytes)						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       s->totalAllocated     += (bytes);					\ | ||||
|       s->currentlyAllocated += (bytes);					\ | ||||
|       s->maxAllocated        = std::max(s->maxAllocated, s->currentlyAllocated); \ | ||||
|     }									\ | ||||
|   if (MemoryProfiler::debug)						\ | ||||
|     {									\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \ | ||||
|       profilerDebugPrint;						\ | ||||
|     } | ||||
|  | ||||
| #define profilerFree(bytes)						\ | ||||
|   if (MemoryProfiler::stats)						\ | ||||
|     {									\ | ||||
|       auto s = MemoryProfiler::stats;					\ | ||||
|       s->totalFreed         += (bytes);					\ | ||||
|       s->currentlyAllocated -= (bytes);					\ | ||||
|     }									\ | ||||
|   if (MemoryProfiler::debug)						\ | ||||
|     {									\ | ||||
|       std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \ | ||||
|       profilerDebugPrint;						\ | ||||
|     } | ||||
|  | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES); | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -30,15 +30,16 @@ | ||||
| #ifndef GRID_CARTESIAN_BASE_H | ||||
| #define GRID_CARTESIAN_BASE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid{ | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   // Commicator provides information on the processor grid | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   //    unsigned long _ndimension; | ||||
| //    Coordinate _processors; // processor grid | ||||
|   //    std::vector<int> _processors; // processor grid | ||||
|   //    int              _processor;  // linear processor rank | ||||
| //    Coordinate _processor_coor;  // linear processor rank | ||||
|   //    std::vector<int> _processor_coor;  // linear processor rank | ||||
|   ////////////////////////////////////////////////////////////////////// | ||||
|   class GridBase : public CartesianCommunicator , public GridThread { | ||||
|  | ||||
| @@ -47,41 +48,38 @@ public: | ||||
|     // Give Lattice access | ||||
|     template<class object> friend class Lattice; | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};  | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid, | ||||
|     GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {}; | ||||
|     GridBase(const std::vector<int> & processor_grid, | ||||
| 	     const CartesianCommunicator &parent, | ||||
| 	     int &split_rank)  | ||||
|     : CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;}; | ||||
|  | ||||
|   GridBase(const Coordinate & processor_grid, | ||||
|       : CartesianCommunicator(processor_grid,parent,split_rank) {}; | ||||
|     GridBase(const std::vector<int> & processor_grid, | ||||
| 	     const CartesianCommunicator &parent)  | ||||
|     : CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;}; | ||||
|       : CartesianCommunicator(processor_grid,parent,dummy) {}; | ||||
|  | ||||
|     virtual ~GridBase() = default; | ||||
|  | ||||
|  | ||||
|     // Physics Grid information. | ||||
|   Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes. | ||||
|   Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal | ||||
|   Coordinate _gdimensions;// Global dimensions of array after cb removal | ||||
|   Coordinate _ldimensions;// local dimensions of array with processor images removed | ||||
|   Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed  | ||||
|   Coordinate _ostride;    // Outer stride for each dimension | ||||
|   Coordinate _istride;    // Inner stride i.e. within simd lane | ||||
|     std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes. | ||||
|     std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal | ||||
|     std::vector<int> _gdimensions;// Global dimensions of array after cb removal | ||||
|     std::vector<int> _ldimensions;// local dimensions of array with processor images removed | ||||
|     std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed  | ||||
|     std::vector<int> _ostride;    // Outer stride for each dimension | ||||
|     std::vector<int> _istride;    // Inner stride i.e. within simd lane | ||||
|     int _osites;                  // _isites*_osites = product(dimensions). | ||||
|     int _isites; | ||||
|     int _fsites;                  // _isites*_osites = product(dimensions). | ||||
|     int _gsites; | ||||
|   Coordinate _slice_block;// subslice information | ||||
|   Coordinate _slice_stride; | ||||
|   Coordinate _slice_nblock; | ||||
|     std::vector<int> _slice_block;// subslice information | ||||
|     std::vector<int> _slice_stride; | ||||
|     std::vector<int> _slice_nblock; | ||||
|  | ||||
|   Coordinate _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d] | ||||
|   Coordinate _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1 | ||||
|     std::vector<int> _lstart;     // local start of array in gcoors _processor_coor[d]*_ldimensions[d] | ||||
|     std::vector<int> _lend  ;     // local end of array in gcoors   _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1 | ||||
|  | ||||
|     bool _isCheckerBoarded;  | ||||
|   int        LocallyPeriodic; | ||||
|   Coordinate _checker_dim_mask; | ||||
|  | ||||
| public: | ||||
|  | ||||
| @@ -90,7 +88,7 @@ public: | ||||
|     // GridCartesian / GridRedBlackCartesian | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     virtual int CheckerBoarded(int dim)=0; | ||||
|   virtual int CheckerBoard(const Coordinate &site)=0; | ||||
|     virtual int CheckerBoard(const std::vector<int> &site)=0; | ||||
|     virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0; | ||||
|     virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0; | ||||
|     virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0; | ||||
| @@ -109,20 +107,20 @@ public: | ||||
|     // coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all | ||||
|     // lanes are operated upon simultaneously. | ||||
|    | ||||
|   virtual int oIndex(Coordinate &coor) | ||||
|     virtual int oIndex(std::vector<int> &coor) | ||||
|     { | ||||
|         int idx=0; | ||||
|         // Works with either global or local coordinates | ||||
|         for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]); | ||||
|         return idx; | ||||
|     } | ||||
|   virtual int iIndex(Coordinate &lcoor) | ||||
|     virtual int iIndex(std::vector<int> &lcoor) | ||||
|     { | ||||
|         int idx=0; | ||||
|         for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]); | ||||
|         return idx; | ||||
|     } | ||||
|   inline int oIndexReduced(Coordinate &ocoor) | ||||
|     inline int oIndexReduced(std::vector<int> &ocoor) | ||||
|     { | ||||
|       int idx=0;  | ||||
|       // ocoor is already reduced so can eliminate the modulo operation | ||||
| @@ -130,11 +128,11 @@ public: | ||||
|       for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d]; | ||||
|       return idx; | ||||
|     } | ||||
|   inline void oCoorFromOindex (Coordinate& coor,int Oindex){ | ||||
|     inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){ | ||||
|       Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions); | ||||
|     } | ||||
|  | ||||
|   inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) { | ||||
|     inline void InOutCoorToLocalCoor (std::vector<int> &ocoor, std::vector<int> &icoor, std::vector<int> &lcoor) { | ||||
|       lcoor.resize(_ndimension); | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
|         lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d]; | ||||
| @@ -143,7 +141,7 @@ public: | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // SIMD lane addressing | ||||
|     ////////////////////////////////////////////////////////// | ||||
|   inline void iCoorFromIindex(Coordinate &coor,int lane) | ||||
|     inline void iCoorFromIindex(std::vector<int> &coor,int lane) | ||||
|     { | ||||
|       Lexicographic::CoorFromIndex(coor,lane,_simd_layout); | ||||
|     } | ||||
| @@ -154,6 +152,8 @@ public: | ||||
|     inline int PermuteType(int dimension){ | ||||
|       int permute_type=0; | ||||
|       // | ||||
|       // FIXME: | ||||
|       // | ||||
|       // Best way to encode this would be to present a mask  | ||||
|       // for which simd dimensions are rotated, and the rotation | ||||
|       // size. If there is only one simd dimension rotated, this is just  | ||||
| @@ -186,11 +186,11 @@ public: | ||||
|     inline int gSites(void) const { return _isites*_osites*_Nprocessors; };  | ||||
|     inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
|   inline const Coordinate &FullDimensions(void)         { return _fdimensions;}; | ||||
|   inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;}; | ||||
|   inline const Coordinate &LocalDimensions(void)        { return _ldimensions;}; | ||||
|   inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;}; | ||||
|     inline const std::vector<int> LocalStarts(void)             { return _lstart;    }; | ||||
|     inline const std::vector<int> &FullDimensions(void)         { return _fdimensions;}; | ||||
|     inline const std::vector<int> &GlobalDimensions(void)       { return _gdimensions;}; | ||||
|     inline const std::vector<int> &LocalDimensions(void)        { return _ldimensions;}; | ||||
|     inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;}; | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Utility to print the full decomposition details  | ||||
| @@ -214,15 +214,15 @@ public: | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Global addressing | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){ | ||||
|     void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){ | ||||
|       assert(gidx< gSites()); | ||||
|       Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|     } | ||||
|   void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){ | ||||
|     void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){ | ||||
|       assert(lidx<lSites()); | ||||
|       Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|     } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){ | ||||
|     void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){ | ||||
|       gidx=0; | ||||
|       int mult=1; | ||||
|       for(int mu=0;mu<_ndimension;mu++) { | ||||
| @@ -230,7 +230,7 @@ public: | ||||
|         mult*=_gdimensions[mu]; | ||||
|       } | ||||
|     } | ||||
|   void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor) | ||||
|     void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor) | ||||
|     { | ||||
|       pcoor.resize(_ndimension); | ||||
|       lcoor.resize(_ndimension); | ||||
| @@ -240,14 +240,14 @@ public: | ||||
|         lcoor[mu] = gcoor[mu]%_fld; | ||||
|       } | ||||
|     } | ||||
|   void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor) | ||||
|     void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor) | ||||
|     { | ||||
|     Coordinate pcoor; | ||||
|     Coordinate lcoor; | ||||
|       std::vector<int> pcoor; | ||||
|       std::vector<int> lcoor; | ||||
|       GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor); | ||||
|       rank = RankFromProcessorCoor(pcoor); | ||||
|       /* | ||||
|       Coordinate cblcoor(lcoor); | ||||
|       std::vector<int> cblcoor(lcoor); | ||||
|       for(int d=0;d<cblcoor.size();d++){ | ||||
|         if( this->CheckerBoarded(d) ) { | ||||
|           cblcoor[d] = lcoor[d]/2; | ||||
| @@ -258,10 +258,10 @@ public: | ||||
|       o_idx= oIndex(lcoor); | ||||
|     } | ||||
|  | ||||
|   void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor) | ||||
|     void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor) | ||||
|     { | ||||
|       gcoor.resize(_ndimension); | ||||
|     Coordinate coor(_ndimension); | ||||
|       std::vector<int> coor(_ndimension); | ||||
|  | ||||
|       ProcessorCoorFromRank(rank,coor); | ||||
|       for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu]; | ||||
| @@ -273,19 +273,20 @@ public: | ||||
|       for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu]; | ||||
|        | ||||
|     } | ||||
|   void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor) | ||||
|     void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor) | ||||
|     { | ||||
|       RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor); | ||||
|       if(CheckerBoarded(0)){ | ||||
|         fcoor[0] = fcoor[0]*2+cb; | ||||
|       } | ||||
|     } | ||||
|   void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor) | ||||
|     void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor) | ||||
|     { | ||||
|       gcoor.resize(_ndimension); | ||||
|       for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu]; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,17 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CARTESIAN_FULL_H | ||||
| #define GRID_CARTESIAN_FULL_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid{ | ||||
|      | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Grid Support. | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|  | ||||
| class GridCartesian: public GridBase { | ||||
|  | ||||
| public: | ||||
|     int dummy; | ||||
|   Coordinate _checker_dim_mask; | ||||
|     virtual int  CheckerBoardFromOindexTable (int Oindex) { | ||||
|       return 0; | ||||
|     } | ||||
| @@ -49,7 +49,7 @@ public: | ||||
|     virtual int CheckerBoarded(int dim){ | ||||
|       return 0; | ||||
|     } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     virtual int CheckerBoard(const std::vector<int> &site){ | ||||
|         return 0; | ||||
|     } | ||||
|     virtual int CheckerBoardDestination(int cb,int shift,int dim){ | ||||
| @@ -64,16 +64,16 @@ public: | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|     // Constructor takes a parent grid and possibly subdivides communicator. | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid, | ||||
|     GridCartesian(const std::vector<int> &dimensions, | ||||
| 		  const std::vector<int> &simd_layout, | ||||
| 		  const std::vector<int> &processor_grid, | ||||
| 		  const GridCartesian &parent) : GridBase(processor_grid,parent,dummy) | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid); | ||||
|     } | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid, | ||||
|     GridCartesian(const std::vector<int> &dimensions, | ||||
| 		  const std::vector<int> &simd_layout, | ||||
| 		  const std::vector<int> &processor_grid, | ||||
| 		  const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank) | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid); | ||||
| @@ -81,18 +81,18 @@ public: | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|     // Construct from comm world | ||||
|     ///////////////////////////////////////////////////////////////////////// | ||||
|   GridCartesian(const Coordinate &dimensions, | ||||
| 		const Coordinate &simd_layout, | ||||
| 		const Coordinate &processor_grid) : GridBase(processor_grid) | ||||
|     GridCartesian(const std::vector<int> &dimensions, | ||||
| 		  const std::vector<int> &simd_layout, | ||||
| 		  const std::vector<int> &processor_grid) : GridBase(processor_grid) | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid); | ||||
|     } | ||||
|  | ||||
|     virtual ~GridCartesian() = default; | ||||
|  | ||||
|   void Init(const Coordinate &dimensions, | ||||
| 	    const Coordinate &simd_layout, | ||||
| 	    const Coordinate &processor_grid) | ||||
|     void Init(const std::vector<int> &dimensions, | ||||
| 	      const std::vector<int> &simd_layout, | ||||
| 	      const std::vector<int> &processor_grid) | ||||
|     { | ||||
|       /////////////////////// | ||||
|       // Grid information | ||||
| @@ -105,7 +105,6 @@ public: | ||||
|       _ldimensions.resize(_ndimension); | ||||
|       _rdimensions.resize(_ndimension); | ||||
|       _simd_layout.resize(_ndimension); | ||||
|     _checker_dim_mask.resize(_ndimension);; | ||||
|       _lstart.resize(_ndimension); | ||||
|       _lend.resize(_ndimension); | ||||
|  | ||||
| @@ -116,8 +115,6 @@ public: | ||||
|  | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
|       { | ||||
| 	_checker_dim_mask[d]=0; | ||||
|  | ||||
|         _fdimensions[d] = dimensions[d];   // Global dimensions | ||||
|         _gdimensions[d] = _fdimensions[d]; // Global dimensions | ||||
|         _simd_layout[d] = simd_layout[d]; | ||||
| @@ -173,6 +170,5 @@ public: | ||||
|     }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -29,34 +29,19 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_CARTESIAN_RED_BLACK_H | ||||
| #define GRID_CARTESIAN_RED_BLACK_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   static const int CbRed  =0; | ||||
|   static const int CbBlack=1; | ||||
|   static const int Even   =CbRed; | ||||
|   static const int Odd    =CbBlack; | ||||
|      | ||||
| accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex, Coordinate &rdim, Coordinate &chk_dim_msk) | ||||
| { | ||||
|   int nd=rdim.size(); | ||||
|   Coordinate coor(nd); | ||||
|  | ||||
|   Lexicographic::CoorFromIndex(coor,oindex,rdim); | ||||
|  | ||||
|   int linear=0; | ||||
|   for(int d=0;d<nd;d++){ | ||||
|     if(chk_dim_msk[d]) | ||||
|       linear=linear+coor[d]; | ||||
|   } | ||||
|   return (linear&0x1); | ||||
| } | ||||
|  | ||||
|      | ||||
| // Specialise this for red black grids storing half the data like a chess board. | ||||
| class GridRedBlackCartesian : public GridBase | ||||
| { | ||||
| public: | ||||
|   //  Coordinate _checker_dim_mask; | ||||
|     std::vector<int> _checker_dim_mask; | ||||
|     int              _checker_dim; | ||||
|     std::vector<int> _checker_board; | ||||
|  | ||||
| @@ -64,7 +49,7 @@ public: | ||||
|       if( dim==_checker_dim) return 1; | ||||
|       else return 0; | ||||
|     } | ||||
|   virtual int CheckerBoard(const Coordinate &site){ | ||||
|     virtual int CheckerBoard(const std::vector<int> &site){ | ||||
|       int linear=0; | ||||
|       assert(site.size()==_ndimension); | ||||
|       for(int d=0;d<_ndimension;d++){  | ||||
| @@ -74,6 +59,7 @@ public: | ||||
|       return (linear&0x1); | ||||
|     } | ||||
|  | ||||
|  | ||||
|     // Depending on the cb of site, we toggle source cb. | ||||
|     // for block #b, element #e = (b, e) | ||||
|     // we need  | ||||
| @@ -97,7 +83,7 @@ public: | ||||
|     } | ||||
|     virtual int  CheckerBoardFromOindex (int Oindex) | ||||
|     { | ||||
|     Coordinate ocoor; | ||||
|       std::vector<int> ocoor; | ||||
|       oCoorFromOindex(ocoor,Oindex); | ||||
|       return CheckerBoard(ocoor); | ||||
|     } | ||||
| @@ -132,7 +118,7 @@ public: | ||||
|     GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base) | ||||
|     { | ||||
|       int dims = base->_ndimension; | ||||
|     Coordinate checker_dim_mask(dims,1); | ||||
|       std::vector<int> checker_dim_mask(dims,1); | ||||
|       int checker_dim = 0; | ||||
|       Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim); | ||||
|     }; | ||||
| @@ -141,7 +127,7 @@ public: | ||||
|     // Create redblack from original grid, with non-trivial checker dim mask | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     GridRedBlackCartesian(const GridBase *base, | ||||
| 			const Coordinate &checker_dim_mask, | ||||
| 			  const std::vector<int> &checker_dim_mask, | ||||
| 			  int checker_dim | ||||
| 			  ) :  GridBase(base->_processors,*base)  | ||||
|     { | ||||
| @@ -149,11 +135,40 @@ public: | ||||
|     } | ||||
|  | ||||
|     virtual ~GridRedBlackCartesian() = default; | ||||
| #if 0 | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     // Create redblack grid ;; deprecate these. Should not | ||||
|     // need direct creation of redblack without a full grid to base on | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     GridRedBlackCartesian(const GridBase *base, | ||||
| 			  const std::vector<int> &dimensions, | ||||
| 			  const std::vector<int> &simd_layout, | ||||
| 			  const std::vector<int> &processor_grid, | ||||
| 			  const std::vector<int> &checker_dim_mask, | ||||
| 			  int checker_dim | ||||
| 			  ) :  GridBase(processor_grid,*base)  | ||||
|     { | ||||
|       Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim); | ||||
|     } | ||||
|  | ||||
|   void Init(const Coordinate &dimensions, | ||||
| 	    const Coordinate &simd_layout, | ||||
| 	    const Coordinate &processor_grid, | ||||
| 	    const Coordinate &checker_dim_mask, | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     // Create redblack grid | ||||
|     //////////////////////////////////////////////////////////// | ||||
|     GridRedBlackCartesian(const GridBase *base, | ||||
| 			  const std::vector<int> &dimensions, | ||||
| 			  const std::vector<int> &simd_layout, | ||||
| 			  const std::vector<int> &processor_grid) : GridBase(processor_grid,*base)  | ||||
|     { | ||||
|       std::vector<int> checker_dim_mask(dimensions.size(),1); | ||||
|       int checker_dim = 0; | ||||
|       Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     void Init(const std::vector<int> &dimensions, | ||||
|               const std::vector<int> &simd_layout, | ||||
|               const std::vector<int> &processor_grid, | ||||
|               const std::vector<int> &checker_dim_mask, | ||||
|               int checker_dim) | ||||
|     { | ||||
|  | ||||
| @@ -267,7 +282,7 @@ public: | ||||
|     }; | ||||
|  | ||||
|   protected: | ||||
|   virtual int oIndex(Coordinate &coor) | ||||
|     virtual int oIndex(std::vector<int> &coor) | ||||
|     { | ||||
|       int idx = 0; | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
| @@ -284,7 +299,7 @@ protected: | ||||
|       return idx; | ||||
|     }; | ||||
|  | ||||
|   virtual int iIndex(Coordinate &lcoor) | ||||
|     virtual int iIndex(std::vector<int> &lcoor) | ||||
|     { | ||||
|       int idx = 0; | ||||
|       for (int d = 0; d < _ndimension; d++) | ||||
| @@ -301,5 +316,5 @@ protected: | ||||
|       return idx; | ||||
|     } | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -28,7 +28,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_COMMUNICATOR_H | ||||
| #define GRID_COMMUNICATOR_H | ||||
|  | ||||
| #include <Grid/util/Coordinate.h> | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
| #include <Grid/communicator/Communicator_base.h> | ||||
|  | ||||
|   | ||||
| @@ -31,7 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <limits.h> | ||||
| #include <sys/mman.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| /////////////////////////////////////////////////////////////// | ||||
| // Info that is setup once and indept of cartesian layout | ||||
| @@ -47,8 +47,8 @@ int                      CartesianCommunicator::Dimensions(void)        { return | ||||
| int                      CartesianCommunicator::IsBoss(void)            { return _processor==0; }; | ||||
| int                      CartesianCommunicator::BossRank(void)          { return 0; }; | ||||
| int                      CartesianCommunicator::ThisRank(void)          { return _processor; }; | ||||
| const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; }; | ||||
| const Coordinate & CartesianCommunicator::ProcessorGrid(void)     { return _processors; }; | ||||
| const std::vector<int> & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; }; | ||||
| const std::vector<int> & CartesianCommunicator::ProcessorGrid(void)     { return _processors; }; | ||||
| int                      CartesianCommunicator::ProcessorCount(void)    { return _Nprocessors; }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -72,6 +72,5 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N) | ||||
|   GlobalSumVector((double *)c,2*N); | ||||
| } | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -34,7 +34,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| /////////////////////////////////// | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| class CartesianCommunicator : public SharedMemory { | ||||
|  | ||||
| @@ -52,9 +52,9 @@ public: | ||||
|   // Communicator should know nothing of the physics grid, only processor grid. | ||||
|   //////////////////////////////////////////// | ||||
|   int              _Nprocessors;     // How many in all | ||||
|   Coordinate _processors;      // Which dimensions get relayed out over processors lanes. | ||||
|   std::vector<int> _processors;      // Which dimensions get relayed out over processors lanes. | ||||
|   int              _processor;       // linear processor rank | ||||
|   Coordinate _processor_coor;  // linear processor coordinate | ||||
|   std::vector<int> _processor_coor;  // linear processor coordinate | ||||
|   unsigned long    _ndimension; | ||||
|   static Grid_MPI_Comm      communicator_world; | ||||
|   Grid_MPI_Comm             communicator; | ||||
| @@ -69,8 +69,8 @@ public: | ||||
|   // Constructors to sub-divide a parent communicator | ||||
|   // and default to comm world | ||||
|   //////////////////////////////////////////////// | ||||
|   CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank); | ||||
|   CartesianCommunicator(const Coordinate &pdimensions_in); | ||||
|   CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank); | ||||
|   CartesianCommunicator(const std::vector<int> &pdimensions_in); | ||||
|   virtual ~CartesianCommunicator(); | ||||
|  | ||||
|  private: | ||||
| @@ -79,7 +79,7 @@ private: | ||||
|   // Private initialise from an MPI communicator | ||||
|   // Can use after an MPI_Comm_split, but hidden from user so private | ||||
|   //////////////////////////////////////////////// | ||||
|   void InitFromMPICommunicator(const Coordinate &processors, Grid_MPI_Comm communicator_base); | ||||
|   void InitFromMPICommunicator(const std::vector<int> &processors, Grid_MPI_Comm communicator_base); | ||||
|  | ||||
|  public: | ||||
|  | ||||
| @@ -88,15 +88,15 @@ public: | ||||
|   // Wraps MPI_Cart routines, or implements equivalent on other impls | ||||
|   //////////////////////////////////////////////////////////////////////////////////////// | ||||
|   void ShiftedRanks(int dim,int shift,int & source, int & dest); | ||||
|   int  RankFromProcessorCoor(Coordinate &coor); | ||||
|   void ProcessorCoorFromRank(int rank,Coordinate &coor); | ||||
|   int  RankFromProcessorCoor(std::vector<int> &coor); | ||||
|   void ProcessorCoorFromRank(int rank,std::vector<int> &coor); | ||||
|    | ||||
|   int                      Dimensions(void)        ; | ||||
|   int                      IsBoss(void)            ; | ||||
|   int                      BossRank(void)          ; | ||||
|   int                      ThisRank(void)          ; | ||||
|   const Coordinate & ThisProcessorCoor(void) ; | ||||
|   const Coordinate & ProcessorGrid(void)     ; | ||||
|   const std::vector<int> & ThisProcessorCoor(void) ; | ||||
|   const std::vector<int> & ProcessorGrid(void)     ; | ||||
|   int                      ProcessorCount(void)    ; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -114,7 +114,6 @@ public: | ||||
|   void GlobalSumVector(RealD *,int N); | ||||
|   void GlobalSum(uint32_t &); | ||||
|   void GlobalSum(uint64_t &); | ||||
|   void GlobalSumVector(uint64_t*,int N); | ||||
|   void GlobalSum(ComplexF &c); | ||||
|   void GlobalSumVector(ComplexF *c,int N); | ||||
|   void GlobalSum(ComplexD &c); | ||||
| @@ -200,10 +199,9 @@ public: | ||||
|   template<class obj> void Broadcast(int root,obj &data) | ||||
|     { | ||||
|       Broadcast(root,(void *)&data,sizeof(data)); | ||||
|   } | ||||
|  | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| };  | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/communicator/SharedMemory.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| Grid_MPI_Comm       CartesianCommunicator::communicator_world; | ||||
|  | ||||
| @@ -44,26 +44,21 @@ void CartesianCommunicator::Init(int *argc, char ***argv) | ||||
|   MPI_Initialized(&flag); // needed to coexist with other libs apparently | ||||
|   if ( !flag ) { | ||||
|     MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided); | ||||
|  | ||||
|     //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE | ||||
|     if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) { | ||||
|     if( (nCommThreads == 1 && provided == MPI_THREAD_SINGLE) || | ||||
|         (nCommThreads > 1 && provided != MPI_THREAD_MULTIPLE) ) | ||||
|       assert(0); | ||||
|   } | ||||
|  | ||||
|     if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) { | ||||
|       assert(0); | ||||
|     } | ||||
|   } | ||||
|   Grid_quiesce_nodes(); | ||||
|  | ||||
|   // Never clean up as done once. | ||||
|   MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world); | ||||
|  | ||||
|   Grid_quiesce_nodes(); | ||||
|   GlobalSharedMemory::Init(communicator_world); | ||||
|   GlobalSharedMemory::SharedMemoryAllocate( | ||||
| 		   GlobalSharedMemory::MAX_MPI_SHM_BYTES, | ||||
| 		   GlobalSharedMemory::Hugepages); | ||||
|   Grid_unquiesce_nodes(); | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////// | ||||
| @@ -74,14 +69,14 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest | ||||
|   int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) | ||||
| int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) | ||||
| { | ||||
|   int rank; | ||||
|   int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank); | ||||
|   assert(ierr==0); | ||||
|   return rank; | ||||
| } | ||||
| void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor) | ||||
| void  CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor) | ||||
| { | ||||
|   coor.resize(_ndimension); | ||||
|   int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]); | ||||
| @@ -91,7 +86,7 @@ void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Initialises from communicator_world | ||||
| //////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)  | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)  | ||||
| { | ||||
|   MPI_Comm optimal_comm; | ||||
|   //////////////////////////////////////////////////// | ||||
| @@ -110,12 +105,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| ////////////////////////////////// | ||||
| // Try to subdivide communicator | ||||
| ////////////////////////////////// | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)     | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)     | ||||
| { | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   _ndimension = processors.size(); | ||||
|  | ||||
|   int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension); | ||||
|   Coordinate parent_processor_coor(_ndimension,0); | ||||
|   Coordinate parent_processors    (_ndimension,1); | ||||
|   std::vector<int> parent_processor_coor(_ndimension,0); | ||||
|   std::vector<int> parent_processors    (_ndimension,1); | ||||
|  | ||||
|   // Can make 5d grid from 4d etc... | ||||
|   int pad = _ndimension-parent_ndimension; | ||||
| @@ -128,8 +124,10 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   // split the communicator | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  int Nparent = parent._processors ;  | ||||
|   //  std::cout << " splitting from communicator "<<parent.communicator <<std::endl; | ||||
|   int Nparent; | ||||
|   MPI_Comm_size(parent.communicator,&Nparent); | ||||
|   //  std::cout << " Parent size  "<<Nparent <<std::endl; | ||||
|  | ||||
|   int childsize=1; | ||||
|   for(int d=0;d<processors.size();d++) { | ||||
| @@ -138,9 +136,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   int Nchild = Nparent/childsize; | ||||
|   assert (childsize * Nchild == Nparent); | ||||
|  | ||||
|   Coordinate ccoor(_ndimension); // coor within subcommunicator | ||||
|   Coordinate scoor(_ndimension); // coor of split within parent | ||||
|   Coordinate ssize(_ndimension); // coor of split within parent | ||||
|   //  std::cout << " child size  "<<childsize <<std::endl; | ||||
|  | ||||
|   std::vector<int> ccoor(_ndimension); // coor within subcommunicator | ||||
|   std::vector<int> scoor(_ndimension); // coor of split within parent | ||||
|   std::vector<int> ssize(_ndimension); // coor of split within parent | ||||
|  | ||||
|   for(int d=0;d<_ndimension;d++){ | ||||
|     ccoor[d] = parent_processor_coor[d] % processors[d]; | ||||
| @@ -157,6 +157,36 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   MPI_Comm comm_split; | ||||
|   if ( Nchild > 1 ) {  | ||||
|  | ||||
|     if(0){ | ||||
|       std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl; | ||||
|       std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"]    "; | ||||
|       for(int d=0;d<parent._ndimension;d++)  std::cout << parent._processors[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" child grid["<< _ndimension <<"]    "; | ||||
|       for(int d=0;d<processors.size();d++)  std::cout << processors[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< parent._ndimension <<"]    "; | ||||
|       for(int d=0;d<parent._ndimension;d++)  std::cout << parent._processor_coor[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" new split "<< srank<<" scoor ["<< _ndimension <<"]    "; | ||||
|       for(int d=0;d<processors.size();d++)  std::cout << scoor[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|        | ||||
|       std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"]    "; | ||||
|       for(int d=0;d<processors.size();d++)  std::cout << ccoor[d] << " "; | ||||
|       std::cout<<std::endl; | ||||
|  | ||||
|       ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|       // Declare victory | ||||
|       ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|       std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into " | ||||
| 		<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl; | ||||
|       std::cout << " Split communicator " <<comm_split <<std::endl; | ||||
|     } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////// | ||||
|     // Split the communicator | ||||
|     //////////////////////////////////////////////////////////////// | ||||
| @@ -195,7 +225,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   } | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base) | ||||
| void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base) | ||||
| { | ||||
|   //////////////////////////////////////////////////// | ||||
|   // Creates communicator, and the communicator_halo | ||||
| @@ -212,7 +242,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors | ||||
|     _Nprocessors*=_processors[i]; | ||||
|   } | ||||
|  | ||||
|   Coordinate periodic(_ndimension,1); | ||||
|   std::vector<int> periodic(_ndimension,1); | ||||
|   MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator); | ||||
|   MPI_Comm_rank(communicator,&_processor); | ||||
|   MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]); | ||||
| @@ -255,10 +285,6 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator); | ||||
|   assert(ierr==0); | ||||
| @@ -453,7 +479,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) | ||||
|  | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   Coordinate row(_ndimension,1); | ||||
|   std::vector<int> row(_ndimension,1); | ||||
|   assert(dim>=0 && dim<_ndimension); | ||||
|  | ||||
|   //  Split the communicator | ||||
| @@ -482,6 +508,7 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t | ||||
|   MPI_Type_free(&object); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -27,7 +27,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Info that is setup once and indept of cartesian layout | ||||
| @@ -42,17 +42,17 @@ void CartesianCommunicator::Init(int *argc, char *** arv) | ||||
| 		   GlobalSharedMemory::Hugepages); | ||||
| } | ||||
|  | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)  | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)  | ||||
|   : CartesianCommunicator(processors)  | ||||
| { | ||||
|   srank=0; | ||||
|   SetCommunicator(communicator_world); | ||||
| } | ||||
|  | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors) | ||||
| { | ||||
|   _processors = processors; | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   _ndimension = processors.size(); | ||||
|   _processor_coor.resize(_ndimension); | ||||
|    | ||||
|   // Require 1^N processor grid for fake | ||||
| @@ -70,10 +70,9 @@ CartesianCommunicator::~CartesianCommunicator(){} | ||||
| void CartesianCommunicator::GlobalSum(float &){} | ||||
| void CartesianCommunicator::GlobalSumVector(float *,int N){} | ||||
| void CartesianCommunicator::GlobalSum(double &){} | ||||
| void CartesianCommunicator::GlobalSumVector(double *,int N){} | ||||
| void CartesianCommunicator::GlobalSum(uint32_t &){} | ||||
| void CartesianCommunicator::GlobalSum(uint64_t &){} | ||||
| void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){} | ||||
| void CartesianCommunicator::GlobalSumVector(double *,int N){} | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &){} | ||||
| void CartesianCommunicator::GlobalXOR(uint64_t &){} | ||||
|  | ||||
| @@ -123,8 +122,8 @@ int  CartesianCommunicator::RankWorld(void){return 0;} | ||||
| void CartesianCommunicator::Barrier(void){} | ||||
| void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {} | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { } | ||||
| int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;} | ||||
| void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; } | ||||
| int  CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) {  return 0;} | ||||
| void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){  coor = _processor_coor; } | ||||
| void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest) | ||||
| { | ||||
|   source =0; | ||||
| @@ -161,6 +160,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque | ||||
|  | ||||
| void CartesianCommunicator::StencilBarrier(void){}; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -28,11 +28,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
| // static data | ||||
|  | ||||
| int                 GlobalSharedMemory::HPEhypercube = 1; | ||||
| uint64_t            GlobalSharedMemory::MAX_MPI_SHM_BYTES   = 1024LL*1024LL*1024LL;  | ||||
| int                 GlobalSharedMemory::Hugepages = 0; | ||||
| int                 GlobalSharedMemory::_ShmSetup; | ||||
| @@ -74,12 +73,9 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   if (heap_bytes >= heap_size) { | ||||
|     std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl; | ||||
|     assert(heap_bytes<heap_size); | ||||
|   } | ||||
|   //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl; | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::ShmBufferFreeAll(void) {  | ||||
| @@ -88,9 +84,9 @@ void SharedMemory::ShmBufferFreeAll(void) { | ||||
| } | ||||
| void *SharedMemory::ShmBufferSelf(void) | ||||
| { | ||||
|   //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl; | ||||
|   return ShmCommBufs[ShmRank]; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -25,6 +25,18 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
|  | ||||
| // TODO | ||||
| // 1) move includes into SharedMemory.cc | ||||
| // | ||||
| // 2) split shared memory into a) optimal communicator creation from comm world | ||||
| //  | ||||
| //                             b) shared memory buffers container | ||||
| //                                -- static globally shared; init once | ||||
| //                                -- per instance set of buffers. | ||||
| //                                    | ||||
|  | ||||
| #pragma once  | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
| @@ -41,8 +53,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <sys/shm.h> | ||||
| #include <sys/mman.h> | ||||
| #include <zlib.h> | ||||
| #ifdef HAVE_NUMAIF_H | ||||
| #include <numaif.h> | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| #if defined (GRID_COMMS_MPI3)  | ||||
|   typedef MPI_Comm    Grid_MPI_Comm; | ||||
| @@ -56,18 +71,12 @@ class GlobalSharedMemory { | ||||
|  private: | ||||
|   static const int     MAXLOG2RANKSPERNODE = 16;             | ||||
|  | ||||
|  | ||||
|   // Init once lock on the buffer allocation | ||||
|   static int      _ShmSetup; | ||||
|   static int      _ShmAlloc; | ||||
|   static uint64_t _ShmAllocBytes; | ||||
|  | ||||
|  public: | ||||
|   /////////////////////////////////////// | ||||
|   // HPE 8600 hypercube optimisation | ||||
|   /////////////////////////////////////// | ||||
|   static int HPEhypercube; | ||||
|  | ||||
|   static int      ShmSetup(void)      { return _ShmSetup; } | ||||
|   static int      ShmAlloc(void)      { return _ShmAlloc; } | ||||
|   static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; } | ||||
| @@ -93,17 +102,12 @@ public: | ||||
|   // Create an optimal reordered communicator that makes MPI_Cart_create get it right | ||||
|   ////////////////////////////////////////////////////////////////////////////////////// | ||||
|   static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD | ||||
|   static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims); | ||||
|   static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   /////////////////////////////////////////////////// | ||||
|   // Provide shared memory facilities off comm world | ||||
|   /////////////////////////////////////////////////// | ||||
|   static void SharedMemoryAllocate(uint64_t bytes, int flags); | ||||
|   static void SharedMemoryFree(void); | ||||
|   static void SharedMemoryCopy(void *dest,const void *src,size_t bytes); | ||||
|   static void SharedMemoryZero(void *dest,size_t bytes); | ||||
|  | ||||
| }; | ||||
|  | ||||
| @@ -144,7 +148,6 @@ public: | ||||
|   // Call on any instance | ||||
|   /////////////////////////////////////////////////// | ||||
|   void SharedMemoryTest(void); | ||||
|    | ||||
|   void *ShmBufferSelf(void); | ||||
|   void *ShmBuffer    (int rank); | ||||
|   void *ShmBufferTranslate(int rank,void * local_p); | ||||
| @@ -159,5 +162,4 @@ public: | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -29,12 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
| #include <pwd.h> | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| #include <cuda_runtime_api.h> | ||||
| #endif | ||||
| namespace Grid {  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| #define header "SharedMemoryMpi: " | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| { | ||||
| @@ -50,11 +46,6 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm); | ||||
|   MPI_Comm_rank(WorldShmComm     ,&WorldShmRank); | ||||
|   MPI_Comm_size(WorldShmComm     ,&WorldShmSize); | ||||
|  | ||||
|   if ( WorldRank == 0) { | ||||
|     std::cout << header " World communicator of size " <<WorldSize << std::endl;   | ||||
|     std::cout << header " Node  communicator of size " <<WorldShmSize << std::endl; | ||||
|   } | ||||
|   // WorldShmComm, WorldShmSize, WorldShmRank | ||||
|  | ||||
|   // WorldNodes | ||||
| @@ -139,60 +130,9 @@ int Log2Size(int TwoToPower,int MAXLOG2) | ||||
|   } | ||||
|   return log2size; | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   ////////////////////////////////////////////////////////////////////////////// | ||||
|   // Look and see if it looks like an HPE 8600 based on hostname conventions | ||||
|   ////////////////////////////////////////////////////////////////////////////// | ||||
|   const int namelen = _POSIX_HOST_NAME_MAX; | ||||
|   char name[namelen]; | ||||
|   int R; | ||||
|   int I; | ||||
|   int N; | ||||
|   gethostname(name,namelen); | ||||
|   int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ; | ||||
|  | ||||
|   if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm); | ||||
|   else                          OptimalCommunicatorSharedMemory(processors,optimal_comm); | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
| 	AutoShmSize*=prime; | ||||
| 	ShmDims[dim]*=prime; | ||||
| 	last_dim = dim; | ||||
| 	break; | ||||
|       } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
| #ifdef HYPERCUBE | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Assert power of two shm_size. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
| @@ -233,9 +173,9 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   } | ||||
|  | ||||
|   std::string hname(name); | ||||
|   //  std::cout << "hostname "<<hname<<std::endl; | ||||
|   //  std::cout << "R " << R << " I " << I << " N "<< N | ||||
|   //            << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl; | ||||
|   std::cout << "hostname "<<hname<<std::endl; | ||||
|   std::cout << "R " << R << " I " << I << " N "<< N | ||||
|             << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   // broadcast node 0's base coordinate for this partition. | ||||
| @@ -257,13 +197,16 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   // in a maximally symmetrical way | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension              = processors.size(); | ||||
|   Coordinate processor_coor(ndimension); | ||||
|   Coordinate WorldDims = processors; | ||||
|   Coordinate ShmDims  (ndimension);  Coordinate NodeDims (ndimension); | ||||
|   Coordinate ShmCoor  (ndimension);    Coordinate NodeCoor (ndimension);    Coordinate WorldCoor(ndimension); | ||||
|   Coordinate HyperCoor(ndimension); | ||||
|  | ||||
|   GetShmDims(WorldDims,ShmDims); | ||||
|   std::vector<int> processor_coor(ndimension); | ||||
|   std::vector<int> WorldDims = processors;   std::vector<int> ShmDims  (ndimension,1);  std::vector<int> NodeDims (ndimension); | ||||
|   std::vector<int> ShmCoor  (ndimension);    std::vector<int> NodeCoor (ndimension);    std::vector<int> WorldCoor(ndimension); | ||||
|   std::vector<int> HyperCoor(ndimension); | ||||
|   int dim = 0; | ||||
|   for(int l2=0;l2<log2size;l2++){ | ||||
|     while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension; | ||||
|     ShmDims[dim]*=2; | ||||
|     dim=(dim+1)%ndimension; | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish torus of processes and nodes with sub-blockings | ||||
| @@ -310,19 +253,28 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   ///////////////////////////////////////////////////////////////// | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
| #else  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Assert power of two shm_size. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE); | ||||
|   assert(log2size != -1); | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Identify subblock of ranks on node spreading across dims | ||||
|   // in a maximally symmetrical way | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension              = processors.size(); | ||||
|   Coordinate processor_coor(ndimension); | ||||
|   Coordinate WorldDims = processors; Coordinate ShmDims(ndimension);  Coordinate NodeDims (ndimension); | ||||
|   Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension); | ||||
|   std::vector<int> processor_coor(ndimension); | ||||
|   std::vector<int> WorldDims = processors;   std::vector<int> ShmDims  (ndimension,1);  std::vector<int> NodeDims (ndimension); | ||||
|   std::vector<int> ShmCoor  (ndimension);    std::vector<int> NodeCoor (ndimension);    std::vector<int> WorldCoor(ndimension); | ||||
|   int dim = 0; | ||||
|   for(int l2=0;l2<log2size;l2++){ | ||||
|     while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension; | ||||
|     ShmDims[dim]*=2; | ||||
|     dim=(dim+1)%ndimension; | ||||
|   } | ||||
|  | ||||
|   GetShmDims(WorldDims,ShmDims); | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish torus of processes and nodes with sub-blockings | ||||
|   //////////////////////////////////////////////////////////////// | ||||
| @@ -354,6 +306,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
|   ///////////////////////////////////////////////////////////////// | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
| #endif | ||||
| } | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // SHMGET | ||||
| @@ -361,7 +314,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
| #ifdef GRID_MPI3_SHMGET | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
| @@ -384,7 +337,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|         int errsv = errno; | ||||
|         printf("Errno %d\n",errsv); | ||||
|         printf("key   %d\n",key); | ||||
|         printf("size  %ld\n",size); | ||||
|         printf("size  %lld\n",size); | ||||
|         printf("flags %d\n",flags); | ||||
|         perror("shmget"); | ||||
|         exit(1); | ||||
| @@ -420,97 +373,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hugetlbfs mapping intended | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef GRID_CUDA | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // allocate the pointer array for shared windows for our group | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   MPI_Barrier(WorldShmComm); | ||||
|   WorldShmCommBufs.resize(WorldShmSize); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // TODO/FIXME : NOT ALL NVLINK BOARDS have full Peer to peer connectivity. | ||||
|   // The annoyance is that they have partial peer 2 peer. This occurs on the 8 GPU blades. | ||||
|   // e.g. DGX1, supermicro board,  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   auto err =  cudaMalloc(&ShmCommBuf, bytes); | ||||
|   if ( err !=  cudaSuccess) { | ||||
|     std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|      | ||||
|     ////////////////////////////////////////////////// | ||||
|     // If it is me, pass around the IPC access key | ||||
|     ////////////////////////////////////////////////// | ||||
|     cudaIpcMemHandle_t handle; | ||||
|      | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       err = cudaIpcGetMemHandle(&handle,ShmCommBuf); | ||||
|       if ( err !=  cudaSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
|     ////////////////////////////////////////////////// | ||||
|     // Share this IPC handle across the Shm Comm | ||||
|     ////////////////////////////////////////////////// | ||||
|     {  | ||||
|       int ierr=MPI_Bcast(&handle, | ||||
| 			 sizeof(handle), | ||||
| 			 MPI_BYTE, | ||||
| 			 r, | ||||
| 			 WorldShmComm); | ||||
|       assert(ierr==0); | ||||
|     } | ||||
|      | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     // If I am not the source, overwrite thisBuf with remote buffer | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     void * thisBuf = ShmCommBuf; | ||||
|     if ( r!=WorldShmRank ) {  | ||||
|       err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess); | ||||
|       if ( err !=  cudaSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     // Save a copy of the device buffers | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     WorldShmCommBufs[r] = thisBuf; | ||||
|   } | ||||
|  | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #else  | ||||
| #ifdef GRID_MPI3_SHMMMAP | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -547,7 +413,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|     std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|   } | ||||
|   _ShmAlloc=1; | ||||
|   _ShmAllocBytes  = bytes; | ||||
| @@ -557,7 +423,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_MPI3_SHM_NONE | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -589,7 +455,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|     std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|   } | ||||
|   _ShmAlloc=1; | ||||
|   _ShmAllocBytes  = bytes; | ||||
| @@ -604,7 +470,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| {  | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   std::cout << "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0);  | ||||
|   MPI_Barrier(WorldShmComm); | ||||
| @@ -633,7 +499,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #endif | ||||
|       void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0); | ||||
|        | ||||
|       //      std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl; | ||||
|       std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl; | ||||
|       if ( ptr == (void * )MAP_FAILED ) {        | ||||
| 	perror("failed mmap");      | ||||
| 	assert(0);     | ||||
| @@ -670,27 +536,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   _ShmAllocBytes = bytes; | ||||
| } | ||||
| #endif | ||||
| #endif // End NVCC case for GPU device buffers | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////// | ||||
| // Routines accessing shared memory should route through for GPU safety | ||||
| ///////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
| { | ||||
| #ifdef GRID_CUDA | ||||
|   cudaMemset(dest,0,bytes); | ||||
| #else | ||||
|   bzero(dest,bytes); | ||||
| #endif | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes) | ||||
| { | ||||
| #ifdef GRID_CUDA | ||||
|   cudaMemcpy(dest,src,bytes,cudaMemcpyDefault); | ||||
| #else    | ||||
|   bcopy(src,dest,bytes); | ||||
| #endif | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
|   //////////////////////////////////////////////////////// | ||||
|   // Global shared functionality finished | ||||
|   // Now move to per communicator functionality | ||||
| @@ -722,6 +571,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|     MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm); | ||||
|  | ||||
|     ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr]; | ||||
|     //    std::cout << "SetCommunicator ShmCommBufs ["<< r<< "] = "<< ShmCommBufs[r]<< "  wsr = "<<wsr<<std::endl; | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| @@ -734,26 +584,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|  | ||||
|   std::vector<int> ranks(size);   for(int r=0;r<size;r++) ranks[r]=r; | ||||
|   MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);  | ||||
|  | ||||
| #ifdef GRID_IBM_SUMMIT | ||||
|   // Hide the shared memory path between sockets  | ||||
|   // if even number of nodes | ||||
|   if ( (ShmSize & 0x1)==0 ) { | ||||
|     int SocketSize = ShmSize/2; | ||||
|     int mySocket = ShmRank/SocketSize;  | ||||
|     for(int r=0;r<size;r++){ | ||||
|       int hisRank=ShmRanks[r]; | ||||
|       if ( hisRank!= MPI_UNDEFINED ) { | ||||
| 	int hisSocket=hisRank/SocketSize; | ||||
| 	if ( hisSocket != mySocket ) { | ||||
| 	  ShmRanks[r] = MPI_UNDEFINED; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   SharedMemoryTest(); | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////// | ||||
| // On node barrier | ||||
| @@ -768,26 +598,24 @@ void SharedMemory::ShmBarrier(void) | ||||
| void SharedMemory::SharedMemoryTest(void) | ||||
| { | ||||
|   ShmBarrier(); | ||||
|   uint64_t check[3]; | ||||
|   uint64_t magic = 0x5A5A5A; | ||||
|   if ( ShmRank == 0 ) { | ||||
|     for(uint64_t r=0;r<ShmSize;r++){ | ||||
|     for(int r=0;r<ShmSize;r++){ | ||||
|       uint64_t * check = (uint64_t *) ShmCommBufs[r]; | ||||
|       check[0] = GlobalSharedMemory::WorldNode; | ||||
|       check[1] = r; | ||||
|        check[2]=magic; | ||||
|        GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t)); | ||||
|       check[2] = 0x5A5A5A; | ||||
|     } | ||||
|   } | ||||
|   ShmBarrier(); | ||||
|   for(uint64_t r=0;r<ShmSize;r++){ | ||||
|     ShmBarrier(); | ||||
|     GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t)); | ||||
|     ShmBarrier(); | ||||
|   for(int r=0;r<ShmSize;r++){ | ||||
|     uint64_t * check = (uint64_t *) ShmCommBufs[r]; | ||||
|      | ||||
|     assert(check[0]==GlobalSharedMemory::WorldNode); | ||||
|     assert(check[1]==r); | ||||
|     assert(check[2]==magic); | ||||
|     ShmBarrier(); | ||||
|     assert(check[2]==0x5A5A5A); | ||||
|      | ||||
|   } | ||||
|   ShmBarrier(); | ||||
| } | ||||
|  | ||||
| void *SharedMemory::ShmBuffer(int rank) | ||||
| @@ -801,6 +629,7 @@ void *SharedMemory::ShmBuffer(int rank) | ||||
| } | ||||
| void *SharedMemory::ShmBufferTranslate(int rank,void * local_p) | ||||
| { | ||||
|   static int count =0; | ||||
|   int gpeer = ShmRanks[rank]; | ||||
|   assert(gpeer!=ShmRank); // never send to self | ||||
|   if (gpeer == MPI_UNDEFINED){ | ||||
| @@ -819,5 +648,4 @@ SharedMemory::~SharedMemory() | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| @@ -47,7 +47,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   _ShmSetup=1; | ||||
| } | ||||
|  | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   optimal_comm = WorldComm; | ||||
| } | ||||
| @@ -125,5 +125,4 @@ void *SharedMemory::ShmBufferTranslate(int rank,void * local_p) | ||||
| SharedMemory::~SharedMemory() | ||||
| {}; | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| } | ||||
|   | ||||
| @@ -49,29 +49,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifdef GRID_COMMS_SHMEM | ||||
| #include <Grid/cshift/Cshift_mpi.h> // uses same implementation of communicator | ||||
| #endif  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<typename Op, typename T1>  | ||||
| auto Cshift(const LatticeUnaryExpression<Op,T1> &expr,int dim,int shift) | ||||
|     -> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
| template <class Op, class T1, class T2> | ||||
| auto Cshift(const LatticeBinaryExpression<Op,T1,T2> &expr,int dim,int shift) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
| template <class Op, class T1, class T2, class T3> | ||||
| auto Cshift(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr,int dim,int shift) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1), | ||||
| 				   eval(0, expr.arg2), | ||||
| 				   eval(0, expr.arg3)))>  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -25,11 +25,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef _GRID_CSHIFT_COMMON_H_ | ||||
| #define _GRID_CSHIFT_COMMON_H_ | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern Vector<std::pair<int,int> > Cshift_table;  | ||||
| namespace Grid { | ||||
|  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| @@ -37,27 +36,26 @@ extern Vector<std::pair<int,int> > Cshift_table; | ||||
| template<class vobj> void  | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask = 0x3; | ||||
|   } | ||||
|    | ||||
|   int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int so=plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int ent = 0; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|  | ||||
|   int stride=rhs.Grid()->_slice_stride[dimension]; | ||||
|   static std::vector<std::pair<int,int> > table; table.resize(e1*e2); | ||||
|  | ||||
|   int stride=rhs._grid->_slice_stride[dimension]; | ||||
|   if ( cbmask == 0x3 ) {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o  = n*stride; | ||||
| 	int bo = n*e2; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b); | ||||
| 	table[ent++] = std::pair<int,int>(off+bo+b,so+o+b); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
| @@ -65,20 +63,15 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen | ||||
|      for(int n=0;n<e1;n++){ | ||||
|        for(int b=0;b<e2;b++){ | ||||
| 	 int o  = n*stride; | ||||
| 	 int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
| 	 int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b); | ||||
| 	 if ( ocb &cbmask ) { | ||||
| 	   Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b); | ||||
| 	   table[ent++]=std::pair<int,int> (off+bo++,so+o+b); | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
|   } | ||||
|   { | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       buffer_p[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     buffer[table[i].first]=rhs._odata[table[i].second]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -86,54 +79,50 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen | ||||
| // Gather for when there *is* need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 		     ExtractPointerArray<typename vobj::scalar_object> pointers, | ||||
| 		     int dimension,int plane,int cbmask) | ||||
| Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask = 0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int so  = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int n1=rhs.Grid()->_slice_stride[dimension]; | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int n1=rhs._grid->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask ==0x3){ | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for2d(n,e1,b,e2,1,{ | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|  | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	vobj temp =rhs._odata[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
|  | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|  | ||||
|     Coordinate rdim=rhs.Grid()->_rdimensions; | ||||
|     Coordinate cdm =rhs.Grid()->_checker_dim_mask; | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? | ||||
|     accelerator_for2d(n,e1,b,e2,1,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b); | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  vobj temp =rhs._odata[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -142,29 +131,28 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int so  = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|      | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int stride=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int stride=rhs._grid->_slice_stride[dimension]; | ||||
|  | ||||
|   static std::vector<std::pair<int,int> > table; table.resize(e1*e2); | ||||
|   int ent    =0; | ||||
|  | ||||
|   if ( cbmask ==0x3 ) { | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o   =n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int bo  =n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b); | ||||
| 	int o   =n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int bo  =n*rhs._grid->_slice_block[dimension]; | ||||
| 	table[ent++] = std::pair<int,int>(so+o+b,bo+b); | ||||
|       } | ||||
|     } | ||||
|  | ||||
| @@ -172,62 +160,57 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo | ||||
|     int bo=0; | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o   =n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup | ||||
| 	int o   =n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++); | ||||
| 	  table[ent++]=std::pair<int,int> (so+o+b,bo++); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
| 	rhs_v[table[i].first]=buffer_p[table[i].second]; | ||||
|     }); | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     rhs._odata[table[i].first]=buffer[table[i].second]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there *is* need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask) | ||||
| template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int so  = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|      | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|  | ||||
|   if(cbmask ==0x3 ) { | ||||
|     autoView( rhs_v , rhs, AcceleratorWrite); | ||||
|     accelerator_for2d(n,e1,b,e2,1,{ | ||||
| 	int o      = n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|       }); | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o      = n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs._grid->_slice_block[dimension]; | ||||
| 	merge(rhs._odata[so+o+b],pointers,offset); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|  | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     //    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl; | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int o      = n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
| 	int o      = n*rhs._grid->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs._grid->_slice_block[dimension]; | ||||
| 	int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b); | ||||
| 	if ( ocb&cbmask ) { | ||||
| 	  merge(rhs_v[so+o+b],pointers,offset); | ||||
| 	  merge(rhs._odata[so+o+b],pointers,offset); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| @@ -237,96 +220,85 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
| ////////////////////////////////////////////////////// | ||||
| // local to node block strided copies | ||||
| ////////////////////////////////////////////////////// | ||||
|  | ||||
| template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|   int stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|   int ro  = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; // clearly loop invariant for icpc | ||||
|   int e2=rhs._grid->_slice_block[dimension]; | ||||
|   int stride = rhs._grid->_slice_stride[dimension]; | ||||
|   static std::vector<std::pair<int,int> > table; table.resize(e1*e2); | ||||
|   int ent=0; | ||||
|  | ||||
|   if(cbmask == 0x3 ){ | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
| 	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
|       } | ||||
|     } | ||||
|   } else {  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int o =n*stride+b; | ||||
|         int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o); | ||||
|         int ocb=1<<lhs._grid->CheckerBoardFromOindex(o); | ||||
|         if ( ocb&cbmask ) { | ||||
| 	  Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	  table[ent++] = std::pair<int,int>(lo+o,ro+o); | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       lhs_v[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     lhs._odata[table[i].first]=rhs._odata[table[i].second]; | ||||
|   } | ||||
|  | ||||
| } | ||||
|  | ||||
| template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   | ||||
|   if ( !rhs.Grid()->CheckerBoarded(dimension) ) { | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   if ( !rhs._grid->CheckerBoarded(dimension) ) { | ||||
|     cbmask=0x3; | ||||
|   } | ||||
|  | ||||
|   int ro  = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane  | ||||
|   int ro  = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|   int lo  = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane  | ||||
|  | ||||
|   int e1=rhs.Grid()->_slice_nblock[dimension]; | ||||
|   int e2=rhs.Grid()->_slice_block [dimension]; | ||||
|   int stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest | ||||
|   int e1=rhs._grid->_slice_nblock[dimension]; | ||||
|   int e2=rhs._grid->_slice_block [dimension]; | ||||
|   int stride = rhs._grid->_slice_stride[dimension]; | ||||
|  | ||||
|   static std::vector<std::pair<int,int> > table;  table.resize(e1*e2); | ||||
|   int ent=0; | ||||
|  | ||||
|   double t_tab,t_perm; | ||||
|   if ( cbmask == 0x3 ) { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|       table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
|   } else { | ||||
|     for(int n=0;n<e1;n++){ | ||||
|     for(int b=0;b<e2;b++){ | ||||
|       int o  =n*stride; | ||||
|       int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b); | ||||
|       if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|       int ocb=1<<lhs._grid->CheckerBoardFromOindex(o+b); | ||||
|       if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b); | ||||
|     }} | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
|   parallel_for(int i=0;i<ent;i++){ | ||||
|     permute(lhs._odata[table[i].first],rhs._odata[table[i].second],permute_type); | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -337,8 +309,10 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|   sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even); | ||||
|   sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd); | ||||
|  | ||||
|   double t_local; | ||||
|    | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     Cshift_local(ret,rhs,dimension,shift,0x3); | ||||
| @@ -350,7 +324,7 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r | ||||
|  | ||||
| template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid = rhs.Grid(); | ||||
|   GridBase *grid = rhs._grid; | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
| @@ -361,18 +335,18 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   // the permute type | ||||
|   ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension); | ||||
|   int permute_dim =grid->PermuteDim(dimension); | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|   int permute_type_dist; | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     //    int o   = 0; | ||||
|     int o   = 0; | ||||
|     int bo  = x * grid->_ostride[dimension]; | ||||
|     int cb= (cbmask==0x2)? Odd : Even; | ||||
|  | ||||
|     int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|     int sshift = grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); | ||||
|     int sx     = (x+sshift)%rd; | ||||
|      | ||||
|     // wrap is whether sshift > rd. | ||||
| @@ -413,5 +387,5 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|    | ||||
|   } | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -30,27 +30,27 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #define _GRID_CSHIFT_MPI_H_ | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| namespace Grid {  | ||||
|  | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   Lattice<vobj> ret(rhs.Grid());  | ||||
|   Lattice<vobj> ret(rhs._grid);  | ||||
|    | ||||
|   int fd = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int fd = rhs._grid->_fdimensions[dimension]; | ||||
|   int rd = rhs._grid->_rdimensions[dimension]; | ||||
|  | ||||
|   // Map to always positive shift modulo global full dimension. | ||||
|   shift = (shift+fd)%fd; | ||||
|  | ||||
|   ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension); | ||||
|          | ||||
|   // the permute type | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); | ||||
|   int simd_layout     = rhs._grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs._grid->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs._grid->_simd_layout[dimension]>1 && (comm_dim); | ||||
|  | ||||
|  | ||||
|   if ( !comm_dim ) { | ||||
| @@ -70,10 +70,10 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|   sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even); | ||||
|   sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd); | ||||
|  | ||||
|   //  std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   //  std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
|     //    std::cout << "Single pass Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift,0x3); | ||||
| @@ -88,8 +88,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob | ||||
| { | ||||
|   int sshift[2]; | ||||
|  | ||||
|   sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); | ||||
|   sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); | ||||
|   sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even); | ||||
|   sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd); | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; | ||||
|   if ( sshift[0] == sshift[1] ) { | ||||
| @@ -107,25 +107,25 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|   GridBase *grid=rhs._grid; | ||||
|   Lattice<vobj> temp(rhs._grid); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int fd              = rhs._grid->_fdimensions[dimension]; | ||||
|   int rd              = rhs._grid->_rdimensions[dimension]; | ||||
|   int pd              = rhs._grid->_processors[dimension]; | ||||
|   int simd_layout     = rhs._grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs._grid->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension]; | ||||
|   commVector<vobj> send_buf(buffer_size); | ||||
|   commVector<vobj> recv_buf(buffer_size); | ||||
|  | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|   int sshift= rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
| @@ -145,7 +145,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
| @@ -165,7 +165,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   GridBase *grid=rhs._grid; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
| @@ -193,21 +193,21 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|   int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   std::vector<commVector<scalar_object> >   send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) ); | ||||
|   std::vector<commVector<scalar_object> >   recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) ); | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|   std::vector<scalar_object *>  pointers(Nsimd); //  | ||||
|   std::vector<scalar_object *> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
| @@ -258,7 +258,5 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   } | ||||
|  | ||||
|  } | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -27,14 +27,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     /*  END LEGAL */ | ||||
| #ifndef _GRID_CSHIFT_NONE_H_ | ||||
| #define _GRID_CSHIFT_NONE_H_ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
| template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) | ||||
| { | ||||
|   Lattice<vobj> ret(rhs.Grid()); | ||||
|   ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension); | ||||
|   Lattice<vobj> ret(rhs._grid); | ||||
|   ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension); | ||||
|   Cshift_local(ret,rhs,dimension,shift); | ||||
|   return ret; | ||||
| } | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,4 +0,0 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| Vector<std::pair<int,int> > Cshift_table;  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,4 +1,3 @@ | ||||
| #ifndef __NVCC__ | ||||
| /* | ||||
|     __ _____ _____ _____ | ||||
|  __|  |   __|     |   | |  JSON for Modern C++ | ||||
| @@ -18919,4 +18918,3 @@ inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std | ||||
|  | ||||
|  | ||||
| #endif | ||||
| #endif | ||||
|   | ||||
| @@ -25,23 +25,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #include <Grid/lattice/Lattice_view.h> | ||||
| #ifndef GRID_LATTICE_H | ||||
| #define GRID_LATTICE_H | ||||
|  | ||||
| #include <Grid/lattice/Lattice_base.h> | ||||
| #include <Grid/lattice/Lattice_conformable.h> | ||||
| #include <Grid/lattice/Lattice_ET.h> | ||||
| #include <Grid/lattice/Lattice_arith.h> | ||||
| #include <Grid/lattice/Lattice_trace.h> | ||||
| #include <Grid/lattice/Lattice_transpose.h> | ||||
| #include <Grid/lattice/Lattice_local.h> | ||||
| #include <Grid/lattice/Lattice_reduction.h> | ||||
| #include <Grid/lattice/Lattice_peekpoke.h> | ||||
| //#include <Grid/lattice/Lattice_reality.h> | ||||
| #include <Grid/lattice/Lattice_comparison_utils.h> | ||||
| #include <Grid/lattice/Lattice_comparison.h> | ||||
| #include <Grid/lattice/Lattice_coordinate.h> | ||||
| //#include <Grid/lattice/Lattice_where.h> | ||||
| #include <Grid/lattice/Lattice_rng.h> | ||||
| #include <Grid/lattice/Lattice_unary.h> | ||||
| #include <Grid/lattice/Lattice_transfer.h> | ||||
| #include <Grid/lattice/Lattice_basis.h> | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -9,7 +9,6 @@ Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
| Author: Christoph Lehner <christoph@lhnr.de | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| @@ -37,13 +36,13 @@ directory | ||||
| #include <typeinfo> | ||||
| #include <vector> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| //////////////////////////////////////////////////// | ||||
| // Predicated where support | ||||
| //////////////////////////////////////////////////// | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, | ||||
| inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, | ||||
|                             const robj &iffalse) { | ||||
|   typename std::remove_const<vobj>::type ret; | ||||
|  | ||||
| @@ -52,10 +51,11 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftru | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|   const int words = sizeof(vobj) / sizeof(vector_type); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   ExtractBuffer<scalar_object> truevals(Nsimd); | ||||
|   ExtractBuffer<scalar_object> falsevals(Nsimd); | ||||
|   std::vector<Integer> mask(Nsimd); | ||||
|   std::vector<scalar_object> truevals(Nsimd); | ||||
|   std::vector<scalar_object> falsevals(Nsimd); | ||||
|  | ||||
|   extract(iftrue, truevals); | ||||
|   extract(iffalse, falsevals); | ||||
| @@ -69,203 +69,149 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftru | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////// | ||||
| //////////////////////////////////////////// | ||||
| // recursive evaluation of expressions; Could | ||||
| // switch to generic approach with variadics, a la | ||||
| // Antonin's Lat Sim but the repack to variadic with popped | ||||
| // from tuple is hideous; C++14 introduces std::make_index_sequence for this | ||||
| //////////////////////////////////////////// | ||||
|  | ||||
| // leaf eval of lattice ; should enable if protect using traits | ||||
|  | ||||
| template <typename T> | ||||
| using is_lattice = std::is_base_of<LatticeBase, T>; | ||||
|  | ||||
| template <typename T> | ||||
| using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>; | ||||
|  | ||||
| template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >; | ||||
|  | ||||
| //Specialization of getVectorType for lattices | ||||
| ///////////////////////////////////////////////////// | ||||
| template<typename T> | ||||
| struct getVectorType<Lattice<T> >{ | ||||
|   typedef typename Lattice<T>::vector_object type; | ||||
| }; | ||||
|   | ||||
| //////////////////////////////////////////// | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // handle leaves of syntax tree | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj> accelerator_inline  | ||||
| sobj eval(const uint64_t ss, const sobj &arg) | ||||
| template<class sobj> | ||||
| inline sobj eval(const unsigned int ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
|  | ||||
| template <class lobj> accelerator_inline  | ||||
| const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)  | ||||
| { | ||||
|   return arg[ss]; | ||||
| template <class lobj> | ||||
| inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) { | ||||
|   return arg._odata[ss]; | ||||
| } | ||||
|  | ||||
| // What needs this? | ||||
| // Cannot be legal on accelerator | ||||
| // Comparison must convert | ||||
| #if 1 | ||||
| template <class lobj> accelerator_inline  | ||||
| const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)  | ||||
| { | ||||
|   auto view = arg.View(AcceleratorRead); | ||||
|   return view[ss]; | ||||
| // handle nodes in syntax tree | ||||
| template <typename Op, typename T1> | ||||
| auto inline eval( | ||||
|     const unsigned int ss, | ||||
|     const LatticeUnaryExpression<Op, T1> &expr)  // eval one operand | ||||
|     -> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) { | ||||
|   return expr.first.func(eval(ss, std::get<0>(expr.second))); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss, expr.arg1))) | ||||
| { | ||||
|   return expr.op.func( eval(ss, expr.arg1) ); | ||||
| template <typename Op, typename T1, typename T2> | ||||
| auto inline eval( | ||||
|     const unsigned int ss, | ||||
|     const LatticeBinaryExpression<Op, T1, T2> &expr)  // eval two operands | ||||
|     -> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                                 eval(ss, std::get<1>(expr.second)))) { | ||||
|   return expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                          eval(ss, std::get<1>(expr.second))); | ||||
| } | ||||
| /////////////////////// | ||||
| // eval two operands | ||||
| /////////////////////// | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) ); | ||||
| } | ||||
| /////////////////////// | ||||
| // eval three operands | ||||
| /////////////////////// | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3))) | ||||
| { | ||||
|   return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)); | ||||
|  | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| auto inline eval(const unsigned int ss, | ||||
|                  const LatticeTrinaryExpression<Op, T1, T2, T3> | ||||
|                      &expr)  // eval three operands | ||||
|     -> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                                 eval(ss, std::get<1>(expr.second)), | ||||
|                                 eval(ss, std::get<2>(expr.second)))) { | ||||
|   return expr.first.func(eval(ss, std::get<0>(expr.second)), | ||||
|                          eval(ss, std::get<1>(expr.second)), | ||||
|                          eval(ss, std::get<2>(expr.second))); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Obtain the grid from an expression, ensuring conformable. This must follow a | ||||
| // tree recursion; must retain grid pointer in the LatticeView class which sucks | ||||
| // Use a different method, and make it void *. | ||||
| // Perhaps a conformable method. | ||||
| // tree recursion | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf | ||||
| template <class T1, | ||||
|           typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void GridFromExpression(GridBase *&grid, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.Conformable(grid); | ||||
|   if (grid) { | ||||
|     conformable(grid, lat._grid); | ||||
|   } | ||||
|  | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid,const T1 ¬lat)  // non-lattice leaf | ||||
|   grid = lat._grid; | ||||
| } | ||||
| template <class T1, | ||||
|           typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void GridFromExpression(GridBase *&grid, | ||||
|                                const T1 ¬lat)  // non-lattice leaf | ||||
| {} | ||||
|  | ||||
| template <typename Op, typename T1> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
| inline void GridFromExpression(GridBase *&grid, | ||||
|                                const LatticeUnaryExpression<Op, T1> &expr) { | ||||
|   GridFromExpression(grid, std::get<0>(expr.second));  // recurse | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
|   GridFromExpression(grid, expr.arg2); | ||||
| inline void GridFromExpression( | ||||
|     GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) { | ||||
|   GridFromExpression(grid, std::get<0>(expr.second));  // recurse | ||||
|   GridFromExpression(grid, std::get<1>(expr.second)); | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| accelerator_inline  | ||||
| void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   GridFromExpression(grid, expr.arg1);  // recurse | ||||
|   GridFromExpression(grid, expr.arg2);  // recurse | ||||
|   GridFromExpression(grid, expr.arg3);  // recurse | ||||
| inline void GridFromExpression( | ||||
|     GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) { | ||||
|   GridFromExpression(grid, std::get<0>(expr.second));  // recurse | ||||
|   GridFromExpression(grid, std::get<1>(expr.second)); | ||||
|   GridFromExpression(grid, std::get<2>(expr.second)); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // Obtain the CB from an expression, ensuring conformable. This must follow a | ||||
| // tree recursion | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| template <class T1, | ||||
|           typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   if ((cb == Odd) || (cb == Even)) { | ||||
|     assert(cb == lat.Checkerboard()); | ||||
|     assert(cb == lat.checkerboard); | ||||
|   } | ||||
|   cb = lat.Checkerboard(); | ||||
|   cb = lat.checkerboard; | ||||
|   //  std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl; | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 ¬lat) {} // non-lattice leaf | ||||
| template <typename Op, typename T1> inline  | ||||
| void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)  | ||||
| template <class T1, | ||||
|           typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void CBFromExpression(int &cb, const T1 ¬lat)  // non-lattice leaf | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   //  std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl; | ||||
| } | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg2);  // recurse AST | ||||
| template <typename Op, typename T1> | ||||
| inline void CBFromExpression(int &cb, | ||||
|                              const LatticeUnaryExpression<Op, T1> &expr) { | ||||
|   CBFromExpression(cb, std::get<0>(expr.second));  // recurse | ||||
|   //  std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl; | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> | ||||
| inline void CBFromExpression(int &cb, | ||||
|                              const LatticeBinaryExpression<Op, T1, T2> &expr) { | ||||
|   CBFromExpression(cb, std::get<0>(expr.second));  // recurse | ||||
|   CBFromExpression(cb, std::get<1>(expr.second)); | ||||
|   //  std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl; | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   CBFromExpression(cb, expr.arg1);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg2);  // recurse AST | ||||
|   CBFromExpression(cb, expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // ViewOpen | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewOpen(T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.ViewOpen(AcceleratorRead); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
|   inline void ExpressionViewOpen(T1 ¬lat) {} | ||||
|  | ||||
| template <typename Op, typename T1> inline  | ||||
| void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)  | ||||
| {   | ||||
|   ExpressionViewOpen(expr.arg1); // recurse AST | ||||
| } | ||||
|  | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg3);  // recurse AST | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // ViewClose | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewClose( T1 &lat)  // Lattice leaf | ||||
| { | ||||
|   lat.ViewClose(); | ||||
| } | ||||
| template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr> | ||||
| inline void ExpressionViewClose(T1 ¬lat) {} | ||||
|  | ||||
| template <typename Op, typename T1> inline  | ||||
| void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)  | ||||
| {   | ||||
|   ExpressionViewClose(expr.arg1); // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2> inline  | ||||
| void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewClose(expr.arg1);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg2);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| { | ||||
|   ExpressionViewClose(expr.arg1);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg2);  // recurse AST | ||||
|   ExpressionViewClose(expr.arg3);  // recurse AST | ||||
| inline void CBFromExpression( | ||||
|     int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) { | ||||
|   CBFromExpression(cb, std::get<0>(expr.second));  // recurse | ||||
|   CBFromExpression(cb, std::get<1>(expr.second)); | ||||
|   CBFromExpression(cb, std::get<2>(expr.second)); | ||||
|   //  std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| @@ -274,7 +220,7 @@ inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
| #define GridUnopClass(name, ret)                                          \ | ||||
|   template <class arg>                                                    \ | ||||
|   struct name {                                                           \ | ||||
|     static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \ | ||||
|     static auto inline func(const arg a) -> decltype(ret) { return ret; } \ | ||||
|   }; | ||||
|  | ||||
| GridUnopClass(UnarySub, -a); | ||||
| @@ -307,18 +253,16 @@ GridUnopClass(UnaryExp, exp(a)); | ||||
| #define GridBinOpClass(name, combination)                      \ | ||||
|   template <class left, class right>                           \ | ||||
|   struct name {                                                \ | ||||
|     static auto accelerator_inline				\ | ||||
|     func(const left &lhs, const right &rhs)			\ | ||||
|       -> decltype(combination) const				\ | ||||
|     {								\ | ||||
|     static auto inline func(const left &lhs, const right &rhs) \ | ||||
|         -> decltype(combination) const {                       \ | ||||
|       return combination;                                      \ | ||||
|     }                                                          \ | ||||
|   }; | ||||
|  | ||||
|   } | ||||
| GridBinOpClass(BinaryAdd, lhs + rhs); | ||||
| GridBinOpClass(BinarySub, lhs - rhs); | ||||
| GridBinOpClass(BinaryMul, lhs *rhs); | ||||
| GridBinOpClass(BinaryDiv, lhs /rhs); | ||||
|  | ||||
| GridBinOpClass(BinaryAnd, lhs &rhs); | ||||
| GridBinOpClass(BinaryOr, lhs | rhs); | ||||
| GridBinOpClass(BinaryAndAnd, lhs &&rhs); | ||||
| @@ -330,18 +274,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs); | ||||
| #define GridTrinOpClass(name, combination)                                     \ | ||||
|   template <class predicate, class left, class right>                          \ | ||||
|   struct name {                                                                \ | ||||
|     static auto accelerator_inline					\ | ||||
|     func(const predicate &pred, const left &lhs, const right &rhs)	\ | ||||
|       -> decltype(combination) const					\ | ||||
|     {									\ | ||||
|     static auto inline func(const predicate &pred, const left &lhs,            \ | ||||
|                             const right &rhs) -> decltype(combination) const { \ | ||||
|       return combination;                                                      \ | ||||
|     }                                                                          \ | ||||
|   }; | ||||
|   } | ||||
|  | ||||
| GridTrinOpClass(TrinaryWhere, | ||||
| 		(predicatedWhere<predicate,  | ||||
| 		 typename std::remove_reference<left>::type, | ||||
| 		 typename std::remove_reference<right>::type>(pred, lhs,rhs))); | ||||
| GridTrinOpClass( | ||||
|     TrinaryWhere, | ||||
|     (predicatedWhere<predicate, typename std::remove_reference<left>::type, | ||||
|                      typename std::remove_reference<right>::type>(pred, lhs, | ||||
|                                                                   rhs))); | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Operator syntactical glue | ||||
| @@ -349,32 +292,50 @@ GridTrinOpClass(TrinaryWhere, | ||||
|  | ||||
| #define GRID_UNOP(name) name<decltype(eval(0, arg))> | ||||
| #define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
| #define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
| #define GRID_TRINOP(name) \ | ||||
|   name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
|  | ||||
| #define GRID_DEF_UNOP(op, name)                                             \ | ||||
|   template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
|   inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \ | ||||
|   {									\ | ||||
|     return     LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \ | ||||
|   template <typename T1,                                                    \ | ||||
|             typename std::enable_if<is_lattice<T1>::value ||                \ | ||||
|                                         is_lattice_expr<T1>::value,         \ | ||||
|                                     T1>::type * = nullptr>                  \ | ||||
|   inline auto op(const T1 &arg)                                             \ | ||||
|       ->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(       \ | ||||
|           std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \ | ||||
|     return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(             \ | ||||
|         std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)));     \ | ||||
|   } | ||||
|  | ||||
| #define GRID_BINOP_LEFT(op, name)                                             \ | ||||
|   template <typename T1, typename T2,                                         \ | ||||
|             typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
|             typename std::enable_if<is_lattice<T1>::value ||                  \ | ||||
|                                         is_lattice_expr<T1>::value,           \ | ||||
|                                     T1>::type * = nullptr>                    \ | ||||
|   inline auto op(const T1 &lhs, const T2 &rhs)                                \ | ||||
|     ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \ | ||||
|   {									\ | ||||
|     return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\ | ||||
|       ->decltype(                                                             \ | ||||
|           LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(  \ | ||||
|               std::make_pair(GRID_BINOP(name)(),                              \ | ||||
|                              std::forward_as_tuple(lhs, rhs)))) {             \ | ||||
|     return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \ | ||||
|         std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \ | ||||
|   } | ||||
|  | ||||
| #define GRID_BINOP_RIGHT(op, name)                                            \ | ||||
|   template <typename T1, typename T2,                                         \ | ||||
|             typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \ | ||||
|             typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \ | ||||
|             typename std::enable_if<!is_lattice<T1>::value &&                 \ | ||||
|                                         !is_lattice_expr<T1>::value,          \ | ||||
|                                     T1>::type * = nullptr,                    \ | ||||
|             typename std::enable_if<is_lattice<T2>::value ||                  \ | ||||
|                                         is_lattice_expr<T2>::value,           \ | ||||
|                                     T2>::type * = nullptr>                    \ | ||||
|   inline auto op(const T1 &lhs, const T2 &rhs)                                \ | ||||
|     ->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \ | ||||
|   {									\ | ||||
|     return     LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \ | ||||
|       ->decltype(                                                             \ | ||||
|           LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(  \ | ||||
|               std::make_pair(GRID_BINOP(name)(),                              \ | ||||
|                              std::forward_as_tuple(lhs, rhs)))) {             \ | ||||
|     return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \ | ||||
|         std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \ | ||||
|   } | ||||
|  | ||||
| #define GRID_DEF_BINOP(op, name) \ | ||||
| @@ -384,14 +345,18 @@ GridTrinOpClass(TrinaryWhere, | ||||
| #define GRID_DEF_TRINOP(op, name)                                              \ | ||||
|   template <typename T1, typename T2, typename T3>                             \ | ||||
|   inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs)                 \ | ||||
|     ->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \ | ||||
|   {									\ | ||||
|     return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \ | ||||
|       ->decltype(                                                              \ | ||||
|           LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &,  \ | ||||
|                                    const T3 &>(std::make_pair(                 \ | ||||
|               GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) {  \ | ||||
|     return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \ | ||||
|                                     const T3 &>(std::make_pair(                \ | ||||
|         GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)));          \ | ||||
|   } | ||||
|  | ||||
| //////////////////////// | ||||
| // Operator definitions | ||||
| //////////////////////// | ||||
|  | ||||
| GRID_DEF_UNOP(operator-, UnarySub); | ||||
| GRID_DEF_UNOP(Not, UnaryNot); | ||||
| GRID_DEF_UNOP(operator!, UnaryNot); | ||||
| @@ -435,27 +400,29 @@ GRID_DEF_TRINOP(where, TrinaryWhere); | ||||
| ///////////////////////////////////////////////////////////// | ||||
| template <class Op, class T1> | ||||
| auto closure(const LatticeUnaryExpression<Op, T1> &expr) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>  | ||||
| { | ||||
|   Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr); | ||||
|     -> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> { | ||||
|   Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret( | ||||
|       expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2> | ||||
| auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>  | ||||
| { | ||||
|   Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr); | ||||
|     -> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                         eval(0, std::get<1>(expr.second))))> { | ||||
|   Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                    eval(0, std::get<1>(expr.second))))> | ||||
|       ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2, class T3> | ||||
| auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1), | ||||
| 				   eval(0, expr.arg2), | ||||
| 				   eval(0, expr.arg3)))>  | ||||
| { | ||||
|   Lattice<decltype(expr.op.func(eval(0, expr.arg1), | ||||
| 				eval(0, expr.arg2), | ||||
| 				eval(0, expr.arg3)))>  ret(expr); | ||||
|     -> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                         eval(0, std::get<1>(expr.second)), | ||||
|                                         eval(0, std::get<2>(expr.second))))> { | ||||
|   Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)), | ||||
|                                    eval(0, std::get<1>(expr.second)), | ||||
|                                    eval(0, std::get<2>(expr.second))))> | ||||
|       ret(expr); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @@ -466,7 +433,34 @@ auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
| #undef GRID_DEF_UNOP | ||||
| #undef GRID_DEF_BINOP | ||||
| #undef GRID_DEF_TRINOP | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #if 0 | ||||
| using namespace Grid; | ||||
|          | ||||
|  int main(int argc,char **argv){ | ||||
|     | ||||
|    Lattice<double> v1(16); | ||||
|    Lattice<double> v2(16); | ||||
|    Lattice<double> v3(16); | ||||
|  | ||||
|    BinaryAdd<double,double> tmp; | ||||
|    LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>  | ||||
|      expr(std::make_pair(tmp, | ||||
|     std::forward_as_tuple(v1,v2))); | ||||
|    tmp.func(eval(0,v1),eval(0,v2)); | ||||
|  | ||||
|    auto var = v1+v2; | ||||
|    std::cout<<GridLogMessage<<typeid(var).name()<<std::endl; | ||||
|  | ||||
|    v3=v1+v2; | ||||
|    v3=v1+v2+v1*v2; | ||||
|  }; | ||||
|  | ||||
| void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3) | ||||
| { | ||||
|    v3=v1+v2+v1*v2; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -7,7 +7,6 @@ | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
| @@ -29,230 +28,228 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #ifndef GRID_LATTICE_ARITH_H | ||||
| #define GRID_LATTICE_ARITH_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  avoid copy back routines for mult, mac, sub, add | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t = lhs_v(ss); | ||||
|     auto rhs_t = rhs_v(ss); | ||||
|     mult(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mult(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       mult(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mac(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       mac(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     sub(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       sub(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       sub(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   } | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|     conformable(lhs,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     add(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       add(&tmp,&lhs._odata[ss],&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       add(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  avoid copy back routines for mult, mac, sub, add | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     mult(&tmp,&lhs_v(ss),&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
|       obj1 tmp; | ||||
|       mult(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
|       obj1 tmp; | ||||
|       mac(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     sub(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       sub(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       sub(&ret._odata[ss],&lhs._odata[ss],&rhs); | ||||
| #endif | ||||
|     } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   } | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|     ret.checkerboard = lhs.checkerboard; | ||||
|     conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     add(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       add(&tmp,&lhs._odata[ss],&rhs); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       add(&ret._odata[ss],&lhs._odata[ss],&rhs); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   //  avoid copy back routines for mult, mac, sub, add | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|     template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mult(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mult(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       mult(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mac(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       mac(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       mac(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     sub(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       sub(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       sub(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
|   } | ||||
|   template<class obj1,class obj2,class obj3> strong_inline | ||||
|     void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|     ret.checkerboard = rhs.checkerboard; | ||||
|     conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     add(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       obj1 tmp; | ||||
|       add(&tmp,&lhs,&rhs._odata[ss]); | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else  | ||||
|       add(&ret._odata[ss],&lhs,&rhs._odata[ss]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|    | ||||
| template<class sobj,class vobj> inline | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|     ret.checkerboard = x.checkerboard; | ||||
|     conformable(ret,x); | ||||
|     conformable(x,y); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*x_v(ss)+y_v(ss); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<x._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = a*x._odata[ss]+y._odata[ss]; | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       ret._odata[ss]=a*x._odata[ss]+y._odata[ss]; | ||||
| #endif | ||||
|     } | ||||
| template<class sobj,class vobj> inline | ||||
|   } | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|     ret.checkerboard = x.checkerboard; | ||||
|     conformable(ret,x); | ||||
|     conformable(x,y); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
|     parallel_for(int ss=0;ss<x._grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = a*x._odata[ss]+b*y._odata[ss]; | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| #else | ||||
|       ret._odata[ss]=a*x._odata[ss]+b*y._odata[ss]; | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|  | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|     return axpy_norm_fast(ret,a,x,y); | ||||
|   } | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   template<class sobj,class vobj> strong_inline | ||||
|   RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
|   } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -9,7 +9,6 @@ Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| @@ -29,333 +28,311 @@ See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #pragma once  | ||||
| #ifndef GRID_LATTICE_BASE_H | ||||
| #define GRID_LATTICE_BASE_H | ||||
|  | ||||
| #define STREAMING_STORES | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
| // TODO:  | ||||
| //       mac,real,imag | ||||
|  | ||||
| // Functionality: | ||||
| //     -=,+=,*=,() | ||||
| //     add,+,sub,-,mult,mac,* | ||||
| //     adj,conjugate | ||||
| //     real,imag | ||||
| //     transpose,transposeIndex   | ||||
| //     trace,traceIndex | ||||
| //     peekIndex | ||||
| //     innerProduct,outerProduct, | ||||
| //     localNorm2 | ||||
| //     localInnerProduct | ||||
|  | ||||
| extern int GridCshiftPermuteMap[4][16]; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| // The real lattice class, with normal copy and assignment semantics. | ||||
| // This contains extra (host resident) grid pointer data that may be accessed by host code | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| class Lattice : public LatticeAccelerator<vobj> | ||||
| //////////////////////////////////////////////// | ||||
| // Basic expressions used in Expression Template | ||||
| //////////////////////////////////////////////// | ||||
|  | ||||
| class LatticeBase | ||||
| { | ||||
| public: | ||||
|   GridBase *Grid(void) const { return this->_grid; } | ||||
|   /////////////////////////////////////////////////// | ||||
|   // Member types | ||||
|   /////////////////////////////////////////////////// | ||||
|     virtual ~LatticeBase(void) = default; | ||||
|     GridBase *_grid; | ||||
| }; | ||||
|      | ||||
| class LatticeExpressionBase {}; | ||||
|  | ||||
| template <typename Op, typename T1>                            | ||||
| class LatticeUnaryExpression  : public std::pair<Op,std::tuple<T1> > , public LatticeExpressionBase { | ||||
|  public: | ||||
|  LatticeUnaryExpression(const std::pair<Op,std::tuple<T1> > &arg): std::pair<Op,std::tuple<T1> >(arg) {}; | ||||
| }; | ||||
|  | ||||
| template <typename Op, typename T1, typename T2>               | ||||
| class LatticeBinaryExpression : public std::pair<Op,std::tuple<T1,T2> > , public LatticeExpressionBase { | ||||
|  public: | ||||
|  LatticeBinaryExpression(const std::pair<Op,std::tuple<T1,T2> > &arg): std::pair<Op,std::tuple<T1,T2> >(arg) {}; | ||||
| }; | ||||
|  | ||||
| template <typename Op, typename T1, typename T2, typename T3>  | ||||
| class LatticeTrinaryExpression :public std::pair<Op,std::tuple<T1,T2,T3> >, public LatticeExpressionBase { | ||||
|  public: | ||||
|  LatticeTrinaryExpression(const std::pair<Op,std::tuple<T1,T2,T3> > &arg): std::pair<Op,std::tuple<T1,T2,T3> >(arg) {}; | ||||
| }; | ||||
|  | ||||
| void inline conformable(GridBase *lhs,GridBase *rhs) | ||||
| { | ||||
|   assert(lhs == rhs); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| class Lattice : public LatticeBase | ||||
| { | ||||
| public: | ||||
|     int checkerboard; | ||||
|     Vector<vobj> _odata; | ||||
|      | ||||
|     // to pthread need a computable loop where loop induction is not required | ||||
|     int begin(void) { return 0;}; | ||||
|     int end(void)   { return _odata.size(); } | ||||
|     vobj & operator[](int i) { return _odata[i]; }; | ||||
|     const vobj & operator[](int i) const { return _odata[i]; }; | ||||
|  | ||||
| public: | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|     typedef vobj vector_object; | ||||
|     | ||||
| private: | ||||
|   void dealloc(void) | ||||
|   { | ||||
|     if( this->_odata_size ) { | ||||
|       alignedAllocator<vobj> alloc; | ||||
|       alloc.deallocate(this->_odata,this->_odata_size); | ||||
|       this->_odata=nullptr; | ||||
|       this->_odata_size=0; | ||||
|     } | ||||
|   } | ||||
|   void resize(uint64_t size) | ||||
|   { | ||||
|     if ( this->_odata_size != size ) { | ||||
|       alignedAllocator<vobj> alloc; | ||||
|  | ||||
|       dealloc(); | ||||
|        | ||||
|       this->_odata_size = size; | ||||
|       if ( size ) | ||||
| 	this->_odata      = alloc.allocate(this->_odata_size); | ||||
|       else  | ||||
| 	this->_odata      = nullptr; | ||||
|     } | ||||
|   } | ||||
| public: | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   void SetViewMode(ViewMode mode) { | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     accessor.ViewClose(); | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Return a view object that may be dereferenced in site loops. | ||||
|   // The view is trivially copy constructible and may be copied to an accelerator device | ||||
|   // in device lambdas | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   LatticeView<vobj> View (ViewMode mode) const  | ||||
|   { | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     return accessor; | ||||
|   } | ||||
|  | ||||
|   ~Lattice() {  | ||||
|     if ( this->_odata_size ) { | ||||
|       dealloc(); | ||||
|     } | ||||
|    } | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   // Expression Template closure support | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) | ||||
|   template <typename Op, typename T1>                         strong_inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) | ||||
|   { | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|     conformable(_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),1,{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       vstream(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) | ||||
|   template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) | ||||
|   { | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|     conformable(_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),1,{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       vstream(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) | ||||
|   template <typename Op, typename T1,typename T2,typename T3> strong_inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) | ||||
|   { | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
|     conformable(this->_grid,egrid); | ||||
|     conformable(_grid,egrid); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),1,{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       vstream(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       //vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,eval(ss,expr)); | ||||
| #else | ||||
|       _odata[ss] = eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|   //GridFromExpression is tricky to do | ||||
|   template<class Op,class T1> | ||||
|     Lattice(const LatticeUnaryExpression<Op,T1> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     _grid = nullptr; | ||||
|     GridFromExpression(_grid,expr); | ||||
|     assert(_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|     _odata.resize(_grid->oSites()); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|   }; | ||||
|   template<class Op,class T1, class T2> | ||||
|   Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     _grid = nullptr; | ||||
|     GridFromExpression(_grid,expr); | ||||
|     assert(_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|     _odata.resize(_grid->oSites()); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
| #ifdef STREAMING_STORES | ||||
|       vobj tmp = eval(ss,expr); | ||||
|       vstream(_odata[ss] ,tmp); | ||||
| #else | ||||
|       _odata[ss]=eval(ss,expr); | ||||
| #endif | ||||
|     } | ||||
|   }; | ||||
|   template<class Op,class T1, class T2, class T3> | ||||
|   Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) { | ||||
|     this->_grid = nullptr; | ||||
|     GridFromExpression(this->_grid,expr); | ||||
|     assert(this->_grid!=nullptr); | ||||
|     _grid = nullptr; | ||||
|     GridFromExpression(_grid,expr); | ||||
|     assert(_grid!=nullptr); | ||||
|  | ||||
|     int cb=-1; | ||||
|     CBFromExpression(cb,expr); | ||||
|     assert( (cb==Odd) || (cb==Even)); | ||||
|     this->checkerboard=cb; | ||||
|     checkerboard=cb; | ||||
|  | ||||
|     resize(this->_grid->oSites()); | ||||
|  | ||||
|     *this = expr; | ||||
|   } | ||||
|  | ||||
|   template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     auto me  = View(CpuWrite); | ||||
|     thread_for(ss,me.size(),{ | ||||
| 	me[ss]= r; | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
|     _odata.resize(_grid->oSites()); | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       vstream(_odata[ss] ,eval(ss,expr)); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   // Follow rule of five, with Constructor requires "grid" passed | ||||
|   // to user defined constructor | ||||
|   /////////////////////////////////////////// | ||||
|   // user defined constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {  | ||||
|     this->_grid = grid; | ||||
|     resize(this->_grid->oSites()); | ||||
|     assert((((uint64_t)&this->_odata[0])&0xF) ==0); | ||||
|     this->checkerboard=0; | ||||
|     SetViewMode(mode); | ||||
|   // Constructor requires "grid" passed. | ||||
|   // what about a default grid? | ||||
|   ////////////////////////////////////////////////////////////////// | ||||
|   Lattice(GridBase *grid) : _odata(grid->oSites()) { | ||||
|     _grid = grid; | ||||
|     //        _odata.reserve(_grid->oSites()); | ||||
|     //        _odata.resize(_grid->oSites()); | ||||
|     //      std::cout << "Constructing lattice object with Grid pointer "<<_grid<<std::endl; | ||||
|     assert((((uint64_t)&_odata[0])&0xF) ==0); | ||||
|     checkerboard=0; | ||||
|   } | ||||
|    | ||||
|   //  virtual ~Lattice(void) = default; | ||||
|   Lattice(const Lattice& r){ // copy constructor | ||||
|     _grid = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata.resize(_grid->oSites());// essential | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       _odata[ss]=r._odata[ss]; | ||||
|     }  	 | ||||
|   } | ||||
|  | ||||
|   Lattice(Lattice&& r){ // move constructor | ||||
|     _grid = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata=std::move(r._odata); | ||||
|   } | ||||
|    | ||||
|   inline Lattice<vobj> & operator = (Lattice<vobj> && r) | ||||
|   { | ||||
|     _grid        = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata       =std::move(r._odata); | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ | ||||
|     _grid        = r._grid; | ||||
|     checkerboard = r.checkerboard; | ||||
|     _odata.resize(_grid->oSites());// essential | ||||
|      | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       _odata[ss]=r._odata[ss]; | ||||
|     }  	 | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   template<class robj> strong_inline Lattice<vobj> & operator = (const Lattice<robj> & r){ | ||||
|     this->checkerboard = r.checkerboard; | ||||
|     conformable(*this,r); | ||||
|      | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       this->_odata[ss]=r._odata[ss]; | ||||
|     } | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   virtual ~Lattice(void) = default; | ||||
|      | ||||
|   void reset(GridBase* grid) { | ||||
|     if (this->_grid != grid) { | ||||
|       this->_grid = grid; | ||||
|       this->resize(grid->oSites()); | ||||
|       this->checkerboard = 0; | ||||
|     if (_grid != grid) { | ||||
|       _grid = grid; | ||||
|       _odata.resize(grid->oSites()); | ||||
|       checkerboard = 0; | ||||
|     } | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // copy constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(const Lattice& r){  | ||||
|     this->_grid = r.Grid(); | ||||
|     resize(this->_grid->oSites()); | ||||
|     *this = r; | ||||
|    | ||||
|  | ||||
|   template<class sobj> strong_inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     parallel_for(int ss=0;ss<_grid->oSites();ss++){ | ||||
|       this->_odata[ss]=r; | ||||
|     } | ||||
|   /////////////////////////////////////////// | ||||
|   // move constructor | ||||
|   /////////////////////////////////////////// | ||||
|   Lattice(Lattice && r){  | ||||
|     this->_grid = r.Grid(); | ||||
|     this->_odata      = r._odata; | ||||
|     this->_odata_size = r._odata_size; | ||||
|     this->checkerboard= r.Checkerboard(); | ||||
|     r._odata      = nullptr; | ||||
|     r._odata_size = 0; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // assignment template | ||||
|   /////////////////////////////////////////// | ||||
|   template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){ | ||||
|     typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0; | ||||
|     conformable(*this,r); | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
|     me.ViewClose();    him.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////// | ||||
|   // Copy assignment  | ||||
|   /////////////////////////////////////////// | ||||
|   inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     conformable(*this,r); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
|     me.ViewClose();    him.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
|   /////////////////////////////////////////// | ||||
|   // Move assignment possible if same type | ||||
|   /////////////////////////////////////////// | ||||
|   inline Lattice<vobj> & operator = (Lattice<vobj> && r){ | ||||
|    | ||||
|     resize(0); // deletes if appropriate | ||||
|     this->_grid       = r.Grid(); | ||||
|     this->_odata      = r._odata; | ||||
|     this->_odata_size = r._odata_size; | ||||
|     this->checkerboard= r.Checkerboard(); | ||||
|  | ||||
|     r._odata      = nullptr; | ||||
|     r._odata_size = 0; | ||||
|      | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
|   // *=,+=,-= operators inherit behvour from correspond */+/- operation | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
|   template<class T> inline Lattice<vobj> &operator *=(const T &r) { | ||||
|   template<class T> strong_inline Lattice<vobj> &operator *=(const T &r) { | ||||
|     *this = (*this)*r; | ||||
|     return *this; | ||||
|   } | ||||
|    | ||||
|   template<class T> inline Lattice<vobj> &operator -=(const T &r) { | ||||
|   template<class T> strong_inline Lattice<vobj> &operator -=(const T &r) { | ||||
|     *this = (*this)-r; | ||||
|     return *this; | ||||
|   } | ||||
|   template<class T> inline Lattice<vobj> &operator +=(const T &r) { | ||||
|   template<class T> strong_inline Lattice<vobj> &operator +=(const T &r) { | ||||
|     *this = (*this)+r; | ||||
|     return *this; | ||||
|   } | ||||
|  | ||||
|   friend inline void swap(Lattice &l, Lattice &r) {  | ||||
|     conformable(l,r); | ||||
|     LatticeAccelerator<vobj> tmp; | ||||
|     LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l; | ||||
|     LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r; | ||||
|     tmp = *lp;    *lp=*rp;    *rp=tmp; | ||||
|   } | ||||
|  | ||||
| }; // class Lattice | ||||
|    | ||||
|   template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){ | ||||
|     std::vector<int> gcoor; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|   for(int g=0;g<o.Grid()->_gsites;g++){ | ||||
|  | ||||
|     Coordinate gcoor; | ||||
|     o.Grid()->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|  | ||||
|     sobj ss; | ||||
|     for(int g=0;g<o._grid->_gsites;g++){ | ||||
|       o._grid->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|       peekSite(ss,o,gcoor); | ||||
|       stream<<"["; | ||||
|       for(int d=0;d<gcoor.size();d++){ | ||||
| @@ -368,5 +345,31 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti | ||||
|     return stream; | ||||
|   } | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| #include "Lattice_conformable.h" | ||||
| #define GRID_LATTICE_EXPRESSION_TEMPLATES | ||||
| #ifdef  GRID_LATTICE_EXPRESSION_TEMPLATES | ||||
| #include "Lattice_ET.h" | ||||
| #else  | ||||
| #include "Lattice_overload.h" | ||||
| #endif | ||||
| #include "Lattice_arith.h" | ||||
| #include "Lattice_trace.h" | ||||
| #include "Lattice_transpose.h" | ||||
| #include "Lattice_local.h" | ||||
| #include "Lattice_reduction.h" | ||||
| #include "Lattice_peekpoke.h" | ||||
| #include "Lattice_reality.h" | ||||
| #include "Lattice_comparison_utils.h" | ||||
| #include "Lattice_comparison.h" | ||||
| #include "Lattice_coordinate.h" | ||||
| #include "Lattice_where.h" | ||||
| #include "Lattice_rng.h" | ||||
| #include "Lattice_unary.h" | ||||
| #include "Lattice_transfer.h" | ||||
|  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,226 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/lattice/Lattice_basis.h | ||||
|  | ||||
| Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| 			   /*  END LEGAL */ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> | ||||
| void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)  | ||||
| { | ||||
|   // If assume basis[j] are already orthonormal, | ||||
|   // can take all inner products in parallel saving 2x bandwidth | ||||
|   // Save 3x bandwidth on the second line of loop. | ||||
|   // perhaps 2.5x speed up. | ||||
|   // 2x overall in Multigrid Lanczos   | ||||
|   for(int j=0; j<k; ++j){ | ||||
|     auto ip = innerProduct(basis[j],w); | ||||
|     w = w - ip*basis[j]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class VField, class Matrix> | ||||
| void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef decltype(basis[0]) Field; | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|        | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   View *basis_vp = &basis_v[0]; | ||||
|  | ||||
|   int nrot = j1-j0; | ||||
|   if (!nrot) // edge case not handled gracefully by Cuda | ||||
|     return; | ||||
|  | ||||
|   uint64_t oSites   =grid->oSites(); | ||||
|   uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead | ||||
|  | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|  | ||||
|   Vector <vobj> Bt(siteBlock * nrot);  | ||||
|   auto Bp=&Bt[0]; | ||||
|  | ||||
|   // GPU readable copy of matrix | ||||
|   Vector<double> Qt_jv(Nm*Nm); | ||||
|   double *Qt_p = & Qt_jv[0]; | ||||
|   thread_for(i,Nm*Nm,{ | ||||
|       int j = i/Nm; | ||||
|       int k = i%Nm; | ||||
|       Qt_p[i]=Qt(j,k); | ||||
|   }); | ||||
|  | ||||
|   // Block the loop to keep storage footprint down | ||||
|   for(uint64_t s=0;s<oSites;s+=siteBlock){ | ||||
|  | ||||
|     // remaining work in this block | ||||
|     int ssites=MIN(siteBlock,oSites-s); | ||||
|  | ||||
|     // zero out the accumulators | ||||
|     accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{ | ||||
| 	decltype(coalescedRead(Bp[ss])) z; | ||||
| 	z=Zero(); | ||||
| 	coalescedWrite(Bp[ss],z); | ||||
|       }); | ||||
|  | ||||
|     accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{ | ||||
| 	 | ||||
| 	int j =sj%nrot; | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
|  | ||||
| 	for(int k=k0; k<k1; ++k){ | ||||
| 	  auto tmp = coalescedRead(Bp[ss*nrot+j]); | ||||
| 	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss])); | ||||
| 	} | ||||
|       }); | ||||
|  | ||||
|     accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{ | ||||
| 	int j =sj%nrot; | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
| 	coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
|       }); | ||||
|   } | ||||
|  | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| // Extract a single rotated vector | ||||
| template<class Field> | ||||
| void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)  | ||||
| { | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|   typedef typename Field::vector_object vobj; | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|  | ||||
|   result.Checkerboard() = basis[0].Checkerboard(); | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorRead)); | ||||
|   } | ||||
|   vobj zz=Zero(); | ||||
|   Vector<double> Qt_jv(Nm); | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); | ||||
|  | ||||
|   autoView(result_v,result,AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ | ||||
|     auto B=coalescedRead(zz); | ||||
|     for(int k=k0; k<k1; ++k){ | ||||
|       B +=Qt_j[k] * coalescedRead(basis_v[k][ss]); | ||||
|     } | ||||
|     coalescedWrite(result_v[ss], B); | ||||
|   }); | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)  | ||||
| { | ||||
|   int vlen = idx.size(); | ||||
|  | ||||
|   assert(vlen>=1); | ||||
|   assert(vlen<=sort_vals.size()); | ||||
|   assert(vlen<=_v.size()); | ||||
|  | ||||
|   for (size_t i=0;i<vlen;i++) { | ||||
|  | ||||
|     if (idx[i] != i) { | ||||
|  | ||||
|       ////////////////////////////////////// | ||||
|       // idx[i] is a table of desired sources giving a permutation. | ||||
|       // Swap v[i] with v[idx[i]]. | ||||
|       // Find  j>i for which _vnew[j] = _vold[i], | ||||
|       // track the move idx[j] => idx[i] | ||||
|       // track the move idx[i] => i | ||||
|       ////////////////////////////////////// | ||||
|       size_t j; | ||||
|       for (j=i;j<idx.size();j++) | ||||
| 	if (idx[j]==i) | ||||
| 	  break; | ||||
|  | ||||
|       assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i); | ||||
|  | ||||
|       swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy | ||||
|       std::swap(sort_vals[i],sort_vals[idx[i]]); | ||||
|  | ||||
|       idx[j] = idx[i]; | ||||
|       idx[i] = i; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)  | ||||
| { | ||||
|   std::vector<int> idx(sort_vals.size()); | ||||
|   std::iota(idx.begin(), idx.end(), 0); | ||||
|  | ||||
|   // sort indexes based on comparing values in v | ||||
|   std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) { | ||||
|     return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]); | ||||
|   }); | ||||
|   return idx; | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)  | ||||
| { | ||||
|   std::vector<int> idx = basisSortGetIndex(sort_vals); | ||||
|   if (reverse) | ||||
|     std::reverse(idx.begin(), idx.end()); | ||||
|    | ||||
|   basisReorderInPlace(_v,sort_vals,idx); | ||||
| } | ||||
|  | ||||
| // PAB: faster to compute the inner products first then fuse loops. | ||||
| // If performance critical can improve. | ||||
| template<class Field> | ||||
| void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) { | ||||
|   result = Zero(); | ||||
|   assert(_v.size()==eval.size()); | ||||
|   int N = (int)_v.size(); | ||||
|   for (int i=0;i<N;i++) { | ||||
|     Field& tmp = _v[i]; | ||||
|     axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result); | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_LATTICE_COMPARISON_H | ||||
| #define GRID_LATTICE_COMPARISON_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     ////////////////////////////////////////////////////////////////////////// | ||||
|     // relational operators | ||||
| @@ -40,78 +40,40 @@ NAMESPACE_BEGIN(Grid); | ||||
|     //Query supporting logical &&, ||,  | ||||
|     ////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| typedef iScalar<vInteger> vPredicate ; | ||||
|  | ||||
| /* | ||||
| template <class iobj, class vobj, class robj> accelerator_inline  | ||||
| vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)  | ||||
| { | ||||
|   typename std::remove_const<vobj>::type ret; | ||||
|  | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   ExtractBuffer<scalar_object> truevals(Nsimd); | ||||
|   ExtractBuffer<scalar_object> falsevals(Nsimd); | ||||
|  | ||||
|   extract(iftrue, truevals); | ||||
|   extract(iffalse, falsevals); | ||||
|   extract<vInteger, Integer>(TensorRemove(predicate), mask); | ||||
|  | ||||
|   for (int s = 0; s < Nsimd; s++) { | ||||
|     if (mask[s]) falsevals[s] = truevals[s]; | ||||
|   } | ||||
|  | ||||
|   merge(ret, falsevals); | ||||
|   return ret; | ||||
| } | ||||
| */ | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // compare lattice to lattice | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   template<class vfunctor,class lobj,class robj>   | ||||
| inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs) | ||||
|     inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs) | ||||
|   { | ||||
|   Lattice<vPredicate> ret(rhs.Grid()); | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, rhs_v.size(), { | ||||
|       ret_v[ss]=op(lhs_v[ss],rhs_v[ss]); | ||||
|   }); | ||||
|     Lattice<vInteger> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // compare lattice to scalar | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   template<class vfunctor,class lobj,class robj>  | ||||
| inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs) | ||||
|     inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs) | ||||
|   { | ||||
|   Lattice<vPredicate> ret(lhs.Grid()); | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, lhs_v.size(), { | ||||
|     ret_v[ss]=op(lhs_v[ss],rhs); | ||||
|   }); | ||||
|     Lattice<vInteger> ret(lhs._grid); | ||||
|     parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=op(lhs._odata[ss],rhs); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // compare scalar to lattice | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   template<class vfunctor,class lobj,class robj>  | ||||
| inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs) | ||||
|     inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs) | ||||
|   { | ||||
|   Lattice<vPredicate> ret(rhs.Grid()); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   autoView( ret_v, ret, CpuWrite); | ||||
|   thread_for( ss, rhs_v.size(), { | ||||
|     ret_v[ss]=op(lhs,rhs_v[ss]); | ||||
|   }); | ||||
|     Lattice<vInteger> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=op(lhs._odata[ss],rhs); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|    | ||||
| @@ -120,88 +82,88 @@ inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattic | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Less than | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     return LLComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     return LSComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     return SLComparison(vlt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|    | ||||
|   // Less than equal | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     return LLComparison(vle<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     return LSComparison(vle<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     return SLComparison(vle<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|    | ||||
|   // Greater than  | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|     return LLComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|     return LSComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|   template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|     inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(vgt<lobj,robj>(),lhs,rhs); | ||||
|   } | ||||
|    | ||||
|    | ||||
|   // Greater than equal | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      return LLComparison(vge<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|    inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      return LSComparison(vge<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(vge<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|     | ||||
|    // equal | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      return LLComparison(veq<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      return LSComparison(veq<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(veq<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|     | ||||
|     | ||||
|    // not equal | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { | ||||
|      return LLComparison(vne<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) { | ||||
|      return LSComparison(vne<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
|    template<class lobj,class robj> | ||||
| inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) { | ||||
|      return SLComparison(vne<lobj,robj>(),lhs,rhs); | ||||
|    } | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -26,10 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_COMPARISON_H | ||||
| #define GRID_COMPARISON_H | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////// | ||||
|   // This implementation is a bit poor. | ||||
| @@ -44,42 +44,42 @@ NAMESPACE_BEGIN(Grid); | ||||
|   // | ||||
|   template<class lobj,class robj> class veq { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) == (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vne { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) != (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vlt { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) < (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vle { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) <= (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vgt { | ||||
|   public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) > (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class vge { | ||||
|     public: | ||||
|     accelerator vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     vInteger operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) >= (rhs); | ||||
|     } | ||||
| @@ -88,42 +88,42 @@ NAMESPACE_BEGIN(Grid); | ||||
|   // Generic list of functors | ||||
|   template<class lobj,class robj> class seq { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) == (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sne { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) != (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class slt { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) < (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sle { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) <= (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sgt { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) > (rhs); | ||||
|     } | ||||
|   }; | ||||
|   template<class lobj,class robj> class sge { | ||||
|   public: | ||||
|     accelerator Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     Integer operator()(const lobj &lhs, const robj &rhs) | ||||
|     {  | ||||
|       return (lhs) >= (rhs); | ||||
|     } | ||||
| @@ -133,12 +133,12 @@ NAMESPACE_BEGIN(Grid); | ||||
|   // Integer and real get extra relational functions. | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>  | ||||
|     accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs) | ||||
|     inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs) | ||||
|     { | ||||
|       typedef typename vsimd::scalar_type scalar; | ||||
|       ExtractBuffer<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       ExtractBuffer<scalar> vrhs(vsimd::Nsimd()); | ||||
|       ExtractBuffer<Integer> vpred(vsimd::Nsimd()); | ||||
|       std::vector<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       std::vector<scalar> vrhs(vsimd::Nsimd()); | ||||
|       std::vector<Integer> vpred(vsimd::Nsimd()); | ||||
|       vInteger ret; | ||||
|       extract<vsimd,scalar>(lhs,vlhs); | ||||
|       extract<vsimd,scalar>(rhs,vrhs); | ||||
| @@ -150,11 +150,11 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|  | ||||
|   template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>  | ||||
|     accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs) | ||||
|     inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs) | ||||
|     { | ||||
|       typedef typename vsimd::scalar_type scalar; | ||||
|       ExtractBuffer<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       ExtractBuffer<Integer> vpred(vsimd::Nsimd()); | ||||
|       std::vector<scalar> vlhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       std::vector<Integer> vpred(vsimd::Nsimd()); | ||||
|       vInteger ret; | ||||
|       extract<vsimd,scalar>(lhs,vlhs); | ||||
|       for(int s=0;s<vsimd::Nsimd();s++){ | ||||
| @@ -165,11 +165,11 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|  | ||||
|   template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>  | ||||
|     accelerator_inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs) | ||||
|     inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs) | ||||
|     { | ||||
|       typedef typename vsimd::scalar_type scalar; | ||||
|       ExtractBuffer<scalar> vrhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       ExtractBuffer<Integer> vpred(vsimd::Nsimd()); | ||||
|       std::vector<scalar> vrhs(vsimd::Nsimd());   // Use functors to reduce this to single implementation | ||||
|       std::vector<Integer> vpred(vsimd::Nsimd()); | ||||
|       vInteger ret; | ||||
|       extract<vsimd,scalar>(rhs,vrhs); | ||||
|       for(int s=0;s<vsimd::Nsimd();s++){ | ||||
| @@ -181,30 +181,30 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define DECLARE_RELATIONAL_EQ(op,functor) \ | ||||
|   template<class vsimd,IfSimd<vsimd> = 0>\ | ||||
|     accelerator_inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\ | ||||
|     inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\ | ||||
|     {\ | ||||
|       typedef typename vsimd::scalar_type scalar;\ | ||||
|       return Comparison(functor<scalar,scalar>(),lhs,rhs);\ | ||||
|     }\ | ||||
|   template<class vsimd,IfSimd<vsimd> = 0>\ | ||||
|     accelerator_inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \ | ||||
|     inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \ | ||||
|     {\ | ||||
|       typedef typename vsimd::scalar_type scalar;\ | ||||
|       return Comparison(functor<scalar,scalar>(),lhs,rhs);\ | ||||
|     }\ | ||||
|   template<class vsimd,IfSimd<vsimd> = 0>\ | ||||
|     accelerator_inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \ | ||||
|     inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \ | ||||
|     {\ | ||||
|       typedef typename vsimd::scalar_type scalar;\ | ||||
|       return Comparison(functor<scalar,scalar>(),lhs,rhs);\ | ||||
|     }\ | ||||
|   template<class vsimd>\ | ||||
|     accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \ | ||||
|     inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \ | ||||
|     {									\ | ||||
|       return lhs._internal op rhs;					\ | ||||
|     }									\ | ||||
|   template<class vsimd>\ | ||||
|     accelerator_inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \ | ||||
|     inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \ | ||||
|     {									\ | ||||
|       return lhs op rhs._internal;					\ | ||||
|     }									\ | ||||
| @@ -212,7 +212,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| #define DECLARE_RELATIONAL(op,functor) \ | ||||
|   DECLARE_RELATIONAL_EQ(op,functor)    \ | ||||
|   template<class vsimd>\ | ||||
|     accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\ | ||||
|     inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\ | ||||
|     {									\ | ||||
|       return lhs._internal op rhs._internal;				\ | ||||
|     }									 | ||||
| @@ -226,7 +226,7 @@ DECLARE_RELATIONAL(!=,sne); | ||||
|  | ||||
| #undef DECLARE_RELATIONAL | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,13 +28,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_LATTICE_CONFORMABLE_H | ||||
| #define GRID_LATTICE_CONFORMABLE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs) | ||||
|     { | ||||
|   assert(lhs.Grid() == rhs.Grid()); | ||||
|   assert(lhs.Checkerboard() == rhs.Checkerboard()); | ||||
|         assert(lhs._grid == rhs._grid); | ||||
|         assert(lhs.checkerboard == rhs.checkerboard); | ||||
|     } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -25,31 +25,32 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once  | ||||
| #ifndef GRID_LATTICE_COORDINATE_H | ||||
| #define GRID_LATTICE_COORDINATE_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu) | ||||
|     { | ||||
|       typedef typename iobj::scalar_type scalar_type; | ||||
|       typedef typename iobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = l.Grid(); | ||||
|       GridBase *grid = l._grid; | ||||
|       int Nsimd = grid->iSites(); | ||||
|  | ||||
|   autoView(l_v, l, CpuWrite); | ||||
|   thread_for( o, grid->oSites(), { | ||||
|       std::vector<int> gcoor; | ||||
|       std::vector<scalar_type> mergebuf(Nsimd); | ||||
|  | ||||
|       vector_type vI; | ||||
|     Coordinate gcoor; | ||||
|     ExtractBuffer<scalar_type> mergebuf(Nsimd); | ||||
|       for(int o=0;o<grid->oSites();o++){ | ||||
| 	for(int i=0;i<grid->iSites();i++){ | ||||
| 	  grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor); | ||||
| 	  mergebuf[i]=(Integer)gcoor[mu]; | ||||
| 	} | ||||
| 	merge<vector_type,scalar_type>(vI,mergebuf); | ||||
|     l_v[o]=vI; | ||||
|   }); | ||||
| 	l._odata[o]=vI; | ||||
|       } | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -32,7 +32,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| // localInner, localNorm, outerProduct | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ///////////////////////////////////////////////////// | ||||
|   // Non site, reduced locally reduced routines | ||||
| @@ -42,12 +42,10 @@ NAMESPACE_BEGIN(Grid); | ||||
|   template<class vobj> | ||||
|     inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced> | ||||
|     { | ||||
|   Lattice<typename vobj::tensor_reduced> ret(rhs.Grid()); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss))); | ||||
|   }); | ||||
|       Lattice<typename vobj::tensor_reduced> ret(rhs._grid); | ||||
|       parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]); | ||||
|       } | ||||
|       return ret; | ||||
|     } | ||||
|    | ||||
| @@ -55,33 +53,23 @@ inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tenso | ||||
|   template<class vobj> | ||||
|     inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced> | ||||
|     { | ||||
|   Lattice<typename vobj::tensor_reduced> ret(rhs.Grid()); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{ | ||||
|     coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss))); | ||||
|   }); | ||||
|       Lattice<typename vobj::tensor_reduced> ret(rhs._grid); | ||||
|       parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	ret._odata[ss]=innerProduct(lhs._odata[ss],rhs._odata[ss]); | ||||
|       } | ||||
|       return ret; | ||||
|     } | ||||
|    | ||||
|   // outerProduct Scalar x Scalar -> Scalar | ||||
|   //              Vector x Vector -> Matrix | ||||
|   template<class ll,class rr> | ||||
| inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))> | ||||
|     inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> | ||||
|   { | ||||
|   typedef decltype(coalescedRead(ll())) sll; | ||||
|   typedef decltype(coalescedRead(rr())) srr; | ||||
|   Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid()); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   accelerator_for(ss,rhs_v.size(),1,{ | ||||
|     // FIXME had issues with scalar version of outer  | ||||
|     // Use vector [] operator and don't read coalesce this loop | ||||
|     ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]); | ||||
|   }); | ||||
|     Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -1,202 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|     Source file: ./lib/lattice/Lattice_reduction.h | ||||
|     Copyright (C) 2015 | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once  | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
|  | ||||
| #ifdef GRID_WARN_SUBOPTIMAL | ||||
| #warning "Optimisation alert all these reduction loops are NOT threaded " | ||||
| #endif      | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|   autoView( X_v , X, CpuRead); | ||||
|   autoView( Y_v , Y, CpuRead); | ||||
|   autoView( R_v , R, CpuWrite); | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|     thread_loop_collapse2( (int n=0;n<nblock;n++),{ | ||||
|       for(int b=0;b<block;b++){ | ||||
| 	int o  = n*stride + b; | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  s_x[i] = X_v[o+i*ostride]; | ||||
| 	} | ||||
|  | ||||
| 	vobj dot; | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  dot = Y_v[o+i*ostride]; | ||||
| 	  for(int j=0;j<Nblock;j++){ | ||||
| 	    dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	  } | ||||
| 	  R_v[o+i*ostride]=dot; | ||||
| 	} | ||||
|       }}); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   autoView( X_v , X, CpuRead); | ||||
|   autoView( R_v , R, CpuWrite); | ||||
|  | ||||
|   thread_region | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|      | ||||
|     thread_loop_collapse2( (int n=0;n<nblock;n++),{ | ||||
|       for(int b=0;b<block;b++){ | ||||
| 	int o  = n*stride + b; | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  s_x[i] = X_v[o+i*ostride]; | ||||
| 	} | ||||
|  | ||||
| 	vobj dot; | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  dot = s_x[0]*(scale*aa(0,i)); | ||||
| 	  for(int j=1;j<Nblock;j++){ | ||||
| 	    dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	  } | ||||
| 	  R_v[o+i*ostride]=dot; | ||||
| 	} | ||||
|     }}); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|    | ||||
|   int Nblock = FullGrid->GlobalDimensions()[Orthog]; | ||||
|    | ||||
|   //  Lattice<vobj> Lslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|    | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_typeD; | ||||
|   autoView( lhs_v , lhs, CpuRead); | ||||
|   autoView( rhs_v , rhs, CpuRead); | ||||
|   thread_region { | ||||
|     std::vector<vobj> Left(Nblock); | ||||
|     std::vector<vobj> Right(Nblock); | ||||
|     Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|     thread_loop_collapse2((int n=0;n<nblock;n++),{ | ||||
|       for(int b=0;b<block;b++){ | ||||
|  | ||||
| 	int o  = n*stride + b; | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  Left [i] = lhs_v[o+i*ostride]; | ||||
| 	  Right[i] = rhs_v[o+i*ostride]; | ||||
| 	} | ||||
|  | ||||
| 	for(int i=0;i<Nblock;i++){ | ||||
| 	  for(int j=0;j<Nblock;j++){ | ||||
| 	    auto tmp = innerProduct(Left[i],Right[j]); | ||||
| 	    auto rtmp = TensorRemove(tmp); | ||||
| 	    ComplexD z = Reduce(rtmp); | ||||
| 	    mat_thread(i,j) += std::complex<double>(real(z),imag(z)); | ||||
| 	  }} | ||||
|     }}); | ||||
|     thread_critical { | ||||
|       mat += mat_thread; | ||||
|     }   | ||||
|   } | ||||
|  | ||||
|   for(int i=0;i<Nblock;i++){ | ||||
|     for(int j=0;j<Nblock;j++){ | ||||
|       ComplexD sum = mat(i,j); | ||||
|       FullGrid->GlobalSum(sum); | ||||
|       mat(i,j)=sum; | ||||
|     }} | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|  | ||||
							
								
								
									
										138
									
								
								Grid/lattice/Lattice_overload.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										138
									
								
								Grid/lattice/Lattice_overload.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,138 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_overload.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_OVERLOAD_H | ||||
| #define GRID_LATTICE_OVERLOAD_H | ||||
|  | ||||
| namespace Grid { | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // unary negation | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> operator -(const Lattice<vobj> &r) | ||||
|   { | ||||
|     Lattice<vobj> ret(r._grid); | ||||
|     parallel_for(int ss=0;ss<r._grid->oSites();ss++){ | ||||
|       vstream(ret._odata[ss], -r._odata[ss]); | ||||
|     } | ||||
|     return ret; | ||||
|   }  | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Lattice BinOp Lattice, | ||||
|   //NB mult performs conformable check. Do not reapply here for performance. | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   template<class left,class right> | ||||
|     inline auto operator * (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]*rhs._odata[0])> | ||||
|   { | ||||
|     Lattice<decltype(lhs._odata[0]*rhs._odata[0])> ret(rhs._grid); | ||||
|     mult(ret,lhs,rhs); | ||||
|     return ret; | ||||
|   } | ||||
|   template<class left,class right> | ||||
|     inline auto operator + (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]+rhs._odata[0])> | ||||
|   { | ||||
|     Lattice<decltype(lhs._odata[0]+rhs._odata[0])> ret(rhs._grid); | ||||
|     add(ret,lhs,rhs); | ||||
|     return ret; | ||||
|   } | ||||
|   template<class left,class right> | ||||
|     inline auto operator - (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]-rhs._odata[0])> | ||||
|   { | ||||
|     Lattice<decltype(lhs._odata[0]-rhs._odata[0])> ret(rhs._grid); | ||||
|     sub(ret,lhs,rhs); | ||||
|     return ret; | ||||
|   } | ||||
|    | ||||
|   // Scalar BinOp Lattice ;generate return type | ||||
|   template<class left,class right> | ||||
|   inline auto operator * (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs*rhs._odata[0])> | ||||
|   { | ||||
|     Lattice<decltype(lhs*rhs._odata[0])> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       decltype(lhs*rhs._odata[0]) tmp=lhs*rhs._odata[ss];  | ||||
|       vstream(ret._odata[ss],tmp); | ||||
| 	   //      ret._odata[ss]=lhs*rhs._odata[ss]; | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|   template<class left,class right> | ||||
|     inline auto operator + (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs+rhs._odata[0])> | ||||
|     { | ||||
|       Lattice<decltype(lhs+rhs._odata[0])> ret(rhs._grid); | ||||
|       parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	decltype(lhs+rhs._odata[0]) tmp =lhs-rhs._odata[ss];   | ||||
| 	vstream(ret._odata[ss],tmp); | ||||
| 	//	ret._odata[ss]=lhs+rhs._odata[ss]; | ||||
|       } | ||||
|         return ret; | ||||
|     } | ||||
|   template<class left,class right> | ||||
|     inline auto operator - (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs-rhs._odata[0])> | ||||
|   { | ||||
|     Lattice<decltype(lhs-rhs._odata[0])> ret(rhs._grid); | ||||
|     parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
|       decltype(lhs-rhs._odata[0]) tmp=lhs-rhs._odata[ss];   | ||||
|       vstream(ret._odata[ss],tmp); | ||||
|     } | ||||
|     return ret; | ||||
|   } | ||||
|     template<class left,class right> | ||||
|       inline auto operator * (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]*rhs)> | ||||
|     { | ||||
|       Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid); | ||||
|       parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){ | ||||
| 	decltype(lhs._odata[0]*rhs) tmp =lhs._odata[ss]*rhs; | ||||
| 	vstream(ret._odata[ss],tmp); | ||||
| 	//            ret._odata[ss]=lhs._odata[ss]*rhs; | ||||
|       } | ||||
|       return ret; | ||||
|     } | ||||
|     template<class left,class right> | ||||
|       inline auto operator + (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]+rhs)> | ||||
|     { | ||||
|         Lattice<decltype(lhs._odata[0]+rhs)> ret(lhs._grid); | ||||
| 	parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	  decltype(lhs._odata[0]+rhs) tmp=lhs._odata[ss]+rhs;  | ||||
| 	  vstream(ret._odata[ss],tmp); | ||||
| 	  //	  ret._odata[ss]=lhs._odata[ss]+rhs; | ||||
|         } | ||||
|         return ret; | ||||
|     } | ||||
|     template<class left,class right> | ||||
|       inline auto operator - (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]-rhs)> | ||||
|     { | ||||
|       Lattice<decltype(lhs._odata[0]-rhs)> ret(lhs._grid); | ||||
|       parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){ | ||||
| 	  decltype(lhs._odata[0]-rhs) tmp=lhs._odata[ss]-rhs; | ||||
| 	  vstream(ret._odata[ss],tmp); | ||||
| 	  //	ret._odata[ss]=lhs._odata[ss]-rhs; | ||||
|       } | ||||
|       return ret; | ||||
|     } | ||||
| } | ||||
| #endif | ||||
| @@ -34,35 +34,29 @@ Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| // Peeking and poking around | ||||
| /////////////////////////////////////////////// | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|  | ||||
| // FIXME accelerator_loop and accelerator_inline these | ||||
|     //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Peek internal indices of a Lattice object | ||||
|     //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     template<int Index,class vobj> | ||||
| auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))> | ||||
|        auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))> | ||||
|     { | ||||
|   Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid()); | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = peekIndex<Index>(lhs_v[ss],i); | ||||
|   }); | ||||
|       Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))> ret(lhs._grid); | ||||
|       ret.checkerboard=lhs.checkerboard; | ||||
|       parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| 	ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i); | ||||
|       } | ||||
|       return ret; | ||||
|     }; | ||||
|     template<int Index,class vobj> | ||||
| auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))> | ||||
|       auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))> | ||||
|     { | ||||
|   Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid()); | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j); | ||||
|   }); | ||||
|       Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))> ret(lhs._grid); | ||||
|       ret.checkerboard=lhs.checkerboard; | ||||
|       parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| 	ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i,j); | ||||
|       } | ||||
|       return ret; | ||||
|     }; | ||||
|  | ||||
| @@ -70,38 +64,34 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd | ||||
|     // Poke internal indices of a Lattice object | ||||
|     //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     template<int Index,class vobj>  | ||||
| void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i) | ||||
|     void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0))> & rhs,int i) | ||||
|     { | ||||
|   autoView( rhs_v, rhs, AcceleratorRead); | ||||
|   autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i); | ||||
|   }); | ||||
|       parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| 	pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i); | ||||
|       }       | ||||
|     } | ||||
|     template<int Index,class vobj> | ||||
| void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j) | ||||
|       void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0,0))> & rhs,int i,int j) | ||||
|     { | ||||
|   autoView( rhs_v, rhs, AcceleratorRead); | ||||
|   autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j); | ||||
|   }); | ||||
|       parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| 	pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i,j); | ||||
|       }       | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////////////////////////// | ||||
|     // Poke a scalar object into the SIMD array | ||||
|     ////////////////////////////////////////////////////// | ||||
|     template<class vobj,class sobj> | ||||
| void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
|     void pokeSite(const sobj &s,Lattice<vobj> &l,const std::vector<int> &site){ | ||||
|  | ||||
|   GridBase *grid=l.Grid(); | ||||
|       GridBase *grid=l._grid; | ||||
|  | ||||
|       typedef typename vobj::scalar_type scalar_type; | ||||
|       typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|       int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== l.Grid()->CheckerBoard(site)); | ||||
|       assert( l.checkerboard== l._grid->CheckerBoard(site)); | ||||
|       assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|       int rank,odx,idx; | ||||
| @@ -109,13 +99,13 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
|       grid->GlobalCoorToRankIndex(rank,odx,idx,site); | ||||
|       grid->Broadcast(grid->BossRank(),s); | ||||
|  | ||||
|       std::vector<sobj> buf(Nsimd); | ||||
|  | ||||
|       // extract-modify-merge cycle is easiest way and this is not perf critical | ||||
|   ExtractBuffer<sobj> buf(Nsimd); | ||||
|   autoView( l_v , l, CpuWrite); | ||||
|       if ( rank == grid->ThisRank() ) { | ||||
|     extract(l_v[odx],buf); | ||||
| 	extract(l._odata[odx],buf); | ||||
| 	buf[idx] = s; | ||||
|     merge(l_v[odx],buf); | ||||
| 	merge(l._odata[odx],buf); | ||||
|       } | ||||
|  | ||||
|       return; | ||||
| @@ -126,23 +116,22 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
|     // Peek a scalar object from the SIMD array | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     template<class vobj,class sobj> | ||||
| void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){ | ||||
|       void peekSite(sobj &s,const Lattice<vobj> &l,const std::vector<int> &site){ | ||||
|          | ||||
|   GridBase *grid=l.Grid(); | ||||
|       GridBase *grid=l._grid; | ||||
|  | ||||
|       typedef typename vobj::scalar_type scalar_type; | ||||
|       typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|       int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard() == l.Grid()->CheckerBoard(site)); | ||||
|       assert( l.checkerboard == l._grid->CheckerBoard(site)); | ||||
|  | ||||
|       int rank,odx,idx; | ||||
|       grid->GlobalCoorToRankIndex(rank,odx,idx,site); | ||||
|  | ||||
|   ExtractBuffer<sobj> buf(Nsimd); | ||||
|   autoView( l_v , l, CpuWrite); | ||||
|   extract(l_v[odx],buf); | ||||
|       std::vector<sobj> buf(Nsimd); | ||||
|       extract(l._odata[odx],buf); | ||||
|  | ||||
|       s = buf[idx]; | ||||
|  | ||||
| @@ -151,21 +140,21 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){ | ||||
|       return; | ||||
|     }; | ||||
|  | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // Peek a scalar object from the SIMD array | ||||
|     ////////////////////////////////////////////////////////// | ||||
| // Must be CPU read view | ||||
|     template<class vobj,class sobj> | ||||
| inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   GridBase *grid = l.getGrid(); | ||||
|   assert(l.mode==CpuRead); | ||||
|     void peekLocalSite(sobj &s,const Lattice<vobj> &l,std::vector<int> &site){ | ||||
|          | ||||
|       GridBase *grid = l._grid; | ||||
|  | ||||
|       typedef typename vobj::scalar_type scalar_type; | ||||
|       typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|       int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|       assert( l.checkerboard== l._grid->CheckerBoard(site)); | ||||
|       assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|       static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| @@ -173,7 +162,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
|       idx= grid->iIndex(site); | ||||
|       odx= grid->oIndex(site); | ||||
|  | ||||
|   scalar_type * vp = (scalar_type *)&l[odx]; | ||||
|       scalar_type * vp = (scalar_type *)&l._odata[odx]; | ||||
|       scalar_type * pt = (scalar_type *)&s; | ||||
|        | ||||
|       for(int w=0;w<words;w++){ | ||||
| @@ -182,19 +171,18 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
|        | ||||
|       return; | ||||
|     }; | ||||
| // Must be CPU write view | ||||
|  | ||||
|     template<class vobj,class sobj> | ||||
| inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   GridBase *grid=l.getGrid(); | ||||
|   assert(l.mode==CpuWrite); | ||||
|     void pokeLocalSite(const sobj &s,Lattice<vobj> &l,std::vector<int> &site){ | ||||
|  | ||||
|       GridBase *grid=l._grid; | ||||
|  | ||||
|       typedef typename vobj::scalar_type scalar_type; | ||||
|       typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|       int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== grid->CheckerBoard(site)); | ||||
|       assert( l.checkerboard== l._grid->CheckerBoard(site)); | ||||
|       assert( sizeof(sobj)*Nsimd == sizeof(vobj)); | ||||
|  | ||||
|       static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| @@ -202,14 +190,16 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
|       idx= grid->iIndex(site); | ||||
|       odx= grid->oIndex(site); | ||||
|  | ||||
|   scalar_type * vp = (scalar_type *)&l[odx]; | ||||
|       scalar_type * vp = (scalar_type *)&l._odata[odx]; | ||||
|       scalar_type * pt = (scalar_type *)&s; | ||||
|        | ||||
|       for(int w=0;w<words;w++){ | ||||
|         vp[idx+w*Nsimd] = pt[w]; | ||||
|       } | ||||
|  | ||||
|       return; | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -36,34 +36,22 @@ Author: neo <cossu@post.kek.jp> | ||||
| // The choice of burying complex in the SIMD | ||||
| // is making the use of "real" and "imag" very cumbersome | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|     template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), { | ||||
|     coalescedWrite(ret_v[ss], adj(lhs_v(ss))); | ||||
|   }); | ||||
|         Lattice<vobj> ret(lhs._grid); | ||||
| 	parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
|             ret._odata[ss] = adj(lhs._odata[ss]); | ||||
|         } | ||||
|         return ret; | ||||
|     }; | ||||
|  | ||||
|     template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), { | ||||
|     coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss))); | ||||
|   }); | ||||
|         Lattice<vobj> ret(lhs._grid); | ||||
| 	parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){ | ||||
| 	  ret._odata[ss] = conjugate(lhs._odata[ss]); | ||||
|         } | ||||
|         return ret; | ||||
|     }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } | ||||
| #endif | ||||
|   | ||||
| @@ -5,7 +5,6 @@ | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
| @@ -20,172 +19,58 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
| #ifndef GRID_LATTICE_REDUCTION_H | ||||
| #define GRID_LATTICE_REDUCTION_H | ||||
|  | ||||
| #include <Grid/Grid_Eigen_Dense.h> | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
| #include <Grid/lattice/Lattice_reduction_gpu.h> | ||||
| namespace Grid { | ||||
| #ifdef GRID_WARN_SUBOPTIMAL | ||||
| #warning "Optimisation alert all these reduction loops are NOT threaded " | ||||
| #endif      | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // FIXME this should promote to double and accumulate | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_object  sobj; | ||||
|  | ||||
|   //  const int Nsimd = vobj::Nsimd(); | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
|    | ||||
|   thread_for(thr,nthread, { | ||||
|     int nwork, mywork, myoff; | ||||
|     nwork = osites; | ||||
|     GridThread::GetWork(nwork,thr,mywork,myoff); | ||||
|     vobj vvsum=Zero(); | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vvsum = vvsum + arg[ss]; | ||||
|     } | ||||
|     sumarray[thr]=Reduce(vvsum); | ||||
|   }); | ||||
|    | ||||
|   sobj ssum=Zero();  // sum across threads | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     ssum = ssum+sumarray[i]; | ||||
|   }  | ||||
|   return ssum; | ||||
| } | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD  sobj; | ||||
|  | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|  | ||||
|   Vector<sobj> sumarray(nthread); | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     sumarray[i]=Zero(); | ||||
|   } | ||||
|    | ||||
|   thread_for(thr,nthread, { | ||||
|     int nwork, mywork, myoff; | ||||
|     nwork = osites; | ||||
|     GridThread::GetWork(nwork,thr,mywork,myoff); | ||||
|     vobj vvsum=Zero(); | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vvsum = vvsum + arg[ss]; | ||||
|     } | ||||
|     sumarray[thr]=Reduce(vvsum); | ||||
|   }); | ||||
|    | ||||
|   sobj ssum=Zero();  // sum across threads | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     ssum = ssum+sumarray[i]; | ||||
|   }  | ||||
|    | ||||
|   typedef typename vobj::scalar_object ssobj; | ||||
|   ssobj ret = ssum; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
|   return sum_gpu(arg,osites); | ||||
| #else | ||||
|   return sum_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
|   return sumD_gpu(arg,osites); | ||||
| #else | ||||
|   return sumD_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
|   autoView( arg_v, arg, AcceleratorRead); | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
|   auto ssum= sum_gpu(&arg_v[0],osites); | ||||
| #else | ||||
|   autoView(arg_v, arg, CpuRead); | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
|   auto ssum= sum_cpu(&arg_v[0],osites); | ||||
| #endif   | ||||
|   arg.Grid()->GlobalSum(ssum); | ||||
|   return ssum; | ||||
| } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Deterministic Reduction operations | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){ | ||||
|   ComplexD nrm = innerProduct(arg,arg); | ||||
|   return real(nrm);  | ||||
|   auto nrm = innerProduct(arg,arg); | ||||
|   return std::real(nrm);  | ||||
| } | ||||
|  | ||||
| // Double inner product | ||||
| template<class vobj> | ||||
| inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) | ||||
| { | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   ComplexD  nrm; | ||||
|   GridBase *grid = left._grid; | ||||
|   const int pad = 8; | ||||
|  | ||||
|   GridBase *grid = left.Grid(); | ||||
|   ComplexD  inner; | ||||
|   Vector<ComplexD> sumarray(grid->SumArraySize()*pad); | ||||
|  | ||||
|   const uint64_t nsimd = grid->Nsimd(); | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|   parallel_for(int thr=0;thr<grid->SumArraySize();thr++){ | ||||
|     int nwork, mywork, myoff; | ||||
|     GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff); | ||||
|      | ||||
|   // Might make all code paths go this way. | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|      | ||||
|   { | ||||
|     autoView( left_v , left, AcceleratorRead); | ||||
|     autoView( right_v,right, AcceleratorRead); | ||||
|  | ||||
|     // GPU - SIMT lane compliance... | ||||
|     accelerator_for( ss, sites, 1,{ | ||||
| 	auto x_l = left_v[ss]; | ||||
| 	auto y_l = right_v[ss]; | ||||
| 	inner_tmp_v[ss]=innerProductD(x_l,y_l); | ||||
|     }); | ||||
|     decltype(innerProductD(left._odata[0],right._odata[0])) vinner=zero; // private to thread; sub summation | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vinner = vinner + innerProductD(left._odata[ss],right._odata[ss]); | ||||
|     } | ||||
|     // All threads sum across SIMD; reduce serial work at end | ||||
|     // one write per cacheline with streaming store | ||||
|     ComplexD tmp = Reduce(TensorRemove(vinner)) ; | ||||
|     vstream(sumarray[thr*pad],tmp); | ||||
|   } | ||||
|    | ||||
|   // This is in single precision and fails some tests | ||||
|   auto anrm = sum(inner_tmp_v,sites);   | ||||
|   nrm = anrm; | ||||
|   return nrm; | ||||
|   inner=0.0; | ||||
|   for(int i=0;i<grid->SumArraySize();i++){ | ||||
|     inner = inner+sumarray[i*pad]; | ||||
|   }  | ||||
|  | ||||
| template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   grid->GlobalSum(nrm); | ||||
|   return nrm; | ||||
|   right._grid->GlobalSum(inner); | ||||
|   return inner; | ||||
| } | ||||
|  | ||||
|  | ||||
| ///////////////////////// | ||||
| // Fast axpby_norm | ||||
| // z = a x + b y | ||||
| @@ -201,7 +86,8 @@ axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj | ||||
| template<class sobj,class vobj> strong_inline RealD  | ||||
| axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)  | ||||
| { | ||||
|   z.Checkerboard() = x.Checkerboard(); | ||||
|   const int pad = 8; | ||||
|   z.checkerboard = x.checkerboard; | ||||
|   conformable(z,x); | ||||
|   conformable(x,y); | ||||
|  | ||||
| @@ -209,79 +95,43 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   RealD  nrm; | ||||
|    | ||||
|   GridBase *grid = x.Grid(); | ||||
|   GridBase *grid = x._grid; | ||||
|    | ||||
|   const uint64_t nsimd = grid->Nsimd(); | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|   Vector<RealD> sumarray(grid->SumArraySize()*pad); | ||||
|    | ||||
|   // GPU | ||||
|   autoView( x_v, x, AcceleratorRead); | ||||
|   autoView( y_v, y, AcceleratorRead); | ||||
|   autoView( z_v, z, AcceleratorWrite); | ||||
|   parallel_for(int thr=0;thr<grid->SumArraySize();thr++){ | ||||
|     int nwork, mywork, myoff; | ||||
|     GridThread::GetWork(x._grid->oSites(),thr,mywork,myoff); | ||||
|      | ||||
|   typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|     // private to thread; sub summation | ||||
|     decltype(innerProductD(z._odata[0],z._odata[0])) vnrm=zero;  | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vobj tmp = a*x._odata[ss]+b*y._odata[ss]; | ||||
|       vnrm = vnrm + innerProductD(tmp,tmp); | ||||
|       vstream(z._odata[ss],tmp); | ||||
|     } | ||||
|     vstream(sumarray[thr*pad],real(Reduce(TensorRemove(vnrm)))) ; | ||||
|   } | ||||
|    | ||||
|   accelerator_for( ss, sites, 1,{ | ||||
|       auto tmp = a*x_v[ss]+b*y_v[ss]; | ||||
|       inner_tmp_v[ss]=innerProductD(tmp,tmp); | ||||
|       z_v[ss]=tmp; | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sum(inner_tmp_v,sites))); | ||||
|   grid->GlobalSum(nrm); | ||||
|   nrm = 0.0; // sum across threads; linear in thread count but fast | ||||
|   for(int i=0;i<grid->SumArraySize();i++){ | ||||
|     nrm = nrm+sumarray[i*pad]; | ||||
|   }  | ||||
|   z._grid->GlobalSum(nrm); | ||||
|   return nrm;  | ||||
| } | ||||
|  | ||||
| template<class vobj> strong_inline void | ||||
| innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right) | ||||
| { | ||||
|   conformable(left,right); | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   Vector<ComplexD> tmp(2); | ||||
|  | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
|   const uint64_t nsimd = grid->Nsimd(); | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|  | ||||
|   // GPU | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) norm_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   Vector<norm_t>  norm_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   auto norm_tmp_v = &norm_tmp[0]; | ||||
|   { | ||||
|     autoView(left_v,left, AcceleratorRead); | ||||
|     autoView(right_v,right,AcceleratorRead); | ||||
|     accelerator_for( ss, sites, 1,{ | ||||
| 	auto left_tmp = left_v[ss]; | ||||
| 	inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]); | ||||
|         norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp); | ||||
|       }); | ||||
|   } | ||||
|  | ||||
|   tmp[0] = TensorRemove(sum(inner_tmp_v,sites)); | ||||
|   tmp[1] = TensorRemove(sum(norm_tmp_v,sites)); | ||||
|  | ||||
|   grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector | ||||
|   ip = tmp[0]; | ||||
|   nrm = real(tmp[1]); | ||||
| } | ||||
|   | ||||
| template<class Op,class T1> | ||||
| inline auto sum(const LatticeUnaryExpression<Op,T1> & expr) | ||||
|   ->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object | ||||
|   ->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object | ||||
| { | ||||
|   return sum(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1,class T2> | ||||
| inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr) | ||||
|       ->typename decltype(expr.op.func(eval(0,expr.arg1),eval(0,expr.arg2)))::scalar_object | ||||
|       ->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object | ||||
| { | ||||
|   return sum(closure(expr)); | ||||
| } | ||||
| @@ -289,14 +139,54 @@ inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr) | ||||
|  | ||||
| template<class Op,class T1,class T2,class T3> | ||||
| inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) | ||||
|   ->typename decltype(expr.op.func(eval(0,expr.arg1), | ||||
| 				      eval(0,expr.arg2), | ||||
| 				      eval(0,expr.arg3) | ||||
|   ->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)), | ||||
| 				      eval(0,std::get<1>(expr.second)), | ||||
| 				      eval(0,std::get<2>(expr.second)) | ||||
| 				      ))::scalar_object | ||||
| { | ||||
|   return sum(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) | ||||
| { | ||||
|   GridBase *grid=arg._grid; | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|    | ||||
|   std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize()); | ||||
|   for(int i=0;i<grid->SumArraySize();i++){ | ||||
|     sumarray[i]=zero; | ||||
|   } | ||||
|    | ||||
|   parallel_for(int thr=0;thr<grid->SumArraySize();thr++){ | ||||
|     int nwork, mywork, myoff; | ||||
|     GridThread::GetWork(grid->oSites(),thr,mywork,myoff); | ||||
|      | ||||
|     vobj vvsum=zero; | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       vvsum = vvsum + arg._odata[ss]; | ||||
|     } | ||||
|     sumarray[thr]=vvsum; | ||||
|   } | ||||
|    | ||||
|   vobj vsum=zero;  // sum across threads | ||||
|   for(int i=0;i<grid->SumArraySize();i++){ | ||||
|     vsum = vsum+sumarray[i]; | ||||
|   }  | ||||
|    | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj ssum=zero; | ||||
|    | ||||
|   std::vector<sobj>               buf(Nsimd); | ||||
|   extract(vsum,buf); | ||||
|    | ||||
|   for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i]; | ||||
|   arg._grid->GlobalSum(ssum); | ||||
|    | ||||
|   return ssum; | ||||
| } | ||||
|  | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc... | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -309,7 +199,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   // But easily avoided by using double precision fields | ||||
|   /////////////////////////////////////////////////////// | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   GridBase  *grid = Data.Grid(); | ||||
|   GridBase  *grid = Data._grid; | ||||
|   assert(grid!=NULL); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
| @@ -322,13 +212,13 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   Vector<vobj> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars | ||||
|   ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD | ||||
|   std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first | ||||
|   std::vector<sobj> lsSum(ld,zero);                    // sum across these down to scalars | ||||
|   std::vector<sobj> extracted(Nsimd);                  // splitting the SIMD | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node  | ||||
|   for(int r=0;r<rd;r++){ | ||||
|     lvSum[r]=Zero(); | ||||
|     lvSum[r]=zero; | ||||
|   } | ||||
|  | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
| @@ -337,19 +227,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|  | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|   parallel_for(int r=0;r<rd;r++){ | ||||
|  | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
| 	lvSum[r]=lvSum[r]+Data._odata[ss]; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   }); | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
|   std::vector<int> icoor(Nd); | ||||
|  | ||||
|   for(int rt=0;rt<rd;rt++){ | ||||
|  | ||||
| @@ -374,7 +265,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|     if ( pt == grid->_processor_coor[orthogdim] ) { | ||||
|       gsum=lsSum[lt]; | ||||
|     } else { | ||||
|       gsum=Zero(); | ||||
|       gsum=zero; | ||||
|     } | ||||
|  | ||||
|     grid->GlobalSum(gsum); | ||||
| @@ -383,14 +274,123 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| static void mySliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) | ||||
| { | ||||
|   // std::cout << GridLogMessage << "Start mySliceInnerProductVector" << std::endl; | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   std::vector<scalar_type> lsSum; | ||||
|   localSliceInnerProductVector(result, lhs, rhs, lsSum, orthogdim); | ||||
|   globalSliceInnerProductVector(result, lhs, lsSum, orthogdim); | ||||
|   // std::cout << GridLogMessage << "End mySliceInnerProductVector" << std::endl; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| static void localSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, const Lattice<vobj> &rhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim) | ||||
| { | ||||
|   // std::cout << GridLogMessage << "Start prep" << std::endl; | ||||
|   typedef typename vobj::vector_type   vector_type; | ||||
|   typedef typename vobj::scalar_type   scalar_type; | ||||
|   GridBase  *grid = lhs._grid; | ||||
|   assert(grid!=NULL); | ||||
|   conformable(grid,rhs._grid); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert(orthogdim >= 0); | ||||
|   assert(orthogdim < Nd); | ||||
|  | ||||
|   int fd=grid->_fdimensions[orthogdim]; | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|   // std::cout << GridLogMessage << "Start alloc" << std::endl; | ||||
|  | ||||
|   std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first | ||||
|   lsSum.resize(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   std::vector<iScalar<scalar_type>> extracted(Nsimd);   // splitting the SIMD   | ||||
|   // std::cout << GridLogMessage << "End alloc" << std::endl; | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node for IO to file | ||||
|   for(int r=0;r<rd;r++){ | ||||
|     lvSum[r]=zero; | ||||
|   } | ||||
|  | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|   // std::cout << GridLogMessage << "End prep" << std::endl; | ||||
|   // std::cout << GridLogMessage << "Start parallel inner product, _rd = " << rd << std::endl; | ||||
|   vector_type vv; | ||||
|   parallel_for(int r=0;r<rd;r++) | ||||
|   { | ||||
|  | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int ss = so + n * stride + b; | ||||
|         vv = TensorRemove(innerProduct(lhs._odata[ss], rhs._odata[ss])); | ||||
|         lvSum[r] = lvSum[r] + vv; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   // std::cout << GridLogMessage << "End parallel inner product" << std::endl; | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   std::vector<int> icoor(Nd); | ||||
|   for(int rt=0;rt<rd;rt++){ | ||||
|  | ||||
|     iScalar<vector_type> temp;  | ||||
|     temp._internal = lvSum[rt]; | ||||
|     extract(temp,extracted); | ||||
|  | ||||
|     for(int idx=0;idx<Nsimd;idx++){ | ||||
|  | ||||
|       grid->iCoorFromIindex(icoor,idx); | ||||
|  | ||||
|       int ldx =rt+icoor[orthogdim]*rd; | ||||
|  | ||||
|       lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|   // std::cout << GridLogMessage << "End sum over simd lanes" << std::endl; | ||||
| } | ||||
| template <class vobj> | ||||
| static void globalSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim) | ||||
| { | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   GridBase *grid = lhs._grid; | ||||
|   int fd = result.size(); | ||||
|   int ld = lsSum.size(); | ||||
|   // sum over nodes. | ||||
|   std::vector<scalar_type> gsum; | ||||
|   gsum.resize(fd, scalar_type(0.0)); | ||||
|   // std::cout << GridLogMessage << "Start of gsum[t] creation:" << std::endl; | ||||
|   for(int t=0;t<fd;t++){ | ||||
|     int pt = t/ld; // processor plane | ||||
|     int lt = t%ld; | ||||
|     if ( pt == grid->_processor_coor[orthogdim] ) { | ||||
|       gsum[t]=lsSum[lt]; | ||||
|     } | ||||
|   } | ||||
|   // std::cout << GridLogMessage << "End of gsum[t] creation:" << std::endl; | ||||
|   // std::cout << GridLogMessage << "Start of GlobalSumVector:" << std::endl; | ||||
|   grid->GlobalSumVector(&gsum[0], fd); | ||||
|   // std::cout << GridLogMessage << "End of GlobalSumVector:" << std::endl; | ||||
|  | ||||
|   result = gsum; | ||||
| } | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| { | ||||
|   typedef typename vobj::vector_type   vector_type; | ||||
|   typedef typename vobj::scalar_type   scalar_type; | ||||
|   GridBase  *grid = lhs.Grid(); | ||||
|   GridBase  *grid = lhs._grid; | ||||
|   assert(grid!=NULL); | ||||
|   conformable(grid,rhs.Grid()); | ||||
|   conformable(grid,rhs._grid); | ||||
|  | ||||
|   const int    Nd = grid->_ndimension; | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
| @@ -402,36 +402,34 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti | ||||
|   int ld=grid->_ldimensions[orthogdim]; | ||||
|   int rd=grid->_rdimensions[orthogdim]; | ||||
|  | ||||
|   Vector<vector_type> lvSum(rd); // will locally sum vectors first | ||||
|   Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD   | ||||
|   std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first | ||||
|   std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars | ||||
|   std::vector<iScalar<scalar_type> > extracted(Nsimd);                  // splitting the SIMD | ||||
|  | ||||
|   result.resize(fd); // And then global sum to return the same vector to every node for IO to file | ||||
|   for(int r=0;r<rd;r++){ | ||||
|     lvSum[r]=Zero(); | ||||
|     lvSum[r]=zero; | ||||
|   } | ||||
|  | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|  | ||||
|   autoView( lhv, lhs, CpuRead); | ||||
|   autoView( rhv, rhs, CpuRead); | ||||
|   thread_for( r,rd,{ | ||||
|   parallel_for(int r=0;r<rd;r++){ | ||||
|  | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	vector_type vv = TensorRemove(innerProduct(lhv[ss],rhv[ss])); | ||||
| 	vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss])); | ||||
| 	lvSum[r]=lvSum[r]+vv; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
|   } | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
|   std::vector<int> icoor(Nd); | ||||
|   for(int rt=0;rt<rd;rt++){ | ||||
|  | ||||
|     iScalar<vector_type> temp;  | ||||
| @@ -472,7 +470,7 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   int Nblock = rhs.Grid()->GlobalDimensions()[Orthog]; | ||||
|   int Nblock = rhs._grid->GlobalDimensions()[Orthog]; | ||||
|   std::vector<ComplexD> ip(Nblock); | ||||
|   sn.resize(Nblock); | ||||
|    | ||||
| @@ -494,7 +492,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice | ||||
|    | ||||
|   scalar_type zscale(scale); | ||||
|  | ||||
|   GridBase *grid  = X.Grid(); | ||||
|   GridBase *grid  = X._grid; | ||||
|  | ||||
|   int Nsimd  =grid->Nsimd(); | ||||
|   int Nblock =grid->GlobalDimensions()[orthogdim]; | ||||
| @@ -507,7 +505,8 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice | ||||
|   int e2     =grid->_slice_block [orthogdim]; | ||||
|   int stride =grid->_slice_stride[orthogdim]; | ||||
|  | ||||
|   Coordinate icoor; | ||||
|   std::vector<int> icoor; | ||||
|  | ||||
|   for(int r=0;r<rd;r++){ | ||||
|  | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
| @@ -523,13 +522,12 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice | ||||
|  | ||||
|     tensor_reduced at; at=av; | ||||
|  | ||||
|     autoView( Rv, R, CpuWrite); | ||||
|     autoView( Xv, X, CpuRead); | ||||
|     autoView( Yv, Y, CpuRead); | ||||
|     thread_for2d( n, e1, b,e2, { | ||||
|     parallel_for_nest2(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	Rv[ss] = at*Xv[ss]+Yv[ss]; | ||||
|     }); | ||||
| 	R._odata[ss] = at*X._odata[ss]+Y._odata[ss]; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -561,18 +559,18 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|   int Nblock = X._grid->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   GridBase *FullGrid  = X._grid; | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|  | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|   int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
| @@ -580,31 +578,28 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|  | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   autoView( Y_v, Y, CpuRead); | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   thread_region | ||||
| #pragma omp parallel  | ||||
|   { | ||||
|     Vector<vobj> s_x(Nblock); | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region(2, n,nblock, { | ||||
| #pragma omp for collapse(2) | ||||
|     for(int n=0;n<nblock;n++){ | ||||
|     for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
| 	s_x[i] = X[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	dot = Y_v[o+i*ostride]; | ||||
| 	dot = Y[o+i*ostride]; | ||||
| 	for(int j=0;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
| 	R[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|     }} | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -615,38 +610,35 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice< | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
|   int Nblock = X._grid->GlobalDimensions()[Orthog]; | ||||
|  | ||||
|   GridBase *FullGrid  = X.Grid(); | ||||
|   GridBase *FullGrid  = X._grid; | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|   //  Lattice<vobj> Xslice(SliceGrid); | ||||
|   //  Lattice<vobj> Rslice(SliceGrid); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl=1; | ||||
|   int nl=1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   // thread_for2d_in_region | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
|   int stride=FullGrid->_slice_stride[Orthog]; | ||||
|   int block =FullGrid->_slice_block [Orthog]; | ||||
|   int nblock=FullGrid->_slice_nblock[Orthog]; | ||||
|   int ostride=FullGrid->_ostride[Orthog]; | ||||
|   autoView( R_v, R, CpuWrite); | ||||
|   autoView( X_v, X, CpuRead); | ||||
|   thread_region | ||||
| #pragma omp parallel  | ||||
|   { | ||||
|     std::vector<vobj> s_x(Nblock); | ||||
|  | ||||
|  | ||||
|     thread_for_collapse_in_region( 2 ,n,nblock,{ | ||||
| #pragma omp for collapse(2) | ||||
|     for(int n=0;n<nblock;n++){ | ||||
|     for(int b=0;b<block;b++){ | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	s_x[i] = X_v[o+i*ostride]; | ||||
| 	s_x[i] = X[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       vobj dot; | ||||
| @@ -655,10 +647,11 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice< | ||||
| 	for(int j=1;j<Nblock;j++){ | ||||
| 	  dot = dot + s_x[j]*(scale*aa(j,i)); | ||||
| 	} | ||||
| 	R_v[o+i*ostride]=dot; | ||||
| 	R[o+i*ostride]=dot; | ||||
|       } | ||||
|     }}); | ||||
|     }} | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
|  | ||||
| @@ -669,7 +662,7 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   GridBase *FullGrid  = lhs._grid; | ||||
|   //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog); | ||||
|    | ||||
|   int Nblock = FullGrid->GlobalDimensions()[Orthog]; | ||||
| @@ -680,9 +673,9 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> | ||||
|   mat = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|   assert( FullGrid->_simd_layout[Orthog]==1); | ||||
|   //  int nh =  FullGrid->_ndimension; | ||||
|   int nh =  FullGrid->_ndimension; | ||||
|   //  int nl = SliceGrid->_ndimension; | ||||
|   //  int nl = nh-1; | ||||
|   int nl = nh-1; | ||||
|  | ||||
|   //FIXME package in a convenient iterator | ||||
|   //Should loop over a plane orthogonal to direction "Orthog" | ||||
| @@ -693,33 +686,31 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> | ||||
|  | ||||
|   typedef typename vobj::vector_typeD vector_typeD; | ||||
|  | ||||
|   autoView( lhs_v, lhs, CpuRead); | ||||
|   autoView( rhs_v, rhs, CpuRead); | ||||
|   thread_region | ||||
| #pragma omp parallel  | ||||
|   { | ||||
|     std::vector<vobj> Left(Nblock); | ||||
|     std::vector<vobj> Right(Nblock); | ||||
|     Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock); | ||||
|  | ||||
|     thread_for_collapse_in_region( 2, n,nblock,{ | ||||
| #pragma omp for collapse(2) | ||||
|     for(int n=0;n<nblock;n++){ | ||||
|     for(int b=0;b<block;b++){ | ||||
|  | ||||
|       int o  = n*stride + b; | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
| 	Left [i] = lhs_v[o+i*ostride]; | ||||
| 	Right[i] = rhs_v[o+i*ostride]; | ||||
| 	Left [i] = lhs[o+i*ostride]; | ||||
| 	Right[i] = rhs[o+i*ostride]; | ||||
|       } | ||||
|  | ||||
|       for(int i=0;i<Nblock;i++){ | ||||
|       for(int j=0;j<Nblock;j++){ | ||||
| 	auto tmp = innerProduct(Left[i],Right[j]); | ||||
| 	auto rtmp = TensorRemove(tmp); | ||||
| 	auto red  =  Reduce(rtmp); | ||||
| 	mat_thread(i,j) += std::complex<double>(real(red),imag(red)); | ||||
| 	mat_thread(i,j) += Reduce(rtmp); | ||||
|       }} | ||||
|     }}); | ||||
|     thread_critical | ||||
|     }} | ||||
| #pragma omp critical | ||||
|     { | ||||
|       mat += mat_thread; | ||||
|     }   | ||||
| @@ -735,8 +726,8 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> | ||||
|   return; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| } /*END NAMESPACE GRID*/ | ||||
| #endif | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,231 +0,0 @@ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| extern hipDeviceProp_t *gpu_props; | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| extern cudaDeviceProp *gpu_props; | ||||
| #endif | ||||
|  | ||||
| #define WARP_SIZE 32 | ||||
| __device__ unsigned int retirementCount = 0; | ||||
|  | ||||
| template <class Iterator> | ||||
| unsigned int nextPow2(Iterator x) { | ||||
|   --x; | ||||
|   x |= x >> 1; | ||||
|   x |= x >> 2; | ||||
|   x |= x >> 4; | ||||
|   x |= x >> 8; | ||||
|   x |= x >> 16; | ||||
|   return ++x; | ||||
| } | ||||
|  | ||||
| template <class Iterator> | ||||
| void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { | ||||
|    | ||||
|   int device; | ||||
| #ifdef GRID_CUDA | ||||
|   cudaGetDevice(&device); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   hipGetDevice(&device); | ||||
| #endif | ||||
|    | ||||
|   Iterator warpSize            = gpu_props[device].warpSize; | ||||
|   Iterator sharedMemPerBlock   = gpu_props[device].sharedMemPerBlock; | ||||
|   Iterator maxThreadsPerBlock  = gpu_props[device].maxThreadsPerBlock; | ||||
|   Iterator multiProcessorCount = gpu_props[device].multiProcessorCount; | ||||
|    | ||||
|   std::cout << GridLogDebug << "GPU has:" << std::endl; | ||||
|   std::cout << GridLogDebug << "\twarpSize            = " << warpSize << std::endl; | ||||
|   std::cout << GridLogDebug << "\tsharedMemPerBlock   = " << sharedMemPerBlock << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << maxThreadsPerBlock << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << warpSize << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl; | ||||
|    | ||||
|   if (warpSize != WARP_SIZE) { | ||||
|     std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   // let the number of threads in a block be a multiple of 2, starting from warpSize | ||||
|   threads = warpSize; | ||||
|   while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2; | ||||
|   // keep all the streaming multiprocessors busy | ||||
|   blocks = nextPow2(multiProcessorCount); | ||||
|    | ||||
| } | ||||
|  | ||||
| template <class sobj, class Iterator> | ||||
| __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) { | ||||
|    | ||||
|   Iterator blockSize = blockDim.x; | ||||
|    | ||||
|   // cannot use overloaded operators for sobj as they are not volatile-qualified | ||||
|   memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj)); | ||||
|   __syncwarp(); | ||||
|    | ||||
|   const Iterator VEC = WARP_SIZE; | ||||
|   const Iterator vid = tid & (VEC-1); | ||||
|    | ||||
|   sobj beta, temp; | ||||
|   memcpy((void *)&beta, (void *)&mySum, sizeof(sobj)); | ||||
|    | ||||
|   for (int i = VEC/2; i > 0; i>>=1) { | ||||
|     if (vid < i) { | ||||
|       memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj)); | ||||
|       beta += temp; | ||||
|       memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj)); | ||||
|     } | ||||
|     __syncwarp(); | ||||
|   } | ||||
|   __syncthreads(); | ||||
|    | ||||
|   if (threadIdx.x == 0) { | ||||
|     beta  = Zero(); | ||||
|     for (Iterator i = 0; i < blockSize; i += VEC) { | ||||
|       memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj)); | ||||
|       beta  += temp; | ||||
|     } | ||||
|     memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj)); | ||||
|   } | ||||
|   __syncthreads(); | ||||
| } | ||||
|  | ||||
|  | ||||
| template <class vobj, class sobj, class Iterator> | ||||
| __device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n)  | ||||
| { | ||||
|   constexpr Iterator nsimd = vobj::Nsimd(); | ||||
|    | ||||
|   Iterator blockSize = blockDim.x; | ||||
|    | ||||
|   // force shared memory alignment | ||||
|   extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[]; | ||||
|   // it's not possible to have two extern __shared__ arrays with same name | ||||
|   // but different types in different scopes -- need to cast each time | ||||
|   sobj *sdata = (sobj *)shmem_pointer; | ||||
|    | ||||
|   // first level of reduction, | ||||
|   // each thread writes result in mySum | ||||
|   Iterator tid = threadIdx.x; | ||||
|   Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x; | ||||
|   Iterator gridSize = blockSize*2*gridDim.x; | ||||
|   sobj mySum = Zero(); | ||||
|    | ||||
|   while (i < n) { | ||||
|     Iterator lane = i % nsimd; | ||||
|     Iterator ss   = i / nsimd; | ||||
|     auto tmp = extractLane(lane,g_idata[ss]); | ||||
|     sobj tmpD; | ||||
|     tmpD=tmp; | ||||
|     mySum   +=tmpD; | ||||
|      | ||||
|     if (i + blockSize < n) { | ||||
|       lane = (i+blockSize) % nsimd; | ||||
|       ss   = (i+blockSize) / nsimd; | ||||
|       tmp = extractLane(lane,g_idata[ss]); | ||||
|       tmpD = tmp; | ||||
|       mySum += tmpD; | ||||
|     } | ||||
|     i += gridSize; | ||||
|   } | ||||
|    | ||||
|   // copy mySum to shared memory and perform | ||||
|   // reduction for all threads in this block | ||||
|   reduceBlock(sdata, mySum, tid); | ||||
|   if (tid == 0) g_odata[blockIdx.x] = sdata[0]; | ||||
| } | ||||
|  | ||||
| template <class vobj, class sobj,class Iterator> | ||||
| __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) { | ||||
|    | ||||
|   Iterator blockSize = blockDim.x; | ||||
|    | ||||
|   // perform reduction for this block and | ||||
|   // write result to global memory buffer | ||||
|   reduceBlocks(lat, buffer, n); | ||||
|    | ||||
|   if (gridDim.x > 1) { | ||||
|      | ||||
|     const Iterator tid = threadIdx.x; | ||||
|     __shared__ bool amLast; | ||||
|     // force shared memory alignment | ||||
|     extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[]; | ||||
|     // it's not possible to have two extern __shared__ arrays with same name | ||||
|     // but different types in different scopes -- need to cast each time | ||||
|     sobj *smem = (sobj *)shmem_pointer; | ||||
|      | ||||
|     // wait until all outstanding memory instructions in this thread are finished | ||||
|     acceleratorFence(); | ||||
|      | ||||
|     if (tid==0) { | ||||
|       unsigned int ticket = atomicInc(&retirementCount, gridDim.x); | ||||
|       // true if this block is the last block to be done | ||||
|       amLast = (ticket == gridDim.x-1); | ||||
|     } | ||||
|      | ||||
|     // each thread must read the correct value of amLast | ||||
|     acceleratorSynchroniseAll(); | ||||
|  | ||||
|     if (amLast) { | ||||
|       // reduce buffer[0], ..., buffer[gridDim.x-1] | ||||
|       Iterator i = tid; | ||||
|       sobj mySum = Zero(); | ||||
|        | ||||
|       while (i < gridDim.x) { | ||||
|         mySum += buffer[i]; | ||||
|         i += blockSize; | ||||
|       } | ||||
|        | ||||
|       reduceBlock(smem, mySum, tid); | ||||
|        | ||||
|       if (tid==0) { | ||||
|         buffer[0] = smem[0]; | ||||
|         // reset count variable | ||||
|         retirementCount = 0; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   typedef decltype(lat) Iterator; | ||||
|    | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|   Integer size = osites*nsimd; | ||||
|  | ||||
|   Integer numThreads, numBlocks; | ||||
|   getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|   Integer smemSize = numThreads * sizeof(sobj); | ||||
|  | ||||
|   Vector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|    | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   auto result = buffer_v[0]; | ||||
|   return result; | ||||
| } | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Return as same precision as input performing reduction in double precision though | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -41,7 +41,7 @@ | ||||
| #undef  RNG_FAST_DISCARD | ||||
| #endif | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| namespace Grid { | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////// | ||||
|   // Allow the RNG state to be less dense than the fine grid | ||||
| @@ -108,16 +108,12 @@ void fillScalar(scalar &s,distribution &dist,generator & gen) | ||||
|   template<class distribution,class generator>  | ||||
|   void fillScalar(ComplexF &s,distribution &dist, generator &gen) | ||||
|   { | ||||
|   //  s=ComplexF(dist(gen),dist(gen)); | ||||
|   s.real(dist(gen)); | ||||
|   s.imag(dist(gen)); | ||||
|     s=ComplexF(dist(gen),dist(gen)); | ||||
|   } | ||||
|   template<class distribution,class generator>  | ||||
|   void fillScalar(ComplexD &s,distribution &dist,generator &gen) | ||||
|   { | ||||
|   //  s=ComplexD(dist(gen),dist(gen)); | ||||
|   s.real(dist(gen)); | ||||
|   s.imag(dist(gen)); | ||||
|     s=ComplexD(dist(gen),dist(gen)); | ||||
|   } | ||||
|    | ||||
|   class GridRNGbase { | ||||
| @@ -169,10 +165,7 @@ public: | ||||
|       //      uint64_t skip = site+1;  //   Old init Skipped then drew.  Checked compat with faster init | ||||
|       const int shift = 30; | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     // Weird compiler bug in Intel 2018.1 under O3 was generating 32bit and not 64 bit left shift. | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     volatile uint64_t skip = site; | ||||
|       uint64_t skip = site; | ||||
|  | ||||
|       skip = skip<<shift; | ||||
|  | ||||
| @@ -263,7 +256,7 @@ public: | ||||
|  | ||||
|       CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l)); | ||||
|  | ||||
|   } | ||||
|     }; | ||||
|  | ||||
|     template <class distribution>  inline void fill(ComplexF &l,std::vector<distribution> &dist){ | ||||
|       dist[0].reset(); | ||||
| @@ -340,13 +333,13 @@ public: | ||||
|   }; | ||||
|  | ||||
|   class GridParallelRNG : public GridRNGbase { | ||||
| private: | ||||
|  | ||||
|     double _time_counter; | ||||
|  | ||||
|   public: | ||||
|     GridBase *_grid; | ||||
|     unsigned int _vol; | ||||
|  | ||||
| public: | ||||
|   GridBase *Grid(void) const { return _grid; } | ||||
|     int generator_idx(int os,int is) { | ||||
|       return is*_grid->oSites()+os; | ||||
|     } | ||||
| @@ -370,14 +363,13 @@ public: | ||||
|  | ||||
|       double inner_time_counter = usecond(); | ||||
|  | ||||
|     int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid | ||||
|     int Nsimd  = _grid->Nsimd();  // guaranteed to be the same for l.Grid() too | ||||
|     int osites = _grid->oSites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity | ||||
|       int multiplicity = RNGfillable_general(_grid, l._grid); // l has finer or same grid | ||||
|       int Nsimd  = _grid->Nsimd();  // guaranteed to be the same for l._grid too | ||||
|       int osites = _grid->oSites();  // guaranteed to be <= l._grid->oSites() by a factor multiplicity | ||||
|       int words  = sizeof(scalar_object) / sizeof(scalar_type); | ||||
|  | ||||
|     autoView(l_v, l, CpuWrite); | ||||
|     thread_for( ss, osites, { | ||||
|       ExtractBuffer<scalar_object> buf(Nsimd); | ||||
|       parallel_for(int ss=0;ss<osites;ss++){ | ||||
|         std::vector<scalar_object> buf(Nsimd); | ||||
|         for (int m = 0; m < multiplicity; m++) {  // Draw from same generator multiplicity times | ||||
|  | ||||
|           int sm = multiplicity * ss + m;  // Maps the generator site to the fine site | ||||
| @@ -391,20 +383,23 @@ public: | ||||
|               fillScalar(pointer[idx], dist[gdx], _generators[gdx]); | ||||
|           } | ||||
|           // merge into SIMD lanes, FIXME suboptimal implementation | ||||
| 	merge(l_v[sm], buf); | ||||
|           merge(l._odata[sm], buf); | ||||
|         } | ||||
|       } | ||||
|       }); | ||||
|     //    }); | ||||
|  | ||||
|       _time_counter += usecond()- inner_time_counter; | ||||
|   } | ||||
|     }; | ||||
|  | ||||
|     void SeedUniqueString(const std::string &s){ | ||||
|       std::vector<int> seeds; | ||||
|       std::stringstream sha; | ||||
|       seeds = GridChecksum::sha256_seeds(s); | ||||
|       for(int i=0;i<seeds.size();i++) {  | ||||
|         sha << std::hex << seeds[i]; | ||||
|       } | ||||
|       std::cout << GridLogMessage << "Intialising parallel RNG with unique string '"  | ||||
|                 << s << "'" << std::endl; | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl; | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl; | ||||
|       SeedFixedIntegers(seeds); | ||||
|     } | ||||
|     void SeedFixedIntegers(const std::vector<int> &seeds){ | ||||
| @@ -426,13 +421,12 @@ public: | ||||
|       //////////////////////////////////////////////// | ||||
|  | ||||
|       // Everybody loops over global volume. | ||||
|     thread_for( gidx, _grid->_gsites, { | ||||
| 	// Where is it? | ||||
| 	int rank; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
|       parallel_for(int gidx=0;gidx<_grid->_gsites;gidx++){ | ||||
|  | ||||
| 	// Where is it? | ||||
| 	int rank,o_idx,i_idx; | ||||
| 	std::vector<int> gcoor; | ||||
|  | ||||
| 	Coordinate gcoor; | ||||
| 	_grid->GlobalIndexToGlobalCoor(gidx,gcoor); | ||||
| 	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
|  | ||||
| @@ -442,7 +436,8 @@ public: | ||||
| 	  _generators[l_idx] = master_engine; | ||||
| 	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
| 	} | ||||
|     }); | ||||
|  | ||||
|       } | ||||
| #else  | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       // Machine and thread decomposition dependent seeding is efficient | ||||
| @@ -462,13 +457,13 @@ public: | ||||
|  | ||||
|       { | ||||
| 	// Obtain one reseeded generator per thread | ||||
|       int Nthread = 32; // Hardwire a good level or parallelism | ||||
| 	int Nthread = GridThread::GetThreads(); | ||||
| 	std::vector<RngEngine> seeders(Nthread); | ||||
| 	for(int t=0;t<Nthread;t++){ | ||||
| 	  seeders[t] = Reseed(master_engine); | ||||
| 	} | ||||
|  | ||||
|       thread_for( t, Nthread, { | ||||
| 	parallel_for(int t=0;t<Nthread;t++) { | ||||
| 	  // set up one per local site in threaded fashion | ||||
| 	  std::vector<uint32_t> newseeds; | ||||
| 	  std::uniform_int_distribution<uint32_t> uid;	 | ||||
| @@ -477,7 +472,7 @@ public: | ||||
| 	      _generators[l] = Reseed(seeders[t],newseeds,uid); | ||||
| 	    } | ||||
| 	  } | ||||
|       }); | ||||
| 	} | ||||
|       } | ||||
| #endif | ||||
|     } | ||||
| @@ -495,8 +490,8 @@ public: | ||||
|  | ||||
|       uint32_t the_number; | ||||
|       // who | ||||
|       std::vector<int> gcoor; | ||||
|       int rank,o_idx,i_idx; | ||||
|     Coordinate gcoor; | ||||
|       _grid->GlobalIndexToGlobalCoor(gsite,gcoor); | ||||
|       _grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
|  | ||||
| @@ -521,5 +516,5 @@ template <class sobj> inline void random(GridSerialRNG &rng,sobj &l)   { rng.fil | ||||
|   template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); } | ||||
|   template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| } | ||||
| #endif | ||||
|   | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user