mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-04-05 09:35:54 +01:00
fit-phys update from last spring
This commit is contained in:
parent
80b826040b
commit
0ade8a8cbf
@ -3,6 +3,8 @@
|
||||
#include <LatAnalyze/CompiledModel.hpp>
|
||||
#include <LatAnalyze/Io.hpp>
|
||||
|
||||
#define DRATIO(a,b) static_cast<double>(a)/static_cast<double>(b)
|
||||
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
@ -13,12 +15,101 @@ void FitEnv::reset(void)
|
||||
variable_.clear();
|
||||
varData_.clear();
|
||||
varName_.clear();
|
||||
varScalePow_.clear();
|
||||
quantity_.clear();
|
||||
quData_.clear();
|
||||
quName_.clear();
|
||||
ensemble_.clear();
|
||||
point_.clear();
|
||||
macro_.clear();
|
||||
scaleVar_ = nullptr;
|
||||
}
|
||||
|
||||
Index FitEnv::getVarIndex(const string name)
|
||||
{
|
||||
if (name == "nT")
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else if (name == "nL")
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
auto it = variable_.find(name);
|
||||
|
||||
if (it != variable_.end())
|
||||
{
|
||||
return it->second.index;
|
||||
}
|
||||
else
|
||||
{
|
||||
LATAN_ERROR(Range, "no variable with name '" + name + "'");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
string FitEnv::getVarName(const Index i)
|
||||
{
|
||||
if (i < static_cast<Index>(varName_.size()))
|
||||
{
|
||||
return varName_[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
LATAN_ERROR(Range, "no variable with index " + strFrom(i));
|
||||
}
|
||||
}
|
||||
|
||||
Index FitEnv::getQuIndex(const string name)
|
||||
{
|
||||
auto it = quantity_.find(name);
|
||||
|
||||
if (it != quantity_.end())
|
||||
{
|
||||
return it->second.index;
|
||||
}
|
||||
else
|
||||
{
|
||||
LATAN_ERROR(Range, "no quantity with name '" + name + "'");
|
||||
}
|
||||
}
|
||||
|
||||
string FitEnv::getQuName(const Index i)
|
||||
{
|
||||
if (i < static_cast<Index>(quName_.size()))
|
||||
{
|
||||
return quName_[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
LATAN_ERROR(Range, "no variable with index " + strFrom(i));
|
||||
}
|
||||
}
|
||||
|
||||
DVec FitEnv::getPhyPt(void)
|
||||
{
|
||||
DVec phyPt(varName_.size());
|
||||
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
{
|
||||
phyPt(i) = variable_[varName_[i]].physVal;
|
||||
}
|
||||
|
||||
return phyPt;
|
||||
}
|
||||
|
||||
vector<const DoubleModel *> FitEnv::getModels(void)
|
||||
{
|
||||
vector<const DoubleModel *> m;
|
||||
|
||||
for (auto &q: quantity_)
|
||||
{
|
||||
m.push_back(&q.second.model);
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
#define XGFV(type, ...) XmlReader::getFirstValue<type>(node, __VA_ARGS__)
|
||||
@ -32,6 +123,7 @@ void FitEnv::parseXml(const string paramFileName)
|
||||
|
||||
reset();
|
||||
nSample_ = paramFile.getFirstValue<Index>("nSample");
|
||||
scale_ = paramFile.getFirstValue<string>("scale");
|
||||
|
||||
// macros
|
||||
if (paramFile.hasNode("macros", "macro"))
|
||||
@ -59,28 +151,26 @@ void FitEnv::parseXml(const string paramFileName)
|
||||
nTs.insert(ens.nT);
|
||||
nLs.insert(ens.nL);
|
||||
}
|
||||
varData_.push_back(vector<Data>());
|
||||
for (auto nT: nTs)
|
||||
{
|
||||
Data d;
|
||||
|
||||
nT_.push_back(nT);
|
||||
d.fileName = "";
|
||||
d.value.fill(nT);
|
||||
varData_.back().push_back(d);
|
||||
}
|
||||
varData_.push_back(vector<Data>());
|
||||
for (auto nL: nLs)
|
||||
{
|
||||
Data d;
|
||||
|
||||
nL_.push_back(nL);
|
||||
d.fileName = "";
|
||||
d.value.fill(nL);
|
||||
varData_.back().push_back(d);
|
||||
}
|
||||
|
||||
// fit variables
|
||||
{
|
||||
string name;
|
||||
VarInfo var;
|
||||
|
||||
name = "T";
|
||||
var.physVal = HUGE_VAL;
|
||||
var.dim = -1;
|
||||
variable_[name] = var;
|
||||
}
|
||||
{
|
||||
string name;
|
||||
VarInfo var;
|
||||
|
||||
name = "L";
|
||||
var.physVal = HUGE_VAL;
|
||||
var.dim = -1;
|
||||
variable_[name] = var;
|
||||
}
|
||||
node = paramFile.getFirstNode("variables", "variable");
|
||||
while (node)
|
||||
{
|
||||
@ -89,34 +179,69 @@ void FitEnv::parseXml(const string paramFileName)
|
||||
|
||||
name = XGFV(string, "name");
|
||||
var.physVal = XGFV(double, "physical");
|
||||
var.dim = XGFV(int, "dim");
|
||||
variable_[name] = var;
|
||||
node = paramFile.getNextSameNode(node);
|
||||
if (name == scale_)
|
||||
{
|
||||
scaleVar_ = &(variable_[name]);
|
||||
}
|
||||
node = paramFile.getNextSameNode(node);
|
||||
}
|
||||
if (!scaleVar_)
|
||||
{
|
||||
LATAN_ERROR(Definition, "scaling variable '" + scale_
|
||||
+ "' not defined");
|
||||
}
|
||||
varName_.push_back("nT");
|
||||
varName_.push_back("nL");
|
||||
for (auto &v: variable_)
|
||||
{
|
||||
v.second.index = varName_.size();
|
||||
varName_.push_back(v.first);
|
||||
}
|
||||
for (auto &v: variable_)
|
||||
{
|
||||
varScalePow_.push_back(DRATIO(v.second.dim, scaleVar_->dim));
|
||||
}
|
||||
|
||||
// fitted quantities
|
||||
node = paramFile.getFirstNode("quantities", "quantity");
|
||||
while (node)
|
||||
{
|
||||
string name, code = "nT = x_0; nL = x_1; ";
|
||||
Index nPar;
|
||||
QuInfo q;
|
||||
string name, code = "";
|
||||
Index nPar;
|
||||
QuInfo q;
|
||||
DoubleModel m;
|
||||
shared_ptr<DVec> buf(new DVec(varName_.size()));
|
||||
|
||||
name = XGFV(string, "name");
|
||||
nPar = XGFV(Index, "model", "nPar");
|
||||
q.dim = XGFV(int, "dim");
|
||||
for (auto &v: variable_)
|
||||
{
|
||||
code += v.first + " = x_" + strFrom(v.second.index) + "; ";
|
||||
code += v.first + "_phy = " + strFrom(v.second.physVal) + "; ";
|
||||
}
|
||||
code += XGFV(string, "model", "code");
|
||||
q.model = compile(code, variable_.size() + 3, nPar);
|
||||
DEBUG_VAR(code);
|
||||
m = compile(code, variable_.size(), nPar);
|
||||
auto wrap = [m, buf, this, q](const double *x, const double *p)
|
||||
{
|
||||
double s = x[scaleVar_->index];
|
||||
|
||||
for (unsigned int i = 0; i < varScalePow_.size(); ++i)
|
||||
{
|
||||
if (i != scaleVar_->index)
|
||||
{
|
||||
(*buf)(i) = x[i]*pow(s, varScalePow_[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
(*buf)(i) = x[i];
|
||||
}
|
||||
}
|
||||
|
||||
return pow(s, -DRATIO(q.dim, scaleVar_->dim))*m(buf->data(), p);
|
||||
};
|
||||
q.model.setFunction(wrap, m.getNArg(), m.getNPar());
|
||||
quantity_[name] = q;
|
||||
node = paramFile.getNextSameNode(node);
|
||||
}
|
||||
@ -144,7 +269,18 @@ void FitEnv::parseXml(const string paramFileName)
|
||||
point.ensemble = &(it->second);
|
||||
for (auto &v: variable_)
|
||||
{
|
||||
fileName = macroSubst(XGFV(string, v.first));
|
||||
if (v.first == "T")
|
||||
{
|
||||
fileName = strFrom(point.ensemble->nT);
|
||||
}
|
||||
else if (v.first == "L")
|
||||
{
|
||||
fileName = strFrom(point.ensemble->nL);
|
||||
}
|
||||
else
|
||||
{
|
||||
fileName = macroSubst(XGFV(string, v.first));
|
||||
}
|
||||
point.fileName[v.first] = fileName;
|
||||
varFileNames[v.first].insert(fileName);
|
||||
}
|
||||
@ -189,9 +325,7 @@ void FitEnv::parseXml(const string paramFileName)
|
||||
for (auto &p: point_)
|
||||
{
|
||||
p.coord.resize(varName_.size());
|
||||
p.coord[0] = find(nT_.begin(), nT_.end(), p.ensemble->nT) - nT_.begin();
|
||||
p.coord[1] = find(nL_.begin(), nL_.end(), p.ensemble->nL) - nL_.begin();
|
||||
for (unsigned int i = 2; i < varName_.size(); ++i)
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
{
|
||||
p.coord[i] = varIndex_[varName_[i]][p.fileName[varName_[i]]];
|
||||
}
|
||||
@ -220,21 +354,33 @@ std::string FitEnv::macroSubst(const std::string str) const
|
||||
|
||||
void FitEnv::load(void)
|
||||
{
|
||||
for (unsigned int i = 2; i < varName_.size(); ++i)
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
{
|
||||
auto &v = varData_[i];
|
||||
|
||||
for (auto &d: v)
|
||||
if ((varName_[i] == "T") or (varName_[i] == "L"))
|
||||
{
|
||||
d.value = Io::load<DSample>(d.fileName);
|
||||
if (d.value.size() != nSample_)
|
||||
for (auto &d: v)
|
||||
{
|
||||
LATAN_ERROR(Size, "sample loaded from file '" + d.fileName
|
||||
+ "' has a wrong number of element (expected "
|
||||
+ strFrom(nSample_) + ", got "
|
||||
+ strFrom(d.value.size()) + ")");
|
||||
d.value.resize(nSample_);
|
||||
d.value.fill(strTo<double>(d.fileName));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (auto &d: v)
|
||||
{
|
||||
d.value = Io::load<DSample>(d.fileName);
|
||||
if (d.value.size() != nSample_)
|
||||
{
|
||||
LATAN_ERROR(Size, "sample loaded from file '" + d.fileName
|
||||
+ "' has a wrong number of element (expected "
|
||||
+ strFrom(nSample_) + ", got "
|
||||
+ strFrom(d.value.size()) + ")");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
for (auto &q: quData_)
|
||||
{
|
||||
@ -253,63 +399,86 @@ void FitEnv::load(void)
|
||||
|
||||
}
|
||||
|
||||
XYSampleData FitEnv::generateData(void)
|
||||
XYSampleData FitEnv::generateData(const bool phyUnits, const bool corr)
|
||||
{
|
||||
XYSampleData data(nSample_);
|
||||
Index k, k1, k2;
|
||||
Index k, k1, k2, ind;
|
||||
const Index sInd = getVarIndex(scale_);
|
||||
DSample scale, tmp;
|
||||
int dim;
|
||||
const int sDim = scaleVar_->dim;
|
||||
|
||||
// add dimensions
|
||||
data.addXDim(nT_.size(), "nT", true);
|
||||
data.addXDim(nL_.size(), "nL", true);
|
||||
for (unsigned int i = 2; i < varName_.size(); ++i)
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
{
|
||||
data.addXDim(varData_[i].size(), varName_[i], false);
|
||||
data.addXDim(varData_[i].size(), varName_[i],
|
||||
((varName_[i] == "T") or (varName_[i] == "L")));
|
||||
}
|
||||
for (auto &q: quName_)
|
||||
{
|
||||
data.addYDim(q);
|
||||
}
|
||||
// add X data
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
for (unsigned int r = 0; r < varData_[i].size(); ++r)
|
||||
{
|
||||
data.x(r, i) = varData_[i][r].value;
|
||||
}
|
||||
// add Y data
|
||||
// add data
|
||||
for (auto &p: point_)
|
||||
{
|
||||
k = data.dataIndex(p.coord);
|
||||
k = data.dataIndex(p.coord);
|
||||
scale = varData_[sInd][varIndex_[scale_][p.fileName[scale_]]].value;
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
{
|
||||
ind = varIndex_[varName_[i]][p.fileName[varName_[i]]];
|
||||
dim = variable_[varName_[i]].dim;
|
||||
tmp = varData_[i][ind].value;
|
||||
if (phyUnits and (varName_[i] != scale_))
|
||||
{
|
||||
FOR_STAT_ARRAY(tmp, s)
|
||||
{
|
||||
tmp[s] *= pow(scale[s], DRATIO(dim, sDim));
|
||||
}
|
||||
}
|
||||
data.x(p.coord[i], i) = tmp;
|
||||
}
|
||||
for (unsigned int j = 0; j < quName_.size(); ++j)
|
||||
{
|
||||
auto &n = quName_[j];
|
||||
|
||||
data.y(k, j) = quData_[j][quIndex_[n][p.fileName[n]]].value;
|
||||
ind = quIndex_[quName_[j]][p.fileName[quName_[j]]];
|
||||
dim = quantity_[quName_[j]].dim;
|
||||
tmp = quData_[j][ind].value;
|
||||
if (phyUnits)
|
||||
{
|
||||
FOR_STAT_ARRAY(tmp, s)
|
||||
{
|
||||
tmp[s] *= pow(scale[s], DRATIO(dim, sDim));
|
||||
}
|
||||
}
|
||||
data.y(k, j) = tmp;
|
||||
}
|
||||
}
|
||||
// add correlations
|
||||
for (unsigned int p1 = 0; p1 < point_.size(); ++p1)
|
||||
for (unsigned int p2 = p1; p2 < point_.size(); ++p2)
|
||||
if (corr)
|
||||
{
|
||||
if (point_[p1].ensemble == point_[p2].ensemble)
|
||||
for (unsigned int p1 = 0; p1 < point_.size(); ++p1)
|
||||
for (unsigned int p2 = p1; p2 < point_.size(); ++p2)
|
||||
{
|
||||
k1 = data.dataIndex(point_[p1].coord);
|
||||
k2 = data.dataIndex(point_[p2].coord);
|
||||
for (unsigned int i1 = 2; i1 < varName_.size(); ++i1)
|
||||
for (unsigned int i2 = i1; i2 < varName_.size(); ++i2)
|
||||
if (point_[p1].ensemble == point_[p2].ensemble)
|
||||
{
|
||||
data.assumeXXCorrelated(true, point_[p1].coord[i1], i1,
|
||||
point_[p2].coord[i2], i2);
|
||||
}
|
||||
for (unsigned int j1 = 0; j1 < quName_.size(); ++j1)
|
||||
for (unsigned int j2 = j1; j2 < quName_.size(); ++j2)
|
||||
{
|
||||
data.assumeYYCorrelated(true, k1, j1, k2, j2);
|
||||
}
|
||||
for (unsigned int i = 2; i < varName_.size(); ++i)
|
||||
for (unsigned int j = 0; j < quName_.size(); ++j)
|
||||
{
|
||||
data.assumeXYCorrelated(true, point_[p1].coord[i], i, k2, j);
|
||||
data.assumeXYCorrelated(true, point_[p2].coord[i], i, k1, j);
|
||||
k1 = data.dataIndex(point_[p1].coord);
|
||||
k2 = data.dataIndex(point_[p2].coord);
|
||||
for (unsigned int i1 = 0; i1 < varName_.size(); ++i1)
|
||||
for (unsigned int i2 = i1; i2 < varName_.size(); ++i2)
|
||||
{
|
||||
data.assumeXXCorrelated(true, point_[p1].coord[i1], i1,
|
||||
point_[p2].coord[i2], i2);
|
||||
}
|
||||
for (unsigned int j1 = 0; j1 < quName_.size(); ++j1)
|
||||
for (unsigned int j2 = j1; j2 < quName_.size(); ++j2)
|
||||
{
|
||||
data.assumeYYCorrelated(true, k1, j1, k2, j2);
|
||||
}
|
||||
for (unsigned int i = 0; i < varName_.size(); ++i)
|
||||
for (unsigned int j = 0; j < quName_.size(); ++j)
|
||||
{
|
||||
data.assumeXYCorrelated(true, point_[p1].coord[i], i, k2, j);
|
||||
data.assumeXYCorrelated(true, point_[p2].coord[i], i, k1, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -319,17 +488,7 @@ XYSampleData FitEnv::generateData(void)
|
||||
|
||||
ostream & operator<<(ostream &out, FitEnv &f)
|
||||
{
|
||||
out << "nT:" << endl;
|
||||
for (auto nT: f.nT_)
|
||||
{
|
||||
out << " * " << nT << endl;
|
||||
}
|
||||
out << "nL:" << endl;
|
||||
for (auto nL: f.nL_)
|
||||
{
|
||||
out << " * " << nL << endl;
|
||||
}
|
||||
for (unsigned int i = 2; i < f.varName_.size(); ++i)
|
||||
for (unsigned int i = 0; i < f.varName_.size(); ++i)
|
||||
{
|
||||
out << f.varName_[i] << ":" << endl;
|
||||
for (auto &d: f.varData_[i])
|
||||
|
@ -12,12 +12,14 @@ public:
|
||||
struct VarInfo
|
||||
{
|
||||
double physVal;
|
||||
int dim;
|
||||
Latan::Index index;
|
||||
};
|
||||
// fitted quantity info
|
||||
struct QuInfo
|
||||
{
|
||||
Latan::DoubleModel model;
|
||||
int dim;
|
||||
Latan::Index index;
|
||||
};
|
||||
// ensemble
|
||||
@ -47,18 +49,27 @@ public:
|
||||
FitEnv(void) = default;
|
||||
virtual ~FitEnv(void) = default;
|
||||
void reset(void);
|
||||
Latan::Index getVarIndex(const std::string name);
|
||||
std::string getVarName(const Latan::Index i);
|
||||
Latan::Index getQuIndex(const std::string name);
|
||||
std::string getQuName(const Latan::Index i);
|
||||
Latan::DVec getPhyPt(void);
|
||||
std::vector<const Latan::DoubleModel *> getModels(void);
|
||||
void parseXml(const std::string paramFileName);
|
||||
std::string macroSubst(const std::string str) const;
|
||||
void load(void);
|
||||
Latan::XYSampleData generateData(void);
|
||||
Latan::XYSampleData generateData(const bool phyUnits, const bool corr);
|
||||
friend std::ostream & operator<<(std::ostream &out, FitEnv &f);
|
||||
private:
|
||||
Latan::Index nSample_;
|
||||
std::string scale_;
|
||||
std::vector<unsigned int> nT_, nL_;
|
||||
DataTable varData_, quData_;
|
||||
IndexTable varIndex_, quIndex_;
|
||||
std::map<std::string, VarInfo> variable_;
|
||||
VarInfo *scaleVar_{nullptr};
|
||||
std::vector<std::string> varName_;
|
||||
std::vector<double> varScalePow_;
|
||||
std::map<std::string, QuInfo> quantity_;
|
||||
std::vector<std::string> quName_;
|
||||
std::map<std::string, Ensemble> ensemble_;
|
||||
|
@ -1,4 +1,7 @@
|
||||
#include <LatAnalyze/Io.hpp>
|
||||
#include <LatAnalyze/MinuitMinimizer.hpp>
|
||||
#include <LatAnalyze/NloptMinimizer.hpp>
|
||||
#include <LatAnalyze/Plot.hpp>
|
||||
#include "fit-phys-env.hpp"
|
||||
|
||||
using namespace std;
|
||||
@ -18,16 +21,57 @@ int main(int argc, char *argv[])
|
||||
paramFileName = argv[1];
|
||||
|
||||
// parse XML & load data ///////////////////////////////////////////////////
|
||||
FitEnv env;
|
||||
FitEnv env;
|
||||
|
||||
env.parseXml(paramFileName);
|
||||
env.load();
|
||||
|
||||
XYSampleData data = env.generateData();
|
||||
XYSampleData uncorrData = env.generateData(false, false);
|
||||
XYSampleData corrData = env.generateData(false, true);
|
||||
|
||||
cout << "DATA SUMMARY" << endl;
|
||||
cout << "============" << endl;
|
||||
cout << env << data << endl;
|
||||
cout << env << uncorrData << endl;
|
||||
|
||||
// fit /////////////////////////////////////////////////////////////////////
|
||||
auto v = env.getModels();
|
||||
SampleFitResult fit;
|
||||
MinuitMinimizer min1, min2;
|
||||
vector<Minimizer *> min{&min1, &min2};
|
||||
DVec init(v[0]->getNPar());
|
||||
|
||||
min1.setVerbosity(Minimizer::Verbosity::Normal);
|
||||
min2.setVerbosity(Minimizer::Verbosity::Normal);
|
||||
min1.setMaxIteration(1000000);
|
||||
min1.setPrecision(1.0e-3);
|
||||
min2.setMaxIteration(1000000);
|
||||
min2.setPrecision(1.0e-5);
|
||||
init.fill(1.0);
|
||||
fit = uncorrData.fit(min, init, v);
|
||||
fit.print();
|
||||
init = fit[central].block(0, 0, init.size(), 1);
|
||||
fit = corrData.fit(min2, init, v);
|
||||
fit.print();
|
||||
|
||||
// init = fit[central].block(0, 0, v[0]->getNPar(), 1);
|
||||
// min1.setVerbosity(Minimizer::Verbosity::Normal);
|
||||
// fit = corrData.fit(min1, init, v);
|
||||
|
||||
// plot ////////////////////////////////////////////////////////////////////
|
||||
// Plot p;
|
||||
// DVec phyPt = env.getPhyPt();
|
||||
// phyPt(env.getVarIndex("a")) = 1.;
|
||||
// XYSampleData projData = uncorrData.getPartialResiduals(fit, phyPt, env.getVarIndex("M_Ds"));
|
||||
//
|
||||
// p << PlotPredBand(fit.getModel(_).bind(env.getVarIndex("M_Ds"), phyPt), 0., 3.);
|
||||
// p << PlotData(projData.getData(), env.getVarIndex("M_Ds"), 0);
|
||||
// p.display();
|
||||
// p.reset();
|
||||
// projData = uncorrData.getPartialResiduals(fit, phyPt, env.getVarIndex("a"));
|
||||
// p << PlotPredBand(fit.getModel(_).bind(env.getVarIndex("a"), phyPt), 0., 1.);
|
||||
// p << PlotData(projData.getData(), env.getVarIndex("a"), 0);
|
||||
// p.display();
|
||||
// p.reset();
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user