1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/lib/qcd/utils/Metric.h

217 lines
6.0 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/Integrator.h
Copyright (C) 2015
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#ifndef METRIC_H
#define METRIC_H
NAMESPACE_BEGIN(Grid);
template <typename Field>
class Metric{
public:
virtual void ImportGauge(const Field&) = 0;
virtual void M(const Field&, Field&) = 0;
virtual void Minv(const Field&, Field&) = 0;
virtual void MSquareRoot(Field&) = 0;
virtual void MInvSquareRoot(Field&) = 0;
virtual void MDeriv(const Field&, Field&) = 0;
virtual void MDeriv(const Field&, const Field&, Field&) = 0;
};
// Need a trivial operator
template <typename Field>
class TrivialMetric : public Metric<Field>{
public:
virtual void ImportGauge(const Field&){};
virtual void M(const Field& in, Field& out){
out = in;
}
virtual void Minv(const Field& in, Field& out){
out = in;
}
virtual void MSquareRoot(Field& P){
// do nothing
}
virtual void MInvSquareRoot(Field& P){
// do nothing
}
virtual void MDeriv(const Field& in, Field& out){
out = Zero();
}
virtual void MDeriv(const Field& left, const Field& right, Field& out){
out = Zero();
}
};
///////////////////////////////
// Generalised momenta
///////////////////////////////
template <typename Implementation>
class GeneralisedMomenta{
public:
typedef typename Implementation::Field MomentaField; //for readability
typedef typename Implementation::GaugeLinkField MomentaLinkField; //for readability
Metric<MomentaField>& M;
MomentaField Mom;
// Auxiliary fields
// not hard coded but inherit the type from the metric
// created Nd new fields
// hide these in the metric?
//typedef Lattice<iVector<iScalar<iMatrix<vComplex, Nc> >, Nd/2 > > AuxiliaryMomentaType;
MomentaField AuxMom;
MomentaField AuxField;
GeneralisedMomenta(GridBase* grid, Metric<MomentaField>& M): M(M), Mom(grid), AuxMom(grid), AuxField(grid){}
// Correct
void MomentaDistribution(GridParallelRNG& pRNG){
// Generate a distribution for
// P^dag G P
// where G = M^-1
// Generate gaussian momenta
Implementation::generate_momenta(Mom, pRNG);
// Modify the distribution with the metric
M.MSquareRoot(Mom);
if (1) {
// Auxiliary momenta
// do nothing if trivial, so hide in the metric
MomentaField AuxMomTemp(Mom.Grid());
Implementation::generate_momenta(AuxMom, pRNG);
Implementation::generate_momenta(AuxField, pRNG);
// Modify the distribution with the metric
// Aux^dag M Aux
M.MInvSquareRoot(AuxMom); // AuxMom = M^{-1/2} AuxMomTemp
}
}
// Correct
RealD MomentaAction(){
MomentaField inv(Mom.Grid());
inv = Zero();
M.Minv(Mom, inv);
LatticeComplex Hloc(Mom.Grid());
Hloc = Zero();
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the metric
auto Mom_mu = PeekIndex<LorentzIndex>(Mom, mu);
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
Hloc += trace(Mom_mu * inv_mu);
}
if (1) {
// Auxiliary Fields
// hide in the metric
M.M(AuxMom, inv);
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the operators
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
auto am_mu = PeekIndex<LorentzIndex>(AuxMom, mu);
auto af_mu = PeekIndex<LorentzIndex>(AuxField, mu);
Hloc += trace(am_mu * inv_mu);// p M p
Hloc += trace(af_mu * af_mu);
}
}
Complex Hsum = sum(Hloc);
return Hsum.real();
}
// Correct
void DerivativeU(MomentaField& in, MomentaField& der){
// Compute the derivative of the kinetic term
// with respect to the gauge field
MomentaField MDer(in.Grid());
MomentaField X(in.Grid());
X = Zero();
M.Minv(in, X); // X = G in
M.MDeriv(X, MDer); // MDer = U * dS/dU
der = Implementation::projectForce(MDer); // Ta if gauge fields
}
void AuxiliaryFieldsDerivative(MomentaField& der){
der = Zero();
if (1){
// Auxiliary fields
MomentaField der_temp(der.Grid());
MomentaField X(der.Grid());
X=Zero();
//M.M(AuxMom, X); // X = M Aux
// Two derivative terms
// the Mderiv need separation of left and right terms
M.MDeriv(AuxMom, der);
// this one should not be necessary (identical to the previous one)
//M.MDeriv(X, AuxMom, der_temp); der += der_temp;
der = -1.0*Implementation::projectForce(der);
}
}
void DerivativeP(MomentaField& der){
der = Zero();
M.Minv(Mom, der);
// is the projection necessary here?
// no for fields in the algebra
der = Implementation::projectForce(der);
}
void update_auxiliary_momenta(RealD ep){
if(1){
AuxMom -= ep * AuxField;
}
}
void update_auxiliary_fields(RealD ep){
if (1) {
MomentaField tmp(AuxMom.Grid());
MomentaField tmp2(AuxMom.Grid());
M.M(AuxMom, tmp);
// M.M(tmp, tmp2);
AuxField += ep * tmp; // M^2 AuxMom
// factor of 2?
}
}
};
NAMESPACE_END(Grid);
#endif //METRIC_H