mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 08:55:37 +00:00
Last commit before adding const fit
This commit is contained in:
parent
5dfe91ddb4
commit
1919497b49
@ -13,8 +13,6 @@ using namespace Latan;
|
|||||||
|
|
||||||
int main(int argc, char *argv[])
|
int main(int argc, char *argv[])
|
||||||
{
|
{
|
||||||
|
|
||||||
cout << "Version edited by: Andrew Yong, 4/01/19\n" << endl;
|
|
||||||
// parse arguments /////////////////////////////////////////////////////////
|
// parse arguments /////////////////////////////////////////////////////////
|
||||||
OptParser opt;
|
OptParser opt;
|
||||||
bool parsed, doPlot, doHeatmap, doCorr, fold;
|
bool parsed, doPlot, doHeatmap, doCorr, fold;
|
||||||
@ -32,7 +30,7 @@ int main(int argc, char *argv[])
|
|||||||
opt.addOption("s", "shift" , OptParser::OptType::value , true,
|
opt.addOption("s", "shift" , OptParser::OptType::value , true,
|
||||||
"time variable shift", "0");
|
"time variable shift", "0");
|
||||||
opt.addOption("m", "model" , OptParser::OptType::value , true,
|
opt.addOption("m", "model" , OptParser::OptType::value , true,
|
||||||
"fit model (exp|exp2|exp3|cosh|cosh2|cosh3|linear|<interpreter code>)", "cosh");
|
"fit model (exp|exp2|exp3|cosh|cosh2|cosh3|explin|const|<interpreter code>)", "cosh");
|
||||||
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
|
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
|
||||||
"number of model parameters for custom models "
|
"number of model parameters for custom models "
|
||||||
"(-1 if irrelevant)", "-1");
|
"(-1 if irrelevant)", "-1");
|
||||||
@ -119,9 +117,7 @@ int main(int argc, char *argv[])
|
|||||||
|
|
||||||
// make model //////////////////////////////////////////////////////////////
|
// make model //////////////////////////////////////////////////////////////
|
||||||
DoubleModel mod;
|
DoubleModel mod;
|
||||||
bool coshModel = false;
|
bool coshModel = false, linearModel = false;
|
||||||
bool linearModel = false;
|
|
||||||
|
|
||||||
|
|
||||||
if ((model == "exp") or (model == "exp1"))
|
if ((model == "exp") or (model == "exp1"))
|
||||||
{
|
{
|
||||||
@ -178,8 +174,7 @@ int main(int argc, char *argv[])
|
|||||||
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
|
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
|
||||||
}, 1, nPar);
|
}, 1, nPar);
|
||||||
}
|
}
|
||||||
|
else if (model == "explin")
|
||||||
else if (model == "linear")
|
|
||||||
{
|
{
|
||||||
linearModel = true;
|
linearModel = true;
|
||||||
nPar = 2;
|
nPar = 2;
|
||||||
@ -188,6 +183,14 @@ int main(int argc, char *argv[])
|
|||||||
return p[1] - p[0]*x[0];
|
return p[1] - p[0]*x[0];
|
||||||
}, 1, nPar);
|
}, 1, nPar);
|
||||||
}
|
}
|
||||||
|
else if (model == "const")
|
||||||
|
{
|
||||||
|
nPar = 1;
|
||||||
|
mod.setFunction([](const double *x, const double *p)
|
||||||
|
{
|
||||||
|
return p[0];
|
||||||
|
}, 0, nPar);
|
||||||
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
if (nPar > 0)
|
if (nPar > 0)
|
||||||
@ -219,64 +222,41 @@ int main(int argc, char *argv[])
|
|||||||
data.addXDim(nt, "t/a", true);
|
data.addXDim(nt, "t/a", true);
|
||||||
data.addYDim("C(t)");
|
data.addYDim("C(t)");
|
||||||
data.setUnidimData(tvec, corr);
|
data.setUnidimData(tvec, corr);
|
||||||
for (Index p = 0; p < nPar; p += 2) // naming parameters
|
for (Index p = 0; p < nPar; p += 2)
|
||||||
{
|
|
||||||
if((model == "cosh") or (model =="cosh1") or (model == "cosh2") or (model == "cosh3"))
|
|
||||||
{
|
{
|
||||||
mod.parName().setName(p, "E_" + strFrom(p/2));
|
mod.parName().setName(p, "E_" + strFrom(p/2));
|
||||||
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
|
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
|
||||||
}
|
}
|
||||||
|
if (linearModel)
|
||||||
else if(model == "linear")
|
|
||||||
{
|
|
||||||
mod.parName().setName(p, "dm");
|
|
||||||
mod.parName().setName(p + 1, "dA/A_0");
|
|
||||||
}
|
|
||||||
else // to edit when necessary
|
|
||||||
{
|
|
||||||
mod.parName().setName(p, "E_" + strFrom(p/2));
|
|
||||||
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// initial values & limits//////////////////////////////////////////////////////////
|
|
||||||
if(model == "linear")
|
|
||||||
{
|
{
|
||||||
init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
|
init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
|
||||||
init(1) = data.y(nt/4,0)[central] + init(0)*nt/4;
|
init(1) = data.y(nt/4, 0)[central] + nt/4*init(0);
|
||||||
cout << "init(0) = " << init(0) << "\tinit(1) = " << init(1) << endl;
|
|
||||||
|
|
||||||
double bound = 30.;
|
|
||||||
for (Index p = 0; p < nPar; p += 2) // setting appropriate limits for global min
|
|
||||||
{
|
|
||||||
globMin.setLowLimit(p, -bound*fabs(init(p)));
|
|
||||||
globMin.setHighLimit(p, bound*fabs(init(p)));
|
|
||||||
globMin.setLowLimit(p + 1, -bound*fabs(init(p + 1)));
|
|
||||||
globMin.setHighLimit(p + 1, bound*fabs(init(p + 1)));
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
|
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
|
||||||
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
|
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
|
||||||
cout << "init(0) = " << init(0) << "\tinit(1) = " << init(1) << endl;
|
}
|
||||||
|
|
||||||
|
|
||||||
for (Index p = 2; p < nPar; p += 2)
|
for (Index p = 2; p < nPar; p += 2)
|
||||||
{
|
{
|
||||||
init(p) = 2*init(p - 2);
|
init(p) = 2*init(p - 2);
|
||||||
init(p + 1) = init(p - 1)/2.;
|
init(p + 1) = init(p - 1)/2.;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (Index p = 0; p < nPar; p += 2)
|
for (Index p = 0; p < nPar; p += 2)
|
||||||
{
|
{
|
||||||
cout << "p: " << p << endl;
|
if (linearModel)
|
||||||
globMin.setLowLimit(p, 0.);
|
{
|
||||||
globMin.setHighLimit(p, 10.*init(p));
|
globMin.setLowLimit(p, -10.*fabs(init(p)));
|
||||||
globMin.setLowLimit(p + 1, -10.*init(p + 1));
|
globMin.setHighLimit(p, 10.*fabs(init(p)));
|
||||||
globMin.setHighLimit(p + 1, 10.*init(p + 1));
|
|
||||||
locMin.setLowLimit(p, 0.);
|
|
||||||
}
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
globMin.setLowLimit(p, 0.);
|
||||||
|
locMin.setLowLimit(p, 0.);
|
||||||
|
globMin.setHighLimit(p, 10.*init(p));
|
||||||
|
}
|
||||||
|
globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
|
||||||
|
globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
|
||||||
}
|
}
|
||||||
globMin.setPrecision(0.001);
|
globMin.setPrecision(0.001);
|
||||||
globMin.setMaxIteration(100000);
|
globMin.setMaxIteration(100000);
|
||||||
@ -293,7 +273,6 @@ int main(int argc, char *argv[])
|
|||||||
cout << "-- uncorrelated fit..." << endl;
|
cout << "-- uncorrelated fit..." << endl;
|
||||||
}
|
}
|
||||||
cout << "using model '" << model << "'" << endl;
|
cout << "using model '" << model << "'" << endl;
|
||||||
cout << "svdTol: " << svdTol << endl;
|
|
||||||
data.setSvdTolerance(svdTol);
|
data.setSvdTolerance(svdTol);
|
||||||
data.assumeYYCorrelated(false, 0, 0);
|
data.assumeYYCorrelated(false, 0, 0);
|
||||||
fit = data.fit(unCorrMin, init, mod);
|
fit = data.fit(unCorrMin, init, mod);
|
||||||
@ -317,9 +296,11 @@ int main(int argc, char *argv[])
|
|||||||
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
|
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
|
||||||
double e0, e0Err;
|
double e0, e0Err;
|
||||||
|
|
||||||
p << Title("Correlated Fit");
|
|
||||||
p << PlotRange(Axis::x, 0, nt - 1);
|
p << PlotRange(Axis::x, 0, nt - 1);
|
||||||
|
if (!linearModel)
|
||||||
|
{
|
||||||
p << LogScale(Axis::y);
|
p << LogScale(Axis::y);
|
||||||
|
}
|
||||||
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
||||||
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
||||||
p << Color("rgb 'red'") << PlotData(data.getData());
|
p << Color("rgb 'red'") << PlotData(data.getData());
|
||||||
@ -340,6 +321,16 @@ int main(int argc, char *argv[])
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
else if (linearModel)
|
||||||
|
{
|
||||||
|
FOR_STAT_ARRAY(effMass, s)
|
||||||
|
{
|
||||||
|
for (Index t = 0; t < nt - 1; ++t)
|
||||||
|
{
|
||||||
|
effMass[s](t) = corr[s](t) - corr[s](t+1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
FOR_STAT_ARRAY(effMass, s)
|
FOR_STAT_ARRAY(effMass, s)
|
||||||
@ -351,14 +342,12 @@ int main(int argc, char *argv[])
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
p.reset();
|
p.reset();
|
||||||
p << Title("Effective Mass");
|
|
||||||
p << PlotRange(Axis::x, 1, maxT);
|
p << PlotRange(Axis::x, 1, maxT);
|
||||||
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
|
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
|
||||||
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
|
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
|
||||||
p << Color("rgb 'blue'") << PlotHLine(e0);
|
p << Color("rgb 'blue'") << PlotHLine(e0);
|
||||||
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
|
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
|
||||||
p.display();
|
p.display();
|
||||||
p.save("test");
|
|
||||||
}
|
}
|
||||||
if (doHeatmap)
|
if (doHeatmap)
|
||||||
{
|
{
|
||||||
|
Loading…
Reference in New Issue
Block a user