1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/utils/CovariantLaplacian.h
2017-02-21 11:30:57 +00:00

209 lines
6.3 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
Copyright (C) 2016
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef COVARIANT_LAPLACIAN_H
#define COVARIANT_LAPLACIAN_H
namespace Grid {
namespace QCD {
struct LaplacianParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision);
// constructor
LaplacianParams(RealD lo = 0.0,
RealD hi = 1.0,
int maxit = 1000,
RealD tol = 1.0e-8,
int degree = 10,
int precision = 64)
: lo(lo),
hi(hi),
MaxIter(maxit),
tolerance(tol),
degree(degree),
precision(precision){};
};
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
template <class Impl>
class LaplacianAdjointField: public Metric<typename Impl::Field> {
OperatorFunction<typename Impl::Field> &Solver;
LaplacianParams param;
MultiShiftFunction PowerNegHalf;
public:
INHERIT_GIMPL_TYPES(Impl);
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
: U(Nd, grid), Solver(S), param(p), kappa(k){
AlgRemez remez(param.lo,param.hi,param.precision);
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerNegHalf.Init(remez,param.tolerance,true);
};
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
}
}
void M(const GaugeField& in, GaugeField& out) {
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
for (int nu = 0; nu < Nd; nu++) {
sum = zero;
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out._grid);
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_nu * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
}
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
}
void MDeriv(const GaugeField& in, GaugeField& der, bool dag) {
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField in_mu = PeekIndex<LorentzIndex>(in, mu);
GaugeLinkField der_mu(der._grid);
if (!dag)
der_mu =
factor * Cshift(in_mu, mu, +1) * adj(U[mu]) + adj(U[mu]) * in_mu;
else
der_mu = factor * U[mu] * Cshift(in_mu, mu, +1) + in_mu * U[mu];
}
}
void Minv(const GaugeField& in, GaugeField& inverted){
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
Solver(HermOp, in, inverted);
}
void MInvSquareRoot(GaugeField& P){
// Takes a gaussian gauge field and multiplies by the metric
// need the rational approximation for the square root
GaugeField Gp(P._grid);
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerNegHalf);
msCG(HermOp,P,Gp);
P = Gp; // now P has the correct distribution
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};
// This is just for debuggin purposes
// not meant to be used by the final users
template <class Impl>
class LaplacianAlgebraField {
public:
INHERIT_GIMPL_TYPES(Impl);
typedef SU<Nc>::LatticeAlgebraVector AVector;
LaplacianAlgebraField(GridBase* grid, const RealD k) :
U(Nd, grid), kappa(k){};
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
}
}
void Mdiag(const AVector& in, AVector& out) { assert(0); }
void Mdir(const AVector& in, AVector& out, int dir, int disp) { assert(0); }
// Operator with algebra vector inputs and outputs
void M(const AVector& in, AVector& out) {
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
GaugeLinkField out_mat(in._grid);
GaugeLinkField in_mat(in._grid);
// Reconstruct matrix
SU<Nc>::FundamentalLieAlgebraMatrix(in, in_mat);
sum = zero;
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_mat, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_mat * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_mat;
}
out_mat = (1.0 - kappa) * in_mat - kappa / (double(4 * Nd)) * sum;
// Project
SU<Nc>::projectOnAlgebra(out, out_mat);
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};
}
}
#endif