mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
645 lines
13 KiB
C++
645 lines
13 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/simd/Grid_generic.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: neo <cossu@post.kek.jp>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef GEN_SIMD_WIDTH
|
|
#define GEN_SIMD_DCOMPLEX_WIDTH 2
|
|
#endif
|
|
|
|
#include "Grid_generic.h"
|
|
|
|
namespace Grid {
|
|
namespace Optimization {
|
|
|
|
constexpr unsigned int dcw = GEN_SIMD_DCOMPLEX_WIDTH;
|
|
constexpr unsigned int fcw = 2*dcw;
|
|
constexpr unsigned int dw = 2*dcw;
|
|
constexpr unsigned int fw = 2*fcw;
|
|
|
|
struct vecf {
|
|
float v[fw];
|
|
};
|
|
|
|
struct vecd {
|
|
double v[dw];
|
|
};
|
|
|
|
struct Vsplat{
|
|
//Complex float
|
|
inline vecf operator()(float a, float b){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fw; i += 2)
|
|
{
|
|
out.v[i] = a;
|
|
out.v[i+1] = b;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Real float
|
|
inline vecf operator()(float a){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fw; ++i)
|
|
{
|
|
out.v[i] = a;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Complex double
|
|
inline vecd operator()(double a, double b){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dw; i += 2)
|
|
{
|
|
out.v[i] = a;
|
|
out.v[i+1] = b;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Real double
|
|
inline vecd operator()(double a){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dw; ++i)
|
|
{
|
|
out.v[i] = a;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Integer
|
|
inline int operator()(Integer a){
|
|
return a;
|
|
}
|
|
};
|
|
|
|
struct Vstore{
|
|
//Float
|
|
inline void operator()(vecf a, float* F){
|
|
memcpy(F,a.v,fw*sizeof(float));
|
|
}
|
|
//Double
|
|
inline void operator()(vecd a, double* D){
|
|
memcpy(D,a.v,dw*sizeof(double));
|
|
}
|
|
//Integer
|
|
inline void operator()(int a, Integer* I){
|
|
I[0] = a;
|
|
}
|
|
|
|
};
|
|
|
|
struct Vstream{
|
|
//Float
|
|
inline void operator()(float * a, vecf b){
|
|
memcpy(a,b.v,fw*sizeof(float));
|
|
}
|
|
//Double
|
|
inline void operator()(double * a, vecd b){
|
|
memcpy(a,b.v,dw*sizeof(double));
|
|
}
|
|
|
|
|
|
};
|
|
|
|
struct Vset{
|
|
// Complex float
|
|
inline vecf operator()(Grid::ComplexF *a){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fcw; ++i)
|
|
{
|
|
out.v[2*i] = a[i].real();
|
|
out.v[2*i+1] = a[i].imag();
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Complex double
|
|
inline vecd operator()(Grid::ComplexD *a){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dcw; ++i)
|
|
{
|
|
out.v[2*i] = a[i].real();
|
|
out.v[2*i+1] = a[i].imag();
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Real float
|
|
inline vecf operator()(float *a){
|
|
vecf out;
|
|
|
|
memcpy(out.v,a,fw*sizeof(float));
|
|
|
|
return out;
|
|
}
|
|
// Real double
|
|
inline vecd operator()(double *a){
|
|
vecd out;
|
|
|
|
memcpy(out.v,a,dw*sizeof(float));
|
|
|
|
return out;
|
|
}
|
|
// Integer
|
|
inline int operator()(Integer *a){
|
|
return a[0];
|
|
}
|
|
|
|
|
|
};
|
|
|
|
/////////////////////////////////////////////////////
|
|
// Arithmetic operations
|
|
/////////////////////////////////////////////////////
|
|
struct Sum{
|
|
//Complex/Real float
|
|
inline vecf operator()(vecf a, vecf b){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fw; ++i)
|
|
{
|
|
out.v[i] = a.v[i] + b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Complex/Real double
|
|
inline vecd operator()(vecd a, vecd b){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dw; ++i)
|
|
{
|
|
out.v[i] = a.v[i] + b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Integer
|
|
inline int operator()(int a, int b){
|
|
return a + b;
|
|
}
|
|
};
|
|
|
|
struct Sub{
|
|
//Complex/Real float
|
|
inline vecf operator()(vecf a, vecf b){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fw; ++i)
|
|
{
|
|
out.v[i] = a.v[i] - b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Complex/Real double
|
|
inline vecd operator()(vecd a, vecd b){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dw; ++i)
|
|
{
|
|
out.v[i] = a.v[i] - b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//Integer
|
|
inline int operator()(int a, int b){
|
|
return a-b;
|
|
}
|
|
};
|
|
|
|
#define cmul(a, b, c, i)\
|
|
c[i] = a[i]*b[i] - a[i+1]*b[i+1];\
|
|
c[i+1] = a[i]*b[i+1] + a[i+1]*b[i];
|
|
|
|
struct MultComplex{
|
|
// Complex float
|
|
inline vecf operator()(vecf a, vecf b){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fcw; ++i)
|
|
{
|
|
cmul(a.v, b.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Complex double
|
|
inline vecd operator()(vecd a, vecd b){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dcw; ++i)
|
|
{
|
|
cmul(a.v, b.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#undef cmul
|
|
|
|
struct Mult{
|
|
// Real float
|
|
inline vecf operator()(vecf a, vecf b){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fw; ++i)
|
|
{
|
|
out.v[i] = a.v[i]*b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Real double
|
|
inline vecd operator()(vecd a, vecd b){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dw; ++i)
|
|
{
|
|
out.v[i] = a.v[i]*b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Integer
|
|
inline int operator()(int a, int b){
|
|
return a*b;
|
|
}
|
|
};
|
|
|
|
struct Div{
|
|
// Real float
|
|
inline vecf operator()(vecf a, vecf b){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fw; ++i)
|
|
{
|
|
out.v[i] = a.v[i]/b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
// Real double
|
|
inline vecd operator()(vecd a, vecd b){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dw; ++i)
|
|
{
|
|
out.v[i] = a.v[i]/b.v[i];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#define conj(a, b, i)\
|
|
b[i] = a[i];\
|
|
b[i+1] = -a[i+1];
|
|
|
|
struct Conj{
|
|
// Complex single
|
|
inline vecf operator()(vecf in){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fcw; ++i)
|
|
{
|
|
conj(in.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Complex double
|
|
inline vecd operator()(vecd in){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dcw; ++i)
|
|
{
|
|
conj(in.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#undef conj
|
|
|
|
#define timesmi(a, b, i)\
|
|
b[i] = a[i+1];\
|
|
b[i+1] = -a[i];
|
|
|
|
struct TimesMinusI{
|
|
// Complex single
|
|
inline vecf operator()(vecf in, vecf ret){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fcw; ++i)
|
|
{
|
|
timesmi(in.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Complex double
|
|
inline vecd operator()(vecd in, vecd ret){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dcw; ++i)
|
|
{
|
|
timesmi(in.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#undef timesmi
|
|
|
|
#define timespi(a, b, i)\
|
|
b[i] = -a[i+1];\
|
|
b[i+1] = a[i];
|
|
|
|
struct TimesI{
|
|
// Complex single
|
|
inline vecf operator()(vecf in, vecf ret){
|
|
vecf out;
|
|
|
|
for (unsigned int i = 0; i < fcw; ++i)
|
|
{
|
|
timespi(in.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// Complex double
|
|
inline vecd operator()(vecd in, vecd ret){
|
|
vecd out;
|
|
|
|
for (unsigned int i = 0; i < dcw; ++i)
|
|
{
|
|
timespi(in.v, out.v, 2*i);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#undef timespi
|
|
|
|
//////////////////////////////////////////////
|
|
// Some Template specialization
|
|
struct Permute{
|
|
static inline vecf Permute0(vecf in){ //AB CD -> CD AB
|
|
vecf out;
|
|
|
|
out.v[0] = in.v[4];
|
|
out.v[1] = in.v[5];
|
|
out.v[2] = in.v[6];
|
|
out.v[3] = in.v[7];
|
|
out.v[4] = in.v[0];
|
|
out.v[5] = in.v[1];
|
|
out.v[6] = in.v[2];
|
|
out.v[7] = in.v[3];
|
|
|
|
return out;
|
|
};
|
|
|
|
static inline vecf Permute1(vecf in){ //AB CD -> BA DC
|
|
vecf out;
|
|
|
|
out.v[0] = in.v[2];
|
|
out.v[1] = in.v[3];
|
|
out.v[2] = in.v[0];
|
|
out.v[3] = in.v[1];
|
|
out.v[4] = in.v[6];
|
|
out.v[5] = in.v[7];
|
|
out.v[6] = in.v[4];
|
|
out.v[7] = in.v[5];
|
|
|
|
return out;
|
|
};
|
|
|
|
static inline vecf Permute2(vecf in){
|
|
vecf out;
|
|
|
|
out.v[0] = in.v[1];
|
|
out.v[1] = in.v[0];
|
|
out.v[2] = in.v[3];
|
|
out.v[3] = in.v[2];
|
|
out.v[4] = in.v[5];
|
|
out.v[5] = in.v[4];
|
|
out.v[6] = in.v[7];
|
|
out.v[7] = in.v[6];
|
|
|
|
return out;
|
|
};
|
|
|
|
static inline vecf Permute3(vecf in){
|
|
return in;
|
|
};
|
|
|
|
static inline vecd Permute0(vecd in){ //AB -> BA
|
|
vecd out;
|
|
|
|
out.v[0] = in.v[2];
|
|
out.v[1] = in.v[3];
|
|
out.v[2] = in.v[0];
|
|
out.v[3] = in.v[1];
|
|
|
|
return out;
|
|
};
|
|
|
|
static inline vecd Permute1(vecd in){
|
|
vecd out;
|
|
|
|
out.v[0] = in.v[1];
|
|
out.v[1] = in.v[0];
|
|
out.v[2] = in.v[3];
|
|
out.v[3] = in.v[2];
|
|
|
|
return out;
|
|
};
|
|
|
|
static inline vecd Permute2(vecd in){
|
|
return in;
|
|
};
|
|
|
|
static inline vecd Permute3(vecd in){
|
|
return in;
|
|
};
|
|
|
|
};
|
|
|
|
#define rot(a, b, n, w)\
|
|
for (unsigned int i = 0; i < w; ++i)\
|
|
{\
|
|
b[i] = a[(i + n)%w];\
|
|
}
|
|
|
|
struct Rotate{
|
|
|
|
static inline vecf rotate(vecf in, int n){
|
|
vecf out;
|
|
|
|
rot(in.v, out.v, n, fw);
|
|
|
|
return out;
|
|
}
|
|
|
|
static inline vecd rotate(vecd in,int n){
|
|
vecd out;
|
|
|
|
rot(in.v, out.v, n, dw);
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#undef rot
|
|
|
|
#define acc(v, a, off, step, n)\
|
|
for (unsigned int i = off; i < n; i += step)\
|
|
{\
|
|
a += v[i];\
|
|
}
|
|
|
|
template <typename Out_type, typename In_type>
|
|
struct Reduce{
|
|
//Need templated class to overload output type
|
|
//General form must generate error if compiled
|
|
inline Out_type operator()(In_type in){
|
|
printf("Error, using wrong Reduce function\n");
|
|
exit(1);
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
//Complex float Reduce
|
|
template<>
|
|
inline Grid::ComplexF Reduce<Grid::ComplexF, vecf>::operator()(vecf in){
|
|
float a = 0.f, b = 0.f;
|
|
|
|
acc(in.v, a, 0, 2, fw);
|
|
acc(in.v, b, 1, 2, fw);
|
|
|
|
return Grid::ComplexF(a, b);
|
|
}
|
|
|
|
//Real float Reduce
|
|
template<>
|
|
inline Grid::RealF Reduce<Grid::RealF, vecf>::operator()(vecf in){
|
|
float a = 0.;
|
|
|
|
acc(in.v, a, 0, 1, fw);
|
|
|
|
return a;
|
|
}
|
|
|
|
//Complex double Reduce
|
|
template<>
|
|
inline Grid::ComplexD Reduce<Grid::ComplexD, vecd>::operator()(vecd in){
|
|
double a = 0., b = 0.;
|
|
|
|
acc(in.v, a, 0, 2, dw);
|
|
acc(in.v, b, 1, 2, dw);
|
|
|
|
return Grid::ComplexD(a, b);
|
|
}
|
|
|
|
//Real double Reduce
|
|
template<>
|
|
inline Grid::RealD Reduce<Grid::RealD, vecd>::operator()(vecd in){
|
|
double a = 0.f;
|
|
|
|
acc(in.v, a, 0, 1, dw);
|
|
|
|
return a;
|
|
}
|
|
|
|
//Integer Reduce
|
|
template<>
|
|
inline Integer Reduce<Integer, int>::operator()(int in){
|
|
return in;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
// Here assign types
|
|
|
|
typedef Optimization::vecf SIMD_Ftype; // Single precision type
|
|
typedef Optimization::vecd SIMD_Dtype; // Double precision type
|
|
typedef int SIMD_Itype; // Integer type
|
|
|
|
// prefetch utilities
|
|
inline void v_prefetch0(int size, const char *ptr){};
|
|
inline void prefetch_HINT_T0(const char *ptr){};
|
|
|
|
|
|
// Function name aliases
|
|
typedef Optimization::Vsplat VsplatSIMD;
|
|
typedef Optimization::Vstore VstoreSIMD;
|
|
typedef Optimization::Vset VsetSIMD;
|
|
typedef Optimization::Vstream VstreamSIMD;
|
|
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
|
|
|
|
// Arithmetic operations
|
|
typedef Optimization::Sum SumSIMD;
|
|
typedef Optimization::Sub SubSIMD;
|
|
typedef Optimization::Div DivSIMD;
|
|
typedef Optimization::Mult MultSIMD;
|
|
typedef Optimization::MultComplex MultComplexSIMD;
|
|
typedef Optimization::Conj ConjSIMD;
|
|
typedef Optimization::TimesMinusI TimesMinusISIMD;
|
|
typedef Optimization::TimesI TimesISIMD;
|
|
|
|
}
|