1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 22:07:05 +01:00

Compare commits

..

1 Commits

516 changed files with 6640 additions and 32916 deletions

1
.gitignore vendored
View File

@ -88,7 +88,6 @@ Thumbs.db
# build directory #
###################
build*/*
Documentation/_build
# IDE related files #
#####################

61
.travis.yml Normal file
View File

@ -0,0 +1,61 @@
language: cpp
cache:
directories:
- clang
matrix:
include:
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=single
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=double
before_install:
- export GRIDDIR=`pwd`
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi
install:
- export CWD=`pwd`
- echo $CWD
- export CC=$CC$VERSION
- export CXX=$CXX$VERSION
- echo $PATH
- which autoconf
- autoconf --version
- which automake
- automake --version
- which $CC
- $CC --version
- which $CXX
- $CXX --version
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi
script:
- ./bootstrap.sh
- mkdir build
- cd build
- mkdir lime
- cd lime
- mkdir build
- cd build
- wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz
- tar xf lime-1.3.2.tar.gz
- cd lime-1.3.2
- ./configure --prefix=$CWD/build/lime/install
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -37,9 +37,7 @@ directory
#endif
//disables and intel compiler specific warning (in json.hpp)
#ifdef __ICC
#pragma warning disable 488
#endif
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp

View File

@ -47,9 +47,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h>
#include <Grid/log/Log.h>
#include <Grid/allocator/Allocator.h>
#include <Grid/allocator/AlignedAllocator.h>
#include <Grid/simd/Simd.h>
#include <Grid/threads/ThreadReduction.h>
#include <Grid/threads/Threads.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/util/Sha.h>
#include <Grid/communicator/Communicator.h>

View File

@ -6,7 +6,6 @@
///////////////////
#include <cassert>
#include <complex>
#include <memory>
#include <vector>
#include <array>
#include <string>
@ -28,7 +27,4 @@
///////////////////
#include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS
#endif
#endif /* GRID_STD_H */

View File

@ -18,28 +18,21 @@
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")
#undef __CUDA_ARCH__
#undef __NVCC__
#undef __CUDACC__
#undef __CUDA_ARCH__
#define __NVCC__REDEFINE__
#endif
/* SYCL save and restore compile environment*/
#ifdef GRID_SYCL
#ifdef __SYCL_DEVICE_ONLY__
#pragma push
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#undef EIGEN_USE_SYCL
#define EIGEN_DONT_VECTORIZE
//#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif
/* HIP save and restore compile environment*/
#ifdef GRID_HIP
#pragma push
#pragma push_macro("__HIP_DEVICE_COMPILE__")
#endif
#define EIGEN_NO_HIP
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
@ -58,12 +51,6 @@
#pragma pop
#endif
/*HIP restore*/
#ifdef __HIP__REDEFINE__
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -21,8 +21,7 @@ if BUILD_HDF5
extra_headers+=serialisation/Hdf5Type.h
endif
all: version-cache Version.h
all: version-cache
version-cache:
@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
@ -43,7 +42,7 @@ version-cache:
fi;\
rm -f vertmp
Version.h: version-cache
Version.h:
cp version-cache Version.h
.PHONY: version-cache
@ -54,19 +53,6 @@ Version.h: version-cache
include Make.inc
include Eigen.inc
extra_sources+=$(WILS_FERMION_FILES)
extra_sources+=$(STAG_FERMION_FILES)
if BUILD_ZMOBIUS
extra_sources+=$(ZWILS_FERMION_FILES)
endif
if BUILD_GPARITY
extra_sources+=$(GP_FERMION_FILES)
endif
if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a
CCFILES += $(extra_sources)

View File

@ -29,11 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHMS_H
#define GRID_ALGORITHMS_H
NAMESPACE_CHECK(algorithms);
#include <Grid/algorithms/SparseMatrix.h>
#include <Grid/algorithms/LinearOperator.h>
#include <Grid/algorithms/Preconditioner.h>
NAMESPACE_CHECK(SparseMatrix);
#include <Grid/algorithms/approx/Zolotarev.h>
#include <Grid/algorithms/approx/Chebyshev.h>
@ -43,12 +41,10 @@ NAMESPACE_CHECK(SparseMatrix);
#include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
#include <Grid/algorithms/approx/ZMobius.h>
NAMESPACE_CHECK(approx);
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad);
#include <Grid/algorithms/iterative/BiCGSTAB.h>
NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <Grid/algorithms/iterative/NormalEquations.h>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
@ -66,9 +62,7 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/PowerMethod.h>
NAMESPACE_CHECK(PowerMethod);
#include <Grid/algorithms/CoarsenedMatrix.h>
NAMESPACE_CHECK(CoarsendMatrix);
#include <Grid/algorithms/FFT.h>
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,4 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -36,6 +37,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
#endif
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
@ -136,7 +138,7 @@ public:
flops=0;
usec =0;
Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors,*grid);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
@ -182,14 +184,14 @@ public:
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
GridCartesian pencil_g(pencil_gd,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
auto pgbuf_v = pgbuf.View();
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -230,18 +232,15 @@ public:
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
{
autoView(r_v,result,CpuRead);
autoView(p_v,pgbuf,CpuWrite);
thread_for(idx, sgrid->lSites(),{
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,r_v,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
pokeLocalSite(s,p_v,cbuf);
});
}
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
});
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
}
@ -270,19 +269,15 @@ public:
flops+= flops_call*NN;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
autoView(result_v,result,CpuWrite);
thread_for(idx,sgrid->lSites(),{
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf_v,cgbuf);
pokeLocalSite(s,result_v,clbuf);
});
}
peekLocalSite(s,pgbuf,cgbuf);
pokeLocalSite(s,result,clbuf);
});
result = result*div;
// destroying plan

View File

@ -52,7 +52,6 @@ public:
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
virtual ~LinearOperatorBase(){};
};
@ -508,7 +507,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out) {
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
@ -531,16 +530,6 @@ public:
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
assert(in.size() == out.size());
for (unsigned int i = 0; i < in.size(); ++i)
{
(*this)(in[i], out[i]);
}
}
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
@ -586,7 +575,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
@ -600,7 +588,6 @@ public:
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;

View File

@ -30,19 +30,13 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Field> using Preconditioner = LinearFunction<Field> ;
/*
template<class Field> class Preconditioner : public LinearFunction<Field> {
using LinearFunction<Field>::operator();
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
};
*/
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
using Preconditioner<Field>::operator();
virtual void operator()(const Field &src, Field & psi){
void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};

View File

@ -48,7 +48,6 @@ public:
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
virtual ~SparseMatrixBase() {};
};
/////////////////////////////////////////////////////////////////////////////////////////////
@ -73,7 +72,7 @@ public:
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
virtual ~CheckerBoardedSparseMatrixBase() {};
};
NAMESPACE_END(Grid);

View File

@ -122,14 +122,12 @@ class BiCGSTAB : public OperatorFunction<Field>
LinearCombTimer.Start();
bo = beta * omega;
{
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
}
auto p_v = p.View();
auto r_v = r.View();
auto v_v = v.View();
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
LinearCombTimer.Stop();
LinalgTimer.Stop();
@ -144,20 +142,16 @@ class BiCGSTAB : public OperatorFunction<Field>
alpha = rho / Calpha.real();
LinearCombTimer.Start();
{
autoView( p_v , p, AcceleratorRead);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
autoView( psi_v,psi, AcceleratorRead);
autoView( h_v , h, AcceleratorWrite);
autoView( s_v , s, AcceleratorWrite);
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
}
auto h_v = h.View();
auto psi_v = psi.View();
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
auto s_v = s.View();
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
LinearCombTimer.Stop();
LinalgTimer.Stop();
@ -172,19 +166,13 @@ class BiCGSTAB : public OperatorFunction<Field>
omega = Comega.real() / norm2(t);
LinearCombTimer.Start();
{
autoView( psi_v,psi, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
autoView( h_v , h, AcceleratorRead);
autoView( s_v , s, AcceleratorRead);
autoView( t_v , t, AcceleratorRead);
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
}
auto t_v = t.View();
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
LinearCombTimer.Stop();
cp = norm2(r);
LinalgTimer.Stop();

View File

@ -36,8 +36,7 @@ NAMESPACE_BEGIN(Grid);
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
using LinearFunction<FieldD>::operator();
public:
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;

View File

@ -140,15 +140,13 @@ public:
b = cp / c;
LinearCombTimer.Start();
{
autoView( psi_v , psi, AcceleratorWrite);
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
}
auto psi_v = psi.View();
auto p_v = p.View();
auto r_v = r.View();
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
LinearCombTimer.Stop();
LinalgTimer.Stop();

View File

@ -35,8 +35,7 @@ NAMESPACE_BEGIN(Grid);
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
using LinearFunction<FieldD>::operator();
public:
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;

View File

@ -33,19 +33,16 @@ namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { };
};
template<class Field>
class SourceGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = src; };
};
@ -57,24 +54,15 @@ class DeflatedGuesser: public LinearFunction<Field> {
private:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
const unsigned int N;
public:
using LinearFunction<Field>::operator();
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
: DeflatedGuesser(_evec, _eval, _evec.size())
{}
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
: evec(_evec), eval(_eval), N(_N)
{
assert(evec.size()==eval.size());
assert(N <= evec.size());
}
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
virtual void operator()(const Field &src,Field &guess) {
guess = Zero();
assert(evec.size()==eval.size());
auto N = evec.size();
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
@ -91,7 +79,6 @@ private:
const std::vector<RealD> &eval_coarse;
public:
using LinearFunction<FineField>::operator();
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
const std::vector<CoarseField> &_evec_coarse,
const std::vector<RealD> &_eval_coarse)

View File

@ -67,7 +67,6 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@ -98,7 +97,6 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field

View File

@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;

View File

@ -1,242 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_NON_HERM_H
#define GRID_PREC_GCR_NON_HERM_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.Op(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b;
// ComplexD zAz;
RealD zAAz;
ComplexD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
LinalgTimer.Start();
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= innerProduct(q[peri_k],r); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -132,31 +132,6 @@ namespace Grid {
(*this)(_Matrix,in,out,guess);
}
void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
Field tmp(grid);
int nblock = in.size();
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
}
// James can write his own deflated guesser
// with optimised code for the inner products
// RedBlackSolveSplitGrid();
// RedBlackSolve(_Matrix,src_o,sol_o);
void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
{
GridBase *grid = _Matrix.RedBlackGrid();
Field tmp(grid);
int nblock = in.size();
for(int b=0;b<nblock;b++) {
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
}
}
template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{
@ -175,29 +150,24 @@ namespace Grid {
////////////////////////////////////////////////
// Prepare RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_o);
// for(int b=0;b<nblock;b++){
// RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
// }
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
////////////////////////////////////////////////
// Make the guesses
////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid);
if(useSolnAsInitGuess) {
for(int b=0;b<nblock;b++){
for(int b=0;b<nblock;b++){
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o[b], out[b]);
} else {
guess(src_o[b],sol_o[b]);
}
} else {
guess(src_o, sol_o);
}
if ( subGuess ) {
for(int b=0;b<nblock;b++){
guess_save[b] = sol_o[b];
}
if ( subGuess ) {
guess_save[b] = sol_o[b];
}
}
//////////////////////////////////////////////////////////////
// Call the block solver

View File

@ -0,0 +1,154 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
int PointerCache::NcacheSmall = PointerCache::NcacheSmallMax;
#ifdef GRID_CUDA
int PointerCache::Ncache = 32;
#else
int PointerCache::Ncache = 8;
#endif
int PointerCache::Victim;
int PointerCache::VictimSmall;
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::NcacheMax];
PointerCache::PointerCacheEntry PointerCache::EntriesSmall[PointerCache::NcacheSmallMax];
void PointerCache::Init(void)
{
char * str;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) Ncache = atoi(str);
if ( (Ncache<0) || (Ncache > NcacheMax)) Ncache = NcacheMax;
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) NcacheSmall = atoi(str);
if ( (NcacheSmall<0) || (NcacheSmall > NcacheSmallMax)) NcacheSmall = NcacheSmallMax;
// printf("Aligned alloocator cache: large %d/%d small %d/%d\n",Ncache,NcacheMax,NcacheSmall,NcacheSmallMax);
}
void *PointerCache::Insert(void *ptr,size_t bytes)
{
if (bytes < GRID_ALLOC_SMALL_LIMIT )
return Insert(ptr,bytes,EntriesSmall,NcacheSmall,VictimSmall);
return Insert(ptr,bytes,Entries,Ncache,Victim);
}
void *PointerCache::Insert(void *ptr,size_t bytes,PointerCacheEntry *entries,int ncache,int &victim)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
return ret;
}
void *PointerCache::Lookup(size_t bytes)
{
if (bytes < GRID_ALLOC_SMALL_LIMIT )
return Lookup(bytes,EntriesSmall,NcacheSmall);
return Lookup(bytes,Entries,Ncache);
}
void *PointerCache::Lookup(size_t bytes,PointerCacheEntry *entries,int ncache)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
return entries[e].address;
}
}
return NULL;
}
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -26,10 +26,129 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef GRID_ALIGNED_ALLOCATOR_H
#define GRID_ALIGNED_ALLOCATOR_H
#ifdef HAVE_MALLOC_MALLOC_H
#include <malloc/malloc.h>
#endif
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#ifdef HAVE_MM_MALLOC_H
#include <mm_malloc.h>
#endif
#define POINTER_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096)
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
class PointerCache {
private:
/*Pinning pages is costly*/
/*Could maintain separate large and small allocation caches*/
/* Could make these configurable, perhaps up to a max size*/
static const int NcacheSmallMax=128;
static const int NcacheMax=16;
static int NcacheSmall;
static int Ncache;
typedef struct {
void *address;
size_t bytes;
int valid;
} PointerCacheEntry;
static PointerCacheEntry Entries[NcacheMax];
static int Victim;
static PointerCacheEntry EntriesSmall[NcacheSmallMax];
static int VictimSmall;
public:
static void Init(void);
static void *Insert(void *ptr,size_t bytes) ;
static void *Insert(void *ptr,size_t bytes,PointerCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes) ;
static void *Lookup(size_t bytes,PointerCacheEntry *entries,int ncache) ;
};
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#ifdef GRID_NVCC
#define profilerCudaMeminfo \
{ size_t f, t ; cudaMemGetInfo ( &f,&t); std::cout << GridLogDebug << "[Memory debug] Cuda free "<<f<<"/"<<t << std::endl;}
#else
#define profilerCudaMeminfo
#endif
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
} \
profilerCudaMeminfo;
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
////////////////////////////////////////////////////////////////////
// A lattice of something, but assume the something is SIMDized.
////////////////////////////////////////////////////////////////////
template<typename _Tp>
class alignedAllocator {
public:
@ -53,131 +172,89 @@ public:
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
#ifdef POINTER_CACHE
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
#else
pointer ptr = nullptr;
#endif
#ifdef GRID_NVCC
////////////////////////////////////
// Unified (managed) memory
////////////////////////////////////
if ( ptr == (_Tp *) NULL ) {
// printf(" alignedAllocater cache miss %ld bytes ",bytes); BACKTRACEFP(stdout);
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (_Tp *) NULL;
std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
assert(0);
}
}
assert( ptr != (_Tp *)NULL);
#else
//////////////////////////////////////////////////////////////////////////////////////////
// 2MB align; could make option probably doesn't need configurability
//////////////////////////////////////////////////////////////////////////////////////////
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
#endif
assert( ptr != (_Tp *)NULL);
//////////////////////////////////////////////////
// First touch optimise in threaded loop
//////////////////////////////////////////////////
uint64_t *cp = (uint64_t *)ptr;
thread_for(n,bytes/sizeof(uint64_t), { // need only one touch per page
cp[n]=0;
});
#endif
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::CpuFree((void *)__p,bytes);
#ifdef POINTER_CACHE
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
#else
pointer __freeme = __p;
#endif
#ifdef GRID_NVCC
if ( __freeme ) cudaFree((void *)__freeme);
#else
#ifdef HAVE_MM_MALLOC_H
if ( __freeme ) _mm_free((void *)__freeme);
#else
if ( __freeme ) free((void *)__freeme);
#endif
#endif
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
// FIXME: hack for the copy constructor, eventually it must be avoided
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
//void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////
// Unified virtual memory
//////////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class uvmAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef uvmAllocator<_Tp1> other; };
uvmAllocator() throw() { }
uvmAllocator(const uvmAllocator&) throw() { }
template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
~uvmAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::SharedFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Device memory
////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class devAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
devAllocator() throw() { }
devAllocator(const devAllocator&) throw() { }
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
~devAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::AcceleratorFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
#ifdef ACCELERATOR_CSHIFT
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
template<class T> using commAllocator = alignedAllocator<T>;
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,alignedAllocator<T> >;
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +0,0 @@
#pragma once
#include <Grid/allocator/MemoryStats.h>
#include <Grid/allocator/MemoryManager.h>
#include <Grid/allocator/AlignedAllocator.h>

View File

@ -1,300 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
/*Allocation types, saying which pointer cache should be used*/
#define Cpu (0)
#define CpuSmall (1)
#define Acc (2)
#define AccSmall (3)
#define Shared (4)
#define SharedSmall (5)
#undef GRID_MM_VERBOSE
uint64_t total_shared;
uint64_t total_device;
uint64_t total_host;;
void MemoryManager::PrintBytes(void)
{
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
std::cout << " MemoryManager : PrintBytes "<<std::endl;
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared Mbytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_host>>20) <<" cpu Mbytes "<<std::endl;
uint64_t cacheBytes;
cacheBytes = CacheBytes[Cpu];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
cacheBytes = CacheBytes[Acc];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
cacheBytes = CacheBytes[Shared];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
#ifdef GRID_CUDA
cuda_mem();
#endif
}
//////////////////////////////////////////////////////////////////////
// Data tables for recently freed pooiniter caches
//////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 8, 2, 8, 2, 8 };
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
//////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils
//////////////////////////////////////////////////////////////////////
void *MemoryManager::AcceleratorAllocate(size_t bytes)
{
total_device+=bytes;
void *ptr = (void *) Lookup(bytes,Acc);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocDevice(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"AcceleratorAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
{
total_device-=bytes;
void *__freeme = Insert(ptr,bytes,Acc);
if ( __freeme ) {
acceleratorFreeDevice(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"AcceleratorFree "<<std::endl;
PrintBytes();
#endif
}
void *MemoryManager::SharedAllocate(size_t bytes)
{
total_shared+=bytes;
void *ptr = (void *) Lookup(bytes,Shared);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"SharedAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::SharedFree (void *ptr,size_t bytes)
{
total_shared-=bytes;
void *__freeme = Insert(ptr,bytes,Shared);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"SharedFree "<<std::endl;
PrintBytes();
#endif
}
#ifdef GRID_UVM
void *MemoryManager::CpuAllocate(size_t bytes)
{
total_host+=bytes;
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
total_host-=bytes;
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuFree "<<std::endl;
PrintBytes();
#endif
}
#else
void *MemoryManager::CpuAllocate(size_t bytes)
{
total_host+=bytes;
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocCpu(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
total_host-=bytes;
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeCpu(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuFree "<<std::endl;
PrintBytes();
#endif
}
#endif
//////////////////////////////////////////
// call only once
//////////////////////////////////////////
void MemoryManager::Init(void)
{
char * str;
int Nc;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[Cpu]=Nc;
Ncache[Acc]=Nc;
Ncache[Shared]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuSmall]=Nc;
Ncache[AccSmall]=Nc;
Ncache[SharedSmall]=Nc;
}
}
}
void MemoryManager::InitMessage(void) {
#ifndef GRID_UVM
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
#endif
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
#endif
#ifdef GRID_UVM
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
#endif
#else
std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type + small;
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
#else
return ptr;
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
cacheBytes -= entries[v].bytes;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
cacheBytes += bytes;
return ret;
}
void *MemoryManager::Lookup(size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type+small;
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
#else
return NULL;
#endif
}
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
cacheBytes -= entries[e].bytes;
return entries[e].address;
}
}
return NULL;
}
NAMESPACE_END(Grid);

View File

@ -1,182 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryManager.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <list>
#include <unordered_map>
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define GRID_ALLOC_SMALL_LIMIT (4096)
/*Pinning pages is costly*/
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum ViewAdvise {
AdviseDefault = 0x0, // Regular data
AdviseInfrequentUse = 0x1 // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
// AdviseTransient = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
// AdviseAcceleratorWriteDiscard = 0x4 // Field will be written in entirety on device
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
AcceleratorRead = 0x01,
AcceleratorWrite = 0x02,
AcceleratorWriteDiscard = 0x04,
CpuRead = 0x08,
CpuWrite = 0x10,
CpuWriteDiscard = 0x10 // same for now
};
class MemoryManager {
private:
////////////////////////////////////////////////////////////
// For caching recently freed allocations
////////////////////////////////////////////////////////////
typedef struct {
void *address;
size_t bytes;
int valid;
} AllocationCacheEntry;
static const int NallocCacheMax=128;
static const int NallocType=6;
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
static int Victim[NallocType];
static int Ncache[NallocType];
static uint64_t CacheBytes[NallocType];
/////////////////////////////////////////////////
// Free pool
/////////////////////////////////////////////////
static void *Insert(void *ptr,size_t bytes,int type) ;
static void *Lookup(size_t bytes,int type) ;
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
static void PrintBytes(void);
public:
static void Init(void);
static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes);
static void CpuFree (void *ptr,size_t bytes);
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
static uint64_t DeviceBytes;
static uint64_t DeviceLRUBytes;
static uint64_t DeviceMaxBytes;
static uint64_t HostToDeviceBytes;
static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer;
private:
#ifndef GRID_UVM
//////////////////////////////////////////////////////////////////////
// Data tables for ViewCache
//////////////////////////////////////////////////////////////////////
typedef std::list<uint64_t> LRU_t;
typedef typename LRU_t::iterator LRUiterator;
typedef struct {
int LRU_valid;
LRUiterator LRU_entry;
uint64_t CpuPtr;
uint64_t AccPtr;
size_t bytes;
uint32_t transient;
uint32_t state;
uint32_t accLock;
uint32_t cpuLock;
} AcceleratorViewEntry;
typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
typedef typename AccViewTable_t::iterator AccViewTableIterator ;
static AccViewTable_t AccViewTable;
static LRU_t LRU;
/////////////////////////////////////////////////
// Device motion
/////////////////////////////////////////////////
static void Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EvictVictims(uint64_t bytes); // Frees up <bytes>
static void Evict(AcceleratorViewEntry &AccCache);
static void Flush(AcceleratorViewEntry &AccCache);
static void Clone(AcceleratorViewEntry &AccCache);
static void AccDiscard(AcceleratorViewEntry &AccCache);
static void CpuDiscard(AcceleratorViewEntry &AccCache);
// static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table
static int EntryPresent(uint64_t CpuPtr);
static void EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EntryErase (uint64_t CpuPtr);
static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
static void EntrySet (uint64_t CpuPtr,AcceleratorViewEntry &entry);
static void AcceleratorViewClose(uint64_t AccPtr);
static uint64_t AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
static void NotifyDeletion(void * CpuPtr);
public:
static void Print(void);
static void PrintState( void* CpuPtr);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
};
NAMESPACE_END(Grid);

View File

@ -1,505 +0,0 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
//#define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
#define dprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
MemoryManager::LRU_t MemoryManager::LRU;
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
////////////////////////////////////
// Priority ordering for unlocked entries
// Empty
// CpuDirty
// Consistent
// AccDirty
////////////////////////////////////
#define Empty (0x0) /*Entry unoccupied */
#define CpuDirty (0x1) /*CPU copy is golden, Acc buffer MAY not be allocated*/
#define Consistent (0x2) /*ACC copy AND CPU copy are valid */
#define AccDirty (0x4) /*ACC copy is golden */
#define EvictNext (0x8) /*Priority for eviction*/
/////////////////////////////////////////////////
// Mechanics of data table maintenance
/////////////////////////////////////////////////
int MemoryManager::EntryPresent(uint64_t CpuPtr)
{
if(AccViewTable.empty()) return 0;
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
return count;
}
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
assert(!EntryPresent(CpuPtr));
AcceleratorViewEntry AccCache;
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty;
AccCache.LRU_valid=0;
AccCache.transient=0;
AccCache.accLock=0;
AccCache.cpuLock=0;
AccViewTable[CpuPtr] = AccCache;
}
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
{
assert(EntryPresent(CpuPtr));
auto AccCacheIterator = AccViewTable.find(CpuPtr);
assert(AccCacheIterator!=AccViewTable.end());
return AccCacheIterator;
}
void MemoryManager::EntryErase(uint64_t CpuPtr)
{
auto AccCache = EntryLookup(CpuPtr);
AccViewTable.erase(CpuPtr);
}
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
if (AccCache.transient) {
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
} else {
LRU.push_front(AccCache.CpuPtr);
AccCache.LRU_entry = LRU.begin();
}
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
LRU.erase(AccCache.LRU_entry);
AccCache.LRU_valid = 0;
DeviceLRUBytes-=AccCache.bytes;
}
/////////////////////////////////////////////////
// Accelerator cache motion & consistency logic
/////////////////////////////////////////////////
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////
// Remove from Accelerator, remove entry, without flush
// Cannot be locked. If allocated Must be in LRU pool.
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove entry
// Cannot be locked. If allocated must be in LRU pool.
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
Flush(AccCache);
}
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==AccDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
}
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==CpuDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
AccCache.state=Consistent;
}
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state!=Empty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
AccCache.state=AccDirty;
}
/////////////////////////////////////////////////////////////////////////////////
// View management
/////////////////////////////////////////////////////////////////////////////////
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
} else {
assert(0);
}
}
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
} else {
assert(0);
return NULL;
}
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
assert(LRU.size()>0);
uint64_t victim = LRU.back();
auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second;
Evict(AccCache);
}
}
}
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
(uint64_t)bytes);
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
/*
* State transitions and actions
*
* Action State StateNext Flush Clone
*
* AccRead Empty Consistent - Y
* AccWrite Empty AccDirty - Y
* AccRead CpuDirty Consistent - Y
* AccWrite CpuDirty AccDirty - Y
* AccRead Consistent Consistent - -
* AccWrite Consistent AccDirty - -
* AccRead AccDirty AccDirty - -
* AccWrite AccDirty AccDirty - -
*/
if(AccCache.state==Empty) {
assert(AccCache.LRU_valid==0);
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Cpu starts primary
if(mode==AcceleratorWriteDiscard){
CpuDiscard(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite){
Clone(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite) {
Clone(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else {
assert(0);
}
// If view is opened on device remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
LRUremove(AccCache);
}
int transient =hint;
AccCache.transient= transient? EvictNext : 0;
return AccCache.AccPtr;
}
////////////////////////////////////
// look up & decrement lock count
////////////////////////////////////
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock==0);
assert(AccCache.accLock>0);
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
LRUinsert(AccCache);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock>0);
assert(AccCache.accLock==0);
AccCache.cpuLock--;
}
/*
* Action State StateNext Flush Clone
*
* CpuRead Empty CpuDirty - -
* CpuWrite Empty CpuDirty - -
* CpuRead CpuDirty CpuDirty - -
* CpuWrite CpuDirty CpuDirty - -
* CpuRead Consistent Consistent - -
* CpuWrite Consistent CpuDirty - -
* CpuRead AccDirty Consistent Y -
* CpuWrite AccDirty CpuDirty Y -
*/
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes==bytes);
}
if(AccCache.state==Empty) {
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
AccCache.accLock= 0;
AccCache.cpuLock= 1;
} else if(AccCache.state==CpuDirty ){
// AccPtr dont care, deferred allocate
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
AccCache.cpuLock++;
} else if(AccCache.state==Consistent) {
assert(AccCache.AccPtr != (uint64_t)NULL);
if(mode==CpuWrite)
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
else
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
AccCache.cpuLock++;
} else if(AccCache.state==AccDirty) {
assert(AccCache.AccPtr != (uint64_t)NULL);
Flush(AccCache);
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
AccCache.cpuLock++;
} else {
assert(0); // should be unreachable
}
AccCache.transient= transient? EvictNext : 0;
return AccCache.CpuPtr;
}
void MemoryManager::NotifyDeletion(void *_ptr)
{
// Look up in ViewCache
uint64_t ptr = (uint64_t)_ptr;
if(EntryPresent(ptr)) {
auto e = EntryLookup(ptr);
AccDiscard(e->second);
}
}
void MemoryManager::Print(void)
{
PrintBytes();
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "Memory Manager " << std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
}
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
};
int MemoryManager::isOpen (void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
return AccCache.cpuLock+AccCache.accLock;
} else {
return 0;
}
}
void MemoryManager::PrintState(void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
} else {
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,27 +0,0 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping
/////////////////////////////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::PrintState(void* CpuPtr)
{
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
};
void MemoryManager::Print(void){};
void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid);
#endif

View File

@ -1,67 +0,0 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -1,95 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryStats.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
}
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
NAMESPACE_END(Grid);

View File

@ -81,7 +81,6 @@ public:
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
public:

View File

@ -38,7 +38,6 @@ class GridCartesian: public GridBase {
public:
int dummy;
Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
@ -105,7 +104,6 @@ public:
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
@ -116,8 +114,6 @@ public:
for (int d = 0; d < _ndimension; d++)
{
_checker_dim_mask[d]=0;
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];

View File

@ -35,28 +35,12 @@ static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk)
{
int nd=rdim.size();
Coordinate coor(nd);
Lexicographic::CoorFromIndex(coor,oindex,rdim);
int linear=0;
for(int d=0;d<nd;d++){
if(chk_dim_msk[d])
linear=linear+coor[d];
}
return (linear&0x1);
}
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
// Coordinate _checker_dim_mask;
Coordinate _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;

View File

@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
bool Stencil_force_mpi = true;
///////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////

View File

@ -1,3 +1,4 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -35,8 +36,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
class CartesianCommunicator : public SharedMemory {
public:
@ -109,8 +108,6 @@ public:
////////////////////////////////////////////////////////////
// Reduction
////////////////////////////////////////////////////////////
void GlobalMax(RealD &);
void GlobalMax(RealF &);
void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &);
@ -141,6 +138,21 @@ public:
int recv_from_rank,
int bytes);
void SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
@ -35,7 +35,7 @@ Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
// First initialise of comms system
////////////////////////////////////////////
void CartesianCommunicator::Init(int *argc, char ***argv)
void CartesianCommunicator::Init(int *argc, char ***argv)
{
int flag;
@ -43,16 +43,8 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
#ifndef GRID_COMMS_THREADS
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
// other comms schemes are ok
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
#else
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0);
@ -99,7 +91,7 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialises from communicator_world
////////////////////////////////////////////////////////////////////////////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
MPI_Comm optimal_comm;
////////////////////////////////////////////////////
@ -118,7 +110,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
@ -135,7 +127,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
//////////////////////////////////////////////////////////////////////////////////////////////////////
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
// int Nparent = parent._processors ;
// int Nparent = parent._processors ;
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
@ -157,13 +149,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
int crank;
int crank;
// Mpi uses the reverse Lexico convention to us; so reversed routines called
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
MPI_Comm comm_split;
if ( Nchild > 1 ) {
if ( Nchild > 1 ) {
////////////////////////////////////////////////////////////////
// Split the communicator
@ -188,11 +180,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
SetCommunicator(comm_split);
///////////////////////////////////////////////
// Free the temp communicator
// Free the temp communicator
///////////////////////////////////////////////
MPI_Comm_free(&comm_split);
if(0){
if(0){
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
for(int d=0;d<processors.size();d++){
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
@ -253,7 +245,7 @@ CartesianCommunicator::~CartesianCommunicator()
for(int i=0;i<communicator_halo.size();i++){
MPI_Comm_free(&communicator_halo[i]);
}
}
}
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
@ -275,16 +267,6 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(float &f)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
@ -312,28 +294,60 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
int myrank = _processor;
int ierr;
// Enforce no UVM in comms, device or host OK
assert(acceleratorIsCommunicable(xmit));
assert(acceleratorIsCommunicable(recv));
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
// Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest,
void *recv,
@ -353,7 +367,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int from,
int bytes,int dir)
{
int ncomm =communicator_halo.size();
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
@ -368,41 +382,37 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
} else {
// TODO : make a OMP loop on CPU, call threaded bcopy
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
// std::cout << "Copy Synchronised\n"<<std::endl;
acceleratorCopySynchronise();
int nreq=list.size();
if (nreq==0) return;
@ -412,13 +422,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
assert(ierr==0);
list.resize(0);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
//{
//}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
@ -433,8 +436,8 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
communicator);
assert(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
@ -467,7 +470,7 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
// (Turns up on 32^3 x 64 Gparity too)
MPI_Datatype object;
int iwords;
int iwords;
int ibytes;
iwords = words;
ibytes = bytes;
@ -480,3 +483,5 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
}
NAMESPACE_END(Grid);

View File

@ -67,8 +67,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalMax(float &){}
void CartesianCommunicator::GlobalMax(double &){}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}
@ -79,6 +77,15 @@ void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes)
{
assert(0);
}
// Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit,
@ -89,6 +96,20 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
@ -116,6 +137,10 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int recv_from_rank,
int bytes, int dir)
{
std::vector<CommsRequest_t> list;
// Discard the "dir"
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
SendToRecvFromComplete(list);
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
@ -125,10 +150,13 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int recv_from_rank,
int bytes, int dir)
{
// Discard the "dir"
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void){};

View File

@ -102,7 +102,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};

View File

@ -7,7 +7,6 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,14 +29,8 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <Grid/GridCore.h>
#include <pwd.h>
#ifdef GRID_CUDA
#ifdef GRID_NVCC
#include <cuda_runtime_api.h>
#endif
#ifdef GRID_HIP
#include <hip/hip_runtime_api.h>
#endif
#ifdef GRID_SYCl
#endif
NAMESPACE_BEGIN(Grid);
@ -54,12 +47,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
#else
MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm);
#endif
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
@ -73,7 +61,6 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
WorldNodes = WorldSize/WorldShmSize;
assert( (WorldNodes * WorldShmSize) == WorldSize );
// FIXME: Check all WorldShmSize are the same ?
/////////////////////////////////////////////////////////////////////
@ -174,23 +161,6 @@ static inline int divides(int a,int b)
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Allow user to configure through environment variable
////////////////////////////////////////////////////////////////
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
return;
}
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
@ -200,24 +170,17 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
for(int p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
@ -450,47 +413,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
//if defined(GRID_SYCL)
#if 0
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
SharedMemoryZero(ShmCommBuf,bytes);
assert(WorldShmSize == 1);
for(int r=0;r<WorldShmSize;r++){
WorldShmCommBufs[r] = ShmCommBuf;
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
#ifdef GRID_NVCC
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -510,73 +433,47 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
#ifdef GRID_IBM_SUMMIT
// IBM Jsrun makes cuda Device numbering screwy and not match rank
std::cout << "IBM Summit or similar - NOT setting device to WorldShmRank"<<std::endl;
#else
std::cout << "setting device to WorldShmRank"<<std::endl;
cudaSetDevice(WorldShmRank);
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
auto err = cudaMalloc(&ShmCommBuf, bytes);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
std::cout<< "Setting up IPC"<<std::endl;
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
for(int r=0;r<WorldShmSize;r++){
#ifndef GRID_MPI3_SHM_NONE
//////////////////////////////////////////////////
// If it is me, pass around the IPC access key
//////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
if(!Stencil_force_mpi) {
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle;
clone_mem_t handle;
if ( r==WorldShmRank ) {
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
if ( err != ZE_RESULT_SUCCESS ) {
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
exit(EXIT_FAILURE);
} else {
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
}
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
handle.pid = getpid();
}
#endif
#ifdef GRID_CUDA
cudaIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
hipIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = hipIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
//////////////////////////////////////////////////
// Share this IPC handle across the Shm Comm
//////////////////////////////////////////////////
@ -592,68 +489,23 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
///////////////////////////////////////////////////////////////
// If I am not the source, overwrite thisBuf with remote buffer
///////////////////////////////////////////////////////////////
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
if ( r!=WorldShmRank ) {
thisBuf = nullptr;
std::cout<<"mapping seeking remote pid/fd "
<<handle.pid<<"/"
<<handle.fd<<std::endl;
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
int myfd = syscall(438,pidfd,handle.fd,0);
std::cout<<"Using IpcHandle myfd "<<myfd<<"\n";
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
if ( err != ZE_RESULT_SUCCESS ) {
std::cout << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
exit(EXIT_FAILURE);
} else {
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
}
assert(thisBuf!=nullptr);
}
#endif
#ifdef GRID_CUDA
void * thisBuf = ShmCommBuf;
if ( r!=WorldShmRank ) {
auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
if ( r!=WorldShmRank ) {
auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
///////////////////////////////////////////////////////////////
// Save a copy of the device buffers
///////////////////////////////////////////////////////////////
}
WorldShmCommBufs[r] = thisBuf;
#else
WorldShmCommBufs[r] = ShmCommBuf;
#endif
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#endif
#else
#ifdef GRID_MPI3_SHMMMAP
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
@ -781,6 +633,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
if ( ptr == (void * )MAP_FAILED ) {
perror("failed mmap");
assert(0);
@ -824,16 +677,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
/////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorMemSet(dest,0,bytes);
#ifdef GRID_NVCC
cudaMemset(dest,0,bytes);
#else
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorCopyToDevice(src,dest,bytes);
#ifdef GRID_NVCC
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
#else
bcopy(src,dest,bytes);
#endif
@ -852,11 +705,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
#else
MPI_Comm_split(comm, rank, 0, &ShmComm);
#endif
MPI_Comm_rank(ShmComm ,&ShmRank);
MPI_Comm_size(ShmComm ,&ShmSize);
ShmCommBufs.resize(ShmSize);
@ -886,18 +735,25 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
#ifdef GRID_SHM_FORCE_MPI
// Hide the shared memory path between ranks
{
#ifdef GRID_IBM_SUMMIT
// Hide the shared memory path between sockets
// if even number of nodes
if ( (ShmSize & 0x1)==0 ) {
int SocketSize = ShmSize/2;
int mySocket = ShmRank/SocketSize;
for(int r=0;r<size;r++){
if ( r!=rank ) {
ShmRanks[r] = MPI_UNDEFINED;
int hisRank=ShmRanks[r];
if ( hisRank!= MPI_UNDEFINED ) {
int hisSocket=hisRank/SocketSize;
if ( hisSocket != mySocket ) {
ShmRanks[r] = MPI_UNDEFINED;
}
}
}
}
#endif
//SharedMemoryTest();
SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier

View File

@ -29,7 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryNone: "
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
@ -56,38 +55,6 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended, use anonymous mmap
////////////////////////////////////////////////////////////////////////////////////////////
#if 1
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -116,15 +83,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes;
_ShmAlloc=1;
};
#endif
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality

View File

@ -52,8 +52,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
template<typename Op, typename T1>
auto Cshift(const LatticeUnaryExpression<Op,T1> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2>
auto Cshift(const LatticeBinaryExpression<Op,T1,T2> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
return Cshift(closure(expr),dim,shift);
}
template <class Op, class T1, class T2, class T3>
auto Cshift(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr,int dim,int shift)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
{
return Cshift(closure(expr),dim,shift);
}

View File

@ -29,13 +29,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
extern Vector<std::pair<int,int> > Cshift_table;
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -48,16 +46,16 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
int e2=rhs.Grid()->_slice_block[dimension];
int ent = 0;
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
static Vector<std::pair<int,int> > table; table.resize(e1*e2);
int stride=rhs.Grid()->_slice_stride[dimension];
auto rhs_v = rhs.View();
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
}
}
} else {
@ -67,26 +65,14 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
int o = n*stride;
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb &cbmask ) {
Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
}
}
}
}
{
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
}
thread_for(i,ent,{
buffer[table[i].first]=rhs_v[table[i].second];
});
}
///////////////////////////////////////////////////////////////////
@ -109,80 +95,43 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int e2=rhs.Grid()->_slice_block[dimension];
int n1=rhs.Grid()->_slice_stride[dimension];
auto rhs_v = rhs.View();
if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
}
});
} else {
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
Coordinate coor;
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << " Dense packed buffer WARNING " <<std::endl;
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
}
});
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -196,8 +145,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
int e2=rhs.Grid()->_slice_block[dimension];
int stride=rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent =0;
if ( cbmask ==0x3 ) {
@ -206,7 +154,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
for(int b=0;b<e2;b++){
int o =n*rhs.Grid()->_slice_stride[dimension];
int bo =n*rhs.Grid()->_slice_block[dimension];
Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b);
table[ent++] = std::pair<int,int>(so+o+b,bo+b);
}
}
@ -217,27 +165,16 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
int o =n*rhs.Grid()->_slice_stride[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++);
table[ent++]=std::pair<int,int> (so+o+b,bo++);
}
}
}
}
{
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
}
auto rhs_v = rhs.View();
thread_for(i,ent,{
rhs_v[table[i].first]=buffer[table[i].second];
});
}
//////////////////////////////////////////////////////
@ -257,33 +194,21 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
auto rhs_v = rhs.View();
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
merge(rhs_v[so+o+b],pointers,offset);
}
});
#endif
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
assert(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite);
auto rhs_v = rhs.View();
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs.Grid()->_slice_stride[dimension];
@ -300,7 +225,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
//////////////////////////////////////////////////////
// local to node block strided copies
//////////////////////////////////////////////////////
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -315,16 +239,14 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs.Grid()->_slice_block[dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent=0;
if(cbmask == 0x3 ){
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
} else {
@ -333,32 +255,23 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
int o =n*stride+b;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
if ( ocb&cbmask ) {
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
}
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
}
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
@ -372,41 +285,29 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
int e2=rhs.Grid()->_slice_block [dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent=0;
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
}
//////////////////////////////////////////////////////

View File

@ -101,8 +101,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
@ -122,9 +121,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
commVector<vobj> send_buf(buffer_size);
commVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
@ -139,7 +138,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
} else {
int words = buffer_size;
int words = send_buf.size();
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
@ -151,14 +150,12 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
@ -198,15 +195,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
int bytes = buffer_size*sizeof(scalar_object);
@ -252,204 +242,11 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
xmit_to_rank,
(void *)recv_buf_extract_mpi,
(void *)&recv_buf_extract[i][0],
recv_from_rank,
bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
}
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
}
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
@ -461,7 +258,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
}
}
#endif
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
Vector<std::pair<int,int> > Cshift_table;
NAMESPACE_END(Grid);

View File

@ -26,7 +26,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/lattice/Lattice_view.h>
#include <Grid/lattice/Lattice_base.h>
#include <Grid/lattice/Lattice_conformable.h>
#include <Grid/lattice/Lattice_ET.h>
@ -36,8 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
//#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h>

View File

@ -42,24 +42,9 @@ NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
#ifdef GRID_SIMT
// drop to scalar in SIMT; cleaner in fact
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
Integer mask = TensorRemove(predicate);
typename std::remove_const<vobj>::type ret= iffalse;
if (mask) ret=iftrue;
return ret;
}
#else
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
@ -83,7 +68,6 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
merge(ret, falsevals);
return ret;
}
#endif
/////////////////////////////////////////////////////
//Specialization of getVectorType for lattices
@ -97,62 +81,26 @@ struct getVectorType<Lattice<T> >{
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj,
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
accelerator_inline
template<class sobj> accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
{
return arg(ss);
}
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// whole vector return, used only for expression return type inference
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj vecEval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
{
return arg[ss];
}
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
{
auto view = arg.AcceleratorView(ViewRead);
return view[ss];
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
// vecEval needed (but never called as all expressions offloaded) to infer the return type
// in SIMT contexts of closure.
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
{
return expr.op.func( vecEval(ss, expr.arg1) );
}
// vecEval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
{
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
}
// vecEval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
{
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand coalesced
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
@ -160,41 +108,23 @@ auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
{
return expr.op.func( eval(ss, expr.arg1) );
}
///////////////////////
// eval two operands
///////////////////////
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
///////////////////////
// eval three operands
///////////////////////
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3)))
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
{
#ifdef GRID_SIMT
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
typedef typename std::remove_reference<rvobj>::type vobj;
const int Nsimd = vobj::vector_type::Nsimd();
auto vpred = vecEval(ss,expr.arg1);
ExtractBuffer<Integer> mask(Nsimd);
extract<vInteger, Integer>(TensorRemove(vpred), mask);
int s = acceleratorSIMTlane(Nsimd);
return expr.op.func(mask[s],
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#else
return expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#endif
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
}
//////////////////////////////////////////////////////////////////////////
@ -250,12 +180,16 @@ inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
cb = lat.Checkerboard();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) {} // non-lattice leaf
inline void CBFromExpression(int &cb, const T1 &notlat) // non-lattice leaf
{
}
template <typename Op, typename T1> inline
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
{
@ -270,86 +204,32 @@ inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2,
CBFromExpression(cb, expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewOpen
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &lat) // Lattice leaf
{
lat.ViewOpen(AcceleratorRead);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // rrecurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
ExpressionViewOpen(expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewClose
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose( T1 &lat) // Lattice leaf
{
lat.ViewClose();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
ExpressionViewClose(expr.arg3); // recurse AST
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
@ -361,10 +241,10 @@ GridUnopClass(UnaryExp, exp(a));
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
template <class _left, class _right> \
static auto accelerator_inline \
func(const _left &lhs, const _right &rhs) \
func(const left &lhs, const right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
@ -384,10 +264,10 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
template <class _predicate,class _left, class _right> \
static auto accelerator_inline \
func(const _predicate &pred, const _left &lhs, const _right &rhs) \
func(const predicate &pred, const left &lhs, const right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
@ -395,17 +275,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
};
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<
typename std::remove_reference<_predicate>::type,
typename std::remove_reference<_left>::type,
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
(predicatedWhere<predicate,
typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name
#define GRID_BINOP(name) name
#define GRID_TRINOP(name) name
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
@ -451,17 +331,22 @@ GridTrinOpClass(TrinaryWhere,
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
//GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
@ -486,36 +371,29 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type >
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type > ret(expr);
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))> ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
auto function(Expression &expr) -> decltype(function(closure(expr))) \
{ \
return function(closure(expr)); \
}
#undef GRID_UNOP
#undef GRID_BINOP

View File

@ -37,9 +37,9 @@ NAMESPACE_BEGIN(Grid);
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
conformable(ret,rhs);
conformable(lhs,rhs);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
@ -56,13 +56,13 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
auto tmp =ret_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
@ -73,9 +73,9 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -89,9 +89,9 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -108,8 +108,8 @@ template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
mult(&tmp,&lhs_v(ss),&rhs);
@ -121,10 +121,10 @@ template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss);
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
@ -135,8 +135,8 @@ template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -148,8 +148,8 @@ template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto lhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
@ -165,8 +165,8 @@ template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
@ -179,10 +179,10 @@ template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss);
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
@ -193,8 +193,8 @@ template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
@ -206,8 +206,8 @@ template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto rhs_v = lhs.AcceleratorView(ViewRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
@ -221,11 +221,11 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto x_v = x.AcceleratorView(ViewRead);
auto y_v = y.AcceleratorView(ViewRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]);
auto tmp = a*x_v(ss)+y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
@ -234,9 +234,9 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
auto ret_v = ret.AcceleratorView(ViewWrite);
auto x_v = x.AcceleratorView(ViewRead);
auto y_v = y.AcceleratorView(ViewRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(ret_v[ss],tmp);

View File

@ -29,7 +29,6 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#define STREAMING_STORES
@ -38,6 +37,180 @@ NAMESPACE_BEGIN(Grid);
extern int GridCshiftPermuteMap[4][16];
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum LatticeAcceleratorAdvise {
AdviseInfrequentUse = 0x1, // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
AdviseReadMostly = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
ViewRead = 0x1,
ViewWrite = 0x2,
ViewReadWrite = 0x3
};
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
protected:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { };
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
accelerator_inline void Advise(int advise) {
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
if (advise & AdviseInfrequentUse) {
cudaMemAdvise(_odata,_odata_size*sizeof(vobj),cudaMemAdviseSetPreferredLocation,cudaCpuDeviceId);
}
if (advise & AdviseReadMostly) {
cudaMemAdvise(_odata,_odata_size*sizeof(vobj),cudaMemAdviseSetReadMostly,-1);
}
#endif
#endif
};
accelerator_inline void AcceleratorPrefetch(int accessMode = ViewReadWrite) { // will use accessMode in future
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
int target;
cudaGetDevice(&target);
cudaMemPrefetchAsync(_odata,_odata_size*sizeof(vobj),target);
#endif
#endif
};
accelerator_inline void HostPrefetch(int accessMode = ViewReadWrite) { // will use accessMode in future
#ifdef GRID_NVCC
#ifndef __CUDA_ARCH__ // only on host
cudaMemPrefetchAsync(_odata,_odata_size*sizeof(vobj),cudaCpuDeviceId);
#endif
#endif
};
};
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_for and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
public:
// Rvalue
#ifdef __CUDA_ARCH__
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const { return coalescedRead(this->_odata[i]); }
#else
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
{
}
};
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
@ -73,40 +246,38 @@ private:
dealloc();
this->_odata_size = size;
if ( size )
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
}
public:
/////////////////////////////////////////////////////////////////////////////////
// Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
/////////////////////////////////////////////////////////////////////////////////
void SetViewMode(ViewMode mode) {
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
// Helper function to print the state of this object in the AccCache
void PrintCacheState(void)
{
MemoryManager::PrintState(this->_odata);
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (ViewMode mode) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
LatticeView<vobj> View (void) const // deprecated, should pick AcceleratorView for accelerator_for
{ // and HostView for thread_for
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
return accessor;
}
LatticeView<vobj> AcceleratorView(int mode = ViewReadWrite) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
accessor.AcceleratorPrefetch(mode);
return accessor;
}
LatticeView<vobj> HostView(int mode = ViewReadWrite) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
accessor.HostPrefetch(mode);
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
@ -126,16 +297,12 @@ public:
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
auto me = AcceleratorView(ViewWrite);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
@ -150,15 +317,11 @@ public:
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
auto me = AcceleratorView(ViewWrite);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
@ -172,15 +335,11 @@ public:
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
auto me = AcceleratorView(ViewWrite);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
//GridFromExpression is tricky to do
@ -231,11 +390,10 @@ public:
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
auto me = View(CpuWrite);
auto me = View();
thread_for(ss,me.size(),{
me[ss]= r;
me[ss] = r;
});
me.ViewClose();
return *this;
}
@ -245,12 +403,11 @@ public:
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
Lattice(GridBase *grid) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
SetViewMode(mode);
}
// virtual ~Lattice(void) = default;
@ -288,12 +445,11 @@ public:
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
auto me = AcceleratorView(ViewWrite);
auto him= r.AcceleratorView(ViewRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
@ -303,12 +459,11 @@ public:
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
auto me = AcceleratorView(ViewWrite);
auto him= r.AcceleratorView(ViewRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////

View File

@ -51,39 +51,34 @@ template<class VField, class Matrix>
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
typedef decltype(basis[0].View()) View;
auto tmp_v = basis[0].AcceleratorView(ViewReadWrite);
Vector<View> basis_v(basis.size(),tmp_v);
typedef typename std::remove_reference<decltype(tmp_v[0])>::type vobj;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite));
basis_v[k] = basis[k].AcceleratorView(ViewReadWrite);
}
#if ( (!defined(GRID_CUDA)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
#ifndef GRID_NVCC
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
{
std::vector < vobj > B(Nm); // Thread private
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
return;
@ -95,13 +90,13 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
Qt_p[i]=Qt(j,k);
});
});
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
@ -125,7 +120,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
}
});
@ -134,44 +129,37 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View(AcceleratorRead)) View;
typedef decltype(basis[0].AcceleratorView()) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
Vector<View> basis_v; basis_v.reserve(basis.size());
auto result_v=result.AcceleratorView(ViewWrite);
Vector<View> basis_v(basis.size(),result_v);
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorRead));
basis_v[k] = basis[k].AcceleratorView(ViewRead);
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero();
auto B=coalescedRead(zzz);
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>

View File

@ -42,6 +42,34 @@ NAMESPACE_BEGIN(Grid);
typedef iScalar<vInteger> vPredicate ;
/*
template <class iobj, class vobj, class robj> accelerator_inline
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
*/
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
@ -50,9 +78,9 @@ template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
});
@ -65,8 +93,8 @@ template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vPredicate> ret(lhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
auto lhs_v = lhs.View();
auto ret_v = ret.View();
thread_for( ss, lhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs);
});
@ -79,8 +107,8 @@ template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
auto rhs_v = rhs.View();
auto ret_v = ret.View();
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs,rhs_v[ss]);
});

View File

@ -37,7 +37,7 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
autoView(l_v, l, CpuWrite);
auto l_v = l.View();
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
@ -51,5 +51,23 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
});
};
// LatticeCoordinate();
// FIXME for debug; deprecate this; made obscelete by
template<class vobj> void lex_sites(Lattice<vobj> &l){
auto l_v = l.View();
Real *v_ptr = (Real *)&l_v[0];
size_t o_len = l.Grid()->oSites();
size_t v_len = sizeof(vobj)/sizeof(vRealF);
size_t vec_len = vRealF::Nsimd();
for(int i=0;i<o_len;i++){
for(int j=0;j<v_len;j++){
for(int vv=0;vv<vec_len;vv+=2){
v_ptr[i*v_len*vec_len+j*vec_len+vv ]= i+vv*500;
v_ptr[i*v_len*vec_len+j*vec_len+vv+1]= i+vv*500;
}
}}
}
NAMESPACE_END(Grid);

View File

@ -43,8 +43,8 @@ template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
auto rhs_v = rhs.View();
auto ret_v = ret.View();
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
});
@ -56,9 +56,9 @@ template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
});
@ -73,9 +73,9 @@ inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Latt
typedef decltype(coalescedRead(ll())) sll;
typedef decltype(coalescedRead(rr())) srr;
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
accelerator_for(ss,rhs_v.size(),1,{
// FIXME had issues with scalar version of outer
// Use vector [] operator and don't read coalesce this loop

View File

@ -51,9 +51,9 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( Y_v , Y, CpuRead);
autoView( R_v , R, CpuWrite);
auto X_v = X.View();
auto Y_v = Y.View();
auto R_v = R.View();
thread_region
{
std::vector<vobj> s_x(Nblock);
@ -97,8 +97,8 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( R_v , R, CpuWrite);
auto X_v = X.View();
auto R_v = R.View();
thread_region
{
@ -156,8 +156,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v , lhs, CpuRead);
autoView( rhs_v , rhs, CpuRead);
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
thread_region {
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);

View File

@ -46,9 +46,9 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Ind
{
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
auto ret_v = ret.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
});
return ret;
@ -58,9 +58,9 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd
{
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
auto ret_v = ret.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
});
return ret;
@ -72,18 +72,18 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
});
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
});
}
@ -111,7 +111,7 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
auto l_v = l.View();
if ( rank == grid->ThisRank() ) {
extract(l_v[odx],buf);
buf[idx] = s;
@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
auto l_v = l.View();
extract(l_v[odx],buf);
s = buf[idx];
@ -151,21 +151,21 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
// Must be CPU read view
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid = l.getGrid();
assert(l.mode==CpuRead);
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
GridBase *grid = l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -173,7 +173,8 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx];
auto l_v = l.View();
scalar_type * vp = (scalar_type *)&l_v[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
@ -182,27 +183,18 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
return;
};
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuRead);
peekLocalSite(s,lv,site);
return;
};
// Must be CPU write view
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid=l.getGrid();
assert(l.mode==CpuWrite);
inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -210,19 +202,13 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx];
auto l_v = l.View();
scalar_type * vp = (scalar_type *)&l_v[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
return;
};
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuWrite);
pokeLocalSite(s,lv,site);
return;
};

View File

@ -1,79 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reality.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REAL_IMAG_H
#define GRID_LATTICE_REAL_IMAG_H
// FIXME .. this is the sector of the code
// I am most worried about the directions
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =real(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =imag(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto real(const Expression &expr) -> decltype(real(closure(expr)))
{
return real(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto imag(const Expression &expr) -> decltype(imag(closure(expr)))
{
return imag(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -40,77 +40,26 @@ NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = adj(lhs_v[ss]);
auto lhs_v = lhs.View();
auto ret_v = ret.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
});
return ret;
};
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
auto lhs_v = lhs.View();
auto ret_v = ret.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss)));
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
Lattice<typename vobj::Complexified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toComplex(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
Lattice<typename vobj::Realified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toReal(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toComplex(const Expression &expr) -> decltype(closure(expr))
{
return toComplex(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toReal(const Expression &expr) -> decltype(closure(expr))
{
return toReal(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto adj(const Expression &expr) -> decltype(closure(expr))
{
return adj(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto conjugate(const Expression &expr) -> decltype(closure(expr))
{
return conjugate(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -25,7 +25,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <Grid/Grid_Eigen_Dense.h>
#if defined(GRID_CUDA)||defined(GRID_HIP)
#ifdef GRID_NVCC
#include <Grid/lattice/Lattice_reduction_gpu.h>
#endif
@ -39,7 +39,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_object sobj;
// const int Nsimd = vobj::Nsimd();
const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
@ -62,124 +62,24 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
typedef typename vobj::scalar_object ssobj;
ssobj ret = ssum;
return ret;
}
/*
Threaded max, don't use for now
template<class Double>
inline Double max(const Double *arg, Integer osites)
{
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<Double> maxarray(nthread);
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
Double max=arg[0];
for(int ss=myoff;ss<mywork+myoff; ss++){
if( arg[ss] > max ) max = arg[ss];
}
maxarray[thr]=max;
});
Double tmax=maxarray[0];
for(int i=0;i<nthread;i++){
if (maxarray[i]>tmax) tmax = maxarray[i];
}
return tmax;
}
*/
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
#ifdef GRID_NVCC
return sum_gpu(arg,osites);
#else
return sum_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
auto arg_v = arg.View();
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
auto ssum= sum(&arg_v[0],osites);
arg.Grid()->GlobalSum(ssum);
return ssum;
}
@ -192,32 +92,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
return real(nrm);
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
Lattice<vscalar> inner = localNorm2(arg);
auto grid = arg.Grid();
RealD max;
for(int l=0;l<grid->lSites();l++){
Coordinate coor;
scalar val;
RealD r;
grid->LocalIndexToLocalCoor(l,coor);
peekLocalSite(val,inner,coor);
r=real(TensorRemove(val));
if( (l==0) || (r>max)){
max=r;
}
}
grid->GlobalMax(max);
return max;
}
// Double inner product
template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
@ -227,30 +101,43 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
ComplexD nrm;
GridBase *grid = left.Grid();
// Might make all code paths go this way.
auto left_v = left.AcceleratorView(ViewRead);
auto right_v=right.AcceleratorView(ViewRead);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// Might make all code paths go this way.
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
#ifdef GRID_NVCC
// GPU - SIMT lane compliance...
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, 1,{
auto x_l = left_v[ss];
auto y_l = right_v[ss];
inner_tmp_v[ss]=innerProductD(x_l,y_l);
});
}
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
})
// This is in single precision and fails some tests
auto anrm = sum(inner_tmp_v,sites);
nrm = anrm;
// Need a sumD that sums in double
nrm = TensorRemove(sumD_gpu(inner_tmp_v,sites));
#else
// CPU
typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v[ss];
auto y_l = right_v[ss];
inner_tmp_v[ss]=innerProductD(x_l,y_l);
})
nrm = TensorRemove(sum(inner_tmp_v,sites));
#endif
return nrm;
}
@ -288,24 +175,40 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
GridBase *grid = x.Grid();
auto x_v=x.AcceleratorView(ViewRead);
auto y_v=y.AcceleratorView(ViewRead);
auto z_v=z.AcceleratorView(ViewWrite);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
#ifdef GRID_NVCC
// GPU
autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, 1,{
auto tmp = a*x_v[ss]+b*y_v[ss];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD_gpu(inner_tmp_v,sites)));
#else
// CPU
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
inner_tmp_v[ss]=innerProductD(tmp,tmp);
z_v[ss]=tmp;
});
// Already promoted to double
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm);
return nrm;
}
@ -321,29 +224,47 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
GridBase *grid = left.Grid();
auto left_v=left.AcceleratorView(ViewRead);
auto right_v=right.AcceleratorView(ViewRead);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
#ifdef GRID_NVCC
// GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
typedef decltype(innerProduct(left_v[0],left_v[0])) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
autoView(left_v,left, AcceleratorRead);
autoView(right_v,right,AcceleratorRead);
accelerator_for( ss, sites, 1,{
auto left_tmp = left_v[ss];
inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]);
norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp);
});
}
accelerator_for( ss, sites, nsimd,{
auto left_tmp = left_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(left_tmp,right_v(ss)));
coalescedWrite(norm_tmp_v[ss],innerProduct(left_tmp,left_tmp));
});
tmp[0] = TensorRemove(sumD_gpu(inner_tmp_v,sites));
tmp[1] = TensorRemove(sumD_gpu(norm_tmp_v,sites));
#else
// CPU
typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
typedef decltype(innerProductD(left_v[0],left_v[0])) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto left_tmp = left_v(ss);
inner_tmp_v[ss] = innerProductD(left_tmp,right_v(ss));
norm_tmp_v[ss] = innerProductD(left_tmp,left_tmp);
});
// Already promoted to double
tmp[0] = TensorRemove(sum(inner_tmp_v,sites));
tmp[1] = TensorRemove(sum(norm_tmp_v,sites));
#endif
grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector
ip = tmp[0];
nrm = real(tmp[1]);
@ -386,7 +307,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_object::scalar_type scalar_type;
GridBase *grid = Data.Grid();
assert(grid!=NULL);
@ -415,7 +335,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
auto Data_v=Data.View();
thread_for( r,rd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
@ -445,19 +365,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
}
// sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
result[t]=lsSum[lt];
gsum=lsSum[lt];
} else {
result[t]=Zero();
gsum=Zero();
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
scalar_type * ptr = (scalar_type *) &result[0];
int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words);
}
template<class vobj>
@ -492,8 +413,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
autoView( lhv, lhs, CpuRead);
autoView( rhv, rhs, CpuRead);
auto lhv=lhs.View();
auto rhv=rhs.View();
thread_for( r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
@ -600,12 +521,14 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
tensor_reduced at; at=av;
autoView( Rv, R, CpuWrite);
autoView( Xv, X, CpuRead);
autoView( Yv, Y, CpuRead);
thread_for2d( n, e1, b,e2, {
auto Rv=R.View();
auto Xv=X.View();
auto Yv=Y.View();
thread_for_collapse(2, n, e1, {
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
Rv[ss] = at*Xv[ss]+Yv[ss];
}
});
}
};
@ -658,9 +581,9 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
auto X_v=X.View();
auto Y_v=Y.View();
auto R_v=R.View();
thread_region
{
Vector<vobj> s_x(Nblock);
@ -705,14 +628,13 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
// int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
auto R_v = R.View();
auto X_v = X.View();
thread_region
{
std::vector<vobj> s_x(Nblock);
@ -770,8 +692,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
auto lhs_v=lhs.View();
auto rhs_v=rhs.View();
thread_region
{
std::vector<vobj> Left(Nblock);

View File

@ -1,14 +1,7 @@
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
extern hipDeviceProp_t *gpu_props;
#define WARP_SIZE 64
#endif
#ifdef GRID_CUDA
extern cudaDeviceProp *gpu_props;
#define WARP_SIZE 32
#endif
extern cudaDeviceProp *gpu_props;
__device__ unsigned int retirementCount = 0;
template <class Iterator>
@ -23,27 +16,23 @@ unsigned int nextPow2(Iterator x) {
}
template <class Iterator>
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
#ifdef GRID_CUDA
cudaGetDevice(&device);
#endif
#ifdef GRID_HIP
hipGetDevice(&device);
#endif
Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
/*
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
*/
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
@ -51,14 +40,10 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
return 0;
}
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
return 1;
}
template <class sobj, class Iterator>
@ -68,7 +53,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
acceleratorSynchronise();
__syncwarp();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
@ -82,9 +67,9 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
acceleratorSynchronise();
__syncwarp();
}
acceleratorSynchroniseAll();
__syncthreads();
if (threadIdx.x == 0) {
beta = Zero();
@ -94,7 +79,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
acceleratorSynchroniseAll();
__syncthreads();
}
@ -162,7 +147,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
sobj *smem = (sobj *)shmem_pointer;
// wait until all outstanding memory instructions in this thread are finished
acceleratorFence();
__threadfence();
if (tid==0) {
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
@ -171,8 +156,8 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
}
// each thread must read the correct value of amLast
acceleratorSynchroniseAll();
__syncthreads();
if (amLast) {
// reduce buffer[0], ..., buffer[gridDim.x-1]
Iterator i = tid;
@ -198,7 +183,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator;
@ -207,67 +192,23 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
accelerator_barrier();
cudaDeviceSynchronize();
cudaError err = cudaGetLastError();
if ( cudaSuccess != err ) {
printf("Cuda error %s\n",cudaGetErrorString( err ));
exit(0);
}
auto result = buffer_v[0];
return result;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
scalarD *ret_p = (scalarD *)&ret;
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
ret_p[w] = sumD_gpu_small(tbuf,osites);
}
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
if ( ok ) {
ret = sumD_gpu_small(lat,osites);
} else {
ret = sumD_gpu_large(lat,osites);
}
return ret;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -280,13 +221,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
return result;
}
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid);

View File

@ -375,7 +375,7 @@ public:
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
int words = sizeof(scalar_object) / sizeof(scalar_type);
autoView(l_v, l, CpuWrite);
auto l_v = l.View();
thread_for( ss, osites, {
ExtractBuffer<scalar_object> buf(Nsimd);
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
@ -461,8 +461,8 @@ public:
}
{
// Obtain one reseeded generator per thread
int Nthread = 32; // Hardwire a good level or parallelism
// Obtain one reseeded generator per thread
int Nthread = GridThread::GetThreads();
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);

View File

@ -42,8 +42,8 @@ template<class vobj>
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
{
Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
autoView(ret_v , ret, AcceleratorWrite);
autoView(lhs_v , lhs, AcceleratorRead);
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
});
@ -58,8 +58,8 @@ template<int Index,class vobj>
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
{
Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
});

View File

@ -47,12 +47,11 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
{
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full){
half.Checkerboard() = cb;
autoView( half_v, half, CpuWrite);
autoView( full_v, full, CpuRead);
auto half_v = half.View();
auto full_v = full.View();
thread_for(ss, full.Grid()->oSites(),{
int cbos;
Coordinate coor;
@ -65,11 +64,11 @@ template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,con
}
});
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
{
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
int cb = half.Checkerboard();
autoView( half_v , half, CpuRead);
autoView( full_v , full, CpuWrite);
auto half_v = half.View();
auto full_v = full.View();
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
@ -85,76 +84,6 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
});
}
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
autoView(full_v, full, AcceleratorRead);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++) {
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(half_v[ssh],full_v(ss));
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
autoView(full_v , full, AcceleratorWrite);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++){
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(full_v[ss],half_v(ssh));
}
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types
@ -167,29 +96,15 @@ accelerator_inline void convertType(ComplexF & out, const std::complex<float> &
out = in;
}
template<typename T>
accelerator_inline EnableIf<isGridFundamental<T>> convertType(T & out, const T & in) {
out = in;
}
// This would allow for conversions between GridFundamental types, but is not strictly needed as yet
/*template<typename T1, typename T2>
accelerator_inline typename std::enable_if<isGridFundamental<T1>::value && isGridFundamental<T2>::value>::type
// Or to make this very broad, conversions between anything that's not a GridTensor could be allowed
//accelerator_inline typename std::enable_if<!isGridTensor<T1>::value && !isGridTensor<T2>::value>::type
convertType(T1 & out, const T2 & in) {
out = in;
}*/
#ifdef GRID_SIMT
#ifdef __CUDA_ARCH__
accelerator_inline void convertType(vComplexF & out, const ComplexF & in) {
((ComplexF*)&out)[acceleratorSIMTlane(vComplexF::Nsimd())] = in;
((ComplexF*)&out)[SIMTlane(vComplexF::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD & out, const ComplexD & in) {
((ComplexD*)&out)[acceleratorSIMTlane(vComplexD::Nsimd())] = in;
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
((ComplexD*)&out)[acceleratorSIMTlane(vComplexD::Nsimd()*2)] = in;
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd()*2)] = in;
}
#endif
@ -201,18 +116,18 @@ accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
}
template<typename T1,typename T2>
accelerator_inline void convertType(iScalar<T1> & out, const iScalar<T2> & in) {
convertType(out._internal,in._internal);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in);
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in);
template<typename T1,typename T2>
accelerator_inline NotEnableIf<isGridScalar<T1>> convertType(T1 & out, const iScalar<T2> & in) {
template<typename T1,typename T2, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr>
accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal);
}
template<typename T1,typename T2>
accelerator_inline NotEnableIf<isGridScalar<T2>> convertType(iScalar<T1> & out, const T2 & in) {
accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in);
}
@ -229,13 +144,19 @@ accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & i
convertType(out._internal[i],in._internal[i]);
}
template<typename T, typename std::enable_if<isGridFundamental<T>::value, T>::type* = nullptr>
accelerator_inline void convertType(T & out, const T & in) {
out = in;
}
template<typename T1,typename T2>
accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
autoView( out_v , out,AcceleratorWrite);
autoView( in_v , in ,AcceleratorRead);
auto out_v = out.AcceleratorView(ViewWrite);
auto in_v = in.AcceleratorView(ViewRead);
accelerator_for(ss,out_v.size(),T1::Nsimd(),{
convertType(out_v[ss],in_v(ss));
});
});
}
////////////////////////////////////////////////////////////////////////////////////////////
@ -243,20 +164,19 @@ accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs)
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View(CpuRead)[0],rhs.View(CpuRead)[0])))>>
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View()[0],rhs.View()[0])))>>
{
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
auto lhs_v = lhs.AcceleratorView(ViewRead);
auto rhs_v = rhs.AcceleratorView(ViewRead);
typedef decltype(TensorRemove(innerProductD2(lhs_v[0],rhs_v[0]))) t_inner;
Lattice<iScalar<t_inner>> ret(lhs.Grid());
auto ret_v = ret.AcceleratorView(ViewWrite);
{
autoView(ret_v, ret,AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
convertType(ret_v[ss],innerProductD2(lhs_v(ss),rhs_v(ss)));
});
}
return ret;
}
@ -274,13 +194,14 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
// auto fineData_ = fineData.View();
auto coarseData_ = coarseData.AcceleratorView(ViewWrite);
auto ip_ = ip.AcceleratorView(ViewReadWrite);
for(int v=0;v<nbasis;v++) {
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
});
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
@ -289,6 +210,68 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
}
}
template<class vobj,class CComplex,int nbasis>
inline void blockProject1(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
typedef iVector<CComplex,nbasis > coarseSiteData;
coarseSiteData elide;
typedef decltype(coalescedRead(elide)) ScalarComplex;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i],fineData);
}
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d] == fine->_rdimensions[d]);
}
int blockVol = fine->oSites()/coarse->oSites();
coarseData=Zero();
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
////////////////////////////////////////////////////////////////////////////////////////////////////////
// To make this lock free, loop over coars parallel, and then loop over fine associated with coarse.
// Otherwise do fine inner product per site, and make the update atomic
////////////////////////////////////////////////////////////////////////////////////////////////////////
accelerator_for( sci, nbasis*coarse->oSites(), vobj::Nsimd(), {
auto sc=sci/nbasis;
auto i=sci%nbasis;
auto Basis_ = Basis[i].View();
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
int sf;
decltype(innerProduct(Basis_(sf),fineData_(sf))) reduce=Zero();
for(int sb=0;sb<blockVol;sb++){
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r);
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d]+coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
reduce=reduce+innerProduct(Basis_(sf),fineData_(sf));
}
coalescedWrite(coarseData_[sc](i),reduce);
});
return;
}
template<class vobj,class vobj2,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
@ -315,12 +298,10 @@ template<class vobj,class vobj2,class CComplex>
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
autoView( fineZ_ , fineZ, AcceleratorWrite);
autoView( fineX_ , fineX, AcceleratorRead);
autoView( fineY_ , fineY, AcceleratorRead);
autoView( coarseA_, coarseA, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
auto fineZ_ = fineZ.AcceleratorView(ViewWrite);
auto fineX_ = fineX.AcceleratorView(ViewRead);
auto fineY_ = fineY.AcceleratorView(ViewRead);
auto coarseA_= coarseA.AcceleratorView(ViewRead);
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
@ -328,12 +309,12 @@ template<class vobj,class vobj2,class CComplex>
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y
#ifdef GRID_SIMT
#ifdef __CUDA_ARCH__
typename vobj2::tensor_reduced::scalar_object cA;
typename vobj::scalar_object cAx;
#else
@ -363,16 +344,15 @@ template<class vobj,class CComplex>
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
auto CoarseInner_ = CoarseInner.AcceleratorView(ViewWrite);
auto coarse_inner_ = coarse_inner.AcceleratorView(ViewReadWrite);
// Precision promotion
fine_inner = localInnerProductD<vobj>(fineX,fineY);
fine_inner = localInnerProductD(fineX,fineY);
blockSum(coarse_inner,fine_inner);
{
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
accelerator_for(ss, coarse->oSites(), 1, {
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
}
@ -390,15 +370,14 @@ inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
auto CoarseInner_ = CoarseInner.AcceleratorView(ViewWrite);
auto coarse_inner_ = coarse_inner.AcceleratorView(ViewReadWrite);
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
{
autoView( CoarseInner_ , CoarseInner, AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner, AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
}
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
}
template<class vobj,class CComplex>
@ -429,27 +408,16 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
}
int blockVol = fine->oSites()/coarse->oSites();
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead);
auto coarseData_ = coarseData.AcceleratorView(ViewReadWrite);
auto fineData_ = fineData.AcceleratorView(ViewRead);
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
vobj zz = Zero();
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
vobj cd = zz;
for(int sb=0;sb<blockVol;sb++){
int sf;
@ -457,13 +425,11 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
cd=cd+fineData_p[sf];
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
coarseData_p[sc] = cd;
});
return;
}
@ -544,8 +510,8 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
autoView( fineData_ , fineData, AcceleratorWrite);
autoView( coarseData_ , coarseData, AcceleratorRead);
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
// Loop with a cache friendly loop ordering
accelerator_for(sf,fine->oSites(),1,{
@ -558,7 +524,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
/* auto basis_ = Basis[i], );*/
auto basis_ = Basis[i].View();
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
}
@ -577,14 +543,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
fineData=Zero();
for(int i=0;i<nbasis;i++) {
Lattice<iScalar<CComplex> > ip = PeekIndex<0>(coarseData,i);
//Lattice<CComplex> cip(coarse);
//autoView( cip_ , cip, AcceleratorWrite);
//autoView( ip_ , ip, AcceleratorRead);
//accelerator_forNB(sc,coarse->oSites(),CComplex::Nsimd(),{
// coalescedWrite(cip_[sc], ip_(sc)());
// });
//blockZAXPY<vobj,CComplex >(fineData,cip,Basis[i],fineData);
auto ip_ = ip.AcceleratorView(ViewRead);
blockZAXPY(fineData,ip,Basis[i],fineData);
}
}
@ -612,17 +571,15 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
assert(ig->lSites() == og->lSites());
}
autoView(in_v,in,CpuRead);
autoView(out_v,out,CpuWrite);
thread_for(idx, ig->lSites(),{
sobj s;
ssobj ss;
Coordinate lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(s,in_v,lcoor);
peekLocalSite(s,in,lcoor);
ss=s;
pokeLocalSite(ss,out_v,lcoor);
pokeLocalSite(ss,out,lcoor);
});
}
@ -657,9 +614,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
autoView( t_v , To, AcceleratorWrite);
autoView( f_v , From, AcceleratorRead);
auto t_v = To.AcceleratorView(ViewWrite);
auto f_v = From.AcceleratorView(ViewRead);
accelerator_for(idx,Fg->lSites(),1,{
sobj s;
Coordinate Fcoor(nd);
@ -682,6 +638,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int w=0;w<words;w++){
tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke
}
// peekLocalSite(s,From,Fcoor);
// pokeLocalSite(s,To ,Tcoor);
}
});
}
@ -712,8 +670,6 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -726,8 +682,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
});
}
@ -755,8 +711,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -769,8 +723,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
});
}
@ -798,8 +752,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -808,8 +760,8 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
}
});
}
@ -837,8 +789,6 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
@ -847,8 +797,8 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
}
});
}
@ -912,7 +862,7 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
}
//loop over outer index
autoView( in_v , in, CpuRead);
auto in_v = in.View();
thread_for(in_oidx,in_grid->oSites(),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> out_ptrs(in_nsimd);
@ -1005,7 +955,7 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
autoView( out_v , out, CpuWrite);
auto out_v = out.View();
thread_for(oidx, grid->oSites(),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> ptrs(nsimd);
@ -1108,7 +1058,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
autoView( out_v , out, CpuWrite);
auto out_v = out.View();
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);

View File

@ -42,8 +42,8 @@ NAMESPACE_BEGIN(Grid);
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss], transpose(lhs_v(ss)));
});
@ -58,8 +58,8 @@ template<int Index,class vobj>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))>
{
Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid());
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss)));
});

View File

@ -35,8 +35,8 @@ NAMESPACE_BEGIN(Grid);
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( rhs, rhs_i, AcceleratorRead);
autoView( ret, ret_i, AcceleratorWrite);
auto rhs = rhs_i.View();
auto ret = ret_i.View();
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),1,{
ret[ss]=pow(rhs[ss],y);
@ -45,8 +45,8 @@ template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
}
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( rhs , rhs_i, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
auto rhs = rhs_i.View();
auto ret = ret_i.View();
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],mod(rhs(ss),y));
@ -56,8 +56,8 @@ template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( ret , ret_i, AcceleratorWrite);
autoView( rhs , rhs_i, AcceleratorRead);
auto ret = ret_i.View();
auto rhs = rhs_i.View();
ret.Checkerboard() = rhs_i.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],div(rhs(ss),y));
@ -67,8 +67,8 @@ template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( rhs , rhs_i, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
auto rhs = rhs_i.View();
auto ret = ret_i.View();
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp));

View File

@ -1,173 +0,0 @@
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
protected:
//public:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
ViewAdvise advise;
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr), advise(AdviseDefault) { };
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline ViewAdvise Advise(void) const { return advise; };
accelerator_inline ViewAdvise &Advise(void) { return this->advise; }; // can assign advise on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
// Host only
GridBase * getGrid(void) const { return _grid; };
};
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_for and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
public:
// Rvalue
ViewMode mode;
void * cpu_ptr;
#ifdef GRID_SIMT
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const {
return coalescedRead(this->_odata[i]);
}
#else
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
#if 1
// accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) const { return this->_odata[i]; };
#else
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
#endif
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me){}
LatticeView(const LatticeView<vobj> &refer_to_me) = default; // Trivially copyable
LatticeView(const LatticeAccelerator<vobj> &refer_to_me,ViewMode mode) : LatticeAccelerator<vobj> (refer_to_me)
{
this->ViewOpen(mode);
}
// Host functions
void ViewOpen(ViewMode mode)
{ // Translate the pointer, could save a copy. Could use a "Handle" and not save _odata originally in base
// std::cout << "View Open"<<std::hex<<this->_odata<<std::dec <<std::endl;
this->cpu_ptr = (void *)this->_odata;
this->mode = mode;
this->_odata =(vobj *)
MemoryManager::ViewOpen(this->cpu_ptr,
this->_odata_size*sizeof(vobj),
mode,
this->advise);
}
void ViewClose(void)
{ // Inform the manager
// std::cout << "View Close"<<std::hex<<this->cpu_ptr<<std::dec <<std::endl;
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
// Little autoscope assister
template<class View>
class ViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
ViewCloser(View &_v) : v(_v) {};
~ViewCloser() { v.ViewClose(); }
};
#define autoView(l_v,l,mode) \
auto l_v = l.View(mode); \
ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
NAMESPACE_END(Grid);

View File

@ -43,7 +43,7 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<
conformable(iftrue,predicate);
conformable(iftrue,ret);
GridBase *grid=iftrue.Grid();
GridBase *grid=iftrue._grid;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
@ -52,23 +52,22 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<
const int Nsimd = grid->Nsimd();
autoView(iftrue_v,iftrue,CpuRead);
autoView(iffalse_v,iffalse,CpuRead);
autoView(predicate_v,predicate,CpuRead);
autoView(ret_v,ret,CpuWrite);
Integer NN= grid->oSites();
thread_for(ss,NN,{
Integer mask;
scalar_object trueval;
scalar_object falseval;
for(int l=0;l<Nsimd;l++){
trueval =extractLane(l,iftrue_v[ss]);
falseval=extractLane(l,iffalse_v[ss]);
mask =extractLane(l,predicate_v[ss]);
if (mask) falseval=trueval;
insertLane(l,ret_v[ss],falseval);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals (Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
parallel_for(int ss=0;ss<iftrue._grid->oSites(); ss++){
extract(iftrue._odata[ss] ,truevals);
extract(iffalse._odata[ss] ,falsevals);
extract<vInteger,Integer>(TensorRemove(predicate._odata[ss]),mask);
for(int s=0;s<Nsimd;s++){
if (mask[s]) falsevals[s]=truevals[s];
}
});
merge(ret._odata[ss],falsevals);
}
}
template<class vobj,class iobj>
@ -77,9 +76,9 @@ inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &ift
conformable(iftrue,iffalse);
conformable(iftrue,predicate);
Lattice<vobj> ret(iftrue.Grid());
Lattice<vobj> ret(iftrue._grid);
whereWolf(ret,predicate,iftrue,iffalse);
where(ret,predicate,iftrue,iffalse);
return ret;
}

View File

@ -130,8 +130,6 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
std::ios_base::fmtflags f(stream.flags());
stream << log.background()<< std::left;
if (log.topWidth > 0)
{
@ -154,8 +152,6 @@ public:
<< now << log.background() << " : " ;
}
stream << log.colour();
stream.flags(f);
return stream;
} else {
return devnull;

View File

@ -1,4 +1,3 @@
#include <Grid/GridCore.h>
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
Grid::BinaryIO::IoPerf Grid::BinaryIO::lastPerf;
int Grid::BinaryIO::latticeWriteMaxRetry = -1;

View File

@ -79,13 +79,6 @@ inline void removeWhitespace(std::string &key)
///////////////////////////////////////////////////////////////////////////////////////////////////
class BinaryIO {
public:
struct IoPerf
{
uint64_t size{0},time{0};
double mbytesPerSecond{0.};
};
static IoPerf lastPerf;
static int latticeWriteMaxRetry;
/////////////////////////////////////////////////////////////////////////////
@ -509,15 +502,12 @@ class BinaryIO {
timer.Stop();
}
lastPerf.size = sizeof(fobj)*iodata.size()*nrank;
lastPerf.time = timer.useconds();
lastPerf.mbytesPerSecond = lastPerf.size/1024./1024./(lastPerf.time/1.0e6);
std::cout<<GridLogMessage<<"IOobject: ";
if ( control & BINARYIO_READ) std::cout << " read ";
else std::cout << " write ";
uint64_t bytes = sizeof(fobj)*iodata.size()*nrank;
std::cout<< lastPerf.size <<" bytes in "<< timer.Elapsed() <<" "
<< lastPerf.mbytesPerSecond <<" MB/s "<<std::endl;
std::cout<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/ (double)timer.useconds() <<" MB/s "<<std::endl;
std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed() <<std::endl;
@ -673,15 +663,10 @@ class BinaryIO {
nersc_csum,scidac_csuma,scidac_csumb);
timer.Start();
thread_for(lidx,lsites,{ // FIX ME, suboptimal implementation
thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount);
std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin());
Coordinate lcoor;
grid->LocalIndexToLocalCoor(lidx, lcoor);
int o_idx=grid->oIndex(lcoor);
int i_idx=grid->iIndex(lcoor);
int gidx=parallel_rng.generator_idx(o_idx,i_idx);
parallel_rng.SetState(tmp,gidx);
parallel_rng.SetState(tmp,lidx);
});
timer.Stop();
@ -738,12 +723,7 @@ class BinaryIO {
std::vector<RNGstate> iodata(lsites);
thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(lidx, lcoor);
int o_idx=grid->oIndex(lcoor);
int i_idx=grid->iIndex(lcoor);
int gidx=parallel_rng.generator_idx(o_idx,i_idx);
parallel_rng.GetState(tmp,gidx);
parallel_rng.GetState(tmp,lidx);
std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin());
});
timer.Stop();

View File

@ -123,7 +123,7 @@ assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
////////////////////////////////////////////////////////////
// Helper to fill out metadata
////////////////////////////////////////////////////////////
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
FieldMetaData &header,
scidacRecord & _scidacRecord,
scidacFile & _scidacFile)
@ -576,8 +576,6 @@ class ScidacReader : public GridLimeReader {
std::string rec_name(ILDG_BINARY_DATA);
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
// in principle should do the line below, but that breaks backard compatibility with old data
// skipPastObjectRecord(std::string(GRID_FIELD_NORM));
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
return;
}
@ -621,12 +619,12 @@ class IldgWriter : public ScidacWriter {
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
////////////////////////////////////////////////////////////////
template <class stats = PeriodicGaugeStatistics>
void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,int sequence,std::string LFN,std::string description)
template <class vsimd>
void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
{
GridBase * grid = Umu.Grid();
typedef Lattice<vLorentzColourMatrixD> GaugeField;
typedef vLorentzColourMatrixD vobj;
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
////////////////////////////////////////
@ -638,9 +636,6 @@ class IldgWriter : public ScidacWriter {
ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
stats Stats;
Stats(Umu,header);
std::string format = header.floating_point;
header.ensemble_id = description;
header.ensemble_label = description;
@ -710,10 +705,10 @@ class IldgReader : public GridLimeReader {
// Else use ILDG MetaData object if present.
// Else use SciDAC MetaData object if present.
////////////////////////////////////////////////////////////////
template <class stats = PeriodicGaugeStatistics>
void readConfiguration(Lattice<vLorentzColourMatrixD> &Umu, FieldMetaData &FieldMetaData_) {
template <class vsimd>
void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
typedef Lattice<vLorentzColourMatrixD > GaugeField;
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef typename GaugeField::vector_object vobj;
typedef typename vobj::scalar_object sobj;
@ -926,8 +921,7 @@ class IldgReader : public GridLimeReader {
if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker;
stats Stats;
Stats(Umu,checker);
GaugeStatistics(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;

View File

@ -128,7 +128,7 @@ inline void MachineCharacteristics(FieldMetaData &header)
std::time_t t = std::time(nullptr);
std::tm tm_ = *std::localtime(&t);
std::ostringstream oss;
oss << std::put_time(&tm_, "%c %Z");
// oss << std::put_time(&tm_, "%c %Z");
header.creation_date = oss.str();
header.archive_date = header.creation_date;
@ -176,18 +176,29 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet
GridMetaData(grid,header);
MachineCharacteristics(header);
}
template<class Impl>
class GaugeStatistics
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
{
public:
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
header.link_trace=WilsonLoops<Impl>::linkTrace(data);
header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
}
};
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
typedef GaugeStatistics<ConjugateGimplD> ConjugateGaugeStatistics;
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
@ -195,6 +206,7 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}

View File

@ -40,8 +40,6 @@ using namespace Grid;
class NerscIO : public BinaryIO {
public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
@ -131,12 +129,12 @@ public:
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void readConfiguration(GaugeField &Umu,
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
FieldMetaData& header,
std::string file,
GaugeStats GaugeStatisticsCalculator=GaugeStats())
std::string file)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu.Grid();
uint64_t offset = readHeader(file,Umu.Grid(),header);
@ -155,23 +153,23 @@ public:
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3D>
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixD>
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
@ -179,7 +177,7 @@ public:
assert(0);
}
GaugeStats Stats; Stats(Umu,clone);
GaugeStatistics(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
@ -205,22 +203,15 @@ public:
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
// Preferred interface
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file,
std::string ens_label = std::string("DWF"))
{
writeConfiguration(Umu,file,0,1,ens_label);
}
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
std::string file,
int two_row,
int bits32,
std::string ens_label = std::string("DWF"))
int bits32)
{
typedef vLorentzColourMatrixD vobj;
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
@ -228,8 +219,8 @@ public:
// Following should become arguments
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = std::string("UKQCD");
header.ensemble_label = ens_label;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D;
@ -238,28 +229,28 @@ public:
GridMetaData(grid,header);
assert(header.nd==4);
GaugeStats Stats; Stats(Umu,header);
GaugeStatistics(Umu,header);
MachineCharacteristics(header);
uint64_t offset;
uint64_t offset;
// Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
<<std::hex<<header.checksum

View File

@ -154,7 +154,7 @@ public:
grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl;
PeriodicGaugeStatistics Stats; Stats(Umu, clone);
GaugeStatistics(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -208,7 +208,7 @@ public:
FieldMetaData clone(header);
PeriodicGaugeStatistics Stats; Stats(Umu, clone);
GaugeStatistics(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -44,7 +44,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <sys/syscall.h>
#endif
#ifdef __x86_64__
#ifdef GRID_CUDA
#ifdef GRID_NVCC
accelerator_inline uint64_t __rdtsc(void) { return 0; }
accelerator_inline uint64_t __rdpmc(int ) { return 0; }
#else
@ -112,6 +112,7 @@ class PerformanceCounter {
private:
typedef struct {
public:
uint32_t type;
uint64_t config;
const char *name;

View File

@ -12773,7 +12773,7 @@ namespace pugi
#undef PUGI__THROW_ERROR
#undef PUGI__CHECK_ERROR
#ifdef GRID_CUDA
#ifdef GRID_NVCC
#pragma pop
#endif

View File

@ -47,7 +47,7 @@ static constexpr int Ym = 5;
static constexpr int Zm = 6;
static constexpr int Tm = 7;
static constexpr int Nc=Config_Nc;
static constexpr int Nc=3;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nhs=2; // half spinor
@ -80,13 +80,6 @@ template<typename T> struct isSpinor {
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
const int CoarseIndex = 4;
template<typename T> struct isCoarsened {
static constexpr bool value = (CoarseIndex<=T::TensorLevel);
};
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator

View File

@ -41,7 +41,7 @@ class Action
public:
bool is_smeared = false;
// Heatbath?
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
virtual std::string action_name() = 0; // return the action name

View File

@ -1,240 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
//
// Modifications done here:
//
// Original: clover term = 12x12 matrix per site
//
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
//
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
//
// Words per site and improvement compared to original (combined with the input and output spinors):
//
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
//
// These improvements directly translate to wall-clock time
//
// Data layout:
//
// - diagonal and triangle part as separate lattice fields,
// this was faster than as 1 combined field on all tested machines
// - diagonal: as expected
// - triangle: store upper right triangle in row major order
// - graphical:
// 0 1 2 3 4
// 5 6 7 8
// 9 10 11 = upper right triangle indices
// 12 13
// 14
// 0
// 1
// 2
// 3 = diagonal indices
// 4
// 5
// 0
// 1 5
// 2 6 9 = lower left triangle indices
// 3 7 10 12
// 4 8 11 13 14
//
// Impact on total memory consumption:
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
bool open_boundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -114,22 +114,19 @@ public:
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uadj, U, mu);
}
autoView(Umu_v,Umu,CpuRead);
autoView(Uadj_v,Uadj,CpuRead);
autoView(Uds_v,Uds,CpuWrite);
thread_for( lidx, GaugeGrid->lSites(), {
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
Coordinate lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUmu, Umu_v, lcoor);
peekLocalSite(ScalarUmu, Umu, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
peekLocalSite(ScalarUmu, Uadj_v, lcoor);
peekLocalSite(ScalarUmu, Uadj, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
pokeLocalSite(ScalarUds, Uds_v, lcoor);
});
pokeLocalSite(ScalarUds, Uds, lcoor);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu)

View File

@ -53,12 +53,10 @@ NAMESPACE_CHECK(Wilson);
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
#include <Grid/qcd/action/fermion/NaiveStaggeredFermion.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
NAMESPACE_CHECK(Staggered);
@ -116,9 +114,9 @@ typedef WilsonFermion<WilsonImplR> WilsonFermionR;
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
//typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
//typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
//typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
@ -154,63 +152,46 @@ typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoInd
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
//typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
//typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
//typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
//typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
//typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
//typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
//typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
//typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
//typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
//typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
//typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
//typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
//typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
//typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
//typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
@ -253,62 +234,64 @@ typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR;
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
//typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
//typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
//typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
//typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
//typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
//typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
//typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
//typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
//typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
//typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
//typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
//typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
//typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
//typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
//typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
//typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
//typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
//typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
#ifndef GRID_NVCC
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplR> ImprovedStaggeredFermionVec5dR;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplF> ImprovedStaggeredFermionVec5dF;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplD> ImprovedStaggeredFermionVec5dD;
#endif
NAMESPACE_END(Grid);
////////////////////

View File

@ -153,8 +153,8 @@ public:
typedef typename Impl::StencilImpl StencilImpl; \
typedef typename Impl::ImplParams ImplParams; \
typedef typename Impl::StencilImpl::View_type StencilView; \
typedef const typename ViewMap<FermionField>::Type FermionFieldView; \
typedef const typename ViewMap<DoubledGaugeField>::Type DoubledGaugeFieldView;
typedef typename ViewMap<FermionField>::Type FermionFieldView; \
typedef typename ViewMap<DoubledGaugeField>::Type DoubledGaugeFieldView;
#define INHERIT_IMPL_TYPES(Base) \
INHERIT_GIMPL_TYPES(Base) \
@ -183,8 +183,7 @@ NAMESPACE_CHECK(ImplStaggered);
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec
/////////////////////////////////////////////////////////////////////////////
// Deprecate Vec5d
//#include <Grid/qcd/action/fermion/StaggeredVec5dImpl.h>
//NAMESPACE_CHECK(ImplStaggered5dVec);
#include <Grid/qcd/action/fermion/StaggeredVec5dImpl.h>
NAMESPACE_CHECK(ImplStaggered5dVec);

View File

@ -96,31 +96,43 @@ public:
int sl = St._simd_layout[direction];
Coordinate icoor;
#ifdef GRID_SIMT
#ifdef __CUDA_ARCH__
_Spinor tmp;
const int Nsimd =SiteDoubledGaugeField::Nsimd();
int s = acceleratorSIMTlane(Nsimd);
int s = SIMTlane(Nsimd);
St.iCoorFromIindex(icoor,s);
int mmu = mu % Nd;
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
//Decide whether we do a G-parity flavor twist
//Note: this assumes (but does not check) that sl==1 || sl==2 i.e. max 2 SIMD lanes in G-parity dir
//It also assumes (but does not check) that abs(distance) == 1
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
if ( permute_lane ) {
tmp(0) = chi(1);
tmp(1) = chi(0);
} else {
tmp(0) = chi(0);
tmp(1) = chi(1);
}
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
//Apply the links
int f_upper = permute_lane ? 1 : 0;
int f_lower = !f_upper;
mult(&phi(0),&UU0,&tmp(0));
mult(&phi(1),&UU1,&tmp(1));
mult(&phi(0),&UU0,&chi(f_upper));
mult(&phi(1),&UU1,&chi(f_lower));
} else {
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
mult(&phi(0),&UU0,&chi(0));
mult(&phi(1),&UU1,&chi(1));
}
#else
typedef _Spinor vobj;
@ -220,17 +232,15 @@ public:
if ( Params.twists[mu] ) {
Uconj = where(coor==neglink,-Uconj,Uconj);
}
{
autoView( U_v , U, CpuRead);
autoView( Uconj_v , Uconj, CpuRead);
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
}
auto U_v = U.View();
auto Uds_v = Uds.View();
auto Uconj_v = Uconj.View();
auto Utmp_v= Utmp.View();
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
Uconj = adj(Cshift(Uconj,mu,-1));
@ -240,25 +250,19 @@ public:
Utmp = where(coor==0,Uconj,Utmp);
}
{
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
});
}
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
});
Utmp = Uconj;
if ( Params.twists[mu] ) {
Utmp = where(coor==0,U,Utmp);
}
{
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
});
}
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
});
}
}
@ -268,14 +272,11 @@ public:
GaugeLinkField link(mat.Grid());
// use lorentz for flavour as hack.
auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
{
autoView( link_v , link, CpuWrite);
autoView( tmp_v , tmp, CpuRead);
thread_foreach(ss,tmp_v,{
link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
});
}
auto link_v = link.View();
auto tmp_v = tmp.View();
thread_foreach(ss,tmp_v,{
link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
});
PokeIndex<LorentzIndex>(mat, link, mu);
return;
}
@ -305,18 +306,16 @@ public:
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
{
autoView( tmp_v , tmp, CpuWrite);
autoView( Atilde_v , Atilde, CpuRead);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
}
auto tmp_v = tmp.View();
auto Atilde_v = Atilde.View();
auto Btilde_v = Btilde.View();
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
@ -327,8 +326,8 @@ typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> Gparit
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffReal> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffReal> GparityWilsonImplD; // Double
//typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
//typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplFH; // Float
//typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplDF; // Double
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplFH; // Float
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplDF; // Double
NAMESPACE_END(Grid);

View File

@ -61,8 +61,8 @@ public:
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
@ -208,7 +208,7 @@ public:
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
///////////////////////////////////////////////////////////////
// Conserved current utilities

View File

@ -85,7 +85,7 @@ class MADWF
maxiter =_maxiter;
};
void operator() (const FermionFieldo &src,FermionFieldo &sol5)
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
{
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " MADWF-like algorithm " << std::endl;
@ -114,16 +114,8 @@ class MADWF
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
GridBase *src_grid = src.Grid();
assert( (src_grid == Mato.GaugeGrid()) || (src_grid == Mato.FermionGrid()));
if ( src_grid == Mato.GaugeGrid() ) {
Mato.ImportPhysicalFermionSource(src,b);
} else {
b=src;
}
std::cout << GridLogMessage << " src " <<norm2(src)<<std::endl;
Mato.ImportPhysicalFermionSource(src4,b);
std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
std::cout << GridLogMessage << " b " <<norm2(b)<<std::endl;
defect = b;

View File

@ -1,194 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggered.h
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_NAIVE_STAG_FERMION_H
#define GRID_QCD_NAIVE_STAG_FERMION_H
NAMESPACE_BEGIN(Grid);
class NaiveStaggeredFermionStatic {
public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 8;
};
template <class Impl>
class NaiveStaggeredFermion : public StaggeredKernels<Impl>, public NaiveStaggeredFermionStatic {
public:
INHERIT_IMPL_TYPES(Impl);
typedef StaggeredKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid; }
GridBase *GaugeRedBlackGrid(void) { return _cbgrid; }
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
void M(const FermionField &in, FermionField &out);
void Mdag(const FermionField &in, FermionField &out);
/////////////////////////////////////////////////////////
// half checkerboard operations
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out);
void MeooeDag(const FermionField &in, FermionField &out);
void Mooee(const FermionField &in, FermionField &out);
void MooeeDag(const FermionField &in, FermionField &out);
void MooeeInv(const FermionField &in, FermionField &out);
void MooeeInvDag(const FermionField &in, FermionField &out);
////////////////////////
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv (GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
///////////////////////////////////////////////////////////////
void Dhop (const FermionField &in, FermionField &out, int dag);
void DhopOE(const FermionField &in, FermionField &out, int dag);
void DhopEO(const FermionField &in, FermionField &out, int dag);
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl &st,
DoubledGaugeField &U,
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
// Grid own interface Constructor
//////////////////////////////////////////////////////////////////////////
NaiveStaggeredFermion(GaugeField &_U, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p = ImplParams());
NaiveStaggeredFermion(GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p = ImplParams());
// DoubleStore impl dependent
void ImportGauge (const GaugeField &_U );
DoubledGaugeField &GetU(void) { return Umu ; } ;
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
// protected:
public:
// any other parameters of action ???
virtual int isTrivialEE(void) { return 1; };
virtual RealD Mass(void) { return mass; }
RealD mass;
RealD u0;
RealD c1;
GridBase *_grid;
GridBase *_cbgrid;
// Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu);
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &srct,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
};
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
NAMESPACE_END(Grid);
#endif

View File

@ -72,23 +72,19 @@ public:
StaggeredImpl(const ImplParams &p = ImplParams()) : Params(p){};
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
static accelerator_inline void multLink(SiteSpinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
const SiteSpinor &chi,
int mu)
{
auto UU = coalescedRead(U(mu));
mult(&phi(), &UU, &chi());
mult(&phi(), &U(mu), &chi());
}
template<class _Spinor>
static accelerator_inline void multLinkAdd(_Spinor &phi,
static accelerator_inline void multLinkAdd(SiteSpinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
const SiteSpinor &chi,
int mu)
{
auto UU = coalescedRead(U(mu));
mac(&phi(), &UU, &chi());
mac(&phi(), &U(mu), &chi());
}
template <class ref>

View File

@ -47,37 +47,23 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
public:
void DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp);
protected:
public:
void DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp);
///////////////////////////////////////////////////////////////////////////////////////
// Generic Nc kernels
///////////////////////////////////////////////////////////////////////////////////////
template<int Naik>
static accelerator_inline
void DhopSiteGeneric(StencilView &st,
void DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteGenericInt(StencilView &st,
void DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteGenericExt(StencilView &st,
void DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
@ -85,21 +71,15 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
///////////////////////////////////////////////////////////////////////////////////////
// Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
template<int Naik> static accelerator_inline
void DhopSiteHand(StencilView &st,
void DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteHandInt(StencilView &st,
void DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
template<int Naik> static accelerator_inline
void DhopSiteHandExt(StencilView &st,
void DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
@ -107,11 +87,27 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
///////////////////////////////////////////////////////////////////////////////////////
// Asm Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteAsm(StencilView &st,
void DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out,int dag);
///////////////////////////////////////////////////////////////////////////////////////////////////
// Generic interface; fan out to right routine
///////////////////////////////////////////////////////////////////////////////////////////////////
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int interior=1,int exterior=1);
void DhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int interior=1,int exterior=1);
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionFieldView &in, FermionFieldView &out, int dag, int interior,int exterior);
public:

View File

@ -113,7 +113,20 @@ public:
inline void InsertGaugeField(DoubledGaugeField &U_ds,const GaugeLinkField &U,int mu)
{
assert(0);
GridBase *GaugeGrid = U_ds.Grid();
thread_for(lidx, GaugeGrid->lSites(),{
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
Coordinate lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, U_ds, lcoor);
peekLocalSite(ScalarU, U, lcoor);
ScalarUds(mu) = ScalarU();
});
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term

View File

@ -4,11 +4,10 @@
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
Copyright (C) 2017 - 2022
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: David Preti <>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,8 +29,7 @@
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
@ -52,15 +50,18 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>
{
public:
// Types definitions
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype>
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteCloverType;
typedef Lattice<SiteCloverType> CloverFieldType;
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
public:
typedef WilsonFermion<Impl> WilsonBase;
virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){};
@ -71,7 +72,42 @@ public:
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams &impl_p = ImplParams());
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, impl_p, clover_anisotropy),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
{
assert(Nd == 4); // require 4 dimensions
if (clover_anisotropy.isAnisotropic)
{
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
}
else
{
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if (csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if (csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
virtual void M(const FermionField &in, FermionField &out);
virtual void Mdag(const FermionField &in, FermionField &out);
@ -88,21 +124,249 @@ public:
void ImportGauge(const GaugeField &_Umu);
// Derivative parts unpreconditioned pseudofermions
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag);
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
public:
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
private:
// here fixing the 4 dimensions, make it more general?
RealD csw_r; // Clover coefficient - spatial
RealD csw_t; // Clover coefficient - temporal
RealD diag_mass; // Mass term
CloverField CloverTerm, CloverTermInv; // Clover term
CloverField CloverTermEven, CloverTermOdd; // Clover term EO
CloverField CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverField CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverField CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
};
CloverFieldType CloverTerm, CloverTermInv; // Clover term
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
{
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
{
T_v[i]()(0, 1) = -F_v[i]()();
T_v[i]()(1, 0) = F_v[i]()();
T_v[i]()(2, 3) = -F_v[i]()();
T_v[i]()(3, 2) = F_v[i]()();
});
return T;
}
CloverFieldType fillCloverXY(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
{
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
T_v[i]()(1, 1) = timesI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
{
T_v[i]()(0, 1) = timesI(F_v[i]()());
T_v[i]()(1, 0) = timesI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverYT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
{
T_v[i]()(0, 1) = -(F_v[i]()());
T_v[i]()(1, 0) = (F_v[i]()());
T_v[i]()(2, 3) = (F_v[i]()());
T_v[i]()(3, 2) = -(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverZT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
auto T_v = T.View();
auto F_v = F.View();
thread_for(i, CloverTerm.Grid()->oSites(),
{
T_v[i]()(0, 0) = timesI(F_v[i]()());
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
};
NAMESPACE_END(Grid);

View File

@ -1,761 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverHelpers.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
// Helper routines that implement common clover functionality
NAMESPACE_BEGIN(Grid);
template<class Impl> class WilsonCloverHelpers {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
static CloverField fillCloverYZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(F_v[i]()()));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(F_v[i]()()));
});
return T;
}
static CloverField fillCloverXY(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverYT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(-(F_v[i]()())));
});
return T;
}
static CloverField fillCloverZT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
template<class _Spinor>
static accelerator_inline void multClover(_Spinor& phi, const SiteClover& C, const _Spinor& chi) {
auto CC = coalescedRead(C);
mult(&phi, &CC, &chi);
}
template<class _SpinorField>
inline void multCloverField(_SpinorField& out, const CloverField& C, const _SpinorField& phi) {
const int Nsimd = SiteSpinor::Nsimd();
autoView(out_v, out, AcceleratorWrite);
autoView(phi_v, phi, AcceleratorRead);
autoView(C_v, C, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multClover(tmp,C_v[sss],phi_v(sss));
coalescedWrite(out_v[sss],tmp);
});
}
};
template<class Impl> class CompactWilsonCloverHelpers {
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
#if 0
static accelerator_inline typename SiteCloverTriangle::vector_type triangle_elem(const SiteCloverTriangle& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#else
template<typename vobj>
static accelerator_inline vobj triangle_elem(const iImplCloverTriangle<vobj>& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#endif
static accelerator_inline int triangle_index(int i, int j) {
if(i == j)
return 0;
else if(i < j)
return Nred * (Nred - 1) / 2 - (Nred - i) * (Nred - i - 1) / 2 + j - i - 1;
else // i > j
return Nred * (Nred - 1) / 2 - (Nred - j) * (Nred - j - 1) / 2 + i - j - 1;
}
static void MooeeKernel_gpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(in_v, in, AcceleratorRead);
autoView(out_v, out, AcceleratorWrite);
typedef decltype(coalescedRead(out_v[0])) CalcSpinor;
const uint64_t NN = Nsite * Ls;
accelerator_for(ss, NN, Simd::Nsimd(), {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v(sF);
auto diagonal_t = diagonal_v(sU);
auto triangle_t = triangle_v(sU);
for(int block=0; block<Nhs; block++) {
int s_start = block*Nhs;
for(int i=0; i<Nred; i++) {
int si = s_start + i/Nc, ci = i%Nc;
res()(si)(ci) = diagonal_t()(block)(i) * in_t()(si)(ci);
for(int j=0; j<Nred; j++) {
if (j == i) continue;
int sj = s_start + j/Nc, cj = j%Nc;
res()(si)(ci) = res()(si)(ci) + triangle_elem(triangle_t, block, i, j) * in_t()(sj)(cj);
};
};
};
coalescedWrite(out_v[sF], res);
});
}
static void MooeeKernel_cpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(in_v, in, CpuRead);
autoView(out_v, out, CpuWrite);
typedef SiteSpinor CalcSpinor;
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
#define PREFETCH_CLOVER(BASE) { \
uint64_t base; \
int pf_dist_L1 = 1; \
int pf_dist_L2 = -5; /* -> penalty -> disable */ \
\
if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL1STRM); \
} \
\
if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL2STRM); \
} \
}
// TODO: Implement/generalize this for other architectures
// I played around a bit on KNL (see below) but didn't bring anything
// #elif defined(AVX512)
// #define PREFETCH_CLOVER(BASE) { \
// uint64_t base; \
// int pf_dist_L1 = 1; \
// int pf_dist_L2 = +4; \
// \
// if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T0); \
// } \
// \
// if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T1); \
// } \
// }
#else
#define PREFETCH_CLOVER(BASE)
#endif
const uint64_t NN = Nsite * Ls;
thread_for(ss, NN, {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v[sF];
auto diag_t = diagonal_v[sU]; // "diag" instead of "diagonal" here to make code below easier to read
auto triangle_t = triangle_v[sU];
// upper half
PREFETCH_CLOVER(0);
auto in_cc_0_0 = conjugate(in_t()(0)(0)); // Nils: reduces number
auto in_cc_0_1 = conjugate(in_t()(0)(1)); // of conjugates from
auto in_cc_0_2 = conjugate(in_t()(0)(2)); // 30 to 20
auto in_cc_1_0 = conjugate(in_t()(1)(0));
auto in_cc_1_1 = conjugate(in_t()(1)(1));
res()(0)(0) = diag_t()(0)( 0) * in_t()(0)(0)
+ triangle_t()(0)( 0) * in_t()(0)(1)
+ triangle_t()(0)( 1) * in_t()(0)(2)
+ triangle_t()(0)( 2) * in_t()(1)(0)
+ triangle_t()(0)( 3) * in_t()(1)(1)
+ triangle_t()(0)( 4) * in_t()(1)(2);
res()(0)(1) = triangle_t()(0)( 0) * in_cc_0_0;
res()(0)(1) = diag_t()(0)( 1) * in_t()(0)(1)
+ triangle_t()(0)( 5) * in_t()(0)(2)
+ triangle_t()(0)( 6) * in_t()(1)(0)
+ triangle_t()(0)( 7) * in_t()(1)(1)
+ triangle_t()(0)( 8) * in_t()(1)(2)
+ conjugate( res()(0)( 1));
res()(0)(2) = triangle_t()(0)( 1) * in_cc_0_0
+ triangle_t()(0)( 5) * in_cc_0_1;
res()(0)(2) = diag_t()(0)( 2) * in_t()(0)(2)
+ triangle_t()(0)( 9) * in_t()(1)(0)
+ triangle_t()(0)(10) * in_t()(1)(1)
+ triangle_t()(0)(11) * in_t()(1)(2)
+ conjugate( res()(0)( 2));
res()(1)(0) = triangle_t()(0)( 2) * in_cc_0_0
+ triangle_t()(0)( 6) * in_cc_0_1
+ triangle_t()(0)( 9) * in_cc_0_2;
res()(1)(0) = diag_t()(0)( 3) * in_t()(1)(0)
+ triangle_t()(0)(12) * in_t()(1)(1)
+ triangle_t()(0)(13) * in_t()(1)(2)
+ conjugate( res()(1)( 0));
res()(1)(1) = triangle_t()(0)( 3) * in_cc_0_0
+ triangle_t()(0)( 7) * in_cc_0_1
+ triangle_t()(0)(10) * in_cc_0_2
+ triangle_t()(0)(12) * in_cc_1_0;
res()(1)(1) = diag_t()(0)( 4) * in_t()(1)(1)
+ triangle_t()(0)(14) * in_t()(1)(2)
+ conjugate( res()(1)( 1));
res()(1)(2) = triangle_t()(0)( 4) * in_cc_0_0
+ triangle_t()(0)( 8) * in_cc_0_1
+ triangle_t()(0)(11) * in_cc_0_2
+ triangle_t()(0)(13) * in_cc_1_0
+ triangle_t()(0)(14) * in_cc_1_1;
res()(1)(2) = diag_t()(0)( 5) * in_t()(1)(2)
+ conjugate( res()(1)( 2));
vstream(out_v[sF]()(0)(0), res()(0)(0));
vstream(out_v[sF]()(0)(1), res()(0)(1));
vstream(out_v[sF]()(0)(2), res()(0)(2));
vstream(out_v[sF]()(1)(0), res()(1)(0));
vstream(out_v[sF]()(1)(1), res()(1)(1));
vstream(out_v[sF]()(1)(2), res()(1)(2));
// lower half
PREFETCH_CLOVER(1);
auto in_cc_2_0 = conjugate(in_t()(2)(0));
auto in_cc_2_1 = conjugate(in_t()(2)(1));
auto in_cc_2_2 = conjugate(in_t()(2)(2));
auto in_cc_3_0 = conjugate(in_t()(3)(0));
auto in_cc_3_1 = conjugate(in_t()(3)(1));
res()(2)(0) = diag_t()(1)( 0) * in_t()(2)(0)
+ triangle_t()(1)( 0) * in_t()(2)(1)
+ triangle_t()(1)( 1) * in_t()(2)(2)
+ triangle_t()(1)( 2) * in_t()(3)(0)
+ triangle_t()(1)( 3) * in_t()(3)(1)
+ triangle_t()(1)( 4) * in_t()(3)(2);
res()(2)(1) = triangle_t()(1)( 0) * in_cc_2_0;
res()(2)(1) = diag_t()(1)( 1) * in_t()(2)(1)
+ triangle_t()(1)( 5) * in_t()(2)(2)
+ triangle_t()(1)( 6) * in_t()(3)(0)
+ triangle_t()(1)( 7) * in_t()(3)(1)
+ triangle_t()(1)( 8) * in_t()(3)(2)
+ conjugate( res()(2)( 1));
res()(2)(2) = triangle_t()(1)( 1) * in_cc_2_0
+ triangle_t()(1)( 5) * in_cc_2_1;
res()(2)(2) = diag_t()(1)( 2) * in_t()(2)(2)
+ triangle_t()(1)( 9) * in_t()(3)(0)
+ triangle_t()(1)(10) * in_t()(3)(1)
+ triangle_t()(1)(11) * in_t()(3)(2)
+ conjugate( res()(2)( 2));
res()(3)(0) = triangle_t()(1)( 2) * in_cc_2_0
+ triangle_t()(1)( 6) * in_cc_2_1
+ triangle_t()(1)( 9) * in_cc_2_2;
res()(3)(0) = diag_t()(1)( 3) * in_t()(3)(0)
+ triangle_t()(1)(12) * in_t()(3)(1)
+ triangle_t()(1)(13) * in_t()(3)(2)
+ conjugate( res()(3)( 0));
res()(3)(1) = triangle_t()(1)( 3) * in_cc_2_0
+ triangle_t()(1)( 7) * in_cc_2_1
+ triangle_t()(1)(10) * in_cc_2_2
+ triangle_t()(1)(12) * in_cc_3_0;
res()(3)(1) = diag_t()(1)( 4) * in_t()(3)(1)
+ triangle_t()(1)(14) * in_t()(3)(2)
+ conjugate( res()(3)( 1));
res()(3)(2) = triangle_t()(1)( 4) * in_cc_2_0
+ triangle_t()(1)( 8) * in_cc_2_1
+ triangle_t()(1)(11) * in_cc_2_2
+ triangle_t()(1)(13) * in_cc_3_0
+ triangle_t()(1)(14) * in_cc_3_1;
res()(3)(2) = diag_t()(1)( 5) * in_t()(3)(2)
+ conjugate( res()(3)( 2));
vstream(out_v[sF]()(2)(0), res()(2)(0));
vstream(out_v[sF]()(2)(1), res()(2)(1));
vstream(out_v[sF]()(2)(2), res()(2)(2));
vstream(out_v[sF]()(3)(0), res()(3)(0));
vstream(out_v[sF]()(3)(1), res()(3)(1));
vstream(out_v[sF]()(3)(2), res()(3)(2));
});
}
static void MooeeKernel(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
#if defined(GRID_CUDA) || defined(GRID_HIP)
MooeeKernel_gpu(Nsite, Ls, in, out, diagonal, triangle);
#else
MooeeKernel_cpu(Nsite, Ls, in, out, diagonal, triangle);
#endif
}
static void Invert(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv) {
conformable(diagonal, diagonalInv);
conformable(triangle, triangleInv);
conformable(diagonal, triangle);
diagonalInv.Checkerboard() = diagonal.Checkerboard();
triangleInv.Checkerboard() = triangle.Checkerboard();
GridBase* grid = diagonal.Grid();
long lsites = grid->lSites();
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(diagonalInv_v, diagonalInv, CpuWrite);
autoView(triangleInv_v, triangleInv, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of Eigen & (peek/poke)LocalSite
Eigen::MatrixXcd clover_inv_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
Eigen::MatrixXcd clover_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_inv_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_inv_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
// TODO: can we save time here by inverting the two 6x6 hermitian matrices separately?
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
else
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(triangle_elem(triangle_tmp, block, i, j)));
}
}
}
}
clover_inv_eigen = clover_eigen.inverse();
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_inv_tmp()(block)(i) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else if(i < j)
triangle_inv_tmp()(block)(triangle_index(i, j)) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else
continue;
}
}
}
}
pokeLocalSite(diagonal_inv_tmp, diagonalInv_v, lcoor);
pokeLocalSite(triangle_inv_tmp, triangleInv_v, lcoor);
});
}
static void ConvertLayout(const CloverField& full,
CloverDiagonalField& diagonal,
CloverTriangleField& triangle) {
conformable(full, diagonal);
conformable(full, triangle);
diagonal.Checkerboard() = full.Checkerboard();
triangle.Checkerboard() = full.Checkerboard();
autoView(full_v, full, AcceleratorRead);
autoView(diagonal_v, diagonal, AcceleratorWrite);
autoView(triangle_v, triangle, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_v[ss]()(block)(i) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else if(i < j)
triangle_v[ss]()(block)(triangle_index(i, j)) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else
continue;
}
}
}
}
});
}
static void ConvertLayout(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverField& full) {
conformable(full, diagonal);
conformable(full, triangle);
full.Checkerboard() = diagonal.Checkerboard();
full = Zero();
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(full_v, full, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
full_v[ss]()(s_row, s_col)(c_row, c_col) = diagonal_v[ss]()(block)(i);
else
full_v[ss]()(s_row, s_col)(c_row, c_col) = triangle_elem(triangle_v[ss], block, i, j);
}
}
}
}
});
}
static void ModifyBoundaries(CloverDiagonalField& diagonal, CloverTriangleField& triangle, RealD csw_t, RealD cF, RealD diag_mass) {
// Checks/grid
double t0 = usecond();
conformable(diagonal, triangle);
GridBase* grid = diagonal.Grid();
// Determine the boundary coordinates/sites
double t1 = usecond();
int t_dir = Nd - 1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
// Set off-diagonal parts at boundary to zero -- OK
double t2 = usecond();
CloverTriangleField zeroTriangle(grid);
zeroTriangle.Checkerboard() = triangle.Checkerboard();
zeroTriangle = Zero();
triangle = where(t_coor == 0, zeroTriangle, triangle);
triangle = where(t_coor == T-1, zeroTriangle, triangle);
// Set diagonal to unity (scaled correctly) -- OK
double t3 = usecond();
CloverDiagonalField tmp(grid);
tmp.Checkerboard() = diagonal.Checkerboard();
tmp = -1.0 * csw_t + diag_mass;
diagonal = where(t_coor == 0, tmp, diagonal);
diagonal = where(t_coor == T-1, tmp, diagonal);
// Correct values next to boundary
double t4 = usecond();
if(cF != 1.0) {
tmp = cF - 1.0;
tmp += diagonal;
diagonal = where(t_coor == 1, tmp, diagonal);
diagonal = where(t_coor == T-2, tmp, diagonal);
}
// Report timings
double t5 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverHelpers::ModifyBoundaries timings:"
<< " checks = " << (t1 - t0) / 1e6
<< ", coordinate = " << (t2 - t1) / 1e6
<< ", off-diag zero = " << (t3 - t2) / 1e6
<< ", diagonal unity = " << (t4 - t3) / 1e6
<< ", near-boundary = " << (t5 - t4) / 1e6
<< ", total = " << (t5 - t0) / 1e6
<< std::endl;
#endif
}
template<class Field, class Mask>
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
conformable(f, m);
auto grid = f.Grid();
const uint32_t Nsite = grid->oSites();
const uint32_t Nsimd = grid->Nsimd();
autoView(f_v, f, AcceleratorWrite);
autoView(m_v, m, AcceleratorRead);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, Nsite, Nsimd, {
coalescedWrite(f_v[ss], m_v(ss) * f_v(ss));
});
}
template<class MaskField>
static void SetupMasks(MaskField& full, MaskField& even, MaskField& odd) {
assert(even.Grid()->_isCheckerBoarded && even.Checkerboard() == Even);
assert(odd.Grid()->_isCheckerBoarded && odd.Checkerboard() == Odd);
assert(!full.Grid()->_isCheckerBoarded);
GridBase* grid = full.Grid();
int t_dir = Nd-1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
MaskField zeroMask(grid); zeroMask = Zero();
full = 1.0;
full = where(t_coor == 0, zeroMask, full);
full = where(t_coor == T-1, zeroMask, full);
pickCheckerboard(Even, even, full);
pickCheckerboard(Odd, odd, full);
}
};
NAMESPACE_END(Grid);

View File

@ -1,92 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverTypes.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteClover;
typedef Lattice<SiteClover> CloverField;
};
template<class Impl>
class CompactWilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6
static constexpr int Ntriangle = (Nred - 1) * Nc; // 15
template<typename vtype> using iImplCloverDiagonal = iScalar<iVector<iVector<vtype, Ndiagonal>, Nblock>>;
template<typename vtype> using iImplCloverTriangle = iScalar<iVector<iVector<vtype, Ntriangle>, Nblock>>;
typedef iImplCloverDiagonal<Simd> SiteCloverDiagonal;
typedef iImplCloverTriangle<Simd> SiteCloverTriangle;
typedef iSinglet<Simd> SiteMask;
typedef Lattice<SiteCloverDiagonal> CloverDiagonalField;
typedef Lattice<SiteCloverTriangle> CloverTriangleField;
typedef Lattice<SiteMask> MaskField;
};
#define INHERIT_CLOVER_TYPES(Impl) \
typedef typename WilsonCloverTypes<Impl>::SiteClover SiteClover; \
typedef typename WilsonCloverTypes<Impl>::CloverField CloverField;
#define INHERIT_COMPACT_CLOVER_TYPES(Impl) \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverDiagonal SiteCloverDiagonal; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverTriangle SiteCloverTriangle; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteMask SiteMask; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverDiagonalField CloverDiagonalField; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverTriangleField CloverTriangleField; \
typedef typename CompactWilsonCloverTypes<Impl>::MaskField MaskField; \
/* ugly duplication but needed inside functionality classes */ \
template<typename vtype> using iImplCloverDiagonal = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ndiagonal>, CompactWilsonCloverTypes<Impl>::Nblock>>; \
template<typename vtype> using iImplCloverTriangle = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ntriangle>, CompactWilsonCloverTypes<Impl>::Nblock>>;
#define INHERIT_COMPACT_CLOVER_SIZES(Impl) \
static constexpr int Nred = CompactWilsonCloverTypes<Impl>::Nred; \
static constexpr int Nblock = CompactWilsonCloverTypes<Impl>::Nblock; \
static constexpr int Ndiagonal = CompactWilsonCloverTypes<Impl>::Ndiagonal; \
static constexpr int Ntriangle = CompactWilsonCloverTypes<Impl>::Ntriangle;
NAMESPACE_END(Grid);

View File

@ -61,19 +61,18 @@ public:
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
accelerator_inline int CommDatumSize(void) const {
accelerator_inline int CommDatumSize(void) {
return sizeof(SiteHalfCommSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
typedef decltype(coalescedRead(buf)) sobj;
sobj sp;
auto sin = coalescedRead(in);
projector::Proj(sp,sin,mu,dag);
coalescedWrite(buf,sp);
template<class _SiteHalfSpinor, class _SiteSpinor>
accelerator_inline void Compress(_SiteHalfSpinor *buf,Integer o,const _SiteSpinor &in) {
_SiteHalfSpinor tmp;
projector::Proj(tmp,in,mu,dag);
vstream(buf[o],tmp);
}
/*****************************************************/
@ -82,24 +81,19 @@ public:
accelerator_inline void Exchange(SiteHalfSpinor *mp,
const SiteHalfSpinor * __restrict__ vp0,
const SiteHalfSpinor * __restrict__ vp1,
Integer type,Integer o) const {
#ifdef GRID_SIMT
exchangeSIMT(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
#else
Integer type,Integer o){
SiteHalfSpinor tmp1;
SiteHalfSpinor tmp2;
exchange(tmp1,tmp2,vp0[o],vp1[o],type);
vstream(mp[2*o ],tmp1);
vstream(mp[2*o+1],tmp2);
#endif
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
accelerator_inline void Decompress(SiteHalfSpinor * __restrict__ out,
SiteHalfSpinor * __restrict__ in, Integer o) const {
SiteHalfSpinor * __restrict__ in, Integer o) {
assert(0);
}
@ -109,30 +103,8 @@ public:
accelerator_inline void CompressExchange(SiteHalfSpinor * __restrict__ out0,
SiteHalfSpinor * __restrict__ out1,
const SiteSpinor * __restrict__ in,
Integer j,Integer k, Integer m,Integer type) const
Integer j,Integer k, Integer m,Integer type)
{
#ifdef GRID_SIMT
typedef SiteSpinor vobj;
typedef SiteHalfSpinor hvobj;
typedef decltype(coalescedRead(*in)) sobj;
typedef decltype(coalescedRead(*out0)) hsobj;
unsigned int Nsimd = vobj::Nsimd();
unsigned int mask = Nsimd >> (type + 1);
int lane = acceleratorSIMTlane(Nsimd);
int j0 = lane &(~mask); // inner coor zero
int j1 = lane |(mask) ; // inner coor one
const vobj *vp0 = &in[k];
const vobj *vp1 = &in[m];
const vobj *vp = (lane&mask) ? vp1:vp0;
auto sa = coalescedRead(*vp,j0);
auto sb = coalescedRead(*vp,j1);
hsobj psa, psb;
projector::Proj(psa,sa,mu,dag);
projector::Proj(psb,sb,mu,dag);
coalescedWrite(out0[j],psa);
coalescedWrite(out1[j],psb);
#else
SiteHalfSpinor temp1, temp2;
SiteHalfSpinor temp3, temp4;
projector::Proj(temp1,in[k],mu,dag);
@ -140,17 +112,15 @@ public:
exchange(temp3,temp4,temp1,temp2,type);
vstream(out0[j],temp3);
vstream(out1[j],temp4);
#endif
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
accelerator_inline bool DecompressionStep(void) const { return false; }
accelerator_inline bool DecompressionStep(void) { return false; }
};
#if 0
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
@ -172,30 +142,20 @@ public:
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
accelerator_inline int CommDatumSize(void) const {
accelerator_inline int CommDatumSize(void) {
return sizeof(SiteHalfCommSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
SiteHalfSpinor hsp;
template<class _SiteHalfSpinor, class _SiteSpinor>
accelerator_inline void Compress(_SiteHalfSpinor *buf,Integer o,const _SiteSpinor &in) {
_SiteHalfSpinor hsp;
SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
projector::Proj(hsp,in,mu,dag);
precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
}
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
#ifdef GRID_SIMT
typedef decltype(coalescedRead(buf)) sobj;
sobj sp;
auto sin = coalescedRead(in);
projector::Proj(sp,sin,mu,dag);
coalescedWrite(buf,sp);
#else
projector::Proj(buf,in,mu,dag);
#endif
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
@ -203,7 +163,7 @@ public:
accelerator_inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o) const {
Integer type,Integer o){
SiteHalfSpinor vt0,vt1;
SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
@ -215,7 +175,7 @@ public:
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o) const {
accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o){
SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
}
@ -226,7 +186,7 @@ public:
accelerator_inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type) const {
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
@ -240,10 +200,9 @@ public:
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
accelerator_inline bool DecompressionStep(void) const { return true; }
accelerator_inline bool DecompressionStep(void) { return true; }
};
#endif
#define DECLARE_PROJ(Projector,Compressor,spProj) \
class Projector { \
@ -294,8 +253,33 @@ public:
typedef typename Base::View_type View_type;
typedef typename Base::StencilVector StencilVector;
void ZeroCountersi(void) { }
void Reporti(int calls) { }
double timer0;
double timer1;
double timer2;
double timer3;
double timer4;
double timer5;
double timer6;
uint64_t callsi;
void ZeroCountersi(void)
{
timer0=0;
timer1=0;
timer2=0;
timer3=0;
timer4=0;
timer5=0;
timer6=0;
callsi=0;
}
void Reporti(int calls)
{
if ( timer0 ) std::cout << GridLogMessage << " timer0 (HaloGatherOpt) " <<timer0/calls <<std::endl;
if ( timer1 ) std::cout << GridLogMessage << " timer1 (Communicate) " <<timer1/calls <<std::endl;
if ( timer2 ) std::cout << GridLogMessage << " timer2 (CommsMerge ) " <<timer2/calls <<std::endl;
if ( timer3 ) std::cout << GridLogMessage << " timer3 (commsMergeShm) " <<timer3/calls <<std::endl;
if ( timer4 ) std::cout << GridLogMessage << " timer4 " <<timer4 <<std::endl;
}
std::vector<int> surface_list;
@ -337,18 +321,26 @@ public:
{
std::vector<std::vector<CommsRequest_t> > reqs;
this->HaloExchangeOptGather(source,compress);
double t1=usecond();
// Asynchronous MPI calls multidirectional, Isend etc...
// Non-overlapped directions within a thread. Asynchronous calls except MPI3, threaded up to comm threads ways.
this->Communicate();
double t2=usecond(); timer1 += t2-t1;
this->CommsMerge(compress);
double t3=usecond(); timer2 += t3-t2;
this->CommsMergeSHM(compress);
double t4=usecond(); timer3 += t4-t3;
}
template <class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress)
{
this->Prepare();
double t0=usecond();
this->HaloGatherOpt(source,compress);
double t1=usecond();
timer0 += t1-t0;
callsi++;
}
template <class compressor>
@ -360,9 +352,12 @@ public:
typedef typename compressor::SiteHalfSpinor SiteHalfSpinor;
typedef typename compressor::SiteHalfCommSpinor SiteHalfCommSpinor;
this->mpi3synctime_g-=usecond();
this->_grid->StencilBarrier();
this->mpi3synctime_g+=usecond();
assert(source.Grid()==this->_grid);
this->halogtime-=usecond();
this->u_comm_offset=0;
@ -398,6 +393,7 @@ public:
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
this->halogtime+=usecond();
accelerator_barrier();
}

View File

@ -50,14 +50,14 @@ public:
double, nu);
WilsonAnisotropyCoefficients():
isAnisotropic(false),
t_direction(Nd-1),
xi_0(1.0),
isAnisotropic(false),
t_direction(Nd-1),
xi_0(1.0),
nu(1.0){}
};
template <class Impl>
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
@ -74,20 +74,6 @@ public:
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopTotalTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
@ -152,7 +138,7 @@ public:
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p = ImplParams(),
const ImplParams &p = ImplParams(),
const WilsonAnisotropyCoefficients &anis = WilsonAnisotropyCoefficients() );
// DoubleStore impl dependent
@ -184,9 +170,9 @@ public:
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
@ -200,7 +186,7 @@ public:
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
@ -210,3 +196,5 @@ typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
NAMESPACE_END(Grid);

View File

@ -215,7 +215,7 @@ public:
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};

View File

@ -72,7 +72,7 @@ public:
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor,ImplParams> StencilImpl;
typedef const typename StencilImpl::View_type StencilView;
typedef typename StencilImpl::View_type StencilView;
ImplParams Params;
@ -106,15 +106,11 @@ public:
const _SpinorField & phi,
int mu)
{
const int Nsimd = SiteHalfSpinor::Nsimd();
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multLink(tmp,Umu_v[sss],phi_v(sss),mu);
coalescedWrite(out_v[sss],tmp);
auto out_v= out.View();
auto phi_v= phi.View();
auto Umu_v= Umu.View();
thread_for(sss,out.Grid()->oSites(),{
multLink(out_v[sss],Umu_v[sss],phi_v[sss],mu);
});
}
@ -184,57 +180,29 @@ public:
mat = TraceIndex<SpinIndex>(P);
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds)
{
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
for (int mu = 0; mu < Nd; mu++)
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu)
{
#undef USE_OLD_INSERT_FORCE
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
int Ls=Btilde.Grid()->_fdimensions[0];
autoView( mat_v , mat, AcceleratorWrite);
#ifdef USE_OLD_INSERT_FORCE
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
{
const int Nsimd = SiteSpinor::Nsimd();
autoView( tmp_v , tmp, AcceleratorWrite);
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,tmp.Grid()->oSites(),1,{
int sU=sss;
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
tmp_v[sU] = tmp_v[sU]+ traceIndex<SpinIndex>(outerProduct(Btilde_v[sF],Atilde_v[sF])); // ordering here
}
});
}
auto tmp_v = tmp.View();
auto Btilde_v = Btilde.View();
auto Atilde_v = Atilde.View();
thread_for(sss,tmp.Grid()->oSites(),{
int sU=sss;
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
tmp_v[sU] = tmp_v[sU]+ traceIndex<SpinIndex>(outerProduct(Btilde_v[sF],Atilde_v[sF])); // ordering here
}
});
PokeIndex<LorentzIndex>(mat,tmp,mu);
#else
{
const int Nsimd = SiteSpinor::Nsimd();
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(),Nsimd,{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
auto bb = coalescedRead(Btilde_v[sF]()(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF]()(spn) );
auto op = outerProduct(bb,aa);
sum = sum + op;
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
}
#endif
}
};
@ -243,17 +211,17 @@ typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
//typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
//typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float

View File

@ -49,17 +49,9 @@ public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
public:
#ifdef GRID_SYCL
#define SYCL_HACK
#endif
#ifdef SYCL_HACK
static void HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p, SiteDoubledGaugeField *U,SiteHalfSpinor *buf,
int ss,int sU,const SiteSpinor *in, SiteSpinor *out);
#endif
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;

View File

@ -180,7 +180,7 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls : " << MooeeInvCalls << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
#ifdef GRID_CUDA
#ifdef GRID_NVCC
RealD mflops = ( -16.*Nc*Ns+this->Ls*(1.+18.*Nc*Ns) )*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
@ -642,7 +642,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type,
unsigned int mu)
{
#if (!defined(GRID_HIP))
#ifndef GRID_NVCC
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
@ -799,7 +799,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
PropagatorField zz (UGrid); zz=0.0;
LatticeInteger zz (UGrid); zz=0.0;
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
for (int s=0;s<Ls;s++) {
@ -826,9 +826,8 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
#endif
#if (!defined(GRID_HIP))
#ifndef GRID_NVCC
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
////////////////////////////////////////////////
// GENERAL CAYLEY CASE
////////////////////////////////////////////////
@ -851,7 +850,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
PropagatorField zz (UGrid); zz=0.0;
LatticeInteger zz (UGrid); zz=0.0;
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
for(int s=0;s<Ls;s++){
@ -881,29 +880,17 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
std::vector<RealD> G_s(Ls,1.0);
RealD sign = 1.0; // sign flip for vector/tadpole
if ( curr_type == Current::Axial ) {
for(int s=0;s<Ls/2;s++){
G_s[s] = -1.0;
}
}
else if ( curr_type == Current::Tadpole ) {
auto b=this->_b;
auto c=this->_c;
if ( b == 1 && c == 0 ) {
sign = -1.0;
}
else {
std::cerr << "Error: Tadpole implementation currently unavailable for non-Shamir actions." << std::endl;
assert(b==1 && c==0);
}
}
for(int s=0;s<Ls;s++){
int sp = (s+1)%Ls;
// int sr = Ls-1-s;
// int srp= (sr+1)%Ls;
int sr = Ls-1-s;
int srp= (sr+1)%Ls;
// Mobius parameters
auto b=this->bs[s];
@ -920,7 +907,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
tmp = Cshift(tmp,mu,1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu);
tmp = sign*G_s[s]*( Utmp*ph - gmu*Utmp*ph ); // Forward hop
tmp = G_s[s]*( Utmp*ph - gmu*Utmp*ph ); // Forward hop
tmp = where((lcoor>=tmin),tmp,zz); // Mask the time
L_Q = where((lcoor<=tmax),tmp,zz); // Position of current complicated
@ -935,13 +922,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
tmp = Cshift(tmp,mu,-1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
tmp = -G_s[s]*( Utmp + gmu*Utmp );
// Mask the time
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
unsigned int t0 = 0;
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
} else {
tmp = where((lcoor>=tmin+tshift),tmp,zz);
}
tmp = where((lcoor>=tmin+tshift),tmp,zz); // Mask the time
L_Q += where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
InsertSlice(L_Q, q_out, s , 0);

View File

@ -50,9 +50,9 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi , psi_i,AcceleratorRead);
autoView(phi , phi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
@ -93,9 +93,9 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
{
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi , psi_i,AcceleratorRead);
autoView(phi , phi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
@ -131,8 +131,8 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
auto psi = psi_i.View();
auto chi = chi_i.View();
int Ls=this->Ls;
@ -193,8 +193,8 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
GridBase *grid=psi_i.Grid();
int Ls=this->Ls;
autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
auto psi = psi_i.View();
auto chi = chi_i.View();
auto plee = & lee [0];
auto pdee = & dee [0];

View File

@ -65,9 +65,9 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi, psi_i,CpuRead);
autoView(phi, phi_i,CpuRead);
autoView(chi, chi_i,CpuWrite);
auto psi = psi_i.View();
auto phi = phi_i.View();
auto chi = chi_i.View();
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd= Simd::Nsimd();
@ -213,9 +213,9 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi,psi_i,CpuRead);
autoView(phi,phi_i,CpuRead);
autoView(chi,chi_i,CpuWrite);
auto psi=psi_i.View();
auto phi=phi_i.View();
auto chi=chi_i.View();
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd= Simd::Nsimd();
@ -357,8 +357,8 @@ CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi_i, FermionField
Vector<iSinglet<Simd> > &Matm)
{
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
autoView(psi , psi_i,CpuRead);
autoView(chi , chi_i,CpuWrite);
auto psi = psi_i.View();
auto chi = chi_i.View();
#ifndef AVX512
{
SiteHalfSpinor BcastP;
@ -535,8 +535,8 @@ CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi_i, FermionField
EnableIf<Impl::LsVectorised,int> sfinae=0;
#ifndef AVX512
{
autoView(psi , psi_i,CpuRead);
autoView(chi , chi_i,CpuWrite);
auto psi = psi_i.View();
auto chi = chi_i.View();
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
@ -586,8 +586,8 @@ CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi_i, FermionField
}
#else
{
autoView(psi , psi_i,CpuRead);
autoView(chi , chi_i,CpuWrite);
auto psi = psi_i.View();
auto chi = chi_i.View();
// pointers
// MASK_REGS;
#define Chi_00 %zmm0

Some files were not shown because too many files have changed in this diff Show More