1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-04-05 09:35:54 +01:00

Working effective mass source code

This commit is contained in:
Andrew Zhen Ning Yong 2019-01-22 11:10:30 +00:00
parent 61fa8e14ed
commit 5dfe91ddb4

View File

@ -30,7 +30,7 @@ int main(int argc, char *argv[])
parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() < 2) or opt.gotOption("help"))
{
cerr << "usage: " << argv[0] << " <options> <correlator file 1> <correlator file 2>" << endl;
cerr << "usage: " << argv[0] << " <options> < QED correlator file> < QCD correlator file 2>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE;
@ -42,7 +42,7 @@ int main(int argc, char *argv[])
doPlot = opt.gotOption("p");
// load correlator /////////////////////////////////////////////////////////
DMatSample tmp, corr0, dcorr, effmass;
DMatSample tmp, c0, dc, effmass;
Index nSample, nt;
float tp,tm;
@ -50,23 +50,23 @@ int main(int argc, char *argv[])
nSample = tmp.size();
nt = tmp[central].rows();
tmp = tmp.block(0, 0, nt, 1);
corr0 = tmp;
dcorr = tmp;
c0 = tmp;
dc = tmp;
effmass = tmp; // initialise effmass like this
FOR_STAT_ARRAY(corr0, s) // loads the QCD correlator, bootstrap sample by sample
FOR_STAT_ARRAY(c0, s) // loads the QCD correlator, bootstrap sample by sample
{
for (Index t = 0; t < nt; ++t)
{
corr0[s]((t - shift + nt)%nt) = tmp[s](t);
c0[s]((t - shift + nt)%nt) = tmp[s](t);
}
}
tmp = Io::load<DMatSample>(corrFileName);
tmp = tmp.block(0, 0, nt, 1);
FOR_STAT_ARRAY(dcorr, s) // computes the leading order perturbation in corr
FOR_STAT_ARRAY(dc, s) // computes the leading order perturbation in corr
{
for (Index t = 0; t < nt; ++t)
{
dcorr[s](t) = tmp[s](t) - corr0[s](t);
dc[s](t) = tmp[s](t);
}
}
FOR_STAT_ARRAY(effmass, s) //generate effective mass here
@ -80,7 +80,7 @@ int main(int argc, char *argv[])
tm = nt-1;
}
effmass[s](t) = (1./sqrt( ( corr0[s](tp) + corr0[s](tm) )/2*corr0[s](t) - 1 ))*( (dcorr[s](tp) + dcorr[s](tm) )/2*corr0[s](t) - ( dcorr[s](t)/corr0[s](t) )*( ( corr0[s](tp) + corr0[s](tm) )/corr0[s](t) ) );
effmass[s](t) = ( 1./sqrt( ( c0[s](tp) + c0[s](tm) )/2*c0[s](t) + 1 ) )*( (dc[s](tp) + dc[s](tm) )/2*c0[s](t) - ( dc[s](t)/c0[s](t) )*( ( c0[s](tp) + c0[s](tm) )/2*c0[s](t) ) );
}
}
// cout << "\n***********\n***********\n***********\nCheckpoint.\n***********\n***********\n***********\n" << endl;
@ -94,99 +94,21 @@ int main(int argc, char *argv[])
Plot p;
DVec tAxis;
int ymax = effmass[central](nt/2);
tAxis.setLinSpaced(nt,1,nt);
p << PlotRange(Axis::x, 0, nt - 1);
p << PlotRange(Axis::y, 0, ymax);
p << PlotRange(Axis::x, 1, nt);
p << Color("rgb 'red'") << PlotData(tAxis, effmass);
p.display();
}
/*if (doPlot)
{
Plot p;
DMatSample effMass(nSample);
DVec effMassT, fitErr;
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
double e0, e0Err;
p << PlotRange(Axis::x, 0, nt - 1);
if (!linearModel)
{
p << LogScale(Axis::y);
}
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
p << Color("rgb 'red'") << PlotData(data.getData());
p.display();
effMass.resizeMat(maxT, 1);
effMassT.setLinSpaced(maxT, 1, maxT);
fitErr = fit.variance().cwiseSqrt();
e0 = fit[central](0);
e0Err = fitErr(0);
if (coshModel)
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 1; t < nt - 1; ++t)
{
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
/(2.*corr[s](t)));
}
}
}
else if (linearModel)
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 0; t < nt - 1; ++t)
{
effMass[s](t) = corr[s](t) - corr[s](t+1);
}
}
}
else
{
FOR_STAT_ARRAY(effMass, s)
{
for (Index t = 1; t < nt; ++t)
{
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
}
}
}
p.reset();
p << PlotRange(Axis::x, 1, maxT);
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
p << Color("rgb 'blue'") << PlotHLine(e0);
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
p.display();
}
if (doHeatmap)
{
Plot p;
Index n = data.getFitVarMat().rows();
DMat id = DMat::Identity(n, n);
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
p << Caption("correlation matrix");
p.display();
if (svdTol > 0.)
{
p.reset();
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
p << Caption("singular space projector");
p.display();
}
}
// output //////////////////////////////////////////////////////////////////
if (!outFileName.empty())
{
Io::save(fit, outFileName);
Io::save(effmass, outFileName);
cout << "File saved as: " << outFileName << endl;
}
return EXIT_SUCCESS;*/
return EXIT_SUCCESS;
}