mirror of
				https://github.com/aportelli/LatAnalyze.git
				synced 2025-11-04 08:04:32 +00:00 
			
		
		
		
	rewrite of the 2pt fitter using the new physics classes
This commit is contained in:
		@@ -1,11 +1,13 @@
 | 
			
		||||
#include <LatAnalyze/Core/Math.hpp>
 | 
			
		||||
#include <LatAnalyze/Core/OptParser.hpp>
 | 
			
		||||
#include <LatAnalyze/Core/Plot.hpp>
 | 
			
		||||
#include <LatAnalyze/Functional/CompiledModel.hpp>
 | 
			
		||||
#include <LatAnalyze/Io/Io.hpp>
 | 
			
		||||
#include <LatAnalyze/Statistics/MatSample.hpp>
 | 
			
		||||
#include <LatAnalyze/Core/Math.hpp>
 | 
			
		||||
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
 | 
			
		||||
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
 | 
			
		||||
#include <LatAnalyze/Core/Plot.hpp>
 | 
			
		||||
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
 | 
			
		||||
#include <LatAnalyze/Physics/EffectiveMass.hpp>
 | 
			
		||||
#include <LatAnalyze/Statistics/MatSample.hpp>
 | 
			
		||||
#include <LatAnalyze/Statistics/XYSampleData.hpp>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
@@ -17,17 +19,6 @@ struct TwoPtFit
 | 
			
		||||
    Index           tMin, tMax;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
void setFitRange(XYSampleData &data, const Index ti, const Index tf,
 | 
			
		||||
                 const Index thinning, const Index nt)
 | 
			
		||||
{
 | 
			
		||||
    for (Index t = 0; t < nt; ++t)
 | 
			
		||||
    {
 | 
			
		||||
        data.fitPoint((t >= ti) and (t <= tf)
 | 
			
		||||
                      and ((t - ti) % thinning == 0), t);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char *argv[])
 | 
			
		||||
{
 | 
			
		||||
    // parse arguments /////////////////////////////////////////////////////////
 | 
			
		||||
@@ -47,7 +38,7 @@ int main(int argc, char *argv[])
 | 
			
		||||
    opt.addOption("s", "shift"    , OptParser::OptType::value  , true,
 | 
			
		||||
                  "time variable shift", "0");
 | 
			
		||||
    opt.addOption("m", "model"    , OptParser::OptType::value  , true,
 | 
			
		||||
                  "fit model (exp|exp2|exp3|sinh|cosh|cosh2|cosh3|explin|const|<interpreter code>)", "cosh");
 | 
			
		||||
                  "fit model (exp<n>|sinh<n>|cosh<n>|linear|cst|<interpreter code>)", "exp1");
 | 
			
		||||
    opt.addOption("" , "nPar"     , OptParser::OptType::value  , true,
 | 
			
		||||
                  "number of model parameters for custom models "
 | 
			
		||||
                  "(-1 if irrelevant)", "-1");
 | 
			
		||||
@@ -138,91 +129,15 @@ int main(int argc, char *argv[])
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // make models /////////////////////////////////////////////////////////////
 | 
			
		||||
    DoubleModel mod;
 | 
			
		||||
    bool        sinhModel = false, coshModel = false, linearModel = false, constModel = false;
 | 
			
		||||
    // make model //////////////////////////////////////////////////////////////
 | 
			
		||||
    CorrelatorFitter fitter(corr);
 | 
			
		||||
    DoubleModel      mod;
 | 
			
		||||
    auto             modelPar = CorrelatorModels::parseModel(model);
 | 
			
		||||
    
 | 
			
		||||
    if ((model == "exp") or (model == "exp1"))
 | 
			
		||||
    if (modelPar.type != CorrelatorType::undefined)
 | 
			
		||||
    {
 | 
			
		||||
        nPar = 2;
 | 
			
		||||
        mod.setFunction([](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*exp(-p[0]*x[0]);
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "exp2")
 | 
			
		||||
    {
 | 
			
		||||
        nPar = 4;
 | 
			
		||||
        mod.setFunction([](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0]);
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "exp3")
 | 
			
		||||
    {
 | 
			
		||||
        nPar = 6;
 | 
			
		||||
        mod.setFunction([](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0])
 | 
			
		||||
                                   + p[5]*exp(-p[4]*x[0]);
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "sinh")
 | 
			
		||||
    {
 | 
			
		||||
        sinhModel = true;
 | 
			
		||||
        nPar      = 2;
 | 
			
		||||
        mod.setFunction([nt](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*(exp(-p[0]*x[0])-exp(-p[0]*(nt-x[0])));
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if ((model == "cosh") or (model == "cosh1"))
 | 
			
		||||
    {
 | 
			
		||||
        coshModel = true;
 | 
			
		||||
        nPar      = 2;
 | 
			
		||||
        mod.setFunction([nt](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])));
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "cosh2")
 | 
			
		||||
    {
 | 
			
		||||
        coshModel = true;
 | 
			
		||||
        nPar      = 4;
 | 
			
		||||
        mod.setFunction([nt](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
 | 
			
		||||
                                 + p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])));
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "cosh3")
 | 
			
		||||
    {
 | 
			
		||||
        coshModel = true;
 | 
			
		||||
        nPar      = 6;
 | 
			
		||||
        mod.setFunction([nt](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
 | 
			
		||||
                                 + p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])))
 | 
			
		||||
                                 + p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "explin")
 | 
			
		||||
    {
 | 
			
		||||
        linearModel = true;
 | 
			
		||||
        nPar        = 2;
 | 
			
		||||
        mod.setFunction([](const double *x, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[1] - p[0]*x[0];
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
    }
 | 
			
		||||
    else if (model == "const")
 | 
			
		||||
    {
 | 
			
		||||
        constModel = true;
 | 
			
		||||
        nPar       = 1;
 | 
			
		||||
        mod.setFunction([](const double *x __dumb, const double *p)
 | 
			
		||||
                        {
 | 
			
		||||
                            return p[0];
 | 
			
		||||
                        }, 1, nPar);
 | 
			
		||||
        mod  = CorrelatorModels::makeModel(modelPar, nt);
 | 
			
		||||
        nPar = mod.getNPar();
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
@@ -240,81 +155,44 @@ int main(int argc, char *argv[])
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // fit /////////////////////////////////////////////////////////////////////
 | 
			
		||||
    DMatSample          tvec(nSample);
 | 
			
		||||
    XYSampleData        data(nSample);
 | 
			
		||||
    DVec                init(nPar);
 | 
			
		||||
    NloptMinimizer      globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
 | 
			
		||||
    MinuitMinimizer     locMin;
 | 
			
		||||
    vector<Minimizer *> unCorrMin{&globMin, &locMin};
 | 
			
		||||
 | 
			
		||||
    FOR_STAT_ARRAY(tvec, s)
 | 
			
		||||
    {
 | 
			
		||||
        tvec[s] = DVec::LinSpaced(nt, 0, nt - 1);
 | 
			
		||||
    }
 | 
			
		||||
    data.addXDim(nt, "t/a", true);
 | 
			
		||||
    data.addYDim("C(t)");
 | 
			
		||||
    data.setUnidimData(tvec, corr);
 | 
			
		||||
    // set parameter name ******************************************************
 | 
			
		||||
    if(constModel)
 | 
			
		||||
    {
 | 
			
		||||
        mod.parName().setName(0, "const");
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        for (Index p = 0; p < nPar; p += 2)
 | 
			
		||||
        {
 | 
			
		||||
            mod.parName().setName(p, "E_" + strFrom(p/2));
 | 
			
		||||
            mod.parName().setName(p + 1, "Z_" + strFrom(p/2));   
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    // set initial values ******************************************************
 | 
			
		||||
    if (linearModel)
 | 
			
		||||
    {
 | 
			
		||||
        init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
 | 
			
		||||
        init(1) = data.y(nt/4, 0)[central] + nt/4*init(0);
 | 
			
		||||
    }
 | 
			
		||||
    else if(constModel)
 | 
			
		||||
    {
 | 
			
		||||
        init(0) = data.y(nt/4, 0)[central];
 | 
			
		||||
    // set fitter **************************************************************
 | 
			
		||||
    fitter.setModel(mod);
 | 
			
		||||
    fitter.data().setSvdTolerance(svdTol);
 | 
			
		||||
    fitter.setThinning(thinning);
 | 
			
		||||
 | 
			
		||||
    // set initial values ******************************************************
 | 
			
		||||
    if (modelPar.type != CorrelatorType::undefined)
 | 
			
		||||
    {
 | 
			
		||||
        init = CorrelatorModels::parameterGuess(corr, modelPar);
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
 | 
			
		||||
        init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
 | 
			
		||||
    }
 | 
			
		||||
    for (Index p = 2; p < nPar; p += 2)
 | 
			
		||||
    {
 | 
			
		||||
        init(p)     = 2*init(p - 2);
 | 
			
		||||
        init(p + 1) = init(p - 1)/2.;
 | 
			
		||||
        
 | 
			
		||||
        init.fill(0.1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // set limits for minimisers ***********************************************
 | 
			
		||||
    for (Index p = 0; p < nPar; p += 2)
 | 
			
		||||
    {
 | 
			
		||||
        if (linearModel)
 | 
			
		||||
        {
 | 
			
		||||
            globMin.setLowLimit(p, -10.*fabs(init(p)));
 | 
			
		||||
            globMin.setHighLimit(p, 10.*fabs(init(p)));
 | 
			
		||||
        }
 | 
			
		||||
        else if(constModel)
 | 
			
		||||
        {
 | 
			
		||||
            globMin.setLowLimit(p, -10*fabs(init(0)));
 | 
			
		||||
            locMin.setLowLimit(p, -10*fabs(init(0)));
 | 
			
		||||
            globMin.setHighLimit(p, 10*fabs(init(0)));
 | 
			
		||||
            locMin.setHighLimit(p, 10*fabs(init(0)));
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        if ((modelPar.type == CorrelatorType::exp) or
 | 
			
		||||
            (modelPar.type == CorrelatorType::cosh) or
 | 
			
		||||
            (modelPar.type == CorrelatorType::sinh))
 | 
			
		||||
        {
 | 
			
		||||
            globMin.setLowLimit(p, 0.);
 | 
			
		||||
            locMin.setLowLimit(p, 0.);
 | 
			
		||||
            globMin.setHighLimit(p, 10.*init(p));
 | 
			
		||||
        }
 | 
			
		||||
        if(!constModel)
 | 
			
		||||
        {
 | 
			
		||||
            globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
 | 
			
		||||
            globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            globMin.setLowLimit(p, -10*fabs(init(p)));
 | 
			
		||||
            globMin.setHighLimit(p, 10*fabs(init(p)));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    globMin.setPrecision(0.001);
 | 
			
		||||
    globMin.setMaxIteration(100000);
 | 
			
		||||
@@ -322,28 +200,28 @@ int main(int argc, char *argv[])
 | 
			
		||||
    locMin.setMaxIteration(1000000);
 | 
			
		||||
    locMin.setVerbosity(verbosity);
 | 
			
		||||
 | 
			
		||||
    // fit /////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // standard fit ////////////////////////////////////////////////////////////
 | 
			
		||||
    if (!doScan)
 | 
			
		||||
    {
 | 
			
		||||
        // fit *****************************************************************
 | 
			
		||||
        SampleFitResult fit;
 | 
			
		||||
 | 
			
		||||
        setFitRange(data, ti, tf, thinning, nt);
 | 
			
		||||
        fitter.setFitRange(ti, tf);
 | 
			
		||||
        if (doCorr)
 | 
			
		||||
        {
 | 
			
		||||
            cout << "-- uncorrelated fit..." << endl;
 | 
			
		||||
        }
 | 
			
		||||
        cout << "using model '" << model << "'" << endl;
 | 
			
		||||
        data.setSvdTolerance(svdTol);
 | 
			
		||||
        data.assumeYYCorrelated(false, 0, 0);
 | 
			
		||||
        fit = data.fit(unCorrMin, init, mod);
 | 
			
		||||
        fitter.setCorrelation(false);
 | 
			
		||||
        fit = fitter.fit(unCorrMin, init);
 | 
			
		||||
        fit.print();
 | 
			
		||||
        if (doCorr)
 | 
			
		||||
        {
 | 
			
		||||
            cout << "-- correlated fit..." << endl;
 | 
			
		||||
            cout << "using model '" << model << "'" << endl;
 | 
			
		||||
            init = fit[central];
 | 
			
		||||
            data.assumeYYCorrelated(true, 0, 0);
 | 
			
		||||
            fit = data.fit(locMin, init, mod);
 | 
			
		||||
            fitter.setCorrelation(true);
 | 
			
		||||
            fit = fitter.fit(locMin, init);
 | 
			
		||||
            fit.print();
 | 
			
		||||
        }
 | 
			
		||||
        if (!outFileName.empty())
 | 
			
		||||
@@ -353,84 +231,50 @@ int main(int argc, char *argv[])
 | 
			
		||||
        // plots ***************************************************************
 | 
			
		||||
        if (doPlot)
 | 
			
		||||
        {
 | 
			
		||||
            if (!constModel)
 | 
			
		||||
            DMatSample tvec(nSample);
 | 
			
		||||
 | 
			
		||||
            tvec.fill(DVec::LinSpaced(nt, 0, nt - 1));
 | 
			
		||||
            if (modelPar.type != CorrelatorType::cst)
 | 
			
		||||
            {
 | 
			
		||||
                Plot p;
 | 
			
		||||
 | 
			
		||||
                p << PlotRange(Axis::x, 0, nt - 1);
 | 
			
		||||
                if (!linearModel and !constModel)
 | 
			
		||||
                if ((modelPar.type == CorrelatorType::exp) or
 | 
			
		||||
                    (modelPar.type == CorrelatorType::cosh) or
 | 
			
		||||
                    (modelPar.type == CorrelatorType::sinh))
 | 
			
		||||
                {
 | 
			
		||||
                    p << LogScale(Axis::y);
 | 
			
		||||
                }
 | 
			
		||||
                p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
 | 
			
		||||
                p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
 | 
			
		||||
                p << Color("rgb 'red'")  << PlotData(data.getData());
 | 
			
		||||
                p << Color("rgb 'red'")  << PlotData(fitter.data().getData());
 | 
			
		||||
                p << Label("t/a", Axis::x) << Caption("Correlator");
 | 
			
		||||
                p.display();
 | 
			
		||||
                if(savePlot != "")
 | 
			
		||||
                {
 | 
			
		||||
                    p.save(savePlot + "_corr");
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            if (modelPar.type != CorrelatorType::undefined)
 | 
			
		||||
            {
 | 
			
		||||
                Plot       p;
 | 
			
		||||
                DMatSample effMass(nSample);
 | 
			
		||||
                DVec       effMassT, fitErr;
 | 
			
		||||
                Index      maxT = (coshModel) ? (nt - 2) : (nt - 1);
 | 
			
		||||
                double     e0, e0Err;
 | 
			
		||||
                Plot          p;
 | 
			
		||||
                EffectiveMass effMass(modelPar.type);
 | 
			
		||||
                DMatSample    em;
 | 
			
		||||
                DVec          fitErr, emtvec;
 | 
			
		||||
                double        e0, e0Err;
 | 
			
		||||
 | 
			
		||||
                effMass.resizeMat(maxT, 1);
 | 
			
		||||
                effMassT.setLinSpaced(maxT, 0, maxT-1);
 | 
			
		||||
                emtvec = effMass.getTime(nt);
 | 
			
		||||
                em     = effMass(corr);
 | 
			
		||||
                fitErr = fit.variance().cwiseSqrt();
 | 
			
		||||
                e0     = fit[central](0);
 | 
			
		||||
                e0Err  = fitErr(0);
 | 
			
		||||
                if (coshModel or sinhModel)
 | 
			
		||||
                {
 | 
			
		||||
                    FOR_STAT_ARRAY(effMass, s)
 | 
			
		||||
                    {
 | 
			
		||||
                        for (Index t = 1; t < nt - 1; ++t)
 | 
			
		||||
                        {
 | 
			
		||||
                            effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
 | 
			
		||||
                                                    /(2.*corr[s](t)));
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                else if (linearModel)
 | 
			
		||||
                {
 | 
			
		||||
                    FOR_STAT_ARRAY(effMass, s)
 | 
			
		||||
                    {
 | 
			
		||||
                        for (Index t = 0; t < nt - 1; ++t)
 | 
			
		||||
                        {
 | 
			
		||||
                            effMass[s](t) = corr[s](t) - corr[s](t+1);
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                else if (constModel)
 | 
			
		||||
                {
 | 
			
		||||
                    FOR_STAT_ARRAY(effMass, s)
 | 
			
		||||
                    {
 | 
			
		||||
                        for (Index t = 0; t < nt - 1; ++t)
 | 
			
		||||
                        {
 | 
			
		||||
                            effMass[s](t) = corr[s](t);
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                else
 | 
			
		||||
                {
 | 
			
		||||
                    FOR_STAT_ARRAY(effMass, s)
 | 
			
		||||
                    {
 | 
			
		||||
                        for (Index t = 1; t < nt; ++t)
 | 
			
		||||
                        {
 | 
			
		||||
                            effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                p.reset();
 | 
			
		||||
                p << PlotRange(Axis::x, 0, maxT);
 | 
			
		||||
                p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
 | 
			
		||||
                p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
 | 
			
		||||
                p << PlotRange(Axis::x, 0, nt - 1);
 | 
			
		||||
                p << PlotRange(Axis::y, e0 - 30.*e0Err, e0 + 30.*e0Err);
 | 
			
		||||
                p << Color("rgb 'blue'") << PlotBand(0, nt - 1, e0 - e0Err, e0 + e0Err);
 | 
			
		||||
                p << Color("rgb 'blue'") << PlotHLine(e0);
 | 
			
		||||
                p << Color("rgb 'red'") << PlotData(effMassT, effMass);
 | 
			
		||||
                p << Caption("Effective Mass");
 | 
			
		||||
                p << Color("rgb 'red'") << PlotData(emtvec, em);
 | 
			
		||||
                p << Label("t/a", Axis::x) << Caption("Effective Mass");
 | 
			
		||||
                p.display();
 | 
			
		||||
                if(savePlot != "")
 | 
			
		||||
                {
 | 
			
		||||
@@ -440,16 +284,19 @@ int main(int argc, char *argv[])
 | 
			
		||||
            if (doHeatmap)
 | 
			
		||||
            {
 | 
			
		||||
                Plot  p;
 | 
			
		||||
                Index n  = data.getFitVarMat().rows();
 | 
			
		||||
                DMat  id = DMat::Identity(n, n);
 | 
			
		||||
                Index n  = fitter.data().getFitVarMat().rows();
 | 
			
		||||
                DMat  id = DMat::Identity(n, n),
 | 
			
		||||
                      var = fitter.data().getFitVarMat();
 | 
			
		||||
                
 | 
			
		||||
                p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
 | 
			
		||||
                p << PlotMatrix(Math::varToCorr(var));
 | 
			
		||||
                p << Caption("correlation matrix");
 | 
			
		||||
                p.display();
 | 
			
		||||
                if (svdTol > 0.)
 | 
			
		||||
                {
 | 
			
		||||
                    DMat proj = id - var*fitter.data().getFitVarMatPInv();
 | 
			
		||||
 | 
			
		||||
                    p.reset();
 | 
			
		||||
                    p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
 | 
			
		||||
                    p << PlotMatrix(proj);
 | 
			
		||||
                    p << Caption("singular space projector");
 | 
			
		||||
                    p.display();
 | 
			
		||||
                }
 | 
			
		||||
@@ -460,8 +307,9 @@ int main(int argc, char *argv[])
 | 
			
		||||
    // scan fits ///////////////////////////////////////////////////////////////
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        // fits ****************************************************************
 | 
			
		||||
        Index nFit = 0, f = 0, ti0 = ti + (tf - ti)/4, tf0 = tf - (tf - ti)/4,
 | 
			
		||||
              matSize = tf - ti - nPar + 1;
 | 
			
		||||
              matSize = tf - ti + 1;
 | 
			
		||||
        DMat  err, pVal(matSize, matSize), relErr(matSize, matSize),
 | 
			
		||||
              ccdf(matSize, matSize), val(matSize, matSize);
 | 
			
		||||
        map<double, TwoPtFit> fit;
 | 
			
		||||
@@ -474,14 +322,13 @@ int main(int argc, char *argv[])
 | 
			
		||||
                 << endl;
 | 
			
		||||
            thinning = 1;
 | 
			
		||||
        }
 | 
			
		||||
        setFitRange(data, ti0, tf0, thinning, nt);
 | 
			
		||||
        data.setSvdTolerance(svdTol);
 | 
			
		||||
        data.assumeYYCorrelated(false, 0, 0);
 | 
			
		||||
        tmpFit = data.fit(unCorrMin, init, mod);
 | 
			
		||||
        fitter.setFitRange(ti0, tf0);
 | 
			
		||||
        fitter.setCorrelation(false);
 | 
			
		||||
        tmpFit = fitter.fit(unCorrMin, init);
 | 
			
		||||
        tmpFit.print();
 | 
			
		||||
        cout << "-- scanning all possible fit ranges..." << endl;
 | 
			
		||||
        init = tmpFit[central];
 | 
			
		||||
        data.assumeYYCorrelated(doCorr, 0, 0);
 | 
			
		||||
        fitter.setCorrelation(doCorr);
 | 
			
		||||
        pVal.fill(Math::nan);
 | 
			
		||||
        relErr.fill(Math::nan);
 | 
			
		||||
        val.fill(Math::nan);
 | 
			
		||||
@@ -496,8 +343,8 @@ int main(int argc, char *argv[])
 | 
			
		||||
        {
 | 
			
		||||
            Index  i = ta - ti, j = tb - ti;
 | 
			
		||||
 | 
			
		||||
            setFitRange(data, ta, tb, thinning, nt);
 | 
			
		||||
            tmpFit              = data.fit(locMin, init, mod);
 | 
			
		||||
            fitter.setFitRange(ta, tb);
 | 
			
		||||
            tmpFit              = fitter.fit(locMin, init);
 | 
			
		||||
            err                 = tmpFit.variance().cwiseSqrt();
 | 
			
		||||
            pVal(i, j)          = tmpFit.getPValue();
 | 
			
		||||
            ccdf(i, j)          = tmpFit.getCcdf();
 | 
			
		||||
@@ -531,8 +378,8 @@ int main(int argc, char *argv[])
 | 
			
		||||
 | 
			
		||||
            p << PlotMatrix(pVal);
 | 
			
		||||
            p << Caption("p-value matrix");
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p.display();
 | 
			
		||||
            if(savePlot != "")
 | 
			
		||||
            {
 | 
			
		||||
@@ -541,8 +388,8 @@ int main(int argc, char *argv[])
 | 
			
		||||
            p.reset();
 | 
			
		||||
            p << PlotMatrix(relErr);
 | 
			
		||||
            p << Caption("Relative error matrix");
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p.display();
 | 
			
		||||
            if(savePlot != "")
 | 
			
		||||
            {
 | 
			
		||||
@@ -551,8 +398,8 @@ int main(int argc, char *argv[])
 | 
			
		||||
            p.reset();
 | 
			
		||||
            p << PlotMatrix(val);
 | 
			
		||||
            p << Caption("Fit result matrix");
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p.display();
 | 
			
		||||
            if(savePlot != "")
 | 
			
		||||
            {
 | 
			
		||||
@@ -561,8 +408,8 @@ int main(int argc, char *argv[])
 | 
			
		||||
            p.reset();
 | 
			
		||||
            p << PlotMatrix(ccdf);
 | 
			
		||||
            p << Caption("chi^2 CCDF matrix");
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p << Label("tMax - " + strFrom(ti), Axis::x);
 | 
			
		||||
            p << Label("tMin - " + strFrom(ti), Axis::y);
 | 
			
		||||
            p.display();
 | 
			
		||||
            if(savePlot != "")
 | 
			
		||||
            {
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user