1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 00:45:36 +00:00

rewrite of the 2pt fitter using the new physics classes

This commit is contained in:
Antonin Portelli 2020-01-28 17:35:07 +00:00
parent 685d433032
commit 1775f4992b

View File

@ -1,11 +1,13 @@
#include <LatAnalyze/Core/Math.hpp>
#include <LatAnalyze/Core/OptParser.hpp>
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Functional/CompiledModel.hpp>
#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Statistics/MatSample.hpp>
#include <LatAnalyze/Core/Math.hpp>
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
#include <LatAnalyze/Physics/EffectiveMass.hpp>
#include <LatAnalyze/Statistics/MatSample.hpp>
#include <LatAnalyze/Statistics/XYSampleData.hpp>
using namespace std;
@ -17,17 +19,6 @@ struct TwoPtFit
Index tMin, tMax;
};
void setFitRange(XYSampleData &data, const Index ti, const Index tf,
const Index thinning, const Index nt)
{
for (Index t = 0; t < nt; ++t)
{
data.fitPoint((t >= ti) and (t <= tf)
and ((t - ti) % thinning == 0), t);
}
}
int main(int argc, char *argv[])
{
// parse arguments /////////////////////////////////////////////////////////
@ -47,7 +38,7 @@ int main(int argc, char *argv[])
opt.addOption("s", "shift" , OptParser::OptType::value , true,
"time variable shift", "0");
opt.addOption("m", "model" , OptParser::OptType::value , true,
"fit model (exp|exp2|exp3|sinh|cosh|cosh2|cosh3|explin|const|<interpreter code>)", "cosh");
"fit model (exp<n>|sinh<n>|cosh<n>|linear|cst|<interpreter code>)", "exp1");
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
"number of model parameters for custom models "
"(-1 if irrelevant)", "-1");
@ -138,91 +129,15 @@ int main(int argc, char *argv[])
}
}
// make models /////////////////////////////////////////////////////////////
DoubleModel mod;
bool sinhModel = false, coshModel = false, linearModel = false, constModel = false;
// make model //////////////////////////////////////////////////////////////
CorrelatorFitter fitter(corr);
DoubleModel mod;
auto modelPar = CorrelatorModels::parseModel(model);
if ((model == "exp") or (model == "exp1"))
if (modelPar.type != CorrelatorType::undefined)
{
nPar = 2;
mod.setFunction([](const double *x, const double *p)
{
return p[1]*exp(-p[0]*x[0]);
}, 1, nPar);
}
else if (model == "exp2")
{
nPar = 4;
mod.setFunction([](const double *x, const double *p)
{
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0]);
}, 1, nPar);
}
else if (model == "exp3")
{
nPar = 6;
mod.setFunction([](const double *x, const double *p)
{
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0])
+ p[5]*exp(-p[4]*x[0]);
}, 1, nPar);
}
else if (model == "sinh")
{
sinhModel = true;
nPar = 2;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])-exp(-p[0]*(nt-x[0])));
}, 1, nPar);
}
else if ((model == "cosh") or (model == "cosh1"))
{
coshModel = true;
nPar = 2;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])));
}, 1, nPar);
}
else if (model == "cosh2")
{
coshModel = true;
nPar = 4;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])));
}, 1, nPar);
}
else if (model == "cosh3")
{
coshModel = true;
nPar = 6;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])))
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
}, 1, nPar);
}
else if (model == "explin")
{
linearModel = true;
nPar = 2;
mod.setFunction([](const double *x, const double *p)
{
return p[1] - p[0]*x[0];
}, 1, nPar);
}
else if (model == "const")
{
constModel = true;
nPar = 1;
mod.setFunction([](const double *x __dumb, const double *p)
{
return p[0];
}, 1, nPar);
mod = CorrelatorModels::makeModel(modelPar, nt);
nPar = mod.getNPar();
}
else
{
@ -240,81 +155,44 @@ int main(int argc, char *argv[])
}
// fit /////////////////////////////////////////////////////////////////////
DMatSample tvec(nSample);
XYSampleData data(nSample);
DVec init(nPar);
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
MinuitMinimizer locMin;
vector<Minimizer *> unCorrMin{&globMin, &locMin};
FOR_STAT_ARRAY(tvec, s)
{
tvec[s] = DVec::LinSpaced(nt, 0, nt - 1);
}
data.addXDim(nt, "t/a", true);
data.addYDim("C(t)");
data.setUnidimData(tvec, corr);
// set parameter name ******************************************************
if(constModel)
{
mod.parName().setName(0, "const");
}
else
{
for (Index p = 0; p < nPar; p += 2)
{
mod.parName().setName(p, "E_" + strFrom(p/2));
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
}
}
// set initial values ******************************************************
if (linearModel)
{
init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
init(1) = data.y(nt/4, 0)[central] + nt/4*init(0);
}
else if(constModel)
{
init(0) = data.y(nt/4, 0)[central];
// set fitter **************************************************************
fitter.setModel(mod);
fitter.data().setSvdTolerance(svdTol);
fitter.setThinning(thinning);
// set initial values ******************************************************
if (modelPar.type != CorrelatorType::undefined)
{
init = CorrelatorModels::parameterGuess(corr, modelPar);
}
else
{
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
}
for (Index p = 2; p < nPar; p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
init.fill(0.1);
}
// set limits for minimisers ***********************************************
for (Index p = 0; p < nPar; p += 2)
{
if (linearModel)
{
globMin.setLowLimit(p, -10.*fabs(init(p)));
globMin.setHighLimit(p, 10.*fabs(init(p)));
}
else if(constModel)
{
globMin.setLowLimit(p, -10*fabs(init(0)));
locMin.setLowLimit(p, -10*fabs(init(0)));
globMin.setHighLimit(p, 10*fabs(init(0)));
locMin.setHighLimit(p, 10*fabs(init(0)));
}
else
if ((modelPar.type == CorrelatorType::exp) or
(modelPar.type == CorrelatorType::cosh) or
(modelPar.type == CorrelatorType::sinh))
{
globMin.setLowLimit(p, 0.);
locMin.setLowLimit(p, 0.);
globMin.setHighLimit(p, 10.*init(p));
}
if(!constModel)
{
globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
}
else
{
globMin.setLowLimit(p, -10*fabs(init(p)));
globMin.setHighLimit(p, 10*fabs(init(p)));
}
}
globMin.setPrecision(0.001);
globMin.setMaxIteration(100000);
@ -322,28 +200,28 @@ int main(int argc, char *argv[])
locMin.setMaxIteration(1000000);
locMin.setVerbosity(verbosity);
// fit /////////////////////////////////////////////////////////////////////
// standard fit ////////////////////////////////////////////////////////////
if (!doScan)
{
// fit *****************************************************************
SampleFitResult fit;
setFitRange(data, ti, tf, thinning, nt);
fitter.setFitRange(ti, tf);
if (doCorr)
{
cout << "-- uncorrelated fit..." << endl;
}
cout << "using model '" << model << "'" << endl;
data.setSvdTolerance(svdTol);
data.assumeYYCorrelated(false, 0, 0);
fit = data.fit(unCorrMin, init, mod);
fitter.setCorrelation(false);
fit = fitter.fit(unCorrMin, init);
fit.print();
if (doCorr)
{
cout << "-- correlated fit..." << endl;
cout << "using model '" << model << "'" << endl;
init = fit[central];
data.assumeYYCorrelated(true, 0, 0);
fit = data.fit(locMin, init, mod);
fitter.setCorrelation(true);
fit = fitter.fit(locMin, init);
fit.print();
}
if (!outFileName.empty())
@ -353,84 +231,50 @@ int main(int argc, char *argv[])
// plots ***************************************************************
if (doPlot)
{
if (!constModel)
DMatSample tvec(nSample);
tvec.fill(DVec::LinSpaced(nt, 0, nt - 1));
if (modelPar.type != CorrelatorType::cst)
{
Plot p;
p << PlotRange(Axis::x, 0, nt - 1);
if (!linearModel and !constModel)
if ((modelPar.type == CorrelatorType::exp) or
(modelPar.type == CorrelatorType::cosh) or
(modelPar.type == CorrelatorType::sinh))
{
p << LogScale(Axis::y);
}
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
p << Color("rgb 'red'") << PlotData(data.getData());
p << Color("rgb 'red'") << PlotData(fitter.data().getData());
p << Label("t/a", Axis::x) << Caption("Correlator");
p.display();
if(savePlot != "")
{
p.save(savePlot + "_corr");
}
}
if (modelPar.type != CorrelatorType::undefined)
{
Plot p;
DMatSample effMass(nSample);
DVec effMassT, fitErr;
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
double e0, e0Err;
Plot p;
EffectiveMass effMass(modelPar.type);
DMatSample em;
DVec fitErr, emtvec;
double e0, e0Err;
effMass.resizeMat(maxT, 1);
effMassT.setLinSpaced(maxT, 0, maxT-1);
emtvec = effMass.getTime(nt);
em = effMass(corr);
fitErr = fit.variance().cwiseSqrt();
e0 = fit[central](0);
e0Err = fitErr(0);
if (coshModel or sinhModel)
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 1; t < nt - 1; ++t)
{
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
/(2.*corr[s](t)));
}
}
}
else if (linearModel)
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 0; t < nt - 1; ++t)
{
effMass[s](t) = corr[s](t) - corr[s](t+1);
}
}
}
else if (constModel)
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 0; t < nt - 1; ++t)
{
effMass[s](t) = corr[s](t);
}
}
}
else
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 1; t < nt; ++t)
{
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
}
}
}
p.reset();
p << PlotRange(Axis::x, 0, maxT);
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
p << PlotRange(Axis::x, 0, nt - 1);
p << PlotRange(Axis::y, e0 - 30.*e0Err, e0 + 30.*e0Err);
p << Color("rgb 'blue'") << PlotBand(0, nt - 1, e0 - e0Err, e0 + e0Err);
p << Color("rgb 'blue'") << PlotHLine(e0);
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
p << Caption("Effective Mass");
p << Color("rgb 'red'") << PlotData(emtvec, em);
p << Label("t/a", Axis::x) << Caption("Effective Mass");
p.display();
if(savePlot != "")
{
@ -440,16 +284,19 @@ int main(int argc, char *argv[])
if (doHeatmap)
{
Plot p;
Index n = data.getFitVarMat().rows();
DMat id = DMat::Identity(n, n);
Index n = fitter.data().getFitVarMat().rows();
DMat id = DMat::Identity(n, n),
var = fitter.data().getFitVarMat();
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
p << PlotMatrix(Math::varToCorr(var));
p << Caption("correlation matrix");
p.display();
if (svdTol > 0.)
{
DMat proj = id - var*fitter.data().getFitVarMatPInv();
p.reset();
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
p << PlotMatrix(proj);
p << Caption("singular space projector");
p.display();
}
@ -460,8 +307,9 @@ int main(int argc, char *argv[])
// scan fits ///////////////////////////////////////////////////////////////
else
{
// fits ****************************************************************
Index nFit = 0, f = 0, ti0 = ti + (tf - ti)/4, tf0 = tf - (tf - ti)/4,
matSize = tf - ti - nPar + 1;
matSize = tf - ti + 1;
DMat err, pVal(matSize, matSize), relErr(matSize, matSize),
ccdf(matSize, matSize), val(matSize, matSize);
map<double, TwoPtFit> fit;
@ -474,14 +322,13 @@ int main(int argc, char *argv[])
<< endl;
thinning = 1;
}
setFitRange(data, ti0, tf0, thinning, nt);
data.setSvdTolerance(svdTol);
data.assumeYYCorrelated(false, 0, 0);
tmpFit = data.fit(unCorrMin, init, mod);
fitter.setFitRange(ti0, tf0);
fitter.setCorrelation(false);
tmpFit = fitter.fit(unCorrMin, init);
tmpFit.print();
cout << "-- scanning all possible fit ranges..." << endl;
init = tmpFit[central];
data.assumeYYCorrelated(doCorr, 0, 0);
fitter.setCorrelation(doCorr);
pVal.fill(Math::nan);
relErr.fill(Math::nan);
val.fill(Math::nan);
@ -496,8 +343,8 @@ int main(int argc, char *argv[])
{
Index i = ta - ti, j = tb - ti;
setFitRange(data, ta, tb, thinning, nt);
tmpFit = data.fit(locMin, init, mod);
fitter.setFitRange(ta, tb);
tmpFit = fitter.fit(locMin, init);
err = tmpFit.variance().cwiseSqrt();
pVal(i, j) = tmpFit.getPValue();
ccdf(i, j) = tmpFit.getCcdf();
@ -531,8 +378,8 @@ int main(int argc, char *argv[])
p << PlotMatrix(pVal);
p << Caption("p-value matrix");
p << Label("tMin - " + strFrom(ti), Axis::x);
p << Label("tMax - " + strFrom(ti), Axis::y);
p << Label("tMax - " + strFrom(ti), Axis::x);
p << Label("tMin - " + strFrom(ti), Axis::y);
p.display();
if(savePlot != "")
{
@ -541,8 +388,8 @@ int main(int argc, char *argv[])
p.reset();
p << PlotMatrix(relErr);
p << Caption("Relative error matrix");
p << Label("tMin - " + strFrom(ti), Axis::x);
p << Label("tMax - " + strFrom(ti), Axis::y);
p << Label("tMax - " + strFrom(ti), Axis::x);
p << Label("tMin - " + strFrom(ti), Axis::y);
p.display();
if(savePlot != "")
{
@ -551,8 +398,8 @@ int main(int argc, char *argv[])
p.reset();
p << PlotMatrix(val);
p << Caption("Fit result matrix");
p << Label("tMin - " + strFrom(ti), Axis::x);
p << Label("tMax - " + strFrom(ti), Axis::y);
p << Label("tMax - " + strFrom(ti), Axis::x);
p << Label("tMin - " + strFrom(ti), Axis::y);
p.display();
if(savePlot != "")
{
@ -561,8 +408,8 @@ int main(int argc, char *argv[])
p.reset();
p << PlotMatrix(ccdf);
p << Caption("chi^2 CCDF matrix");
p << Label("tMin - " + strFrom(ti), Axis::x);
p << Label("tMax - " + strFrom(ti), Axis::y);
p << Label("tMax - " + strFrom(ti), Axis::x);
p << Label("tMin - " + strFrom(ti), Axis::y);
p.display();
if(savePlot != "")
{