mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-21 17:22:03 +01:00
Compare commits
57 Commits
fix/HOST_N
...
2111e7ab5f
Author | SHA1 | Date | |
---|---|---|---|
2111e7ab5f | |||
d29abfdcaf | |||
a751c42cc5 | |||
6a3bc9865e | |||
4d5f7e4377 | |||
78b117fb78 | |||
ded63a1319 | |||
df3e4d1e9c | |||
b58fd80379 | |||
7f6e0f57d0 | |||
cae27678d8 | |||
48ff655bad | |||
2525ad4623 | |||
e7020017c5 | |||
eacebfad74 | |||
3bc2da5321 | |||
2d710d6bfd | |||
6532b7f32b | |||
7b41b92d99 | |||
dd557af84b | |||
59b9d0e030 | |||
b82eee4733 | |||
6a87487544 | |||
fcf5023845 | |||
c8adad6d8b | |||
737d3ffb98 | |||
b01e67bab1 | |||
8a70314f54 | |||
36ae6e5aba | |||
9db585cfeb | |||
c564611ba7 | |||
e187bcb85c | |||
be18ffe3b4 | |||
0d63dce4e2 | |||
26b30e1551 | |||
7fc58ac293 | |||
3a86cce8c1 | |||
37884d369f | |||
9246e653cd | |||
64283c8673 | |||
755002da9c | |||
31b8e8b437 | |||
0ec0de97e6 | |||
6c3ade5d89 | |||
980c5f9a34 | |||
471ca5f281 | |||
e82ddcff5d | |||
b9dcad89e8 | |||
993f43ef4a | |||
2b43308208 | |||
04a1ac3a76 | |||
990b8798bd | |||
b334a73a44 | |||
5d113d1c70 | |||
c14977aeab | |||
3e94838204 | |||
c0a0b8ca62 |
@ -69,7 +69,8 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||
|
||||
NAMESPACE_CHECK(PowerMethod);
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
||||
|
||||
NAMESPACE_CHECK(CoarsendMatrix);
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
|
@ -90,9 +90,8 @@ public:
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
Coeffs.resize(order,0.0);
|
||||
Coeffs[order-1] = 1.0;
|
||||
};
|
||||
|
||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||
|
@ -33,218 +33,254 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Deflation methods considered
|
||||
* -- Solve P A x = P b [ like Luscher ]
|
||||
* DEF-1 M P A x = M P b [i.e. left precon]
|
||||
* DEF-2 P^T M A x = P^T M b
|
||||
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
|
||||
* ADEF-2 Preconditioner = P^T M + Q
|
||||
* BNN Preconditioner = P^T M P + Q
|
||||
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
* Vout = x
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// abstract base
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
template<class Field>
|
||||
class TwoLevelCG : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
int verbose;
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
const int mmax = 5;
|
||||
GridBase *grid;
|
||||
GridBase *coarsegrid;
|
||||
|
||||
LinearOperatorBase<Field> *_Linop
|
||||
OperatorFunction<Field> *_Smoother,
|
||||
LinearFunction<CoarseField> *_CoarseSolver;
|
||||
|
||||
// Need somthing that knows how to get from Coarse to fine and back again
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelFlexiblePcg(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> *Linop,
|
||||
LinearOperatorBase<Field> *SmootherLinop,
|
||||
OperatorFunction<Field> *Smoother,
|
||||
OperatorFunction<CoarseField> CoarseLinop
|
||||
) :
|
||||
TwoLevelCG(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_Linop(Linop),
|
||||
_PreconditionerLinop(PrecLinop),
|
||||
_Preconditioner(Preconditioner)
|
||||
{
|
||||
verbose=0;
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// The Pcg routine is common to all, but the various matrices differ from derived
|
||||
// implementation to derived implmentation
|
||||
void operator() (const Field &src, Field &psi){
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
grid = src.Grid();
|
||||
|
||||
|
||||
virtual void operator() (const Field &src, Field &x)
|
||||
{
|
||||
Field resid(grid);
|
||||
RealD f;
|
||||
RealD rtzp,rtz,a,d,b;
|
||||
RealD rptzp;
|
||||
RealD tn;
|
||||
RealD guess = norm2(psi);
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
std::vector<Field> p (mmax,grid);
|
||||
std::vector<Field> mmp(mmax,grid);
|
||||
std::vector<RealD> pAp(mmax);
|
||||
|
||||
Field x (grid); x = psi;
|
||||
Field z (grid);
|
||||
Field p(grid);
|
||||
Field z(grid);
|
||||
Field tmp(grid);
|
||||
Field mmp(grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
Field rp (grid);
|
||||
|
||||
//Initial residual computation & set up
|
||||
double tn;
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
x=src;
|
||||
x=Zero();
|
||||
Vstart(x,src);
|
||||
|
||||
// r0 = b -A x0
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
||||
_FineLinop.HermOp(x,mmp);
|
||||
|
||||
axpy(r, -1.0, mmp, src); // Recomputes r=src-x0
|
||||
rp=r;
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
M1(r,z,tmp,mp,SmootherMirs);
|
||||
PcgM1(r,z);
|
||||
rtzp =real(innerProduct(r,z));
|
||||
|
||||
///////////////////////////////////////
|
||||
// Solve for Mss mu = P A z and set p = z-mu
|
||||
// Def2: p = 1 - Q Az = Pright z
|
||||
// Other algos M2 is trivial
|
||||
// Except Def2, M2 is trivial
|
||||
///////////////////////////////////////
|
||||
M2(z,p[0]);
|
||||
p=z;
|
||||
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" target rsq "<<rsq<<" ssq "<<ssq<<std::endl;
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
for (int k=1;k<=MaxIterations;k++){
|
||||
|
||||
rtz=rtzp;
|
||||
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
|
||||
d= PcgM3(p,mmp);
|
||||
a = rtz/d;
|
||||
|
||||
// Memorise this
|
||||
pAp[peri_k] = d;
|
||||
|
||||
axpy(x,a,p[peri_k],x);
|
||||
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
||||
axpy(x,a,p,x);
|
||||
RealD rn = axpy_norm(r,-a,mmp,r);
|
||||
|
||||
// Compute z = M x
|
||||
M1(r,z,tmp,mp);
|
||||
PcgM1(r,z);
|
||||
|
||||
rtzp =real(innerProduct(r,z));
|
||||
|
||||
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
|
||||
p[peri_kp]=p[peri_k];
|
||||
|
||||
// Standard search direction p -> z + b p ; b =
|
||||
b = (rtzp)/rtz;
|
||||
|
||||
int northog;
|
||||
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
||||
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
||||
RealD beta = -pbApk/pAp[peri_back];
|
||||
axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
|
||||
int ipcg=1; // almost free inexact preconditioned CG
|
||||
if (ipcg) {
|
||||
rptzp =real(innerProduct(rp,z));
|
||||
} else {
|
||||
rptzp =0;
|
||||
}
|
||||
b = (rtzp-rptzp)/rtz;
|
||||
|
||||
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
|
||||
axpy(p,b,p,mu); // mu = A r
|
||||
|
||||
RealD rrn=sqrt(rn/ssq);
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||
RealD rtn=sqrt(rtz/ssq);
|
||||
std::cout<<GridLogMessage<<"HDCG: Pcg k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||
|
||||
if ( ipcg ) {
|
||||
axpy(rp,0.0,r,r);
|
||||
}
|
||||
|
||||
// Stopping condition
|
||||
if ( rn <= rsq ) {
|
||||
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
axpy(tmp,-1.0,src,mmp[0]);
|
||||
|
||||
RealD psinorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
|
||||
return k;
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
_FineLinop.HermOp(x,mmp);
|
||||
axpy(tmp,-1.0,src,mmp);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp));
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
// Non-convergence
|
||||
assert(0);
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged"<<std::endl;
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
|
||||
return ;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void M(Field & in,Field & out,Field & tmp) {
|
||||
virtual void PcgM1(Field & in, Field & out) =0;
|
||||
virtual void Vstart(Field & x,const Field & src)=0;
|
||||
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual void M1(Field & in, Field & out) {// the smoother
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout.
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField, class Aggregation>
|
||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Need something that knows how to get from Coarse to fine and back again
|
||||
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *coarsegrid;
|
||||
Aggregation &_Aggregates;
|
||||
LinearFunction<CoarseField> &_CoarseSolver;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPrecise;
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelADEF2(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolver,
|
||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
||||
Aggregation &Aggregates
|
||||
) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
|
||||
_CoarseSolver(CoarseSolver),
|
||||
_CoarseSolverPrecise(CoarseSolverPrecise),
|
||||
_Aggregates(Aggregates)
|
||||
{
|
||||
coarsegrid = Aggregates.CoarseGrid;
|
||||
};
|
||||
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
Field tmp(grid);
|
||||
Field Min(grid);
|
||||
|
||||
PcgM(in,Min); // Smoother call
|
||||
Field tmp(this->grid);
|
||||
Field Min(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
HermOp(Min,out);
|
||||
GridStopWatch SmootherTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
SmootherTimer.Start();
|
||||
this->_Smoother(in,Min);
|
||||
SmootherTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
this->_FineLinop.HermOp(Min,out);
|
||||
MatrixTimer.Stop();
|
||||
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
||||
|
||||
ProjectToSubspace(tmp,PleftProj);
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
GridStopWatch ProjTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch PromTimer;
|
||||
ProjTimer.Start();
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
|
||||
ProjTimer.Stop();
|
||||
CoarseTimer.Start();
|
||||
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
CoarseTimer.Stop();
|
||||
PromTimer.Start();
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
PromTimer.Stop();
|
||||
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
|
||||
|
||||
axpy(out,1.0,Min,tmp); // Min+tmp
|
||||
}
|
||||
|
||||
virtual void M2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
// Must override for Def2 only
|
||||
// case PcgDef2:
|
||||
// Pright(in,out);
|
||||
// break;
|
||||
}
|
||||
|
||||
virtual RealD M3(const Field & p, Field & mmp){
|
||||
double d,dd;
|
||||
HermOpAndNorm(p,mmp,d,dd);
|
||||
return dd;
|
||||
// Must override for Def1 only
|
||||
// case PcgDef1:
|
||||
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
|
||||
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
|
||||
// Pleft(mp,mmp);
|
||||
// d=real(linop_d->inner(p,mmp));
|
||||
}
|
||||
|
||||
virtual void VstartDef2(Field & xconst Field & src){
|
||||
//case PcgDef2:
|
||||
//case PcgAdef2:
|
||||
//case PcgAdef2f:
|
||||
//case PcgV11f:
|
||||
virtual void Vstart(Field & x,const Field & src)
|
||||
{
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
@ -256,142 +292,73 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
Field r(grid);
|
||||
Field mmp(grid);
|
||||
|
||||
HermOp(x,mmp);
|
||||
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
|
||||
ProjectToSubspace(r,PleftProj);
|
||||
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
PromoteFromSubspace(PleftMss_proj,mmp);
|
||||
x=x+mmp;
|
||||
Field r(this->grid);
|
||||
Field mmp(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,src);
|
||||
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
const std::vector<Field> &evec;
|
||||
const std::vector<RealD> &eval;
|
||||
|
||||
TwoLevelADEF1defl(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
std::vector<Field> &_evec,
|
||||
std::vector<RealD> &_eval) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
|
||||
evec(_evec),
|
||||
eval(_eval)
|
||||
{};
|
||||
|
||||
// Can just inherit existing M2
|
||||
// Can just inherit existing M3
|
||||
|
||||
// Simple vstart - do nothing
|
||||
virtual void Vstart(Field & x,const Field & src){
|
||||
return;
|
||||
x=src; // Could apply Q
|
||||
};
|
||||
|
||||
// Override PcgM1
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
int N=evec.size();
|
||||
Field Pin(this->grid);
|
||||
Field Qin(this->grid);
|
||||
|
||||
//MP + Q = M(1-AQ) + Q = M
|
||||
// // If we are eigenvector deflating in coarse space
|
||||
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
|
||||
// // A Q = Sum_i |phi_i> <phi_i|
|
||||
// // M(1-AQ) = M(1-proj) + Q
|
||||
Qin.Checkerboard()=in.Checkerboard();
|
||||
Qin = Zero();
|
||||
Pin = in;
|
||||
for (int i=0;i<N;i++) {
|
||||
const Field& tmp = evec[i];
|
||||
auto ip = TensorRemove(innerProduct(tmp,in));
|
||||
axpy(Qin, ip / eval[i],tmp,Qin);
|
||||
axpy(Pin, -ip ,tmp,Pin);
|
||||
}
|
||||
|
||||
this->_Smoother(Pin,out);
|
||||
|
||||
out = out + Qin;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout. Override in Def1
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
virtual void Vout (Field & in, Field & out,Field & src){
|
||||
out = in;
|
||||
//case PcgDef1:
|
||||
// //Qb + PT x
|
||||
// ProjectToSubspace(src,PleftProj);
|
||||
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
// PromoteFromSubspace(PleftMss_proj,tmp);
|
||||
//
|
||||
// Pright(in,out);
|
||||
//
|
||||
// linop_d->axpy(out,tmp,out,1.0);
|
||||
// break;
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pright and Pleft are common to all implementations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void Pright(Field & in,Field & out){
|
||||
// P_R = [ 1 0 ]
|
||||
// [ -Mss^-1 Msb 0 ]
|
||||
Field in_sbar(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
HermOp(in_sbar,out);
|
||||
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
|
||||
|
||||
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
|
||||
PromoteFromSubspace(PleftMss_proj,out); //
|
||||
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
|
||||
}
|
||||
virtual void Pleft (Field & in,Field & out){
|
||||
// P_L = [ 1 -Mbs Mss^-1]
|
||||
// [ 0 0 ]
|
||||
Field in_sbar(grid);
|
||||
Field tmp2(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
|
||||
PromoteFromSubspace(PleftMss_proj,out);
|
||||
|
||||
HermOp(out,Mtmp);
|
||||
|
||||
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
|
||||
PromoteFromSubspace(PleftProj,tmp2);
|
||||
|
||||
axpy(out,-1.0,tmp2,Mtmp);
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp){
|
||||
|
||||
}
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
|
||||
|
||||
}
|
||||
virtual void M2(Field & in, Field & out){
|
||||
|
||||
}
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
}
|
||||
/*
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
@ -183,13 +183,13 @@ public:
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
|
||||
|
@ -457,7 +457,7 @@ until convergence
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
@ -465,7 +465,7 @@ until convergence
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
@ -480,18 +480,18 @@ until convergence
|
||||
lme[k] = beta;
|
||||
|
||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
|
@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form an NE solver calling a Herm solver
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class NormalEquations {
|
||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -60,7 +60,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class HPDSolver {
|
||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
LinearOperatorBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -78,13 +78,13 @@ public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
_Guess(in,out);
|
||||
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||
_HermitianSolver(_Matrix,in,out); //M out = in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field> class MdagMSolver {
|
||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
|
@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 50;
|
||||
const int _MAX_ITER_EST_ = 100;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
|
262
Grid/algorithms/multigrid/Aggregates.h
Normal file
262
Grid/algorithms/multigrid/Aggregates.h
Normal file
@ -0,0 +1,262 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/Aggregates.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
||||
int nn=nbasis;
|
||||
RealD scale;
|
||||
FineField noise(FineGrid);
|
||||
for(int b=0;b<nn;b++){
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
subspace[b] = noise;
|
||||
}
|
||||
}
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
||||
<<ordermin<<" step "<<orderstep
|
||||
<<" lo"<<filterlo<<std::endl;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
@ -56,243 +56,6 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
||||
blockSum(CoarseInner,fine_inner_msk);
|
||||
}
|
||||
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
419
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
419
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
@ -0,0 +1,419 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
||||
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef CoarseVector Field;
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
int hermitian;
|
||||
GridBase * _FineGrid;
|
||||
GridCartesian * _CoarseGrid;
|
||||
NonLocalStencilGeometry &geom;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> _A;
|
||||
std::vector<CoarseMatrix> _Adag;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
|
||||
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
||||
{
|
||||
int nfound=0;
|
||||
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
||||
// Search for the same relative shift
|
||||
// Avoids brutal handling of Grid pointers
|
||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
||||
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
||||
nfound++;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(nfound==geom.npoint);
|
||||
ExchangeCoarseLinks();
|
||||
}
|
||||
|
||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
||||
: geom(_geom),
|
||||
_FineGrid(FineGrid),
|
||||
_CoarseGrid(CoarseGrid),
|
||||
hermitian(1),
|
||||
Cell(_geom.Depth(),_CoarseGrid),
|
||||
Stencil(Cell.grids.back(),geom.shifts)
|
||||
{
|
||||
{
|
||||
int npoint = _geom.npoint;
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
int osites=Stencil.Grid()->oSites();
|
||||
for(int ss=0;ss<osites;ss++){
|
||||
for(int point=0;point<npoint;point++){
|
||||
auto SE = Stencil_v.GetEntry(point,ss);
|
||||
int o = SE->_offset;
|
||||
assert( o< osites);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_A.resize(geom.npoint,CoarseGrid);
|
||||
_Adag.resize(geom.npoint,CoarseGrid);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
Mult(_A,in,out);
|
||||
}
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
if ( hermitian ) M(in,out);
|
||||
else Mult(_Adag,in,out);
|
||||
}
|
||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
RealD tviews=0;
|
||||
RealD ttot=0;
|
||||
RealD tmult=0;
|
||||
RealD texch=0;
|
||||
RealD text=0;
|
||||
ttot=-usecond();
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
CoarseVector tin=in;
|
||||
|
||||
texch-=usecond();
|
||||
CoarseVector pin = Cell.Exchange(tin);
|
||||
texch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid()); pout=Zero();
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int osites=pin.Grid()->oSites();
|
||||
// int gsites=pin.Grid()->gSites();
|
||||
|
||||
RealD flops = 1.0* npoint * nbasis * nbasis * 8 * osites;
|
||||
RealD bytes = (1.0*osites*sizeof(siteMatrix)*npoint+2.0*osites*sizeof(siteVector))*npoint;
|
||||
|
||||
// for(int point=0;point<npoint;point++){
|
||||
// conformable(A[point],pin);
|
||||
// }
|
||||
|
||||
{
|
||||
tviews-=usecond();
|
||||
autoView( in_v , pin, AcceleratorRead);
|
||||
autoView( out_v , pout, AcceleratorWrite);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
tviews+=usecond();
|
||||
|
||||
for(int point=0;point<npoint;point++){
|
||||
tviews-=usecond();
|
||||
autoView( A_v, A[point],AcceleratorRead);
|
||||
tviews+=usecond();
|
||||
tmult-=usecond();
|
||||
accelerator_for(sss, osites*nbasis, Nsimd, {
|
||||
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
|
||||
auto SE = Stencil_v.GetEntry(point,ss);
|
||||
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
||||
auto res = out_v(ss)(b);
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(A_v[ss](b,bb))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
|
||||
tmult+=usecond();
|
||||
}
|
||||
}
|
||||
text-=usecond();
|
||||
out = Cell.Extract(pout);
|
||||
text+=usecond();
|
||||
ttot+=usecond();
|
||||
|
||||
std::cout << GridLogDebug<<"Coarse Mult Aviews "<<tviews<<" us"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse Kernel bytes/s"<< bytes/tmult<<" MB/s"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogDebug<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
|
||||
};
|
||||
|
||||
void PopulateAdag(void)
|
||||
{
|
||||
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
||||
Coordinate bcoor;
|
||||
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
Coordinate scoor = bcoor;
|
||||
for(int mu=0;mu<bcoor.size();mu++){
|
||||
int L = CoarseGrid()->GlobalDimensions()[mu];
|
||||
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
||||
}
|
||||
// Flip to poke/peekLocalSite and not too bad
|
||||
auto link = peekSite(_A[p],scoor);
|
||||
int pp = geom.Reverse(p);
|
||||
pokeSite(adj(link),_Adag[pp],bcoor);
|
||||
}
|
||||
}
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
//
|
||||
// A) Only reduced flops option is to use a padded cell of depth 4
|
||||
// and apply MpcDagMpc in the padded cell.
|
||||
//
|
||||
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
||||
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
||||
// Cost is 81x more, same as stencil size.
|
||||
//
|
||||
// But: can eliminate comms and do as local dirichlet.
|
||||
//
|
||||
// Local exchange gauge field once.
|
||||
// Apply to all vectors, local only computation.
|
||||
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
||||
//
|
||||
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
||||
// pad by 2, apply Doe
|
||||
// pad by 3, apply Deo
|
||||
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
||||
//
|
||||
// => almost factor of 10 in setup cost, excluding data rearrangement
|
||||
//
|
||||
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
||||
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// BFM HDCG style approach: Solve a system of equations to get Aij
|
||||
//////////////////////////////////////////////////////////
|
||||
/*
|
||||
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
||||
*
|
||||
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
||||
* = \sum_ball e^{iqk.delta} A_ji
|
||||
*
|
||||
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*/
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
tphase-=usecond();
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha =exp(pha*ci);
|
||||
phaV=Zero();
|
||||
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
||||
tphase+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](j,i) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
Coordinate coor({0,0,0,0,0});
|
||||
auto sval = peekSite(_A[p],coor);
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
PopulateAdag();
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
void ExchangeCoarseLinks(void){
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
_A[p] = Cell.Exchange(_A[p]);
|
||||
_Adag[p]= Cell.Exchange(_Adag[p]);
|
||||
}
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
243
Grid/algorithms/multigrid/Geometry.h
Normal file
243
Grid/algorithms/multigrid/Geometry.h
Normal file
@ -0,0 +1,243 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Less local equivalent of Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
class NonLocalStencilGeometry {
|
||||
public:
|
||||
int depth;
|
||||
int hops;
|
||||
int npoint;
|
||||
std::vector<Coordinate> shifts;
|
||||
Coordinate stencil_size;
|
||||
Coordinate stencil_lo;
|
||||
Coordinate stencil_hi;
|
||||
GridCartesian *grid;
|
||||
GridCartesian *Grid() {return grid;};
|
||||
int Depth(void){return 1;}; // Ghost zone depth
|
||||
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
|
||||
|
||||
virtual int DimSkip(void) =0;
|
||||
|
||||
virtual ~NonLocalStencilGeometry() {};
|
||||
|
||||
int Reverse(int point)
|
||||
{
|
||||
int Nd = Grid()->Nd();
|
||||
Coordinate shft = shifts[point];
|
||||
Coordinate rev(Nd);
|
||||
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
|
||||
for(int p=0;p<npoint;p++){
|
||||
if(rev==shifts[p]){
|
||||
return p;
|
||||
}
|
||||
}
|
||||
assert(0);
|
||||
return -1;
|
||||
}
|
||||
void BuildShifts(void)
|
||||
{
|
||||
this->shifts.resize(0);
|
||||
int Nd = this->grid->Nd();
|
||||
|
||||
int dd = this->DimSkip();
|
||||
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
|
||||
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
|
||||
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
|
||||
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
|
||||
Coordinate sft(Nd,0);
|
||||
sft[dd+0] = s0;
|
||||
sft[dd+1] = s1;
|
||||
sft[dd+2] = s2;
|
||||
sft[dd+3] = s3;
|
||||
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
|
||||
if(nhops<=this->hops) this->shifts.push_back(sft);
|
||||
}}}}
|
||||
this->npoint = this->shifts.size();
|
||||
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
|
||||
}
|
||||
|
||||
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops) : grid(_coarse_grid), hops(_hops)
|
||||
{
|
||||
Coordinate latt = grid->GlobalDimensions();
|
||||
stencil_size.resize(grid->Nd());
|
||||
stencil_lo.resize(grid->Nd());
|
||||
stencil_hi.resize(grid->Nd());
|
||||
for(int d=0;d<grid->Nd();d++){
|
||||
if ( latt[d] == 1 ) {
|
||||
stencil_lo[d] = 0;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 1;
|
||||
} else if ( latt[d] == 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 2;
|
||||
} else if ( latt[d] > 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 1;
|
||||
stencil_size[d]= 3;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
// Need to worry about red-black now
|
||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DimSkip(void) { return 0;};
|
||||
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops) { };
|
||||
virtual ~NonLocalStencilGeometry4D() {};
|
||||
};
|
||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DimSkip(void) { return 1; };
|
||||
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops) { };
|
||||
virtual ~NonLocalStencilGeometry5D() {};
|
||||
};
|
||||
/*
|
||||
* Bunch of different options classes
|
||||
*/
|
||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
|
||||
{
|
||||
this->BuildShifts();
|
||||
};
|
||||
};
|
||||
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
|
||||
{
|
||||
this->BuildShifts();
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
|
||||
{
|
||||
this->BuildShifts();
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
|
||||
{
|
||||
this->BuildShifts();
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
|
||||
{
|
||||
this->BuildShifts();
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
|
||||
{
|
||||
this->BuildShifts();
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
33
Grid/algorithms/multigrid/MultiGrid.h
Normal file
33
Grid/algorithms/multigrid/MultiGrid.h
Normal file
@ -0,0 +1,33 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Grid/algorithms/multigrid/MultiGrid.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
@ -70,8 +70,8 @@ public:
|
||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||
int _osites; // _isites*_osites = product(dimensions).
|
||||
int _isites;
|
||||
int _fsites; // _isites*_osites = product(dimensions).
|
||||
int _gsites;
|
||||
int64_t _fsites; // _isites*_osites = product(dimensions).
|
||||
int64_t _gsites;
|
||||
Coordinate _slice_block;// subslice information
|
||||
Coordinate _slice_stride;
|
||||
Coordinate _slice_nblock;
|
||||
@ -183,7 +183,7 @@ public:
|
||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||
inline int oSites(void) const { return _osites; };
|
||||
inline int lSites(void) const { return _isites*_osites; };
|
||||
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
||||
inline int Nd (void) const { return _ndimension;};
|
||||
|
||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||
@ -214,7 +214,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
||||
assert(gidx< gSites());
|
||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||
}
|
||||
@ -222,7 +222,7 @@ public:
|
||||
assert(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
||||
gidx=0;
|
||||
int mult=1;
|
||||
for(int mu=0;mu<_ndimension;mu++) {
|
||||
|
@ -360,7 +360,7 @@ public:
|
||||
|
||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
||||
|
||||
Coordinate gcoor;
|
||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||
|
@ -361,9 +361,14 @@ public:
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
|
||||
{
|
||||
if ( l.Grid()->_isCheckerBoarded ) {
|
||||
Lattice<vobj> tmp(_grid);
|
||||
fill(tmp,dist);
|
||||
pickCheckerboard(l.Checkerboard(),l,tmp);
|
||||
return;
|
||||
}
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -427,7 +432,7 @@ public:
|
||||
#if 1
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int gidx;
|
||||
int64_t gidx;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
int rank;
|
||||
|
@ -471,13 +471,13 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
|
||||
vobj zz = Zero();
|
||||
|
||||
accelerator_for(sc,coarse->oSites(),1,{
|
||||
accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
|
||||
|
||||
// One thread per sub block
|
||||
Coordinate coor_c(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
||||
|
||||
vobj cd = zz;
|
||||
auto cd = coalescedRead(zz);
|
||||
|
||||
for(int sb=0;sb<blockVol;sb++){
|
||||
|
||||
@ -488,10 +488,10 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
|
||||
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
|
||||
|
||||
cd=cd+fineData_p[sf];
|
||||
cd=cd+coalescedRead(fineData_p[sf]);
|
||||
}
|
||||
|
||||
coarseData_p[sc] = cd;
|
||||
coalescedWrite(coarseData_p[sc],cd);
|
||||
|
||||
});
|
||||
return;
|
||||
@ -1054,7 +1054,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
|
||||
Coordinate fcoor(nd);
|
||||
Coordinate ccoor(nd);
|
||||
for(int g=0;g<fg->gSites();g++){
|
||||
for(int64_t g=0;g<fg->gSites();g++){
|
||||
|
||||
fg->GlobalIndexToGlobalCoor(g,fcoor);
|
||||
for(int d=0;d<nd;d++){
|
||||
|
@ -63,8 +63,9 @@ public:
|
||||
dims=_grid->Nd();
|
||||
AllocateGrids();
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate procs =unpadded_grid->ProcessorGrid();
|
||||
for(int d=0;d<dims;d++){
|
||||
assert(local[d]>=depth);
|
||||
if ( procs[d] > 1 ) assert(local[d]>=depth);
|
||||
}
|
||||
}
|
||||
void DeleteGrids(void)
|
||||
@ -85,8 +86,10 @@ public:
|
||||
// expand up one dim at a time
|
||||
for(int d=0;d<dims;d++){
|
||||
|
||||
plocal[d] += 2*depth;
|
||||
|
||||
if ( processors[d] > 1 ) {
|
||||
plocal[d] += 2*depth;
|
||||
}
|
||||
|
||||
for(int d=0;d<dims;d++){
|
||||
global[d] = plocal[d]*processors[d];
|
||||
}
|
||||
@ -97,11 +100,17 @@ public:
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
|
||||
Lattice<vobj> out(unpadded_grid);
|
||||
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate fll(dims,depth); // depends on the MPI spread
|
||||
// depends on the MPI spread
|
||||
Coordinate fll(dims,depth);
|
||||
Coordinate tll(dims,0); // depends on the MPI spread
|
||||
for(int d=0;d<dims;d++){
|
||||
if( processors[d]==1 ) fll[d]=0;
|
||||
}
|
||||
localCopyRegion(in,out,fll,tll,local);
|
||||
return out;
|
||||
}
|
||||
@ -120,6 +129,7 @@ public:
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
Lattice<vobj> padded(new_grid);
|
||||
@ -129,40 +139,52 @@ public:
|
||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
|
||||
double tins=0, tshift=0;
|
||||
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
int islocal = 0 ;
|
||||
if ( processors[dim] == 1 ) islocal = 1;
|
||||
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
||||
if ( islocal ) {
|
||||
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
} else {
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
}
|
||||
std::cout << GridLogDebug << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
||||
|
||||
return padded;
|
||||
}
|
||||
|
@ -487,7 +487,7 @@ public:
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
{ //view scope
|
||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
||||
auto gStencil_v = gStencil.View();
|
||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
||||
|
||||
accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
|
||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
||||
@ -1199,7 +1199,7 @@ public:
|
||||
|
||||
{ //view scope
|
||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
||||
auto gStencil_v = gStencil.View();
|
||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
||||
|
||||
accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
|
||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
||||
|
@ -1130,6 +1130,14 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Fixme need coalesced read gpermute
|
||||
template<class vobj> void gpermute(vobj & inout,int perm){
|
||||
vobj tmp=inout;
|
||||
if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
|
||||
if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
|
||||
if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
|
||||
if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -46,7 +46,7 @@ class GeneralLocalStencilView {
|
||||
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) {
|
||||
return & this->_entries_p[point+this->_npoints*osite];
|
||||
}
|
||||
|
||||
void ViewClose(void){};
|
||||
};
|
||||
////////////////////////////////////////
|
||||
// The Stencil Class itself
|
||||
@ -61,7 +61,7 @@ protected:
|
||||
public:
|
||||
GridBase *Grid(void) const { return _grid; }
|
||||
|
||||
View_type View(void) const {
|
||||
View_type View(int mode) const {
|
||||
View_type accessor(*( (View_type *) this));
|
||||
return accessor;
|
||||
}
|
||||
|
@ -137,6 +137,18 @@ inline void cuda_mem(void)
|
||||
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
|
||||
}
|
||||
#define prof_accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
|
||||
{ \
|
||||
int nt=acceleratorThreads(); \
|
||||
typedef uint64_t Iterator; \
|
||||
auto lambda = [=] accelerator \
|
||||
(Iterator iter1,Iterator iter2,Iterator lane) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
dim3 cu_threads(nsimd,acceleratorThreads(),1); \
|
||||
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
ProfileLambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
|
||||
}
|
||||
|
||||
#define accelerator_for6dNB(iter1, num1, \
|
||||
iter2, num2, \
|
||||
@ -157,6 +169,20 @@ inline void cuda_mem(void)
|
||||
Lambda6Apply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
|
||||
}
|
||||
|
||||
|
||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
|
||||
{ \
|
||||
int nt=acceleratorThreads(); \
|
||||
typedef uint64_t Iterator; \
|
||||
auto lambda = [=] accelerator \
|
||||
(Iterator iter1,Iterator iter2,Iterator lane) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
dim3 cu_threads(nsimd,acceleratorThreads(),1); \
|
||||
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
|
||||
}
|
||||
|
||||
template<typename lambda> __global__
|
||||
void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
|
||||
{
|
||||
@ -168,6 +194,17 @@ void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
|
||||
Lambda(x,y,z);
|
||||
}
|
||||
}
|
||||
template<typename lambda> __global__
|
||||
void ProfileLambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
|
||||
{
|
||||
// Weird permute is to make lane coalesce for large blocks
|
||||
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
|
||||
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
|
||||
uint64_t z = threadIdx.x;
|
||||
if ( (x < num1) && (y<num2) && (z<num3) ) {
|
||||
Lambda(x,y,z);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename lambda> __global__
|
||||
void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
|
||||
@ -208,6 +245,7 @@ inline void *acceleratorAllocShared(size_t bytes)
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
|
||||
assert(0);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
@ -460,6 +498,9 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
|
||||
#if defined(GRID_SYCL) || defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
// FIXME -- the non-blocking nature got broken March 30 2023 by PAB
|
||||
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );
|
||||
#define prof_accelerator_for( iter1, num1, nsimd, ... ) \
|
||||
prof_accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );\
|
||||
accelerator_barrier(dummy);
|
||||
|
||||
#define accelerator_for( iter, num, nsimd, ... ) \
|
||||
accelerator_forNB(iter, num, nsimd, { __VA_ARGS__ } ); \
|
||||
|
@ -94,6 +94,13 @@ static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;
|
||||
|
||||
typedef AcceleratorVector<int,MaxDims> Coordinate;
|
||||
|
||||
template<class T,int _ndim>
|
||||
inline bool operator==(const AcceleratorVector<T,_ndim> &v,const AcceleratorVector<T,_ndim> &w)
|
||||
{
|
||||
if (v.size()!=w.size()) return false;
|
||||
for(int i=0;i<v.size();i++) if ( v[i]!=w[i] ) return false;
|
||||
return true;
|
||||
}
|
||||
template<class T,int _ndim>
|
||||
inline std::ostream & operator<<(std::ostream &os, const AcceleratorVector<T,_ndim> &v)
|
||||
{
|
||||
|
@ -8,7 +8,7 @@ namespace Grid{
|
||||
public:
|
||||
|
||||
template<class coor_t>
|
||||
static accelerator_inline void CoorFromIndex (coor_t& coor,int index,const coor_t &dims){
|
||||
static accelerator_inline void CoorFromIndex (coor_t& coor,int64_t index,const coor_t &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=0;d<nd;d++){
|
||||
@ -18,28 +18,45 @@ namespace Grid{
|
||||
}
|
||||
|
||||
template<class coor_t>
|
||||
static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
|
||||
static accelerator_inline void IndexFromCoor (const coor_t& coor,int64_t &index,const coor_t &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=0;d<nd;d++){
|
||||
index = index+stride*coor[d];
|
||||
index = index+(int64_t)stride*coor[d];
|
||||
stride=stride*dims[d];
|
||||
}
|
||||
}
|
||||
template<class coor_t>
|
||||
static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
|
||||
int64_t index64;
|
||||
IndexFromCoor(coor,index64,dims);
|
||||
assert(index64<2*1024*1024*1024LL);
|
||||
index = (int) index64;
|
||||
}
|
||||
|
||||
template<class coor_t>
|
||||
static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
|
||||
static inline void IndexFromCoorReversed (const coor_t& coor,int64_t &index,const coor_t &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
index = index+stride*coor[d];
|
||||
index = index+(int64_t)stride*coor[d];
|
||||
stride=stride*dims[d];
|
||||
}
|
||||
}
|
||||
template<class coor_t>
|
||||
static inline void CoorFromIndexReversed (coor_t& coor,int index,const coor_t &dims){
|
||||
static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
|
||||
int64_t index64;
|
||||
IndexFromCoorReversed(coor,index64,dims);
|
||||
if ( index64>=2*1024*1024*1024LL ){
|
||||
std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
|
||||
}
|
||||
assert(index64<2*1024*1024*1024LL);
|
||||
index = (int) index64;
|
||||
}
|
||||
template<class coor_t>
|
||||
static inline void CoorFromIndexReversed (coor_t& coor,int64_t index,const coor_t &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
|
43
systems/Frontier/benchmarks/bench2.slurm
Executable file
43
systems/Frontier/benchmarks/bench2.slurm
Executable file
@ -0,0 +1,43 @@
|
||||
#!/bin/bash -l
|
||||
#SBATCH --job-name=bench
|
||||
##SBATCH --partition=small-g
|
||||
#SBATCH --nodes=2
|
||||
#SBATCH --ntasks-per-node=8
|
||||
#SBATCH --cpus-per-task=7
|
||||
#SBATCH --gpus-per-node=8
|
||||
#SBATCH --time=00:10:00
|
||||
#SBATCH --account=phy157_dwf
|
||||
#SBATCH --gpu-bind=none
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --mem=0
|
||||
|
||||
cat << EOF > select_gpu
|
||||
#!/bin/bash
|
||||
export GPU_MAP=(0 1 2 3 7 6 5 4)
|
||||
export NUMA_MAP=(3 3 1 1 2 2 0 0)
|
||||
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
|
||||
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
|
||||
export HIP_VISIBLE_DEVICES=\$GPU
|
||||
unset ROCR_VISIBLE_DEVICES
|
||||
echo RANK \$SLURM_LOCALID using GPU \$GPU
|
||||
exec numactl -m \$NUMA -N \$NUMA \$*
|
||||
EOF
|
||||
|
||||
chmod +x ./select_gpu
|
||||
|
||||
root=$HOME/Frontier/Grid/systems/Frontier/
|
||||
source ${root}/sourceme.sh
|
||||
|
||||
export OMP_NUM_THREADS=7
|
||||
export MPICH_GPU_SUPPORT_ENABLED=1
|
||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
|
||||
|
||||
for vol in 32.32.32.64
|
||||
do
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.ov.$vol
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.ov.$vol
|
||||
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.seq.$vol
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
|
||||
done
|
||||
|
23
systems/Frontier/config-command
Normal file
23
systems/Frontier/config-command
Normal file
@ -0,0 +1,23 @@
|
||||
CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
|
||||
../../configure --enable-comms=mpi-auto \
|
||||
--with-lime=$CLIME \
|
||||
--enable-unified=no \
|
||||
--enable-shm=nvlink \
|
||||
--enable-tracing=timer \
|
||||
--enable-accelerator=hip \
|
||||
--enable-gen-simd-width=64 \
|
||||
--disable-gparity \
|
||||
--disable-fermion-reps \
|
||||
--enable-simd=GPU \
|
||||
--enable-accelerator-cshift \
|
||||
--with-gmp=$OLCF_GMP_ROOT \
|
||||
--with-fftw=$FFTW_DIR/.. \
|
||||
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
|
||||
--disable-fermion-reps \
|
||||
CXX=hipcc MPICXX=mpicxx \
|
||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -std=c++14 -I${MPICH_DIR}/include -L/lib64 " \
|
||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 "
|
||||
|
||||
|
||||
|
||||
|
13
systems/Frontier/mpiwrapper.sh
Executable file
13
systems/Frontier/mpiwrapper.sh
Executable file
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
lrank=$SLURM_LOCALID
|
||||
lgpu=(0 1 2 3 7 6 5 4)
|
||||
|
||||
export ROCR_VISIBLE_DEVICES=${lgpu[$lrank]}
|
||||
|
||||
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES "
|
||||
|
||||
$*
|
||||
|
||||
|
||||
|
13
systems/Frontier/sourceme.sh
Normal file
13
systems/Frontier/sourceme.sh
Normal file
@ -0,0 +1,13 @@
|
||||
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
|
||||
spack load c-lime
|
||||
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/sw/crusher/spack-envs/base/opt/cray-sles15-zen3/gcc-11.2.0/gperftools-2.9.1-72ubwtuc5wcz2meqltbfdb76epufgzo2/lib
|
||||
module load emacs
|
||||
module load PrgEnv-gnu
|
||||
module load rocm
|
||||
module load cray-mpich/8.1.23
|
||||
module load gmp
|
||||
module load cray-fftw
|
||||
module load craype-accel-amd-gfx90a
|
||||
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
|
||||
#Hack for lib
|
||||
#export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
|
9
systems/Frontier/wrap.sh
Executable file
9
systems/Frontier/wrap.sh
Executable file
@ -0,0 +1,9 @@
|
||||
#!/bin/sh
|
||||
|
||||
export HIP_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES
|
||||
unset ROCR_VISIBLE_DEVICES
|
||||
|
||||
#rank=$SLURM_PROCID
|
||||
#rocprof -d rocprof.$rank -o rocprof.$rank/results.rank$SLURM_PROCID.csv --sys-trace $@
|
||||
|
||||
$@
|
@ -1,4 +1,3 @@
|
||||
BREW=/opt/local/
|
||||
MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
|
||||
|
||||
|
||||
|
235
tests/debug/Test_general_coarse.cc
Normal file
235
tests/debug/Test_general_coarse.cc
Normal file
@ -0,0 +1,235 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_padded_cell.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
///////////////////////
|
||||
// Tells little dirac op to use MdagM as the .Op()
|
||||
///////////////////////
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
|
||||
void Op (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=4;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/2;
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
LatticeFermion src(FGrid); random(RNG5,src);
|
||||
LatticeFermion result(FGrid); result=Zero();
|
||||
LatticeFermion ref(FGrid); ref=Zero();
|
||||
LatticeFermion tmp(FGrid);
|
||||
LatticeFermion err(FGrid);
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU<Nc>::HotConfiguration(RNG4,Umu);
|
||||
// Umu=Zero();
|
||||
|
||||
RealD mass=0.1;
|
||||
RealD M5=1.8;
|
||||
|
||||
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
|
||||
const int nbasis = 16;
|
||||
const int cb = 0 ;
|
||||
LatticeFermion prom(FGrid);
|
||||
|
||||
std::vector<LatticeFermion> subspace(nbasis,FGrid);
|
||||
|
||||
std::cout<<GridLogMessage<<"Calling Aggregation class" <<std::endl;
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Squared operator is in HermOp
|
||||
///////////////////////////////////////////////////////////
|
||||
MdagMLinearOperator<DomainWallFermionD,LatticeFermion> HermDefOp(Ddwf);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Random aggregation space
|
||||
///////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "Building random aggregation class"<< std::endl;
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FGrid,cb);
|
||||
Aggregates.CreateSubspaceRandom(RNG5);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Build little dirac op
|
||||
///////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "Building little Dirac operator"<< std::endl;
|
||||
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
LittleDiracOperator LittleDiracOp(geom,FGrid,Coarse5d);
|
||||
LittleDiracOperator LittleDiracOpCol(geom,FGrid,Coarse5d);
|
||||
|
||||
HermOpAdaptor<LatticeFermionD> HOA(HermDefOp);
|
||||
|
||||
int pp=16;
|
||||
LittleDiracOp.CoarsenOperator(HOA,Aggregates);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Test the operator
|
||||
///////////////////////////////////////////////////
|
||||
CoarseVector c_src (Coarse5d);
|
||||
CoarseVector c_res (Coarse5d);
|
||||
CoarseVector c_res_dag(Coarse5d);
|
||||
CoarseVector c_proj(Coarse5d);
|
||||
|
||||
subspace=Aggregates.subspace;
|
||||
|
||||
// random(CRNG,c_src);
|
||||
c_src = 1.0;
|
||||
|
||||
blockPromote(c_src,err,subspace);
|
||||
|
||||
prom=Zero();
|
||||
for(int b=0;b<nbasis;b++){
|
||||
prom=prom+subspace[b];
|
||||
}
|
||||
err=err-prom;
|
||||
std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"prom "<<norm2(prom)<<std::endl;
|
||||
|
||||
HermDefOp.HermOp(prom,tmp);
|
||||
|
||||
blockProject(c_proj,tmp,subspace);
|
||||
std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<" Calling little Dirac Op "<<std::endl;
|
||||
LittleDiracOp.M(c_src,c_res);
|
||||
LittleDiracOp.Mdag(c_src,c_res_dag);
|
||||
|
||||
std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Little dop dag : "<<norm2(c_res_dag)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
|
||||
|
||||
c_proj = c_proj - c_res;
|
||||
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
|
||||
|
||||
c_res_dag = c_res_dag - c_res;
|
||||
std::cout<<GridLogMessage<<"Little dopDag - dop: "<<norm2(c_res_dag)<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "Testing Hermiticity stochastically "<< std::endl;
|
||||
CoarseVector phi(Coarse5d);
|
||||
CoarseVector chi(Coarse5d);
|
||||
CoarseVector Aphi(Coarse5d);
|
||||
CoarseVector Achi(Coarse5d);
|
||||
|
||||
random(CRNG,phi);
|
||||
random(CRNG,chi);
|
||||
|
||||
std::cout<<GridLogMessage<<"Made randoms "<<norm2(phi)<<" " << norm2(chi)<<std::endl;
|
||||
|
||||
LittleDiracOp.M(phi,Aphi);
|
||||
|
||||
LittleDiracOp.Mdag(chi,Achi);
|
||||
|
||||
std::cout<<GridLogMessage<<"Aphi "<<norm2(Aphi)<<" A chi" << norm2(Achi)<<std::endl;
|
||||
|
||||
ComplexD pAc = innerProduct(chi,Aphi);
|
||||
ComplexD cAp = innerProduct(phi,Achi);
|
||||
ComplexD cAc = innerProduct(chi,Achi);
|
||||
ComplexD pAp = innerProduct(phi,Aphi);
|
||||
|
||||
std::cout<<GridLogMessage<< "pAc "<<pAc<<" cAp "<< cAp<< " diff "<<pAc-adj(cAp)<<std::endl;
|
||||
std::cout<<GridLogMessage<< "pAp "<<pAp<<" cAc "<< cAc<<"Should be real"<< std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"Testing linearity"<<std::endl;
|
||||
CoarseVector PhiPlusChi(Coarse5d);
|
||||
CoarseVector APhiPlusChi(Coarse5d);
|
||||
CoarseVector linerr(Coarse5d);
|
||||
PhiPlusChi = phi+chi;
|
||||
LittleDiracOp.M(PhiPlusChi,APhiPlusChi);
|
||||
|
||||
linerr= APhiPlusChi-Aphi;
|
||||
linerr= linerr-Achi;
|
||||
std::cout<<GridLogMessage<<"**Diff "<<norm2(linerr)<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
423
tests/debug/Test_general_coarse_hdcg.cc
Normal file
423
tests/debug/Test_general_coarse_hdcg.cc
Normal file
@ -0,0 +1,423 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class Coarsened>
|
||||
void SaveOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Operator.Grid()->IsBoss());
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
WR.open(file);
|
||||
for(int p=0;p<Operator._A.size();p++){
|
||||
auto tmp = Operator.Cell.Extract(Operator._A[p]);
|
||||
WR.writeScidacFieldRecord(tmp,record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class Coarsened>
|
||||
void LoadOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
for(int p=0;p<Operator.geom.npoint;p++){
|
||||
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
|
||||
RD.readScidacFieldRecord(Operator._A[p],record);
|
||||
}
|
||||
RD.close();
|
||||
Operator.ExchangeCoarseLinks();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void SaveBasis(aggregation &Agg,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Agg.FineGrid->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
WR.writeScidacFieldRecord(Agg.subspace[b],record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void LoadBasis(aggregation &Agg, std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
RD.readScidacFieldRecord(Agg.subspace[b],record);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
template<class Field> class TestSolver : public LinearFunction<Field> {
|
||||
public:
|
||||
TestSolver() {};
|
||||
void operator() (const Field &in, Field &out){ out = Zero(); }
|
||||
};
|
||||
|
||||
|
||||
RealD InverseApproximation(RealD x){
|
||||
return 1.0/x;
|
||||
}
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
Chebyshev<Field> Cheby;
|
||||
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
Cheby(_lo,_hi,_ord,InverseApproximation)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
Field tmp(in.Grid());
|
||||
tmp = in;
|
||||
Cheby(_SmootherOperator,tmp,out);
|
||||
}
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=16;
|
||||
const int nbasis = 40;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/4;
|
||||
}
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.4000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
|
||||
// Run power method on FineHermOp
|
||||
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
NearestStencilGeometry5D geom_nn(Coarse5d);
|
||||
|
||||
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
|
||||
|
||||
bool load=true;
|
||||
if ( load ) {
|
||||
LoadBasis(Aggregates,"Subspace.scidac");
|
||||
LoadOperator(LittleDiracOp,"LittleDiracOp.scidac");
|
||||
} else {
|
||||
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
|
||||
95.0,0.1,
|
||||
// 400,200,200 -- 48 iters
|
||||
// 600,200,200 -- 38 iters, 162s
|
||||
// 600,200,100 -- 38 iters, 169s
|
||||
// 600,200,50 -- 88 iters. 370s
|
||||
800,
|
||||
200,
|
||||
100,
|
||||
0.0);
|
||||
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
|
||||
SaveBasis(Aggregates,"Subspace.scidac");
|
||||
SaveOperator(LittleDiracOp,"LittleDiracOp.scidac");
|
||||
}
|
||||
|
||||
// Try projecting to one hop only
|
||||
LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
|
||||
LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n
|
||||
|
||||
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
|
||||
HermMatrix CoarseOp (LittleDiracOp);
|
||||
HermMatrix CoarseOpProj (LittleDiracOpProj);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a coarse lanczos
|
||||
//////////////////////////////////////////
|
||||
Chebyshev<CoarseVector> IRLCheby(0.2,40.0,71); // 1 iter
|
||||
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
|
||||
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
|
||||
int Nk=48;
|
||||
int Nm=64;
|
||||
int Nstop=Nk;
|
||||
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-5,20);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
CoarseVector c_src(Coarse5d); c_src=1.0;
|
||||
CoarseVector c_res(Coarse5d);
|
||||
CoarseVector c_ref(Coarse5d);
|
||||
|
||||
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
|
||||
|
||||
IRL.calc(eval,evec,c_src,Nconv);
|
||||
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a coarse space solver
|
||||
//////////////////////////////////////////
|
||||
int maxit=20000;
|
||||
ConjugateGradient<CoarseVector> CG(1.0e-8,maxit,false);
|
||||
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,10000,false);
|
||||
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
|
||||
|
||||
// HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,CoarseZeroGuesser);
|
||||
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
|
||||
c_res=Zero();
|
||||
HPDSolve(c_src,c_res); c_ref = c_res;
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"ref norm "<<norm2(c_ref)<<std::endl;
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Deflated (with real op EV's) solve for the projected coarse op
|
||||
// Work towards ADEF1 in the coarse space
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
|
||||
c_res=Zero();
|
||||
HPDSolveProj(c_src,c_res);
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl;
|
||||
c_res = c_res - c_ref;
|
||||
std::cout << "Projected solver error "<<norm2(c_res)<<std::endl;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Coarse ADEF1 with deflation space
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
ChebyshevSmoother<CoarseVector,HermMatrix >
|
||||
CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence
|
||||
// CoarseSmoother(0.1,37.,8,CoarseOpProj); //
|
||||
// CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s
|
||||
// CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s
|
||||
// CoarseSmoother(0.5,37.,8,CoarseOpProj);// 7-9 iter
|
||||
// CoarseSmoother(1.0,37.,8,CoarseOpProj); // 0.4 - 0.5s solve to 0.04, 7-9 iter
|
||||
// ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(0.5,36.,10,CoarseOpProj); // 311
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// CG, Cheby mode spacing 200,200
|
||||
// Unprojected Coarse CG solve to 1e-8 : 190 iters, 4.9s
|
||||
// Unprojected Coarse CG solve to 4e-2 : 33 iters, 0.8s
|
||||
// Projected Coarse CG solve to 1e-8 : 100 iters, 0.36s
|
||||
////////////////////////////////////////////////////////
|
||||
// CoarseSmoother(1.0,48.,8,CoarseOpProj); 48 evecs
|
||||
////////////////////////////////////////////////////////
|
||||
// ADEF1 Coarse solve to 1e-8 : 44 iters, 2.34s 2.1x gain
|
||||
// ADEF1 Coarse solve to 4e-2 : 7 iters, 0.4s
|
||||
// HDCG 38 iters 162s
|
||||
//
|
||||
// CoarseSmoother(1.0,40.,8,CoarseOpProj); 48 evecs
|
||||
// ADEF1 Coarse solve to 1e-8 : 37 iters, 2.0s 2.1x gain
|
||||
// ADEF1 Coarse solve to 4e-2 : 6 iters, 0.36s
|
||||
// HDCG 38 iters 169s
|
||||
|
||||
TwoLevelADEF1defl<CoarseVector>
|
||||
cADEF1(1.0e-8, 500,
|
||||
CoarseOp,
|
||||
CoarseSmoother,
|
||||
evec,eval);
|
||||
|
||||
c_res=Zero();
|
||||
cADEF1(c_src,c_res);
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
|
||||
c_res = c_res - c_ref;
|
||||
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
|
||||
|
||||
// cADEF1.Tolerance = 4.0e-2;
|
||||
// cADEF1.Tolerance = 1.0e-1;
|
||||
cADEF1.Tolerance = 5.0e-2;
|
||||
c_res=Zero();
|
||||
cADEF1(c_src,c_res);
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
|
||||
c_res = c_res - c_ref;
|
||||
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a smoother
|
||||
//////////////////////////////////////////
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(10.0,100.0,10,FineHermOp); //499
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(3.0,100.0,10,FineHermOp); //383
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(1.0,100.0,10,FineHermOp); //328
|
||||
// std::vector<RealD> los({0.5,1.0,3.0}); // 147/142/146 nbasis 1
|
||||
// std::vector<RealD> los({1.0,2.0}); // Nbasis 24: 88,86 iterations
|
||||
// std::vector<RealD> los({2.0,4.0}); // Nbasis 32 == 52, iters
|
||||
// std::vector<RealD> los({2.0,4.0}); // Nbasis 40 == 36,36 iters
|
||||
|
||||
//
|
||||
// Turns approx 2700 iterations into 340 fine multiplies with Nbasis 40
|
||||
// Need to measure cost of coarse space.
|
||||
//
|
||||
// -- i) Reduce coarse residual -- 0.04
|
||||
// -- ii) Lanczos on coarse space -- done
|
||||
// -- iii) Possible 1 hop project and/or preconditioning it - easy - PrecCG it and
|
||||
// use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
|
||||
//
|
||||
std::vector<RealD> los({3.0}); // Nbasis 40 == 36,36 iters
|
||||
|
||||
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
|
||||
std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
|
||||
|
||||
for(int l=0;l<los.size();l++){
|
||||
|
||||
RealD lo = los[l];
|
||||
|
||||
for(int o=0;o<ords.size();o++){
|
||||
|
||||
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
|
||||
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
|
||||
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,10,FineHermOp); // 36 best case
|
||||
ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,ords[o],FineHermOp); // 311
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a HDCG solver
|
||||
//////////////////////////////////////////
|
||||
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
|
||||
HDCG(1.0e-8, 100,
|
||||
FineHermOp,
|
||||
Smoother,
|
||||
HPDSolveSloppy,
|
||||
HPDSolve,
|
||||
Aggregates);
|
||||
|
||||
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
|
||||
HDCGdefl(1.0e-8, 100,
|
||||
FineHermOp,
|
||||
Smoother,
|
||||
cADEF1,
|
||||
HPDSolve,
|
||||
Aggregates);
|
||||
|
||||
result=Zero();
|
||||
HDCGdefl(src,result);
|
||||
|
||||
result=Zero();
|
||||
HDCG(src,result);
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Standard CG
|
||||
result=Zero();
|
||||
CGfine(HermOpEO, src, result);
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
423
tests/debug/Test_general_coarse_hdcg_phys.cc
Normal file
423
tests/debug/Test_general_coarse_hdcg_phys.cc
Normal file
@ -0,0 +1,423 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class Coarsened>
|
||||
void SaveOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Operator.Grid()->IsBoss());
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
WR.open(file);
|
||||
for(int p=0;p<Operator._A.size();p++){
|
||||
auto tmp = Operator.Cell.Extract(Operator._A[p]);
|
||||
WR.writeScidacFieldRecord(tmp,record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class Coarsened>
|
||||
void LoadOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
for(int p=0;p<Operator.geom.npoint;p++){
|
||||
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
|
||||
RD.readScidacFieldRecord(Operator._A[p],record);
|
||||
}
|
||||
RD.close();
|
||||
Operator.ExchangeCoarseLinks();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void SaveBasis(aggregation &Agg,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Agg.FineGrid->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
WR.writeScidacFieldRecord(Agg.subspace[b],record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void LoadBasis(aggregation &Agg, std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
RD.readScidacFieldRecord(Agg.subspace[b],record);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
template<class Field> class TestSolver : public LinearFunction<Field> {
|
||||
public:
|
||||
TestSolver() {};
|
||||
void operator() (const Field &in, Field &out){ out = Zero(); }
|
||||
};
|
||||
|
||||
|
||||
RealD InverseApproximation(RealD x){
|
||||
return 1.0/x;
|
||||
}
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
Chebyshev<Field> Cheby;
|
||||
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
Cheby(_lo,_hi,_ord,InverseApproximation)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
Field tmp(in.Grid());
|
||||
tmp = in;
|
||||
Cheby(_SmootherOperator,tmp,out);
|
||||
}
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 40;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/4;
|
||||
}
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.4000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
|
||||
// Run power method on FineHermOp
|
||||
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
NearestStencilGeometry5D geom_nn(Coarse5d);
|
||||
|
||||
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
|
||||
|
||||
bool load=true;
|
||||
if ( load ) {
|
||||
LoadBasis(Aggregates,"Subspace.scidac");
|
||||
LoadOperator(LittleDiracOp,"LittleDiracOp.scidac");
|
||||
} else {
|
||||
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
|
||||
95.0,0.1,
|
||||
// 400,200,200 -- 48 iters
|
||||
// 600,200,200 -- 38 iters, 162s
|
||||
// 600,200,100 -- 38 iters, 169s
|
||||
// 600,200,50 -- 88 iters. 370s
|
||||
800,
|
||||
200,
|
||||
100,
|
||||
0.0);
|
||||
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
|
||||
SaveBasis(Aggregates,"Subspace.scidac");
|
||||
SaveOperator(LittleDiracOp,"LittleDiracOp.scidac");
|
||||
}
|
||||
|
||||
// Try projecting to one hop only
|
||||
LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
|
||||
LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n
|
||||
|
||||
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
|
||||
HermMatrix CoarseOp (LittleDiracOp);
|
||||
HermMatrix CoarseOpProj (LittleDiracOpProj);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a coarse lanczos
|
||||
//////////////////////////////////////////
|
||||
Chebyshev<CoarseVector> IRLCheby(0.2,40.0,71); // 1 iter
|
||||
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
|
||||
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
|
||||
int Nk=48;
|
||||
int Nm=64;
|
||||
int Nstop=Nk;
|
||||
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-5,20);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
CoarseVector c_src(Coarse5d); c_src=1.0;
|
||||
CoarseVector c_res(Coarse5d);
|
||||
CoarseVector c_ref(Coarse5d);
|
||||
|
||||
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
|
||||
|
||||
IRL.calc(eval,evec,c_src,Nconv);
|
||||
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a coarse space solver
|
||||
//////////////////////////////////////////
|
||||
int maxit=20000;
|
||||
ConjugateGradient<CoarseVector> CG(1.0e-8,maxit,false);
|
||||
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,10000,false);
|
||||
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
|
||||
|
||||
// HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,CoarseZeroGuesser);
|
||||
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
|
||||
c_res=Zero();
|
||||
HPDSolve(c_src,c_res); c_ref = c_res;
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"ref norm "<<norm2(c_ref)<<std::endl;
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Deflated (with real op EV's) solve for the projected coarse op
|
||||
// Work towards ADEF1 in the coarse space
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
|
||||
c_res=Zero();
|
||||
HPDSolveProj(c_src,c_res);
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl;
|
||||
c_res = c_res - c_ref;
|
||||
std::cout << "Projected solver error "<<norm2(c_res)<<std::endl;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Coarse ADEF1 with deflation space
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
ChebyshevSmoother<CoarseVector,HermMatrix >
|
||||
CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence
|
||||
// CoarseSmoother(0.1,37.,8,CoarseOpProj); //
|
||||
// CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s
|
||||
// CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s
|
||||
// CoarseSmoother(0.5,37.,8,CoarseOpProj);// 7-9 iter
|
||||
// CoarseSmoother(1.0,37.,8,CoarseOpProj); // 0.4 - 0.5s solve to 0.04, 7-9 iter
|
||||
// ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(0.5,36.,10,CoarseOpProj); // 311
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// CG, Cheby mode spacing 200,200
|
||||
// Unprojected Coarse CG solve to 1e-8 : 190 iters, 4.9s
|
||||
// Unprojected Coarse CG solve to 4e-2 : 33 iters, 0.8s
|
||||
// Projected Coarse CG solve to 1e-8 : 100 iters, 0.36s
|
||||
////////////////////////////////////////////////////////
|
||||
// CoarseSmoother(1.0,48.,8,CoarseOpProj); 48 evecs
|
||||
////////////////////////////////////////////////////////
|
||||
// ADEF1 Coarse solve to 1e-8 : 44 iters, 2.34s 2.1x gain
|
||||
// ADEF1 Coarse solve to 4e-2 : 7 iters, 0.4s
|
||||
// HDCG 38 iters 162s
|
||||
//
|
||||
// CoarseSmoother(1.0,40.,8,CoarseOpProj); 48 evecs
|
||||
// ADEF1 Coarse solve to 1e-8 : 37 iters, 2.0s 2.1x gain
|
||||
// ADEF1 Coarse solve to 4e-2 : 6 iters, 0.36s
|
||||
// HDCG 38 iters 169s
|
||||
|
||||
TwoLevelADEF1defl<CoarseVector>
|
||||
cADEF1(1.0e-8, 500,
|
||||
CoarseOp,
|
||||
CoarseSmoother,
|
||||
evec,eval);
|
||||
|
||||
c_res=Zero();
|
||||
cADEF1(c_src,c_res);
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
|
||||
c_res = c_res - c_ref;
|
||||
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
|
||||
|
||||
// cADEF1.Tolerance = 4.0e-2;
|
||||
// cADEF1.Tolerance = 1.0e-1;
|
||||
cADEF1.Tolerance = 5.0e-2;
|
||||
c_res=Zero();
|
||||
cADEF1(c_src,c_res);
|
||||
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
|
||||
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
|
||||
c_res = c_res - c_ref;
|
||||
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a smoother
|
||||
//////////////////////////////////////////
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(10.0,100.0,10,FineHermOp); //499
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(3.0,100.0,10,FineHermOp); //383
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(1.0,100.0,10,FineHermOp); //328
|
||||
// std::vector<RealD> los({0.5,1.0,3.0}); // 147/142/146 nbasis 1
|
||||
// std::vector<RealD> los({1.0,2.0}); // Nbasis 24: 88,86 iterations
|
||||
// std::vector<RealD> los({2.0,4.0}); // Nbasis 32 == 52, iters
|
||||
// std::vector<RealD> los({2.0,4.0}); // Nbasis 40 == 36,36 iters
|
||||
|
||||
//
|
||||
// Turns approx 2700 iterations into 340 fine multiplies with Nbasis 40
|
||||
// Need to measure cost of coarse space.
|
||||
//
|
||||
// -- i) Reduce coarse residual -- 0.04
|
||||
// -- ii) Lanczos on coarse space -- done
|
||||
// -- iii) Possible 1 hop project and/or preconditioning it - easy - PrecCG it and
|
||||
// use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
|
||||
//
|
||||
std::vector<RealD> los({3.0}); // Nbasis 40 == 36,36 iters
|
||||
|
||||
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
|
||||
std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
|
||||
|
||||
for(int l=0;l<los.size();l++){
|
||||
|
||||
RealD lo = los[l];
|
||||
|
||||
for(int o=0;o<ords.size();o++){
|
||||
|
||||
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
|
||||
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
|
||||
|
||||
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,10,FineHermOp); // 36 best case
|
||||
ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,ords[o],FineHermOp); // 311
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a HDCG solver
|
||||
//////////////////////////////////////////
|
||||
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
|
||||
HDCG(1.0e-8, 100,
|
||||
FineHermOp,
|
||||
Smoother,
|
||||
HPDSolveSloppy,
|
||||
HPDSolve,
|
||||
Aggregates);
|
||||
|
||||
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
|
||||
HDCGdefl(1.0e-8, 100,
|
||||
FineHermOp,
|
||||
Smoother,
|
||||
cADEF1,
|
||||
HPDSolve,
|
||||
Aggregates);
|
||||
|
||||
result=Zero();
|
||||
HDCGdefl(src,result);
|
||||
|
||||
result=Zero();
|
||||
HDCG(src,result);
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Standard CG
|
||||
result=Zero();
|
||||
CGfine(HermOpEO, src, result);
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
267
tests/debug/Test_general_coarse_pvdagm.cc
Normal file
267
tests/debug/Test_general_coarse_pvdagm.cc
Normal file
@ -0,0 +1,267 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_padded_cell.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
|
||||
void Op (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
Matrix &_PV;
|
||||
public:
|
||||
PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
|
||||
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
|
||||
void Op (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
_Mat.M(in,tmp);
|
||||
_PV.Mdag(tmp,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
_PV.M(tmp,out);
|
||||
_Mat.Mdag(in,tmp);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){
|
||||
std::cout << "HermOp"<<std::endl;
|
||||
Field tmp(in.Grid());
|
||||
_Mat.M(in,tmp);
|
||||
_PV.Mdag(tmp,out);
|
||||
_PV.M(out,tmp);
|
||||
_Mat.Mdag(tmp,out);
|
||||
std::cout << "HermOp done "<<norm2(out)<<std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class DumbOperator : public LinearOperatorBase<Field> {
|
||||
public:
|
||||
LatticeComplex scale;
|
||||
DumbOperator(GridBase *grid) : scale(grid)
|
||||
{
|
||||
scale = 0.0;
|
||||
LatticeComplex scalesft(grid);
|
||||
LatticeComplex scaletmp(grid);
|
||||
for(int d=0;d<4;d++){
|
||||
Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
|
||||
LatticeCoordinate(scaletmp,d+1);
|
||||
scalesft = Cshift(scaletmp,d+1,1);
|
||||
scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp);
|
||||
}
|
||||
std::cout << " scale\n" << scale << std::endl;
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {};
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){};
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) {};
|
||||
|
||||
void Op (const Field &in, Field &out){
|
||||
out = scale * in;
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
out = scale * in;
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
double n1, n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
|
||||
ComplexD dot;
|
||||
|
||||
out = scale * in;
|
||||
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
|
||||
dot = innerProduct(out,out);
|
||||
n2=real(dot);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=2;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/4;
|
||||
}
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
LatticeFermion src(FGrid); random(RNG5,src);
|
||||
LatticeFermion result(FGrid); result=Zero();
|
||||
LatticeFermion ref(FGrid); ref=Zero();
|
||||
LatticeFermion tmp(FGrid);
|
||||
LatticeFermion err(FGrid);
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.4000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
//Umu = 1.0;
|
||||
|
||||
RealD mass=0.5;
|
||||
RealD M5=1.8;
|
||||
|
||||
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
|
||||
|
||||
const int nbasis = 1;
|
||||
const int cb = 0 ;
|
||||
LatticeFermion prom(FGrid);
|
||||
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
|
||||
PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
|
||||
HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
|
||||
|
||||
// Run power method on HOA??
|
||||
PowerMethod<LatticeFermion> PM; PM(HOA,src);
|
||||
|
||||
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace AggregatesPD(Coarse5d,FGrid,cb);
|
||||
AggregatesPD.CreateSubspaceChebyshev(RNG5,
|
||||
HOA,
|
||||
nbasis,
|
||||
5000.0,
|
||||
0.02,
|
||||
100,
|
||||
50,
|
||||
50,
|
||||
0.0);
|
||||
|
||||
LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
|
||||
LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Testing coarsened operator "<<std::endl;
|
||||
|
||||
CoarseVector c_src (Coarse5d);
|
||||
CoarseVector c_res (Coarse5d);
|
||||
CoarseVector c_proj(Coarse5d);
|
||||
|
||||
std::vector<LatticeFermion> subspace(nbasis,FGrid);
|
||||
subspace=AggregatesPD.subspace;
|
||||
|
||||
Complex one(1.0);
|
||||
c_src = one; // 1 in every element for vector 1.
|
||||
blockPromote(c_src,err,subspace);
|
||||
|
||||
prom=Zero();
|
||||
for(int b=0;b<nbasis;b++){
|
||||
prom=prom+subspace[b];
|
||||
}
|
||||
err=err-prom;
|
||||
std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"prom "<<norm2(prom)<<std::endl;
|
||||
|
||||
PVdagM.Op(prom,tmp);
|
||||
blockProject(c_proj,tmp,subspace);
|
||||
std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
|
||||
|
||||
LittleDiracOpPV.M(c_src,c_res);
|
||||
std::cout<<GridLogMessage<<" Called Little Dirac Op c_src "<< norm2(c_src) << " c_res "<< norm2(c_res) <<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
|
||||
// std::cout<<GridLogMessage<<" Little "<< c_res<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
|
||||
// std::cout<<GridLogMessage<<" Big "<< c_proj<<std::endl;
|
||||
c_proj = c_proj - c_res;
|
||||
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
|
||||
// std::cout<<GridLogMessage<<" error "<< c_proj<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage << "Done "<< std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user