mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
196 lines
6.2 KiB
C++
196 lines
6.2 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
|
|
|
|
Copyright (C) 2016
|
|
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef COVARIANT_LAPLACIAN_H
|
|
#define COVARIANT_LAPLACIAN_H
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
struct LaplacianParams : Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
|
|
RealD, lo,
|
|
RealD, hi,
|
|
int, MaxIter,
|
|
RealD, tolerance,
|
|
int, degree,
|
|
int, precision);
|
|
|
|
// constructor
|
|
LaplacianParams(RealD lo = 0.0,
|
|
RealD hi = 1.0,
|
|
int maxit = 1000,
|
|
RealD tol = 1.0e-8,
|
|
int degree = 10,
|
|
int precision = 64)
|
|
: lo(lo),
|
|
hi(hi),
|
|
MaxIter(maxit),
|
|
tolerance(tol),
|
|
degree(degree),
|
|
precision(precision){};
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Laplacian operator L on adjoint fields
|
|
//
|
|
// phi: adjoint field
|
|
// L: D_mu^dag D_mu
|
|
//
|
|
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
|
|
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
|
|
// -2phi(x)]
|
|
//
|
|
// Operator designed to be encapsulated by
|
|
// an HermitianLinearOperator<.. , ..>
|
|
////////////////////////////////////////////////////////////
|
|
|
|
template <class Impl>
|
|
class LaplacianAdjointField: public Metric<typename Impl::Field> {
|
|
OperatorFunction<typename Impl::Field> &Solver;
|
|
LaplacianParams param;
|
|
MultiShiftFunction PowerHalf;
|
|
MultiShiftFunction PowerInvHalf;
|
|
|
|
public:
|
|
INHERIT_GIMPL_TYPES(Impl);
|
|
|
|
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
|
|
: U(Nd, grid), Solver(S), param(p), kappa(k){
|
|
AlgRemez remez(param.lo,param.hi,param.precision);
|
|
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
|
remez.generateApprox(param.degree,1,2);
|
|
PowerHalf.Init(remez,param.tolerance,false);
|
|
PowerInvHalf.Init(remez,param.tolerance,true);
|
|
|
|
|
|
};
|
|
|
|
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
|
|
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
|
|
|
|
void ImportGauge(const GaugeField& _U) {
|
|
for (int mu = 0; mu < Nd; mu++) {
|
|
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
|
|
}
|
|
}
|
|
|
|
void M(const GaugeField& in, GaugeField& out) {
|
|
// in is an antihermitian matrix
|
|
// test
|
|
//GaugeField herm = in + adj(in);
|
|
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
|
|
|
|
GaugeLinkField tmp(in.Grid());
|
|
GaugeLinkField tmp2(in.Grid());
|
|
GaugeLinkField sum(in.Grid());
|
|
|
|
for (int nu = 0; nu < Nd; nu++) {
|
|
sum = Zero();
|
|
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
|
GaugeLinkField out_nu(out.Grid());
|
|
for (int mu = 0; mu < Nd; mu++) {
|
|
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
|
|
tmp2 = adj(U[mu]) * in_nu * U[mu];
|
|
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
|
|
}
|
|
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
|
|
PokeIndex<LorentzIndex>(out, out_nu, nu);
|
|
}
|
|
}
|
|
|
|
void MDeriv(const GaugeField& in, GaugeField& der) {
|
|
// in is anti-hermitian
|
|
RealD factor = -kappa / (double(4 * Nd));
|
|
|
|
for (int mu = 0; mu < Nd; mu++){
|
|
GaugeLinkField der_mu(der.Grid());
|
|
der_mu = Zero();
|
|
for (int nu = 0; nu < Nd; nu++){
|
|
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
|
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
|
|
}
|
|
// the minus sign comes by using the in_nu instead of the
|
|
// adjoint in the last multiplication
|
|
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
|
|
}
|
|
}
|
|
|
|
// separating this temporarily
|
|
void MDeriv(const GaugeField& left, const GaugeField& right,
|
|
GaugeField& der) {
|
|
// in is anti-hermitian
|
|
RealD factor = -kappa / (double(4 * Nd));
|
|
|
|
for (int mu = 0; mu < Nd; mu++) {
|
|
GaugeLinkField der_mu(der.Grid());
|
|
der_mu = Zero();
|
|
for (int nu = 0; nu < Nd; nu++) {
|
|
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
|
|
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
|
|
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
|
|
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
|
|
}
|
|
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
|
|
}
|
|
}
|
|
|
|
void Minv(const GaugeField& in, GaugeField& inverted){
|
|
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
|
Solver(HermOp, in, inverted);
|
|
}
|
|
|
|
void MSquareRoot(GaugeField& P){
|
|
GaugeField Gp(P.Grid());
|
|
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
|
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
|
|
msCG(HermOp,P,Gp);
|
|
P = Gp;
|
|
}
|
|
|
|
void MInvSquareRoot(GaugeField& P){
|
|
GaugeField Gp(P.Grid());
|
|
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
|
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
|
|
msCG(HermOp,P,Gp);
|
|
P = Gp;
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
RealD kappa;
|
|
std::vector<GaugeLinkField> U;
|
|
};
|
|
|
|
NAMESPACE_END(Grid);
|
|
|
|
#endif
|