1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-04-05 09:35:54 +01:00

fit-phys update from last spring

This commit is contained in:
Antonin Portelli 2017-01-11 11:25:02 +00:00
parent 80b826040b
commit 0ade8a8cbf
3 changed files with 305 additions and 91 deletions

View File

@ -3,6 +3,8 @@
#include <LatAnalyze/CompiledModel.hpp>
#include <LatAnalyze/Io.hpp>
#define DRATIO(a,b) static_cast<double>(a)/static_cast<double>(b)
using namespace std;
using namespace Latan;
@ -13,12 +15,101 @@ void FitEnv::reset(void)
variable_.clear();
varData_.clear();
varName_.clear();
varScalePow_.clear();
quantity_.clear();
quData_.clear();
quName_.clear();
ensemble_.clear();
point_.clear();
macro_.clear();
scaleVar_ = nullptr;
}
Index FitEnv::getVarIndex(const string name)
{
if (name == "nT")
{
return 0;
}
else if (name == "nL")
{
return 1;
}
else
{
auto it = variable_.find(name);
if (it != variable_.end())
{
return it->second.index;
}
else
{
LATAN_ERROR(Range, "no variable with name '" + name + "'");
}
}
}
string FitEnv::getVarName(const Index i)
{
if (i < static_cast<Index>(varName_.size()))
{
return varName_[i];
}
else
{
LATAN_ERROR(Range, "no variable with index " + strFrom(i));
}
}
Index FitEnv::getQuIndex(const string name)
{
auto it = quantity_.find(name);
if (it != quantity_.end())
{
return it->second.index;
}
else
{
LATAN_ERROR(Range, "no quantity with name '" + name + "'");
}
}
string FitEnv::getQuName(const Index i)
{
if (i < static_cast<Index>(quName_.size()))
{
return quName_[i];
}
else
{
LATAN_ERROR(Range, "no variable with index " + strFrom(i));
}
}
DVec FitEnv::getPhyPt(void)
{
DVec phyPt(varName_.size());
for (unsigned int i = 0; i < varName_.size(); ++i)
{
phyPt(i) = variable_[varName_[i]].physVal;
}
return phyPt;
}
vector<const DoubleModel *> FitEnv::getModels(void)
{
vector<const DoubleModel *> m;
for (auto &q: quantity_)
{
m.push_back(&q.second.model);
}
return m;
}
#define XGFV(type, ...) XmlReader::getFirstValue<type>(node, __VA_ARGS__)
@ -32,6 +123,7 @@ void FitEnv::parseXml(const string paramFileName)
reset();
nSample_ = paramFile.getFirstValue<Index>("nSample");
scale_ = paramFile.getFirstValue<string>("scale");
// macros
if (paramFile.hasNode("macros", "macro"))
@ -59,28 +151,26 @@ void FitEnv::parseXml(const string paramFileName)
nTs.insert(ens.nT);
nLs.insert(ens.nL);
}
varData_.push_back(vector<Data>());
for (auto nT: nTs)
{
Data d;
nT_.push_back(nT);
d.fileName = "";
d.value.fill(nT);
varData_.back().push_back(d);
}
varData_.push_back(vector<Data>());
for (auto nL: nLs)
{
Data d;
nL_.push_back(nL);
d.fileName = "";
d.value.fill(nL);
varData_.back().push_back(d);
}
// fit variables
{
string name;
VarInfo var;
name = "T";
var.physVal = HUGE_VAL;
var.dim = -1;
variable_[name] = var;
}
{
string name;
VarInfo var;
name = "L";
var.physVal = HUGE_VAL;
var.dim = -1;
variable_[name] = var;
}
node = paramFile.getFirstNode("variables", "variable");
while (node)
{
@ -89,34 +179,69 @@ void FitEnv::parseXml(const string paramFileName)
name = XGFV(string, "name");
var.physVal = XGFV(double, "physical");
var.dim = XGFV(int, "dim");
variable_[name] = var;
node = paramFile.getNextSameNode(node);
if (name == scale_)
{
scaleVar_ = &(variable_[name]);
}
node = paramFile.getNextSameNode(node);
}
if (!scaleVar_)
{
LATAN_ERROR(Definition, "scaling variable '" + scale_
+ "' not defined");
}
varName_.push_back("nT");
varName_.push_back("nL");
for (auto &v: variable_)
{
v.second.index = varName_.size();
varName_.push_back(v.first);
}
for (auto &v: variable_)
{
varScalePow_.push_back(DRATIO(v.second.dim, scaleVar_->dim));
}
// fitted quantities
node = paramFile.getFirstNode("quantities", "quantity");
while (node)
{
string name, code = "nT = x_0; nL = x_1; ";
Index nPar;
QuInfo q;
string name, code = "";
Index nPar;
QuInfo q;
DoubleModel m;
shared_ptr<DVec> buf(new DVec(varName_.size()));
name = XGFV(string, "name");
nPar = XGFV(Index, "model", "nPar");
q.dim = XGFV(int, "dim");
for (auto &v: variable_)
{
code += v.first + " = x_" + strFrom(v.second.index) + "; ";
code += v.first + "_phy = " + strFrom(v.second.physVal) + "; ";
}
code += XGFV(string, "model", "code");
q.model = compile(code, variable_.size() + 3, nPar);
DEBUG_VAR(code);
m = compile(code, variable_.size(), nPar);
auto wrap = [m, buf, this, q](const double *x, const double *p)
{
double s = x[scaleVar_->index];
for (unsigned int i = 0; i < varScalePow_.size(); ++i)
{
if (i != scaleVar_->index)
{
(*buf)(i) = x[i]*pow(s, varScalePow_[i]);
}
else
{
(*buf)(i) = x[i];
}
}
return pow(s, -DRATIO(q.dim, scaleVar_->dim))*m(buf->data(), p);
};
q.model.setFunction(wrap, m.getNArg(), m.getNPar());
quantity_[name] = q;
node = paramFile.getNextSameNode(node);
}
@ -144,7 +269,18 @@ void FitEnv::parseXml(const string paramFileName)
point.ensemble = &(it->second);
for (auto &v: variable_)
{
fileName = macroSubst(XGFV(string, v.first));
if (v.first == "T")
{
fileName = strFrom(point.ensemble->nT);
}
else if (v.first == "L")
{
fileName = strFrom(point.ensemble->nL);
}
else
{
fileName = macroSubst(XGFV(string, v.first));
}
point.fileName[v.first] = fileName;
varFileNames[v.first].insert(fileName);
}
@ -189,9 +325,7 @@ void FitEnv::parseXml(const string paramFileName)
for (auto &p: point_)
{
p.coord.resize(varName_.size());
p.coord[0] = find(nT_.begin(), nT_.end(), p.ensemble->nT) - nT_.begin();
p.coord[1] = find(nL_.begin(), nL_.end(), p.ensemble->nL) - nL_.begin();
for (unsigned int i = 2; i < varName_.size(); ++i)
for (unsigned int i = 0; i < varName_.size(); ++i)
{
p.coord[i] = varIndex_[varName_[i]][p.fileName[varName_[i]]];
}
@ -220,21 +354,33 @@ std::string FitEnv::macroSubst(const std::string str) const
void FitEnv::load(void)
{
for (unsigned int i = 2; i < varName_.size(); ++i)
for (unsigned int i = 0; i < varName_.size(); ++i)
{
auto &v = varData_[i];
for (auto &d: v)
if ((varName_[i] == "T") or (varName_[i] == "L"))
{
d.value = Io::load<DSample>(d.fileName);
if (d.value.size() != nSample_)
for (auto &d: v)
{
LATAN_ERROR(Size, "sample loaded from file '" + d.fileName
+ "' has a wrong number of element (expected "
+ strFrom(nSample_) + ", got "
+ strFrom(d.value.size()) + ")");
d.value.resize(nSample_);
d.value.fill(strTo<double>(d.fileName));
}
}
else
{
for (auto &d: v)
{
d.value = Io::load<DSample>(d.fileName);
if (d.value.size() != nSample_)
{
LATAN_ERROR(Size, "sample loaded from file '" + d.fileName
+ "' has a wrong number of element (expected "
+ strFrom(nSample_) + ", got "
+ strFrom(d.value.size()) + ")");
}
}
}
}
for (auto &q: quData_)
{
@ -253,63 +399,86 @@ void FitEnv::load(void)
}
XYSampleData FitEnv::generateData(void)
XYSampleData FitEnv::generateData(const bool phyUnits, const bool corr)
{
XYSampleData data(nSample_);
Index k, k1, k2;
Index k, k1, k2, ind;
const Index sInd = getVarIndex(scale_);
DSample scale, tmp;
int dim;
const int sDim = scaleVar_->dim;
// add dimensions
data.addXDim(nT_.size(), "nT", true);
data.addXDim(nL_.size(), "nL", true);
for (unsigned int i = 2; i < varName_.size(); ++i)
for (unsigned int i = 0; i < varName_.size(); ++i)
{
data.addXDim(varData_[i].size(), varName_[i], false);
data.addXDim(varData_[i].size(), varName_[i],
((varName_[i] == "T") or (varName_[i] == "L")));
}
for (auto &q: quName_)
{
data.addYDim(q);
}
// add X data
for (unsigned int i = 0; i < varName_.size(); ++i)
for (unsigned int r = 0; r < varData_[i].size(); ++r)
{
data.x(r, i) = varData_[i][r].value;
}
// add Y data
// add data
for (auto &p: point_)
{
k = data.dataIndex(p.coord);
k = data.dataIndex(p.coord);
scale = varData_[sInd][varIndex_[scale_][p.fileName[scale_]]].value;
for (unsigned int i = 0; i < varName_.size(); ++i)
{
ind = varIndex_[varName_[i]][p.fileName[varName_[i]]];
dim = variable_[varName_[i]].dim;
tmp = varData_[i][ind].value;
if (phyUnits and (varName_[i] != scale_))
{
FOR_STAT_ARRAY(tmp, s)
{
tmp[s] *= pow(scale[s], DRATIO(dim, sDim));
}
}
data.x(p.coord[i], i) = tmp;
}
for (unsigned int j = 0; j < quName_.size(); ++j)
{
auto &n = quName_[j];
data.y(k, j) = quData_[j][quIndex_[n][p.fileName[n]]].value;
ind = quIndex_[quName_[j]][p.fileName[quName_[j]]];
dim = quantity_[quName_[j]].dim;
tmp = quData_[j][ind].value;
if (phyUnits)
{
FOR_STAT_ARRAY(tmp, s)
{
tmp[s] *= pow(scale[s], DRATIO(dim, sDim));
}
}
data.y(k, j) = tmp;
}
}
// add correlations
for (unsigned int p1 = 0; p1 < point_.size(); ++p1)
for (unsigned int p2 = p1; p2 < point_.size(); ++p2)
if (corr)
{
if (point_[p1].ensemble == point_[p2].ensemble)
for (unsigned int p1 = 0; p1 < point_.size(); ++p1)
for (unsigned int p2 = p1; p2 < point_.size(); ++p2)
{
k1 = data.dataIndex(point_[p1].coord);
k2 = data.dataIndex(point_[p2].coord);
for (unsigned int i1 = 2; i1 < varName_.size(); ++i1)
for (unsigned int i2 = i1; i2 < varName_.size(); ++i2)
if (point_[p1].ensemble == point_[p2].ensemble)
{
data.assumeXXCorrelated(true, point_[p1].coord[i1], i1,
point_[p2].coord[i2], i2);
}
for (unsigned int j1 = 0; j1 < quName_.size(); ++j1)
for (unsigned int j2 = j1; j2 < quName_.size(); ++j2)
{
data.assumeYYCorrelated(true, k1, j1, k2, j2);
}
for (unsigned int i = 2; i < varName_.size(); ++i)
for (unsigned int j = 0; j < quName_.size(); ++j)
{
data.assumeXYCorrelated(true, point_[p1].coord[i], i, k2, j);
data.assumeXYCorrelated(true, point_[p2].coord[i], i, k1, j);
k1 = data.dataIndex(point_[p1].coord);
k2 = data.dataIndex(point_[p2].coord);
for (unsigned int i1 = 0; i1 < varName_.size(); ++i1)
for (unsigned int i2 = i1; i2 < varName_.size(); ++i2)
{
data.assumeXXCorrelated(true, point_[p1].coord[i1], i1,
point_[p2].coord[i2], i2);
}
for (unsigned int j1 = 0; j1 < quName_.size(); ++j1)
for (unsigned int j2 = j1; j2 < quName_.size(); ++j2)
{
data.assumeYYCorrelated(true, k1, j1, k2, j2);
}
for (unsigned int i = 0; i < varName_.size(); ++i)
for (unsigned int j = 0; j < quName_.size(); ++j)
{
data.assumeXYCorrelated(true, point_[p1].coord[i], i, k2, j);
data.assumeXYCorrelated(true, point_[p2].coord[i], i, k1, j);
}
}
}
}
@ -319,17 +488,7 @@ XYSampleData FitEnv::generateData(void)
ostream & operator<<(ostream &out, FitEnv &f)
{
out << "nT:" << endl;
for (auto nT: f.nT_)
{
out << " * " << nT << endl;
}
out << "nL:" << endl;
for (auto nL: f.nL_)
{
out << " * " << nL << endl;
}
for (unsigned int i = 2; i < f.varName_.size(); ++i)
for (unsigned int i = 0; i < f.varName_.size(); ++i)
{
out << f.varName_[i] << ":" << endl;
for (auto &d: f.varData_[i])

View File

@ -12,12 +12,14 @@ public:
struct VarInfo
{
double physVal;
int dim;
Latan::Index index;
};
// fitted quantity info
struct QuInfo
{
Latan::DoubleModel model;
int dim;
Latan::Index index;
};
// ensemble
@ -47,18 +49,27 @@ public:
FitEnv(void) = default;
virtual ~FitEnv(void) = default;
void reset(void);
Latan::Index getVarIndex(const std::string name);
std::string getVarName(const Latan::Index i);
Latan::Index getQuIndex(const std::string name);
std::string getQuName(const Latan::Index i);
Latan::DVec getPhyPt(void);
std::vector<const Latan::DoubleModel *> getModels(void);
void parseXml(const std::string paramFileName);
std::string macroSubst(const std::string str) const;
void load(void);
Latan::XYSampleData generateData(void);
Latan::XYSampleData generateData(const bool phyUnits, const bool corr);
friend std::ostream & operator<<(std::ostream &out, FitEnv &f);
private:
Latan::Index nSample_;
std::string scale_;
std::vector<unsigned int> nT_, nL_;
DataTable varData_, quData_;
IndexTable varIndex_, quIndex_;
std::map<std::string, VarInfo> variable_;
VarInfo *scaleVar_{nullptr};
std::vector<std::string> varName_;
std::vector<double> varScalePow_;
std::map<std::string, QuInfo> quantity_;
std::vector<std::string> quName_;
std::map<std::string, Ensemble> ensemble_;

View File

@ -1,4 +1,7 @@
#include <LatAnalyze/Io.hpp>
#include <LatAnalyze/MinuitMinimizer.hpp>
#include <LatAnalyze/NloptMinimizer.hpp>
#include <LatAnalyze/Plot.hpp>
#include "fit-phys-env.hpp"
using namespace std;
@ -18,16 +21,57 @@ int main(int argc, char *argv[])
paramFileName = argv[1];
// parse XML & load data ///////////////////////////////////////////////////
FitEnv env;
FitEnv env;
env.parseXml(paramFileName);
env.load();
XYSampleData data = env.generateData();
XYSampleData uncorrData = env.generateData(false, false);
XYSampleData corrData = env.generateData(false, true);
cout << "DATA SUMMARY" << endl;
cout << "============" << endl;
cout << env << data << endl;
cout << env << uncorrData << endl;
// fit /////////////////////////////////////////////////////////////////////
auto v = env.getModels();
SampleFitResult fit;
MinuitMinimizer min1, min2;
vector<Minimizer *> min{&min1, &min2};
DVec init(v[0]->getNPar());
min1.setVerbosity(Minimizer::Verbosity::Normal);
min2.setVerbosity(Minimizer::Verbosity::Normal);
min1.setMaxIteration(1000000);
min1.setPrecision(1.0e-3);
min2.setMaxIteration(1000000);
min2.setPrecision(1.0e-5);
init.fill(1.0);
fit = uncorrData.fit(min, init, v);
fit.print();
init = fit[central].block(0, 0, init.size(), 1);
fit = corrData.fit(min2, init, v);
fit.print();
// init = fit[central].block(0, 0, v[0]->getNPar(), 1);
// min1.setVerbosity(Minimizer::Verbosity::Normal);
// fit = corrData.fit(min1, init, v);
// plot ////////////////////////////////////////////////////////////////////
// Plot p;
// DVec phyPt = env.getPhyPt();
// phyPt(env.getVarIndex("a")) = 1.;
// XYSampleData projData = uncorrData.getPartialResiduals(fit, phyPt, env.getVarIndex("M_Ds"));
//
// p << PlotPredBand(fit.getModel(_).bind(env.getVarIndex("M_Ds"), phyPt), 0., 3.);
// p << PlotData(projData.getData(), env.getVarIndex("M_Ds"), 0);
// p.display();
// p.reset();
// projData = uncorrData.getPartialResiduals(fit, phyPt, env.getVarIndex("a"));
// p << PlotPredBand(fit.getModel(_).bind(env.getVarIndex("a"), phyPt), 0., 1.);
// p << PlotData(projData.getData(), env.getVarIndex("a"), 0);
// p.display();
// p.reset();
return EXIT_SUCCESS;
}