mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Adding metric and the implicit steps
This commit is contained in:
parent
97a6b61551
commit
902afcfbaf
@ -50,6 +50,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/gauge/GaugeImplementations.h>
|
||||
#include <Grid/qcd/utils/WilsonLoops.h>
|
||||
#include <Grid/qcd/utils/Metric.h>
|
||||
#include <Grid/qcd/utils/CovariantLaplacian.h>
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonCompressor.h> //used by all wilson type fermions
|
||||
|
@ -80,7 +80,7 @@ public:
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Move these to another class
|
||||
// HMC auxiliary functions
|
||||
// HMC auxiliary functions
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG) {
|
||||
// specific for SU gauge fields
|
||||
LinkField Pmu(P._grid);
|
||||
|
@ -57,7 +57,7 @@ public:
|
||||
}
|
||||
|
||||
template <class ReaderClass>
|
||||
GridModuleParameters(Reader<ReaderClass>& Reader) {
|
||||
GridModuleParameters(Reader<ReaderClass>& Reader, std::string n = "LatticeGrid"):name(n) {
|
||||
read(Reader, name, *this);
|
||||
check();
|
||||
}
|
||||
@ -69,7 +69,7 @@ public:
|
||||
write(Writer, name, *this);
|
||||
}
|
||||
private:
|
||||
std::string name = "LatticeGrid";
|
||||
std::string name;
|
||||
};
|
||||
|
||||
// Lower level class
|
||||
@ -94,7 +94,7 @@ class GridModule {
|
||||
////////////////////////////////////
|
||||
// Classes for the user
|
||||
////////////////////////////////////
|
||||
// Note: the space time grid must be out of the QCD namespace
|
||||
// Note: the space time grid should be out of the QCD namespace
|
||||
template< class vector_type>
|
||||
class GridFourDimModule : public GridModule {
|
||||
public:
|
||||
|
@ -77,7 +77,8 @@ class Integrator {
|
||||
double t_U; // Track time passing on each level and for U and for P
|
||||
std::vector<double> t_P;
|
||||
|
||||
MomentaField P;
|
||||
//MomentaField P;
|
||||
GeneralisedMomenta<FieldImplementation, TrivialMetric<MomentaField>> P;
|
||||
SmearingPolicy& Smearer;
|
||||
RepresentationPolicy Representations;
|
||||
IntegratorParameters Params;
|
||||
@ -86,7 +87,7 @@ class Integrator {
|
||||
|
||||
void update_P(Field& U, int level, double ep) {
|
||||
t_P[level] += ep;
|
||||
update_P(P, U, level, ep);
|
||||
update_P(P.Mom, U, level, ep);
|
||||
|
||||
std::cout << GridLogIntegrator << "[" << level << "] P "
|
||||
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
|
||||
@ -131,51 +132,56 @@ class Integrator {
|
||||
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
|
||||
}
|
||||
|
||||
void implicit_update_P(MomentaField& Mom, Field& U, int level, double ep) {
|
||||
void implicit_update_P(Field& U, int level, double ep) {
|
||||
t_P[level] += ep;
|
||||
|
||||
std::cout << GridLogIntegrator << "[" << level << "] P "
|
||||
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
|
||||
// Fundamental updates, include smearing
|
||||
MomentaField Msum(Mom._grid);
|
||||
MomentaField Msum(P.Mom._grid);
|
||||
Msum = zero;
|
||||
for (int a = 0; a < as[level].actions.size(); ++a) {
|
||||
// Compute the force
|
||||
// Compute the force
|
||||
// We need to compute the derivative of the actions
|
||||
// only once
|
||||
Field force(U._grid);
|
||||
conformable(U._grid, Mom._grid);
|
||||
conformable(U._grid, P.Mom._grid);
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
|
||||
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
|
||||
|
||||
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
|
||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||
Real force_abs = std::sqrt(norm2(force)/U._grid->gSites());
|
||||
std::cout << GridLogIntegrator << "Force average: " << force_abs << std::endl;
|
||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||
Real force_abs = std::sqrt(norm2(force) / U._grid->gSites());
|
||||
std::cout << GridLogIntegrator << "Force average: " << force_abs
|
||||
<< std::endl;
|
||||
Msum += force;
|
||||
}
|
||||
|
||||
MomentaField NewMom = Mom;
|
||||
MomentaField OldMom = Mom;
|
||||
MomentaField NewMom = P.Mom;
|
||||
MomentaField OldMom = P.Mom;
|
||||
double threshold = 1e-6;
|
||||
P.M.ImportGauge(U);
|
||||
// Here run recursively
|
||||
do{
|
||||
MomentaField MomDer(Mom._grid);
|
||||
do {
|
||||
MomentaField MomDer(P.Mom._grid);
|
||||
MomentaField X(P.Mom._grid);
|
||||
OldMom = NewMom;
|
||||
// Compute the derivative of the kinetic term
|
||||
// with respect to the gauge field
|
||||
|
||||
// Laplacian.Mder(NewMom, MomDer);
|
||||
// NewMom = Mom - ep*(MomDer + Msum);
|
||||
P.DerivativeU(NewMom, MomDer);
|
||||
NewMom = P.Mom - ep * (MomDer + Msum);
|
||||
|
||||
} while (norm2(NewMom - OldMom) > threshold);
|
||||
|
||||
Mom = NewMom;
|
||||
|
||||
P.Mom = NewMom;
|
||||
|
||||
// update the auxiliary fields momenta
|
||||
}
|
||||
|
||||
|
||||
void update_U(Field& U, double ep) {
|
||||
update_U(P, U, ep);
|
||||
update_U(P.Mom, U, ep);
|
||||
|
||||
t_U += ep;
|
||||
int fl = levels - 1;
|
||||
@ -193,6 +199,27 @@ class Integrator {
|
||||
Representations.update(U); // void functions if fundamental representation
|
||||
}
|
||||
|
||||
void implicit_update_U(Field&U, double ep){
|
||||
t_U += ep;
|
||||
int fl = levels - 1;
|
||||
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
|
||||
|
||||
Real threshold = 1e-6;
|
||||
P.M.ImportGauge(U);
|
||||
MomentaField Mom1(P.Mom._grid);
|
||||
MomentaField Mom2(P.Mom._grid);
|
||||
Field OldU = U;
|
||||
Field NewU = U;
|
||||
P.DerivativeP(Mom1); // first term in the derivative
|
||||
do {
|
||||
OldU = NewU; // some redundancy to be eliminated
|
||||
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
|
||||
FieldImplementation::update_field(Mom1 + Mom2, NewU, ep);
|
||||
P.M.ImportGauge(NewU);
|
||||
} while (norm2(NewU - OldU) > threshold);
|
||||
}
|
||||
|
||||
|
||||
virtual void step(Field& U, int level, int first, int last) = 0;
|
||||
|
||||
public:
|
||||
@ -249,10 +276,11 @@ class Integrator {
|
||||
|
||||
// Initialization of momenta and actions
|
||||
void refresh(Field& U, GridParallelRNG& pRNG) {
|
||||
assert(P._grid == U._grid);
|
||||
assert(P.Mom._grid == U._grid);
|
||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
||||
FieldImplementation::generate_momenta(P, pRNG);
|
||||
|
||||
//FieldImplementation::generate_momenta(P, pRNG);
|
||||
P.MomentaDistribution(pRNG);
|
||||
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
// necessary to keep the fields updated even after a reject
|
||||
// of the Metropolis
|
||||
@ -297,7 +325,7 @@ class Integrator {
|
||||
// Calculate action
|
||||
RealD S(Field& U) { // here also U not used
|
||||
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P); // - trace (P*P)
|
||||
RealD H = - FieldImplementation::FieldSquareNorm(P.Mom); // - trace (P*P)
|
||||
RealD Hterm;
|
||||
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
|
||||
|
||||
|
@ -335,7 +335,7 @@ class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
}
|
||||
|
||||
if (level == fl) { // lowest level
|
||||
this->update_U(U, eps);
|
||||
this->implicit_update_U(U, eps / 2.0);
|
||||
} else { // recursive function call
|
||||
this->step(U, level + 1, first_step, last_step);
|
||||
}
|
||||
|
@ -33,6 +33,32 @@ directory
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
struct LaplacianParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision);
|
||||
|
||||
// constructor
|
||||
LaplacianParams(RealD lo = 0.0,
|
||||
RealD hi = 1.0,
|
||||
int maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int degree = 10,
|
||||
int precision = 64)
|
||||
: lo(lo),
|
||||
hi(hi),
|
||||
MaxIter(maxit),
|
||||
tolerance(tol),
|
||||
degree(degree),
|
||||
precision(precision){};
|
||||
};
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Laplacian operator L on adjoint fields
|
||||
//
|
||||
@ -48,12 +74,22 @@ namespace QCD {
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
class LaplacianAdjointField {
|
||||
class LaplacianAdjointField: public Metric<typename Impl::Field> {
|
||||
OperatorFunction<typename Impl::Field> &Solver;
|
||||
LaplacianParams param;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Impl);
|
||||
|
||||
LaplacianAdjointField(GridBase* grid, const RealD k = 1.0) :
|
||||
U(Nd, grid), kappa(k){};
|
||||
|
||||
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
|
||||
: U(Nd, grid), Solver(S), param(p), kappa(k){
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
};
|
||||
|
||||
void ImportGauge(const GaugeField& _U) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
@ -61,41 +97,63 @@ class LaplacianAdjointField {
|
||||
}
|
||||
}
|
||||
|
||||
void Mdiag(const GaugeLinkField& in, GaugeLinkField& out) { assert(0); }
|
||||
|
||||
void Mdir(const GaugeLinkField& in, GaugeLinkField& out, int dir, int disp) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void M(const GaugeLinkField& in, GaugeLinkField& out) {
|
||||
void M(const GaugeField& in, GaugeField& out) {
|
||||
GaugeLinkField tmp(in._grid);
|
||||
GaugeLinkField tmp2(in._grid);
|
||||
GaugeLinkField sum(in._grid);
|
||||
sum = zero;
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp = U[mu] * Cshift(in, mu, +1) * adj(U[mu]);
|
||||
tmp2 = adj(U[mu]) * in * U[mu];
|
||||
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in;
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
sum = zero;
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
GaugeLinkField out_nu(out._grid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
|
||||
tmp2 = adj(U[mu]) * in_nu * U[mu];
|
||||
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
|
||||
}
|
||||
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
|
||||
PokeIndex<LorentzIndex>(out, out_nu, nu);
|
||||
}
|
||||
out = (1.0 - kappa) * in - kappa / (double(4 * Nd)) * sum;
|
||||
}
|
||||
|
||||
void MDeriv(const GaugeLinkField& in, GaugeLinkField& out, bool dag){
|
||||
RealD factor = - kappa / (double(4 * Nd))
|
||||
if (!dag)
|
||||
out = factor * Cshift(in, mu, +1) * adj(U[mu]) + adj(U[mu]) * in;
|
||||
else
|
||||
out = factor * U[mu] * Cshift(in, mu, +1) + in * U[mu];
|
||||
void MDeriv(const GaugeField& in, GaugeField& der, bool dag) {
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
GaugeLinkField in_mu = PeekIndex<LorentzIndex>(in, mu);
|
||||
GaugeLinkField der_mu(der._grid);
|
||||
if (!dag)
|
||||
der_mu =
|
||||
factor * Cshift(in_mu, mu, +1) * adj(U[mu]) + adj(U[mu]) * in_mu;
|
||||
else
|
||||
der_mu = factor * U[mu] * Cshift(in_mu, mu, +1) + in_mu * U[mu];
|
||||
}
|
||||
}
|
||||
|
||||
void Minv(const GaugeField& in, GaugeField& inverted){
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
Solver(HermOp, in, inverted);
|
||||
}
|
||||
|
||||
void MInvSquareRoot(GaugeField& P){
|
||||
// Takes a gaussian gauge field and multiplies by the metric
|
||||
// need the rational approximation for the square root
|
||||
GaugeField Gp(P._grid);
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerNegHalf);
|
||||
msCG(HermOp,P,Gp);
|
||||
P = Gp; // now P has the correct distribution
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
RealD kappa;
|
||||
std::vector<GaugeLinkField> U;
|
||||
};
|
||||
|
||||
|
||||
// This is just a debug tests
|
||||
// not meant to be used
|
||||
// This is just for debuggin purposes
|
||||
// not meant to be used by the final users
|
||||
|
||||
template <class Impl>
|
||||
class LaplacianAlgebraField {
|
||||
|
121
lib/qcd/utils/Metric.h
Normal file
121
lib/qcd/utils/Metric.h
Normal file
@ -0,0 +1,121 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/hmc/integrators/Integrator.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//--------------------------------------------------------------------
|
||||
#ifndef METRIC_H
|
||||
#define METRIC_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
template <typename Field>
|
||||
class Metric{
|
||||
public:
|
||||
virtual void ImportGauge(const Field&) = 0;
|
||||
virtual void M(const Field&, Field&) = 0;
|
||||
virtual void Minv(const Field&, Field&) = 0;
|
||||
virtual void MInvSquareRoot(Field&) = 0;
|
||||
};
|
||||
|
||||
|
||||
// Need a trivial operator
|
||||
template <typename Field>
|
||||
class TrivialMetric : public Metric<Field>{
|
||||
public:
|
||||
virtual void ImportGauge(const Field&){};
|
||||
virtual void M(const Field& in, Field& out){
|
||||
out = in;
|
||||
}
|
||||
virtual void Minv(const Field& in, Field& out){
|
||||
out = in;
|
||||
}
|
||||
virtual void MInvSquareRoot(Field& P){
|
||||
// do nothing
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
///////////////////////////////
|
||||
// Generalised momenta
|
||||
///////////////////////////////
|
||||
|
||||
template <typename Implementation, typename Metric>
|
||||
class GeneralisedMomenta{
|
||||
public:
|
||||
typedef typename Implementation::Field MomentaField; //for readability
|
||||
|
||||
Metric M;
|
||||
MomentaField Mom;
|
||||
|
||||
GeneralisedMomenta(GridBase* grid): Mom(grid){}
|
||||
|
||||
|
||||
void MomentaDistribution(GridParallelRNG& pRNG){
|
||||
// Generate a distribution for
|
||||
// 1/2 P^dag G P
|
||||
// where G = M^-1
|
||||
|
||||
// Generate gaussian momenta
|
||||
Implementation::generate_momenta(Mom, pRNG);
|
||||
// Modify the distribution with the metric
|
||||
M.MInvSquareRoot(Mom);
|
||||
}
|
||||
|
||||
void Derivative(MomentaField& in, MomentaField& der){
|
||||
// Compute the derivative of the kinetic term
|
||||
// with respect to the gauge field
|
||||
MomentaField MomDer(in._grid);
|
||||
MomentaField X(in._grid);
|
||||
|
||||
M.Minv(in, X); // X = G in
|
||||
M.MDeriv(X, MomDer, DaggerNo); // MomDer = dM/dU X
|
||||
// MomDer is just the derivative
|
||||
MomDer = adj(X)* MomDer;
|
||||
// Traceless Antihermitian
|
||||
// assuming we are in the algebra
|
||||
der = Implementation::projectForce(MomDer);
|
||||
}
|
||||
|
||||
void DerivativeP(MomentaField& der){
|
||||
M.Minv(Mom, der);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif //METRIC_H
|
@ -50,8 +50,11 @@ int main (int argc, char ** argv)
|
||||
|
||||
double Kappa = 0.9999;
|
||||
|
||||
std::cout << GridLogMessage << "Running with kappa: " << Kappa << std::endl;
|
||||
|
||||
typedef SU<Nc>::LatticeAlgebraVector AVector;
|
||||
// Source and result in the algebra
|
||||
// needed for the second test
|
||||
AVector src_vec(&Grid); random(pRNG, src_vec);
|
||||
AVector result_vec(&Grid); result_vec = zero;
|
||||
|
||||
@ -59,16 +62,33 @@ int main (int argc, char ** argv)
|
||||
SU<Nc>::FundamentalLieAlgebraMatrix(src_vec, src);
|
||||
LatticeColourMatrix result(&Grid); result=zero;
|
||||
|
||||
LaplacianAdjointField<PeriodicGimplR> Laplacian(&Grid, Kappa);
|
||||
Laplacian.ImportGauge(Umu);
|
||||
|
||||
HermitianLinearOperator<LaplacianAdjointField<PeriodicGimplR>,LatticeColourMatrix> HermOp(Laplacian);
|
||||
ConjugateGradient<LatticeColourMatrix> CG(1.0e-8,10000);
|
||||
// Generate a field of adjoint matrices
|
||||
LatticeGaugeField src_f(&Grid);
|
||||
|
||||
// A matrix in the adjoint
|
||||
LatticeColourMatrix src_mu(&Grid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, src_mu);
|
||||
PokeIndex<LorentzIndex>(src_f, src_mu, mu);
|
||||
}
|
||||
LatticeGaugeField result_f(&Grid);
|
||||
|
||||
// Definition of the Laplacian operator
|
||||
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
|
||||
LaplacianParams LapPar(0.001, 1.0, 1000, 1e-8, 10, 64);
|
||||
LaplacianAdjointField<PeriodicGimplR> Laplacian(&Grid, CG, LapPar, Kappa);
|
||||
Laplacian.ImportGauge(Umu);
|
||||
std::cout << GridLogMessage << "Testing the Laplacian using the full matrix" <<std::endl;
|
||||
CG(HermOp,src,result); // fastest
|
||||
Laplacian.Minv(src_f, result_f);
|
||||
|
||||
|
||||
|
||||
Laplacian.MomentaDistribution(src_f);
|
||||
|
||||
|
||||
// Tests also the version using the algebra decomposition
|
||||
/*
|
||||
LaplacianAlgebraField<PeriodicGimplR> LaplacianAlgebra(&Grid, Kappa);
|
||||
LaplacianAlgebra.ImportGauge(Umu);
|
||||
|
||||
@ -82,7 +102,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
result2 -= result;
|
||||
std::cout << GridLogMessage << "Results difference " << norm2(result2) << std::endl;
|
||||
|
||||
*/
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user