1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/tests/smearing/Test_WilsonFlow_adaptive.cc
Christopher Kelly 66d001ec9e Refactored Wilson flow class; previously the class implemented both iterative and adaptive smearing, but only the iterative method was accessible through the Smearing base class. The implementation of Smearing also forced a clunky need to pass iterative smearing parameters through the constructor but adaptive smearing parameters through the function call. Now there is a WilsonFlowBase class that implements common functionality, and separate WilsonFlow (iterative) and WilsonFlowAdaptive (adaptive) classes, both of which implement Smearing virtual functions.
Modified the Wilson flow adaptive smearing step size update to implement the original Ramos definition of the distance, where previously it used the norm of a difference which scales with the volume and so would choose too coarse or too fine steps depending on the volume. This is based on Chulwoo's code.

Added a test comparing adaptive (with tuneable tolerance) to iterative Wilson flow smearing on a random gauge configuration.
2022-10-03 10:59:38 -04:00

154 lines
5.0 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/hmc/Test_WilsonFlow_adaptive.cc
Copyright (C) 2017
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//Linearly interpolate between two nearest times
RealD interpolate(const RealD t_int, const std::vector<std::pair<RealD,RealD> > &data){
RealD tdiff1=1e32; int t1_idx=-1;
RealD tdiff2=1e32; int t2_idx=-1;
for(int i=0;i<data.size();i++){
RealD diff = fabs(data[i].first-t_int);
//std::cout << "targ " << t_int << " cur " << data[i].first << " diff " << diff << " best diff1 " << tdiff1 << " diff2 " << tdiff2 << std::endl;
if(diff < tdiff1){
if(tdiff1 < tdiff2){ //swap out tdiff2
tdiff2 = tdiff1; t2_idx = t1_idx;
}
tdiff1 = diff; t1_idx = i;
}
else if(diff < tdiff2){ tdiff2 = diff; t2_idx = i; }
}
assert(t1_idx != -1 && t2_idx != -1);
RealD t2 = data[t2_idx].first, v2 = data[t2_idx].second;
RealD t1 = data[t1_idx].first, v1 = data[t1_idx].second;
//v = a + bt
//v2-v1 = b(t2-t1)
RealD b = (v2-v1)/(t2-t1);
RealD a = v1 - b*t1;
RealD vout = a + b*t_int;
//std::cout << "Interpolate to " << t_int << " two closest points " << t1 << " " << t2
//<< " with values " << v1 << " "<< v2 << " : got " << vout << std::endl;
return vout;
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
GridLogLayout();
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1, 2, 3, 4, 5});
GridSerialRNG sRNG;
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField U(&Grid);
SU<Nc>::HotConfiguration(pRNG, U);
int Nstep = 300;
RealD epsilon = 0.01;
RealD maxTau = Nstep*epsilon;
RealD tolerance = 1e-4;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tolerance"){
std::stringstream ss; ss << argv[i+1]; ss >> tolerance;
}
}
std::cout << "Adaptive smear tolerance " << tolerance << std::endl;
//Setup iterative Wilson flow
WilsonFlow<PeriodicGimplD> wflow(epsilon,Nstep);
wflow.resetActions();
std::vector<std::pair<RealD, RealD> > meas_orig;
wflow.addMeasurement(1, [&wflow,&meas_orig](int step, RealD t, const LatticeGaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
meas_orig.push_back( {t, wflow.energyDensityCloverleaf(t,U)} );
});
//Setup adaptive Wilson flow
WilsonFlowAdaptive<PeriodicGimplD> wflow_ad(epsilon,maxTau,tolerance);
wflow_ad.resetActions();
std::vector<std::pair<RealD, RealD> > meas_adaptive;
wflow_ad.addMeasurement(1, [&wflow_ad,&meas_adaptive](int step, RealD t, const LatticeGaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
meas_adaptive.push_back( {t, wflow_ad.energyDensityCloverleaf(t,U)} );
});
//Run
LatticeGaugeFieldD Vtmp(U.Grid());
wflow.smear(Vtmp, U); //basic smear
Vtmp = Zero();
wflow_ad.smear(Vtmp, U);
//Output values for plotting
{
std::ofstream out("wflow_t2E_orig.dat");
out.precision(16);
for(auto const &e: meas_orig){
out << e.first << " " << e.second << std::endl;
}
}
{
std::ofstream out("wflow_t2E_adaptive.dat");
out.precision(16);
for(auto const &e: meas_adaptive){
out << e.first << " " << e.second << std::endl;
}
}
//Compare at times available with adaptive smearing
for(int i=0;i<meas_adaptive.size();i++){
RealD t = meas_adaptive[i].first;
RealD v_adaptive = meas_adaptive[i].second;
RealD v_orig = interpolate(t, meas_orig); //should be very precise due to fine timestep
std::cout << t << " orig: " << v_orig << " adaptive: " << v_adaptive << " reldiff: " << (v_adaptive-v_orig)/v_orig << std::endl;
}
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}