mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-06-16 22:47:04 +01:00
first cmake draft, source relocation, not working
This commit is contained in:
170
lib/LatAnalyze/Core/Math.cpp
Normal file
170
lib/LatAnalyze/Core/Math.cpp
Normal file
@ -0,0 +1,170 @@
|
||||
/*
|
||||
* Math.cpp, part of LatAnalyze 3
|
||||
*
|
||||
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||
*
|
||||
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Core/Math.hpp>
|
||||
#include <LatAnalyze/Numerical/GslFFT.hpp>
|
||||
#include <LatAnalyze/includes.hpp>
|
||||
#include <gsl/gsl_cdf.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
/******************************************************************************
|
||||
* Custom math functions *
|
||||
******************************************************************************/
|
||||
DMat MATH_NAMESPACE::varToCorr(const DMat &var)
|
||||
{
|
||||
DMat res = var;
|
||||
DVec invDiag = res.diagonal();
|
||||
|
||||
invDiag = invDiag.cwiseInverse().cwiseSqrt();
|
||||
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
DMat MATH_NAMESPACE::corrToVar(const DMat &corr, const DVec &varDiag)
|
||||
{
|
||||
DMat res = corr;
|
||||
DVec varSqrtDiag = varDiag.cwiseSqrt();
|
||||
|
||||
res = (varSqrtDiag*varSqrtDiag.transpose()).cwiseProduct(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::conditionNumber(const DMat &mat)
|
||||
{
|
||||
DVec s = mat.singularValues();
|
||||
|
||||
return s.maxCoeff()/s.minCoeff();
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::cdr(const DMat &mat)
|
||||
{
|
||||
return 10.*log10(conditionNumber(mat));
|
||||
}
|
||||
|
||||
template <typename FFT>
|
||||
double nsdr(const DMat &m)
|
||||
{
|
||||
Index n = m.rows();
|
||||
FFT fft(n);
|
||||
CMat buf(n, 1);
|
||||
|
||||
FOR_VEC(buf, i)
|
||||
{
|
||||
buf(i) = 0.;
|
||||
for (Index j = 0; j < n; ++j)
|
||||
{
|
||||
buf(i) += m(j, (i+j) % n);
|
||||
}
|
||||
buf(i) /= n;
|
||||
}
|
||||
fft(buf, FFT::Forward);
|
||||
|
||||
return 10.*log10(buf.real().maxCoeff()/buf.real().minCoeff());
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::nsdr(const DMat &mat)
|
||||
{
|
||||
return ::nsdr<GslFFT>(mat);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* Standard C functions *
|
||||
******************************************************************************/
|
||||
|
||||
#define DEF_STD_FUNC_1ARG(name) \
|
||||
auto name##VecFunc = [](const double arg[1]){return (name)(arg[0]);};\
|
||||
DoubleFunction STDMATH_NAMESPACE::name(name##VecFunc, 1);
|
||||
|
||||
#define DEF_STD_FUNC_2ARG(name) \
|
||||
auto name##VecFunc = [](const double arg[2]){return (name)(arg[0], arg[1]);};\
|
||||
DoubleFunction STDMATH_NAMESPACE::name(name##VecFunc, 2);
|
||||
|
||||
// Trigonometric functions
|
||||
DEF_STD_FUNC_1ARG(cos)
|
||||
DEF_STD_FUNC_1ARG(sin)
|
||||
DEF_STD_FUNC_1ARG(tan)
|
||||
DEF_STD_FUNC_1ARG(acos)
|
||||
DEF_STD_FUNC_1ARG(asin)
|
||||
DEF_STD_FUNC_1ARG(atan)
|
||||
DEF_STD_FUNC_2ARG(atan2)
|
||||
|
||||
// Hyperbolic functions
|
||||
DEF_STD_FUNC_1ARG(cosh)
|
||||
DEF_STD_FUNC_1ARG(sinh)
|
||||
DEF_STD_FUNC_1ARG(tanh)
|
||||
DEF_STD_FUNC_1ARG(acosh)
|
||||
DEF_STD_FUNC_1ARG(asinh)
|
||||
DEF_STD_FUNC_1ARG(atanh)
|
||||
|
||||
// Exponential and logarithmic functions
|
||||
DEF_STD_FUNC_1ARG(exp)
|
||||
DEF_STD_FUNC_1ARG(log)
|
||||
DEF_STD_FUNC_1ARG(log10)
|
||||
DEF_STD_FUNC_1ARG(exp2)
|
||||
DEF_STD_FUNC_1ARG(expm1)
|
||||
DEF_STD_FUNC_1ARG(log1p)
|
||||
DEF_STD_FUNC_1ARG(log2)
|
||||
|
||||
// Power functions
|
||||
DEF_STD_FUNC_2ARG(pow)
|
||||
DEF_STD_FUNC_1ARG(sqrt)
|
||||
DEF_STD_FUNC_1ARG(cbrt)
|
||||
DEF_STD_FUNC_2ARG(hypot)
|
||||
|
||||
// Error and gamma functions
|
||||
DEF_STD_FUNC_1ARG(erf)
|
||||
DEF_STD_FUNC_1ARG(erfc)
|
||||
DEF_STD_FUNC_1ARG(tgamma)
|
||||
DEF_STD_FUNC_1ARG(lgamma)
|
||||
|
||||
// Rounding and remainder functions
|
||||
DEF_STD_FUNC_1ARG(ceil)
|
||||
DEF_STD_FUNC_1ARG(floor)
|
||||
DEF_STD_FUNC_2ARG(fmod)
|
||||
DEF_STD_FUNC_1ARG(trunc)
|
||||
DEF_STD_FUNC_1ARG(round)
|
||||
DEF_STD_FUNC_1ARG(rint)
|
||||
DEF_STD_FUNC_1ARG(nearbyint)
|
||||
DEF_STD_FUNC_2ARG(remainder)
|
||||
|
||||
// Minimum, maximum, difference functions
|
||||
DEF_STD_FUNC_2ARG(fdim)
|
||||
DEF_STD_FUNC_2ARG(fmax)
|
||||
DEF_STD_FUNC_2ARG(fmin)
|
||||
|
||||
// Absolute value
|
||||
DEF_STD_FUNC_1ARG(fabs)
|
||||
|
||||
// p-value
|
||||
auto chi2PValueVecFunc = [](const double arg[2])
|
||||
{
|
||||
return 2.*min(gsl_cdf_chisq_P(arg[0], arg[1]), gsl_cdf_chisq_Q(arg[0], arg[1]));
|
||||
};
|
||||
|
||||
auto chi2CcdfVecFunc = [](const double arg[2])
|
||||
{
|
||||
return gsl_cdf_chisq_Q(arg[0], arg[1]);
|
||||
};
|
||||
|
||||
DoubleFunction MATH_NAMESPACE::chi2PValue(chi2PValueVecFunc, 2);
|
||||
DoubleFunction MATH_NAMESPACE::chi2Ccdf(chi2CcdfVecFunc, 2);
|
Reference in New Issue
Block a user