mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-04-05 09:35:54 +01:00
Working effective mass source code
This commit is contained in:
parent
61fa8e14ed
commit
5dfe91ddb4
@ -30,7 +30,7 @@ int main(int argc, char *argv[])
|
||||
parsed = opt.parse(argc, argv);
|
||||
if (!parsed or (opt.getArgs().size() < 2) or opt.gotOption("help"))
|
||||
{
|
||||
cerr << "usage: " << argv[0] << " <options> <correlator file 1> <correlator file 2>" << endl;
|
||||
cerr << "usage: " << argv[0] << " <options> < QED correlator file> < QCD correlator file 2>" << endl;
|
||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||
|
||||
return EXIT_FAILURE;
|
||||
@ -42,7 +42,7 @@ int main(int argc, char *argv[])
|
||||
doPlot = opt.gotOption("p");
|
||||
|
||||
// load correlator /////////////////////////////////////////////////////////
|
||||
DMatSample tmp, corr0, dcorr, effmass;
|
||||
DMatSample tmp, c0, dc, effmass;
|
||||
Index nSample, nt;
|
||||
float tp,tm;
|
||||
|
||||
@ -50,23 +50,23 @@ int main(int argc, char *argv[])
|
||||
nSample = tmp.size();
|
||||
nt = tmp[central].rows();
|
||||
tmp = tmp.block(0, 0, nt, 1);
|
||||
corr0 = tmp;
|
||||
dcorr = tmp;
|
||||
c0 = tmp;
|
||||
dc = tmp;
|
||||
effmass = tmp; // initialise effmass like this
|
||||
FOR_STAT_ARRAY(corr0, s) // loads the QCD correlator, bootstrap sample by sample
|
||||
FOR_STAT_ARRAY(c0, s) // loads the QCD correlator, bootstrap sample by sample
|
||||
{
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
corr0[s]((t - shift + nt)%nt) = tmp[s](t);
|
||||
c0[s]((t - shift + nt)%nt) = tmp[s](t);
|
||||
}
|
||||
}
|
||||
tmp = Io::load<DMatSample>(corrFileName);
|
||||
tmp = tmp.block(0, 0, nt, 1);
|
||||
FOR_STAT_ARRAY(dcorr, s) // computes the leading order perturbation in corr
|
||||
FOR_STAT_ARRAY(dc, s) // computes the leading order perturbation in corr
|
||||
{
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
dcorr[s](t) = tmp[s](t) - corr0[s](t);
|
||||
dc[s](t) = tmp[s](t);
|
||||
}
|
||||
}
|
||||
FOR_STAT_ARRAY(effmass, s) //generate effective mass here
|
||||
@ -80,7 +80,7 @@ int main(int argc, char *argv[])
|
||||
tm = nt-1;
|
||||
}
|
||||
|
||||
effmass[s](t) = (1./sqrt( ( corr0[s](tp) + corr0[s](tm) )/2*corr0[s](t) - 1 ))*( (dcorr[s](tp) + dcorr[s](tm) )/2*corr0[s](t) - ( dcorr[s](t)/corr0[s](t) )*( ( corr0[s](tp) + corr0[s](tm) )/corr0[s](t) ) );
|
||||
effmass[s](t) = ( 1./sqrt( ( c0[s](tp) + c0[s](tm) )/2*c0[s](t) + 1 ) )*( (dc[s](tp) + dc[s](tm) )/2*c0[s](t) - ( dc[s](t)/c0[s](t) )*( ( c0[s](tp) + c0[s](tm) )/2*c0[s](t) ) );
|
||||
}
|
||||
}
|
||||
// cout << "\n***********\n***********\n***********\nCheckpoint.\n***********\n***********\n***********\n" << endl;
|
||||
@ -94,99 +94,21 @@ int main(int argc, char *argv[])
|
||||
Plot p;
|
||||
DVec tAxis;
|
||||
|
||||
int ymax = effmass[central](nt/2);
|
||||
tAxis.setLinSpaced(nt,1,nt);
|
||||
p << PlotRange(Axis::x, 0, nt - 1);
|
||||
p << PlotRange(Axis::y, 0, ymax);
|
||||
p << PlotRange(Axis::x, 1, nt);
|
||||
|
||||
p << Color("rgb 'red'") << PlotData(tAxis, effmass);
|
||||
p.display();
|
||||
|
||||
}
|
||||
/*if (doPlot)
|
||||
{
|
||||
Plot p;
|
||||
DMatSample effMass(nSample);
|
||||
DVec effMassT, fitErr;
|
||||
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
|
||||
double e0, e0Err;
|
||||
|
||||
p << PlotRange(Axis::x, 0, nt - 1);
|
||||
if (!linearModel)
|
||||
{
|
||||
p << LogScale(Axis::y);
|
||||
}
|
||||
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
||||
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
||||
p << Color("rgb 'red'") << PlotData(data.getData());
|
||||
p.display();
|
||||
effMass.resizeMat(maxT, 1);
|
||||
effMassT.setLinSpaced(maxT, 1, maxT);
|
||||
fitErr = fit.variance().cwiseSqrt();
|
||||
e0 = fit[central](0);
|
||||
e0Err = fitErr(0);
|
||||
if (coshModel)
|
||||
{
|
||||
FOR_STAT_ARRAY(effMass, s)
|
||||
{
|
||||
for (Index t = 1; t < nt - 1; ++t)
|
||||
{
|
||||
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
|
||||
/(2.*corr[s](t)));
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (linearModel)
|
||||
{
|
||||
FOR_STAT_ARRAY(effMass, s)
|
||||
{
|
||||
for (Index t = 0; t < nt - 1; ++t)
|
||||
{
|
||||
effMass[s](t) = corr[s](t) - corr[s](t+1);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
FOR_STAT_ARRAY(effMass, s)
|
||||
{
|
||||
for (Index t = 1; t < nt; ++t)
|
||||
{
|
||||
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
|
||||
}
|
||||
}
|
||||
}
|
||||
p.reset();
|
||||
p << PlotRange(Axis::x, 1, maxT);
|
||||
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
|
||||
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
|
||||
p << Color("rgb 'blue'") << PlotHLine(e0);
|
||||
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
|
||||
p.display();
|
||||
}
|
||||
if (doHeatmap)
|
||||
{
|
||||
Plot p;
|
||||
Index n = data.getFitVarMat().rows();
|
||||
DMat id = DMat::Identity(n, n);
|
||||
|
||||
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
|
||||
p << Caption("correlation matrix");
|
||||
p.display();
|
||||
if (svdTol > 0.)
|
||||
{
|
||||
p.reset();
|
||||
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
|
||||
p << Caption("singular space projector");
|
||||
p.display();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// output //////////////////////////////////////////////////////////////////
|
||||
if (!outFileName.empty())
|
||||
{
|
||||
Io::save(fit, outFileName);
|
||||
Io::save(effmass, outFileName);
|
||||
cout << "File saved as: " << outFileName << endl;
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;*/
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user