1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/fermion/WilsonFermion5D.cc

975 lines
33 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonFermion5D.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/perfmon/PerfCount.h>
namespace Grid {
namespace QCD {
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1});
// 5d lattice for DWF.
template<class Impl>
WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5,const ImplParams &p) :
Kernels(p),
_FiveDimGrid (&FiveDimGrid),
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid (&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
Stencil (_FiveDimGrid,npoint,Even,directions,displacements),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements), // source is Odd
M5(_M5),
Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
assert(FourDimRedBlackGrid._ndimension==4);
assert(FiveDimRedBlackGrid._ndimension==5);
assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
// extent of fifth dim and not spread out
Ls=FiveDimGrid._fdimensions[0];
assert(FiveDimRedBlackGrid._fdimensions[0]==Ls);
assert(FiveDimGrid._processors[0] ==1);
assert(FiveDimRedBlackGrid._processors[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<4;d++){
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]);
assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]);
assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]);
assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]);
assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]);
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
}
if (Impl::LsVectorised) {
int nsimd = Simd::Nsimd();
// Dimension zero of the five-d is the Ls direction
assert(FiveDimGrid._simd_layout[0] ==nsimd);
assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd);
for(int d=0;d<4;d++){
assert(FourDimGrid._simd_layout[d]=1);
assert(FourDimRedBlackGrid._simd_layout[d]=1);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==1);
}
} else {
// Dimension zero of the five-d is the Ls direction
assert(FiveDimRedBlackGrid._simd_layout[0]==1);
assert(FiveDimGrid._simd_layout[0] ==1);
}
// Allocate the required comms buffer
ImportGauge(_Umu);
// Build lists of exterior only nodes
int LLs = FiveDimGrid._rdimensions[0];
int vol4;
vol4=FourDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol4);
vol4=FourDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
// std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
// <<" " << StencilEven.surface_list.size()<<std::endl;
}
template<class Impl>
void WilsonFermion5D<Impl>::Report(void)
{
RealD NP = _FourDimGrid->_Nprocessors;
RealD NN = _FourDimGrid->NodeCount();
RealD volume = Ls;
std::vector<int> latt = _FourDimGrid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of DhopEO Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
// Average the compute time
_FourDimGrid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1344*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
}
if ( DerivCalls > 0 ) {
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls : " <<DerivCalls <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NP << std::endl; }
if (DerivCalls > 0 || DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion5D Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
}
if ( DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion5D Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion5D StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
}
}
template<class Impl>
void WilsonFermion5D<Impl>::ZeroCounters(void) {
DhopCalls = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopComputeTime2= 0;
DhopFaceTime = 0;
DhopTotalTime = 0;
DerivCalls = 0;
DerivCommTime = 0;
DerivComputeTime = 0;
DerivDhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
Stencil.ZeroCountersi();
StencilEven.ZeroCountersi();
StencilOdd.ZeroCountersi();
}
template<class Impl>
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu._grid);
HUmu = _Umu*(-0.5);
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
{
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
// we drop off the innermost fifth dimension
// assert( (disp==1)||(disp==-1) );
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
int gamma = dir+(1-skip)*4;
assert(dirdisp<=7);
assert(dirdisp>=0);
parallel_for(int ss=0;ss<Umu._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
Kernels::DhopDir(Stencil,Umu,Stencil.CommBuf(),sF,sU,in,out,dirdisp,gamma);
}
}
};
template<class Impl>
void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
DerivCalls++;
assert((dag==DaggerNo) ||(dag==DaggerYes));
conformable(st._grid,A._grid);
conformable(st._grid,B._grid);
Compressor compressor(dag);
FermionField Btilde(B._grid);
FermionField Atilde(B._grid);
DerivCommTime-=usecond();
st.HaloExchange(B,compressor);
DerivCommTime+=usecond();
Atilde=A;
int LLs = B._grid->_rdimensions[0];
DerivComputeTime-=usecond();
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if (!dag) gamma += Nd;
////////////////////////
// Call the single hop
////////////////////////
DerivDhopComputeTime -= usecond();
parallel_for (int sss = 0; sss < U._grid->oSites(); sss++) {
for (int s = 0; s < Ls; s++) {
int sU = sss;
int sF = s + Ls * sU;
assert(sF < B._grid->oSites());
assert(sU < U._grid->oSites());
Kernels::DhopDir(st, U, st.CommBuf(), sF, sU, B, Btilde, mu, gamma);
////////////////////////////
// spin trace outer product
////////////////////////////
}
}
////////////////////////////
// spin trace outer product
////////////////////////////
DerivDhopComputeTime += usecond();
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
}
DerivComputeTime += usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopDeriv(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionGrid());
conformable(A._grid,B._grid);
//conformable(GaugeGrid(),mat._grid);// this is not general! leaving as a comment
mat.checkerboard = A.checkerboard;
DerivInternal(Stencil,Umu,mat,A,B,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopDerivEO(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionRedBlackGrid());
conformable(A._grid,B._grid);
assert(B.checkerboard==Odd);
assert(A.checkerboard==Even);
mat.checkerboard = Even;
DerivInternal(StencilOdd,UmuEven,mat,A,B,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionRedBlackGrid());
conformable(A._grid,B._grid);
assert(B.checkerboard==Even);
assert(A.checkerboard==Odd);
mat.checkerboard = Odd;
DerivInternal(StencilEven,UmuOdd,mat,A,B,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
DhopTotalTime-=usecond();
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
DhopInternalSerialComms(st,lo,U,in,out,dag);
DhopTotalTime+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
#ifdef GRID_OMP
// assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor(dag);
int LLs = in._grid->_rdimensions[0];
int len = U._grid->oSites();
DhopFaceTime-=usecond();
st.HaloExchangeOptGather(in,compressor);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
DhopFaceTime+=usecond();
double ctime=0;
double ptime=0;
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Ugly explicit thread mapping introduced for OPA reasons.
//////////////////////////////////////////////////////////////////////////////////////////////////////
#pragma omp parallel reduction(max:ctime) reduction(max:ptime)
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
double start = usecond();
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = U._grid->oSites();
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
if (dag == DaggerYes) {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
int sF = LLs * sU;
Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,1,0);
}
} else {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
int sF = LLs * sU;
Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,1,0);
}
}
ptime = usecond() - start;
}
{
double start = usecond();
st.CommunicateThreaded();
ctime = usecond() - start;
}
}
DhopCommTime += ctime;
DhopComputeTime+=ptime;
// First to enter, last to leave timing
st.CollateThreads();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
int sF = LLs * sU;
Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1);
}
} else {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
int sF = LLs * sU;
Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1);
}
}
DhopComputeTime2+=usecond();
#else
assert(0);
#endif
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
// assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor(dag);
int LLs = in._grid->_rdimensions[0];
DhopCommTime-=usecond();
st.HaloExchangeOpt(in,compressor);
DhopCommTime+=usecond();
DhopComputeTime-=usecond();
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
if (dag == DaggerYes) {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU = ss;
int sF = LLs * sU;
Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out);
}
} else {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU = ss;
int sF = LLs * sU;
Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out);
}
}
DhopComputeTime+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=2;
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Lebesgue,Umu,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out);
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const FermionField &in, RealD mass)
{
// what type LatticeComplex
GridBase *_grid = _FourDimGrid;
conformable(_grid,out._grid);
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
typedef iSinglet<ScalComplex> Tcomplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
std::vector<int> latt_size = _grid->_fdimensions;
FermionField num (_grid); num = zero;
LatComplex sk(_grid); sk = zero;
LatComplex sk2(_grid); sk2= zero;
LatComplex W(_grid); W= zero;
LatComplex a(_grid); a= zero;
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex denom(_grid); denom= zero;
LatComplex cosha(_grid);
LatComplex kmu(_grid);
LatComplex Wea(_grid);
LatComplex Wema(_grid);
ScalComplex ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu) *sin(kmu);
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in);
}
W = one - M5 + sk2;
////////////////////////////////////////////
// Cosh alpha -> alpha
////////////////////////////////////////////
cosha = (one + W*W + sk) / (W*2.0);
// FIXME Need a Lattice acosh
for(int idx=0;idx<_grid->lSites();idx++){
std::vector<int> lcoor(Nd);
Tcomplex cc;
RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a,lcoor);
}
Wea = ( exp( a) * W );
Wema= ( exp(-a) * W );
num = num + ( one - Wema ) * mass * in;
denom= ( Wea - one ) + mass*mass * (one - Wema);
out = num/denom;
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass)
{
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
GridBase *_grid = _FourDimGrid;
conformable(_grid,out._grid);
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
std::vector<int> latt_size = _grid->_fdimensions;
LatComplex sk(_grid); sk = zero;
LatComplex sk2(_grid); sk2= zero;
LatComplex w_k(_grid); w_k= zero;
LatComplex b_k(_grid); b_k= zero;
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
FermionField num (_grid); num = zero;
LatComplex denom(_grid); denom= zero;
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu)*sin(kmu);
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in);
}
num = num + mass * in ;
b_k = sk2 - M5;
w_k = sqrt(sk + b_k*b_k);
denom= ( w_k + b_k + mass*mass) ;
denom= one/denom;
out = num*denom;
}
/*******************************************************************************
* Conserved current utilities for Wilson fermions, for contracting propagators
* to make a conserved current sink or inserting the conserved current
* sequentially.
******************************************************************************/
// Helper macro to reverse Simd vector. Fixme: slow, generic implementation.
#define REVERSE_LS(qSite, qSiteRev, Nsimd) \
{ \
std::vector<typename SitePropagator::scalar_object> qSiteVec(Nsimd); \
extract(qSite, qSiteVec); \
for (int i = 0; i < Nsimd / 2; ++i) \
{ \
typename SitePropagator::scalar_object tmp = qSiteVec[i]; \
qSiteVec[i] = qSiteVec[Nsimd - i - 1]; \
qSiteVec[Nsimd - i - 1] = tmp; \
} \
merge(qSiteRev, qSiteVec); \
}
template <class Impl>
void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
Current curr_type,
unsigned int mu)
{
conformable(q_in_1._grid, FermionGrid());
conformable(q_in_1._grid, q_in_2._grid);
conformable(_FourDimGrid, q_out._grid);
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
unsigned int LLs = q_in_1._grid->_rdimensions[0];
q_out = zero;
// Forward, need q1(x + mu, s), q2(x, Ls - 1 - s). Backward, need q1(x, s),
// q2(x + mu, Ls - 1 - s). 5D lattice so shift 4D coordinate mu by one.
tmp1 = Cshift(q_in_1, mu + 1, 1);
tmp2 = Cshift(q_in_2, mu + 1, 1);
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
{
unsigned int sF1 = sU * LLs;
unsigned int sF2 = (sU + 1) * LLs - 1;
for (unsigned int s = 0; s < LLs; ++s)
{
bool axial_sign = ((curr_type == Current::Axial) && \
(s < (LLs / 2)));
SitePropagator qSite2, qmuSite2;
// If vectorised in 5th dimension, reverse q2 vector to match up
// sites correctly.
if (Impl::LsVectorised)
{
REVERSE_LS(q_in_2._odata[sF2], qSite2, Ls / LLs);
REVERSE_LS(tmp2._odata[sF2], qmuSite2, Ls / LLs);
}
else
{
qSite2 = q_in_2._odata[sF2];
qmuSite2 = tmp2._odata[sF2];
}
Kernels::ContractConservedCurrentSiteFwd(tmp1._odata[sF1],
qSite2,
q_out._odata[sU],
Umu, sU, mu, axial_sign);
Kernels::ContractConservedCurrentSiteBwd(q_in_1._odata[sF1],
qmuSite2,
q_out._odata[sU],
Umu, sU, mu, axial_sign);
sF1++;
sF2--;
}
}
}
//template <class Impl>
//void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
// PropagatorField &q_out,
// Current curr_type,
// unsigned int mu,
// std::vector<Real> mom,
// unsigned int tmin,
// unsigned int tmax)
//{
// conformable(q_in._grid, FermionGrid());
// conformable(q_in._grid, q_out._grid);
// Lattice<iSinglet<Simd>> ph(FermionGrid()), coor(FermionGrid());
// PropagatorField tmpFwd(FermionGrid()), tmpBwd(FermionGrid()),
// tmp(FermionGrid());
// Complex i(0.0, 1.0);
// unsigned int tshift = (mu == Tp) ? 1 : 0;
// unsigned int LLs = q_in._grid->_rdimensions[0];
// unsigned int LLt = GridDefaultLatt()[Tp];
//
// // Momentum projection.
// ph = zero;
// for(unsigned int nu = 0; nu < Nd - 1; nu++)
// {
// // Shift coordinate lattice index by 1 to account for 5th dimension.
// LatticeCoordinate(coor, nu + 1);
// ph = ph + mom[nu]*coor*((1./(_FourDimGrid->_fdimensions[nu])));
// }
// ph = exp((Real)(2*M_PI)*i*ph);
//
// q_out = zero;
// LatticeInteger coords(_FourDimGrid);
// LatticeCoordinate(coords, Tp);
//
//
// // Need q(x + mu, s) and q(x - mu, s). 5D lattice so shift 4D coordinate mu
// // by one.
// tmp = Cshift(q_in, mu + 1, 1);
// tmpFwd = tmp*ph;
// tmp = ph*q_in;
// tmpBwd = Cshift(tmp, mu + 1, -1);
//
// parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
// {
// // Compute the sequential conserved current insertion only if our simd
// // object contains a timeslice we need.
// vInteger t_mask = ((coords._odata[sU] >= tmin) &&
// (coords._odata[sU] <= tmax));
// Integer timeSlices = Reduce(t_mask);
//
// if (timeSlices > 0)
// {
// unsigned int sF = sU * LLs;
// for (unsigned int s = 0; s < LLs; ++s)
// {
// bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2)));
// bool tadpole_sign = (curr_type == Current::Tadpole);
// bool switch_sgn = tadpole_sign || axial_sign;
//
// Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sF],
// q_out._odata[sF], Umu, sU,
// mu, t_mask, switch_sgn);
// ++sF;
// }
// }
//
// // Repeat for backward direction.
// t_mask = ((coords._odata[sU] >= (tmin + tshift)) &&
// (coords._odata[sU] <= (tmax + tshift)));
//
// //if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3)
// unsigned int t0 = 0;
// if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 ));
//
// timeSlices = Reduce(t_mask);
//
// if (timeSlices > 0)
// {
// unsigned int sF = sU * LLs;
// for (unsigned int s = 0; s < LLs; ++s)
// {
// bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2)));
// Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sF],
// q_out._odata[sF], Umu, sU,
// mu, t_mask, axial_sign);
// ++sF;
// }
// }
// }
//}
template <class Impl>
void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
Lattice<iSinglet<Simd>> &lattice_cmplx)
{
conformable(q_in._grid, FermionGrid());
conformable(q_in._grid, q_out._grid);
PropagatorField tmpFwd(FermionGrid()), tmpBwd(FermionGrid()),
tmp(FermionGrid());
Complex i(0.0, 1.0);
unsigned int tshift = (mu == Tp) ? 1 : 0;
unsigned int LLs = q_in._grid->_rdimensions[0];
unsigned int LLt = GridDefaultLatt()[Tp];
q_out = zero;
LatticeInteger coords(_FourDimGrid);
LatticeCoordinate(coords, Tp);
//QED: photon field is 4dim, but need a 5dim object to multiply to
// DWF PropagatorField
Lattice<iSinglet<Simd>> lattice_cmplx_5d(FermionGrid());
for (unsigned int s = 0; s < LLs; ++s)
{
InsertSlice(lattice_cmplx,lattice_cmplx_5d, s, 0);
}
// Need q(x + mu, s) and q(x - mu, s). 5D lattice so shift 4D coordinate mu
// by one.
tmp = Cshift(q_in, mu + 1, 1);
tmpFwd = tmp*lattice_cmplx_5d;
tmp = lattice_cmplx_5d*q_in;
tmpBwd = Cshift(tmp, mu + 1, -1);
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
{
// Compute the sequential conserved current insertion only if our simd
// object contains a timeslice we need.
vInteger t_mask = ((coords._odata[sU] >= tmin) &&
(coords._odata[sU] <= tmax));
Integer timeSlices = Reduce(t_mask);
if (timeSlices > 0)
{
unsigned int sF = sU * LLs;
for (unsigned int s = 0; s < LLs; ++s)
{
bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2)));
bool tadpole_sign = (curr_type == Current::Tadpole);
bool switch_sgn = tadpole_sign || axial_sign;
Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sF],
q_out._odata[sF], Umu, sU,
mu, t_mask, switch_sgn);
++sF;
}
}
// Repeat for backward direction.
t_mask = ((coords._odata[sU] >= (tmin + tshift)) &&
(coords._odata[sU] <= (tmax + tshift)));
//if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3)
unsigned int t0 = 0;
if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 ));
timeSlices = Reduce(t_mask);
if (timeSlices > 0)
{
unsigned int sF = sU * LLs;
for (unsigned int s = 0; s < LLs; ++s)
{
bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2)));
Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sF],
q_out._odata[sF], Umu, sU,
mu, t_mask, axial_sign);
++sF;
}
}
}
}
FermOpTemplateInstantiate(WilsonFermion5D);
GparityFermOpTemplateInstantiate(WilsonFermion5D);
}}