1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 15:27:06 +01:00

Compare commits

..

381 Commits

Author SHA1 Message Date
229709a980 Remove Zmobius for faster compile on this bracnh only 2021-03-08 19:34:35 -08:00
9295eeadfe Optoin to use GpuComplex iin Wilson kernel 2021-02-10 06:51:23 -08:00
36f471e333 Unrolled loops 2021-02-09 16:09:23 -08:00
ca4eadd4ab Sycl kernels 2021-02-09 14:36:22 -05:00
d954595922 SyCL optimised hand unrolled kernels and const functor patches. 2021-02-09 11:39:39 -05:00
1ac13ec3a7 Merge pull request #338 from paboyle/bugfix/maxnorm2
Fixed compile issues with maxLocalNorm2 for non-scalar lattices
2021-02-08 12:08:11 -05:00
55de69a569 Fixed compile issues with maxLocalNorm2 for non-scalar lattices
maxLocalNorm2 test now reuses the random field
2021-02-08 12:03:16 -05:00
eda9ab487b MADWF 5d source option for hadrons - look at Grid of source
Abort on GPU error
2021-02-08 10:47:22 -05:00
cd99edcc5f maxLocalNorm2() 2021-02-04 18:25:49 -05:00
69f1f04f74 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2021-01-21 21:39:59 -05:00
11a5fd09d6 Hot config 2021-01-21 21:39:41 -05:00
ff1fa98808 Fix for GPU conserveed current 2021-01-21 21:38:23 -05:00
b0339bc5a4 Merge branch 'feature/conjugate-bc-dirs' into develop 2021-01-15 09:28:39 -05:00
3c23a947cc Fixed test for very much non-unit det 2021-01-15 09:16:02 -05:00
56111bb823 Merge branch 'develop' into feature/conjugate-bc-dirs 2021-01-14 21:01:22 -05:00
99445673f6 Gparity fix, and plaquette IO 2021-01-14 21:00:36 -05:00
97a59643f7 Red black coarse space 2021-01-14 20:49:13 -05:00
579595f547 Red black on coarse space 2021-01-14 20:48:35 -05:00
281ac5fc12 Red black support on coars 2021-01-14 20:48:08 -05:00
d8fa903b02 G5 on coarse spaces 2021-01-14 20:47:28 -05:00
eaff0f3aeb Gamma5 on coaree spaces 2021-01-14 20:46:58 -05:00
e8e20c01b2 Coarsened vector test 2021-01-14 20:46:21 -05:00
a4afc3ea2a Red black coarse space 2021-01-14 20:44:16 -05:00
3fe75bc7cb Merge pull request #329 from nmeyer-ur/feature/a64fx-3
Revised dslash/dwf kernels for A64FX
2020-12-20 08:17:15 -05:00
45d49d8648 clean up 2020-12-19 03:35:18 +01:00
6013183361 removed Asm impls 2020-12-19 03:25:01 +01:00
4b882e8056 fixed lost bracket 2020-12-19 03:09:20 +01:00
3f9ae6e7e7 Merge branch 'develop' into feature/a64fx-3 2020-12-19 02:37:11 +01:00
909acd55cd vnum variant for prefetches 2020-12-19 02:00:22 +01:00
4dd9e39e0d up to +36% performance gain for dslash/dwf on QPACE 4 using GCC 10.1.1 2020-12-19 00:54:31 +01:00
7adb253e25 Merge pull request #328 from mmphys/feature/mrespatch
Enable existing conserved current code for CUDA
2020-12-17 11:10:29 -05:00
873519e960 Enable existing conserved current code for CUDA (compiles OK for CUDA 10.1). Add option to Test_cayley_mres to load a configuration 2020-12-14 16:06:10 +00:00
9aec4a3c26 SYCL 2020-12-10 02:11:17 -08:00
70510d151b Merge pull request #327 from paboyle/feature/gparity_twist_GPU
Feature/gparity twist gpu
2020-12-07 12:02:20 -05:00
9e7bacb5a4 Merge branch 'develop' into feature/gparity_twist_GPU 2020-12-07 11:55:39 -05:00
2ef1fa66a8 Improved performance of G-parity kernel for GPUs by simplifying multLink implementation 2020-12-07 11:53:35 -05:00
cf76741ec6 Intel DPCPP Gold happy now (compiles all, runs Benchmark_dwf_fp32 ) 2020-12-03 03:47:11 -08:00
497e7c1c40 Duplicate code 2020-12-02 17:55:30 -08:00
888eacd3b8 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-24 21:46:33 -05:00
321f0f51b5 Project to SU(N) 2020-11-24 21:46:10 -05:00
30ad9578a2 Merge branch 'lehner-feature/gpt' into develop 2020-11-24 06:10:24 -05:00
9dce101586 Merge branch 'feature/gpt' of https://github.com/lehner/Grid into lehner-feature/gpt 2020-11-24 06:10:16 -05:00
97e264d0ff Christoph's changes 2020-11-23 15:46:11 +00:00
683a5e5bf5 Stencil use host vector for integera table on enable-shared=no and mirror it on device 2020-11-23 15:39:51 +00:00
d4861a362c Stencil use non-UVM memory for look up table on enable-shared=no 2020-11-23 15:38:49 +00:00
5ff3eae027 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-20 13:14:44 -05:00
147dc15d26 Update 2020-11-20 13:13:59 -05:00
c61ea72949 Merge pull request #19 from paboyle/develop
Sync
2020-11-20 17:31:13 +01:00
86e8b9fe38 ALLOC_ALIGN removed 2020-11-20 17:07:16 +01:00
612e468889 Configurable ALLOC_ALIGN and ALLOC_CACHE 2020-11-20 16:48:28 +01:00
4ea8d128c2 Merge pull request #18 from paboyle/develop
Sync
2020-11-20 15:36:50 +01:00
e49b7f2f88 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-19 19:24:41 +01:00
aace3d47b9 partial work in progress 2020-11-19 19:24:14 +01:00
d5049949a4 Starting to fix reunitarise 2020-11-19 19:23:41 +01:00
f1c7480e3c Warning remove 2020-11-19 19:23:03 +01:00
5adae5d6ff Unused variable remove 2020-11-19 19:22:12 +01:00
a8412ace05 Merge pull request #317 from i-kanamori/develop
adding an error check for input: Parameters.StartingType
2020-11-18 23:09:40 -05:00
9fd1c2ad4b Merge pull request #325 from DanielRichtmann/feature/threaded-clover-inversion
Threaded clover term inversion
2020-11-18 23:08:37 -05:00
4cf3575353 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-18 03:07:36 +00:00
804a810d68 Wildcard mismatch 2020-11-18 03:06:53 +00:00
8fcb392e24 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-17 04:51:31 -08:00
dd8d70eeff Build without LIME 2020-11-17 04:41:15 -08:00
aa8aba6543 --shm-force-mpi 2020-11-16 20:15:50 -05:00
13df14f96e Switch off SHM paths with --disable-shm 2020-11-16 18:07:15 -05:00
3aab983760 Flop count set as in DiRAC-ITT-2020 (mistaken 20% low, but must maintain consistency) 2020-11-16 17:13:58 +01:00
9c4dcc5ea3 Merge branch 'master' into develop 2020-11-16 16:34:57 +01:00
a1063ddbb9 Update options and simplify 2020-11-13 04:11:03 +01:00
18ef8056ec Hide Shared Memory 2020-11-13 04:10:40 +01:00
1c673977fa Must ask for COMMMS_THREADS 2020-11-13 03:59:36 +01:00
e9bc748828 Useful GPU machine benchmark for GDR used to shakeout Booster at Juelich - see slack earlyaccess channel 2020-11-13 03:58:34 +01:00
f48156529b Work on 2,2,2,8 ranks 2020-11-13 03:57:58 +01:00
d05ce01809 TOFU behaviour now optional THREAD_MULTIPLE or THREAD_SERIALIZED 2020-11-13 03:52:19 +01:00
cf23eff60e Device to Device, Memset, cannot assume UVM == Communicable 2020-11-13 03:51:08 +01:00
6e313575be Use of default GPU is behaviour, not a system property. Move Summit specific to configure.ac 2020-11-13 03:50:16 +01:00
b13d1f7238 TOFU compat flag to help Isaaku 2020-11-13 03:49:44 +01:00
b5e7945dd9 Option for host or device Cshift implementation 2020-11-13 01:38:54 +01:00
7535566f54 Option for bounce through the SHM buffer 2020-11-12 22:54:27 +01:00
50b808ab33 Configure option between host and device 2020-11-12 22:28:12 +01:00
f16c2665f5 Host memory explict 2020-11-12 20:29:58 +01:00
41e28015ae Volume divisible guarantee 2020-11-07 13:32:16 +01:00
a0ccbb3bd6 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-11-01 01:16:35 +00:00
5eeabaa2bb HIP fix 2020-11-01 01:16:01 +00:00
00d0d6d008 Hip Free managed 2020-10-31 18:14:31 -04:00
537a9f7030 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-10-31 18:13:30 -04:00
cc9c993f74 Project on group fix on GPU tracked to reciprocal sqrt collision between CUDA and Grid rsqrt 2020-10-31 18:12:47 -04:00
d10422ded8 Test project on group 2020-10-31 18:12:30 -04:00
f313565a3c HiP compile 2020-10-31 12:12:40 +00:00
b3881d2636 Thread inversion of clover term 2020-10-30 16:18:58 +01:00
61d5860b46 Merge pull request #318 from rrhodgson/feature/BaryonSpinMat
Added untraced baryon contraction code
2020-10-28 18:39:59 +00:00
52d17987dc BaryonUtils.h updated debug output 2020-10-23 11:41:08 +01:00
19d8bba97d BaryonUtils function naming change 2020-10-21 11:58:53 +01:00
463d72d322 Added untraced baryon contraction code 2020-10-19 16:13:28 +01:00
d060341168 add an error check for Parameters.StartingType 2020-10-16 21:39:17 +09:00
c772bcd514 Merge https://github.com/paboyle/Grid into develop 2020-10-16 20:30:32 +09:00
3362f8dfa0 happy compile 2020-10-14 22:59:41 -04:00
bf3c9857e0 Closure changes 2020-10-14 21:37:14 -04:00
a88b3ceca5 Closure cases 2020-10-14 21:33:51 -04:00
aa135412f5 toComplex, toReal 2020-10-13 22:25:01 -04:00
9945399e60 Reaality issues fix by drop from ET 2020-10-13 22:24:32 -04:00
5eeffa49e8 Reality forced included 2020-10-13 22:23:57 -04:00
3f06209720 Pretty print 2020-10-13 22:18:51 -04:00
12e239dd9f Merge branch 'release/dirac-ITT-2020' 2020-10-13 13:38:29 -04:00
af2301afbb Merge pull request #312 from i-kanamori/debug_512
add reordring of random number generators in IO
2020-10-13 11:42:12 -04:00
f98856a26f Merge pull request #314 from smangham/issue_readme_precision
Fix for deprecated configure options in documentation (issue #313)
2020-10-13 11:41:38 -04:00
d55cc5b380 Fixed typo on --enable-comm, removed all references to --enable-precision except for config options, where it is listed as deprecated. Removed travis test for single precision. 2020-10-12 12:33:13 +01:00
c2b688abc9 Benchmark_IO: reducing max local volume to 32^4 2020-10-10 16:52:56 +01:00
b0d61b9687 Benchmark_IO cleaner output 2020-10-09 21:46:45 +01:00
5f893bf9af Benchmark_IO procurement sizes 2020-10-09 21:31:59 +01:00
0e17bd6597 I/O benchmark cleanup 2020-10-09 20:29:57 +01:00
22caa158cc multi-pass I/O benchmark, with statistic and robustness summary 2020-10-09 20:29:40 +01:00
b24a504d7c hook to access last parallel I/O performance measurement 2020-10-09 20:28:54 +01:00
992ef6e9fc more runtime 2020-10-08 22:19:20 -04:00
f32a320bc3 Single prec benchmark in double prec compile 2020-10-08 19:52:08 -04:00
5f0fe029d2 Improve meemory benchmarks for GPU (avoid host mem ping pong) 2020-10-08 19:51:28 -04:00
6b1486e89b fixing number of colours defaulting to 4 in most cases 2020-10-08 16:31:24 +01:00
3f9c427a3a Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-10-07 13:12:57 -04:00
d201277652 Expose Nc as a compile time configure option.
Remove precision option
2020-10-07 13:07:00 -04:00
fdda7cf9cf Merge branch 'feature/benchmark-io-update' into develop 2020-10-07 15:57:53 +01:00
e22d30f715 Merge branch 'develop' into feature/benchmark-io-update 2020-10-07 15:56:39 +01:00
1ba25a0d8c more I/O benchmark code cleaning 2020-10-07 15:38:41 +01:00
9ba3647bdf script to convert I/O benchmark logs to CSV 2020-10-07 15:35:03 +01:00
5ee832f738 I/O benchmark code cleaning 2020-10-07 15:31:51 +01:00
467deee46f Merge branch 'debug_512' into develop 2020-10-07 15:18:44 +09:00
35a69a5133 SU4 x SU4 2020-10-06 21:48:35 -04:00
e9c5a271a8 fixing potential issues with log alignment and timer I/O 2020-10-06 17:58:16 +01:00
acac2d6938 standard C/C++ I/O in benchmark 2020-10-06 17:57:00 +01:00
97db2b8d20 add reordring of random number generator in IO 2020-10-06 17:25:59 +09:00
80fd6ab407 Merge pull request #17 from paboyle/develop
sync upstream
2020-10-06 09:01:39 +02:00
5534921bee Merge pull request #16 from DanielRichtmann/feature/gpt-coarsenedmatrix
Enable checkerboard operations for CoarsenedMatrix
2020-10-01 10:55:13 +02:00
ace9cd64bb dpcpp happy 2020-09-29 08:03:46 -07:00
a3e2aeb603 dpcpp options happiness 2020-09-29 06:50:10 -07:00
049dd25785 Revert accidental commit thanks michael 2020-09-23 04:13:50 -04:00
d43d372294 Merge pull request #311 from mmphys/bugfix/MPIasynch
Asynchronous calls removed - reflect this in Communicator_none.cc
2020-09-22 10:41:48 -04:00
b71a081cba Asynchronous calls removed - reflect this in Communicator_none.cc
(Opportunistic doc update - OpenMP support on Mac OS)
2020-09-21 09:33:23 +01:00
c48909590b MPI asynch call removal 2020-09-17 20:47:32 +01:00
446ef40570 HIP IPC 2020-09-17 20:31:46 +01:00
81441e98f4 HIP runs sensible 2020-09-16 03:35:03 +01:00
ecd3f890f5 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-09-16 02:30:14 +01:00
1c881ce23c HIP does not like half2 visible members x and y so must define own Half2 2020-09-16 02:28:33 +01:00
dacbbdd051 Hip Happy Birthday 2020-09-16 00:37:02 +01:00
2859955a03 HIP requires "inline" 2020-09-16 00:36:13 +01:00
cc220abd1d inline for HIP 2020-09-16 00:35:38 +01:00
d1c0c0197e HipCC requires inline on definition 2020-09-16 00:35:06 +01:00
fd9424ef27 innlines required to make HIP happy 2020-09-16 00:34:32 +01:00
a5c35c4024 Make HIP / Vega happy 2020-09-16 00:33:53 +01:00
e03b64dc06 HIP default flaags to work on ROCM 2020-09-16 00:33:09 +01:00
4677c40195 HIP improvements 2020-09-16 00:32:27 +01:00
288c615782 Hip improvements 2020-09-16 00:31:50 +01:00
48e81cf6f8 Hip Pragmas 2020-09-16 00:31:03 +01:00
5cffa05c7e remove slab allocator file 2020-09-13 14:06:25 -04:00
d50a2164d7 remove slab allocator 2020-09-13 14:06:06 -04:00
32ff766dbd fix evict scheme, slab alloc 2020-09-13 14:02:53 -04:00
01652d8cfe SlabAllocator 2020-09-13 05:56:02 -04:00
4d2dc7ba03 Enable even-odd for CoarsenedMatrix 2020-09-11 20:32:02 +02:00
51d1beb1f3 Merge pull request #15 from paboyle/develop
Sync with upstream
2020-09-07 14:20:33 +02:00
65b724bb5f 2 level hddcr 2020-09-03 21:46:43 -04:00
6dbd117aa5 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-09-03 20:30:49 -04:00
198b29f618 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2020-09-03 20:29:54 -04:00
a8309638d4 UVM check in MPI calls 2020-09-03 20:29:26 -04:00
f98a4e880e Merge pull request #310 from kostrzewa/accelerator_vector_stream_op_no_backspace
do not use backspace in AcceleratorVector (Coordinate) output stream operator
2020-09-03 20:24:59 -04:00
8244caff25 Remove the asynchronous non-Stencil calls. 2020-09-03 18:52:55 -04:00
bcd7895362 Include cuda.h 2020-09-03 15:49:13 -04:00
85b1c5df39 A never hit case that is not 100% confident is asserted for safety 2020-09-03 15:48:16 -04:00
b4255140d6 Stale data member eliminated 2020-09-03 15:47:46 -04:00
0c3095e173 Comms buffers to device memory 2020-09-03 15:45:35 -04:00
d3ce60713d UVM, Device and Lattice/aligned allocators 2020-09-03 15:44:13 -04:00
eac1f08b7b Close expressions passed as an argument 2020-09-01 15:30:33 -04:00
1654c4f3c0 Closure improved 2020-09-01 15:29:45 -04:00
8807d998bc closure improved 2020-09-01 15:29:11 -04:00
5791021dcd Speed up Cshift more with coalesced 2020-09-01 15:28:15 -04:00
c273fb051c Peek poke laattice 2020-09-01 15:27:59 -04:00
c545530170 little worry large Nbasis doesnt compile GPU 2020-09-01 00:14:33 -04:00
d982a5b6d5 Fix coaarsened 2020-09-01 00:14:04 -04:00
15ca8637f3 No norms in HermOp 2020-09-01 00:13:32 -04:00
cbc995b74c Made better interface 2020-09-01 00:12:54 -04:00
8b74174d74 Eigen tensor serialisatiino happy undeer GPU. Regret agreeing to let us couple Eigen types to Grid IO 2020-09-01 00:03:26 -04:00
e21fef17df real and imag part not in ET 2020-08-31 23:56:26 -04:00
3d27708f07 Basic where test 2020-08-31 23:55:49 -04:00
b918744184 Prettificatoin 2020-08-31 23:54:46 -04:00
7d14a3c086 Where working 2020-08-31 23:53:46 -04:00
e14a84317d GPU math unary calls 2020-08-31 23:50:49 -04:00
6c31b99f1f I knew coupling Eigen Tensor to Grid serialisation was a bad iddea.
Now the complex is different on GPU creates probblems
2020-08-31 23:49:19 -04:00
9522dcd611 Remove dead commented ouot coode 2020-08-31 23:40:29 -04:00
ed469898dc coalesced ET expressions 2020-08-31 23:38:40 -04:00
1eee94a809 Sorting real/im in read coalesced GPU ET 2020-08-31 23:36:49 -04:00
54523369a3 do not use backspace in Coordinate output stream operator 2020-08-31 19:39:36 +02:00
a98c91c2a5 Merge pull request #309 from kostrzewa/format_benchmark_wilson_sweep
Format benchmark wilson sweep
2020-08-31 12:43:46 -04:00
a9b92867a8 use tabulator 2020-08-31 18:41:17 +02:00
65920faeba correct formatting of Benchmark_wilson_sweep output 2020-08-31 18:39:27 +02:00
249e2db87d Merge pull request #14 from DanielRichtmann/feature/gpt-coarsenedmatrix
Expose more functions in CMat
2020-08-27 15:18:56 +02:00
cf3535d16e Expose more functions in CMat 2020-08-27 14:06:48 +02:00
d61ee817f4 Merge pull request #13 from DanielRichtmann/feature/gpt-coarsenedmatrix
Changes needed for GPT MG
2020-08-27 12:11:06 +02:00
3448b7387c Almost there to coalesced ET 2020-08-26 17:04:49 -04:00
47b89d2739 Pragma protection improvementt 2020-08-26 17:04:27 -04:00
2a75516330 state MPI/SLURM message only on world_rank zero 2020-08-26 12:34:17 -04:00
b2087f14c4 Fix CoarsenedMatrix regarding illegal memory accesses
Need a reference to geom since the lambda copies the this pointer which points to host memory, see
- https://docs.nvidia.com/cuda/cuda-c-programming-guide/#star-this-capture
- https://devblogs.nvidia.com/new-compiler-features-cuda-8/
2020-08-24 17:46:47 +02:00
dd1ba266b2 Fix mapping between dir + disp and point in CMat 2020-08-24 17:46:46 +02:00
1292d59563 Add a typedef + broaden interface of CMat 2020-08-24 17:46:45 +02:00
9877ed9bf8 Merge pull request #12 from paboyle/develop
Sync
2020-08-22 16:35:35 +02:00
f0dc0f3621 fix compile issue on Qpace3 2020-08-22 13:57:33 +02:00
1efe30d6cc SLurm stop nodes using same GPU 2020-08-21 02:02:53 +02:00
0b787e9fe0 Avoid namespaec collision to make gcc happy 2020-08-20 22:23:29 +02:00
37ec4b241c Default thread count sensible 2020-08-20 22:12:31 +02:00
63b0a19f37 Merge pull request #11 from paboyle/develop
Sync
2020-08-20 20:53:39 +02:00
90ea7dfa99 Accelerator loops for device resident comms buf 2020-08-19 22:40:44 +02:00
f866d7c33e Merge pull request #307 from lehner/feature/gpt
Merged Nils's A64FX and minor fixes (MemoryManager::InitMessage, Tensor_index zeroit, ...)
2020-08-18 23:27:21 -04:00
542bdef198 cleanup comments 2020-08-14 18:39:44 +02:00
06007db3d9 true shm_none implementation with GPUs that disables the use of device shared memory for the stencils 2020-08-14 18:37:00 +02:00
12e6059a70 Merge branch 'feature/gpt' of https://github.com/lehner/Grid into feature/gpt 2020-08-13 16:16:52 +02:00
dbaa24ebf6 further GPU memory access fixes (with this GPT passes all single-rank tests on non-summit GPUs) 2020-08-13 16:14:15 +02:00
3276aa67dc Update 2020-08-12 14:15:53 -04:00
3b30b9f0c0 Merge branch 'feature/gpt' of https://github.com/lehner/Grid into feature/gpt 2020-08-06 16:59:17 +02:00
69db4816f7 fix variable capture in Scatter_plane_merge on accelerators 2020-08-06 16:57:16 +02:00
3abe09025a when using SHM_NONE allow multiple ranks per node but without using shared memory 2020-08-06 14:42:38 +02:00
e33878e0de Trigger re-run of CI 2020-08-06 11:50:24 +02:00
27b4fbf3f0 assert for forbidden code path and fix check for faster CPU codepath in basisRotate 2020-08-03 07:57:33 -04:00
968a90633a Zero -> zeroit in Tensor_index 2020-07-31 02:07:17 -04:00
6365a89ba3 create separate InitMessage for MemoryManager that can be called after communicator setup 2020-07-30 07:25:05 -04:00
ddbb008694 Merge pull request #10 from lehner/feature/gpt-sycl
Feature/gpt sycl
2020-07-30 13:12:09 +02:00
7997e0a449 Merge branch 'feature/gpt' into feature/gpt-sycl 2020-07-30 13:11:31 +02:00
197612bc7a fast cpu basisRotate and other small cleanups 2020-07-30 07:08:54 -04:00
0e88bf4bff remove Nils's default pragma 2020-07-29 10:24:35 -04:00
3e64d78469 include versions.h again and add back asserts in Test_simd 2020-07-29 10:18:05 -04:00
2004611def Merge pull request #9 from nmeyer-ur/feature/a64fx-2
Feature/a64fx 2
2020-07-29 14:54:20 +02:00
a2868c96a4 Merge pull request #8 from paboyle/develop
Doc recompile
2020-07-29 14:10:07 +02:00
ea7f8fda5e fix typo 2020-07-22 09:34:05 +02:00
906b78811b exit in Init when using --comms-overlap 2020-07-22 08:57:01 +02:00
97703b181b Merge pull request #7 from paboyle/develop
Merge current develop
2020-07-12 16:24:53 +02:00
d9474c6cb6 compiler-independent build using --enable-simd=A64FX 2020-07-09 10:07:02 +02:00
bbd145382b enable --enable-simd=A64FX in configure 2020-07-08 12:43:51 +02:00
1b08cb7300 Merge branch 'develop' into feature/a64fx-2 2020-07-08 08:18:18 +02:00
337d9dc043 move barrier in Benchmark_wilson 2020-07-08 08:13:40 +02:00
8726e94ea7 merge upstream develop 2020-07-07 20:26:47 +02:00
67db4993c2 reset head, update SVE readme 2020-07-07 19:54:52 +02:00
fd3c8b0e85 correct build instructions qp4 2020-07-01 09:00:38 +02:00
1635c263ee disable TOFU by default 2020-06-30 19:27:08 +02:00
5b117865b2 Merge pull request #6 from paboyle/sycl
Sycl
2020-06-20 09:44:44 +02:00
05bbc49a99 Edge case in GetShmDim check 2020-06-19 12:01:23 -04:00
81a8209749 ConvertType for blockInnerProduct 2020-06-18 11:53:21 -04:00
a87e45ba25 SVE readme update 2020-06-18 11:23:08 +02:00
465856331a switch back to serialized; wrong results on single too 2020-06-15 15:39:39 +02:00
cc958aa9ed switch back to standard MPI_init due to wrong results in Benchmark_wilson using comms-overlap 2020-06-15 14:21:38 +02:00
a25e4b3d0c pred 32/64 for float/double instead of 8 in VLA patch 2020-06-13 14:44:37 +02:00
d1210ca12a switch to double/float instead of float64_t/float32_t in VLA patch 2020-06-13 13:59:32 +02:00
36ea0e222a type traits for ComplexF/D in VLA patch; cosmetics in VLS intrinsics 2020-06-13 13:42:35 +02:00
92281ec22d add 3 op Mult for VLA 2020-06-12 18:49:05 +02:00
87266ce099 comment out fcmla in vector types: need also MultAddReal 2020-06-12 18:37:19 +02:00
2a23f133e8 reenable fcmla for VLA 2020-06-12 17:30:38 +02:00
8dbf790f62 correct tbl2 for sp 2020-06-12 17:12:34 +02:00
2402b4940e vec_imm in float 2020-06-12 15:17:38 +02:00
2111052fbe apply VLA patch for memcpy reduction suggested by Arm, CAS-162542-D6W7Z7 2020-06-12 14:49:19 +02:00
433766ac62 revert Add/SubTimesI and prefetching in stencil
This reverts commit 9b2699226c.
2020-06-08 12:02:53 +02:00
93a37c8f68 test prefetch to L2 in stencil 2020-06-08 09:39:50 +02:00
9872c76825 introduce AddTimesI and SubTimesI; slight benefit in operators, but < 1%; breaks all other impls 2020-06-03 15:20:13 +02:00
5ee3ea2144 round-up after testing of prefetches in stencil close 2020-06-03 11:58:20 +02:00
5050833b42 revert changes due to performance penalty in Wilson using MPI 2020-06-02 13:08:57 +02:00
7bee4ebb54 correct predication for svcadd 2020-06-02 10:51:39 +02:00
71cf9851e7 correct type for vecd in TimesI and TimesMinusI 2020-06-02 10:44:15 +02:00
b4735c9904 correct zero in svcadd 2020-06-02 10:38:05 +02:00
9b2699226c use fcadd in TimesI and TimesMinusI instead of tbl and neg 2020-06-02 10:32:44 +02:00
5f52804907 update calculation of data 2020-05-30 10:55:17 +02:00
936071773e correct throughput in wilson and dwf 2020-05-29 22:15:59 +02:00
1732f9319e more mods; counters seem to work correctly 2020-05-29 18:44:00 +02:00
91c81cab30 some corrections; compiles on my laptop; untested 2020-05-29 18:19:22 +02:00
38164f8480 include counters in WilsonFermionImplementation.h 2020-05-29 17:59:26 +02:00
f013979791 add counter support in WilsonFermion.h 2020-05-29 17:13:59 +02:00
e947b563ea add space in stencil output 2020-05-29 17:11:17 +02:00
5cb3530c34 enable counters in Benchmark_wilson 2020-05-29 15:44:52 +02:00
250008372f update SVE readme 2020-05-29 15:44:25 +02:00
4fedd8d29f switch to MPI_THREAD_SERIALIZED instead of SINGLE 2020-05-27 14:08:34 +02:00
6ddcef1bca fix build error enabling fcmla/mac in vector types for VLA 2020-05-21 21:21:03 +02:00
8c5a5fdfce disable fcmla in vector type building for VLA 2020-05-21 19:41:42 +02:00
046b1cbbc0 enable fcmla in tensor arithmetics; fixed-size works, VLA does not compile 2020-05-21 19:39:07 +02:00
a65ce237c1 clean up; Exch1 VLA sp+dp integrate, tested, working 2020-05-21 09:48:06 +02:00
cd27f1005d clean up; Exch1 sp integrate, tested, working 2020-05-21 08:45:43 +02:00
f8c0a59221 clean up; Exch1 dp integrate, tested, working 2020-05-21 02:48:14 +02:00
832485699f save some cycles in HtoD and DtoH by direct instead of multi-pass conversion 2020-05-20 23:04:35 +02:00
81484a4760 symmetrize Mult and MultAddComplex 2020-05-20 22:36:45 +02:00
9a86059761 symmetrize VLA and fixed size build messages 2020-05-20 20:05:42 +02:00
b780b7b7a0 guard prevents multiple TOFU messages 2020-05-20 19:20:59 +02:00
9e085bd04e guard prevents multiple A64FX build messages 2020-05-20 19:16:30 +02:00
6b6bf537d3 comment out mac in vector types 2020-05-18 20:36:16 +02:00
323a651c71 correct typo 2020-05-18 19:58:27 +02:00
9f212679f1 support fcmla in vector_types, untested 2020-05-18 19:55:18 +02:00
032f7dde1a update SVE readme, asm generator 2020-05-18 19:10:36 +02:00
50b1db1e8b implemented correct _m form (using 3 operands instead of 2) 2020-05-15 10:01:05 +02:00
015d8bb38a introduced assertions in Benchmark_wilson, removed data output from Benchmark_dwf 2020-05-15 09:15:50 +02:00
10a34312dc some fixed-size code clean up 2020-05-14 23:20:16 +02:00
db8c0e7584 replaced _x form with _m form when using even/odd predication 2020-05-14 23:17:35 +02:00
d15ccad8a7 switched to vec* in Reduce 2020-05-12 20:41:14 +02:00
0009b5cee8 updated SVE_README 2020-05-12 19:02:33 +02:00
20d1941a45 enabled asm kernels for fixed-size A64FXFIXEDSIZE 2020-05-12 19:01:12 +02:00
b7c76ede29 Removed some assertions in Test_simd and removed exit() in Reduce 2020-05-11 22:43:00 +02:00
05edf803bd corrected typo 2020-05-12 03:59:59 +09:00
78b8e40f83 switched to gcc's internal data types 2020-05-11 18:11:23 +02:00
fc2e9850d3 temporarily enable TOFU by default when using A64FX or A64FXFIXEDSIZE 2020-05-11 13:25:02 +02:00
ffaaed679e MPI_THREAD_SINGLE hack for Fugaku, enabled by -DTOFU 2020-05-11 13:21:39 +02:00
b2fd8b993a fixed-size clean up 2020-05-09 22:53:42 +02:00
291ee8c3d0 updated fixed-size implementation; only Exch1 and prefetches missing 2020-05-09 22:18:02 +02:00
e1a5b3ea49 unions for tables eliminate explicit loads, gcc does not complain 2020-05-09 21:21:57 +02:00
55a55660cb reverted changes 2020-05-09 12:48:42 +02:00
ceb8b374da API change v3 2020-05-08 15:04:44 +02:00
4bc2ad2894 API change v2 2020-05-08 15:00:25 +02:00
798af3e68f retry changing StoD API 2020-05-08 14:34:59 +02:00
b0ef2367f3 testing alternate call to PrecisionChange 2020-05-08 14:22:44 +02:00
71a7350a85 changed 2nd argument in Reduce to native vector type 2020-05-08 12:26:51 +02:00
6f79369955 trying to get rid of macro definition error 2020-05-08 12:19:24 +02:00
f9cb6b979f corrected more typos 2020-05-08 12:11:01 +02:00
ed4d9d17f8 corrected type 2020-05-08 12:09:22 +02:00
fbed02690d some changes in breaking out A64FX: use -DA64FXFIXEDSIZE for fixed size, but also define GEN 2020-05-08 12:05:31 +02:00
39f3ae5b1d corrected more types 2020-05-08 11:07:14 +02:00
e64bec8c8e pulled SVE typedefs out of Optimization 2020-05-08 11:04:21 +02:00
0893b4e552 fixed typos in PrecisionChange 2020-05-08 10:59:07 +02:00
92f0f29670 fixed double overloading vecf in Div, corrected typos 2020-05-08 10:57:23 +02:00
48a340a9d1 GEN seems to defined by default -> some fixes applied 2020-05-08 10:47:49 +02:00
f45621109b placed typedefs in Optimization 2020-05-08 10:41:52 +02:00
32d1a0bbea added even more debug output 2020-05-08 10:39:26 +02:00
267cce66a1 added more debug output 2020-05-08 10:29:28 +02:00
3417147b11 added real fma, corrected typos in tbls; integrated, must supply A64FXGCC with GEN in configure 2020-05-08 10:20:19 +02:00
b338719bc8 first transition to fixed-size done, excl. Exch; next step: integration 2020-05-07 22:33:28 +02:00
2b81cbe2c2 first attempt to introduce tables using fixed-size; still incomplete 2020-05-07 22:01:19 +02:00
acff9d6ed2 transition to fixed size data types almost done; still incomplete 2020-05-07 21:24:07 +02:00
a306a49788 first mods for fixed size; still incomplete 2020-05-07 19:07:49 +02:00
7ef03c5368 updated SVE readme 2020-05-06 16:30:37 +02:00
5abec5b8a9 SVE_readme update, update Grid_vector_types.h 2020-04-25 13:48:26 +02:00
499edc0636 updated SVE_README.txt; defined ARMCLANGCOMPAT macro 2020-04-25 13:41:24 +02:00
d990e61be3 armclang 20.1 settings in SVE readme 2020-04-25 12:11:43 +02:00
3edb2dc2da removed -static from gcc CXXFLAGS 2020-04-24 13:04:34 +02:00
345721220e resolved merge conflict 2020-04-24 10:14:21 +02:00
6db68d6ecb added SVE configure for armclang and gcc 2020-04-24 10:10:47 +02:00
09f0963d1f changes in configure.ac ; to be verified 2020-04-23 11:27:03 +02:00
6f44e3c192 reverted changes in configure.ac ; included SVE configure readme 2020-04-23 11:18:50 +02:00
5893888f87 removed default no-strict-aliasing for gcc-10.0.1 exclusively 2020-04-22 19:29:55 +02:00
39b448affb Merge remote-tracking branch 'origin/develop' into feature/a64fx-2 2020-04-22 17:34:12 +02:00
e54a8f05a9 Exchange1 with generic version for now, should use svtbl2 in final version 2020-04-20 22:45:27 +02:00
64b72fc17f testing gcc 10.0.1: build errors in Exchange1 using -DA64FX and in Lattice_base.h building Dslash only 2020-04-19 01:25:40 +02:00
6fdce60492 revised BodyA64FX; 990 GiB/s Wilson, 687 GiB/s DW using intrinsics (armclang 20.0) 2020-04-16 22:43:32 +02:00
852db4626a re-introduced HOTFIX cause Grid binaries give wrong results otherwise; checked in good gridverter.py 2020-04-15 18:22:19 +02:00
6504a098cc 999 GiB/s Wilson; 694 GiB/s DW (DP) 2020-04-15 15:06:52 +02:00
79a385faca disabled armclang hotfix cause armclang 20.0 performance gets a little 2020-04-15 11:46:55 +02:00
c12a67030a 980 GiB/s Wilson; 680 GiB/s DW (DP) 2020-04-15 10:55:06 +02:00
581392f2f2 now with pf, best results so far using intrinsics+pf 2020-04-12 22:06:14 +02:00
113f277b6a enable dslash asm using -DA64FXASM, additionaly -DDSLASHINTRIN for intrinsics impl 2020-04-11 04:55:01 +02:00
974586bedc Dslash finally works; cleaned up; uses MOVPRFX in assembly 2020-04-10 22:26:40 +02:00
160f78c1e4 changed debug output to variable direct 3 2020-04-10 12:23:07 +02:00
7e4e1bbbc2 changed debug output to variable direct 2 2020-04-10 12:22:04 +02:00
e699b7e9f9 changed debug output to variable direct 2020-04-10 12:18:30 +02:00
a28bc0de90 debug register address test in WilsonHand 2020-04-10 12:07:45 +02:00
14d0fe4d6c added predication in WilsonHand 2020-04-10 12:04:00 +02:00
0ad2e0815c debug output in WilsonHand 2020-04-10 11:56:29 +02:00
1c8ca05e16 Merge branch 'feature/a64fx-2' of https://github.com/nmeyer-ur/Grid into feature/a64fx-2 2020-04-09 23:32:19 +02:00
dc9c8340bb switched to DSLASHINTRIN for A64FX Dslash intrinsics 2020-04-09 23:30:23 +02:00
19eef97503 specialized A64FX Dslash kernels 2020-04-09 23:25:25 +02:00
635246ce50 corrected typo 2020-04-09 21:42:50 +02:00
5cdbb7e71e fixed A64FX Dslash; compiles, but does not specialize -> assertion 2020-04-09 21:23:39 +02:00
8123590a1b changes 2020-04-09 16:45:47 +02:00
86c9c4da8b changes 2020-04-09 16:40:06 +02:00
cd1efee866 changes 2020-04-09 16:35:13 +02:00
bd310932f7 changes 2020-04-09 16:32:31 +02:00
304762e7ac changes 2020-04-09 16:26:01 +02:00
d79ab03a6c changes 2020-04-09 16:19:25 +02:00
d5708e0eb2 more changes 2020-04-09 15:43:34 +02:00
123f6b7a61 more changes 2020-04-09 15:17:19 +02:00
2b6457dd9a added xp/xm recon accum 2020-04-09 15:13:19 +02:00
b367cbd422 defined ADD_RESULT 2020-04-09 15:08:45 +02:00
e252c1aca3 addressing 2020-04-09 15:03:12 +02:00
b140c6a4f9 addressing 2020-04-09 15:01:15 +02:00
326de36467 revised sU addressing scheme 2020-04-09 14:44:25 +02:00
9f224a1647 fixed typo in single 2020-04-09 14:30:21 +02:00
bb46ba9b5f fixed array size in single 2020-04-09 14:28:45 +02:00
dd5a22b36b revised declarations 2020-04-09 14:21:27 +02:00
1ea85b9972 Disabled build message 2020-04-09 13:47:21 +02:00
8fb63f1c25 added A64FX Wilson kernels single precision 2020-04-09 13:41:04 +02:00
77fa586f6c introduced A64FX Wilson kernels 2020-04-09 13:30:06 +02:00
15238e8d5e reduce acle works, clean up 2020-04-03 20:40:44 +02:00
b27e31957a reduce acle revised 2020-04-03 19:46:15 +02:00
46927771e3 reduce acle still needs overhaul 2020-04-03 19:30:48 +02:00
d8cea77707 define simd width in header 2020-04-03 19:22:25 +02:00
5f8a76d490 clean up, reduction in acle 2020-04-03 19:18:24 +02:00
28d49a3b60 build problem resolved 2020-04-03 16:52:48 +02:00
b4c624ece6 added A64FX support 2020-04-03 15:43:23 +02:00
276 changed files with 16291 additions and 2598 deletions

View File

@ -9,11 +9,6 @@ matrix:
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=single
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=double
before_install:
- export GRIDDIR=`pwd`
@ -55,7 +50,7 @@ script:
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- ../configure --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -37,7 +37,9 @@ directory
#endif
//disables and intel compiler specific warning (in json.hpp)
#ifdef __ICC
#pragma warning disable 488
#endif
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp

View File

@ -28,4 +28,7 @@
///////////////////
#include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS
#endif
#endif /* GRID_STD_H */

View File

@ -34,6 +34,12 @@
#define __SYCL__REDEFINE__
#endif
/* HIP save and restore compile environment*/
#ifdef GRID_HIP
#pragma push
#pragma push_macro("__HIP_DEVICE_COMPILE__")
#endif
#define EIGEN_NO_HIP
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
@ -42,7 +48,7 @@
#ifdef __NVCC__REDEFINE__
#pragma pop_macro("__CUDACC__")
#pragma pop_macro("__NVCC__")
#pragma pop_macro("GRID_SIMT")
#pragma pop_macro("__CUDA_ARCH__")
#pragma pop
#endif
@ -52,6 +58,12 @@
#pragma pop
#endif
/*HIP restore*/
#ifdef __HIP__REDEFINE__
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -21,6 +21,7 @@ if BUILD_HDF5
extra_headers+=serialisation/Hdf5Type.h
endif
all: version-cache Version.h
version-cache:
@ -53,6 +54,17 @@ Version.h: version-cache
include Make.inc
include Eigen.inc
#extra_sources+=$(ZWILS_FERMION_FILES)
extra_sources+=$(WILS_FERMION_FILES)
extra_sources+=$(STAG_FERMION_FILES)
if BUILD_GPARITY
extra_sources+=$(GP_FERMION_FILES)
endif
if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a
CCFILES += $(extra_sources)

View File

@ -31,6 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
NAMESPACE_BEGIN(Grid);
@ -59,12 +60,14 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
int base = (_d==5) ? 1:0;
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
@ -72,16 +75,51 @@ public:
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
template<class Fobj,class CComplex,int nbasis>
@ -258,7 +296,7 @@ public:
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
@ -268,33 +306,59 @@ public:
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef CoarseVector FermionField;
// enrich interface, use default implementation as in FermionOperator ///////
void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
GridBase* _cbgrid;
int hermitian;
CartesianStencil<siteVector,siteVector,int> Stencil;
CartesianStencil<siteVector,siteVector,int> StencilEven;
CartesianStencil<siteVector,siteVector,int> StencilOdd;
std::vector<CoarseMatrix> A;
std::vector<CoarseMatrix> Aeven;
std::vector<CoarseMatrix> Aodd;
CoarseMatrix AselfInv;
CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd;
Vector<RealD> dag_factor;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
GridBase * RedBlackGrid() { return _cbgrid; };
int ConstEE() { return 0; }
void M (const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
auto& geom_v = geom;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@ -316,14 +380,14 @@ public:
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
for(int point=0;point<geom_v.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
@ -344,12 +408,72 @@ public:
return M(in,out);
} else {
// corresponds to Galerkin coarsening
CoarseVector tmp(Grid());
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
return MdagNonHermitian(in, out);
}
};
void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
auto& geom_v = geom;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
Vector<int> points(geom.npoint, 0);
for(int p=0; p<geom.npoint; p++)
points[p] = geom.points_dagger[p];
RealD* dag_factor_p = &dag_factor[0];
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<geom_v.npoint;p++){
int point = points[p];
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirComms(const CoarseVector &in)
{
SimpleCompressor<siteVector> compressor;
@ -359,6 +483,7 @@ public:
{
conformable(_grid,in.Grid());
conformable(_grid,out.Grid());
out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@ -367,6 +492,7 @@ public:
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
autoView( Stencil_v , Stencil, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
@ -380,12 +506,12 @@ public:
int ptype;
StencilEntry *SE;
SE=Stencil.GetEntry(ptype,point,ss);
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
@ -413,34 +539,7 @@ public:
this->MdirComms(in);
int ndim = in.Grid()->Nd();
//////////////
// 4D action like wilson
// 0+ => 0
// 0- => 1
// 1+ => 2
// 1- => 3
// etc..
//////////////
// 5D action like DWF
// 1+ => 0
// 1- => 1
// 2+ => 2
// 2- => 3
// etc..
auto point = [dir, disp, ndim](){
if(dir == 0 and disp == 0)
return 8;
else if ( ndim==4 ) {
return (4 * dir + 1 - disp) / 2;
} else {
return (4 * (dir-1) + 1 - disp) / 2;
}
}();
MdirCalc(in,out,point);
MdirCalc(in,out,geom.point(dir,disp));
};
void Mdiag(const CoarseVector &in, CoarseVector &out)
@ -449,23 +548,296 @@ public:
MdirCalc(in, out, point); // No comms
};
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
void Mooee(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseNo);
}
void MooeeInv(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseYes);
}
void MooeeDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseNo);
}
void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseYes);
}
void Meooe(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
void MeooeDag(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, A, in, out, dag);
}
void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, Aodd, in, out, dag);
}
void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, Aeven, in, out, dag);
}
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
out.Checkerboard() = in.Checkerboard();
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
CoarseMatrix *Aself = nullptr;
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
DselfInternal(StencilOdd, *Aself, in, out, dag);
} else {
Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
DselfInternal(StencilEven, *Aself, in, out, dag);
}
} else {
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
DselfInternal(Stencil, *Aself, in, out, dag);
}
assert(Aself != nullptr);
}
void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
const CoarseVector &in, CoarseVector &out, int dag) {
int point = geom.npoint-1;
autoView( out_v, out, AcceleratorWrite);
autoView( in_v, in, AcceleratorRead);
autoView( st_v, st, AcceleratorRead);
autoView( a_v, a, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
}
}
void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
const CoarseVector &in, CoarseVector &out, int dag) {
SimpleCompressor<siteVector> compressor;
st.HaloExchange(in,compressor);
autoView( in_v, in, AcceleratorRead);
autoView( out_v, out, AcceleratorWrite);
autoView( st_v , st, AcceleratorRead);
typedef LatticeView<Cobj> Aview;
// determine in what order we need the points
int npoint = geom.npoint-1;
Vector<int> points(npoint, 0);
for(int p=0; p<npoint; p++)
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
}
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid)
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,_cbgrid),
Aodd(geom.npoint,_cbgrid),
AselfInv(&CoarseGrid),
AselfInvEven(_cbgrid),
AselfInvOdd(_cbgrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(&CoarseRBGrid),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,&CoarseRBGrid),
Aodd(geom.npoint,&CoarseRBGrid),
AselfInv(&CoarseGrid),
AselfInvEven(&CoarseRBGrid),
AselfInvOdd(&CoarseRBGrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
void fillFactor() {
Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
if(!hermitian) {
const int nb = nbasis/2;
dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
}
// GPU readable prefactor
thread_for(i, nbasis*nbasis, {
int j = i/nbasis;
int k = i%nbasis;
dag_factor[i] = dag_factor_eigen(j, k);
});
}
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type;
std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
@ -496,11 +868,13 @@ public:
CoarseScalar InnerProd(Grid());
std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++)
{
@ -539,7 +913,7 @@ public:
phi=Subspace.subspace[i];
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
@ -568,6 +942,18 @@ public:
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
if ( hermitian && (disp==-1) ) {
for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
auto sft = conjugate(Cshift(oZProj,dir,1));
autoView( sft_v , sft , AcceleratorWrite);
autoView( A_pp , A[pp], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
}
}
}
}
}
@ -606,28 +992,54 @@ public:
}
if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl;
FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl;
}
void ForceHermitian(void) {
CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
if(disp==-1) {
// Find the opposite link
for(int pp=0;pp<geom.npoint;pp++){
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
A[pp] = adj(Cshift(A[p],dir,1));
}
}
}
void InvertSelfStencilLink() {
std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
int localVolume = Grid()->lSites();
typedef typename Cobj::scalar_object scalar_object;
autoView(Aself_v, A[geom.npoint-1], CpuRead);
autoView(AselfInv_v, AselfInv, CpuWrite);
thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
Eigen::MatrixXcd selfLinkEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
scalar_object selfLink = Zero();
scalar_object selfLinkInv = Zero();
Coordinate lcoor;
Grid()->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(selfLink, Aself_v, lcoor);
for (int i = 0; i < nbasis; ++i)
for (int j = 0; j < nbasis; ++j)
selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
selfLinkInvEigen = selfLinkEigen.inverse();
for(int i = 0; i < nbasis; ++i)
for(int j = 0; j < nbasis; ++j)
selfLinkInv(i, j) = selfLinkInvEigen(i, j);
pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
});
}
void FillHalfCbs() {
std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
for(int p = 0; p < geom.npoint; ++p) {
pickCheckerboard(Even, Aeven[p], A[p]);
pickCheckerboard(Odd, Aodd[p], A[p]);
}
pickCheckerboard(Even, AselfInvEven, AselfInv);
pickCheckerboard(Odd, AselfInvOdd, AselfInv);
}
};

View File

@ -1,67 +0,0 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -65,8 +65,7 @@ public:
MemoryManager::CpuFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor, eventually it must be avoided
//void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p) { };
void destroy(pointer __p) { };
@ -74,6 +73,9 @@ public:
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////
// Unified virtual memory
//////////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class uvmAllocator {
public:
@ -109,22 +111,72 @@ public:
MemoryManager::SharedFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor, eventually it must be avoided
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
//void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Device memory
////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class devAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
devAllocator() throw() { }
devAllocator(const devAllocator&) throw() { }
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
~devAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::AcceleratorFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using commAllocator = uvmAllocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using commVector = std::vector<T,uvmAllocator<T> >;
//template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
#ifdef ACCELERATOR_CSHIFT
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid);

View File

@ -136,11 +136,20 @@ void MemoryManager::Init(void)
Ncache[SharedSmall]=Nc;
}
}
}
void MemoryManager::InitMessage(void) {
#ifndef GRID_UVM
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
#endif
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
#endif
#ifdef GRID_UVM
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
#ifdef GRID_CUDA
@ -164,6 +173,7 @@ void MemoryManager::Init(void)
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)

View File

@ -34,8 +34,6 @@ NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define ALLOCATION_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096)
/*Pinning pages is costly*/
@ -93,11 +91,12 @@ private:
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void PrintBytes(void);
public:
static void Init(void);
static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes);

View File

@ -1,11 +1,12 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
//define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
#define dprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
@ -103,7 +104,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -111,7 +112,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -125,7 +126,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
@ -136,7 +137,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -149,7 +150,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
// dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -164,7 +165,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
// dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
@ -227,18 +228,24 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
(uint64_t)bytes);
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
@ -285,21 +292,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
// printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
// printf("Consistent entry into device accLock %d\n",AccCache.accLock);
dprintf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
// printf("AccDirty entry into device accLock %d\n",AccCache.accLock);
dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else {
assert(0);
}
@ -361,13 +368,16 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error

View File

@ -1,7 +1,6 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
#warning "Grid is assuming unified virtual memory address space"
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping

View File

@ -36,7 +36,7 @@ static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex, Coordinate &rdim, Coordinate &chk_dim_msk)
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk)
{
int nd=rdim.size();
Coordinate coor(nd);

View File

@ -1,4 +1,3 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -108,6 +107,8 @@ public:
////////////////////////////////////////////////////////////
// Reduction
////////////////////////////////////////////////////////////
void GlobalMax(RealD &);
void GlobalMax(RealF &);
void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &);
@ -138,21 +139,6 @@ public:
int recv_from_rank,
int bytes);
void SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
@ -35,7 +35,7 @@ Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
// First initialise of comms system
////////////////////////////////////////////
void CartesianCommunicator::Init(int *argc, char ***argv)
void CartesianCommunicator::Init(int *argc, char ***argv)
{
int flag;
@ -43,8 +43,16 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#ifndef GRID_COMMS_THREADS
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
// other comms schemes are ok
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
#else
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0);
@ -91,7 +99,7 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialises from communicator_world
////////////////////////////////////////////////////////////////////////////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
MPI_Comm optimal_comm;
////////////////////////////////////////////////////
@ -110,7 +118,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
@ -127,7 +135,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
//////////////////////////////////////////////////////////////////////////////////////////////////////
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
// int Nparent = parent._processors ;
// int Nparent = parent._processors ;
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
@ -149,13 +157,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
int crank;
int crank;
// Mpi uses the reverse Lexico convention to us; so reversed routines called
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
MPI_Comm comm_split;
if ( Nchild > 1 ) {
if ( Nchild > 1 ) {
////////////////////////////////////////////////////////////////
// Split the communicator
@ -180,11 +188,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
SetCommunicator(comm_split);
///////////////////////////////////////////////
// Free the temp communicator
// Free the temp communicator
///////////////////////////////////////////////
MPI_Comm_free(&comm_split);
if(0){
if(0){
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
for(int d=0;d<processors.size();d++){
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
@ -245,7 +253,7 @@ CartesianCommunicator::~CartesianCommunicator()
for(int i=0;i<communicator_halo.size();i++){
MPI_Comm_free(&communicator_halo[i]);
}
}
}
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
@ -267,6 +275,16 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(float &f)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
@ -294,60 +312,28 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
int myrank = _processor;
int ierr;
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
// Enforce no UVM in comms, device or host OK
assert(acceleratorIsCommunicable(xmit));
assert(acceleratorIsCommunicable(recv));
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
// Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest,
void *recv,
@ -367,7 +353,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int from,
int bytes,int dir)
{
int ncomm =communicator_halo.size();
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
@ -382,36 +368,31 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
@ -422,6 +403,13 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
assert(ierr==0);
list.resize(0);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
//{
//}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
@ -436,8 +424,8 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
communicator);
assert(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
@ -470,7 +458,7 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
// (Turns up on 32^3 x 64 Gparity too)
MPI_Datatype object;
int iwords;
int iwords;
int ibytes;
iwords = words;
ibytes = bytes;
@ -483,5 +471,3 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
}
NAMESPACE_END(Grid);

View File

@ -67,6 +67,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalMax(float &){}
void CartesianCommunicator::GlobalMax(double &){}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}
@ -77,15 +79,6 @@ void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes)
{
assert(0);
}
// Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit,
@ -96,20 +89,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
@ -137,10 +116,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int recv_from_rank,
int bytes, int dir)
{
std::vector<CommsRequest_t> list;
// Discard the "dir"
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
SendToRecvFromComplete(list);
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
@ -150,13 +125,10 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int recv_from_rank,
int bytes, int dir)
{
// Discard the "dir"
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void){};

View File

@ -102,7 +102,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};

View File

@ -32,6 +32,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_CUDA
#include <cuda_runtime_api.h>
#endif
#ifdef GRID_HIP
#include <hip/hip_runtime_api.h>
#endif
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryMpi: "
@ -47,7 +50,12 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
#else
MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm);
#endif
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
@ -420,7 +428,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_CUDA
#if defined(GRID_CUDA) ||defined(GRID_HIP)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -443,17 +451,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
auto err = cudaMalloc(&ShmCommBuf, bytes);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
// if ( WorldRank == 0 ){
if ( 1 ){
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
@ -461,19 +468,31 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
for(int r=0;r<WorldShmSize;r++){
#ifndef GRID_MPI3_SHM_NONE
//////////////////////////////////////////////////
// If it is me, pass around the IPC access key
//////////////////////////////////////////////////
#ifdef GRID_CUDA
cudaIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
hipIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = hipIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
//////////////////////////////////////////////////
// Share this IPC handle across the Shm Comm
//////////////////////////////////////////////////
@ -490,17 +509,31 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// If I am not the source, overwrite thisBuf with remote buffer
///////////////////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
#ifdef GRID_CUDA
if ( r!=WorldShmRank ) {
err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
if ( r!=WorldShmRank ) {
auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
///////////////////////////////////////////////////////////////
// Save a copy of the device buffers
///////////////////////////////////////////////////////////////
WorldShmCommBufs[r] = thisBuf;
#else
WorldShmCommBufs[r] = ShmCommBuf;
#endif
}
_ShmAllocBytes=bytes;
@ -633,7 +666,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
if ( ptr == (void * )MAP_FAILED ) {
perror("failed mmap");
assert(0);
@ -683,7 +715,7 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#ifdef GRID_CUDA
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
@ -705,7 +737,11 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
#else
MPI_Comm_split(comm, rank, 0, &ShmComm);
#endif
MPI_Comm_rank(ShmComm ,&ShmRank);
MPI_Comm_size(ShmComm ,&ShmSize);
ShmCommBufs.resize(ShmSize);
@ -735,19 +771,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
#ifdef GRID_IBM_SUMMIT
// Hide the shared memory path between sockets
// if even number of nodes
if ( (ShmSize & 0x1)==0 ) {
int SocketSize = ShmSize/2;
int mySocket = ShmRank/SocketSize;
#ifdef GRID_SHM_FORCE_MPI
// Hide the shared memory path between ranks
{
for(int r=0;r<size;r++){
int hisRank=ShmRanks[r];
if ( hisRank!= MPI_UNDEFINED ) {
int hisSocket=hisRank/SocketSize;
if ( hisSocket != mySocket ) {
ShmRanks[r] = MPI_UNDEFINED;
}
if ( r!=rank ) {
ShmRanks[r] = MPI_UNDEFINED;
}
}
}

View File

@ -29,6 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryNone: "
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
@ -55,6 +56,38 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended, use anonymous mmap
////////////////////////////////////////////////////////////////////////////////////////////
#if 1
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -83,7 +116,15 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes;
_ShmAlloc=1;
};
#endif
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality

View File

@ -52,23 +52,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<typename Op, typename T1>
auto Cshift(const LatticeUnaryExpression<Op,T1> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2>
auto Cshift(const LatticeBinaryExpression<Op,T1,T2> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2, class T3>
auto Cshift(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{
return Cshift(closure(expr),dim,shift);
}

View File

@ -35,7 +35,7 @@ extern Vector<std::pair<int,int> > Cshift_table;
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -73,12 +73,19 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
}
}
{
autoView(rhs_v , rhs, AcceleratorRead);
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -103,6 +110,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for2d(n,e1,b,e2,1,{
int o = n*n1;
@ -111,12 +119,22 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else {
autoView(rhs_v , rhs, AcceleratorRead);
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for2d(n,e1,b,e2,1,{
Coordinate coor;
@ -134,13 +152,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset);
}
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -182,12 +220,19 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
}
{
autoView( rhs_v, rhs, AcceleratorWrite);
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{
rhs_v[table[i].first]=buffer_p[table[i].second];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
}
}
@ -208,18 +253,30 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for2d(n,e1,b,e2,1,{
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
assert(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
@ -277,12 +334,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -321,12 +386,20 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
}
}

View File

@ -101,7 +101,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
@ -121,9 +122,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
commVector<vobj> send_buf(buffer_size);
commVector<vobj> recv_buf(buffer_size);
cshiftVector<vobj> send_buf(buffer_size);
cshiftVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
@ -138,7 +139,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
} else {
int words = send_buf.size();
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
@ -150,12 +151,14 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
@ -195,8 +198,15 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<cshiftVector<scalar_object> > send_buf_extract(Nsimd);
std::vector<cshiftVector<scalar_object> > recv_buf_extract(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
@ -242,11 +252,204 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)&recv_buf_extract[i][0],
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
}
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
cshiftVector<vobj> send_buf_v(buffer_size);
cshiftVector<vobj> recv_buf_v(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
}
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
std::vector<cshiftVector<scalar_object> > send_buf_extract(Nsimd);
std::vector<cshiftVector<scalar_object> > recv_buf_extract(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
@ -258,7 +461,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
}
}
#endif
NAMESPACE_END(Grid);
#endif

View File

@ -36,7 +36,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
//#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h>

View File

@ -42,9 +42,24 @@ NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
#ifdef GRID_SIMT
// drop to scalar in SIMT; cleaner in fact
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
Integer mask = TensorRemove(predicate);
typename std::remove_const<vobj>::type ret= iffalse;
if (mask) ret=iftrue;
return ret;
}
#else
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
@ -68,6 +83,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftru
merge(ret, falsevals);
return ret;
}
#endif
/////////////////////////////////////////////////////
//Specialization of getVectorType for lattices
@ -81,32 +97,62 @@ struct getVectorType<Lattice<T> >{
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
template<class sobj,
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
{
return arg(ss);
}
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// whole vector return, used only for expression return type inference
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj vecEval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)
{
return arg[ss];
}
// What needs this?
// Cannot be legal on accelerator
// Comparison must convert
#if 1
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
{
auto view = arg.View(AcceleratorRead);
return view[ss];
}
#endif
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
// vecEval needed (but never called as all expressions offloaded) to infer the return type
// in SIMT contexts of closure.
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
{
return expr.op.func( vecEval(ss, expr.arg1) );
}
// vecEval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
{
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
}
// vecEval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
{
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand coalesced
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
@ -114,23 +160,41 @@ auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
{
return expr.op.func( eval(ss, expr.arg1) );
}
///////////////////////
// eval two operands
///////////////////////
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
///////////////////////
// eval three operands
///////////////////////
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
-> decltype(expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3)))
{
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
#ifdef GRID_SIMT
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
typedef typename std::remove_reference<rvobj>::type vobj;
const int Nsimd = vobj::vector_type::Nsimd();
auto vpred = vecEval(ss,expr.arg1);
ExtractBuffer<Integer> mask(Nsimd);
extract<vInteger, Integer>(TensorRemove(vpred), mask);
int s = acceleratorSIMTlane(Nsimd);
return expr.op.func(mask[s],
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#else
return expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#endif
}
//////////////////////////////////////////////////////////////////////////
@ -228,7 +292,7 @@ template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
ExpressionViewOpen(expr.arg2); // rrecurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
@ -272,28 +336,20 @@ inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
@ -305,10 +361,10 @@ GridUnopClass(UnaryExp, exp(a));
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
template <class _left, class _right> \
static auto accelerator_inline \
func(const left &lhs, const right &rhs) \
func(const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
@ -328,10 +384,10 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
template <class _predicate,class _left, class _right> \
static auto accelerator_inline \
func(const predicate &pred, const left &lhs, const right &rhs) \
func(const _predicate &pred, const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
@ -339,17 +395,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
};
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<predicate,
typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
(predicatedWhere<
typename std::remove_reference<_predicate>::type,
typename std::remove_reference<_left>::type,
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_UNOP(name) name
#define GRID_BINOP(name) name
#define GRID_TRINOP(name) name
#define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
@ -395,22 +451,17 @@ GridTrinOpClass(TrinaryWhere,
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
//GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
@ -435,29 +486,36 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type >
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type > ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
auto function(Expression &expr) -> decltype(function(closure(expr))) \
{ \
return function(closure(expr)); \
}
#undef GRID_UNOP
#undef GRID_BINOP

View File

@ -60,9 +60,9 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
auto tmp =ret_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
@ -124,7 +124,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto tmp =ret_v(ss);
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
@ -182,7 +182,7 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto tmp =ret_v(ss);
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);

View File

@ -123,9 +123,9 @@ public:
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),1,{
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
vstream(me[ss],tmp);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
@ -146,9 +146,9 @@ public:
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),1,{
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
vstream(me[ss],tmp);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
@ -168,9 +168,9 @@ public:
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),1,{
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
vstream(me[ss],tmp);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);

View File

@ -54,13 +54,34 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
#if ( (!defined(GRID_CUDA)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
@ -70,14 +91,12 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
Vector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
@ -118,6 +137,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
@ -141,11 +161,13 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
vobj zzz=Zero();
auto B=coalescedRead(zzz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
}
coalescedWrite(result_v[ss], B);
});

View File

@ -42,34 +42,6 @@ NAMESPACE_BEGIN(Grid);
typedef iScalar<vInteger> vPredicate ;
/*
template <class iobj, class vobj, class robj> accelerator_inline
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
*/
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////

View File

@ -182,6 +182,14 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
return;
};
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuRead);
peekLocalSite(s,lv,site);
return;
};
// Must be CPU write view
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
@ -210,6 +218,14 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
return;
};
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuWrite);
pokeLocalSite(s,lv,site);
return;
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,79 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reality.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REAL_IMAG_H
#define GRID_LATTICE_REAL_IMAG_H
// FIXME .. this is the sector of the code
// I am most worried about the directions
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =real(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =imag(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto real(const Expression &expr) -> decltype(real(closure(expr)))
{
return real(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto imag(const Expression &expr) -> decltype(imag(closure(expr)))
{
return imag(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -45,8 +45,8 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = adj(lhs_v[ss]);
});
return ret;
};
@ -64,6 +64,53 @@ template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
return ret;
};
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
Lattice<typename vobj::Complexified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toComplex(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
Lattice<typename vobj::Realified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toReal(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toComplex(const Expression &expr) -> decltype(closure(expr))
{
return toComplex(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toReal(const Expression &expr) -> decltype(closure(expr))
{
return toReal(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto adj(const Expression &expr) -> decltype(closure(expr))
{
return adj(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto conjugate(const Expression &expr) -> decltype(closure(expr))
{
return conjugate(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -96,8 +96,34 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
ssobj ret = ssum;
return ret;
}
/*
Threaded max, don't use for now
template<class Double>
inline Double max(const Double *arg, Integer osites)
{
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<Double> maxarray(nthread);
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
Double max=arg[0];
for(int ss=myoff;ss<mywork+myoff; ss++){
if( arg[ss] > max ) max = arg[ss];
}
maxarray[thr]=max;
});
Double tmax=maxarray[0];
for(int i=0;i<nthread;i++){
if (maxarray[i]>tmax) tmax = maxarray[i];
}
return tmax;
}
*/
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
@ -141,6 +167,32 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
return real(nrm);
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
Lattice<vscalar> inner = localNorm2(arg);
auto grid = arg.Grid();
RealD max;
for(int l=0;l<grid->lSites();l++){
Coordinate coor;
scalar val;
RealD r;
grid->LocalIndexToLocalCoor(l,coor);
peekLocalSite(val,inner,coor);
r=real(TensorRemove(val));
if( (l==0) || (r>max)){
max=r;
}
}
grid->GlobalMax(max);
return max;
}
// Double inner product
template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)

View File

@ -2,12 +2,13 @@ NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
extern hipDeviceProp_t *gpu_props;
#define WARP_SIZE 64
#endif
#ifdef GRID_CUDA
extern cudaDeviceProp *gpu_props;
#define WARP_SIZE 32
#endif
#define WARP_SIZE 32
__device__ unsigned int retirementCount = 0;
template <class Iterator>
@ -64,7 +65,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
__syncwarp();
acceleratorSynchronise();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
@ -78,9 +79,9 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
__syncwarp();
acceleratorSynchronise();
}
__syncthreads();
acceleratorSynchroniseAll();
if (threadIdx.x == 0) {
beta = Zero();
@ -90,7 +91,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
__syncthreads();
acceleratorSynchroniseAll();
}

View File

@ -127,6 +127,11 @@ accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal);
}
template<typename T1, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr>
accelerator_inline void convertType(T1 & out, const iScalar<T1> & in) {
convertType(out,in._internal);
}
template<typename T1,typename T2>
accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in);
@ -240,6 +245,8 @@ template<class vobj,class vobj2,class CComplex>
autoView( fineX_ , fineX, AcceleratorRead);
autoView( fineY_ , fineY, AcceleratorRead);
autoView( coarseA_, coarseA, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
@ -247,9 +254,9 @@ template<class vobj,class vobj2,class CComplex>
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
// z = A x + y
#ifdef GRID_SIMT
@ -353,11 +360,14 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
for(int sb=0;sb<blockVol;sb++){
@ -367,7 +377,7 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}

View File

@ -67,8 +67,13 @@ public:
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
#if 1
// accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) const { return this->_odata[i]; };
#else
// accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
// accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
#endif
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };

View File

@ -130,6 +130,8 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
std::ios_base::fmtflags f(stream.flags());
stream << log.background()<< std::left;
if (log.topWidth > 0)
{
@ -152,6 +154,8 @@ public:
<< now << log.background() << " : " ;
}
stream << log.colour();
stream.flags(f);
return stream;
} else {
return devnull;

View File

@ -1,3 +1,4 @@
#include <Grid/GridCore.h>
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
Grid::BinaryIO::IoPerf Grid::BinaryIO::lastPerf;

View File

@ -79,6 +79,13 @@ inline void removeWhitespace(std::string &key)
///////////////////////////////////////////////////////////////////////////////////////////////////
class BinaryIO {
public:
struct IoPerf
{
uint64_t size{0},time{0};
double mbytesPerSecond{0.};
};
static IoPerf lastPerf;
static int latticeWriteMaxRetry;
/////////////////////////////////////////////////////////////////////////////
@ -502,12 +509,15 @@ class BinaryIO {
timer.Stop();
}
lastPerf.size = sizeof(fobj)*iodata.size()*nrank;
lastPerf.time = timer.useconds();
lastPerf.mbytesPerSecond = lastPerf.size/1024./1024./(lastPerf.time/1.0e6);
std::cout<<GridLogMessage<<"IOobject: ";
if ( control & BINARYIO_READ) std::cout << " read ";
else std::cout << " write ";
uint64_t bytes = sizeof(fobj)*iodata.size()*nrank;
std::cout<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/ (double)timer.useconds() <<" MB/s "<<std::endl;
std::cout<< lastPerf.size <<" bytes in "<< timer.Elapsed() <<" "
<< lastPerf.mbytesPerSecond <<" MB/s "<<std::endl;
std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed() <<std::endl;
@ -663,10 +673,15 @@ class BinaryIO {
nersc_csum,scidac_csuma,scidac_csumb);
timer.Start();
thread_for(lidx,lsites,{
thread_for(lidx,lsites,{ // FIX ME, suboptimal implementation
std::vector<RngStateType> tmp(RngStateCount);
std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin());
parallel_rng.SetState(tmp,lidx);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(lidx, lcoor);
int o_idx=grid->oIndex(lcoor);
int i_idx=grid->iIndex(lcoor);
int gidx=parallel_rng.generator_idx(o_idx,i_idx);
parallel_rng.SetState(tmp,gidx);
});
timer.Stop();
@ -723,7 +738,12 @@ class BinaryIO {
std::vector<RNGstate> iodata(lsites);
thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount);
parallel_rng.GetState(tmp,lidx);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(lidx, lcoor);
int o_idx=grid->oIndex(lcoor);
int i_idx=grid->iIndex(lcoor);
int gidx=parallel_rng.generator_idx(o_idx,i_idx);
parallel_rng.GetState(tmp,gidx);
std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin());
});
timer.Stop();

View File

@ -123,7 +123,7 @@ assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
////////////////////////////////////////////////////////////
// Helper to fill out metadata
////////////////////////////////////////////////////////////
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
FieldMetaData &header,
scidacRecord & _scidacRecord,
scidacFile & _scidacFile)
@ -619,12 +619,12 @@ class IldgWriter : public ScidacWriter {
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
template <class stats = PeriodicGaugeStatistics>
void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,int sequence,std::string LFN,std::string description)
{
GridBase * grid = Umu.Grid();
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef Lattice<vLorentzColourMatrixD> GaugeField;
typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj;
////////////////////////////////////////
@ -636,6 +636,9 @@ class IldgWriter : public ScidacWriter {
ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
stats Stats;
Stats(Umu,header);
std::string format = header.floating_point;
header.ensemble_id = description;
header.ensemble_label = description;
@ -705,10 +708,10 @@ class IldgReader : public GridLimeReader {
// Else use ILDG MetaData object if present.
// Else use SciDAC MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
template <class stats = PeriodicGaugeStatistics>
void readConfiguration(Lattice<vLorentzColourMatrixD> &Umu, FieldMetaData &FieldMetaData_) {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef Lattice<vLorentzColourMatrixD > GaugeField;
typedef typename GaugeField::vector_object vobj;
typedef typename vobj::scalar_object sobj;
@ -921,7 +924,8 @@ class IldgReader : public GridLimeReader {
if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker;
GaugeStatistics(Umu,checker);
stats Stats;
Stats(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;

View File

@ -176,29 +176,18 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet
GridMetaData(grid,header);
MachineCharacteristics(header);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
template<class Impl>
class GaugeStatistics
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
public:
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
header.link_trace=WilsonLoops<Impl>::linkTrace(data);
header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
}
};
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
typedef GaugeStatistics<ConjugateGimplD> ConjugateGaugeStatistics;
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
@ -206,7 +195,6 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}

View File

@ -40,6 +40,8 @@ using namespace Grid;
class NerscIO : public BinaryIO {
public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
@ -129,12 +131,12 @@ public:
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void readConfiguration(GaugeField &Umu,
FieldMetaData& header,
std::string file)
std::string file,
GaugeStats GaugeStatisticsCalculator=GaugeStats())
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu.Grid();
uint64_t offset = readHeader(file,Umu.Grid(),header);
@ -153,23 +155,23 @@ public:
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
@ -177,7 +179,7 @@ public:
assert(0);
}
GaugeStatistics(Umu,clone);
GaugeStats Stats; Stats(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
@ -203,15 +205,13 @@ public:
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file,
int two_row,
int bits32)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
@ -229,7 +229,7 @@ public:
GridMetaData(grid,header);
assert(header.nd==4);
GaugeStatistics(Umu,header);
GaugeStats Stats; Stats(Umu,header);
MachineCharacteristics(header);
uint64_t offset;
@ -238,19 +238,19 @@ public:
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
<<std::hex<<header.checksum

View File

@ -154,7 +154,7 @@ public:
grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl;
GaugeStatistics(Umu, clone);
PeriodicGaugeStatistics Stats; Stats(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -208,7 +208,7 @@ public:
FieldMetaData clone(header);
GaugeStatistics(Umu, clone);
PeriodicGaugeStatistics Stats; Stats(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -47,7 +47,7 @@ static constexpr int Ym = 5;
static constexpr int Zm = 6;
static constexpr int Tm = 7;
static constexpr int Nc=3;
static constexpr int Nc=Config_Nc;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nhs=2; // half spinor
@ -80,6 +80,13 @@ template<typename T> struct isSpinor {
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
const int CoarseIndex = 4;
template<typename T> struct isCoarsened {
static constexpr bool value = (CoarseIndex<=T::TensorLevel);
};
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator

View File

@ -88,7 +88,7 @@ public:
const _Spinor &chi,
int mu,
StencilEntry *SE,
StencilView &St)
const StencilView &St)
{
int direction = St._directions[mu];
int distance = St._distances[mu];
@ -97,42 +97,30 @@ public:
Coordinate icoor;
#ifdef GRID_SIMT
_Spinor tmp;
const int Nsimd =SiteDoubledGaugeField::Nsimd();
int s = acceleratorSIMTlane(Nsimd);
St.iCoorFromIindex(icoor,s);
int mmu = mu % Nd;
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
if ( permute_lane ) {
tmp(0) = chi(1);
tmp(1) = chi(0);
} else {
tmp(0) = chi(0);
tmp(1) = chi(1);
}
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
//Decide whether we do a G-parity flavor twist
//Note: this assumes (but does not check) that sl==1 || sl==2 i.e. max 2 SIMD lanes in G-parity dir
//It also assumes (but does not check) that abs(distance) == 1
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
mult(&phi(0),&UU0,&tmp(0));
mult(&phi(1),&UU1,&tmp(1));
//Apply the links
int f_upper = permute_lane ? 1 : 0;
int f_lower = !f_upper;
} else {
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
mult(&phi(0),&UU0,&chi(0));
mult(&phi(1),&UU1,&chi(1));
}
mult(&phi(0),&UU0,&chi(f_upper));
mult(&phi(1),&UU1,&chi(f_lower));
#else
typedef _Spinor vobj;

View File

@ -208,7 +208,7 @@ public:
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
///////////////////////////////////////////////////////////////
// Conserved current utilities

View File

@ -85,7 +85,7 @@ class MADWF
maxiter =_maxiter;
};
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
void operator() (const FermionFieldo &src,FermionFieldo &sol5)
{
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " MADWF-like algorithm " << std::endl;
@ -114,8 +114,16 @@ class MADWF
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
Mato.ImportPhysicalFermionSource(src4,b);
std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
GridBase *src_grid = src.Grid();
assert( (src_grid == Mato.GaugeGrid()) || (src_grid == Mato.FermionGrid()));
if ( src_grid == Mato.GaugeGrid() ) {
Mato.ImportPhysicalFermionSource(src,b);
} else {
b=src;
}
std::cout << GridLogMessage << " src " <<norm2(src)<<std::endl;
std::cout << GridLogMessage << " b " <<norm2(b)<<std::endl;
defect = b;

View File

@ -56,55 +56,80 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp);
void DhopDirKernel(StencilImpl &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU,
const FermionFieldView &in,
const FermionFieldView &out, int dir,int disp);
protected:
///////////////////////////////////////////////////////////////////////////////////////
// Generic Nc kernels
///////////////////////////////////////////////////////////////////////////////////////
template<int Naik> accelerator_inline
void DhopSiteGeneric(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
template<int Naik>
static accelerator_inline
void DhopSiteGeneric(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> accelerator_inline
void DhopSiteGenericInt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
const FermionFieldView &in,
const FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteGenericInt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> accelerator_inline
void DhopSiteGenericExt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
const FermionFieldView &in,
const FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteGenericExt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag);
///////////////////////////////////////////////////////////////////////////////////////
// Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
template<int Naik> accelerator_inline
void DhopSiteHand(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> accelerator_inline
void DhopSiteHandInt(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> accelerator_inline
void DhopSiteHandExt(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteHand(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteHandInt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteHandExt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag);
///////////////////////////////////////////////////////////////////////////////////////
// Asm Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
void DhopSiteAsm(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag);
public:

View File

@ -61,7 +61,7 @@ public:
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
accelerator_inline int CommDatumSize(void) {
accelerator_inline int CommDatumSize(void) const {
return sizeof(SiteHalfCommSpinor);
}
@ -69,7 +69,7 @@ public:
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
template<class _SiteHalfSpinor, class _SiteSpinor>
accelerator_inline void Compress(_SiteHalfSpinor *buf,Integer o,const _SiteSpinor &in) {
accelerator_inline void Compress(_SiteHalfSpinor *buf,Integer o,const _SiteSpinor &in) const {
_SiteHalfSpinor tmp;
projector::Proj(tmp,in,mu,dag);
vstream(buf[o],tmp);
@ -81,7 +81,7 @@ public:
accelerator_inline void Exchange(SiteHalfSpinor *mp,
const SiteHalfSpinor * __restrict__ vp0,
const SiteHalfSpinor * __restrict__ vp1,
Integer type,Integer o){
Integer type,Integer o) const {
SiteHalfSpinor tmp1;
SiteHalfSpinor tmp2;
exchange(tmp1,tmp2,vp0[o],vp1[o],type);
@ -93,7 +93,7 @@ public:
/* Have a decompression step if mpi data is not same */
/*****************************************************/
accelerator_inline void Decompress(SiteHalfSpinor * __restrict__ out,
SiteHalfSpinor * __restrict__ in, Integer o) {
SiteHalfSpinor * __restrict__ in, Integer o) const {
assert(0);
}
@ -103,7 +103,7 @@ public:
accelerator_inline void CompressExchange(SiteHalfSpinor * __restrict__ out0,
SiteHalfSpinor * __restrict__ out1,
const SiteSpinor * __restrict__ in,
Integer j,Integer k, Integer m,Integer type)
Integer j,Integer k, Integer m,Integer type) const
{
SiteHalfSpinor temp1, temp2;
SiteHalfSpinor temp3, temp4;
@ -117,7 +117,7 @@ public:
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
accelerator_inline bool DecompressionStep(void) { return false; }
accelerator_inline bool DecompressionStep(void) const { return false; }
};
@ -142,7 +142,7 @@ public:
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
accelerator_inline int CommDatumSize(void) {
accelerator_inline int CommDatumSize(void) const {
return sizeof(SiteHalfCommSpinor);
}
@ -150,7 +150,7 @@ public:
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
template<class _SiteHalfSpinor, class _SiteSpinor>
accelerator_inline void Compress(_SiteHalfSpinor *buf,Integer o,const _SiteSpinor &in) {
accelerator_inline void Compress(_SiteHalfSpinor *buf,Integer o,const _SiteSpinor &in) const {
_SiteHalfSpinor hsp;
SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
projector::Proj(hsp,in,mu,dag);
@ -163,7 +163,7 @@ public:
accelerator_inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
Integer type,Integer o) const {
SiteHalfSpinor vt0,vt1;
SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
@ -175,7 +175,7 @@ public:
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o){
accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o) const {
SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
}
@ -186,7 +186,7 @@ public:
accelerator_inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
Integer j,Integer k, Integer m,Integer type) const {
SiteHalfSpinor temp1, temp2,temp3,temp4;
SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
@ -200,7 +200,7 @@ public:
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
accelerator_inline bool DecompressionStep(void) { return true; }
accelerator_inline bool DecompressionStep(void) const { return true; }
};

View File

@ -50,14 +50,14 @@ public:
double, nu);
WilsonAnisotropyCoefficients():
isAnisotropic(false),
t_direction(Nd-1),
xi_0(1.0),
isAnisotropic(false),
t_direction(Nd-1),
xi_0(1.0),
nu(1.0){}
};
template <class Impl>
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
@ -74,6 +74,20 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopTotalTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
@ -138,7 +152,7 @@ public:
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p = ImplParams(),
const ImplParams &p = ImplParams(),
const WilsonAnisotropyCoefficients &anis = WilsonAnisotropyCoefficients() );
// DoubleStore impl dependent
@ -170,9 +184,9 @@ public:
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
@ -186,7 +200,7 @@ public:
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
@ -196,5 +210,3 @@ typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
NAMESPACE_END(Grid);

View File

@ -215,7 +215,7 @@ public:
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};

View File

@ -95,7 +95,7 @@ public:
const _Spinor &chi,
int mu,
StencilEntry *SE,
StencilView &St)
const StencilView &St)
{
multLink(phi,U,chi,mu);
}
@ -106,11 +106,15 @@ public:
const _SpinorField & phi,
int mu)
{
const int Nsimd = SiteHalfSpinor::Nsimd();
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
accelerator_for(sss,out.Grid()->oSites(),1,{
multLink(out_v[sss],Umu_v[sss],phi_v[sss],mu);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multLink(tmp,Umu_v[sss],phi_v(sss),mu);
coalescedWrite(out_v[sss],tmp);
});
}

View File

@ -49,6 +49,7 @@ public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
public:
@ -68,73 +69,87 @@ public:
private:
static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
static accelerator_inline void DhopDirK(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor * buf, int sF, int sU,
const FermionFieldView &in,const FermionFieldView &out, int dirdisp, int gamma);
static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXp(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYp(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZp(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTp(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXm(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYm(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZm(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTm(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,
const FermionFieldView &in, const FermionFieldView &out,int dirdisp);
// Specialised variants
static accelerator void GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSite(const StencilView &st,
const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void GenericDhopSiteDag(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void GenericDhopSiteInt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void GenericDhopSiteDagInt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void GenericDhopSiteExt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void GenericDhopSiteDagExt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static void AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
static void AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
static void AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
static void AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
// Keep Hand unrolled
static accelerator void HandDhopSiteSycl(StencilVector st_perm, StencilEntry *st_p, SiteDoubledGaugeField *U, SiteHalfSpinor * buf,
int sF, int sU, const SiteSpinor *in, SiteSpinor *out);
// Keep Hand unrolled temporarily
static accelerator void HandDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSite(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in,const FermionFieldView &out);
static accelerator void HandDhopSiteDag(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void HandDhopSiteInt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void HandDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteDagInt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void HandDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteExt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void HandDhopSiteDagExt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, const FermionFieldView &out);
//AVX 512 ASM
static void AsmDhopSite(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,const FermionFieldView &out);
static accelerator void HandDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteDag(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, const FermionFieldView &out);
static accelerator void HandDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteInt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,const FermionFieldView &out);
static accelerator void HandDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteDagInt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, const FermionFieldView &out);
static void AsmDhopSiteExt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,const FermionFieldView &out);
static void AsmDhopSiteDagExt(const StencilView &st, const DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, const FermionFieldView &out);
public:
WilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
};

View File

@ -642,7 +642,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type,
unsigned int mu)
{
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
#if (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
@ -799,7 +799,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
LatticeInteger zz (UGrid); zz=0.0;
PropagatorField zz (UGrid); zz=0.0;
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
for (int s=0;s<Ls;s++) {
@ -826,7 +826,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
#endif
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
#if (!defined(GRID_HIP))
int tshift = (mu == Nd-1) ? 1 : 0;
////////////////////////////////////////////////
// GENERAL CAYLEY CASE
@ -850,7 +850,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
LatticeInteger zz (UGrid); zz=0.0;
PropagatorField zz (UGrid); zz=0.0;
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
for(int s=0;s<Ls;s++){

View File

@ -618,11 +618,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
void StaggeredKernels<Impl>::DhopSiteAsm(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
assert(0);
};
@ -683,11 +685,13 @@ void StaggeredKernels<Impl>::DhopSiteAsm(StencilView &st,
// This is the single precision 5th direction vectorised kernel
#include <Grid/simd/Intel512single.h>
template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -738,11 +742,13 @@ template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilView
}
#include <Grid/simd/Intel512double.h>
template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dag)
template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU,
const FermionFieldView &in,
const FermionFieldView &out, int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -824,11 +830,13 @@ template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilView
// This is the single precision 5th direction vectorised kernel
#include <Grid/simd/Intel512single.h>
template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -893,11 +901,13 @@ template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilView &st,
}
#include <Grid/simd/Intel512double.h>
template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilView &st,
DoubledGaugeFieldView &U,
DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out,int dag)
template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF,
int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;

View File

@ -146,11 +146,13 @@ NAMESPACE_BEGIN(Grid);
template <class Impl>
template <int Naik>
void StaggeredKernels<Impl>::DhopSiteHand(StencilView &st,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag)
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteHand(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -221,11 +223,13 @@ void StaggeredKernels<Impl>::DhopSiteHand(StencilView &st,
template <class Impl>
template <int Naik>
void StaggeredKernels<Impl>::DhopSiteHandInt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag)
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteHandInt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -300,11 +304,13 @@ void StaggeredKernels<Impl>::DhopSiteHandInt(StencilView &st,
template <class Impl>
template <int Naik>
void StaggeredKernels<Impl>::DhopSiteHandExt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag)
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteHandExt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;

View File

@ -78,11 +78,11 @@ StaggeredKernels<Impl>::StaggeredKernels(const ImplParams &p) : Base(p){};
// Int, Ext, Int+Ext cases for comms overlap
////////////////////////////////////////////////////////////////////////////////////
template <class Impl>
template <int Naik>
void StaggeredKernels<Impl>::DhopSiteGeneric(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out, int dag)
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteGeneric(const StencilView &st,
const DoubledGaugeFieldView &U, const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, const FermionFieldView &out, int dag)
{
const SiteSpinor *chi_p;
SiteSpinor chi;
@ -126,11 +126,12 @@ void StaggeredKernels<Impl>::DhopSiteGeneric(StencilView &st,
// Only contributions from interior of our node
///////////////////////////////////////////////////
template <class Impl>
template <int Naik>
void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag) {
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteGenericInt(const StencilView &st,
const DoubledGaugeFieldView &U, const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, const FermionFieldView &out,int dag)
{
const SiteSpinor *chi_p;
SiteSpinor chi;
SiteSpinor Uchi;
@ -174,11 +175,14 @@ void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilView &st,
// Only contributions from exterior of our node
///////////////////////////////////////////////////
template <class Impl>
template <int Naik>
void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilView &st,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag) {
template <int Naik> accelerator_inline
void StaggeredKernels<Impl>::DhopSiteGenericExt(const StencilView &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor *buf, int sF, int sU,
const FermionFieldView &in,
const FermionFieldView &out,int dag)
{
const SiteSpinor *chi_p;
// SiteSpinor chi;
SiteSpinor Uchi;
@ -224,9 +228,14 @@ void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilView &st,
////////////////////////////////////////////////////////////////////////////////////
// Driving / wrapping routine to select right kernel
////////////////////////////////////////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp)
template <class Impl>
void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st,
const DoubledGaugeFieldView &U,
const DoubledGaugeFieldView &UUU,
SiteSpinor * buf,
int sF, int sU,
const FermionFieldView &in,
const FermionFieldView &out, int dir,int disp)
{
// Disp should be either +1,-1,+3,-3
// What about "dag" ?
@ -253,8 +262,9 @@ void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st, DoubledGaugeFieldVie
ThisKernel::A(st_v,U_v,UUU_v,buf,sF,sU,in_v,out_v,dag); \
});
template <class Impl>
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
template <class Impl>
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{
@ -293,7 +303,7 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
}
assert(0 && " Kernel optimisation case not covered ");
}
template <class Impl>
template <class Impl>
void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior)

View File

@ -92,20 +92,16 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Coordinate lcoor;
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
for (int site = 0; site < lvol; site++) {
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
Qxinv = Zero();
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
@ -126,21 +122,21 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CTIv, lcoor);
}
});
}
// Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
pickCheckerboard(Even, CloverTermDagEven, closure(adj(CloverTerm)));
pickCheckerboard(Odd, CloverTermDagOdd, closure(adj(CloverTerm)));
pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm));
pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm));
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv);
pickCheckerboard(Even, CloverTermInvDagEven, closure(adj(CloverTermInv)));
pickCheckerboard(Odd, CloverTermInvDagOdd, closure(adj(CloverTermInv)));
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
}
template <class Impl>

View File

@ -43,7 +43,7 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p,
const WilsonAnisotropyCoefficients &anis)
:
:
Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
@ -75,8 +75,93 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
StencilOdd.BuildSurfaceList(1,vol4);
}
template<class Impl>
void WilsonFermion<Impl>::Report(void)
{
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
RealD volume = 1;
Coordinate latt = _grid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion Number of DhopEO Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1320*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1320*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
}
if ( DerivCalls > 0 ) {
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
std::cout << GridLogMessage << "WilsonFermion Number of Deriv Calls : " <<DerivCalls <<std::endl;
std::cout << GridLogMessage << "WilsonFermion CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
// how to count flops here?
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call ? : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node ? : " << mflops/NP << std::endl;
// how to count flops here?
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) ? : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full) ? : " << Fullmflops/NP << std::endl; }
if (DerivCalls > 0 || DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "WilsonFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
if ( DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
}
}
template<class Impl>
void WilsonFermion<Impl>::ZeroCounters(void) {
DhopCalls = 0; // ok
DhopCommTime = 0;
DhopComputeTime = 0;
DhopComputeTime2= 0;
DhopFaceTime = 0;
DhopTotalTime = 0;
DerivCalls = 0; // ok
DerivCommTime = 0;
DerivComputeTime = 0;
DerivDhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
Stencil.ZeroCountersi();
StencilEven.ZeroCountersi();
StencilOdd.ZeroCountersi();
}
template <class Impl>
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu.Grid());
@ -107,7 +192,7 @@ void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
/////////////////////////////
template <class Impl>
void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerNo);
@ -115,7 +200,7 @@ void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerYes);
@ -123,7 +208,7 @@ void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
@ -133,7 +218,7 @@ void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
@ -141,9 +226,9 @@ void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(diag_mass);
@ -151,80 +236,80 @@ void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
}
template <class Impl>
void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(diag_mass))*in;
}
template<class Impl>
void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
template<class Impl>
void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m,std::vector<double> twist)
{
{
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
// what type LatticeComplex
// what type LatticeComplex
conformable(_grid,out.Grid());
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
Coordinate latt_size = _grid->_fdimensions;
FermionField num (_grid); num = Zero();
LatComplex wilson(_grid); wilson= Zero();
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex denom(_grid); denom= Zero();
LatComplex kmu(_grid);
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
// momphase = n * 2pi / L
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
wilson = wilson + 2.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in); // derivative term
denom=denom + sin(kmu)*sin(kmu);
}
wilson = wilson + _m; // 2 sin^2 k/2 + m
num = num + wilson*in; // -i gmu sin k + 2 sin^2 k/2 + m
denom= denom+wilson*wilson; // sin^2 k + (2 sin^2 k/2 + m)^2
denom= one/denom;
out = num*denom; // [ -i gmu sin k + 2 sin^2 k/2 + m] / [ sin^2 k + (2 sin^2 k/2 + m)^2 ]
}
///////////////////////////////////
// Internal
@ -234,6 +319,7 @@ template <class Impl>
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
GaugeField &mat, const FermionField &A,
const FermionField &B, int dag) {
DerivCalls++;
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
@ -242,8 +328,11 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
FermionField Atilde(B.Grid());
Atilde = A;
DerivCommTime-=usecond();
st.HaloExchange(B, compressor);
DerivCommTime+=usecond();
DerivComputeTime-=usecond();
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma (1+g)<->(1-g) if dag
@ -251,6 +340,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
int gamma = mu;
if (!dag) gamma += Nd;
DerivDhopComputeTime -= usecond();
int Ls=1;
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
@ -258,11 +348,13 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
// spin trace outer product
//////////////////////////////////////////////////
Impl::InsertForce4D(mat, Btilde, Atilde, mu);
DerivDhopComputeTime += usecond();
}
DerivComputeTime += usecond();
}
template <class Impl>
void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
conformable(U.Grid(), _grid);
conformable(U.Grid(), V.Grid());
@ -274,13 +366,13 @@ void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, cons
}
template <class Impl>
void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
conformable(U.Grid(), _cbgrid);
conformable(U.Grid(), V.Grid());
//conformable(U.Grid(), mat.Grid()); not general, leaving as a comment (Guido)
// Motivation: look at the SchurDiff operator
assert(V.Checkerboard() == Even);
assert(U.Checkerboard() == Odd);
mat.Checkerboard() = Odd;
@ -289,7 +381,7 @@ void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, co
}
template <class Impl>
void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
conformable(U.Grid(), _cbgrid);
conformable(U.Grid(), V.Grid());
@ -303,7 +395,7 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
}
template <class Impl>
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
@ -314,7 +406,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
}
template <class Impl>
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -326,7 +418,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
}
template <class Impl>
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -338,18 +430,18 @@ void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int d
}
template <class Impl>
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
{
DhopDir(in, out, dir, disp);
}
template <class Impl>
void WilsonFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
void WilsonFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
{
DhopDirAll(in, out);
}
template <class Impl>
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in, compressor);
@ -361,12 +453,12 @@ void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int
DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
};
template <class Impl>
void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in, compressor);
assert((out.size()==8)||(out.size()==9));
assert((out.size()==8)||(out.size()==9));
for(int dir=0;dir<Nd;dir++){
for(int disp=-1;disp<=1;disp+=2){
@ -379,7 +471,7 @@ void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<Fermion
}
}
template <class Impl>
void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
{
int Ls=1;
uint64_t Nsite=in.oSites();
@ -390,22 +482,23 @@ template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
FermionField &out, int dag)
{
DhopTotalTime-=usecond();
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
#endif
DhopInternalSerial(st,lo,U,in,out,dag);
DhopTotalTime+=usecond();
}
template <class Impl>
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
@ -417,38 +510,53 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
/////////////////////////////
std::vector<std::vector<CommsRequest_t> > requests;
st.Prepare();
DhopFaceTime-=usecond();
st.HaloGather(in,compressor);
DhopFaceTime+=usecond();
DhopCommTime -=usecond();
st.CommunicateBegin(requests);
/////////////////////////////
// Overlap with comms
/////////////////////////////
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+=usecond();
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt;
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
}
}
DhopComputeTime+=usecond();
/////////////////////////////
// Complete comms
/////////////////////////////
st.CommunicateComplete(requests);
DhopCommTime +=usecond();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
/////////////////////////////
// do the compute exterior
/////////////////////////////
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
}
DhopComputeTime2+=usecond();
};
@ -456,24 +564,28 @@ template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
DhopCommTime-=usecond();
st.HaloExchange(in, compressor);
DhopCommTime+=usecond();
DhopComputeTime-=usecond();
int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
}
DhopComputeTime+=usecond();
};
/*Change ends */
/*******************************************************************************
* Conserved current utilities for Wilson fermions, for contracting propagators
* to make a conserved current sink or inserting the conserved current
* to make a conserved current sink or inserting the conserved current
* sequentially.
******************************************************************************/
template <class Impl>
@ -493,12 +605,12 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
template <class Impl>
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{

View File

@ -0,0 +1,450 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernelsAsmA64FX.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
//#if defined(A64FXASM)
#if defined(A64FX)
// safety include
#include <arm_sve.h>
// undefine everything related to kernels
#include <simd/Fujitsu_A64FX_undef.h>
///////////////////////////////////////////////////////////
// If we are A64FX specialise the single precision routine
///////////////////////////////////////////////////////////
#if defined(DSLASHINTRIN)
//#pragma message ("A64FX Dslash: intrin")
#include <simd/Fujitsu_A64FX_intrin_single.h>
#else
#pragma message ("A64FX Dslash: asm")
#include <simd/Fujitsu_A64FX_asm_single.h>
#endif
/// Switch off the 5d vectorised code optimisations
#undef DWFVEC5D
/////////////////////////////////////////////////////////////////
// XYZT vectorised, undag Kernel, single
/////////////////////////////////////////////////////////////////
#undef KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, single
/////////////////////////////////////////////////////////////////
#define KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
// undefine
#include <simd/Fujitsu_A64FX_undef.h>
///////////////////////////////////////////////////////////
// If we are A64FX specialise the double precision routine
///////////////////////////////////////////////////////////
#if defined(DSLASHINTRIN)
#include <simd/Fujitsu_A64FX_intrin_double.h>
#else
#include <simd/Fujitsu_A64FX_asm_double.h>
#endif
// former KNL
//#define MAYBEPERM(A,perm) if (perm) { A ; }
//#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN(ptr,pf)
//#define COMPLEX_SIGNS(isigns) vComplexD *isigns = &signsD[0];
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
/////////////////////////////////////////////////////////////////
// XYZT vectorised, undag Kernel, double
/////////////////////////////////////////////////////////////////
#undef KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, double
/////////////////////////////////////////////////////////////////
#define KERNEL_DAG
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
// undefs
#include <simd/Fujitsu_A64FX_undef.h>
#endif //A64FXASM

View File

@ -0,0 +1,395 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: WilsonKernelsAsmBodyA64FX.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
// GCC 10 messes up SVE instruction scheduling using -O3, but
// -O3 -fno-schedule-insns -fno-schedule-insns2 does wonders
// performance now is better than armclang 20.2
#ifdef KERNEL_DAG
#define DIR0_PROJ XP_PROJ
#define DIR1_PROJ YP_PROJ
#define DIR2_PROJ ZP_PROJ
#define DIR3_PROJ TP_PROJ
#define DIR4_PROJ XM_PROJ
#define DIR5_PROJ YM_PROJ
#define DIR6_PROJ ZM_PROJ
#define DIR7_PROJ TM_PROJ
#define DIR0_RECON XP_RECON
#define DIR1_RECON YP_RECON_ACCUM
#define DIR2_RECON ZP_RECON_ACCUM
#define DIR3_RECON TP_RECON_ACCUM
#define DIR4_RECON XM_RECON_ACCUM
#define DIR5_RECON YM_RECON_ACCUM
#define DIR6_RECON ZM_RECON_ACCUM
#define DIR7_RECON TM_RECON_ACCUM
#else
#define DIR0_PROJ XM_PROJ
#define DIR1_PROJ YM_PROJ
#define DIR2_PROJ ZM_PROJ
#define DIR3_PROJ TM_PROJ
#define DIR4_PROJ XP_PROJ
#define DIR5_PROJ YP_PROJ
#define DIR6_PROJ ZP_PROJ
#define DIR7_PROJ TP_PROJ
#define DIR0_RECON XM_RECON
#define DIR1_RECON YM_RECON_ACCUM
#define DIR2_RECON ZM_RECON_ACCUM
#define DIR3_RECON TM_RECON_ACCUM
#define DIR4_RECON XP_RECON_ACCUM
#define DIR5_RECON YP_RECON_ACCUM
#define DIR6_RECON ZP_RECON_ACCUM
#define DIR7_RECON TP_RECON_ACCUM
#endif
//using namespace std;
#undef SHOW
//#define SHOW
#undef WHERE
#ifdef INTERIOR_AND_EXTERIOR
#define WHERE "INT_AND_EXT"
#endif
#ifdef INTERIOR
#define WHERE "INT"
#endif
#ifdef EXTERIOR
#define WHERE "EXT"
#endif
//#pragma message("here")
////////////////////////////////////////////////////////////////////////////////
// Comms then compute kernel
////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR_AND_EXTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD_CHIMU(base); \
LOAD_TABLE(PERMUTE_DIR); \
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
} else { \
LOAD_CHI(base); \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
PREFETCH_CHIMU_L2(basep); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
/*
NB: picking PREFETCH_GAUGE_L2(Dir+4); here results in performance penalty
though I expected that it would improve on performance
*/
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PREFETCH1_CHIMU(base); \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif
////////////////////////////////////////////////////////////////////////////////
// Pre comms kernel -- prefetch like normal because it is mostly right
////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD_CHIMU(base); \
LOAD_TABLE(PERMUTE_DIR); \
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
}else if ( st.same_node[Dir] ) {LOAD_CHI(base);} \
if ( local || st.same_node[Dir] ) { \
MULT_2SPIN_1(Dir); \
MULT_2SPIN_2; \
RECON; \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
PREFETCH_CHIMU_L2(basep); \
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PREFETCH1_CHIMU(base); \
{ ZERO_PSI; } \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif
////////////////////////////////////////////////////////////////////////////////
// Post comms kernel
////////////////////////////////////////////////////////////////////////////////
#ifdef EXTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_1(Dir); \
MULT_2SPIN_2; \
RECON; \
nmu++; \
}
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
nmu=0; \
{ ZERO_PSI;} \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_1(Dir); \
MULT_2SPIN_2; \
RECON; \
nmu++; \
}
#define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
#endif
{
int nmu;
int local,perm, ptype;
uint64_t base;
uint64_t basep;
const uint64_t plocal =(uint64_t) & in[0];
MASK_REGS;
int nmax=U.oSites();
for(int site=0;site<Ns;site++) {
#ifndef EXTERIOR
// int sU =lo.Reorder(ssU);
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
// int sUn=lo.Reorder(ssn);
int sUn=ssn;
#else
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
int sUn=ssn;
#endif
for(int s=0;s<Ls;s++) {
ss =sU*Ls+s;
ssn=sUn*Ls+s;
int ent=ss*8;// 2*Ndim
int nent=ssn*8;
uint64_t delta_base, delta_base_p;
ASM_LEG_XP(Xp,Yp,PERMUTE_DIR3,DIR0_PROJ,DIR0_RECON);
#ifdef SHOW
float rescale = 64. * 12.;
std::cout << "=================================================================" << std::endl;
std::cout << "ss = " << ss << " ssn = " << ssn << std::endl;
std::cout << "sU = " << sU << " ssU = " << ssU << std::endl;
std::cout << " " << std::endl;
std::cout << "Dir = " << Xp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Xp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Yp,Zp,PERMUTE_DIR2,DIR1_PROJ,DIR1_RECON);
#ifdef SHOW
std::cout << "Dir = " << Yp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Yp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Zp,Tp,PERMUTE_DIR1,DIR2_PROJ,DIR2_RECON);
#ifdef SHOW
std::cout << "Dir = " << Zp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Zp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Tp,Xm,PERMUTE_DIR0,DIR3_PROJ,DIR3_RECON);
#ifdef SHOW
std::cout << "Dir = " << Tp << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Tp] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
ASM_LEG(Xm,Ym,PERMUTE_DIR3,DIR4_PROJ,DIR4_RECON);
#ifdef SHOW
std::cout << "Dir = " << Xm << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Xm] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
// DC ZVA test
// { uint64_t basestore = (uint64_t)&out[ss];
// PREFETCH_RESULT_L2_STORE(basestore); }
ASM_LEG(Ym,Zm,PERMUTE_DIR2,DIR5_PROJ,DIR5_RECON);
#ifdef SHOW
std::cout << "Dir = " << Ym << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Ym] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
// DC ZVA test
//{ uint64_t basestore = (uint64_t)&out[ss];
// PREFETCH_RESULT_L2_STORE(basestore); }
ASM_LEG(Zm,Tm,PERMUTE_DIR1,DIR6_PROJ,DIR6_RECON);
#ifdef SHOW
std::cout << "Dir = " << Zm << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Zm] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
// DC ZVA test
//{ uint64_t basestore = (uint64_t)&out[ss];
// PREFETCH_RESULT_L2_STORE(basestore); }
ASM_LEG(Tm,Xp,PERMUTE_DIR0,DIR7_PROJ,DIR7_RECON);
#ifdef SHOW
std::cout << "Dir = " << Tm << " " << WHERE<< std::endl;
std::cout << "ent nent local perm = " << ent << " " << nent << " " << local << " " << perm << std::endl;
std::cout << "st.same_node[Dir] = " << st.same_node[Tm] << std::endl;
std::cout << "base = " << (base - plocal)/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
#ifdef EXTERIOR
if (nmu==0) break;
// if (nmu!=0) std::cout << "EXT "<<sU<<std::endl;
#endif
base = (uint64_t) &out[ss];
basep= st.GetPFInfo(nent,plocal); ent++;
basep = (uint64_t) &out[ssn];
//PREFETCH_RESULT_L1_STORE(base);
RESULT(base,basep);
#ifdef SHOW
std::cout << "Dir = FINAL " << WHERE<< std::endl;;
base_ss = base;
std::cout << "base = " << (base - (uint64_t) &out[0])/rescale << std::endl;
std::cout << "Basep = " << (basep - plocal)/rescale << std::endl;
//printf("U = %llu\n", (uint64_t)&[sU](Dir));
std::cout << "----------------------------------------------------" << std::endl;
#endif
}
ssU++;
UNLOCK_GAUGE(0);
}
}
#undef DIR0_PROJ
#undef DIR1_PROJ
#undef DIR2_PROJ
#undef DIR3_PROJ
#undef DIR4_PROJ
#undef DIR5_PROJ
#undef DIR6_PROJ
#undef DIR7_PROJ
#undef DIR0_RECON
#undef DIR1_RECON
#undef DIR2_RECON
#undef DIR3_RECON
#undef DIR4_RECON
#undef DIR5_RECON
#undef DIR6_RECON
#undef DIR7_RECON
#undef ASM_LEG
#undef ASM_LEG_XP
#undef RESULT

View File

@ -38,46 +38,46 @@ NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////
// Default to no assembler implementation
// Will specialise to
// Will specialise to AVX512 if available
///////////////////////////////////////////////////////////
template<class Impl> void
WilsonKernels<Impl >::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
WilsonKernels<Impl >::AsmDhopSite(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, const FermionFieldView &out)
{
assert(0);
}
template<class Impl> void
WilsonKernels<Impl >::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
WilsonKernels<Impl >::AsmDhopSiteDag(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, const FermionFieldView &out)
{
assert(0);
}
template<class Impl> void
WilsonKernels<Impl >::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
WilsonKernels<Impl >::AsmDhopSiteInt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, const FermionFieldView &out)
{
assert(0);
}
template<class Impl> void
WilsonKernels<Impl >::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
WilsonKernels<Impl >::AsmDhopSiteDagInt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, const FermionFieldView &out)
{
assert(0);
}
template<class Impl> void
WilsonKernels<Impl >::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
WilsonKernels<Impl >::AsmDhopSiteExt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, const FermionFieldView &out)
{
assert(0);
}
template<class Impl> void
WilsonKernels<Impl >::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
WilsonKernels<Impl >::AsmDhopSiteDagExt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, const FermionFieldView &out)
{
assert(0);
}

View File

@ -646,9 +646,14 @@ NAMESPACE_BEGIN(Grid);
HAND_RESULT_EXT(ss,F)
#define HAND_SPECIALISE_GPARITY(IMPL) \
template<> void \
WilsonKernels<IMPL>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteSycl(StencilVector st_perm, StencilEntry *st_p, \
SiteDoubledGaugeField *U, SiteHalfSpinor * buf, \
int sF, int sU, const SiteSpinor *in, SiteSpinor *out) {} \
\
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSite(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
@ -662,9 +667,9 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteDag(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
@ -678,9 +683,9 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE_DAG(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteInt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
@ -694,9 +699,9 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteDagInt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
@ -710,9 +715,9 @@ NAMESPACE_BEGIN(Grid);
HAND_DOP_SITE_DAG_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteExt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
@ -727,9 +732,9 @@ NAMESPACE_BEGIN(Grid);
nmu = 0; \
HAND_DOP_SITE_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, FermionFieldView &out) \
template<> accelerator_inline void \
WilsonKernels<IMPL>::HandDhopSiteDagExt(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \

View File

@ -495,9 +495,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Impl> void
WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSite(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
@ -519,9 +519,9 @@ WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,Site
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDag(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -542,9 +542,9 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView
HAND_RESULT(ss);
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteInt(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
@ -566,9 +566,9 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagInt(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -589,9 +589,9 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldVi
HAND_RESULT(ss);
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteExt(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
@ -614,9 +614,9 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_RESULT_EXT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagExt(const StencilView &st,const DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, const FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -682,3 +682,4 @@ NAMESPACE_END(Grid);
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT
#undef HAND_DECLARATIONS

View File

@ -0,0 +1,943 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernelsHand.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
#undef LOAD_CHIMU
#undef LOAD_CHI
#undef MULT_2SPIN
#undef PERMUTE_DIR
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XP_RECON_ACCUM
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef ZERO_RESULT
#undef Chimu_00
#undef Chimu_01
#undef Chimu_02
#undef Chimu_10
#undef Chimu_11
#undef Chimu_12
#undef Chimu_20
#undef Chimu_21
#undef Chimu_22
#undef Chimu_30
#undef Chimu_31
#undef Chimu_32
#undef HAND_STENCIL_LEG
#undef HAND_STENCIL_LEG_INT
#undef HAND_STENCIL_LEG_EXT
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT
#define REGISTER
#define LOAD_CHIMU \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
Chimu_02=ref()(0)(2);\
Chimu_10=ref()(1)(0);\
Chimu_11=ref()(1)(1);\
Chimu_12=ref()(1)(2);\
Chimu_20=ref()(2)(0);\
Chimu_21=ref()(2)(1);\
Chimu_22=ref()(2)(2);\
Chimu_30=ref()(3)(0);\
Chimu_31=ref()(3)(1);\
Chimu_32=ref()(3)(2);\
std::cout << std::endl << "DEBUG -- LOAD_CHIMU" << std::endl; \
std::cout << "Chimu_00 -- " << Chimu_00 << std::endl; \
std::cout << "Chimu_01 -- " << Chimu_01 << std::endl; \
std::cout << "Chimu_02 -- " << Chimu_02 << std::endl; \
std::cout << "Chimu_10 -- " << Chimu_10 << std::endl; \
std::cout << "Chimu_11 -- " << Chimu_11 << std::endl; \
std::cout << "Chimu_12 -- " << Chimu_12 << std::endl; \
std::cout << "Chimu_20 -- " << Chimu_20 << std::endl; \
std::cout << "Chimu_21 -- " << Chimu_21 << std::endl; \
std::cout << "Chimu_22 -- " << Chimu_22 << std::endl; \
std::cout << "Chimu_30 -- " << Chimu_30 << std::endl; \
std::cout << "Chimu_31 -- " << Chimu_31 << std::endl; \
std::cout << "Chimu_32 -- " << Chimu_32 << std::endl; \
}
#define LOAD_CHI\
{const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = ref()(0)(0);\
Chi_01 = ref()(0)(1);\
Chi_02 = ref()(0)(2);\
Chi_10 = ref()(1)(0);\
Chi_11 = ref()(1)(1);\
Chi_12 = ref()(1)(2);\
std::cout << std::endl << "DEBUG -- LOAD_CHI" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl; \
}
// To splat or not to splat depends on the implementation
#define MULT_2SPIN(A)\
{auto & ref(U[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
Impl::loadLinkElement(U_01,ref()(0,1)); \
Impl::loadLinkElement(U_11,ref()(1,1)); \
Impl::loadLinkElement(U_21,ref()(2,1)); \
UChi_00 = U_00*Chi_00;\
UChi_10 = U_00*Chi_10;\
UChi_01 = U_10*Chi_00;\
UChi_11 = U_10*Chi_10;\
UChi_02 = U_20*Chi_00;\
UChi_12 = U_20*Chi_10;\
UChi_00+= U_01*Chi_01;\
UChi_10+= U_01*Chi_11;\
UChi_01+= U_11*Chi_01;\
UChi_11+= U_11*Chi_11;\
UChi_02+= U_21*Chi_01;\
UChi_12+= U_21*Chi_11;\
Impl::loadLinkElement(U_00,ref()(0,2)); \
Impl::loadLinkElement(U_10,ref()(1,2)); \
Impl::loadLinkElement(U_20,ref()(2,2)); \
UChi_00+= U_00*Chi_02;\
UChi_10+= U_00*Chi_12;\
UChi_01+= U_10*Chi_02;\
UChi_11+= U_10*Chi_12;\
UChi_02+= U_20*Chi_02;\
UChi_12+= U_20*Chi_12;\
std::cout << std::endl << "DEBUG -- MULT_2SPIN" << std::endl; \
std::cout << "UChi_00 -- " << UChi_00 << std::endl; \
std::cout << "UChi_01 -- " << UChi_01 << std::endl; \
std::cout << "UChi_02 -- " << UChi_02 << std::endl; \
std::cout << "UChi_10 -- " << UChi_10 << std::endl; \
std::cout << "UChi_11 -- " << UChi_11 << std::endl; \
std::cout << "UChi_12 -- " << UChi_12 << std::endl; \
}
#define PERMUTE_DIR(dir) \
std::cout << std::endl << "DEBUG -- PERM PRE" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl; \
permute##dir(Chi_00,Chi_00);\
permute##dir(Chi_01,Chi_01);\
permute##dir(Chi_02,Chi_02);\
permute##dir(Chi_10,Chi_10);\
permute##dir(Chi_11,Chi_11);\
permute##dir(Chi_12,Chi_12);\
std::cout << std::endl << "DEBUG -- PERM POST" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
// hspin(0)=fspin(0)+timesI(fspin(3));
// hspin(1)=fspin(1)+timesI(fspin(2));
#define XP_PROJ \
Chi_00 = Chimu_00+timesI(Chimu_30);\
Chi_01 = Chimu_01+timesI(Chimu_31);\
Chi_02 = Chimu_02+timesI(Chimu_32);\
Chi_10 = Chimu_10+timesI(Chimu_20);\
Chi_11 = Chimu_11+timesI(Chimu_21);\
Chi_12 = Chimu_12+timesI(Chimu_22);\
std::cout << std::endl << "DEBUG -- XP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define YP_PROJ \
Chi_00 = Chimu_00-Chimu_30;\
Chi_01 = Chimu_01-Chimu_31;\
Chi_02 = Chimu_02-Chimu_32;\
Chi_10 = Chimu_10+Chimu_20;\
Chi_11 = Chimu_11+Chimu_21;\
Chi_12 = Chimu_12+Chimu_22;\
std::cout << std::endl << "DEBUG -- YP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define ZP_PROJ \
Chi_00 = Chimu_00+timesI(Chimu_20); \
Chi_01 = Chimu_01+timesI(Chimu_21); \
Chi_02 = Chimu_02+timesI(Chimu_22); \
Chi_10 = Chimu_10-timesI(Chimu_30); \
Chi_11 = Chimu_11-timesI(Chimu_31); \
Chi_12 = Chimu_12-timesI(Chimu_32);\
std::cout << std::endl << "DEBUG -- ZP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define TP_PROJ \
Chi_00 = Chimu_00+Chimu_20; \
Chi_01 = Chimu_01+Chimu_21; \
Chi_02 = Chimu_02+Chimu_22; \
Chi_10 = Chimu_10+Chimu_30; \
Chi_11 = Chimu_11+Chimu_31; \
Chi_12 = Chimu_12+Chimu_32;\
std::cout << std::endl << "DEBUG -- TP_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
// hspin(0)=fspin(0)-timesI(fspin(3));
// hspin(1)=fspin(1)-timesI(fspin(2));
#define XM_PROJ \
Chi_00 = Chimu_00-timesI(Chimu_30);\
Chi_01 = Chimu_01-timesI(Chimu_31);\
Chi_02 = Chimu_02-timesI(Chimu_32);\
Chi_10 = Chimu_10-timesI(Chimu_20);\
Chi_11 = Chimu_11-timesI(Chimu_21);\
Chi_12 = Chimu_12-timesI(Chimu_22);\
std::cout << std::endl << "DEBUG -- XM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define YM_PROJ \
Chi_00 = Chimu_00+Chimu_30;\
Chi_01 = Chimu_01+Chimu_31;\
Chi_02 = Chimu_02+Chimu_32;\
Chi_10 = Chimu_10-Chimu_20;\
Chi_11 = Chimu_11-Chimu_21;\
Chi_12 = Chimu_12-Chimu_22;\
std::cout << std::endl << "DEBUG -- YM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define ZM_PROJ \
Chi_00 = Chimu_00-timesI(Chimu_20); \
Chi_01 = Chimu_01-timesI(Chimu_21); \
Chi_02 = Chimu_02-timesI(Chimu_22); \
Chi_10 = Chimu_10+timesI(Chimu_30); \
Chi_11 = Chimu_11+timesI(Chimu_31); \
Chi_12 = Chimu_12+timesI(Chimu_32);\
std::cout << std::endl << "DEBUG -- ZM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
#define TM_PROJ \
Chi_00 = Chimu_00-Chimu_20; \
Chi_01 = Chimu_01-Chimu_21; \
Chi_02 = Chimu_02-Chimu_22; \
Chi_10 = Chimu_10-Chimu_30; \
Chi_11 = Chimu_11-Chimu_31; \
Chi_12 = Chimu_12-Chimu_32;\
std::cout << std::endl << "DEBUG -- TM_PROJ" << std::endl; \
std::cout << "Chi_00 -- " << Chi_00 << std::endl; \
std::cout << "Chi_01 -- " << Chi_01 << std::endl; \
std::cout << "Chi_02 -- " << Chi_02 << std::endl; \
std::cout << "Chi_10 -- " << Chi_10 << std::endl; \
std::cout << "Chi_11 -- " << Chi_11 << std::endl; \
std::cout << "Chi_12 -- " << Chi_12 << std::endl;
// fspin(0)=hspin(0);
// fspin(1)=hspin(1);
// fspin(2)=timesMinusI(hspin(1));
// fspin(3)=timesMinusI(hspin(0));
#define XP_RECON\
result_00 = UChi_00;\
result_01 = UChi_01;\
result_02 = UChi_02;\
result_10 = UChi_10;\
result_11 = UChi_11;\
result_12 = UChi_12;\
result_20 = timesMinusI(UChi_10);\
result_21 = timesMinusI(UChi_11);\
result_22 = timesMinusI(UChi_12);\
result_30 = timesMinusI(UChi_00);\
result_31 = timesMinusI(UChi_01);\
result_32 = timesMinusI(UChi_02);\
std::cout << std::endl << "DEBUG -- XP_RECON" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define XP_RECON_ACCUM\
result_00+=UChi_00;\
result_01+=UChi_01;\
result_02+=UChi_02;\
result_10+=UChi_10;\
result_11+=UChi_11;\
result_12+=UChi_12;\
result_20-=timesI(UChi_10);\
result_21-=timesI(UChi_11);\
result_22-=timesI(UChi_12);\
result_30-=timesI(UChi_00);\
result_31-=timesI(UChi_01);\
result_32-=timesI(UChi_02);\
std::cout << std::endl << "DEBUG -- XP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define XM_RECON\
result_00 = UChi_00;\
result_01 = UChi_01;\
result_02 = UChi_02;\
result_10 = UChi_10;\
result_11 = UChi_11;\
result_12 = UChi_12;\
result_20 = timesI(UChi_10);\
result_21 = timesI(UChi_11);\
result_22 = timesI(UChi_12);\
result_30 = timesI(UChi_00);\
result_31 = timesI(UChi_01);\
result_32 = timesI(UChi_02);\
std::cout << std::endl << "DEBUG -- XM_RECON" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define XM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= timesI(UChi_10);\
result_21+= timesI(UChi_11);\
result_22+= timesI(UChi_12);\
result_30+= timesI(UChi_00);\
result_31+= timesI(UChi_01);\
result_32+= timesI(UChi_02);\
std::cout << std::endl << "DEBUG -- XM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define YP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= UChi_10;\
result_21+= UChi_11;\
result_22+= UChi_12;\
result_30-= UChi_00;\
result_31-= UChi_01;\
result_32-= UChi_02;\
std::cout << std::endl << "DEBUG -- YP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define YM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= UChi_10;\
result_21-= UChi_11;\
result_22-= UChi_12;\
result_30+= UChi_00;\
result_31+= UChi_01;\
result_32+= UChi_02;\
std::cout << std::endl << "DEBUG -- YM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define ZP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= timesI(UChi_00); \
result_21-= timesI(UChi_01); \
result_22-= timesI(UChi_02); \
result_30+= timesI(UChi_10); \
result_31+= timesI(UChi_11); \
result_32+= timesI(UChi_12);\
std::cout << std::endl << "DEBUG -- ZP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define ZM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= timesI(UChi_00); \
result_21+= timesI(UChi_01); \
result_22+= timesI(UChi_02); \
result_30-= timesI(UChi_10); \
result_31-= timesI(UChi_11); \
result_32-= timesI(UChi_12);\
std::cout << std::endl << "DEBUG -- ZM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define TP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= UChi_00; \
result_21+= UChi_01; \
result_22+= UChi_02; \
result_30+= UChi_10; \
result_31+= UChi_11; \
result_32+= UChi_12;\
std::cout << std::endl << "DEBUG -- TP_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define TM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= UChi_00; \
result_21-= UChi_01; \
result_22-= UChi_02; \
result_30-= UChi_10; \
result_31-= UChi_11; \
result_32-= UChi_12;\
std::cout << std::endl << "DEBUG -- TM_RECON_ACCUM" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
vstream(ref()(0)(0),result_00); \
vstream(ref()(0)(1),result_01); \
vstream(ref()(0)(2),result_02); \
vstream(ref()(1)(0),result_10); \
vstream(ref()(1)(1),result_11); \
vstream(ref()(1)(2),result_12); \
vstream(ref()(2)(0),result_20); \
vstream(ref()(2)(1),result_21); \
vstream(ref()(2)(2),result_22); \
vstream(ref()(3)(0),result_30); \
vstream(ref()(3)(1),result_31); \
vstream(ref()(3)(2),result_32); \
std::cout << std::endl << "DEBUG -- RESULT" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;\
}
#define HAND_RESULT_EXT(ss) \
if (nmu){ \
SiteSpinor & ref (out[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
std::cout << std::endl << "DEBUG -- RESULT EXT" << std::endl; \
std::cout << "result_00 -- " << result_00 << std::endl; \
std::cout << "result_01 -- " << result_01 << std::endl; \
std::cout << "result_02 -- " << result_02 << std::endl; \
std::cout << "result_10 -- " << result_10 << std::endl; \
std::cout << "result_11 -- " << result_11 << std::endl; \
std::cout << "result_12 -- " << result_12 << std::endl; \
std::cout << "result_20 -- " << result_20 << std::endl; \
std::cout << "result_21 -- " << result_21 << std::endl; \
std::cout << "result_22 -- " << result_22 << std::endl; \
std::cout << "result_30 -- " << result_30 << std::endl; \
std::cout << "result_31 -- " << result_31 << std::endl; \
std::cout << "result_32 -- " << result_32 << std::endl;\
}
#define HAND_DECLARATIONS(a) \
Simd result_00; \
Simd result_01; \
Simd result_02; \
Simd result_10; \
Simd result_11; \
Simd result_12; \
Simd result_20; \
Simd result_21; \
Simd result_22; \
Simd result_30; \
Simd result_31; \
Simd result_32; \
Simd Chi_00; \
Simd Chi_01; \
Simd Chi_02; \
Simd Chi_10; \
Simd Chi_11; \
Simd Chi_12; \
Simd UChi_00; \
Simd UChi_01; \
Simd UChi_02; \
Simd UChi_10; \
Simd UChi_11; \
Simd UChi_12; \
Simd U_00; \
Simd U_10; \
Simd U_20; \
Simd U_01; \
Simd U_11; \
Simd U_21;\
Simd debugreg;\
svbool_t pg1; \
pg1 = svptrue_b64(); \
#define ZERO_RESULT \
result_00=Zero(); \
result_01=Zero(); \
result_02=Zero(); \
result_10=Zero(); \
result_11=Zero(); \
result_12=Zero(); \
result_20=Zero(); \
result_21=Zero(); \
result_22=Zero(); \
result_30=Zero(); \
result_31=Zero(); \
result_32=Zero();
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
NAMESPACE_BEGIN(Grid);
template<class Impl> void
WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset,local,perm, ptype;
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT_EXT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT_EXT(ss);
}
////////////// Wilson ; uses this implementation /////////////////////
NAMESPACE_END(Grid);
#undef LOAD_CHIMU
#undef LOAD_CHI
#undef MULT_2SPIN
#undef PERMUTE_DIR
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XP_RECON_ACCUM
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef ZERO_RESULT
#undef Chimu_00
#undef Chimu_01
#undef Chimu_02
#undef Chimu_10
#undef Chimu_11
#undef Chimu_12
#undef Chimu_20
#undef Chimu_21
#undef Chimu_22
#undef Chimu_30
#undef Chimu_31
#undef Chimu_32
#undef HAND_STENCIL_LEG
#undef HAND_STENCIL_LEG_INT
#undef HAND_STENCIL_LEG_EXT
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT

View File

@ -0,0 +1,598 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernelsHand.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
#undef LOAD_CHIMU
#undef LOAD_CHI
#undef MULT_2SPIN
#undef PERMUTE_DIR
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XP_RECON_ACCUM
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef ZERO_RESULT
#undef Chimu_00
#undef Chimu_01
#undef Chimu_02
#undef Chimu_10
#undef Chimu_11
#undef Chimu_12
#undef Chimu_20
#undef Chimu_21
#undef Chimu_22
#undef Chimu_30
#undef Chimu_31
#undef Chimu_32
#undef HAND_STENCIL_LEG
#undef HAND_STENCIL_LEG_INT
#undef HAND_STENCIL_LEG_EXT
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT
#define REGISTER
#ifdef GRID_SIMT
#define LOAD_CHIMU(ptype) \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=coalescedReadPermute<ptype>(ref()(0)(0),perm); \
Chimu_01=coalescedReadPermute<ptype>(ref()(0)(1),perm); \
Chimu_02=coalescedReadPermute<ptype>(ref()(0)(2),perm); \
Chimu_10=coalescedReadPermute<ptype>(ref()(1)(0),perm); \
Chimu_11=coalescedReadPermute<ptype>(ref()(1)(1),perm); \
Chimu_12=coalescedReadPermute<ptype>(ref()(1)(2),perm); \
Chimu_20=coalescedReadPermute<ptype>(ref()(2)(0),perm); \
Chimu_21=coalescedReadPermute<ptype>(ref()(2)(1),perm); \
Chimu_22=coalescedReadPermute<ptype>(ref()(2)(2),perm); \
Chimu_30=coalescedReadPermute<ptype>(ref()(3)(0),perm); \
Chimu_31=coalescedReadPermute<ptype>(ref()(3)(1),perm); \
Chimu_32=coalescedReadPermute<ptype>(ref()(3)(2),perm); }
#define PERMUTE_DIR(dir) ;
#else
#define LOAD_CHIMU(ptype) \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=coalescedRead(ref()(0)(0)); \
Chimu_01=coalescedRead(ref()(0)(1)); \
Chimu_02=coalescedRead(ref()(0)(2)); \
Chimu_10=coalescedRead(ref()(1)(0)); \
Chimu_11=coalescedRead(ref()(1)(1)); \
Chimu_12=coalescedRead(ref()(1)(2)); \
Chimu_20=coalescedRead(ref()(2)(0)); \
Chimu_21=coalescedRead(ref()(2)(1)); \
Chimu_22=coalescedRead(ref()(2)(2)); \
Chimu_30=coalescedRead(ref()(3)(0)); \
Chimu_31=coalescedRead(ref()(3)(1)); \
Chimu_32=coalescedRead(ref()(3)(2)); }
#define PERMUTE_DIR(dir) \
permute##dir(Chi_00,Chi_00); \
permute##dir(Chi_01,Chi_01);\
permute##dir(Chi_02,Chi_02);\
permute##dir(Chi_10,Chi_10); \
permute##dir(Chi_11,Chi_11);\
permute##dir(Chi_12,Chi_12);
#endif
#define MULT_2SPIN(A)\
{auto & ref(U[sU](A)); \
U_00=coalescedRead(ref()(0,0)); \
U_10=coalescedRead(ref()(1,0)); \
U_20=coalescedRead(ref()(2,0)); \
U_01=coalescedRead(ref()(0,1)); \
U_11=coalescedRead(ref()(1,1)); \
U_21=coalescedRead(ref()(2,1)); \
UChi_00 = U_00*Chi_00; \
UChi_10 = U_00*Chi_10; \
UChi_01 = U_10*Chi_00; \
UChi_11 = U_10*Chi_10; \
UChi_02 = U_20*Chi_00; \
UChi_12 = U_20*Chi_10; \
UChi_00+= U_01*Chi_01; \
UChi_10+= U_01*Chi_11; \
UChi_01+= U_11*Chi_01; \
UChi_11+= U_11*Chi_11; \
UChi_02+= U_21*Chi_01; \
UChi_12+= U_21*Chi_11; \
U_00=coalescedRead(ref()(0,2)); \
U_10=coalescedRead(ref()(1,2)); \
U_20=coalescedRead(ref()(2,2)); \
UChi_00+= U_00*Chi_02; \
UChi_10+= U_00*Chi_12; \
UChi_01+= U_10*Chi_02; \
UChi_11+= U_10*Chi_12; \
UChi_02+= U_20*Chi_02; \
UChi_12+= U_20*Chi_12;}
#define LOAD_CHI \
{const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = coalescedRead(ref()(0)(0)); \
Chi_01 = coalescedRead(ref()(0)(1)); \
Chi_02 = coalescedRead(ref()(0)(2)); \
Chi_10 = coalescedRead(ref()(1)(0)); \
Chi_11 = coalescedRead(ref()(1)(1)); \
Chi_12 = coalescedRead(ref()(1)(2));}
// hspin(0)=fspin(0)+timesI(fspin(3));
// hspin(1)=fspin(1)+timesI(fspin(2));
#define XP_PROJ \
Chi_00 = Chimu_00+timesI(Chimu_30);\
Chi_01 = Chimu_01+timesI(Chimu_31);\
Chi_02 = Chimu_02+timesI(Chimu_32);\
Chi_10 = Chimu_10+timesI(Chimu_20);\
Chi_11 = Chimu_11+timesI(Chimu_21);\
Chi_12 = Chimu_12+timesI(Chimu_22);
#define YP_PROJ \
Chi_00 = Chimu_00-Chimu_30;\
Chi_01 = Chimu_01-Chimu_31;\
Chi_02 = Chimu_02-Chimu_32;\
Chi_10 = Chimu_10+Chimu_20;\
Chi_11 = Chimu_11+Chimu_21;\
Chi_12 = Chimu_12+Chimu_22;
#define ZP_PROJ \
Chi_00 = Chimu_00+timesI(Chimu_20); \
Chi_01 = Chimu_01+timesI(Chimu_21); \
Chi_02 = Chimu_02+timesI(Chimu_22); \
Chi_10 = Chimu_10-timesI(Chimu_30); \
Chi_11 = Chimu_11-timesI(Chimu_31); \
Chi_12 = Chimu_12-timesI(Chimu_32);
#define TP_PROJ \
Chi_00 = Chimu_00+Chimu_20; \
Chi_01 = Chimu_01+Chimu_21; \
Chi_02 = Chimu_02+Chimu_22; \
Chi_10 = Chimu_10+Chimu_30; \
Chi_11 = Chimu_11+Chimu_31; \
Chi_12 = Chimu_12+Chimu_32;
// hspin(0)=fspin(0)-timesI(fspin(3));
// hspin(1)=fspin(1)-timesI(fspin(2));
#define XM_PROJ \
Chi_00 = Chimu_00-timesI(Chimu_30);\
Chi_01 = Chimu_01-timesI(Chimu_31);\
Chi_02 = Chimu_02-timesI(Chimu_32);\
Chi_10 = Chimu_10-timesI(Chimu_20);\
Chi_11 = Chimu_11-timesI(Chimu_21);\
Chi_12 = Chimu_12-timesI(Chimu_22);
#define YM_PROJ \
Chi_00 = Chimu_00+Chimu_30;\
Chi_01 = Chimu_01+Chimu_31;\
Chi_02 = Chimu_02+Chimu_32;\
Chi_10 = Chimu_10-Chimu_20;\
Chi_11 = Chimu_11-Chimu_21;\
Chi_12 = Chimu_12-Chimu_22;
#define ZM_PROJ \
Chi_00 = Chimu_00-timesI(Chimu_20); \
Chi_01 = Chimu_01-timesI(Chimu_21); \
Chi_02 = Chimu_02-timesI(Chimu_22); \
Chi_10 = Chimu_10+timesI(Chimu_30); \
Chi_11 = Chimu_11+timesI(Chimu_31); \
Chi_12 = Chimu_12+timesI(Chimu_32);
#define TM_PROJ \
Chi_00 = Chimu_00-Chimu_20; \
Chi_01 = Chimu_01-Chimu_21; \
Chi_02 = Chimu_02-Chimu_22; \
Chi_10 = Chimu_10-Chimu_30; \
Chi_11 = Chimu_11-Chimu_31; \
Chi_12 = Chimu_12-Chimu_32;
// fspin(0)=hspin(0);
// fspin(1)=hspin(1);
// fspin(2)=timesMinusI(hspin(1));
// fspin(3)=timesMinusI(hspin(0));
#define XP_RECON\
result_00 = UChi_00;\
result_01 = UChi_01;\
result_02 = UChi_02;\
result_10 = UChi_10;\
result_11 = UChi_11;\
result_12 = UChi_12;\
result_20 = timesMinusI(UChi_10);\
result_21 = timesMinusI(UChi_11);\
result_22 = timesMinusI(UChi_12);\
result_30 = timesMinusI(UChi_00);\
result_31 = timesMinusI(UChi_01);\
result_32 = timesMinusI(UChi_02);
#define XP_RECON_ACCUM\
result_00+=UChi_00;\
result_01+=UChi_01;\
result_02+=UChi_02;\
result_10+=UChi_10;\
result_11+=UChi_11;\
result_12+=UChi_12;\
result_20-=timesI(UChi_10);\
result_21-=timesI(UChi_11);\
result_22-=timesI(UChi_12);\
result_30-=timesI(UChi_00);\
result_31-=timesI(UChi_01);\
result_32-=timesI(UChi_02);
#define XM_RECON\
result_00 = UChi_00;\
result_01 = UChi_01;\
result_02 = UChi_02;\
result_10 = UChi_10;\
result_11 = UChi_11;\
result_12 = UChi_12;\
result_20 = timesI(UChi_10);\
result_21 = timesI(UChi_11);\
result_22 = timesI(UChi_12);\
result_30 = timesI(UChi_00);\
result_31 = timesI(UChi_01);\
result_32 = timesI(UChi_02);
#define XM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= timesI(UChi_10);\
result_21+= timesI(UChi_11);\
result_22+= timesI(UChi_12);\
result_30+= timesI(UChi_00);\
result_31+= timesI(UChi_01);\
result_32+= timesI(UChi_02);
#define YP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= UChi_10;\
result_21+= UChi_11;\
result_22+= UChi_12;\
result_30-= UChi_00;\
result_31-= UChi_01;\
result_32-= UChi_02;
#define YM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= UChi_10;\
result_21-= UChi_11;\
result_22-= UChi_12;\
result_30+= UChi_00;\
result_31+= UChi_01;\
result_32+= UChi_02;
#define ZP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= timesI(UChi_00); \
result_21-= timesI(UChi_01); \
result_22-= timesI(UChi_02); \
result_30+= timesI(UChi_10); \
result_31+= timesI(UChi_11); \
result_32+= timesI(UChi_12);
#define ZM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= timesI(UChi_00); \
result_21+= timesI(UChi_01); \
result_22+= timesI(UChi_02); \
result_30-= timesI(UChi_10); \
result_31-= timesI(UChi_11); \
result_32-= timesI(UChi_12);
#define TP_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20+= UChi_00; \
result_21+= UChi_01; \
result_22+= UChi_02; \
result_30+= UChi_10; \
result_31+= UChi_11; \
result_32+= UChi_12;
#define TM_RECON_ACCUM\
result_00+= UChi_00;\
result_01+= UChi_01;\
result_02+= UChi_02;\
result_10+= UChi_10;\
result_11+= UChi_11;\
result_12+= UChi_12;\
result_20-= UChi_00; \
result_21-= UChi_01; \
result_22-= UChi_02; \
result_30-= UChi_10; \
result_31-= UChi_11; \
result_32-= UChi_12;
#define HAND_STENCIL_LEGA(PROJ,PERM,DIR,RECON) \
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
LOAD_CHIMU(PERM); \
PROJ; \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
coalescedWrite(ref()(0)(0),result_00); \
coalescedWrite(ref()(0)(1),result_01); \
coalescedWrite(ref()(0)(2),result_02); \
coalescedWrite(ref()(1)(0),result_10); \
coalescedWrite(ref()(1)(1),result_11); \
coalescedWrite(ref()(1)(2),result_12); \
coalescedWrite(ref()(2)(0),result_20); \
coalescedWrite(ref()(2)(1),result_21); \
coalescedWrite(ref()(2)(2),result_22); \
coalescedWrite(ref()(3)(0),result_30); \
coalescedWrite(ref()(3)(1),result_31); \
coalescedWrite(ref()(3)(2),result_32); \
}
#define HAND_RESULT_EXT(ss) \
if (nmu){ \
SiteSpinor & ref (out[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
}
#define HAND_DECLARATIONS(Simd) \
Simd result_00; \
Simd result_01; \
Simd result_02; \
Simd result_10; \
Simd result_11; \
Simd result_12; \
Simd result_20; \
Simd result_21; \
Simd result_22; \
Simd result_30; \
Simd result_31; \
Simd result_32; \
Simd Chi_00; \
Simd Chi_01; \
Simd Chi_02; \
Simd Chi_10; \
Simd Chi_11; \
Simd Chi_12; \
Simd UChi_00; \
Simd UChi_01; \
Simd UChi_02; \
Simd UChi_10; \
Simd UChi_11; \
Simd UChi_12; \
Simd U_00; \
Simd U_10; \
Simd U_20; \
Simd U_01; \
Simd U_11; \
Simd U_21;
#define ZERO_RESULT \
result_00=Zero(); \
result_01=Zero(); \
result_02=Zero(); \
result_10=Zero(); \
result_11=Zero(); \
result_12=Zero(); \
result_20=Zero(); \
result_21=Zero(); \
result_22=Zero(); \
result_30=Zero(); \
result_31=Zero(); \
result_32=Zero();
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
NAMESPACE_BEGIN(Grid);
template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p, SiteDoubledGaugeField *U,SiteHalfSpinor *buf,
int ss,int sU,const SiteSpinor *in, SiteSpinor *out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
typedef iSinglet<Simd> vCplx;
// typedef decltype( coalescedRead( vCplx()()() )) Simt;
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
////////////// Wilson ; uses this implementation /////////////////////
NAMESPACE_END(Grid);
#undef LOAD_CHIMU
#undef LOAD_CHI
#undef MULT_2SPIN
#undef PERMUTE_DIR
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XP_RECON_ACCUM
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef ZERO_RESULT
#undef Chimu_00
#undef Chimu_01
#undef Chimu_02
#undef Chimu_10
#undef Chimu_11
#undef Chimu_12
#undef Chimu_20
#undef Chimu_21
#undef Chimu_22
#undef Chimu_30
#undef Chimu_31
#undef Chimu_32
#undef HAND_STENCIL_LEG
#undef HAND_STENCIL_LEG_INT
#undef HAND_STENCIL_LEG_EXT
#undef HAND_RESULT
#undef HAND_RESULT_INT
#undef HAND_RESULT_EXT
#undef HAND_DECLARATIONS

View File

@ -43,11 +43,11 @@ NAMESPACE_BEGIN(Grid);
accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
{
#ifdef GRID_SIMT
static_assert(sizeof(StencilEntry)==sizeof(uint4),"Unexpected Stencil Entry Size");
static_assert(sizeof(StencilEntry)==sizeof(uint4),"Unexpected Stencil Entry Size");
uint4 * mem_pun = (uint4 *)mem; // force 128 bit loads
uint4 * chip_pun = (uint4 *)&chip;
* chip_pun = * mem_pun;
#else
#else
chip = *mem;
#endif
return;
@ -66,7 +66,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
@ -81,7 +81,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
} \
acceleratorSynchronise();
acceleratorSynchronise();
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
@ -91,7 +91,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
Recon(result, Uchi); \
nmu++; \
} \
acceleratorSynchronise();
acceleratorSynchronise();
#define GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon) \
if (SE->_is_local ) { \
@ -103,7 +103,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, dir, SE, st); \
Recon(result, Uchi);
Recon(result, Uchi);
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
@ -114,10 +114,10 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteDag(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -140,10 +140,10 @@ void WilsonKernels<Impl>::GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldV
coalescedWrite(out[sF],result,lane);
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSite(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -169,10 +169,10 @@ void WilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView
////////////////////////////////////////////////////////////////////
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteDagInt(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -197,10 +197,10 @@ void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFi
coalescedWrite(out[sF], result,lane);
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteInt(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -227,10 +227,10 @@ void WilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeField
////////////////////////////////////////////////////////////////////
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteDagExt(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -251,17 +251,17 @@ void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFi
GENERIC_STENCIL_LEG_EXT(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tm,spProjTm,accumReconTm);
if ( nmu ) {
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
}
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::GenericDhopSiteExt(const StencilView &st, const DoubledGaugeFieldView &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -282,7 +282,7 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
GENERIC_STENCIL_LEG_EXT(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tp,spProjTm,accumReconTm);
if ( nmu ) {
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
@ -290,9 +290,9 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
};
#define DhopDirMacro(Dir,spProj,spRecon) \
template <class Impl> \
void WilsonKernels<Impl>::DhopDir##Dir(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF, \
int sU, const FermionFieldView &in, FermionFieldView &out, int dir) \
template <class Impl> accelerator_inline \
void WilsonKernels<Impl>::DhopDir##Dir(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF, \
int sU, const FermionFieldView &in, const FermionFieldView &out, int dir) \
{ \
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor; \
typedef decltype(coalescedRead(in[0])) calcSpinor; \
@ -302,12 +302,12 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
StencilEntry *SE; \
int ptype; \
const int Nsimd = SiteHalfSpinor::Nsimd(); \
const int lane=acceleratorSIMTlane(Nsimd); \
\
const int lane=acceleratorSIMTlane(Nsimd); \
\
SE = st.GetEntry(ptype, dir, sF); \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,spRecon); \
coalescedWrite(out[sF], result,lane); \
}
}
DhopDirMacro(Xp,spProjXp,spReconXp);
DhopDirMacro(Yp,spProjYp,spReconYp);
@ -318,9 +318,9 @@ DhopDirMacro(Ym,spProjYm,spReconYm);
DhopDirMacro(Zm,spProjZm,spReconZm);
DhopDirMacro(Tm,spProjTm,spReconTm);
template <class Impl>
void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
template <class Impl> accelerator_inline
void WilsonKernels<Impl>::DhopDirK(const StencilView &st, const DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, const FermionFieldView &out, int dir, int gamma)
{
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;
typedef decltype(coalescedRead(in[0])) calcSpinor;
@ -345,8 +345,8 @@ void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,Si
}
template <class Impl>
void WilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out)
void WilsonKernels<Impl>::DhopDirAll(StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out)
{
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
@ -362,8 +362,8 @@ void WilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,Site
autoView(out_Tp,out[7],AcceleratorWrite);
auto CBp=st.CommBuf();
accelerator_for(sss,Nsite*Ls,Simd::Nsimd(),{
int sU=sss/Ls;
int sF =sss;
int sU=sss/Ls;
int sF =sss;
DhopDirXm(st_v,U_v,CBp,sF,sU,in_v,out_Xm,0);
DhopDirYm(st_v,U_v,CBp,sF,sU,in_v,out_Ym,1);
DhopDirZm(st_v,U_v,CBp,sF,sU,in_v,out_Zm,2);
@ -378,7 +378,7 @@ void WilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,Site
template <class Impl>
void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
{
assert(dirdisp<=7);
assert(dirdisp>=0);
@ -387,7 +387,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
autoView(in_v ,in ,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st ,AcceleratorRead);
auto CBp=st.CommBuf();
auto CBp=st.CommBuf();
#define LoopBody(Dir) \
case Dir : \
accelerator_for(ss,Nsite,Simd::Nsimd(),{ \
@ -414,7 +414,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
break;
}
#undef LoopBody
}
}
#define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \
@ -424,7 +424,21 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
});
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define KERNEL_CALL_TMP(A) \
const uint64_t NN = Nsite*Ls; \
auto U_p = & U_v[0]; \
auto in_p = & in_v[0]; \
auto out_p = & out_v[0]; \
auto st_p = st_v._entries_p; \
auto st_perm = st_v._permute_type; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
WilsonKernels<Impl>::A(st_perm,st_p,U_p,buf,sF,sU,in_p,out_p); \
}); \
accelerator_barrier();
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define ASM_CALL(A) \
thread_for( ss, Nsite, { \
@ -436,17 +450,18 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
int interior,int exterior)
{
autoView(U_v , U,AcceleratorRead);
autoView(in_v , in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
if( interior && exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_TMP(HandDhopSiteSycl); return; }
// if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSite); return;}
#endif
} else if( interior ) {
@ -455,7 +470,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALLNB(HandDhopSiteInt); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
#endif
} else if( exterior ) {
} else if( exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteExt); return;}
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteExt); return;}
@ -467,14 +482,14 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
template <class Impl>
void WilsonKernels<Impl>::DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
int interior,int exterior)
{
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st,AcceleratorRead);
if( interior && exterior ) {
if( interior && exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDag); return;}
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag); return;}
@ -486,7 +501,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;}
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
#endif
} else if( exterior ) {
} else if( exterior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
@ -501,4 +516,3 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
#undef ASM_CALL
NAMESPACE_END(Grid);

View File

@ -4,11 +4,12 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -31,17 +32,21 @@ directory
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementationSycl.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -37,6 +37,7 @@ directory
////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmAvx512.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmA64FX.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmQPX.h>
NAMESPACE_END(Grid);

View File

@ -0,0 +1,38 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/Gauge.cc
Copyright (C) 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
std::vector<int> ConjugateGaugeImplBase::_conjDirs;
NAMESPACE_END(Grid);

View File

@ -154,6 +154,10 @@ public:
return Hsum.real();
}
static inline void Project(Field &U) {
ProjectSUn(U);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
SU<Nc>::HotConfiguration(pRNG, U);
}

View File

@ -59,14 +59,14 @@ public:
}
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
return Cshift(closure(adj(Link)), mu, -1);
return PeriodicBC::CovShiftIdentityBackward(Link, mu);
}
static inline GaugeLinkField
CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
return Link;
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
return Cshift(Link, mu, 1);
return PeriodicBC::ShiftStaple(Link,mu);
}
static inline bool isPeriodicGaugeField(void) { return true; }
@ -74,7 +74,13 @@ public:
// Composition with smeared link, bc's etc.. probably need multiple inheritance
// Variable precision "S" and variable Nc
template <class GimplTypes> class ConjugateGaugeImpl : public GimplTypes {
class ConjugateGaugeImplBase {
protected:
static std::vector<int> _conjDirs;
};
template <class GimplTypes> class ConjugateGaugeImpl : public GimplTypes, ConjugateGaugeImplBase {
private:
public:
INHERIT_GIMPL_TYPES(GimplTypes);
@ -84,47 +90,56 @@ public:
////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class covariant>
static Lattice<covariant> CovShiftForward(const GaugeLinkField &Link, int mu,
const Lattice<covariant> &field) {
return ConjugateBC::CovShiftForward(Link, mu, field);
const Lattice<covariant> &field)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftForward(Link, mu, field);
else
return PeriodicBC::CovShiftForward(Link, mu, field);
}
template <class covariant>
static Lattice<covariant> CovShiftBackward(const GaugeLinkField &Link, int mu,
const Lattice<covariant> &field) {
return ConjugateBC::CovShiftBackward(Link, mu, field);
const Lattice<covariant> &field)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftBackward(Link, mu, field);
else
return PeriodicBC::CovShiftBackward(Link, mu, field);
}
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
GaugeLinkField tmp(grid);
tmp = adj(Link);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1); // moves towards positive mu
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftIdentityBackward(Link, mu);
else
return PeriodicBC::CovShiftIdentityBackward(Link, mu);
}
static inline GaugeLinkField
CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
return Link;
CovShiftIdentityForward(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftIdentityForward(Link,mu);
else
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
GaugeLinkField tmp(grid);
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::ShiftStaple(Link,mu);
else
return PeriodicBC::ShiftStaple(Link,mu);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }
};

View File

@ -54,6 +54,10 @@ public:
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = 1.0;
}
static inline void Project(Field &U) {
return;
}
static void MomentumSpacePropagator(Field &out, RealD m)
{
@ -234,6 +238,10 @@ public:
#endif //USE_FFT_ACCELERATION
}
static inline void Project(Field &U) {
return;
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
}

View File

@ -140,17 +140,7 @@ private:
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
// Metric
//TrivialMetric<typename Implementation::Field> Mtr;
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
LaplacianParams LapPar(0.0001, 1.0, 10000, 1e-8, 12, 64);
// RealD Kappa = 1.2;
RealD Kappa = Parameters.Kappa;
std::cout << GridLogMessage << "Kappa = " << Kappa << std::endl;
// Better to pass the generalised momenta to the integrator
LaplacianAdjointField<PeriodicGimplR> Laplacian(UGrid, CG, LapPar, Kappa);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing, Laplacian);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
if (Parameters.StartingType == "HotStart") {
// Hot start
@ -169,6 +159,13 @@ private:
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
} else {
// others
std::cout << GridLogError << "Unrecognized StartingType\n";
std::cout
<< GridLogError
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
exit(1);
}
Smearing.set_Field(U);

View File

@ -53,7 +53,6 @@ struct HMCparameters: Serializable {
bool, MetropolisTest,
Integer, NoMetropolisUntil,
std::string, StartingType,
RealD, Kappa,
IntegratorParameters, MD)
HMCparameters() {
@ -96,7 +95,7 @@ private:
typedef typename IntegratorType::Field Field;
typedef std::vector< HmcObservable<Field> * > ObsListType;
//pass these from the resource manager
GridSerialRNG &sRNG;
GridParallelRNG &pRNG;

View File

@ -74,7 +74,7 @@ public:
conf_file = os.str();
}
}
virtual ~BaseHmcCheckpointer(){};
void check_filename(const std::string &filename){
std::ifstream f(filename.c_str());
if(!f.good()){
@ -82,7 +82,6 @@ public:
abort();
};
}
virtual void initialize(const CheckpointerParameters &Params) = 0;
virtual void CheckpointRestore(int traj, typename Impl::Field &U,

View File

@ -45,6 +45,7 @@ private:
public:
INHERIT_GIMPL_TYPES(Implementation);
typedef GaugeStatistics<Implementation> GaugeStats;
ILDGHmcCheckpointer(const CheckpointerParameters &Params_) { initialize(Params_); }
@ -78,7 +79,7 @@ public:
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(config);
_IldgWriter.writeConfiguration(U, traj, config, config);
_IldgWriter.writeConfiguration<GaugeStats>(U, traj, config, config);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << config
@ -105,7 +106,7 @@ public:
FieldMetaData header;
IldgReader _IldgReader;
_IldgReader.open(config);
_IldgReader.readConfiguration(U,header); // format from the header
_IldgReader.readConfiguration<GaugeStats>(U,header); // format from the header
_IldgReader.close();
std::cout << GridLogMessage << "Read ILDG Configuration from " << config

View File

@ -43,7 +43,8 @@ private:
public:
INHERIT_GIMPL_TYPES(Gimpl); // only for gauge configurations
typedef GaugeStatistics<Gimpl> GaugeStats;
NerscHmcCheckpointer(const CheckpointerParameters &Params_) { initialize(Params_); }
void initialize(const CheckpointerParameters &Params_) {
@ -60,7 +61,7 @@ public:
int precision32 = 1;
int tworow = 0;
NerscIO::writeRNGState(sRNG, pRNG, rng);
NerscIO::writeConfiguration(U, config, tworow, precision32);
NerscIO::writeConfiguration<GaugeStats>(U, config, tworow, precision32);
}
};
@ -74,7 +75,7 @@ public:
FieldMetaData header;
NerscIO::readRNGState(sRNG, pRNG, header, rng);
NerscIO::readConfiguration(U, header, config);
NerscIO::readConfiguration<GaugeStats>(U, header, config);
};
};

View File

@ -73,8 +73,7 @@ protected:
double t_U; // Track time passing on each level and for U and for P
std::vector<double> t_P;
// MomentaField P;
GeneralisedMomenta<FieldImplementation > P;
MomentaField P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
@ -84,7 +83,7 @@ protected:
void update_P(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P(P.Mom, U, level, ep);
update_P(P, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
@ -112,21 +111,6 @@ protected:
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
// Generalised momenta
// Derivative of the kinetic term must be computed before
// Mom is the momenta and gets updated by the
// actions derivatives
MomentaField MomDer(P.Mom.Grid());
P.M.ImportGauge(U);
P.DerivativeU(P.Mom, MomDer);
Mom -= MomDer * ep;
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5);
P.AuxiliaryFieldsDerivative(MomDer);
Mom -= MomDer * ep;
P.update_auxiliary_momenta(ep*0.5);
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
@ -153,83 +137,9 @@ protected:
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void implicit_update_P(Field& U, int level, double ep, bool intermediate = false) {
t_P[level] += ep;
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
// Fundamental updates, include smearing
MomentaField Msum(P.Mom.Grid());
Msum = Zero();
for (int a = 0; a < as[level].actions.size(); ++a) {
// Compute the force terms for the lagrangian part
// We need to compute the derivative of the actions
// only once
Field force(U.Grid());
conformable(U.Grid(), P.Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| site average: " << force_abs
<< std::endl;
Msum += force;
}
MomentaField NewMom = P.Mom;
MomentaField OldMom = P.Mom;
double threshold = 1e-8;
P.M.ImportGauge(U);
MomentaField MomDer(P.Mom.Grid());
MomentaField MomDer1(P.Mom.Grid());
MomentaField AuxDer(P.Mom.Grid());
MomDer1 = Zero();
MomentaField diff(P.Mom.Grid());
double factor = 2.0;
if (intermediate){
P.DerivativeU(P.Mom, MomDer1);
factor = 1.0;
}
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5);
P.AuxiliaryFieldsDerivative(AuxDer);
Msum += AuxDer;
// Here run recursively
int counter = 1;
RealD RelativeError;
do {
std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl;
// Compute the derivative of the kinetic term
// with respect to the gauge field
P.DerivativeU(NewMom, MomDer);
Real force_abs = std::sqrt(norm2(MomDer) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs
<< std::endl;
NewMom = P.Mom - ep* 0.5 * (2.0*Msum + factor*MomDer + MomDer1);// simplify
diff = NewMom - OldMom;
counter++;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom));
std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl;
OldMom = NewMom;
} while (RelativeError > threshold);
P.Mom = NewMom;
// update the auxiliary fields momenta
P.update_auxiliary_momenta(ep*0.5);
}
void update_U(Field& U, double ep)
{
update_U(P.Mom, U, ep);
update_U(P, U, ep);
t_U += ep;
int fl = levels - 1;
@ -248,64 +158,15 @@ protected:
Representations.update(U); // void functions if fundamental representation
}
void implicit_update_U(Field&U, double ep){
t_U += ep;
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
MomentaField Mom1(P.Mom.Grid());
MomentaField Mom2(P.Mom.Grid());
RealD RelativeError;
Field diff(U.Grid());
Real threshold = 1e-8;
int counter = 1;
int MaxCounter = 100;
Field OldU = U;
Field NewU = U;
P.M.ImportGauge(U);
P.DerivativeP(Mom1); // first term in the derivative
P.update_auxiliary_fields(ep*0.5);
MomentaField sum=Mom1;
do {
std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl;
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
sum = (Mom1 + Mom2);
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
auto Pmu = PeekIndex<LorentzIndex>(sum, mu);
Umu = expMat(Pmu, ep * 0.5, 12) * Umu;
PokeIndex<LorentzIndex>(NewU, ProjectOnGroup(Umu), mu);
}
diff = NewU - OldU;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU));
std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl;
P.M.ImportGauge(NewU);
OldU = NewU; // some redundancy to be eliminated
counter++;
} while (RelativeError > threshold && counter < MaxCounter);
U = NewU;
P.update_auxiliary_fields(ep*0.5);
}
virtual void step(Field& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm, Metric<MomentaField>& M)
SmearingPolicy& Sm)
: Params(Par),
as(Aset),
P(grid, M),
P(grid),
levels(Aset.size()),
Smearer(Sm),
Representations(grid)
@ -342,9 +203,7 @@ public:
void reverse_momenta()
{
// P *= -1.0;
P.Mom *= -1.0;
P.AuxMom *= -1.0;
P *= -1.0;
}
// to be used by the actionlevel class to iterate
@ -364,13 +223,10 @@ public:
// Initialization of momenta and actions
void refresh(Field& U, GridParallelRNG& pRNG)
{
assert(P.Mom.Grid() == U.Grid());
assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh\n";
// FieldImplementation::generate_momenta(P.Mom, pRNG);
P.M.ImportGauge(U);
P.MomentaDistribution(pRNG);
FieldImplementation::generate_momenta(P, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
@ -416,11 +272,9 @@ public:
std::cout << GridLogIntegrator << "Integrator action\n";
// RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
P.M.ImportGauge(U);
RealD H = - P.MomentaAction();
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
RealD Hterm;
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
// Actions
for (int level = 0; level < as.size(); ++level) {
@ -447,9 +301,9 @@ public:
t_P[level] = 0;
}
for (int step = 0; step < Params.MDsteps; ++step) { // MD step
int first_step = (step == 0);
int last_step = (step == Params.MDsteps - 1);
for (int stp = 0; stp < Params.MDsteps; ++stp) { // MD step
int first_step = (stp == 0);
int last_step = (stp == Params.MDsteps - 1);
this->step(U, 0, first_step, last_step);
}
@ -459,6 +313,8 @@ public:
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
}
FieldImplementation::Project(U);
// and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6);

View File

@ -101,8 +101,8 @@ public:
std::string integrator_name(){return "LeapFrog";}
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
@ -144,8 +144,8 @@ private:
public:
INHERIT_FIELD_TYPES(FieldImplementation);
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
std::string integrator_name(){return "MininumNorm2";}
@ -207,9 +207,9 @@ public:
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
ForceGradient(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm, Metric<Field>& M)
SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm,M){};
grid, Par, Aset, Sm){};
std::string integrator_name(){return "ForceGradient";}
@ -271,139 +271,6 @@ public:
}
};
////////////////////////////////
// Riemannian Manifold HMC
// Girolami et al
////////////////////////////////
// correct
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
public:
typedef ImplicitLeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
Algorithm;
INHERIT_FIELD_TYPES(FieldImplementation);
// Riemannian manifold metric operator
// Hermitian operator Fisher
std::string integrator_name(){return "ImplicitLeapFrog";}
ImplicitLeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
// level : current level
// fl : final level
// eps : current step size
// Get current level step size
RealD eps = this->Params.trajL/this->Params.MDsteps;
for (int l = 0; l <= level; ++l) eps /= this->as[l].multiplier;
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) {
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, eps / 2.0);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, eps);
} else { // recursive function call
this->step(U, level + 1, first_step, last_step);
}
//int mm = last_step ? 1 : 2;
if (last_step){
this->update_P(U, level, eps / 2.0);
} else {
this->implicit_update_P(U, level, eps, true);// works intermediate step
// this->update_P(U, level, eps); // looks not reversible
}
}
}
};
// This is not completely tested
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitMinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitMininumNorm2";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, lambda * eps);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, first_step, 0);
}
this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps, true);
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, 0, last_step);
}
//int mm = (last_step) ? 1 : 2;
//this->update_P(U, level, lambda * eps * mm);
if (last_step) {
this->update_P(U, level, eps * lambda);
} else {
this->implicit_update_P(U, level, lambda * eps*2.0, true);
}
}
}
};
NAMESPACE_END(Grid);
#endif // INTEGRATOR_INCLUDED

View File

@ -99,7 +99,7 @@ public:
virtual Prod* getPtr() = 0;
// add a getReference?
virtual ~HMCModuleBase(){};
virtual void print_parameters(){}; // default to nothing
};

View File

@ -128,7 +128,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProjTm (iVector<vtype,Nhs> &hspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
hspin(0)=fspin(0)-fspin(2);
hspin(1)=fspin(1)-fspin(3);
}
@ -138,40 +137,50 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
* 0 0 -1 0
* 0 0 0 -1
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5p (iVector<vtype,Nhs> &hspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
hspin(0)=fspin(0);
hspin(1)=fspin(1);
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5m (iVector<vtype,Nhs> &hspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
hspin(0)=fspin(2);
hspin(1)=fspin(3);
}
// template<class vtype> accelerator_inline void fspProj5p (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5p (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
rfspin(0)=fspin(0);
rfspin(1)=fspin(1);
rfspin(2)=Zero();
rfspin(3)=Zero();
}
// template<class vtype> accelerator_inline void fspProj5m (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5m (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
rfspin(0)=Zero();
rfspin(1)=Zero();
rfspin(2)=fspin(2);
rfspin(3)=fspin(3);
}
template<class vtype,int N,IfCoarsened<iVector<vtype,N> > = 0> accelerator_inline void spProj5p (iVector<vtype,N> &rfspin,const iVector<vtype,N> &fspin)
{
const int hN = N>>1;
for(int s=0;s<hN;s++){
rfspin(s)=fspin(s);
rfspin(s+hN)=Zero();
}
}
template<class vtype,int N,IfCoarsened<iVector<vtype,N> > = 0> accelerator_inline void spProj5m (iVector<vtype,N> &rfspin,const iVector<vtype,N> &fspin)
{
const int hN = N>>1;
for(int s=0;s<hN;s++){
rfspin(s)=Zero();
rfspin(s+hN)=fspin(s+hN);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Reconstruction routines to move back again to four spin
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -183,7 +192,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconXp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesMinusI(hspin(1));
@ -191,7 +199,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconXm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesI(hspin(1));
@ -199,7 +206,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconXp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=timesI(hspin(1));
@ -207,7 +213,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconXm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=timesI(hspin(1));
@ -221,7 +226,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconYp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)= hspin(1);
@ -229,7 +233,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconYm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=-hspin(1);
@ -237,7 +240,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconYp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=hspin(1);
@ -245,7 +247,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconYm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=hspin(1);
@ -260,7 +261,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconZp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesMinusI(hspin(0));
@ -268,7 +268,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconZm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)= timesI(hspin(0));
@ -276,7 +275,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconZp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=timesI(hspin(0));
@ -284,7 +282,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconZm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=timesI(hspin(0));
@ -298,7 +295,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconTp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=hspin(0);
@ -306,7 +302,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconTm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=-hspin(0);
@ -314,7 +309,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconTp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=hspin(0);
@ -322,7 +316,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconTm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=hspin(0);
@ -336,7 +329,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spRecon5p (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0)+hspin(0); // add is lower latency than mul
fspin(1)=hspin(1)+hspin(1); // probably no measurable diffence though
fspin(2)=Zero();
@ -344,7 +336,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spRecon5m (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=Zero();
fspin(1)=Zero();
fspin(2)=hspin(0)+hspin(0);
@ -352,7 +343,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumRecon5p (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0)+hspin(0);
fspin(1)+=hspin(1)+hspin(1);
}
@ -372,7 +362,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
//////////
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjXp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjXp(hspin._internal[i],fspin._internal[i]);
}
@ -426,26 +415,21 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconXp (iM
}}
}
////////
// Xm
////////
template<class rtype,class vtype> accelerator_inline void spProjXm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjXm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjXm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjXm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjXm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjXm(hspin._internal[i][j],fspin._internal[i][j]);
@ -455,19 +439,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProjXm (iMatri
template<class rtype,class vtype> accelerator_inline void spReconXm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconXm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconXm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconXm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconXm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconXm(hspin._internal[i][j],fspin._internal[i][j]);
@ -476,45 +457,37 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconXm (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconXm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconXm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconXm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconXm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconXm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconXm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// Yp
////////
template<class rtype,class vtype> accelerator_inline void spProjYp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjYp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjYp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjYp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjYp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjYp(hspin._internal[i][j],fspin._internal[i][j]);
@ -524,19 +497,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProjYp (iMatri
template<class rtype,class vtype> accelerator_inline void spReconYp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconYp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconYp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconYp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconYp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconYp(hspin._internal[i][j],fspin._internal[i][j]);
@ -545,66 +515,55 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconYp (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconYp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconYp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconYp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconYp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconYp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconYp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// Ym
////////
template<class rtype,class vtype> accelerator_inline void spProjYm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjYm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjYm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjYm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjYm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjYm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
template<class rtype,class vtype> accelerator_inline void spReconYm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconYm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconYm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,const iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconYm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconYm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconYm(hspin._internal[i][j],fspin._internal[i][j]);
@ -613,19 +572,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconYm (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconYm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconYm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconYm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconYm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconYm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconYm(hspin._internal[i][j],fspin._internal[i][j]);
@ -638,66 +594,57 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconYm (iM
////////
template<class rtype,class vtype> accelerator_inline void spProjZp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjZp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjZp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjZp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjZp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjZp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void spReconZp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconZp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconZp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconZp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconZp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconZp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void accumReconZp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconZp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconZp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconZp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconZp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconZp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
@ -706,62 +653,53 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconZp (iM
////////
template<class rtype,class vtype> accelerator_inline void spProjZm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjZm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjZm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjZm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjZm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjZm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void spReconZm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconZm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconZm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconZm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconZm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconZm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void accumReconZm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconZm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconZm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconZm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconZm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconZm(hspin._internal[i][j],fspin._internal[i][j]);
@ -774,41 +712,35 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconZm (iM
////////
template<class rtype,class vtype> accelerator_inline void spProjTp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjTp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjTp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjTp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjTp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjTp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void spReconTp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconTp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconTp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconTp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconTp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconTp(hspin._internal[i][j],fspin._internal[i][j]);
@ -817,44 +749,37 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconTp (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconTp (iScalar<rtype> &hspin, iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconTp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconTp (iVector<rtype,N> &hspin, const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconTp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconTp (iMatrix<rtype,N> &hspin, const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconTp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// Tm
////////
template<class rtype,class vtype> accelerator_inline void spProjTm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjTm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjTm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjTm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjTm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjTm(hspin._internal[i][j],fspin._internal[i][j]);
@ -864,19 +789,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProjTm (iMatri
template<class rtype,class vtype> accelerator_inline void spReconTm (iScalar<rtype> &hspin, const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconTm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconTm (iVector<rtype,N> &hspin, const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconTm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconTm (iMatrix<rtype,N> &hspin, const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconTm(hspin._internal[i][j],fspin._internal[i][j]);
@ -885,44 +807,37 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconTm (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconTm (iScalar<rtype> &hspin, const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconTm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconTm (iVector<rtype,N> &hspin, const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconTm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconTm (iMatrix<rtype,N> &hspin, const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconTm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// 5p
////////
template<class rtype,class vtype> accelerator_inline void spProj5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
template<class rtype,class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProj5p(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProj5p (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProj5p(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProj5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class rtype,class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProj5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -931,19 +846,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProj5p (iMatri
template<class rtype,class vtype> accelerator_inline void spRecon5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spRecon5p(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spRecon5p (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spRecon5p(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spRecon5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spRecon5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -952,19 +864,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spRecon5p (iMatr
template<class rtype,class vtype> accelerator_inline void accumRecon5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumRecon5p(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumRecon5p (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumRecon5p(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumRecon5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumRecon5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -972,24 +881,18 @@ template<class rtype,class vtype,int N> accelerator_inline void accumRecon5p (iM
}
// four spinor projectors for chiral proj
// template<class vtype> accelerator_inline void fspProj5p (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype> accelerator_inline void spProj5p (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProj5p(hspin._internal,fspin._internal);
}
// template<class vtype,int N> accelerator_inline void fspProj5p (iVector<vtype,N> &hspin,iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProj5p (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProj5p(hspin._internal[i],fspin._internal[i]);
}
}
// template<class vtype,int N> accelerator_inline void fspProj5p (iMatrix<vtype,N> &hspin,iMatrix<vtype,N> &fspin)
template<class vtype,int N> accelerator_inline void spProj5p (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProj5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -1001,17 +904,17 @@ template<class vtype,int N> accelerator_inline void spProj5p (iMatrix<vtype,N> &
// 5m
////////
template<class rtype,class vtype> accelerator_inline void spProj5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
template<class rtype,class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
spProj5m(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<rtype,N> > = 0> accelerator_inline void spProj5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
template<class rtype,class vtype,int N,IfNotSpinor<iVector<rtype,N> > = 0,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
for(int i=0;i<N;i++) {
spProj5m(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProj5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class rtype,class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
@ -1021,40 +924,34 @@ template<class rtype,class vtype,int N> accelerator_inline void spProj5m (iMatri
template<class rtype,class vtype> accelerator_inline void spRecon5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spRecon5m(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spRecon5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spRecon5m(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spRecon5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spRecon5m(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void accumRecon5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumRecon5m(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumRecon5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumRecon5m(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumRecon5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumRecon5m(hspin._internal[i][j],fspin._internal[i][j]);
@ -1063,24 +960,18 @@ template<class rtype,class vtype,int N> accelerator_inline void accumRecon5m (iM
// four spinor projectors for chiral proj
// template<class vtype> accelerator_inline void fspProj5m (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype> accelerator_inline void spProj5m (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProj5m(hspin._internal,fspin._internal);
}
// template<class vtype,int N> accelerator_inline void fspProj5m (iVector<vtype,N> &hspin,iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProj5m (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProj5m(hspin._internal[i],fspin._internal[i]);
}
}
// template<class vtype,int N> accelerator_inline void fspProj5m (iMatrix<vtype,N> &hspin,iMatrix<vtype,N> &fspin)
template<class vtype,int N> accelerator_inline void spProj5m (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProj5m(hspin._internal[i][j],fspin._internal[i][j]);

View File

@ -51,7 +51,7 @@ public:
private:
template <class mobj, class robj>
static void baryon_site(const mobj &D1,
static void BaryonSite(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
@ -61,8 +61,18 @@ public:
const int parity,
const bool * wick_contractions,
robj &result);
template <class mobj, class robj>
static void BaryonSiteMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool * wick_contractions,
robj &result);
public:
static void Wick_Contractions(std::string qi,
static void WickContractions(std::string qi,
std::string qf,
bool* wick_contractions);
static void ContractBaryons(const PropagatorField &q1_left,
@ -75,8 +85,17 @@ public:
const bool* wick_contractions,
const int parity,
ComplexField &baryon_corr);
static void ContractBaryonsMatrix(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
SpinMatrixField &baryon_corr);
template <class mobj, class robj>
static void ContractBaryons_Sliced(const mobj &D1,
static void ContractBaryonsSliced(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
@ -87,9 +106,20 @@ public:
const int parity,
const int nt,
robj &result);
template <class mobj, class robj>
static void ContractBaryonsSlicedMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int nt,
robj &result);
private:
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group1_Site(
static void BaryonGamma3ptGroup1Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
@ -101,7 +131,7 @@ public:
robj &result);
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group2_Site(
static void BaryonGamma3ptGroup2Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
@ -113,7 +143,7 @@ public:
robj &result);
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group3_Site(
static void BaryonGamma3ptGroup3Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
@ -125,7 +155,7 @@ public:
robj &result);
public:
template <class mobj>
static void Baryon_Gamma_3pt(
static void BaryonGamma3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
@ -138,7 +168,7 @@ public:
SpinMatrixField &stn_corr);
private:
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
static void SigmaToNucleonQ1EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -147,7 +177,7 @@ public:
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q1_NonEye_site(const mobj &Du_ti,
static void SigmaToNucleonQ1NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -159,7 +189,7 @@ public:
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q2_Eye_site(const mobj &Dq_loop,
static void SigmaToNucleonQ2EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -168,7 +198,7 @@ public:
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q2_NonEye_site(const mobj &Du_ti,
static void SigmaToNucleonQ2NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -179,7 +209,7 @@ public:
robj &result);
public:
template <class mobj>
static void Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
static void SigmaToNucleonEye(const PropagatorField &qq_loop,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
@ -189,7 +219,7 @@ public:
const std::string op,
SpinMatrixField &stn_corr);
template <class mobj>
static void Sigma_to_Nucleon_NonEye(const PropagatorField &qq_ti,
static void SigmaToNucleonNonEye(const PropagatorField &qq_ti,
const PropagatorField &qq_tf,
const mobj &Du_spec,
const PropagatorField &qd_tf,
@ -217,7 +247,7 @@ const Real BaryonUtils<FImpl>::epsilon_sgn[6] = {1.,1.,1.,-1.,-1.,-1.};
//This is the old version
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::baryon_site(const mobj &D1,
void BaryonUtils<FImpl>::BaryonSite(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_i,
@ -329,12 +359,132 @@ void BaryonUtils<FImpl>::baryon_site(const mobj &D1,
}}
}
//New version without parity projection or trace
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::BaryonSiteMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_i,
const Gamma GammaB_i,
const Gamma GammaA_f,
const Gamma GammaB_f,
const bool * wick_contraction,
robj &result)
{
auto D1_GAi = D1 * GammaA_i;
auto GAf_D1_GAi = GammaA_f * D1_GAi;
auto GBf_D1_GAi = GammaB_f * D1_GAi;
auto D2_GBi = D2 * GammaB_i;
auto GBf_D2_GBi = GammaB_f * D2_GBi;
auto GAf_D2_GBi = GammaA_f * D2_GBi;
auto GBf_D3 = GammaB_f * D3;
auto GAf_D3 = GammaA_f * D3;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = epsilon[ie_f][0]; //a
int b_f = epsilon[ie_f][1]; //b
int c_f = epsilon[ie_f][2]; //c
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = epsilon[ie_i][0]; //a'
int b_i = epsilon[ie_i][1]; //b'
int c_i = epsilon[ie_i][2]; //c'
Real ee = epsilon_sgn[ie_f] * epsilon_sgn[ie_i];
//This is the \delta_{456}^{123} part
if (wick_contraction[0]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int rho_f=0; rho_f<Ns; rho_f++){
auto GAf_D1_GAi_rr_cc = GAf_D1_GAi()(rho_f,rho_i)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()(rho_f,rho_i)() += ee * GAf_D1_GAi_rr_cc
* D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
* GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
}}
}}
}
//This is the \delta_{456}^{231} part
if (wick_contraction[1]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_ar_ac = D1_GAi()(alpha_f,rho_i)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto GBf_D2_GBi_ab_ba = GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() += ee * D1_GAi_ar_ac
* GBf_D2_GBi_ab_ba
* GAf_D3 ()(rho_f,beta_i)(c_f,b_i);
}}
}}
}
//This is the \delta_{456}^{312} part
if (wick_contraction[2]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_ar_bc = GBf_D1_GAi()(alpha_f,rho_i)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D3_ab_ab = D3 ()(alpha_f,beta_i)(a_f,b_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() += ee * GBf_D1_GAi_ar_bc
* GAf_D2_GBi ()(rho_f,beta_i)(c_f,a_i)
* D3_ab_ab;
}}
}}
}
//This is the \delta_{456}^{132} part
if (wick_contraction[3]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int rho_f=0; rho_f<Ns; rho_f++){
auto GAf_D1_GAi_rr_cc = GAf_D1_GAi()(rho_f,rho_i)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()(rho_f,rho_i)() -= ee * GAf_D1_GAi_rr_cc
* GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}}
}}
}
//This is the \delta_{456}^{321} part
if (wick_contraction[4]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_ar_bc = GBf_D1_GAi()(alpha_f,rho_i)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_GBi_ab_aa = D2_GBi()(alpha_f,beta_i)(a_f,a_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() -= ee * GBf_D1_GAi_ar_bc
* D2_GBi_ab_aa
* GAf_D3 ()(rho_f,beta_i)(c_f,b_i);
}}
}}
}
//This is the \delta_{456}^{213} part
if (wick_contraction[5]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_ar_ac = D1_GAi()(alpha_f,rho_i)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto GBf_D3_ab_bb = GBf_D3()(alpha_f,beta_i)(b_f,b_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() -= ee * D1_GAi_ar_ac
* GAf_D2_GBi ()(rho_f,beta_i)(c_f,a_i)
* GBf_D3_ab_bb;
}}
}}
}
}}
}
/* Computes which wick contractions should be performed for a *
* baryon 2pt function given the initial and finals state quark *
* flavours. *
* The array wick_contractions must be of length 6 */
template<class FImpl>
void BaryonUtils<FImpl>::Wick_Contractions(std::string qi, std::string qf, bool* wick_contractions) {
void BaryonUtils<FImpl>::WickContractions(std::string qi, std::string qf, bool* wick_contractions) {
const int epsilon[6][3] = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
for (int ie=0; ie < 6 ; ie++) {
wick_contractions[ie] = (qi.size() == 3 && qf.size() == 3
@ -364,11 +514,6 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl;
std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl;
std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl;
std::cout << "GammaB (right) " << (GammaB_right.g) << std::endl;
assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
@ -397,13 +542,62 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
auto D2 = v2[ss];
auto D3 = v3[ss];
vobj result=Zero();
baryon_site(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result);
BaryonSite(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result);
vbaryon_corr[ss] = result;
} );//end loop over lattice sites
t += usecond();
std::cout << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
std::cout << GridLogDebug << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
}
template<class FImpl>
void BaryonUtils<FImpl>::ContractBaryonsMatrix(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
SpinMatrixField &baryon_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
GridBase *grid = q1_left.Grid();
autoView(vbaryon_corr, baryon_corr,CpuWrite);
autoView( v1 , q1_left, CpuRead);
autoView( v2 , q2_left, CpuRead);
autoView( v3 , q3_left, CpuRead);
// Real bytes =0.;
// bytes += grid->oSites() * (432.*sizeof(vComplex) + 126.*sizeof(int) + 36.*sizeof(Real));
// for (int ie=0; ie < 6 ; ie++){
// if(ie==0 or ie==3){
// bytes += grid->oSites() * (4.*sizeof(int) + 4752.*sizeof(vComplex)) * wick_contractions[ie];
// }
// else{
// bytes += grid->oSites() * (64.*sizeof(int) + 5184.*sizeof(vComplex)) * wick_contractions[ie];
// }
// }
// Real t=0.;
// t =-usecond();
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto D1 = v1[ss];
auto D2 = v2[ss];
auto D3 = v3[ss];
sobj result=Zero();
BaryonSiteMatrix(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,wick_contractions,result);
vbaryon_corr[ss] = result;
} );//end loop over lattice sites
// t += usecond();
// std::cout << GridLogDebug << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
}
@ -414,7 +608,7 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
* Wick_Contractions function above */
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
void BaryonUtils<FImpl>::ContractBaryonsSliced(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
@ -429,16 +623,33 @@ void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl;
std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl;
std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl;
std::cout << "GammaB (right) " << (GammaB_right.g) << std::endl;
assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
for (int t=0; t<nt; t++) {
baryon_site(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result[t]);
BaryonSite(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result[t]);
}
}
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryonsSlicedMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int nt,
robj &result)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
for (int t=0; t<nt; t++) {
BaryonSiteMatrix(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,wick_contractions,result[t]);
}
}
@ -454,7 +665,7 @@ void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group1_Site(
void BaryonUtils<FImpl>::BaryonGamma3ptGroup1Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
@ -546,7 +757,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group1_Site(
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group2_Site(
void BaryonUtils<FImpl>::BaryonGamma3ptGroup2Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
@ -636,7 +847,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group2_Site(
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group3_Site(
void BaryonUtils<FImpl>::BaryonGamma3ptGroup3Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
@ -728,7 +939,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group3_Site(
* https://aportelli.github.io/Hadrons-doc/#/mcontraction */
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
void BaryonUtils<FImpl>::BaryonGamma3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
@ -751,7 +962,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group1_Site(Dq_ti,Dq_spec1,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
BaryonGamma3ptGroup1Site(Dq_ti,Dq_spec1,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
} else if (group == 2) {
@ -759,7 +970,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group2_Site(Dq_spec1,Dq_ti,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
BaryonGamma3ptGroup2Site(Dq_spec1,Dq_ti,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
} else if (group == 3) {
@ -767,7 +978,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group3_Site(Dq_spec1,Dq_spec2,Dq_ti,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
BaryonGamma3ptGroup3Site(Dq_spec1,Dq_spec2,Dq_ti,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
@ -787,7 +998,7 @@ void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
void BaryonUtils<FImpl>::SigmaToNucleonQ1EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -838,7 +1049,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_NonEye_site(const mobj &Du_ti,
void BaryonUtils<FImpl>::SigmaToNucleonQ1NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -897,7 +1108,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q1_NonEye_site(const mobj &Du_ti,
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_Eye_site(const mobj &Dq_loop,
void BaryonUtils<FImpl>::SigmaToNucleonQ2EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
@ -948,7 +1159,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_Eye_site(const mobj &Dq_loop,
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_NonEye_site(const mobj &Du_ti,
void BaryonUtils<FImpl>::SigmaToNucleonQ2NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
@ -1002,7 +1213,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Q2_NonEye_site(const mobj &Du_ti,
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
void BaryonUtils<FImpl>::SigmaToNucleonEye(const PropagatorField &qq_loop,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
@ -1029,9 +1240,9 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
auto Ds_ti = vs_ti[ss];
sobj result=Zero();
if(op == "Q1"){
Sigma_to_Nucleon_Q1_Eye_site(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ1EyeSite(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else if(op == "Q2"){
Sigma_to_Nucleon_Q2_Eye_site(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ2EyeSite(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else {
assert(0 && "Weak Operator not correctly specified");
}
@ -1041,7 +1252,7 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_Eye(const PropagatorField &qq_loop,
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Sigma_to_Nucleon_NonEye(const PropagatorField &qq_ti,
void BaryonUtils<FImpl>::SigmaToNucleonNonEye(const PropagatorField &qq_ti,
const PropagatorField &qq_tf,
const mobj &Du_spec,
const PropagatorField &qd_tf,
@ -1071,9 +1282,9 @@ void BaryonUtils<FImpl>::Sigma_to_Nucleon_NonEye(const PropagatorField &qq_ti,
auto Ds_ti = vs_ti[ss];
sobj result=Zero();
if(op == "Q1"){
Sigma_to_Nucleon_Q1_NonEye_site(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ1NonEyeSite(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else if(op == "Q2"){
Sigma_to_Nucleon_Q2_NonEye_site(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
SigmaToNucleonQ2NonEyeSite(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else {
assert(0 && "Weak Operator not correctly specified");
}

View File

@ -53,25 +53,42 @@ namespace PeriodicBC {
return Cshift(tmp,mu,-1);// moves towards positive mu
}
template<class gauge,typename Op, typename T1> auto
CovShiftForward(const Lattice<gauge> &Link,
int mu,
const LatticeUnaryExpression<Op,T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> arg(expr);
return Cshift(adj(Link), mu, -1);
}
template<class gauge> Lattice<gauge>
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
{
return Link;
}
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
return Cshift(Link, mu, 1);
}
template<class gauge,class Expr,typename std::enable_if<is_lattice_expr<Expr>::value,void>::type * = nullptr>
auto CovShiftForward(const Lattice<gauge> &Link,
int mu,
const Expr &expr) -> decltype(closure(expr))
{
auto arg = closure(expr);
return CovShiftForward(Link,mu,arg);
}
template<class gauge,typename Op, typename T1> auto
CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const LatticeUnaryExpression<Op,T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
template<class gauge,class Expr,typename std::enable_if<is_lattice_expr<Expr>::value,void>::type * = nullptr>
auto CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const Expr &expr) -> decltype(closure(expr))
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> arg(expr);
return CovShiftForward(Link,mu,arg);
auto arg = closure(expr);
return CovShiftBackward(Link,mu,arg);
}
}
@ -141,26 +158,55 @@ namespace ConjugateBC {
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
template<class gauge,typename Op, typename T1> auto
CovShiftForward(const Lattice<gauge> &Link,
int mu,
const LatticeUnaryExpression<Op,T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> arg(expr);
return CovShiftForward(Link,mu,arg);
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
tmp = adj(Link);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1); // moves towards positive mu
}
template<class gauge,typename Op, typename T1> auto
CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const LatticeUnaryExpression<Op,T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> arg(expr);
return CovShiftForward(Link,mu,arg);
template<class gauge> Lattice<gauge>
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu) {
return Link;
}
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
}
template<class gauge,class Expr,typename std::enable_if<is_lattice_expr<Expr>::value,void>::type * = nullptr>
auto CovShiftForward(const Lattice<gauge> &Link,
int mu,
const Expr &expr) -> decltype(closure(expr))
{
auto arg = closure(expr);
return CovShiftForward(Link,mu,arg);
}
template<class gauge,class Expr,typename std::enable_if<is_lattice_expr<Expr>::value,void>::type * = nullptr>
auto CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const Expr &expr) -> decltype(closure(expr))
{
auto arg = closure(expr);
return CovShiftBackward(Link,mu,arg);
}
}

View File

@ -154,8 +154,8 @@ void axpby_ssp_pminus(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,co
accelerator_for(sss,nloop,vobj::Nsimd(),{
uint64_t ss = sss*Ls;
decltype(coalescedRead(y_v[ss+sp])) tmp;
spProj5m(tmp,y_v(ss+sp));
tmp = a*x_v(ss+s)+b*tmp;
spProj5m(tmp,y_v(ss+sp));
tmp = a*x_v(ss+s)+b*tmp;
coalescedWrite(z_v[ss+s],tmp);
});
}
@ -188,7 +188,6 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
z.Checkerboard() = x.Checkerboard();
conformable(x,z);
int Ls = grid->_rdimensions[0];
Gamma G5(Gamma::Algebra::Gamma5);
autoView( x_v, x, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
uint64_t nloop = grid->oSites()/Ls;
@ -196,7 +195,13 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
uint64_t ss = sss*Ls;
for(int s=0;s<Ls;s++){
int sp = Ls-1-s;
coalescedWrite(z_v[ss+sp],G5*x_v(ss+s));
auto tmp = x_v(ss+s);
decltype(tmp) tmp_p;
decltype(tmp) tmp_m;
spProj5p(tmp_p,tmp);
spProj5m(tmp_m,tmp);
// Use of spProj5m, 5p captures the coarse space too
coalescedWrite(z_v[ss+sp],tmp_p - tmp_m);
}
});
}
@ -208,10 +213,20 @@ void G5C(Lattice<vobj> &z, const Lattice<vobj> &x)
z.Checkerboard() = x.Checkerboard();
conformable(x, z);
Gamma G5(Gamma::Algebra::Gamma5);
z = G5 * x;
autoView( x_v, x, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
uint64_t nloop = grid->oSites();
accelerator_for(ss,nloop,vobj::Nsimd(),{
auto tmp = x_v(ss);
decltype(tmp) tmp_p;
decltype(tmp) tmp_m;
spProj5p(tmp_p,tmp);
spProj5m(tmp_m,tmp);
coalescedWrite(z_v[ss],tmp_p - tmp_m);
});
}
/*
template<class CComplex, int nbasis>
void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex, nbasis>> &x)
{
@ -234,6 +249,7 @@ void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex,
}
});
}
*/
NAMESPACE_END(Grid);

View File

@ -449,7 +449,8 @@ public:
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
alpha = toReal(2.0 * xi);
xi = 2.0 *xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',
@ -734,7 +735,6 @@ public:
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
@ -799,6 +799,88 @@ public:
}
};
template<int N>
LatticeComplexD Determinant(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
LatticeComplexD ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
ComplexD det = EigenU.determinant();
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
Umu = ProjectOnGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for(int i=0;i<N;i++){
auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
element = element * det;
PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
}
}
template<int N>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplexD, N> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSUn(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
// Explicit specialisation for SU(3).
// Explicit specialisation for SU(3).
static void
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid=Umu.Grid();
const int x=0;
const int y=1;
const int z=2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v,Umu,CpuWrite);
thread_for(ss,grid->oSites(),{
auto cm = Umu_v[ss];
cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
Umu_v[ss]=cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;

View File

@ -39,7 +39,7 @@ public:
typedef iSUnAdjointMatrix<ComplexF> AMatrixF;
typedef iSUnAdjointMatrix<ComplexD> AMatrixD;
typedef iSUnAdjointMatrix<vComplex> vAMatrix;
typedef iSUnAdjointMatrix<vComplex> vAMatrix;
typedef iSUnAdjointMatrix<vComplexF> vAMatrixF;
typedef iSUnAdjointMatrix<vComplexD> vAMatrixD;
@ -47,14 +47,9 @@ public:
typedef Lattice<vAMatrixF> LatticeAdjMatrixF;
typedef Lattice<vAMatrixD> LatticeAdjMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeAdjField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeAdjFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeAdjFieldD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> > LatticeAdjField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
template <class cplx>
@ -128,7 +123,9 @@ public:
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0)
{
conformable(h_out, in);
h_out = Zero();
AMatrix iTa;
@ -136,7 +133,7 @@ public:
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
auto tmp = real(trace(iTa * in)) * coefficient;
LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}

View File

@ -485,7 +485,7 @@ public:
// Up staple ___ ___
// | |
tmp = Cshift(closure(adj(U[nu])), nu, -1);
tmp = Cshift(adj(U[nu]), nu, -1);
tmp = adj(U2[mu]) * tmp;
tmp = Cshift(tmp, mu, -2);
@ -519,7 +519,7 @@ public:
//
// | |
tmp = Cshift(closure(adj(U2[nu])), nu, -2);
tmp = Cshift(adj(U2[nu]), nu, -2);
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
tmp = U2[nu] * Cshift(tmp, nu, 2);
Stap += Cshift(tmp, mu, 1);

View File

@ -26,7 +26,7 @@
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifndef __NVCC__
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
NAMESPACE_BEGIN(Grid);

View File

@ -0,0 +1,603 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Fujitsu_A64FX_intrin_double.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#define LOAD_CHIMU(base) LOAD_CHIMU_INTERLEAVED_A64FXd(base)
#define PREFETCH_CHIMU_L1(A) PREFETCH_CHIMU_L1_INTERNAL_A64FXd(A)
#define PREFETCH_GAUGE_L1(A) PREFETCH_GAUGE_L1_INTERNAL_A64FXd(A)
#define PREFETCH_CHIMU_L2(A) PREFETCH_CHIMU_L2_INTERNAL_A64FXd(A)
#define PREFETCH_GAUGE_L2(A) PREFETCH_GAUGE_L2_INTERNAL_A64FXd(A)
#define PF_GAUGE(A)
#define PREFETCH_RESULT_L2_STORE(A) PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXd(A)
#define PREFETCH_RESULT_L1_STORE(A) PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXd(A)
#define PREFETCH1_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define PREFETCH_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define LOCK_GAUGE(A)
#define UNLOCK_GAUGE(A)
#define MASK_REGS DECLARATIONS_A64FXd
#define SAVE_RESULT(A,B) RESULT_A64FXd(A);
#define MULT_2SPIN_1(Dir) MULT_2SPIN_1_A64FXd(Dir)
#define MULT_2SPIN_2 MULT_2SPIN_2_A64FXd
#define LOAD_CHI(base) LOAD_CHI_A64FXd(base)
#define ZERO_PSI ZERO_PSI_A64FXd
#define ADD_RESULT(base,basep) LOAD_CHIMU(base); ADD_RESULT_INTERNAL_A64FXd; RESULT_A64FXd(base)
#define XP_PROJ XP_PROJ_A64FXd
#define YP_PROJ YP_PROJ_A64FXd
#define ZP_PROJ ZP_PROJ_A64FXd
#define TP_PROJ TP_PROJ_A64FXd
#define XM_PROJ XM_PROJ_A64FXd
#define YM_PROJ YM_PROJ_A64FXd
#define ZM_PROJ ZM_PROJ_A64FXd
#define TM_PROJ TM_PROJ_A64FXd
#define XP_RECON XP_RECON_A64FXd
#define XM_RECON XM_RECON_A64FXd
#define XM_RECON_ACCUM XM_RECON_ACCUM_A64FXd
#define YM_RECON_ACCUM YM_RECON_ACCUM_A64FXd
#define ZM_RECON_ACCUM ZM_RECON_ACCUM_A64FXd
#define TM_RECON_ACCUM TM_RECON_ACCUM_A64FXd
#define XP_RECON_ACCUM XP_RECON_ACCUM_A64FXd
#define YP_RECON_ACCUM YP_RECON_ACCUM_A64FXd
#define ZP_RECON_ACCUM ZP_RECON_ACCUM_A64FXd
#define TP_RECON_ACCUM TP_RECON_ACCUM_A64FXd
#define PERMUTE_DIR0 0
#define PERMUTE_DIR1 1
#define PERMUTE_DIR2 2
#define PERMUTE_DIR3 3
#define PERMUTE PERMUTE_A64FXd;
#define LOAD_TABLE(Dir) if (Dir == 0) { LOAD_TABLE0; } else if (Dir == 1) { LOAD_TABLE1; } else if (Dir == 2) { LOAD_TABLE2; }
#define MAYBEPERM(Dir,perm) if (Dir != 3) { if (perm) { PERMUTE; } }
// DECLARATIONS
#define DECLARATIONS_A64FXd \
uint64_t baseU; \
const uint64_t lut[4][8] = { \
{4, 5, 6, 7, 0, 1, 2, 3}, \
{2, 3, 0, 1, 6, 7, 4, 5}, \
{1, 0, 3, 2, 5, 4, 7, 6}, \
{0, 1, 2, 4, 5, 6, 7, 8} };\
svfloat64_t result_00; \
svfloat64_t result_01; \
svfloat64_t result_02; \
svfloat64_t result_10; \
svfloat64_t result_11; \
svfloat64_t result_12; \
svfloat64_t result_20; \
svfloat64_t result_21; \
svfloat64_t result_22; \
svfloat64_t result_30; \
svfloat64_t result_31; \
svfloat64_t result_32; \
svfloat64_t Chi_00; \
svfloat64_t Chi_01; \
svfloat64_t Chi_02; \
svfloat64_t Chi_10; \
svfloat64_t Chi_11; \
svfloat64_t Chi_12; \
svfloat64_t UChi_00; \
svfloat64_t UChi_01; \
svfloat64_t UChi_02; \
svfloat64_t UChi_10; \
svfloat64_t UChi_11; \
svfloat64_t UChi_12; \
svfloat64_t U_00; \
svfloat64_t U_10; \
svfloat64_t U_20; \
svfloat64_t U_01; \
svfloat64_t U_11; \
svfloat64_t U_21; \
svbool_t pg1; \
pg1 = svptrue_b64(); \
svuint64_t table0; \
svfloat64_t zero0; \
zero0 = svdup_f64(0.);
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
// RESULT
#define RESULT_A64FXd(base) \
{ \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-6), result_00); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-5), result_01); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-4), result_02); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-3), result_10); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-2), result_11); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-1), result_12); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(0), result_20); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(1), result_21); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(2), result_22); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(3), result_30); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(4), result_31); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(5), result_32); \
}
// PREFETCH_CHIMU_L2 (prefetch to L2)
#define PREFETCH_CHIMU_L2_INTERNAL_A64FXd(base) \
{ \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL2STRM); \
}
// PREFETCH_CHIMU_L1 (prefetch to L1)
#define PREFETCH_CHIMU_L1_INTERNAL_A64FXd(base) \
{ \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL1STRM); \
}
// PREFETCH_GAUGE_L2 (prefetch to L2)
#define PREFETCH_GAUGE_L2_INTERNAL_A64FXd(A) \
{ \
const auto & ref(U[sUn](A)); baseU = (uint64_t)&ref + 3 * 3 * 64; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(-4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(12), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(16), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(20), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(24), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(28), SV_PLDL2STRM); \
}
// PREFETCH_GAUGE_L1 (prefetch to L1)
#define PREFETCH_GAUGE_L1_INTERNAL_A64FXd(A) \
{ \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL1STRM); \
}
// LOAD_CHI
#define LOAD_CHI_A64FXd(base) \
{ \
Chi_00 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(0)); \
Chi_01 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(1)); \
Chi_02 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(2)); \
Chi_10 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(3)); \
Chi_11 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(4)); \
Chi_12 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(5)); \
}
// LOAD_CHIMU
#define LOAD_CHIMU_INTERLEAVED_A64FXd(base) \
{ \
Chimu_00 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_10 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_11 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_12 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_CHIMU_0213
#define LOAD_CHIMU_0213_A64FXd \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_20 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_21 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_22 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
Chimu_10 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_30 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_11 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_31 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_12 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_32 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
}
// LOAD_CHIMU_0312
#define LOAD_CHIMU_0312_A64FXd \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_01 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_02 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_10 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_11 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_12 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_TABLE0
#define LOAD_TABLE0 \
table0 = svld1(pg1, (uint64_t*)&lut[0]);
// LOAD_TABLE1
#define LOAD_TABLE1 \
table0 = svld1(pg1, (uint64_t*)&lut[1]);
// LOAD_TABLE2
#define LOAD_TABLE2 \
table0 = svld1(pg1, (uint64_t*)&lut[2]);
// LOAD_TABLE3
#define LOAD_TABLE3 \
table0 = svld1(pg1, (uint64_t*)&lut[3]);
// PERMUTE
#define PERMUTE_A64FXd \
Chi_00 = svtbl(Chi_00, table0); \
Chi_01 = svtbl(Chi_01, table0); \
Chi_02 = svtbl(Chi_02, table0); \
Chi_10 = svtbl(Chi_10, table0); \
Chi_11 = svtbl(Chi_11, table0); \
Chi_12 = svtbl(Chi_12, table0);
// LOAD_GAUGE
#define LOAD_GAUGE(A) \
{ \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
}
// MULT_2SPIN
#define MULT_2SPIN_1_A64FXd(A) \
{ \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
UChi_00 = svcmla_x(pg1, zero0, U_00, Chi_00, 0); \
UChi_10 = svcmla_x(pg1, zero0, U_00, Chi_10, 0); \
UChi_01 = svcmla_x(pg1, zero0, U_10, Chi_00, 0); \
UChi_11 = svcmla_x(pg1, zero0, U_10, Chi_10, 0); \
UChi_02 = svcmla_x(pg1, zero0, U_20, Chi_00, 0); \
UChi_12 = svcmla_x(pg1, zero0, U_20, Chi_10, 0); \
UChi_00 = svcmla_x(pg1, UChi_00, U_00, Chi_00, 90); \
UChi_10 = svcmla_x(pg1, UChi_10, U_00, Chi_10, 90); \
UChi_01 = svcmla_x(pg1, UChi_01, U_10, Chi_00, 90); \
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_10, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_00, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_10, 90); \
U_00 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-4)); \
U_10 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-1)); \
U_20 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(2)); \
}
// MULT_2SPIN_BACKEND
#define MULT_2SPIN_2_A64FXd \
{ \
UChi_00 = svcmla_x(pg1, UChi_00, U_01, Chi_01, 0); \
UChi_10 = svcmla_x(pg1, UChi_10, U_01, Chi_11, 0); \
UChi_01 = svcmla_x(pg1, UChi_01, U_11, Chi_01, 0); \
UChi_11 = svcmla_x(pg1, UChi_11, U_11, Chi_11, 0); \
UChi_02 = svcmla_x(pg1, UChi_02, U_21, Chi_01, 0); \
UChi_12 = svcmla_x(pg1, UChi_12, U_21, Chi_11, 0); \
UChi_00 = svcmla_x(pg1, UChi_00, U_01, Chi_01, 90); \
UChi_10 = svcmla_x(pg1, UChi_10, U_01, Chi_11, 90); \
UChi_01 = svcmla_x(pg1, UChi_01, U_11, Chi_01, 90); \
UChi_11 = svcmla_x(pg1, UChi_11, U_11, Chi_11, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_21, Chi_01, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_21, Chi_11, 90); \
UChi_00 = svcmla_x(pg1, UChi_00, U_00, Chi_02, 0); \
UChi_10 = svcmla_x(pg1, UChi_10, U_00, Chi_12, 0); \
UChi_01 = svcmla_x(pg1, UChi_01, U_10, Chi_02, 0); \
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_12, 0); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_02, 0); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_12, 0); \
UChi_00 = svcmla_x(pg1, UChi_00, U_00, Chi_02, 90); \
UChi_10 = svcmla_x(pg1, UChi_10, U_00, Chi_12, 90); \
UChi_01 = svcmla_x(pg1, UChi_01, U_10, Chi_02, 90); \
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_12, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_02, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_12, 90); \
}
// XP_PROJ
#define XP_PROJ_A64FXd \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_30, 90); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_31, 90); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_32, 90); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_20, 90); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_21, 90); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_22, 90); \
}
// XP_RECON
#define XP_RECON_A64FXd \
result_20 = svcadd_x(pg1, zero0, UChi_10, 270); \
result_21 = svcadd_x(pg1, zero0, UChi_11, 270); \
result_22 = svcadd_x(pg1, zero0, UChi_12, 270); \
result_30 = svcadd_x(pg1, zero0, UChi_00, 270); \
result_31 = svcadd_x(pg1, zero0, UChi_01, 270); \
result_32 = svcadd_x(pg1, zero0, UChi_02, 270); \
result_00 = UChi_00; \
result_01 = UChi_01; \
result_02 = UChi_02; \
result_10 = UChi_10; \
result_11 = UChi_11; \
result_12 = UChi_12;
// XP_RECON_ACCUM
#define XP_RECON_ACCUM_A64FXd \
result_30 = svcadd_x(pg1, result_30, UChi_00, 270); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_31 = svcadd_x(pg1, result_31, UChi_01, 270); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_32 = svcadd_x(pg1, result_32, UChi_02, 270); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_20 = svcadd_x(pg1, result_20, UChi_10, 270); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_21 = svcadd_x(pg1, result_21, UChi_11, 270); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_22 = svcadd_x(pg1, result_22, UChi_12, 270); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// YP_PROJ
#define YP_PROJ_A64FXd \
{ \
Chi_00 = svsub_x(pg1, Chimu_00, Chimu_30); \
Chi_01 = svsub_x(pg1, Chimu_01, Chimu_31); \
Chi_02 = svsub_x(pg1, Chimu_02, Chimu_32); \
Chi_10 = svadd_x(pg1, Chimu_10, Chimu_20); \
Chi_11 = svadd_x(pg1, Chimu_11, Chimu_21); \
Chi_12 = svadd_x(pg1, Chimu_12, Chimu_22); \
}
// ZP_PROJ
#define ZP_PROJ_A64FXd \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_20, 90); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_21, 90); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_22, 90); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_30, 270); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_31, 270); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_32, 270); \
}
// TP_PROJ
#define TP_PROJ_A64FXd \
{ \
Chi_00 = svadd_x(pg1, Chimu_00, Chimu_20); \
Chi_01 = svadd_x(pg1, Chimu_01, Chimu_21); \
Chi_02 = svadd_x(pg1, Chimu_02, Chimu_22); \
Chi_10 = svadd_x(pg1, Chimu_10, Chimu_30); \
Chi_11 = svadd_x(pg1, Chimu_11, Chimu_31); \
Chi_12 = svadd_x(pg1, Chimu_12, Chimu_32); \
}
// XM_PROJ
#define XM_PROJ_A64FXd \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_30, 270); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_31, 270); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_32, 270); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_20, 270); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_21, 270); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_22, 270); \
}
// XM_RECON
#define XM_RECON_A64FXd \
result_20 = svcadd_x(pg1, zero0, UChi_10, 90); \
result_21 = svcadd_x(pg1, zero0, UChi_11, 90); \
result_22 = svcadd_x(pg1, zero0, UChi_12, 90); \
result_30 = svcadd_x(pg1, zero0, UChi_00, 90); \
result_31 = svcadd_x(pg1, zero0, UChi_01, 90); \
result_32 = svcadd_x(pg1, zero0, UChi_02, 90); \
result_00 = UChi_00; \
result_01 = UChi_01; \
result_02 = UChi_02; \
result_10 = UChi_10; \
result_11 = UChi_11; \
result_12 = UChi_12;
// YM_PROJ
#define YM_PROJ_A64FXd \
{ \
Chi_00 = svadd_x(pg1, Chimu_00, Chimu_30); \
Chi_01 = svadd_x(pg1, Chimu_01, Chimu_31); \
Chi_02 = svadd_x(pg1, Chimu_02, Chimu_32); \
Chi_10 = svsub_x(pg1, Chimu_10, Chimu_20); \
Chi_11 = svsub_x(pg1, Chimu_11, Chimu_21); \
Chi_12 = svsub_x(pg1, Chimu_12, Chimu_22); \
}
// ZM_PROJ
#define ZM_PROJ_A64FXd \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_20, 270); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_21, 270); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_22, 270); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_30, 90); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_31, 90); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_32, 90); \
}
// TM_PROJ
#define TM_PROJ_A64FXd \
{ \
Chi_00 = svsub_x(pg1, Chimu_00, Chimu_20); \
Chi_01 = svsub_x(pg1, Chimu_01, Chimu_21); \
Chi_02 = svsub_x(pg1, Chimu_02, Chimu_22); \
Chi_10 = svsub_x(pg1, Chimu_10, Chimu_30); \
Chi_11 = svsub_x(pg1, Chimu_11, Chimu_31); \
Chi_12 = svsub_x(pg1, Chimu_12, Chimu_32); \
}
// XM_RECON_ACCUM
#define XM_RECON_ACCUM_A64FXd \
result_30 = svcadd_x(pg1, result_30, UChi_00, 90); \
result_31 = svcadd_x(pg1, result_31, UChi_01, 90); \
result_32 = svcadd_x(pg1, result_32, UChi_02, 90); \
result_20 = svcadd_x(pg1, result_20, UChi_10, 90); \
result_21 = svcadd_x(pg1, result_21, UChi_11, 90); \
result_22 = svcadd_x(pg1, result_22, UChi_12, 90); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// YP_RECON_ACCUM
#define YP_RECON_ACCUM_A64FXd \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_30 = svsub_x(pg1, result_30, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_31 = svsub_x(pg1, result_31, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_32 = svsub_x(pg1, result_32, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_20 = svadd_x(pg1, result_20, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_21 = svadd_x(pg1, result_21, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_22 = svadd_x(pg1, result_22, UChi_12);
// YM_RECON_ACCUM
#define YM_RECON_ACCUM_A64FXd \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_30 = svadd_x(pg1, result_30, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_31 = svadd_x(pg1, result_31, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_32 = svadd_x(pg1, result_32, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_20 = svsub_x(pg1, result_20, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_21 = svsub_x(pg1, result_21, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_22 = svsub_x(pg1, result_22, UChi_12);
// ZP_RECON_ACCUM
#define ZP_RECON_ACCUM_A64FXd \
result_20 = svcadd_x(pg1, result_20, UChi_00, 270); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_21 = svcadd_x(pg1, result_21, UChi_01, 270); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_22 = svcadd_x(pg1, result_22, UChi_02, 270); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_30 = svcadd_x(pg1, result_30, UChi_10, 90); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_31 = svcadd_x(pg1, result_31, UChi_11, 90); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_32 = svcadd_x(pg1, result_32, UChi_12, 90); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// ZM_RECON_ACCUM
#define ZM_RECON_ACCUM_A64FXd \
result_20 = svcadd_x(pg1, result_20, UChi_00, 90); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_21 = svcadd_x(pg1, result_21, UChi_01, 90); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_22 = svcadd_x(pg1, result_22, UChi_02, 90); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_30 = svcadd_x(pg1, result_30, UChi_10, 270); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_31 = svcadd_x(pg1, result_31, UChi_11, 270); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_32 = svcadd_x(pg1, result_32, UChi_12, 270); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// TP_RECON_ACCUM
#define TP_RECON_ACCUM_A64FXd \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_20 = svadd_x(pg1, result_20, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_21 = svadd_x(pg1, result_21, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_22 = svadd_x(pg1, result_22, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_30 = svadd_x(pg1, result_30, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_31 = svadd_x(pg1, result_31, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_32 = svadd_x(pg1, result_32, UChi_12);
// TM_RECON_ACCUM
#define TM_RECON_ACCUM_A64FXd \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_20 = svsub_x(pg1, result_20, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_21 = svsub_x(pg1, result_21, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_22 = svsub_x(pg1, result_22, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_30 = svsub_x(pg1, result_30, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_31 = svsub_x(pg1, result_31, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_32 = svsub_x(pg1, result_32, UChi_12);
// ZERO_PSI
#define ZERO_PSI_A64FXd \
result_00 = svdup_f64(0.); \
result_01 = svdup_f64(0.); \
result_02 = svdup_f64(0.); \
result_10 = svdup_f64(0.); \
result_11 = svdup_f64(0.); \
result_12 = svdup_f64(0.); \
result_20 = svdup_f64(0.); \
result_21 = svdup_f64(0.); \
result_22 = svdup_f64(0.); \
result_30 = svdup_f64(0.); \
result_31 = svdup_f64(0.); \
result_32 = svdup_f64(0.);
// PREFETCH_RESULT_L2_STORE (uses DC ZVA for cache line zeroing)
#define PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXd(base) \
{ \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 0) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 1) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 2) : "memory" ); \
}
// PREFETCH_RESULT_L1_STORE (prefetch store to L1)
#define PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXd(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PSTL1STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PSTL1STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PSTL1STRM); \
}
// ADD_RESULT_INTERNAL
#define ADD_RESULT_INTERNAL_A64FXd \
result_00 = svadd_x(pg1, result_00, Chimu_00); \
result_01 = svadd_x(pg1, result_01, Chimu_01); \
result_02 = svadd_x(pg1, result_02, Chimu_02); \
result_10 = svadd_x(pg1, result_10, Chimu_10); \
result_11 = svadd_x(pg1, result_11, Chimu_11); \
result_12 = svadd_x(pg1, result_12, Chimu_12); \
result_20 = svadd_x(pg1, result_20, Chimu_20); \
result_21 = svadd_x(pg1, result_21, Chimu_21); \
result_22 = svadd_x(pg1, result_22, Chimu_22); \
result_30 = svadd_x(pg1, result_30, Chimu_30); \
result_31 = svadd_x(pg1, result_31, Chimu_31); \
result_32 = svadd_x(pg1, result_32, Chimu_32);

View File

@ -0,0 +1,603 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Fujitsu_A64FX_intrin_single.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#define LOAD_CHIMU(base) LOAD_CHIMU_INTERLEAVED_A64FXf(base)
#define PREFETCH_CHIMU_L1(A) PREFETCH_CHIMU_L1_INTERNAL_A64FXf(A)
#define PREFETCH_GAUGE_L1(A) PREFETCH_GAUGE_L1_INTERNAL_A64FXf(A)
#define PREFETCH_CHIMU_L2(A) PREFETCH_CHIMU_L2_INTERNAL_A64FXf(A)
#define PREFETCH_GAUGE_L2(A) PREFETCH_GAUGE_L2_INTERNAL_A64FXf(A)
#define PF_GAUGE(A)
#define PREFETCH_RESULT_L2_STORE(A) PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXf(A)
#define PREFETCH_RESULT_L1_STORE(A) PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXf(A)
#define PREFETCH1_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define PREFETCH_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define LOCK_GAUGE(A)
#define UNLOCK_GAUGE(A)
#define MASK_REGS DECLARATIONS_A64FXf
#define SAVE_RESULT(A,B) RESULT_A64FXf(A);
#define MULT_2SPIN_1(Dir) MULT_2SPIN_1_A64FXf(Dir)
#define MULT_2SPIN_2 MULT_2SPIN_2_A64FXf
#define LOAD_CHI(base) LOAD_CHI_A64FXf(base)
#define ZERO_PSI ZERO_PSI_A64FXf
#define ADD_RESULT(base,basep) LOAD_CHIMU(base); ADD_RESULT_INTERNAL_A64FXf; RESULT_A64FXf(base)
#define XP_PROJ XP_PROJ_A64FXf
#define YP_PROJ YP_PROJ_A64FXf
#define ZP_PROJ ZP_PROJ_A64FXf
#define TP_PROJ TP_PROJ_A64FXf
#define XM_PROJ XM_PROJ_A64FXf
#define YM_PROJ YM_PROJ_A64FXf
#define ZM_PROJ ZM_PROJ_A64FXf
#define TM_PROJ TM_PROJ_A64FXf
#define XP_RECON XP_RECON_A64FXf
#define XM_RECON XM_RECON_A64FXf
#define XM_RECON_ACCUM XM_RECON_ACCUM_A64FXf
#define YM_RECON_ACCUM YM_RECON_ACCUM_A64FXf
#define ZM_RECON_ACCUM ZM_RECON_ACCUM_A64FXf
#define TM_RECON_ACCUM TM_RECON_ACCUM_A64FXf
#define XP_RECON_ACCUM XP_RECON_ACCUM_A64FXf
#define YP_RECON_ACCUM YP_RECON_ACCUM_A64FXf
#define ZP_RECON_ACCUM ZP_RECON_ACCUM_A64FXf
#define TP_RECON_ACCUM TP_RECON_ACCUM_A64FXf
#define PERMUTE_DIR0 0
#define PERMUTE_DIR1 1
#define PERMUTE_DIR2 2
#define PERMUTE_DIR3 3
#define PERMUTE PERMUTE_A64FXf;
#define LOAD_TABLE(Dir) if (Dir == 0) { LOAD_TABLE0; } else if (Dir == 1) { LOAD_TABLE1 } else if (Dir == 2) { LOAD_TABLE2; } else if (Dir == 3) { LOAD_TABLE3; }
#define MAYBEPERM(A,perm) if (perm) { PERMUTE; }
// DECLARATIONS
#define DECLARATIONS_A64FXf \
uint64_t baseU; \
const uint32_t lut[4][16] = { \
{8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7}, \
{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}, \
{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, \
{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14} }; \
svfloat32_t result_00; \
svfloat32_t result_01; \
svfloat32_t result_02; \
svfloat32_t result_10; \
svfloat32_t result_11; \
svfloat32_t result_12; \
svfloat32_t result_20; \
svfloat32_t result_21; \
svfloat32_t result_22; \
svfloat32_t result_30; \
svfloat32_t result_31; \
svfloat32_t result_32; \
svfloat32_t Chi_00; \
svfloat32_t Chi_01; \
svfloat32_t Chi_02; \
svfloat32_t Chi_10; \
svfloat32_t Chi_11; \
svfloat32_t Chi_12; \
svfloat32_t UChi_00; \
svfloat32_t UChi_01; \
svfloat32_t UChi_02; \
svfloat32_t UChi_10; \
svfloat32_t UChi_11; \
svfloat32_t UChi_12; \
svfloat32_t U_00; \
svfloat32_t U_10; \
svfloat32_t U_20; \
svfloat32_t U_01; \
svfloat32_t U_11; \
svfloat32_t U_21; \
svbool_t pg1; \
pg1 = svptrue_b32(); \
svuint32_t table0; \
svfloat32_t zero0; \
zero0 = svdup_f32(0.);
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
// RESULT
#define RESULT_A64FXf(base) \
{ \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-6), result_00); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-5), result_01); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-4), result_02); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-3), result_10); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-2), result_11); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-1), result_12); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(0), result_20); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(1), result_21); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(2), result_22); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(3), result_30); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(4), result_31); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(5), result_32); \
}
// PREFETCH_CHIMU_L2 (prefetch to L2)
#define PREFETCH_CHIMU_L2_INTERNAL_A64FXf(base) \
{ \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL2STRM); \
}
// PREFETCH_CHIMU_L1 (prefetch to L1)
#define PREFETCH_CHIMU_L1_INTERNAL_A64FXf(base) \
{ \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL1STRM); \
}
// PREFETCH_GAUGE_L2 (prefetch to L2)
#define PREFETCH_GAUGE_L2_INTERNAL_A64FXf(A) \
{ \
const auto & ref(U[sUn](A)); baseU = (uint64_t)&ref + 3 * 3 * 64; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(-4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(12), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(16), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(20), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(24), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(28), SV_PLDL2STRM); \
}
// PREFETCH_GAUGE_L1 (prefetch to L1)
#define PREFETCH_GAUGE_L1_INTERNAL_A64FXf(A) \
{ \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL1STRM); \
}
// LOAD_CHI
#define LOAD_CHI_A64FXf(base) \
{ \
Chi_00 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(0)); \
Chi_01 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(1)); \
Chi_02 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(2)); \
Chi_10 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(3)); \
Chi_11 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(4)); \
Chi_12 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(5)); \
}
// LOAD_CHIMU
#define LOAD_CHIMU_INTERLEAVED_A64FXf(base) \
{ \
Chimu_00 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_10 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_11 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_12 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_CHIMU_0213
#define LOAD_CHIMU_0213_A64FXf \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_20 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_21 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_22 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
Chimu_10 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_30 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_11 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_31 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_12 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_32 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
}
// LOAD_CHIMU_0312
#define LOAD_CHIMU_0312_A64FXf \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_01 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_02 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_10 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_11 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_12 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_TABLE0
#define LOAD_TABLE0 \
table0 = svld1(pg1, (uint32_t*)&lut[0]);
// LOAD_TABLE1
#define LOAD_TABLE1 \
table0 = svld1(pg1, (uint32_t*)&lut[1]);
// LOAD_TABLE2
#define LOAD_TABLE2 \
table0 = svld1(pg1, (uint32_t*)&lut[2]);
// LOAD_TABLE3
#define LOAD_TABLE3 \
table0 = svld1(pg1, (uint32_t*)&lut[3]);
// PERMUTE
#define PERMUTE_A64FXf \
Chi_00 = svtbl(Chi_00, table0); \
Chi_01 = svtbl(Chi_01, table0); \
Chi_02 = svtbl(Chi_02, table0); \
Chi_10 = svtbl(Chi_10, table0); \
Chi_11 = svtbl(Chi_11, table0); \
Chi_12 = svtbl(Chi_12, table0);
// LOAD_GAUGE
#define LOAD_GAUGE(A) \
{ \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
}
// MULT_2SPIN
#define MULT_2SPIN_1_A64FXf(A) \
{ \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
UChi_00 = svcmla_x(pg1, zero0, U_00, Chi_00, 0); \
UChi_10 = svcmla_x(pg1, zero0, U_00, Chi_10, 0); \
UChi_01 = svcmla_x(pg1, zero0, U_10, Chi_00, 0); \
UChi_11 = svcmla_x(pg1, zero0, U_10, Chi_10, 0); \
UChi_02 = svcmla_x(pg1, zero0, U_20, Chi_00, 0); \
UChi_12 = svcmla_x(pg1, zero0, U_20, Chi_10, 0); \
UChi_00 = svcmla_x(pg1, UChi_00, U_00, Chi_00, 90); \
UChi_10 = svcmla_x(pg1, UChi_10, U_00, Chi_10, 90); \
UChi_01 = svcmla_x(pg1, UChi_01, U_10, Chi_00, 90); \
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_10, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_00, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_10, 90); \
U_00 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-4)); \
U_10 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-1)); \
U_20 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(2)); \
}
// MULT_2SPIN_BACKEND
#define MULT_2SPIN_2_A64FXf \
{ \
UChi_00 = svcmla_x(pg1, UChi_00, U_01, Chi_01, 0); \
UChi_10 = svcmla_x(pg1, UChi_10, U_01, Chi_11, 0); \
UChi_01 = svcmla_x(pg1, UChi_01, U_11, Chi_01, 0); \
UChi_11 = svcmla_x(pg1, UChi_11, U_11, Chi_11, 0); \
UChi_02 = svcmla_x(pg1, UChi_02, U_21, Chi_01, 0); \
UChi_12 = svcmla_x(pg1, UChi_12, U_21, Chi_11, 0); \
UChi_00 = svcmla_x(pg1, UChi_00, U_01, Chi_01, 90); \
UChi_10 = svcmla_x(pg1, UChi_10, U_01, Chi_11, 90); \
UChi_01 = svcmla_x(pg1, UChi_01, U_11, Chi_01, 90); \
UChi_11 = svcmla_x(pg1, UChi_11, U_11, Chi_11, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_21, Chi_01, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_21, Chi_11, 90); \
UChi_00 = svcmla_x(pg1, UChi_00, U_00, Chi_02, 0); \
UChi_10 = svcmla_x(pg1, UChi_10, U_00, Chi_12, 0); \
UChi_01 = svcmla_x(pg1, UChi_01, U_10, Chi_02, 0); \
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_12, 0); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_02, 0); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_12, 0); \
UChi_00 = svcmla_x(pg1, UChi_00, U_00, Chi_02, 90); \
UChi_10 = svcmla_x(pg1, UChi_10, U_00, Chi_12, 90); \
UChi_01 = svcmla_x(pg1, UChi_01, U_10, Chi_02, 90); \
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_12, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_02, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_12, 90); \
}
// XP_PROJ
#define XP_PROJ_A64FXf \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_30, 90); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_31, 90); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_32, 90); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_20, 90); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_21, 90); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_22, 90); \
}
// XP_RECON
#define XP_RECON_A64FXf \
result_20 = svcadd_x(pg1, zero0, UChi_10, 270); \
result_21 = svcadd_x(pg1, zero0, UChi_11, 270); \
result_22 = svcadd_x(pg1, zero0, UChi_12, 270); \
result_30 = svcadd_x(pg1, zero0, UChi_00, 270); \
result_31 = svcadd_x(pg1, zero0, UChi_01, 270); \
result_32 = svcadd_x(pg1, zero0, UChi_02, 270); \
result_00 = UChi_00; \
result_01 = UChi_01; \
result_02 = UChi_02; \
result_10 = UChi_10; \
result_11 = UChi_11; \
result_12 = UChi_12;
// XP_RECON_ACCUM
#define XP_RECON_ACCUM_A64FXf \
result_30 = svcadd_x(pg1, result_30, UChi_00, 270); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_31 = svcadd_x(pg1, result_31, UChi_01, 270); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_32 = svcadd_x(pg1, result_32, UChi_02, 270); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_20 = svcadd_x(pg1, result_20, UChi_10, 270); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_21 = svcadd_x(pg1, result_21, UChi_11, 270); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_22 = svcadd_x(pg1, result_22, UChi_12, 270); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// YP_PROJ
#define YP_PROJ_A64FXf \
{ \
Chi_00 = svsub_x(pg1, Chimu_00, Chimu_30); \
Chi_01 = svsub_x(pg1, Chimu_01, Chimu_31); \
Chi_02 = svsub_x(pg1, Chimu_02, Chimu_32); \
Chi_10 = svadd_x(pg1, Chimu_10, Chimu_20); \
Chi_11 = svadd_x(pg1, Chimu_11, Chimu_21); \
Chi_12 = svadd_x(pg1, Chimu_12, Chimu_22); \
}
// ZP_PROJ
#define ZP_PROJ_A64FXf \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_20, 90); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_21, 90); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_22, 90); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_30, 270); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_31, 270); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_32, 270); \
}
// TP_PROJ
#define TP_PROJ_A64FXf \
{ \
Chi_00 = svadd_x(pg1, Chimu_00, Chimu_20); \
Chi_01 = svadd_x(pg1, Chimu_01, Chimu_21); \
Chi_02 = svadd_x(pg1, Chimu_02, Chimu_22); \
Chi_10 = svadd_x(pg1, Chimu_10, Chimu_30); \
Chi_11 = svadd_x(pg1, Chimu_11, Chimu_31); \
Chi_12 = svadd_x(pg1, Chimu_12, Chimu_32); \
}
// XM_PROJ
#define XM_PROJ_A64FXf \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_30, 270); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_31, 270); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_32, 270); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_20, 270); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_21, 270); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_22, 270); \
}
// XM_RECON
#define XM_RECON_A64FXf \
result_20 = svcadd_x(pg1, zero0, UChi_10, 90); \
result_21 = svcadd_x(pg1, zero0, UChi_11, 90); \
result_22 = svcadd_x(pg1, zero0, UChi_12, 90); \
result_30 = svcadd_x(pg1, zero0, UChi_00, 90); \
result_31 = svcadd_x(pg1, zero0, UChi_01, 90); \
result_32 = svcadd_x(pg1, zero0, UChi_02, 90); \
result_00 = UChi_00; \
result_01 = UChi_01; \
result_02 = UChi_02; \
result_10 = UChi_10; \
result_11 = UChi_11; \
result_12 = UChi_12;
// YM_PROJ
#define YM_PROJ_A64FXf \
{ \
Chi_00 = svadd_x(pg1, Chimu_00, Chimu_30); \
Chi_01 = svadd_x(pg1, Chimu_01, Chimu_31); \
Chi_02 = svadd_x(pg1, Chimu_02, Chimu_32); \
Chi_10 = svsub_x(pg1, Chimu_10, Chimu_20); \
Chi_11 = svsub_x(pg1, Chimu_11, Chimu_21); \
Chi_12 = svsub_x(pg1, Chimu_12, Chimu_22); \
}
// ZM_PROJ
#define ZM_PROJ_A64FXf \
{ \
Chi_00 = svcadd_x(pg1, Chimu_00, Chimu_20, 270); \
Chi_01 = svcadd_x(pg1, Chimu_01, Chimu_21, 270); \
Chi_02 = svcadd_x(pg1, Chimu_02, Chimu_22, 270); \
Chi_10 = svcadd_x(pg1, Chimu_10, Chimu_30, 90); \
Chi_11 = svcadd_x(pg1, Chimu_11, Chimu_31, 90); \
Chi_12 = svcadd_x(pg1, Chimu_12, Chimu_32, 90); \
}
// TM_PROJ
#define TM_PROJ_A64FXf \
{ \
Chi_00 = svsub_x(pg1, Chimu_00, Chimu_20); \
Chi_01 = svsub_x(pg1, Chimu_01, Chimu_21); \
Chi_02 = svsub_x(pg1, Chimu_02, Chimu_22); \
Chi_10 = svsub_x(pg1, Chimu_10, Chimu_30); \
Chi_11 = svsub_x(pg1, Chimu_11, Chimu_31); \
Chi_12 = svsub_x(pg1, Chimu_12, Chimu_32); \
}
// XM_RECON_ACCUM
#define XM_RECON_ACCUM_A64FXf \
result_30 = svcadd_x(pg1, result_30, UChi_00, 90); \
result_31 = svcadd_x(pg1, result_31, UChi_01, 90); \
result_32 = svcadd_x(pg1, result_32, UChi_02, 90); \
result_20 = svcadd_x(pg1, result_20, UChi_10, 90); \
result_21 = svcadd_x(pg1, result_21, UChi_11, 90); \
result_22 = svcadd_x(pg1, result_22, UChi_12, 90); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// YP_RECON_ACCUM
#define YP_RECON_ACCUM_A64FXf \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_30 = svsub_x(pg1, result_30, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_31 = svsub_x(pg1, result_31, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_32 = svsub_x(pg1, result_32, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_20 = svadd_x(pg1, result_20, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_21 = svadd_x(pg1, result_21, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_22 = svadd_x(pg1, result_22, UChi_12);
// YM_RECON_ACCUM
#define YM_RECON_ACCUM_A64FXf \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_30 = svadd_x(pg1, result_30, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_31 = svadd_x(pg1, result_31, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_32 = svadd_x(pg1, result_32, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_20 = svsub_x(pg1, result_20, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_21 = svsub_x(pg1, result_21, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_22 = svsub_x(pg1, result_22, UChi_12);
// ZP_RECON_ACCUM
#define ZP_RECON_ACCUM_A64FXf \
result_20 = svcadd_x(pg1, result_20, UChi_00, 270); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_21 = svcadd_x(pg1, result_21, UChi_01, 270); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_22 = svcadd_x(pg1, result_22, UChi_02, 270); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_30 = svcadd_x(pg1, result_30, UChi_10, 90); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_31 = svcadd_x(pg1, result_31, UChi_11, 90); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_32 = svcadd_x(pg1, result_32, UChi_12, 90); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// ZM_RECON_ACCUM
#define ZM_RECON_ACCUM_A64FXf \
result_20 = svcadd_x(pg1, result_20, UChi_00, 90); \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_21 = svcadd_x(pg1, result_21, UChi_01, 90); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_22 = svcadd_x(pg1, result_22, UChi_02, 90); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_30 = svcadd_x(pg1, result_30, UChi_10, 270); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_31 = svcadd_x(pg1, result_31, UChi_11, 270); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_32 = svcadd_x(pg1, result_32, UChi_12, 270); \
result_12 = svadd_x(pg1, result_12, UChi_12);
// TP_RECON_ACCUM
#define TP_RECON_ACCUM_A64FXf \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_20 = svadd_x(pg1, result_20, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_21 = svadd_x(pg1, result_21, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_22 = svadd_x(pg1, result_22, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_30 = svadd_x(pg1, result_30, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_31 = svadd_x(pg1, result_31, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_32 = svadd_x(pg1, result_32, UChi_12);
// TM_RECON_ACCUM
#define TM_RECON_ACCUM_A64FXf \
result_00 = svadd_x(pg1, result_00, UChi_00); \
result_20 = svsub_x(pg1, result_20, UChi_00); \
result_01 = svadd_x(pg1, result_01, UChi_01); \
result_21 = svsub_x(pg1, result_21, UChi_01); \
result_02 = svadd_x(pg1, result_02, UChi_02); \
result_22 = svsub_x(pg1, result_22, UChi_02); \
result_10 = svadd_x(pg1, result_10, UChi_10); \
result_30 = svsub_x(pg1, result_30, UChi_10); \
result_11 = svadd_x(pg1, result_11, UChi_11); \
result_31 = svsub_x(pg1, result_31, UChi_11); \
result_12 = svadd_x(pg1, result_12, UChi_12); \
result_32 = svsub_x(pg1, result_32, UChi_12);
// ZERO_PSI
#define ZERO_PSI_A64FXf \
result_00 = svdup_f32(0.); \
result_01 = svdup_f32(0.); \
result_02 = svdup_f32(0.); \
result_10 = svdup_f32(0.); \
result_11 = svdup_f32(0.); \
result_12 = svdup_f32(0.); \
result_20 = svdup_f32(0.); \
result_21 = svdup_f32(0.); \
result_22 = svdup_f32(0.); \
result_30 = svdup_f32(0.); \
result_31 = svdup_f32(0.); \
result_32 = svdup_f32(0.);
// PREFETCH_RESULT_L2_STORE (uses DC ZVA for cache line zeroing)
#define PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXf(base) \
{ \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 0) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 1) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 2) : "memory" ); \
}
// PREFETCH_RESULT_L1_STORE (prefetch store to L1)
#define PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXf(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PSTL1STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PSTL1STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PSTL1STRM); \
}
// ADD_RESULT_INTERNAL
#define ADD_RESULT_INTERNAL_A64FXf \
result_00 = svadd_x(pg1, result_00, Chimu_00); \
result_01 = svadd_x(pg1, result_01, Chimu_01); \
result_02 = svadd_x(pg1, result_02, Chimu_02); \
result_10 = svadd_x(pg1, result_10, Chimu_10); \
result_11 = svadd_x(pg1, result_11, Chimu_11); \
result_12 = svadd_x(pg1, result_12, Chimu_12); \
result_20 = svadd_x(pg1, result_20, Chimu_20); \
result_21 = svadd_x(pg1, result_21, Chimu_21); \
result_22 = svadd_x(pg1, result_22, Chimu_22); \
result_30 = svadd_x(pg1, result_30, Chimu_30); \
result_31 = svadd_x(pg1, result_31, Chimu_31); \
result_32 = svadd_x(pg1, result_32, Chimu_32);

View File

@ -0,0 +1,77 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Fujitsu_A64FX_undef.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#undef LOAD_CHIMU
#undef PREFETCH_CHIMU_L1
#undef PREFETCH_GAUGE_L1
#undef PREFETCH_CHIMU_L2
#undef PREFETCH_GAUGE_L2
#undef PREFETCH_GAUGE_L1_INTERNAL
#undef PREFETCH1_CHIMU
#undef PREFETCH_CHIMU
#undef PREFETCH_RESULT_L2_STORE
#undef PREFETCH_RESULT_L1_STORE
#undef LOAD_GAUGE
#undef LOCK_GAUGE
#undef UNLOCK_GAUGE
#undef MASK_REGS
#undef SAVE_RESULT
#undef ADD_RESULT
#undef MULT_2SPIN_1
#undef MULT_2SPIN_2
#undef MAYBEPERM
#undef LOAD_CHI
#undef ZERO_PSI
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ
#undef TP_PROJ
#undef XM_PROJ
#undef YM_PROJ
#undef ZM_PROJ
#undef TM_PROJ
#undef XP_RECON
#undef XM_RECON
#undef XM_RECON_ACCUM
#undef YM_RECON_ACCUM
#undef ZM_RECON_ACCUM
#undef TM_RECON_ACCUM
#undef XP_RECON_ACCUM
#undef YP_RECON_ACCUM
#undef ZP_RECON_ACCUM
#undef TP_RECON_ACCUM
#undef PERMUTE
#undef PERMUTE_DIR0
#undef PERMUTE_DIR1
#undef PERMUTE_DIR2
#undef PERMUTE_DIR3
#undef LOAD_TABLE
#undef LOAD_TABLE0
#undef LOAD_TABLE1
#undef LOAD_TABLE2
#undef LOAD_TABLE3

942
Grid/simd/Grid_a64fx-2.h Normal file
View File

@ -0,0 +1,942 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid_a64fx-2.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de>
with support from Arm
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/////////////////////////////////////////////////////
// Using SVE ACLE
/////////////////////////////////////////////////////
static_assert(GEN_SIMD_WIDTH % 64u == 0, "A64FX SIMD vector size is 64 bytes");
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Optimization);
// type traits giving the number of elements for each vector type
template <typename T> struct W;
template <> struct W<double> {
constexpr static unsigned int c = GEN_SIMD_WIDTH/16u;
constexpr static unsigned int r = GEN_SIMD_WIDTH/8u;
};
template <> struct W<float> {
constexpr static unsigned int c = GEN_SIMD_WIDTH/8u;
constexpr static unsigned int r = GEN_SIMD_WIDTH/4u;
};
template <> struct W<Integer> {
constexpr static unsigned int r = GEN_SIMD_WIDTH/4u;
};
template <> struct W<uint16_t> {
constexpr static unsigned int c = GEN_SIMD_WIDTH/4u;
constexpr static unsigned int r = GEN_SIMD_WIDTH/2u;
};
template <> struct W<uint64_t> {
constexpr static unsigned int c = GEN_SIMD_WIDTH/16u;
constexpr static unsigned int r = GEN_SIMD_WIDTH/8u;
};
#ifdef ARMCLANGCOMPAT
// SIMD vector immediate types
template <typename T>
struct vec_imm {
alignas(GEN_SIMD_WIDTH) T v[W<T>::r];
};
// SIMD vector types
template <typename T>
struct vec {
alignas(GEN_SIMD_WIDTH) T v[W<T>::r];
vec() = default;
vec(const vec &rhs) { this->operator=(rhs); }
vec(const vec_imm<T> &rhs) {
// v = rhs.v
svst1(svptrue_b8(), (T*)this, svld1(svptrue_b8(), (T*)rhs.v));
}
inline vec &operator=(const vec &rhs) {
// v = rhs.v
svst1(svptrue_b8(), (T*)this, svld1(svptrue_b8(), (T*)rhs.v));
return *this;
};
};
#else // no ARMCLANGCOMPAT
#define vec_imm vec
// SIMD vector types
template <typename T>
struct vec {
alignas(GEN_SIMD_WIDTH) T v[W<T>::r];
};
#endif
typedef vec<float> vecf;
typedef vec<double> vecd;
typedef vec<uint16_t> vech; // half precision comms
typedef vec<Integer> veci;
NAMESPACE_END(Optimization)
NAMESPACE_END(Grid)
// low-level API
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Optimization);
template <typename T>
struct acle{};
template <>
struct acle<double>{
typedef svfloat64_t vt;
typedef svfloat64x2_t vt2;
typedef svfloat64x4_t vt4;
typedef float64_t pt;
typedef uint64_t uint;
typedef svuint64_t svuint;
static inline svbool_t pg1(){return svptrue_b64();}
static inline svbool_t pg2(){return svptrue_pat_b64(SV_VL4);}
static inline svbool_t pg4(){return svptrue_pat_b64(SV_VL2);}
static inline vec<uint64_t> tbl_swap(){
//const vec<uint64_t> t = {1, 0, 3, 2, 5, 4, 7, 6};
const vec_imm<uint64_t> t = {1, 0, 3, 2, 5, 4, 7, 6};
return t;
}
static inline vec<uint64_t> tbl0(){
//const vec<uint64_t> t = {4, 5, 6, 7, 0, 1, 2, 3};
const vec_imm<uint64_t> t = {4, 5, 6, 7, 0, 1, 2, 3};
return t;
}
static inline vec<uint64_t> tbl1(){
//const vec<uint64_t> t = {2, 3, 0, 1, 6, 7, 4, 5};
const vec_imm<uint64_t> t = {2, 3, 0, 1, 6, 7, 4, 5};
return t;
}
static inline vec<uint64_t> tbl_exch1a(){ // Exchange1
//const vec<uint64_t> t = {0, 1, 4, 5, 2, 3, 6, 7};
const vec_imm<uint64_t> t = {0, 1, 4, 5, 2, 3, 6, 7};
return t;
}
static inline vec<uint64_t> tbl_exch1b(){ // Exchange1
//const vec<uint64_t> t = {2, 3, 6, 7, 0, 1, 4, 5};
const vec_imm<uint64_t> t = {2, 3, 6, 7, 0, 1, 4, 5};
return t;
}
static inline vec<uint64_t> tbl_exch1c(){ // Exchange1
//const vec<uint64_t> t = {4, 5, 0, 1, 6, 7, 2, 3};
const vec_imm<uint64_t> t = {4, 5, 0, 1, 6, 7, 2, 3};
return t;
}
static inline svbool_t pg_even(){return svzip1_b64(svptrue_b64(), svpfalse_b());}
static inline svbool_t pg_odd() {return svzip1_b64(svpfalse_b(), svptrue_b64());}
static inline svfloat64_t zero(){return svdup_f64(0.);}
};
template <>
struct acle<float>{
typedef svfloat32_t vt;
typedef svfloat32x2_t vt2;
typedef float32_t pt;
typedef uint32_t uint;
typedef svuint32_t svuint;
static inline svbool_t pg1(){return svptrue_b32();}
static inline svbool_t pg2(){return svptrue_pat_b32(SV_VL8);}
// exchange neighboring elements
static inline vec<uint32_t> tbl_swap(){
//const vec<uint32_t> t = {1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
const vec_imm<uint32_t> t = {1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
return t;
}
static inline vec<uint32_t> tbl0(){
//const vec<uint32_t> t = {8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7};
const vec_imm<uint32_t> t = {8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7};
return t;
}
static inline vec<uint32_t> tbl1(){
//const vec<uint32_t> t = {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11};
const vec_imm<uint32_t> t = {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11};
return t;
}
static inline vec<uint32_t> tbl2(){
//const vec<uint32_t> t = {2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13};
const vec_imm<uint32_t> t = {2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13};
return t;
}
static inline vec<uint32_t> tbl_exch1a(){ // Exchange1
//const vec<uint32_t> t = {0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 };
const vec_imm<uint32_t> t = {0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 };
return t;
}
static inline vec<uint32_t> tbl_exch1b(){ // Exchange1
//const vec<uint32_t> t = {4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 10, 11 };
const vec_imm<uint32_t> t = {4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 10, 11 };
return t;
}
static inline vec<uint32_t> tbl_exch1c(){ // Exchange1
//const vec<uint32_t> t = {8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7};
const vec_imm<uint32_t> t = {8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7};
return t;
}
static inline svbool_t pg_even(){return svzip1_b32(svptrue_b32(), svpfalse_b());}
static inline svbool_t pg_odd() {return svzip1_b32(svpfalse_b(), svptrue_b32());}
static inline svfloat32_t zero(){return svdup_f32(0.);}
};
template <>
struct acle<uint16_t>{
typedef svfloat16_t vt;
typedef float16_t pt;
typedef uint16_t uint;
typedef svuint16_t svuint;
static inline svbool_t pg1(){return svptrue_b16();}
static inline svbool_t pg2(){return svptrue_pat_b16(SV_VL16);}
static inline svbool_t pg_even(){return svzip1_b16(svptrue_b16(), svpfalse_b());}
static inline svbool_t pg_odd() {return svzip1_b16(svpfalse_b(), svptrue_b16());}
static inline svfloat16_t zero(){return svdup_f16(0.);}
};
template <>
struct acle<Integer>{
typedef svuint32_t vt;
typedef svuint32x2_t vt2;
typedef Integer pt;
typedef uint32_t uint;
typedef svuint32_t svuint;
//static inline svbool_t pg1(){return svptrue_b16();}
static inline svbool_t pg1(){return svptrue_b32();}
static inline svbool_t pg2(){return svptrue_pat_b32(SV_VL8);}
static inline svbool_t pg_even(){return svzip1_b32(svptrue_b32(), svpfalse_b());}
static inline svbool_t pg_odd() {return svzip1_b32(svpfalse_b(), svptrue_b32());}
};
// ---------------------------------------------------
struct Vsplat{
// Complex float
inline vecf operator()(float a, float b){
vecf out;
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt a_v = svdup_f32(a);
typename acle<float>::vt b_v = svdup_f32(b);
typename acle<float>::vt r_v = svzip1(a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
// Real float
inline vecf operator()(float a){
vecf out;
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt r_v = svdup_f32(a);
svst1(pg1, out.v, r_v);
return out;
}
// Complex double
inline vecd operator()(double a, double b){
vecd out;
svbool_t pg1 = acle<double>::pg1();
typename acle<double>::vt a_v = svdup_f64(a);
typename acle<double>::vt b_v = svdup_f64(b);
typename acle<double>::vt r_v = svzip1(a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
// Real double
inline vecd operator()(double a){
vecd out;
svbool_t pg1 = acle<double>::pg1();
typename acle<double>::vt r_v = svdup_f64(a);
svst1(pg1, out.v, r_v);
return out;
}
// Integer
inline vec<Integer> operator()(Integer a){
vec<Integer> out;
svbool_t pg1 = acle<Integer>::pg1();
// Add check whether Integer is really a uint32_t???
typename acle<Integer>::vt r_v = svdup_u32(a);
svst1(pg1, out.v, r_v);
return out;
}
};
struct Vstore{
// Real
template <typename T>
inline void operator()(vec<T> a, T *D){
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, (typename acle<T>::pt*)&a.v);
svst1(pg1, D, a_v);
}
};
struct Vstream{
// Real
template <typename T>
inline void operator()(T * a, vec<T> b){
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt b_v = svld1(pg1, b.v);
svstnt1(pg1, a, b_v);
//svst1(pg1, a, b_v);
}
};
struct Vset{
// Complex
template <typename T>
inline vec<T> operator()(std::complex<T> *a){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, (T*)a);
svst1(pg1, out.v, a_v);
return out;
}
// Real
template <typename T>
inline vec<T> operator()(T *a){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a);
svst1(pg1, out.v, a_v);
return out;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt r_v = svadd_x(pg1, a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct Sub{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt r_v = svsub_x(pg1, a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct Mult{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b, vec<T> c){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt c_v = svld1(pg1, c.v);
typename acle<T>::vt r_v = svmla_x(pg1, c_v, a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt r_v = svmul_x(pg1, a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct MultRealPart{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
// using FCMLA
typename acle<T>::vt z_v = acle<T>::zero();
typename acle<T>::vt r_v = svcmla_x(pg1, z_v, a_v, b_v, 0);
svst1(pg1, out.v, r_v);
return out;
}
};
struct MaddRealPart{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b, vec<T> c){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt c_v = svld1(pg1, c.v);
// using FCMLA
typename acle<T>::vt r_v = svcmla_x(pg1, c_v, a_v, b_v, 0);
svst1(pg1, out.v, r_v);
return out;
}
};
struct MultComplex{
// Complex a*b
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt z_v = acle<T>::zero();
// using FCMLA
typename acle<T>::vt r_v = svcmla_x(pg1, z_v, a_v, b_v, 0);
r_v = svcmla_x(pg1, r_v, a_v, b_v, 90);
svst1(pg1, out.v, r_v);
return out;
}
};
struct MultAddComplex{
// Complex a*b+c
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b, vec<T> c){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt c_v = svld1(pg1, c.v);;
// using FCMLA
typename acle<T>::vt r_v = svcmla_x(pg1, c_v, a_v, b_v, 0);
r_v = svcmla_x(pg1, r_v, a_v, b_v, 90);
svst1(pg1, out.v, r_v);
return out;
}
};
struct Div{
// Real
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, a.v);
typename acle<T>::vt b_v = svld1(pg1, b.v);
typename acle<T>::vt r_v = svdiv_x(pg1, a_v, b_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct Conj{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
svbool_t pg_odd = acle<T>::pg_odd();
typename acle<T>::vt a_v = svld1(pg1, a.v);
//typename acle<T>::vt r_v = svneg_x(pg_odd, a_v);
typename acle<T>::vt r_v = svneg_m(a_v, pg_odd, a_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct TimesMinusI{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
svbool_t pg1 = acle<T>::pg1();
svbool_t pg_odd = acle<T>::pg_odd();
typename acle<T>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<T>::vt a_v = svld1(pg1, a.v);
a_v = svtbl(a_v, tbl_swap_v);
typename acle<T>::vt r_v = svneg_m(a_v, pg_odd, a_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct TimesI{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
svbool_t pg1 = acle<T>::pg1();
svbool_t pg_even = acle<T>::pg_even();
typename acle<T>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<T>::vt a_v = svld1(pg1, a.v);
a_v = svtbl(a_v, tbl_swap_v);
//typename acle<T>::vt r_v = svneg_x(pg_even, a_v);
typename acle<T>::vt r_v = svneg_m(a_v, pg_even, a_v);
svst1(pg1, out.v, r_v);
return out;
}
};
struct PrecisionChange {
static inline vech StoH (const vecf &sa,const vecf &sb) {
vech ret;
svbool_t pg1s = acle<float>::pg1();
svbool_t pg1h = acle<uint16_t>::pg1();
typename acle<float>::vt sa_v = svld1(pg1s, sa.v);
typename acle<float>::vt sb_v = svld1(pg1s, sb.v);
typename acle<uint16_t>::vt ha_v = svcvt_f16_x(pg1s, sa_v);
typename acle<uint16_t>::vt hb_v = svcvt_f16_x(pg1s, sb_v);
typename acle<uint16_t>::vt r_v = svuzp1(ha_v, hb_v);
svst1(pg1h, (typename acle<uint16_t>::pt*)&ret.v, r_v);
return ret;
}
static inline void HtoS(vech h,vecf &sa,vecf &sb) {
svbool_t pg1h = acle<uint16_t>::pg1();
svbool_t pg1s = acle<float>::pg1();
typename acle<uint16_t>::vt h_v = svld1(pg1h, (typename acle<uint16_t>::pt*)&h.v);
typename acle<uint16_t>::vt ha_v = svzip1(h_v, h_v);
typename acle<uint16_t>::vt hb_v = svzip2(h_v, h_v);
typename acle<float>::vt sa_v = svcvt_f32_x(pg1s, ha_v);
typename acle<float>::vt sb_v = svcvt_f32_x(pg1s, hb_v);
svst1(pg1s, sa.v, sa_v);
svst1(pg1s, sb.v, sb_v);
}
static inline vecf DtoS (vecd a,vecd b) {
vecf ret;
svbool_t pg1d = acle<double>::pg1();
svbool_t pg1s = acle<float>::pg1();
typename acle<double>::vt a_v = svld1(pg1d, a.v);
typename acle<double>::vt b_v = svld1(pg1d, b.v);
typename acle<float>::vt sa_v = svcvt_f32_x(pg1d, a_v);
typename acle<float>::vt sb_v = svcvt_f32_x(pg1d, b_v);
typename acle<float>::vt r_v = svuzp1(sa_v, sb_v);
svst1(pg1s, ret.v, r_v);
return ret;
}
static inline void StoD (vecf s,vecd &a,vecd &b) {
svbool_t pg1s = acle<float>::pg1();
svbool_t pg1d = acle<double>::pg1();
typename acle<float>::vt s_v = svld1(pg1s, s.v);
typename acle<float>::vt sa_v = svzip1(s_v, s_v);
typename acle<float>::vt sb_v = svzip2(s_v, s_v);
typename acle<double>::vt a_v = svcvt_f64_x(pg1d, sa_v);
typename acle<double>::vt b_v = svcvt_f64_x(pg1d, sb_v);
svst1(pg1d, a.v, a_v);
svst1(pg1d, b.v, b_v);
}
static inline vech DtoH (vecd a,vecd b,vecd c,vecd d) {
vech ret;
svbool_t pg1d = acle<double>::pg1();
svbool_t pg1h = acle<uint16_t>::pg1();
typename acle<double>::vt a_v = svld1(pg1d, a.v);
typename acle<double>::vt b_v = svld1(pg1d, b.v);
typename acle<double>::vt c_v = svld1(pg1d, c.v);
typename acle<double>::vt d_v = svld1(pg1d, d.v);
typename acle<uint16_t>::vt ha_v = svcvt_f16_x(pg1d, a_v);
typename acle<uint16_t>::vt hb_v = svcvt_f16_x(pg1d, b_v);
typename acle<uint16_t>::vt hc_v = svcvt_f16_x(pg1d, c_v);
typename acle<uint16_t>::vt hd_v = svcvt_f16_x(pg1d, d_v);
typename acle<uint16_t>::vt hab_v = svuzp1(ha_v, hb_v);
typename acle<uint16_t>::vt hcd_v = svuzp1(hc_v, hd_v);
typename acle<uint16_t>::vt r_v = svuzp1(hab_v, hcd_v);
svst1(pg1h, (typename acle<uint16_t>::pt*)&ret.v, r_v);
return ret;
/*
vecf sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
*/
}
static inline void HtoD(vech h,vecd &a,vecd &b,vecd &c,vecd &d) {
svbool_t pg1h = acle<uint16_t>::pg1();
svbool_t pg1d = acle<double>::pg1();
typename acle<uint16_t>::vt h_v = svld1(pg1h, (typename acle<uint16_t>::pt*)&h.v);
typename acle<uint16_t>::vt sa_v = svzip1(h_v, h_v);
typename acle<uint16_t>::vt sb_v = svzip2(h_v, h_v);
typename acle<uint16_t>::vt da_v = svzip1(sa_v, sa_v);
typename acle<uint16_t>::vt db_v = svzip2(sa_v, sa_v);
typename acle<uint16_t>::vt dc_v = svzip1(sb_v, sb_v);
typename acle<uint16_t>::vt dd_v = svzip2(sb_v, sb_v);
typename acle<double>::vt a_v = svcvt_f64_x(pg1d, da_v);
typename acle<double>::vt b_v = svcvt_f64_x(pg1d, db_v);
typename acle<double>::vt c_v = svcvt_f64_x(pg1d, dc_v);
typename acle<double>::vt d_v = svcvt_f64_x(pg1d, dd_v);
svst1(pg1d, a.v, a_v);
svst1(pg1d, b.v, b_v);
svst1(pg1d, c.v, c_v);
svst1(pg1d, d.v, d_v);
/*
vecf sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
*/
}
};
struct Exchange{
// Exchange0 is valid for arbitrary SVE vector length
template <typename T>
static inline void Exchange0(vec<T> &out1, vec<T> &out2, const vec<T> &in1, const vec<T> &in2){
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a1_v = svld1(pg1, in1.v);
typename acle<T>::vt a2_v = svld1(pg1, in2.v);
typename acle<T>::vt r1_v = svext(a1_v, a1_v, (uint64_t)W<T>::c);
r1_v = svext(r1_v, a2_v, (uint64_t)W<T>::c);
typename acle<T>::vt r2_v = svext(a2_v, a2_v, (uint64_t)W<T>::c);
r2_v = svext(a1_v, r2_v, (uint64_t)W<T>::c);
svst1(pg1, out1.v, r1_v);
svst1(pg1, out2.v, r2_v);
}
template <typename T>
static inline void Exchange1(vec<T> &out1, vec<T> &out2, const vec<T> &in1, const vec<T> &in2){
// this one is tricky; svtrn2q* from SVE2 fits best, but it is not available in SVE1
// alternative: use 4-el structure; expect translation into ldp + stp -> SFI
svbool_t pg1 = acle<T>::pg1();
const vec<typename acle<T>::uint> tbl_exch1a = acle<T>::tbl_exch1a();
const vec<typename acle<T>::uint> tbl_exch1b = acle<T>::tbl_exch1b();
const vec<typename acle<T>::uint> tbl_exch1c = acle<T>::tbl_exch1c();
typename acle<T>::svuint tbl_exch1a_v = svld1(pg1, tbl_exch1a.v);
typename acle<T>::svuint tbl_exch1b_v = svld1(pg1, tbl_exch1b.v);
typename acle<T>::svuint tbl_exch1c_v = svld1(pg1, tbl_exch1c.v);
typename acle<T>::vt in1_v = svld1(pg1, in1.v);
typename acle<T>::vt in2_v = svld1(pg1, in2.v);
typename acle<T>::vt a1_v = svtbl(in1_v, tbl_exch1a_v);
typename acle<T>::vt a2_v = svtbl(in2_v, tbl_exch1b_v);
typename acle<T>::vt b1_v = svext(a2_v, a1_v, (uint64_t)(W<T>::r / 2u));
typename acle<T>::vt b2_v = svext(a1_v, a2_v, (uint64_t)(W<T>::r / 2u));
typename acle<T>::vt out1_v = svtbl(b1_v, tbl_exch1c_v);
typename acle<T>::vt out2_v = svtbl(b2_v, tbl_exch1a_v);
svst1(pg1, out1.v, out1_v);
svst1(pg1, out2.v, out2_v);
}
template <typename T>
static inline void Exchange2(vec<T> &out1, vec<T> &out2, const vec<T> &in1, const vec<T> &in2){
svbool_t pg1 = acle<double>::pg1();
typename acle<double>::vt a1_v = svld1(pg1, (typename acle<double>::pt*)in1.v);
typename acle<double>::vt a2_v = svld1(pg1, (typename acle<double>::pt*)in2.v);
typename acle<double>::vt r1_v = svtrn1(a1_v, a2_v);
typename acle<double>::vt r2_v = svtrn2(a1_v, a2_v);
svst1(pg1, (typename acle<double>::pt*)out1.v, r1_v);
svst1(pg1, (typename acle<double>::pt*)out2.v, r2_v);
}
static inline void Exchange3(vecf &out1, vecf &out2, const vecf &in1, const vecf &in2){
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt a1_v = svld1(pg1, in1.v);
typename acle<float>::vt a2_v = svld1(pg1, in2.v);
typename acle<float>::vt r1_v = svtrn1(a1_v, a2_v);
typename acle<float>::vt r2_v = svtrn2(a1_v, a2_v);
svst1(pg1, out1.v, r1_v);
svst1(pg1, out2.v, r2_v);
}
static inline void Exchange3(vecd &out1, vecd &out2, const vecd &in1, const vecd &in2){
assert(0);
return;
}
};
struct Permute{
// Permute0 is valid for any SVE vector width
template <typename T>
static inline vec<T> Permute0(vec<T> in) {
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, in.v);
typename acle<T>::vt r_v = svext(a_v, a_v, (uint64_t)(W<T>::r / 2u));
svst1(pg1, out.v, r_v);
return out;
}
static inline vecd Permute1(vecd in) {
vecd out;
const vec<typename acle<double>::uint> tbl_swap = acle<double>::tbl1();
svbool_t pg1 = acle<double>::pg1();
typename acle<double>::vt a_v = svld1(pg1, in.v);
typename acle<double>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<double>::vt r_v = svtbl(a_v, tbl_swap_v);
svst1(pg1, out.v, r_v);
return out;
}
static inline vecf Permute1(vecf in) {
vecf out;
const vec<typename acle<float>::uint> tbl_swap = acle<float>::tbl1();
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt a_v = svld1(pg1, in.v);
typename acle<float>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<float>::vt r_v = svtbl(a_v, tbl_swap_v);
svst1(pg1, out.v, r_v);
return out;
}
static inline vecd Permute2(vecd in) {
vecd out;
const vec<typename acle<double>::uint> tbl_swap = acle<double>::tbl_swap();
svbool_t pg1 = acle<double>::pg1();
typename acle<double>::vt a_v = svld1(pg1, in.v);
typename acle<double>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<double>::vt r_v = svtbl(a_v, tbl_swap_v);
svst1(pg1, out.v, r_v);
return out;
}
static inline vecf Permute2(vecf in) {
vecf out;
const vec<typename acle<float>::uint> tbl_swap = acle<float>::tbl2();
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt a_v = svld1(pg1, in.v);
typename acle<float>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<float>::vt r_v = svtbl(a_v, tbl_swap_v);
svst1(pg1, out.v, r_v);
return out;
}
static inline vecf Permute3(vecf in) {
vecf out;
const vec<typename acle<float>::uint> tbl_swap = acle<float>::tbl_swap();
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt a_v = svld1(pg1, in.v);
typename acle<float>::svuint tbl_swap_v = svld1(pg1, tbl_swap.v);
typename acle<float>::vt r_v = svtbl(a_v, tbl_swap_v);
svst1(pg1, out.v, r_v);
return out;
}
static inline vecd Permute3(vecd in) {
return in;
}
};
struct Rotate{
template <int n, typename T> static inline vec<T> tRotate(vec<T> in){
vec<T> out;
svbool_t pg1 = acle<T>::pg1();
typename acle<T>::vt a_v = svld1(pg1, in.v);
typename acle<T>::vt r_v = svext(a_v, a_v, (uint64_t)(n%W<T>::r));
svst1(pg1, out.v, r_v);
return out;
}
template <typename T>
static inline vec<T> rotate(vec<T> in, int n){
switch(n){
case 0: return tRotate<0, T>(in); break;
case 1: return tRotate<1, T>(in); break;
case 2: return tRotate<2, T>(in); break;
case 3: return tRotate<3, T>(in); break;
case 4: return tRotate<4, T>(in); break;
case 5: return tRotate<5, T>(in); break;
case 6: return tRotate<6, T>(in); break;
case 7: return tRotate<7, T>(in); break;
case 8: return tRotate<8, T>(in); break;
case 9: return tRotate<9, T>(in); break;
case 10: return tRotate<10, T>(in); break;
case 11: return tRotate<11, T>(in); break;
case 12: return tRotate<12, T>(in); break;
case 13: return tRotate<13, T>(in); break;
case 14: return tRotate<14, T>(in); break;
case 15: return tRotate<15, T>(in); break;
default: assert(0);
}
}
};
// tree-based reduction
#define svred(pg, v)\
svaddv(pg, v);
// left-to-right reduction
// #define svred(pg, v)\
// svadda(pg, 0, v)
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
//Complex float Reduce
template <>
inline Grid::ComplexF Reduce<Grid::ComplexF, vecf>::operator()(vecf in){
svbool_t pg1 = acle<float>::pg1();
svbool_t pg_even = acle<float>::pg_even();
svbool_t pg_odd = acle<float>::pg_odd();
typename acle<float>::vt a_v = svld1(pg1, in.v);
float a = svred(pg_even, a_v);
float b = svred(pg_odd, a_v);
return Grid::ComplexF(a, b);
}
//Real float Reduce
template <>
inline Grid::RealF Reduce<Grid::RealF, vecf>::operator()(vecf in){
svbool_t pg1 = acle<float>::pg1();
typename acle<float>::vt a_v = svld1(pg1, in.v);
float a = svred(pg1, a_v);
return a;
}
//Complex double Reduce
template <>
inline Grid::ComplexD Reduce<Grid::ComplexD, vecd>::operator()(vecd in){
svbool_t pg1 = acle<double>::pg1();
svbool_t pg_even = acle<double>::pg_even();
svbool_t pg_odd = acle<double>::pg_odd();
typename acle<double>::vt a_v = svld1(pg1, in.v);
double a = svred(pg_even, a_v);
double b = svred(pg_odd, a_v);
return Grid::ComplexD(a, b);
}
//Real double Reduce
template <>
inline Grid::RealD Reduce<Grid::RealD, vecd>::operator()(vecd in){
svbool_t pg1 = acle<double>::pg1();
typename acle<double>::vt a_v = svld1(pg1, in.v);
double a = svred(pg1, a_v);
return a;
}
//Integer Reduce
template <>
inline Integer Reduce<Integer, veci>::operator()(veci in){
svbool_t pg1 = acle<Integer>::pg1();
typename acle<Integer>::vt a_v = svld1(pg1, in.v);
Integer a = svred(pg1, a_v);
return a;
}
#undef svred
#undef vec_imm
NAMESPACE_END(Optimization)
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef Optimization::vecf SIMD_Ftype; // Single precision type
typedef Optimization::vecd SIMD_Dtype; // Double precision type
typedef Optimization::veci SIMD_Itype; // Integer type
// prefetch utilities
inline void v_prefetch0(int size, const char *ptr){};
inline void prefetch_HINT_T0(const char *ptr){};
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultAddComplex MultAddComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
NAMESPACE_END(Grid)

View File

@ -0,0 +1,769 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid_a64fx-fixedsize.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
with support from Arm
Richard Sandiford <richard.sandiford@arm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/////////////////////////////////////////////////////
// Using SVE ACLE with fixed-size data types
/////////////////////////////////////////////////////
// gcc 10 features
#if __ARM_FEATURE_SVE_BITS==512
/* gcc 10.0.1 and gcc 10.1 bug using ACLE data types CAS-159553-Y1K4C6
workaround: use gcc's internal data types, bugfix expected for gcc 10.2
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
typedef svfloat16_t vech __attribute__((arm_sve_vector_bits(512)));
typedef svfloat32_t vecf __attribute__((arm_sve_vector_bits(512)));
typedef svfloat64_t vecd __attribute__((arm_sve_vector_bits(512)));
typedef svuint32_t veci __attribute__((arm_sve_vector_bits(512)));
typedef svuint32_t lutf __attribute__((arm_sve_vector_bits(512))); // LUTs for float
typedef svuint64_t lutd __attribute__((arm_sve_vector_bits(512))); // LUTs for double
*/
typedef __SVBool_t pred __attribute__((arm_sve_vector_bits(512)));
typedef __SVFloat16_t vech __attribute__((arm_sve_vector_bits(512)));
typedef __SVFloat32_t vecf __attribute__((arm_sve_vector_bits(512)));
typedef __SVFloat64_t vecd __attribute__((arm_sve_vector_bits(512)));
typedef __SVUint32_t veci __attribute__((arm_sve_vector_bits(512)));
typedef __SVUint32_t lutf __attribute__((arm_sve_vector_bits(512))); // LUTs for float
typedef __SVUint64_t lutd __attribute__((arm_sve_vector_bits(512))); // LUTs for double
#else
#pragma error("Oops. Illegal SVE vector size!?")
#endif /* __ARM_FEATURE_SVE_BITS */
// low-level API
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Optimization);
// convenience union types for tables eliminating loads
union ulutf {
lutf v;
uint32_t s[16];
};
union ulutd {
lutd v;
uint64_t s[8];
};
template <typename T>
struct acle{};
template <>
struct acle<double>{
static inline lutd tbl_swap(){
const ulutd t = { .s = {1, 0, 3, 2, 5, 4, 7, 6} };
return t.v;
}
static inline lutd tbl0(){
const ulutd t = { .s = {4, 5, 6, 7, 0, 1, 2, 3} };
return t.v;
}
static inline lutd tbl1(){
const ulutd t = { .s = {2, 3, 0, 1, 6, 7, 4, 5} };
return t.v;
}
static inline lutd tbl_exch1a(){ // Exchange1
const ulutd t = { .s = {0, 1, 4, 5, 2, 3, 6, 7} };
return t.v;
}
static inline lutd tbl_exch1b(){ // Exchange1
const ulutd t = { .s = {2, 3, 6, 7, 0, 1, 4, 5} };
return t.v;
}
static inline lutd tbl_exch1c(){ // Exchange1
const ulutd t = { .s = {4, 5, 0, 1, 6, 7, 2, 3} };
return t.v;
}
static inline pred pg1(){return svptrue_b64();}
static inline pred pg_even(){return svzip1_b64(svptrue_b64(), svpfalse_b());}
static inline pred pg_odd() {return svzip1_b64(svpfalse_b(), svptrue_b64());}
static inline vecd zero(){return svdup_f64(0.);}
};
template <>
struct acle<float>{
// exchange neighboring elements
static inline lutf tbl_swap(){
const ulutf t = { .s = {1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14} };
return t.v;
}
static inline lutf tbl0(){
const ulutf t = { .s = {8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7} };
return t.v;
}
static inline lutf tbl1(){
const ulutf t = { .s = {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11} };
return t.v;
}
static inline lutf tbl2(){
const ulutf t = { .s = {2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13} };
return t.v;
}
static inline lutf tbl_exch1a(){ // Exchange1
const ulutf t = { .s = {0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 } };
return t.v;
}
static inline lutf tbl_exch1b(){ // Exchange1
const ulutf t = { .s = {4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 10, 11 } };
return t.v;
}
static inline lutf tbl_exch1c(){ // Exchange1
const ulutf t = { .s = {8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7} };
return t.v;
}
static inline pred pg1(){return svptrue_b32();}
static inline pred pg_even(){return svzip1_b32(svptrue_b32(), svpfalse_b());}
static inline pred pg_odd() {return svzip1_b32(svpfalse_b(), svptrue_b32());}
static inline vecf zero(){return svdup_f32(0.);}
};
template <>
struct acle<uint16_t>{
static inline pred pg1(){return svptrue_b16();}
static inline pred pg_even(){return svzip1_b16(svptrue_b16(), svpfalse_b());}
static inline pred pg_odd() {return svzip1_b16(svpfalse_b(), svptrue_b16());}
static inline vech zero(){return svdup_f16(0.);}
};
template <>
struct acle<Integer>{
//static inline svbool_t pg1(){return svptrue_b16();}
static inline pred pg1(){return svptrue_b32();}
static inline pred pg_even(){return svzip1_b32(svptrue_b32(), svpfalse_b());}
static inline pred pg_odd() {return svzip1_b32(svpfalse_b(), svptrue_b32());}
};
// ---------------------------------------------------
struct Vsplat{
// Complex float
inline vecf operator()(float a, float b){
vecf a_v = svdup_f32(a);
vecf b_v = svdup_f32(b);
return svzip1(a_v, b_v);
}
// Real float
inline vecf operator()(float a){
return svdup_f32(a);
}
// Complex double
inline vecd operator()(double a, double b){
vecd a_v = svdup_f64(a);
vecd b_v = svdup_f64(b);
return svzip1(a_v, b_v);
}
// Real double
inline vecd operator()(double a){
return svdup_f64(a);
}
// Integer
inline veci operator()(Integer a){
return svdup_u32(a);
}
};
struct Vstore{
// Real float
inline void operator()(vecf a, float *D){
pred pg1 = acle<float>::pg1();
svst1(pg1, D, a);
}
// Real double
inline void operator()(vecd a, double *D){
pred pg1 = acle<double>::pg1();
svst1(pg1, D, a);
}
// Real float
inline void operator()(veci a, Integer *D){
pred pg1 = acle<Integer>::pg1();
svst1(pg1, D, a);
}
};
struct Vstream{
// Real float
inline void operator()(float * a, vecf b){
pred pg1 = acle<float>::pg1();
svstnt1(pg1, a, b);
//svst1(pg1, a, b);
}
// Real double
inline void operator()(double * a, vecd b){
pred pg1 = acle<double>::pg1();
svstnt1(pg1, a, b);
//svst1(pg1, a, b);
}
};
struct Vset{
// Complex float
inline vecf operator()(Grid::ComplexF *a){
pred pg1 = acle<float>::pg1();
return svld1(pg1, (float*)a);
}
// Complex double
inline vecd operator()(Grid::ComplexD *a){
pred pg1 = acle<double>::pg1();
return svld1(pg1, (double*)a);
}
// Real float
inline vecf operator()(float *a){
pred pg1 = acle<float>::pg1();
return svld1(pg1, a);
}
// Real double
inline vecd operator()(double *a){
pred pg1 = acle<double>::pg1();
return svld1(pg1, a);
}
// Integer
inline veci operator()(Integer *a){
pred pg1 = acle<Integer>::pg1();
return svld1(pg1, a);
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
// Complex/real float
inline vecf operator()(vecf a, vecf b){
pred pg1 = acle<float>::pg1();
return svadd_x(pg1, a, b);
}
// Complex/real double
inline vecd operator()(vecd a, vecd b){
pred pg1 = acle<double>::pg1();
return svadd_x(pg1, a, b);
}
// Integer
inline veci operator()(veci a, veci b){
pred pg1 = acle<Integer>::pg1();
return svadd_x(pg1, a, b);
}
};
struct Sub{
// Complex/real float
inline vecf operator()(vecf a, vecf b){
pred pg1 = acle<float>::pg1();
return svsub_x(pg1, a, b);
}
// Complex/real double
inline vecd operator()(vecd a, vecd b){
pred pg1 = acle<double>::pg1();
return svsub_x(pg1, a, b);
}
// Integer
inline veci operator()(veci a, veci b){
pred pg1 = acle<Integer>::pg1();
return svsub_x(pg1, a, b);
}
};
struct Mult{
// Real float fma
inline vecf operator()(vecf a, vecf b, vecf c){
pred pg1 = acle<float>::pg1();
return svmad_x(pg1, b, c, a);
}
// Real double fma
inline vecd operator()(vecd a, vecd b, vecd c){
pred pg1 = acle<double>::pg1();
return svmad_x(pg1, b, c, a);
}
// Real float
inline vecf operator()(vecf a, vecf b){
pred pg1 = acle<float>::pg1();
return svmul_x(pg1, a, b);
}
// Real double
inline vecd operator()(vecd a, vecd b){
pred pg1 = acle<double>::pg1();
return svmul_x(pg1, a, b);
}
// Integer
inline veci operator()(veci a, veci b){
pred pg1 = acle<Integer>::pg1();
return svmul_x(pg1, a, b);
}
};
struct MultRealPart{
// Complex float
inline vecf operator()(vecf a, vecf b){
pred pg1 = acle<float>::pg1();
// using FCMLA
vecf z_v = acle<float>::zero();
return svcmla_x(pg1, z_v, a, b, 0);
}
// Complex double
inline vecd operator()(vecd a, vecd b){
pred pg1 = acle<double>::pg1();
// using FCMLA
vecd z_v = acle<double>::zero();
return svcmla_x(pg1, z_v, a, b, 0);
}
};
struct MaddRealPart{
// Complex float
inline vecf operator()(vecf a, vecf b, vecf c){
pred pg1 = acle<float>::pg1();
// using FCMLA
return svcmla_x(pg1, c, a, b, 0);
}
// Complex double
inline vecd operator()(vecd a, vecd b, vecd c){
pred pg1 = acle<double>::pg1();
// using FCMLA
return svcmla_x(pg1, c, a, b, 0);
}
};
struct MultComplex{
// Complex a*b
// Complex float
inline vecf operator()(vecf a, vecf b){
pred pg1 = acle<float>::pg1();
vecf z = acle<float>::zero();
// using FCMLA
vecf r_v = svcmla_x(pg1, z, a, b, 0);
return svcmla_x(pg1, r_v, a, b, 90);
}
// Complex double
inline vecd operator()(vecd a, vecd b){
pred pg1 = acle<double>::pg1();
vecd z = acle<double>::zero();
// using FCMLA
vecd r_v = svcmla_x(pg1, z, a, b, 0);
return svcmla_x(pg1, r_v, a, b, 90);
}
};
struct MultAddComplex{
// Complex a*b+c
// Complex float
inline vecf operator()(vecf a, vecf b, vecf c){
pred pg1 = acle<float>::pg1();
// using FCMLA
vecf r_v = svcmla_x(pg1, c, a, b, 0);
return svcmla_x(pg1, r_v, a, b, 90);
}
// Complex double
inline vecd operator()(vecd a, vecd b, vecd c){
pred pg1 = acle<double>::pg1();
// using FCMLA
vecd r_v = svcmla_x(pg1, c, a, b, 0);
return svcmla_x(pg1, r_v, a, b, 90);
}
};
struct Div{
// Real float
inline vecf operator()(vecf a, vecf b){
pred pg1 = acle<float>::pg1();
return svdiv_x(pg1, a, b);
}
// Real double
inline vecd operator()(vecd a, vecd b){
pred pg1 = acle<double>::pg1();
return svdiv_x(pg1, a, b);
}
};
struct Conj{
// Complex float
inline vecf operator()(vecf a){
pred pg_odd = acle<float>::pg_odd();
//return svneg_x(pg_odd, a); this is unsafe
return svneg_m(a, pg_odd, a);
}
// Complex double
inline vecd operator()(vecd a){
pred pg_odd = acle<double>::pg_odd();
//return svneg_x(pg_odd, a); this is unsafe
return svneg_m(a, pg_odd, a);
}
};
struct TimesMinusI{
// Complex float
inline vecf operator()(vecf a, vecf b){
lutf tbl_swap = acle<float>::tbl_swap();
pred pg1 = acle<float>::pg1();
pred pg_odd = acle<float>::pg_odd();
vecf a_v = svtbl(a, tbl_swap);
//return svneg_x(pg_odd, a_v); this is unsafe
return svneg_m(a_v, pg_odd, a_v);
}
// Complex double
inline vecd operator()(vecd a, vecd b){
lutd tbl_swap = acle<double>::tbl_swap();
pred pg1 = acle<double>::pg1();
pred pg_odd = acle<double>::pg_odd();
vecd a_v = svtbl(a, tbl_swap);
//return svneg_x(pg_odd, a_v); this is unsafe
return svneg_m(a_v, pg_odd, a_v);
}
};
struct TimesI{
// Complex float
inline vecf operator()(vecf a, vecf b){
lutf tbl_swap = acle<float>::tbl_swap();
pred pg1 = acle<float>::pg1();
pred pg_even = acle<float>::pg_even();
vecf a_v = svtbl(a, tbl_swap);
//return svneg_x(pg_even, a_v); this is unsafe
return svneg_m(a_v, pg_even, a_v);
}
// Complex double
inline vecd operator()(vecd a, vecd b){
lutd tbl_swap = acle<double>::tbl_swap();
pred pg1 = acle<double>::pg1();
pred pg_even = acle<double>::pg_even();
vecd a_v = svtbl(a, tbl_swap);
//return svneg_x(pg_even, a_v); this is unsafe
return svneg_m(a_v, pg_even, a_v);
}
};
struct PrecisionChange {
static inline vech StoH (vecf sa, vecf sb) {
pred pg1s = acle<float>::pg1();
vech ha_v = svcvt_f16_x(pg1s, sa);
vech hb_v = svcvt_f16_x(pg1s, sb);
return svuzp1(ha_v, hb_v);
}
static inline void HtoS(vech h,vecf &sa,vecf &sb) {
pred pg1s = acle<float>::pg1();
vech ha_v = svzip1(h, h);
vech hb_v = svzip2(h, h);
sa = svcvt_f32_x(pg1s, ha_v);
sb = svcvt_f32_x(pg1s, hb_v);
}
static inline vecf DtoS (vecd a,vecd b) {
pred pg1d = acle<double>::pg1();
vecf sa_v = svcvt_f32_x(pg1d, a);
vecf sb_v = svcvt_f32_x(pg1d, b);
return svuzp1(sa_v, sb_v);
}
static inline void StoD (vecf s,vecd &a,vecd &b) {
pred pg1d = acle<double>::pg1();
vecf sa_v = svzip1(s, s);
vecf sb_v = svzip2(s, s);
a = svcvt_f64_x(pg1d, sa_v);
b = svcvt_f64_x(pg1d, sb_v);
}
static inline vech DtoH (vecd a,vecd b,vecd c,vecd d) {
pred pg1d = acle<double>::pg1();
pred pg1h = acle<uint16_t>::pg1();
vech ha_v = svcvt_f16_x(pg1d, a);
vech hb_v = svcvt_f16_x(pg1d, b);
vech hc_v = svcvt_f16_x(pg1d, c);
vech hd_v = svcvt_f16_x(pg1d, d);
vech hab_v = svuzp1(ha_v, hb_v);
vech hcd_v = svuzp1(hc_v, hd_v);
return svuzp1(hab_v, hcd_v);
/*
vecf sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
*/
}
static inline void HtoD(vech h,vecd &a,vecd &b,vecd &c,vecd &d) {
pred pg1h = acle<uint16_t>::pg1();
pred pg1d = acle<double>::pg1();
vech sa_v = svzip1(h, h);
vech sb_v = svzip2(h, h);
vech da_v = svzip1(sa_v, sa_v);
vech db_v = svzip2(sa_v, sa_v);
vech dc_v = svzip1(sb_v, sb_v);
vech dd_v = svzip2(sb_v, sb_v);
a = svcvt_f64_x(pg1d, da_v);
b = svcvt_f64_x(pg1d, db_v);
c = svcvt_f64_x(pg1d, dc_v);
d = svcvt_f64_x(pg1d, dd_v);
/*
vecf sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
*/
}
};
struct Exchange{
// float
static inline void Exchange0(vecf &out1, vecf &out2, vecf in1, vecf in2){
vecf r1_v = svext(in1, in1, (uint64_t)8u);
vecf r2_v = svext(in2, in2, (uint64_t)8u);
out1 = svext(r1_v, in2, (uint64_t)8u);
out2 = svext(in1, r2_v, (uint64_t)8u);
}
static inline void Exchange1(vecf &out1, vecf &out2, vecf in1, vecf in2){
// this one is tricky; svtrn2q* from SVE2 fits best, but it is not available in SVE1
// alternative: use 4-el structure; expect translation into 4x ldp + 4x stp -> SFI
lutf tbl_exch1a = acle<float>::tbl_exch1a();
lutf tbl_exch1b = acle<float>::tbl_exch1b();
lutf tbl_exch1c = acle<float>::tbl_exch1c();
vecf a1_v = svtbl(in1, tbl_exch1a);
vecf a2_v = svtbl(in2, tbl_exch1b);
vecf b1_v = svext(a2_v, a1_v, (uint64_t)8u);
vecf b2_v = svext(a1_v, a2_v, (uint64_t)8u);
out1 = svtbl(b1_v, tbl_exch1c);
out2 = svtbl(b2_v, tbl_exch1a);
}
static inline void Exchange2(vecf &out1, vecf &out2, vecf in1, vecf in2){
out1 = (vecf)svtrn1((vecd)in1, (vecd)in2);
out2 = (vecf)svtrn2((vecd)in1, (vecd)in2);
}
static inline void Exchange3(vecf &out1, vecf &out2, vecf in1, vecf in2){
out1 = svtrn1(in1, in2);
out2 = svtrn2(in1, in2);
}
// double
static inline void Exchange0(vecd &out1, vecd &out2, vecd in1, vecd in2){
vecd r1_v = svext(in1, in1, (uint64_t)4u);
vecd r2_v = svext(in2, in2, (uint64_t)4u);
out1 = svext(r1_v, in2, (uint64_t)4u);
out2 = svext(in1, r2_v, (uint64_t)4u);
}
static inline void Exchange1(vecd &out1, vecd &out2, vecd in1, vecd in2){
// this one is tricky; svtrn2q* from SVE2 fits best, but it is not available in SVE1
// alternative: use 4-el structure; expect translation into 4x ldp + 4x stp -> SFI
lutd tbl_exch1a = acle<double>::tbl_exch1a();
lutd tbl_exch1b = acle<double>::tbl_exch1b();
lutd tbl_exch1c = acle<double>::tbl_exch1c();
vecd a1_v = svtbl(in1, tbl_exch1a);
vecd a2_v = svtbl(in2, tbl_exch1b);
vecd b1_v = svext(a2_v, a1_v, (uint64_t)4u);
vecd b2_v = svext(a1_v, a2_v, (uint64_t)4u);
out1 = svtbl(b1_v, tbl_exch1c);
out2 = svtbl(b2_v, tbl_exch1a);
}
static inline void Exchange2(vecd &out1, vecd &out2, vecd in1, vecd in2){
out1 = svtrn1(in1, in2);
out2 = svtrn2(in1, in2);
}
static inline void Exchange3(vecd &out1, vecd &out2, vecd in1, vecd in2){
assert(0);
return;
}
};
#undef VECTOR_FOR
struct Permute{
// float
static inline vecf Permute0(vecf in) {
return svext(in, in, (uint64_t)8u);
}
static inline vecf Permute1(vecf in) {
lutf tbl_swap = acle<float>::tbl1();
return svtbl(in, tbl_swap);
}
static inline vecf Permute2(vecf in) {
lutf tbl_swap = acle<float>::tbl2();
return svtbl(in, tbl_swap);
}
static inline vecf Permute3(vecf in) {
lutf tbl_swap = acle<float>::tbl_swap();
return svtbl(in, tbl_swap);
}
// double
static inline vecd Permute0(vecd in) {
return svext(in, in, (uint64_t)(8u / 2u));
}
static inline vecd Permute1(vecd in) {
lutd tbl_swap = acle<double>::tbl1();
return svtbl(in, tbl_swap);
}
static inline vecd Permute2(vecd in) {
lutd tbl_swap = acle<double>::tbl_swap();
return svtbl(in, tbl_swap);
}
static inline vecd Permute3(vecd in) {
return in;
}
};
struct Rotate{
static inline vecf rotate(vecf in, int n){
switch(n){
case 0: return tRotate<0>(in); break;
case 1: return tRotate<1>(in); break;
case 2: return tRotate<2>(in); break;
case 3: return tRotate<3>(in); break;
case 4: return tRotate<4>(in); break;
case 5: return tRotate<5>(in); break;
case 6: return tRotate<6>(in); break;
case 7: return tRotate<7>(in); break;
case 8: return tRotate<8>(in); break;
case 9: return tRotate<9>(in); break;
case 10: return tRotate<10>(in); break;
case 11: return tRotate<11>(in); break;
case 12: return tRotate<12>(in); break;
case 13: return tRotate<13>(in); break;
case 14: return tRotate<14>(in); break;
case 15: return tRotate<15>(in); break;
default: assert(0);
}
}
static inline vecd rotate(vecd in, int n){
switch(n){
case 0: return tRotate<0>(in); break;
case 1: return tRotate<1>(in); break;
case 2: return tRotate<2>(in); break;
case 3: return tRotate<3>(in); break;
case 4: return tRotate<4>(in); break;
case 5: return tRotate<5>(in); break;
case 6: return tRotate<6>(in); break;
case 7: return tRotate<7>(in); break;
default: assert(0);
}
}
template <int n> static inline vecf tRotate(vecf in){
return svext(in, in, (uint64_t)n);
}
template <int n> static inline vecd tRotate(vecd in){
return svext(in, in, (uint64_t)n);
}
};
// tree-based reduction
#define svred(pg, v)\
svaddv(pg, v);
// left-to-right reduction
// #define svred(pg, v)\
// svadda(pg, 0, v)
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
//exit(1);
return 0;
}
};
//Complex float Reduce
template <>
inline Grid::ComplexF Reduce<Grid::ComplexF, vecf>::operator()(vecf in){
pred pg_even = acle<float>::pg_even();
pred pg_odd = acle<float>::pg_odd();
float a = svred(pg_even, in);
float b = svred(pg_odd, in);
return Grid::ComplexF(a, b);
}
//Real float Reduce
template <>
inline Grid::RealF Reduce<Grid::RealF, vecf>::operator()(vecf in){
pred pg1 = acle<float>::pg1();
return svred(pg1, in);
}
//Complex double Reduce
template <>
inline Grid::ComplexD Reduce<Grid::ComplexD, vecd>::operator()(vecd in){
pred pg_even = acle<double>::pg_even();
pred pg_odd = acle<double>::pg_odd();
double a = svred(pg_even, in);
double b = svred(pg_odd, in);
return Grid::ComplexD(a, b);
}
//Real double Reduce
template <>
inline Grid::RealD Reduce<Grid::RealD, vecd>::operator()(vecd in){
pred pg1 = acle<double>::pg1();
return svred(pg1, in);
}
//Integer Reduce
template <>
inline Integer Reduce<Integer, veci>::operator()(veci in){
pred pg1 = acle<Integer>::pg1();
return svred(pg1, in);
}
#undef svred
NAMESPACE_END(Optimization);
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef vech SIMD_Htype; // Reduced precision type
typedef vecf SIMD_Ftype; // Single precision type
typedef vecd SIMD_Dtype; // Double precision type
typedef veci SIMD_Itype; // Integer type
// prefetch utilities
inline void v_prefetch0(int size, const char *ptr){};
inline void prefetch_HINT_T0(const char *ptr){};
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultAddComplex MultAddComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
NAMESPACE_END(Grid);

View File

@ -38,20 +38,47 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_HIP
#include <hip/hip_fp16.h>
#endif
#ifdef GRID_SYCL
namespace Grid {
typedef struct { uint16_t x;} half;
typedef struct { half x; half y;} half2;
typedef struct { float x; float y;} float2;
typedef struct { double x; double y;} double2;
}
#endif
namespace Grid {
typedef struct Half2_t { half x; half y; } Half2;
#define COALESCE_GRANULARITY ( GEN_SIMD_WIDTH )
template<class pair>
class GpuComplex {
public:
pair z;
typedef decltype(z.x) real;
typedef decltype(z.x) Real;
public:
accelerator_inline GpuComplex() = default;
accelerator_inline GpuComplex(real re,real im) { z.x=re; z.y=im; };
accelerator_inline GpuComplex(Real re,Real im) { z.x=re; z.y=im; };
accelerator_inline GpuComplex(const GpuComplex &zz) { z = zz.z;};
accelerator_inline Real real(void) const { return z.x; };
accelerator_inline Real imag(void) const { return z.y; };
accelerator_inline GpuComplex &operator*=(const GpuComplex &r) {
*this = (*this) * r;
return *this;
}
accelerator_inline GpuComplex &operator+=(const GpuComplex &r) {
*this = (*this) + r;
return *this;
}
accelerator_inline GpuComplex &operator-=(const GpuComplex &r) {
*this = (*this) - r;
return *this;
}
friend accelerator_inline GpuComplex operator+(const GpuComplex &lhs,const GpuComplex &rhs) {
GpuComplex r ;
r.z.x = lhs.z.x + rhs.z.x;
@ -125,14 +152,14 @@ inline accelerator GpuVector<N,datum> operator/(const GpuVector<N,datum> l,const
}
constexpr int NSIMD_RealH = COALESCE_GRANULARITY / sizeof(half);
constexpr int NSIMD_ComplexH = COALESCE_GRANULARITY / sizeof(half2);
constexpr int NSIMD_ComplexH = COALESCE_GRANULARITY / sizeof(Half2);
constexpr int NSIMD_RealF = COALESCE_GRANULARITY / sizeof(float);
constexpr int NSIMD_ComplexF = COALESCE_GRANULARITY / sizeof(float2);
constexpr int NSIMD_RealD = COALESCE_GRANULARITY / sizeof(double);
constexpr int NSIMD_ComplexD = COALESCE_GRANULARITY / sizeof(double2);
constexpr int NSIMD_Integer = COALESCE_GRANULARITY / sizeof(Integer);
typedef GpuComplex<half2 > GpuComplexH;
typedef GpuComplex<Half2 > GpuComplexH;
typedef GpuComplex<float2 > GpuComplexF;
typedef GpuComplex<double2> GpuComplexD;
@ -144,16 +171,19 @@ typedef GpuVector<NSIMD_RealD, double > GpuVectorRD;
typedef GpuVector<NSIMD_ComplexD, GpuComplexD > GpuVectorCD;
typedef GpuVector<NSIMD_Integer, Integer > GpuVectorI;
accelerator_inline GpuComplexF timesI(const GpuComplexF &r) { return(GpuComplexF(-r.imag(),r.real()));}
accelerator_inline GpuComplexD timesI(const GpuComplexD &r) { return(GpuComplexD(-r.imag(),r.real()));}
accelerator_inline GpuComplexF timesMinusI(const GpuComplexF &r){ return(GpuComplexF(r.imag(),-r.real()));}
accelerator_inline GpuComplexD timesMinusI(const GpuComplexD &r){ return(GpuComplexD(r.imag(),-r.real()));}
accelerator_inline float half2float(half h)
{
float f;
#ifdef GRID_SIMT
#if defined(GRID_CUDA) || defined(GRID_HIP)
f = __half2float(h);
#else
//f = __half2float(h);
__half_raw hr(h);
Grid_half hh;
hh.x = hr.x;
hh.x = h.x;
f= sfw_half_to_float(hh);
#endif
return f;
@ -161,13 +191,11 @@ accelerator_inline float half2float(half h)
accelerator_inline half float2half(float f)
{
half h;
#ifdef GRID_SIMT
#if defined(GRID_CUDA) || defined(GRID_HIP)
h = __float2half(f);
#else
Grid_half hh = sfw_float_to_half(f);
__half_raw hr;
hr.x = hh.x;
h = __half(hr);
h.x = hh.x;
#endif
return h;
}
@ -523,7 +551,7 @@ namespace Optimization {
////////////////////////////////////////////////////////////////////////////////////
// Single / Half
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCH StoH (GpuVectorCF a,GpuVectorCF b) {
static accelerator_inline GpuVectorCH StoH (GpuVectorCF a,GpuVectorCF b) {
int N = GpuVectorCF::N;
GpuVectorCH h;
for(int i=0;i<N;i++) {

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_vector_types.h
@ -73,7 +73,7 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
unsigned int sign_mask = 0x80000000u;
Grid_half o;
o.x = static_cast<unsigned short>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
@ -93,7 +93,7 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
// rounding bias part 2
@ -101,7 +101,7 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
// take the bits!
o.x = static_cast<unsigned short>(f.u >> 13);
}
}
}
o.x |= static_cast<unsigned short>(sign >> 16);
return o;
}
@ -110,9 +110,63 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
#ifdef GPU_VEC
#include "Grid_gpu_vec.h"
#endif
/*
#ifdef GEN
#include "Grid_generic.h"
#endif
*/
#ifdef GEN
#if defined(A64FX) || defined(A64FXFIXEDSIZE) // breakout A64FX SVE ACLE here
#include <arm_sve.h>
#if defined(A64FX) // VLA
#pragma message("building A64FX / SVE ACLE VLA")
#if defined(ARMCLANGCOMPAT)
#pragma message("applying data types patch")
#endif
#include "Grid_a64fx-2.h"
#endif
#if defined(A64FXFIXEDSIZE) // fixed size data types
#pragma message("building for A64FX / SVE ACLE fixed size")
#include "Grid_a64fx-fixedsize.h"
#endif
#else
//#pragma message("building GEN") // generic
#include "Grid_generic.h"
#endif
#endif
#ifdef A64FX
#include <arm_sve.h>
#ifdef __ARM_FEATURE_SVE_BITS
//#pragma message("building A64FX SVE VLS")
#include "Grid_a64fx-fixedsize.h"
#else
#pragma message("building A64FX SVE VLA")
#if defined(ARMCLANGCOMPAT)
#pragma message("applying data types patch")
#endif
#include "Grid_a64fx-2.h"
#endif
#endif
/*
#ifdef A64FXVLA
#pragma message("building A64FX VLA")
#if defined(ARMCLANGCOMPAT)
#pragma message("applying data types patch")
#endif
#include <arm_sve.h>
#include "Grid_a64fx-2.h"
#endif
#ifdef A64FXVLS
#pragma message("building A64FX VLS")
#include <arm_sve.h>
#include "Grid_a64fx-fixedsize.h"
#endif
*/
#ifdef SSE4
#include "Grid_sse4.h"
#endif
@ -163,6 +217,12 @@ template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<ComplexD> : public std::true_type {};
template <> struct is_complex<ComplexF> : public std::true_type {};
template <typename T> struct is_ComplexD : public std::false_type {};
template <> struct is_ComplexD<ComplexD> : public std::true_type {};
template <typename T> struct is_ComplexF : public std::false_type {};
template <> struct is_ComplexF<ComplexF> : public std::true_type {};
template<typename T, typename V=void> struct is_real : public std::false_type {};
template<typename T> struct is_real<T, typename std::enable_if<std::is_floating_point<T>::value,
void>::type> : public std::true_type {};
@ -170,7 +230,7 @@ template<typename T> struct is_real<T, typename std::enable_if<std::is_floating_
template<typename T, typename V=void> struct is_integer : public std::false_type {};
template<typename T> struct is_integer<T, typename std::enable_if<std::is_integral<T>::value,
void>::type> : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<is_real<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<is_integer<T>::value, int> >;
@ -223,6 +283,69 @@ public:
return sizeof(Vector_type) / sizeof(Scalar_type);
}
#ifdef ARMCLANGCOMPAT
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<!is_complex<S>::value, S>::type, Vector_type> &&rhs) {
//v = rhs.v;
svst1(svptrue_b8(), (Scalar_type*)this, svld1(svptrue_b8(), (Scalar_type*)&(rhs.v)));
return *this;
};
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<!is_complex<S>::value, S>::type, Vector_type> &rhs) {
//v = rhs.v;
svst1(svptrue_b8(), (Scalar_type*)this, svld1(svptrue_b8(), (Scalar_type*)&(rhs.v)));
return *this;
};
/*
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<is_complex<S>::value, S>::type, Vector_type> &&rhs) {
//v = rhs.v;
svst1(svptrue_b8(), (int8_t*)this, svld1(svptrue_b8(), (int8_t*)&(rhs.v)));
return *this;
};
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<is_complex<S>::value, S>::type, Vector_type> &rhs) {
//v = rhs.v;
svst1(svptrue_b8(), (int8_t*)this, svld1(svptrue_b8(), (int8_t*)&(rhs.v)));
return *this;
};
*/
// ComplexF
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<is_ComplexF<S>::value, S>::type, Vector_type> &&rhs) {
//v = rhs.v;
svst1(svptrue_b32(), (float*)this, svld1(svptrue_b32(), (float*)&(rhs.v)));
return *this;
};
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<is_ComplexF<S>::value, S>::type, Vector_type> &rhs) {
//v = rhs.v;
svst1(svptrue_b32(), (float*)this, svld1(svptrue_b32(), (float*)&(rhs.v)));
return *this;
};
// ComplexD
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<is_ComplexD<S>::value, S>::type, Vector_type> &&rhs) {
//v = rhs.v;
svst1(svptrue_b64(), (double*)this, svld1(svptrue_b64(), (double*)&(rhs.v)));
return *this;
};
template <class S = Scalar_type>
accelerator_inline Grid_simd &operator=(const Grid_simd<typename std::enable_if<is_ComplexD<S>::value, S>::type, Vector_type> &rhs) {
//v = rhs.v;
svst1(svptrue_b64(), (double*)this, svld1(svptrue_b64(), (double*)&(rhs.v)));
return *this;
};
#else
accelerator_inline Grid_simd &operator=(const Grid_simd &&rhs) {
v = rhs.v;
return *this;
@ -232,10 +355,23 @@ public:
return *this;
}; // faster than not declaring it and leaving to the compiler
#endif
accelerator Grid_simd() = default;
accelerator_inline Grid_simd(const Grid_simd &rhs) : v(rhs.v){}; // compiles in movaps
accelerator_inline Grid_simd(const Grid_simd &&rhs) : v(rhs.v){};
#ifdef ARMCLANGCOMPAT
template <class S = Scalar_type>
accelerator_inline Grid_simd(const Grid_simd<typename std::enable_if<!is_complex<S>::value, S>::type, Vector_type> &rhs) { this->operator=(rhs); }
template <class S = Scalar_type>
accelerator_inline Grid_simd(const Grid_simd<typename std::enable_if<!is_complex<S>::value, S>::type, Vector_type> &&rhs) { this->operator=(rhs); }
template <class S = Scalar_type>
accelerator_inline Grid_simd(const Grid_simd<typename std::enable_if<is_complex<S>::value, S>::type, Vector_type> &rhs) { this->operator=(rhs); }
template <class S = Scalar_type>
accelerator_inline Grid_simd(const Grid_simd<typename std::enable_if<is_complex<S>::value, S>::type, Vector_type> &&rhs) { this->operator=(rhs); }
#else
accelerator_inline Grid_simd(const Grid_simd &rhs) : v(rhs.v){}; // compiles in movaps
accelerator_inline Grid_simd(const Grid_simd &&rhs) : v(rhs.v){};
#endif
accelerator_inline Grid_simd(const Real a) { vsplat(*this, Scalar_type(a)); };
// Enable if complex type
template <typename S = Scalar_type> accelerator_inline
@ -258,12 +394,21 @@ public:
///////////////////////////////////////////////
// FIXME -- alias this to an accelerator_inline MAC struct.
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
friend accelerator_inline void mac(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ a,
const Grid_simd *__restrict__ x) {
*y = fxmac((*a), (*x), (*y));
};
#else
friend accelerator_inline void mac(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ a,
const Grid_simd *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
#endif
friend accelerator_inline void mult(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) {
@ -412,7 +557,7 @@ public:
Grid_simd ret;
Grid_simd::conv_t conv;
Grid_simd::scalar_type s;
conv.v = v.v;
for (int i = 0; i < Nsimd(); i++) {
s = conv.s[i];
@ -441,7 +586,7 @@ public:
return ret;
}
///////////////////////
// Exchange
// Exchange
// Al Ah , Bl Bh -> Al Bl Ah,Bh
///////////////////////
friend accelerator_inline void exchange(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2,int n)
@ -452,20 +597,20 @@ public:
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
} else if(n==1) {
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
} else if(n==0) {
} else if(n==0) {
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
}
friend accelerator_inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
friend accelerator_inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
friend accelerator_inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
friend accelerator_inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
}
friend accelerator_inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
friend accelerator_inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
}
friend accelerator_inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
friend accelerator_inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
}
////////////////////////////////////////////////////////////////////
@ -490,7 +635,7 @@ public:
int dist = perm & 0xF;
y = rotate(b, dist);
return;
}
}
else if(perm==3) permute3(y, b);
else if(perm==2) permute2(y, b);
else if(perm==1) permute1(y, b);
@ -564,29 +709,29 @@ accelerator_inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
return ret;
}
template <class S, class V, IfNotComplex<S> =0>
template <class S, class V, IfNotComplex<S> =0>
accelerator_inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
ret.v = Optimization::Rotate::rotate(b.v,nrot);
}
template <class S, class V, IfComplex<S> =0>
template <class S, class V, IfComplex<S> =0>
accelerator_inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
}
template <class S, class V>
template <class S, class V>
accelerator_inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
vsplat(ret,typepun[lane]);
}
template <class S, class V, IfComplex<S> =0>
}
template <class S, class V, IfComplex<S> =0>
accelerator_inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
ret.v = unary<V>(real(typepun[lane]), VsplatSIMD());
}
}
@ -741,6 +886,27 @@ accelerator_inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V>
return ret;
};
// ---------------- A64FX MAC -------------------
// Distinguish between complex types and others
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> fxmac(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S, V> c) {
Grid_simd<S, V> ret;
ret.v = trinary<V>(a.v, b.v, c.v, MultAddComplexSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> fxmac(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S, V> c) {
Grid_simd<S, V> ret;
ret.v = trinary<V>(a.v, b.v, c.v, MultSIMD());
return ret;
};
#endif
// ----------------------------------------------
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
@ -877,7 +1043,7 @@ accelerator_inline typename toComplexMapper<Rsimd>::Complexified toComplex(const
conv.v = in.v;
for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
assert(conv.s[i + 1] == conv.s[i]);
assert(conv.s[i + 1] == conv.s[i]);
// trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly
// match
@ -919,6 +1085,14 @@ accelerator_inline void precisionChange(vRealD *out,vRealF *in,int nvec)
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
// Bug in gcc 10.0.1 and gcc 10.1 using fixed-size SVE ACLE data types CAS-159553-Y1K4C6
// function call results in compile-time error:
// In function void Grid::precisionChange(Grid::vRealD*, Grid::vRealF*, int):
// .../Grid_vector_types.h:961:56: error:
// cannot bind non-const lvalue reference of type vecd& {aka svfloat64_t&}
// to an rvalue of type vecd {aka svfloat64_t}
// 961 | Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
// | ~~~~~~~^
}
}
accelerator_inline void precisionChange(vRealD *out,vRealH *in,int nvec)

View File

@ -125,14 +125,6 @@ accelerator_inline Grid_simd<S, V> sqrt(const Grid_simd<S, V> &r) {
return SimdApply(SqrtRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd<S, V> rsqrt(const Grid_simd<S, V> &r) {
return SimdApply(RSqrtRealFunctor<S>(), r);
}
template <class Scalar>
accelerator_inline Scalar rsqrt(const Scalar &r) {
return (RSqrtRealFunctor<Scalar>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd<S, V> cos(const Grid_simd<S, V> &r) {
return SimdApply(CosRealFunctor<S>(), r);
}

View File

@ -93,6 +93,11 @@ accelerator_inline ComplexF pow(const ComplexF& r,RealF y){ return(std::pow(r,y)
using std::abs;
using std::pow;
using std::sqrt;
using std::log;
using std::exp;
using std::sin;
using std::cos;
accelerator_inline RealF conjugate(const RealF & r){ return r; }
accelerator_inline RealD conjugate(const RealD & r){ return r; }
@ -143,10 +148,14 @@ accelerator_inline void sub (ComplexF * __restrict__ y,const ComplexF * __restri
accelerator_inline void add (ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) + (*r); }
//conjugate already supported for complex
accelerator_inline ComplexF timesI(const ComplexF &r) { return(r*ComplexF(0.0,1.0));}
accelerator_inline ComplexD timesI(const ComplexD &r) { return(r*ComplexD(0.0,1.0));}
accelerator_inline ComplexF timesMinusI(const ComplexF &r){ return(r*ComplexF(0.0,-1.0));}
accelerator_inline ComplexD timesMinusI(const ComplexD &r){ return(r*ComplexD(0.0,-1.0));}
accelerator_inline ComplexF timesI(const ComplexF &r) { return(ComplexF(-r.imag(),r.real()));}
accelerator_inline ComplexD timesI(const ComplexD &r) { return(ComplexD(-r.imag(),r.real()));}
accelerator_inline ComplexF timesMinusI(const ComplexF &r){ return(ComplexF(r.imag(),-r.real()));}
accelerator_inline ComplexD timesMinusI(const ComplexD &r){ return(ComplexD(r.imag(),-r.real()));}
//accelerator_inline ComplexF timesI(const ComplexF &r) { return(r*ComplexF(0.0,1.0));}
//accelerator_inline ComplexD timesI(const ComplexD &r) { return(r*ComplexD(0.0,1.0));}
//accelerator_inline ComplexF timesMinusI(const ComplexF &r){ return(r*ComplexF(0.0,-1.0));}
//accelerator_inline ComplexD timesMinusI(const ComplexD &r){ return(r*ComplexD(0.0,-1.0));}
// define projections to real and imaginay parts
accelerator_inline ComplexF projReal(const ComplexF &r){return( ComplexF(r.real(), 0.0));}

View File

@ -7,20 +7,20 @@ template<class vobj>
class SimpleCompressor {
public:
void Point(int) {};
accelerator_inline int CommDatumSize(void) { return sizeof(vobj); }
accelerator_inline bool DecompressionStep(void) { return false; }
template<class cobj> accelerator_inline void Compress(cobj *buf,int o,const cobj &in) { buf[o]=in; }
accelerator_inline void Exchange(vobj *mp,vobj *vp0,vobj *vp1,Integer type,Integer o){
accelerator_inline int CommDatumSize(void) const { return sizeof(vobj); }
accelerator_inline bool DecompressionStep(void) const { return false; }
template<class cobj> accelerator_inline void Compress(cobj *buf,int o,const cobj &in) const { buf[o]=in; }
accelerator_inline void Exchange(vobj *mp,vobj *vp0,vobj *vp1,Integer type,Integer o) const {
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
}
accelerator_inline void Decompress(vobj *out,vobj *in, int o){ assert(0); }
accelerator_inline void Decompress(vobj *out,vobj *in, int o) const { assert(0); }
accelerator_inline void CompressExchange(vobj *out0,vobj *out1,const vobj *in,
int j,int k, int m,int type){
int j,int k, int m,int type) const {
exchange(out0[j],out1[j],in[k],in[m],type);
}
// For cshift. Cshift should drop compressor coupling altogether
// because I had to decouple the code from the Stencil anyway
accelerator_inline vobj operator() (const vobj &arg) {
accelerator_inline vobj operator() (const vobj &arg) const {
return arg;
}
};

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Stencil.h
@ -41,13 +41,13 @@
// Stencil based code will exchange haloes and use a table lookup for neighbours.
// This will be done with generality to allow easier efficient implementations.
// Overlap of comms and compute is enabled by tabulating off-node connected,
//
//
// Generic services
// 0) Prebuild neighbour tables
// 1) Compute sizes of all haloes/comms buffers; allocate them.
// 2) Gather all faces, and communicate.
// 3) Loop over result sites, giving nbr index/offnode info for each
//
//
//////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
@ -59,10 +59,10 @@ NAMESPACE_BEGIN(Grid);
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
int off,Vector<std::pair<int,int> > & table);
template<class vobj,class cobj,class compressor>
template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (Vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so) __attribute__((noinline));
template<class vobj,class cobj,class compressor>
template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (Vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)
{
int num=table.size();
@ -94,13 +94,13 @@ void Gather_plane_exchange_table(Vector<std::pair<int,int> >& table,const Lattic
{
assert( (table.size()&0x1)==0);
int num=table.size()/2;
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead);
auto p0=&pointers[0][0];
auto p1=&pointers[1][0];
auto tp=&table[0];
accelerator_forNB(j, num, 1, {
accelerator_forNB(j, num, 1, {
compress.CompressExchange(p0,p1, &rhs_v[0], j,
so+tp[2*j ].second,
so+tp[2*j+1].second,
@ -109,20 +109,20 @@ void Gather_plane_exchange_table(Vector<std::pair<int,int> >& table,const Lattic
rhs_v.ViewClose();
}
struct StencilEntry {
struct StencilEntry {
#ifdef GRID_CUDA
uint64_t _byte_offset; // 8 bytes
uint32_t _offset; // 4 bytes
uint64_t _byte_offset; // 8 bytes
uint32_t _offset; // 4 bytes
#else
uint64_t _byte_offset; // 8 bytes
uint64_t _byte_offset; // 8 bytes
uint64_t _offset; // 8 bytes (8 ever required?)
#endif
uint8_t _is_local; // 1 bytes
uint8_t _is_local; // 1 bytes
uint8_t _permute; // 1 bytes
uint8_t _around_the_world; // 1 bytes
uint8_t _pad; // 1 bytes
};
// Could pack to 8 + 4 + 4 = 128 bit and use
// Could pack to 8 + 4 + 4 = 128 bit and use
template<class vobj,class cobj,class Parameters>
class CartesianStencilAccelerator {
@ -147,20 +147,20 @@ class CartesianStencilAccelerator {
cobj* u_recv_buf_p;
cobj* u_send_buf_p;
accelerator_inline cobj *CommBuf(void) { return u_recv_buf_p; }
accelerator_inline cobj *CommBuf(void) const { return u_recv_buf_p; }
accelerator_inline int GetNodeLocal(int osite,int point) {
accelerator_inline int GetNodeLocal(int osite,int point) const {
return this->_entries_p[point+this->_npoints*osite]._is_local;
}
accelerator_inline StencilEntry * GetEntry(int &ptype,int point,int osite) {
ptype = this->_permute_type[point]; return & this->_entries_p[point+this->_npoints*osite];
accelerator_inline StencilEntry * GetEntry(int &ptype,int point,int osite) const {
ptype = this->_permute_type[point]; return & this->_entries_p[point+this->_npoints*osite];
}
accelerator_inline uint64_t GetInfo(int &ptype,int &local,int &perm,int point,int ent,uint64_t base) {
accelerator_inline uint64_t GetInfo(int &ptype,int &local,int &perm,int point,int ent,uint64_t base) const {
uint64_t cbase = (uint64_t)&u_recv_buf_p[0];
local = this->_entries_p[ent]._is_local;
perm = this->_entries_p[ent]._permute;
if (perm) ptype = this->_permute_type[point];
if (perm) ptype = this->_permute_type[point];
if (local) {
return base + this->_entries_p[ent]._byte_offset;
} else {
@ -168,21 +168,21 @@ class CartesianStencilAccelerator {
}
}
accelerator_inline uint64_t GetPFInfo(int ent,uint64_t base) {
accelerator_inline uint64_t GetPFInfo(int ent,uint64_t base) const {
uint64_t cbase = (uint64_t)&u_recv_buf_p[0];
int local = this->_entries_p[ent]._is_local;
if (local) return base + this->_entries_p[ent]._byte_offset;
else return cbase + this->_entries_p[ent]._byte_offset;
}
accelerator_inline void iCoorFromIindex(Coordinate &coor,int lane)
accelerator_inline void iCoorFromIindex(Coordinate &coor,int lane) const
{
Lexicographic::CoorFromIndex(coor,lane,this->_simd_layout);
}
};
template<class vobj,class cobj,class Parameters>
class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parameters>
class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parameters>
{
private:
int *closed;
@ -192,7 +192,7 @@ class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parame
// default copy constructor
CartesianStencilView (const CartesianStencilView &refer_to_me) = default;
CartesianStencilView (const CartesianStencilAccelerator<vobj,cobj,Parameters> &refer_to_me,ViewMode _mode)
CartesianStencilView (const CartesianStencilAccelerator<vobj,cobj,Parameters> &refer_to_me,ViewMode _mode)
: CartesianStencilAccelerator<vobj,cobj,Parameters>(refer_to_me),
cpu_ptr(this->_entries_p),
mode(_mode)
@ -201,14 +201,14 @@ class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parame
MemoryManager::ViewOpen(this->_entries_p,
this->_npoints*this->_osites*sizeof(StencilEntry),
mode,
AdviseDefault);
AdviseDefault);
}
void ViewClose(void)
{
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
////////////////////////////////////////
@ -245,12 +245,12 @@ public:
cobj * mpi_p;
Integer buffer_size;
};
protected:
GridBase * _grid;
public:
public:
GridBase *Grid(void) const { return _grid; }
////////////////////////////////////////////////////////////////////////
@ -264,12 +264,12 @@ public:
View_type accessor(*( (View_type *) this),mode);
return accessor;
}
int face_table_computed;
std::vector<Vector<std::pair<int,int> > > face_table ;
Vector<int> surface_list;
Vector<StencilEntry> _entries; // Resident in managed memory
stencilVector<StencilEntry> _entries; // Resident in managed memory
std::vector<Packet> Packets;
std::vector<Merge> Mergers;
std::vector<Merge> MergersSHM;
@ -314,7 +314,7 @@ public:
////////////////////////////////////////
// Stencil query
////////////////////////////////////////
inline int SameNode(int point) {
inline int SameNode(int point) {
int dimension = this->_directions[point];
int displacement = this->_distances[point];
@ -338,7 +338,7 @@ public:
// FIXME this logic needs to be sorted for three link term
// assert( (displacement==1) || (displacement==-1));
// Present hack only works for >= 4^4 subvol per node
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
void *shm = (void *) _grid->ShmBufferTranslate(recv_from_rank,this->u_recv_buf_p);
@ -378,7 +378,7 @@ public:
comm_time_thr[mythread] += comm_leave_thr[mythread] - comm_enter_thr[mythread];
}
}
void CollateThreads(void)
{
int nthreads = CartesianCommunicator::nCommThreads;
@ -402,7 +402,7 @@ public:
if ( (t0 > 0.0) && ( t0 < first ) ) first = t0; // min time seen
if ( t1 > last ) last = t1; // max time seen
}
commtime+= last-first;
}
@ -464,30 +464,30 @@ public:
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
}
}
template<class compressor> void HaloExchange(const Lattice<vobj> &source,compressor &compress)
}
template<class compressor> void HaloExchange(const Lattice<vobj> &source,compressor &compress)
{
Prepare();
HaloGather(source,compress);
Communicate();
CommsMergeSHM(compress);
CommsMerge(compress);
CommsMergeSHM(compress);
CommsMerge(compress);
}
template<class compressor> int HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
{
int dimension = this->_directions[point];
int displacement = this->_distances[point];
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
int shift = (displacement+fd)%fd;
assert (source.Checkerboard()== this->_checkerboard);
// the permute type
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
@ -505,7 +505,7 @@ public:
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
is_same_node = is_same_node && tmp;
splicetime+=usecond();
} else {
} else {
nosplicetime-=usecond();
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx);
is_same_node = is_same_node && tmp;
@ -531,7 +531,7 @@ public:
}
return is_same_node;
}
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
@ -542,9 +542,9 @@ public:
// conformable(source.Grid(),_grid);
assert(source.Grid()==_grid);
halogtime-=usecond();
u_comm_offset=0;
// Gather all comms buffers
int face_idx=0;
for(int point = 0 ; point < this->_npoints; point++) {
@ -557,16 +557,16 @@ public:
accelerator_barrier();
halogtime+=usecond();
}
/////////////////////////
// Implementation
/////////////////////////
void Prepare(void)
{
Decompressions.resize(0);
DecompressionsSHM.resize(0);
Mergers.resize(0);
MergersSHM.resize(0);
Decompressions.resize(0);
DecompressionsSHM.resize(0);
Mergers.resize(0);
MergersSHM.resize(0);
Packets.resize(0);
calls++;
}
@ -595,22 +595,22 @@ public:
mv.push_back(m);
}
template<class decompressor> void CommsMerge(decompressor decompress) {
CommsMerge(decompress,Mergers,Decompressions);
CommsMerge(decompress,Mergers,Decompressions);
}
template<class decompressor> void CommsMergeSHM(decompressor decompress) {
mpi3synctime-=usecond();
mpi3synctime-=usecond();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime+=usecond();
shmmergetime-=usecond();
mpi3synctime+=usecond();
shmmergetime-=usecond();
CommsMerge(decompress,MergersSHM,DecompressionsSHM);
shmmergetime+=usecond();
shmmergetime+=usecond();
}
template<class decompressor>
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd) {
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd) {
mergetime-=usecond();
for(int i=0;i<mm.size();i++){
for(int i=0;i<mm.size();i++){
auto mp = &mm[i].mpointer[0];
auto vp0= &mm[i].vpointers[0][0];
auto vp1= &mm[i].vpointers[1][0];
@ -622,7 +622,7 @@ public:
mergetime+=usecond();
decompresstime-=usecond();
for(int i=0;i<dd.size();i++){
for(int i=0;i<dd.size();i++){
auto kp = dd[i].kernel_p;
auto mp = dd[i].mpi_p;
accelerator_forNB(o,dd[i].buffer_size,1,{
@ -638,7 +638,7 @@ public:
for(int i=0;i<_entries.size();i++){
if( _entries[i]._is_local ) {
_entries[i]._byte_offset = _entries[i]._offset*sizeof(vobj);
} else {
} else {
_entries[i]._byte_offset = _entries[i]._offset*sizeof(cobj);
}
}
@ -653,15 +653,15 @@ public:
for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
if(local == 0) {
surface_list.push_back(site);
}
}
@ -672,11 +672,11 @@ public:
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p)
: shm_bytes_thr(npoints),
comm_bytes_thr(npoints),
Parameters p)
: shm_bytes_thr(npoints),
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
comm_leave_thr(npoints),
comm_leave_thr(npoints),
comm_time_thr(npoints)
{
face_table_computed=0;
@ -687,7 +687,7 @@ public:
/////////////////////////////////////
this->_npoints = npoints;
this->_comm_buf_size.resize(npoints),
this->_permute_type.resize(npoints),
this->_permute_type.resize(npoints),
this->_simd_layout = _grid->_simd_layout; // copy simd_layout to give access to Accelerator Kernels
this->_directions = StencilVector(directions);
this->_distances = StencilVector(distances);
@ -697,24 +697,24 @@ public:
surface_list.resize(0);
this->_osites = _grid->oSites();
_entries.resize(this->_npoints* this->_osites);
this->_entries_p = &_entries[0];
for(int ii=0;ii<npoints;ii++){
int i = ii; // reverse direction to get SIMD comms done first
int point = i;
int dimension = directions[i];
int displacement = distances[i];
int shift = displacement;
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
this->_permute_type[point]=_grid->PermuteType(dimension);
this->_checkerboard = checkerboard;
//////////////////////////
// the permute type
//////////////////////////
@ -724,25 +724,25 @@ public:
int rotate_dim = _grid->_simd_layout[dimension]>2;
assert ( (rotate_dim && comm_dim) == false) ; // Do not think spread out is supported
int sshift[2];
//////////////////////////
// Underlying approach. For each local site build
// up a table containing the npoint "neighbours" and whether they
// up a table containing the npoint "neighbours" and whether they
// live in lattice or a comms buffer.
//////////////////////////
if ( !comm_dim ) {
sshift[0] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Local(point,dimension,shift,0x3);
} else {
Local(point,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Local(point,dimension,shift,0x2);// both with block stride loop iteration
}
} else {
} else {
// All permute extract done in comms phase prior to Stencil application
// So tables are the same whether comm_dim or splice_dim
sshift[0] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Even);
@ -784,23 +784,23 @@ public:
int ld = _grid->_ldimensions[dimension];
int gd = _grid->_gdimensions[dimension];
int ly = _grid->_simd_layout[dimension];
// Map to always positive shift modulo global full dimension.
int shift = (shiftpm+fd)%fd;
// the permute type
int permute_dim =_grid->PermuteDim(dimension);
for(int x=0;x<rd;x++){
for(int x=0;x<rd;x++){
// int o = 0;
int bo = x * _grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,cb);
int sx = (x+sshift)%rd;
int wraparound=0;
if ( (shiftpm==-1) && (sx>x) ) {
wraparound = 1;
@ -808,7 +808,7 @@ public:
if ( (shiftpm== 1) && (sx<x) ) {
wraparound = 1;
}
int permute_slice=0;
if(permute_dim){
int wrap = sshift/rd; wrap=wrap % ly; // but it is local anyway
@ -816,66 +816,66 @@ public:
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = (wrap+1)%ly;
}
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
}
}
void Comms (int point,int dimension,int shiftpm,int cbmask)
{
GridBase *grid=_grid;
const int Nsimd = grid->Nsimd();
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(comm_dim==1);
int shift = (shiftpm + fd) %fd;
assert(shift>=0);
assert(shift<fd);
// done in reduced dims, so SIMD factored
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
this->_comm_buf_size[point] = buffer_size; // Size of _one_ plane. Multiple planes may be gathered and
// send to one or more remote nodes.
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
for(int x=0;x<rd;x++){
int permute_type=grid->PermuteType(dimension);
int sx = (x+sshift)%rd;
int offnode = 0;
if ( simd_layout > 1 ) {
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
if ( nbr_proc ) {
if ( nbr_proc ) {
offnode =1;
}
}
} else {
} else {
int comm_proc = ((x+sshift)/rd)%pd;
offnode = (comm_proc!= 0);
}
int wraparound=0;
if ( (shiftpm==-1) && (sx>x) && (grid->_processor_coor[dimension]==0) ) {
wraparound = 1;
@ -884,24 +884,24 @@ public:
wraparound = 1;
}
if (!offnode) {
int permute_slice=0;
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
// int rank = grid->_processor;
// int recv_from_rank;
// int xmit_to_rank;
int unified_buffer_offset = _unified_buffer_size;
_unified_buffer_size += words;
ScatterPlane(point,dimension,x,cbmask,unified_buffer_offset,wraparound); // permute/extract/merge is done in comms phase
}
}
}
@ -909,13 +909,13 @@ public:
void CopyPlane(int point, int dimension,int lplane,int rplane,int cbmask,int permute,int wrap)
{
int rd = _grid->_rdimensions[dimension];
if ( !_grid->CheckerBoarded(dimension) ) {
int o = 0; // relative offset to base within plane
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // offset in buffer
// Simple block stride gather of SIMD objects
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
@ -927,18 +927,18 @@ public:
}
o +=_grid->_slice_stride[dimension];
}
} else {
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // base offset for start of plane
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int ocb=1<<_grid->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) {
int idx = point+(lo+o+b)*this->_npoints;
_entries[idx]._offset =ro+o+b;
@ -946,24 +946,24 @@ public:
_entries[idx]._permute=permute;
_entries[idx]._around_the_world=wrap;
}
}
o +=_grid->_slice_stride[dimension];
}
}
}
// Routine builds up integer table for each site in _offsets, _is_local, _permute
void ScatterPlane (int point,int dimension,int plane,int cbmask,int offset, int wrap)
{
int rd = _grid->_rdimensions[dimension];
if ( !_grid->CheckerBoarded(dimension) ) {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
int bo = 0; // offset in buffer
// Simple block stride gather of SIMD objects
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
@ -975,16 +975,16 @@ public:
}
o +=_grid->_slice_stride[dimension];
}
} else {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
} else {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
int bo = 0; // offset in buffer
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int ocb=1<<_grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
int idx = point+(so+o+b)*this->_npoints;
@ -998,16 +998,16 @@ public:
}
}
}
template<class compressor>
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx)
{
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
assert(rhs.Grid()==_grid);
// conformable(_grid,rhs.Grid());
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int pd = _grid->_processors[dimension];
@ -1019,37 +1019,37 @@ public:
assert(shift<fd);
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
int shm_receive_only = 1;
for(int x=0;x<rd;x++){
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc) {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * compress.CommDatumSize();
int so = sx*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int so = sx*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
if ( !face_table_computed ) {
face_table.resize(face_idx+1);
Gather_plane_table_compute ((GridBase *)_grid,dimension,sx,cbmask,u_comm_offset,face_table[face_idx]);
}
// int rank = _grid->_processor;
int recv_from_rank;
int xmit_to_rank;
_grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
assert (xmit_to_rank != _grid->ThisRank());
assert (recv_from_rank != _grid->ThisRank());
/////////////////////////////////////////////////////////
// try the direct copy if possible
/////////////////////////////////////////////////////////
@ -1062,13 +1062,13 @@ public:
}
send_buf = (cobj *)_grid->ShmBufferTranslate(xmit_to_rank,recv_buf);
if ( send_buf==NULL ) {
if ( send_buf==NULL ) {
send_buf = this->u_send_buf_p;
}
}
// Find out if we get the direct copy.
void *success = (void *) _grid->ShmBufferTranslate(recv_from_rank,this->u_send_buf_p);
if (success==NULL) {
if (success==NULL) {
// we found a packet that comes from MPI and contributes to this leg of stencil
shm_receive_only = 0;
}
@ -1077,9 +1077,9 @@ public:
assert(send_buf!=NULL);
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,u_comm_offset,so); face_idx++;
gathertime+=usecond();
if ( compress.DecompressionStep() ) {
if ( shm_receive_only ) { // Early decompress before MPI is finished is possible
AddDecompress(&this->u_recv_buf_p[u_comm_offset],
&recv_buf[u_comm_offset],
@ -1108,7 +1108,7 @@ public:
}
return shm_receive_only;
}
template<class compressor>
int GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx)
{
@ -1136,7 +1136,7 @@ public:
///////////////////////////////////////////////
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
// int words = sizeof(cobj)/sizeof(vector_type);
assert(cbmask==0x3); // Fixme think there is a latent bug if not true
// This assert will trap it if ever hit. Not hit normally so far
int reduced_buffer_size = buffer_size;
@ -1152,22 +1152,22 @@ public:
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
int shm_receive_only = 1;
for(int x=0;x<rd;x++){
for(int x=0;x<rd;x++){
int any_offnode = ( ((x+sshift)%fd) >= rd );
if ( any_offnode ) {
for(int i=0;i<maxl;i++){
for(int i=0;i<maxl;i++){
spointers[i] = (cobj *) &u_simd_send_buf[i][u_comm_offset];
}
int sx = (x+sshift)%rd;
if ( !face_table_computed ) {
@ -1202,13 +1202,13 @@ public:
int recv_from_rank;
int xmit_to_rank;
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
// shm == receive pointer if offnode
// shm == Translate[send pointer] if on node -- my view of his send pointer
cobj *shm = (cobj *) _grid->ShmBufferTranslate(recv_from_rank,sp);
if (shm==NULL) {
if (shm==NULL) {
shm = rp;
// we found a packet that comes from MPI and contributes to this shift.
// is_same_node is only used in the WilsonStencil, and gets set for this point in the stencil.
@ -1222,15 +1222,15 @@ public:
AddPacket((void *)sp,(void *)rp,xmit_to_rank,recv_from_rank,bytes);
} else {
} else {
rpointers[i] = sp;
}
}
if ( shm_receive_only ) {
if ( shm_receive_only ) {
AddMerge(&this->u_recv_buf_p[u_comm_offset],rpointers,reduced_buffer_size,permute_type,MergersSHM);
} else {
AddMerge(&this->u_recv_buf_p[u_comm_offset],rpointers,reduced_buffer_size,permute_type,Mergers);
@ -1265,9 +1265,9 @@ public:
shm_bytes = 0.;
calls = 0.;
};
void Report(void) {
#define AVERAGE(A)
#define AVERAGE(A)
#define PRINTIT(A) AVERAGE(A); std::cout << GridLogMessage << " Stencil " << #A << " "<< A/calls<<std::endl;
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
@ -1284,7 +1284,7 @@ public:
}
}
if (threaded) commtime += t;
_grid->GlobalSum(commtime); commtime/=NP;
if ( calls > 0. ) {
std::cout << GridLogMessage << " Stencil calls "<<calls<<std::endl;
@ -1307,8 +1307,8 @@ public:
std::cout << GridLogMessage << " Stencil SHM " << (shm_bytes)/gatheralltime/1000.*NP/NN << " GB/s per node"<<std::endl;
auto all_bytes = comms_bytes+shm_bytes;
std::cout << GridLogMessage << " Stencil SHM all" << (all_bytes)/gatheralltime/1000. << " GB/s per rank"<<std::endl;
std::cout << GridLogMessage << " Stencil SHM all" << (all_bytes)/gatheralltime/1000.*NP/NN << " GB/s per node"<<std::endl;
std::cout << GridLogMessage << " Stencil SHM all " << (all_bytes)/gatheralltime/1000. << " GB/s per rank"<<std::endl;
std::cout << GridLogMessage << " Stencil SHM all " << (all_bytes)/gatheralltime/1000.*NP/NN << " GB/s per node"<<std::endl;
auto membytes = (shm_bytes + comms_bytes/2) // read/write
+ (shm_bytes+comms_bytes)/2 * sizeof(vobj)/sizeof(cobj);
@ -1326,7 +1326,7 @@ public:
#undef PRINTIT
#undef AVERAGE
};
};
NAMESPACE_END(Grid);

Some files were not shown because too many files have changed in this diff Show More