1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/Hadrons/Modules/MScalar/ChargedProp.cc

313 lines
11 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MScalar/ChargedProp.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TChargedProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TChargedProp::TChargedProp(const std::string name)
: Module<ChargedPropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TChargedProp::getInput(void)
{
std::vector<std::string> in = {par().source, par().emField};
return in;
}
std::vector<std::string> TChargedProp::getOutput(void)
{
std::vector<std::string> out = {getName(), getName()+"_0", getName()+"_Q",
getName()+"_Sun", getName()+"_Tad"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TChargedProp::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
phaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
}
GFSrcName_ = getName() + "_DinvSrc";
prop0Name_ = getName() + "_0";
propQName_ = getName() + "_Q";
propSunName_ = getName() + "_Sun";
propTadName_ = getName() + "_Tad";
fftName_ = getName() + "_fft";
freeMomPropDone_ = env().hasCreatedObject(freeMomPropName_);
GFSrcDone_ = env().hasCreatedObject(GFSrcName_);
phasesDone_ = env().hasCreatedObject(phaseName_[0]);
prop0Done_ = env().hasCreatedObject(prop0Name_);
envCacheLat(ScalarField, freeMomPropName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
envCacheLat(ScalarField, phaseName_[mu]);
}
envCacheLat(ScalarField, GFSrcName_);
envCacheLat(ScalarField, prop0Name_);
envCreateLat(ScalarField, getName());
envCreateLat(ScalarField, propQName_);
envCreateLat(ScalarField, propSunName_);
envCreateLat(ScalarField, propTadName_);
envTmpLat(ScalarField, "buf");
envTmpLat(ScalarField, "result");
envTmpLat(ScalarField, "Amu");
envCache(FFT, fftName_, 1, env().getGrid());
}
// execution ///////////////////////////////////////////////////////////////////
void TChargedProp::execute(void)
{
// CACHING ANALYTIC EXPRESSIONS
makeCaches();
// PROPAGATOR CALCULATION
LOG(Message) << "Computing charged scalar propagator"
<< " (mass= " << par().mass
<< ", charge= " << par().charge << ")..." << std::endl;
auto &prop = envGet(ScalarField, getName());
auto &prop0 = envGet(ScalarField, prop0Name_);
auto &propQ = envGet(ScalarField, propQName_);
auto &propSun = envGet(ScalarField, propSunName_);
auto &propTad = envGet(ScalarField, propTadName_);
auto &GFSrc = envGet(ScalarField, GFSrcName_);
auto &G = envGet(ScalarField, freeMomPropName_);
auto &fft = envGet(FFT, fftName_);
double q = par().charge;
envGetTmp(ScalarField, buf);
// -G*momD1*G*F*Src (momD1 = F*D1*Finv)
propQ = GFSrc;
momD1(propQ, fft);
propQ = -G*propQ;
propSun = -propQ;
fft.FFT_dim(propQ, propQ, env().getNd()-1, FFT::backward);
// G*momD1*G*momD1*G*F*Src (here buf = G*momD1*G*F*Src)
momD1(propSun, fft);
propSun = G*propSun;
fft.FFT_dim(propSun, propSun, env().getNd()-1, FFT::backward);
// -G*momD2*G*F*Src (momD2 = F*D2*Finv)
propTad = GFSrc;
momD2(propTad, fft);
propTad = -G*propTad;
fft.FFT_dim(propTad, propTad, env().getNd()-1, FFT::backward);
// full charged scalar propagator
fft.FFT_dim(buf, GFSrc, env().getNd()-1, FFT::backward);
prop = buf + q*propQ + q*q*propSun + q*q*propTad;
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
Result result;
TComplex site;
std::vector<int> siteCoor;
LOG(Message) << "Saving momentum-projected propagator to '"
<< RESULT_FILE_NAME(par().output, vm().getTrajectory()) << "'..."
<< std::endl;
result.projection.resize(par().outputMom.size());
result.lattice_size = env().getGrid()->_fdimensions;
result.mass = par().mass;
result.charge = q;
siteCoor.resize(env().getNd());
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
result.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
LOG(Message) << "Calculating (" << par().outputMom[i_p]
<< ") momentum projection" << std::endl;
result.projection[i_p].corr_0.resize(env().getGrid()->_fdimensions[env().getNd()-1]);
result.projection[i_p].corr.resize(env().getGrid()->_fdimensions[env().getNd()-1]);
result.projection[i_p].corr_Q.resize(env().getGrid()->_fdimensions[env().getNd()-1]);
result.projection[i_p].corr_Sun.resize(env().getGrid()->_fdimensions[env().getNd()-1]);
result.projection[i_p].corr_Tad.resize(env().getGrid()->_fdimensions[env().getNd()-1]);
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
siteCoor[j] = result.projection[i_p].momentum[j];
}
for (unsigned int t = 0; t < result.projection[i_p].corr.size(); ++t)
{
siteCoor[env().getNd()-1] = t;
peekSite(site, prop, siteCoor);
result.projection[i_p].corr[t]=TensorRemove(site);
peekSite(site, buf, siteCoor);
result.projection[i_p].corr_0[t]=TensorRemove(site);
peekSite(site, propQ, siteCoor);
result.projection[i_p].corr_Q[t]=TensorRemove(site);
peekSite(site, propSun, siteCoor);
result.projection[i_p].corr_Sun[t]=TensorRemove(site);
peekSite(site, propTad, siteCoor);
result.projection[i_p].corr_Tad[t]=TensorRemove(site);
}
}
saveResult(par().output, "prop", result);
}
std::vector<int> mask(env().getNd(),1);
mask[env().getNd()-1] = 0;
fft.FFT_dim_mask(prop, prop, mask, FFT::backward);
fft.FFT_dim_mask(propQ, propQ, mask, FFT::backward);
fft.FFT_dim_mask(propSun, propSun, mask, FFT::backward);
fft.FFT_dim_mask(propTad, propTad, mask, FFT::backward);
}
void TChargedProp::makeCaches(void)
{
auto &freeMomProp = envGet(ScalarField, freeMomPropName_);
auto &GFSrc = envGet(ScalarField, GFSrcName_);
auto &prop0 = envGet(ScalarField, prop0Name_);
auto &fft = envGet(FFT, fftName_);
if (!freeMomPropDone_)
{
LOG(Message) << "Caching momentum-space free scalar propagator"
<< " (mass= " << par().mass << ")..." << std::endl;
SIMPL::MomentumSpacePropagator(freeMomProp, par().mass);
}
if (!GFSrcDone_)
{
auto &source = envGet(ScalarField, par().source);
LOG(Message) << "Caching G*F*src..." << std::endl;
fft.FFT_all_dim(GFSrc, source, FFT::forward);
GFSrc = freeMomProp*GFSrc;
}
if (!prop0Done_)
{
LOG(Message) << "Caching position-space free scalar propagator..."
<< std::endl;
fft.FFT_all_dim(prop0, GFSrc, FFT::backward);
}
if (!phasesDone_)
{
std::vector<int> &l = env().getGrid()->_fdimensions;
Complex ci(0.0,1.0);
LOG(Message) << "Caching shift phases..." << std::endl;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
auto &phmu = envGet(ScalarField, phaseName_[mu]);
LatticeCoordinate(phmu, mu);
phmu = exp(ci*twoPiL*phmu);
phase_.push_back(&phmu);
}
}
else
{
phase_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phase_.push_back(env().getObject<ScalarField>(phaseName_[mu]));
}
}
}
void TChargedProp::momD1(ScalarField &s, FFT &fft)
{
auto &A = envGet(EmField, par().emField);
Complex ci(0.0,1.0);
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, result);
envGetTmp(ScalarField, Amu);
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result - ci*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + ci*adj(*phase_[mu])*buf;
}
s = result;
}
void TChargedProp::momD2(ScalarField &s, FFT &fft)
{
auto &A = envGet(EmField, par().emField);
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, result);
envGetTmp(ScalarField, Amu);
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*adj(*phase_[mu])*buf;
}
s = result;
}