mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 01:35:36 +00:00
8e161152e4
Block solver requires a lot of performance work.
531 lines
16 KiB
C++
531 lines
16 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/lattice/Lattice_reduction.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_LATTICE_REDUCTION_H
|
|
#define GRID_LATTICE_REDUCTION_H
|
|
|
|
#include <Grid/Eigen/Dense>
|
|
|
|
namespace Grid {
|
|
#ifdef GRID_WARN_SUBOPTIMAL
|
|
#warning "Optimisation alert all these reduction loops are NOT threaded "
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Deterministic Reduction operations
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
|
|
ComplexD nrm = innerProduct(arg,arg);
|
|
return std::real(nrm);
|
|
}
|
|
|
|
// Double inner product
|
|
template<class vobj>
|
|
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
|
|
{
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_typeD vector_type;
|
|
scalar_type nrm;
|
|
|
|
GridBase *grid = left._grid;
|
|
|
|
std::vector<vector_type,alignedAllocator<vector_type> > sumarray(grid->SumArraySize());
|
|
|
|
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
|
|
int nwork, mywork, myoff;
|
|
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
|
|
|
|
decltype(innerProductD(left._odata[0],right._odata[0])) vnrm=zero; // private to thread; sub summation
|
|
for(int ss=myoff;ss<mywork+myoff; ss++){
|
|
vnrm = vnrm + innerProductD(left._odata[ss],right._odata[ss]);
|
|
}
|
|
sumarray[thr]=TensorRemove(vnrm) ;
|
|
}
|
|
|
|
vector_type vvnrm; vvnrm=zero; // sum across threads
|
|
for(int i=0;i<grid->SumArraySize();i++){
|
|
vvnrm = vvnrm+sumarray[i];
|
|
}
|
|
nrm = Reduce(vvnrm);// sum across simd
|
|
right._grid->GlobalSum(nrm);
|
|
return nrm;
|
|
}
|
|
|
|
template<class Op,class T1>
|
|
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
|
|
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
|
|
{
|
|
return sum(closure(expr));
|
|
}
|
|
|
|
template<class Op,class T1,class T2>
|
|
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
|
|
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
|
|
{
|
|
return sum(closure(expr));
|
|
}
|
|
|
|
|
|
template<class Op,class T1,class T2,class T3>
|
|
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
|
|
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
|
eval(0,std::get<1>(expr.second)),
|
|
eval(0,std::get<2>(expr.second))
|
|
))::scalar_object
|
|
{
|
|
return sum(closure(expr));
|
|
}
|
|
|
|
template<class vobj>
|
|
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
|
|
{
|
|
GridBase *grid=arg._grid;
|
|
int Nsimd = grid->Nsimd();
|
|
|
|
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
|
|
for(int i=0;i<grid->SumArraySize();i++){
|
|
sumarray[i]=zero;
|
|
}
|
|
|
|
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
|
|
int nwork, mywork, myoff;
|
|
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
|
|
|
|
vobj vvsum=zero;
|
|
for(int ss=myoff;ss<mywork+myoff; ss++){
|
|
vvsum = vvsum + arg._odata[ss];
|
|
}
|
|
sumarray[thr]=vvsum;
|
|
}
|
|
|
|
vobj vsum=zero; // sum across threads
|
|
for(int i=0;i<grid->SumArraySize();i++){
|
|
vsum = vsum+sumarray[i];
|
|
}
|
|
|
|
typedef typename vobj::scalar_object sobj;
|
|
sobj ssum=zero;
|
|
|
|
std::vector<sobj> buf(Nsimd);
|
|
extract(vsum,buf);
|
|
|
|
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
|
|
arg._grid->GlobalSum(ssum);
|
|
|
|
return ssum;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
|
|
{
|
|
///////////////////////////////////////////////////////
|
|
// FIXME precision promoted summation
|
|
// may be important for correlation functions
|
|
// But easily avoided by using double precision fields
|
|
///////////////////////////////////////////////////////
|
|
typedef typename vobj::scalar_object sobj;
|
|
GridBase *grid = Data._grid;
|
|
assert(grid!=NULL);
|
|
|
|
const int Nd = grid->_ndimension;
|
|
const int Nsimd = grid->Nsimd();
|
|
|
|
assert(orthogdim >= 0);
|
|
assert(orthogdim < Nd);
|
|
|
|
int fd=grid->_fdimensions[orthogdim];
|
|
int ld=grid->_ldimensions[orthogdim];
|
|
int rd=grid->_rdimensions[orthogdim];
|
|
|
|
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
|
|
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
|
|
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
|
|
|
|
result.resize(fd); // And then global sum to return the same vector to every node
|
|
for(int r=0;r<rd;r++){
|
|
lvSum[r]=zero;
|
|
}
|
|
|
|
int e1= grid->_slice_nblock[orthogdim];
|
|
int e2= grid->_slice_block [orthogdim];
|
|
int stride=grid->_slice_stride[orthogdim];
|
|
|
|
// sum over reduced dimension planes, breaking out orthog dir
|
|
// Parallel over orthog direction
|
|
parallel_for(int r=0;r<rd;r++){
|
|
|
|
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
|
|
|
for(int n=0;n<e1;n++){
|
|
for(int b=0;b<e2;b++){
|
|
int ss= so+n*stride+b;
|
|
lvSum[r]=lvSum[r]+Data._odata[ss];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sum across simd lanes in the plane, breaking out orthog dir.
|
|
std::vector<int> icoor(Nd);
|
|
|
|
for(int rt=0;rt<rd;rt++){
|
|
|
|
extract(lvSum[rt],extracted);
|
|
|
|
for(int idx=0;idx<Nsimd;idx++){
|
|
|
|
grid->iCoorFromIindex(icoor,idx);
|
|
|
|
int ldx =rt+icoor[orthogdim]*rd;
|
|
|
|
lsSum[ldx]=lsSum[ldx]+extracted[idx];
|
|
|
|
}
|
|
}
|
|
|
|
// sum over nodes.
|
|
sobj gsum;
|
|
for(int t=0;t<fd;t++){
|
|
int pt = t/ld; // processor plane
|
|
int lt = t%ld;
|
|
if ( pt == grid->_processor_coor[orthogdim] ) {
|
|
gsum=lsSum[lt];
|
|
} else {
|
|
gsum=zero;
|
|
}
|
|
|
|
grid->GlobalSum(gsum);
|
|
|
|
result[t]=gsum;
|
|
}
|
|
}
|
|
|
|
template<class vobj>
|
|
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
|
{
|
|
typedef typename vobj::vector_type vector_type;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
GridBase *grid = lhs._grid;
|
|
assert(grid!=NULL);
|
|
conformable(grid,rhs._grid);
|
|
|
|
const int Nd = grid->_ndimension;
|
|
const int Nsimd = grid->Nsimd();
|
|
|
|
assert(orthogdim >= 0);
|
|
assert(orthogdim < Nd);
|
|
|
|
int fd=grid->_fdimensions[orthogdim];
|
|
int ld=grid->_ldimensions[orthogdim];
|
|
int rd=grid->_rdimensions[orthogdim];
|
|
|
|
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
|
|
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
|
|
std::vector<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
|
|
|
|
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
|
|
for(int r=0;r<rd;r++){
|
|
lvSum[r]=zero;
|
|
}
|
|
|
|
int e1= grid->_slice_nblock[orthogdim];
|
|
int e2= grid->_slice_block [orthogdim];
|
|
int stride=grid->_slice_stride[orthogdim];
|
|
|
|
parallel_for(int r=0;r<rd;r++){
|
|
|
|
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
|
|
|
for(int n=0;n<e1;n++){
|
|
for(int b=0;b<e2;b++){
|
|
int ss= so+n*stride+b;
|
|
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
|
|
lvSum[r]=lvSum[r]+vv;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sum across simd lanes in the plane, breaking out orthog dir.
|
|
std::vector<int> icoor(Nd);
|
|
for(int rt=0;rt<rd;rt++){
|
|
|
|
iScalar<vector_type> temp;
|
|
temp._internal = lvSum[rt];
|
|
extract(temp,extracted);
|
|
|
|
for(int idx=0;idx<Nsimd;idx++){
|
|
|
|
grid->iCoorFromIindex(icoor,idx);
|
|
|
|
int ldx =rt+icoor[orthogdim]*rd;
|
|
|
|
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
|
|
|
|
}
|
|
}
|
|
|
|
// sum over nodes.
|
|
scalar_type gsum;
|
|
for(int t=0;t<fd;t++){
|
|
int pt = t/ld; // processor plane
|
|
int lt = t%ld;
|
|
if ( pt == grid->_processor_coor[orthogdim] ) {
|
|
gsum=lsSum[lt];
|
|
} else {
|
|
gsum=scalar_type(0.0);
|
|
}
|
|
|
|
grid->GlobalSum(gsum);
|
|
|
|
result[t]=gsum;
|
|
}
|
|
}
|
|
template<class vobj>
|
|
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)
|
|
{
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
int Nblock = rhs._grid->GlobalDimensions()[Orthog];
|
|
std::vector<ComplexD> ip(Nblock);
|
|
sn.resize(Nblock);
|
|
|
|
sliceInnerProductVector(ip,rhs,rhs,Orthog);
|
|
for(int ss=0;ss<Nblock;ss++){
|
|
sn[ss] = real(ip[ss]);
|
|
}
|
|
};
|
|
|
|
|
|
template<class vobj>
|
|
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
|
|
int orthogdim,RealD scale=1.0)
|
|
{
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
typedef typename vobj::tensor_reduced tensor_reduced;
|
|
|
|
GridBase *grid = X._grid;
|
|
|
|
int Nsimd =grid->Nsimd();
|
|
int Nblock =grid->GlobalDimensions()[orthogdim];
|
|
|
|
int fd =grid->_fdimensions[orthogdim];
|
|
int ld =grid->_ldimensions[orthogdim];
|
|
int rd =grid->_rdimensions[orthogdim];
|
|
|
|
int e1 =grid->_slice_nblock[orthogdim];
|
|
int e2 =grid->_slice_block [orthogdim];
|
|
int stride =grid->_slice_stride[orthogdim];
|
|
|
|
std::vector<int> icoor;
|
|
|
|
for(int r=0;r<rd;r++){
|
|
|
|
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
|
|
|
vector_type av;
|
|
|
|
for(int l=0;l<Nsimd;l++){
|
|
grid->iCoorFromIindex(icoor,l);
|
|
int ldx =r+icoor[orthogdim]*rd;
|
|
scalar_type *as =(scalar_type *)&av;
|
|
as[l] = scalar_type(a[ldx])*scale;
|
|
}
|
|
|
|
tensor_reduced at; at=av;
|
|
|
|
parallel_for_nest2(int n=0;n<e1;n++){
|
|
for(int b=0;b<e2;b++){
|
|
int ss= so+n*stride+b;
|
|
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
template<class vobj>
|
|
static void sliceMaddVectorSlow (Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
|
|
int Orthog,RealD scale=1.0)
|
|
{
|
|
// FIXME: Implementation is slow
|
|
// Best base the linear combination by constructing a
|
|
// set of vectors of size grid->_rdimensions[Orthog].
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
int Nblock = X._grid->GlobalDimensions()[Orthog];
|
|
|
|
GridBase *FullGrid = X._grid;
|
|
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
|
|
|
Lattice<vobj> Xslice(SliceGrid);
|
|
Lattice<vobj> Rslice(SliceGrid);
|
|
// If we based this on Cshift it would work for spread out
|
|
// but it would be even slower
|
|
for(int i=0;i<Nblock;i++){
|
|
ExtractSlice(Rslice,Y,i,Orthog);
|
|
ExtractSlice(Xslice,X,i,Orthog);
|
|
Rslice = Rslice + Xslice*(scale*a[i]);
|
|
InsertSlice(Rslice,R,i,Orthog);
|
|
}
|
|
};
|
|
|
|
template<class vobj>
|
|
static void sliceInnerProductVectorSlow( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
|
{
|
|
// FIXME: Implementation is slow
|
|
// Look at localInnerProduct implementation,
|
|
// and do inside a site loop with block strided iterators
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
typedef typename vobj::tensor_reduced scalar;
|
|
typedef typename scalar::scalar_object scomplex;
|
|
|
|
int Nblock = lhs._grid->GlobalDimensions()[Orthog];
|
|
|
|
vec.resize(Nblock);
|
|
std::vector<scomplex> sip(Nblock);
|
|
Lattice<scalar> IP(lhs._grid);
|
|
|
|
IP=localInnerProduct(lhs,rhs);
|
|
sliceSum(IP,sip,Orthog);
|
|
|
|
for(int ss=0;ss<Nblock;ss++){
|
|
vec[ss] = TensorRemove(sip[ss]);
|
|
}
|
|
}
|
|
*/
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
// FIXME: Implementation is slow
|
|
// If we based this on Cshift it would work for spread out
|
|
// but it would be even slower
|
|
//
|
|
// Repeated extract slice is inefficient
|
|
//
|
|
// Best base the linear combination by constructing a
|
|
// set of vectors of size grid->_rdimensions[Orthog].
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
|
|
{
|
|
int NN = BlockSolverGrid->_ndimension;
|
|
int nsimd = BlockSolverGrid->Nsimd();
|
|
|
|
std::vector<int> latt_phys(0);
|
|
std::vector<int> simd_phys(0);
|
|
std::vector<int> mpi_phys(0);
|
|
|
|
for(int d=0;d<NN;d++){
|
|
if( d!=Orthog ) {
|
|
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
|
|
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
|
|
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
|
|
}
|
|
}
|
|
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
|
|
}
|
|
|
|
|
|
template<class vobj>
|
|
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
|
{
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
int Nblock = X._grid->GlobalDimensions()[Orthog];
|
|
|
|
GridBase *FullGrid = X._grid;
|
|
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
|
|
|
Lattice<vobj> Xslice(SliceGrid);
|
|
Lattice<vobj> Rslice(SliceGrid);
|
|
|
|
for(int i=0;i<Nblock;i++){
|
|
ExtractSlice(Rslice,Y,i,Orthog);
|
|
for(int j=0;j<Nblock;j++){
|
|
ExtractSlice(Xslice,X,j,Orthog);
|
|
Rslice = Rslice + Xslice*(scale*aa(j,i));
|
|
}
|
|
InsertSlice(Rslice,R,i,Orthog);
|
|
}
|
|
};
|
|
|
|
template<class vobj>
|
|
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
|
{
|
|
// FIXME: Implementation is slow
|
|
// Not sure of best solution.. think about it
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
GridBase *FullGrid = lhs._grid;
|
|
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
|
|
|
int Nblock = FullGrid->GlobalDimensions()[Orthog];
|
|
|
|
Lattice<vobj> Lslice(SliceGrid);
|
|
Lattice<vobj> Rslice(SliceGrid);
|
|
|
|
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
|
|
|
for(int i=0;i<Nblock;i++){
|
|
ExtractSlice(Lslice,lhs,i,Orthog);
|
|
for(int j=0;j<Nblock;j++){
|
|
ExtractSlice(Rslice,rhs,j,Orthog);
|
|
mat(i,j) = innerProduct(Lslice,Rslice);
|
|
}
|
|
}
|
|
#undef FORCE_DIAG
|
|
#ifdef FORCE_DIAG
|
|
for(int i=0;i<Nblock;i++){
|
|
for(int j=0;j<Nblock;j++){
|
|
if ( i != j ) mat(i,j)=0.0;
|
|
}
|
|
}
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
} /*END NAMESPACE GRID*/
|
|
#endif
|
|
|