1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-04-05 09:35:54 +01:00

Last coomit

This commit is contained in:
Andrew Zhen Ning Yong 2019-01-07 15:45:09 +00:00
parent 32a8495026
commit 37a1700c02

View File

@ -219,7 +219,7 @@ int main(int argc, char *argv[])
data.addXDim(nt, "t/a", true);
data.addYDim("C(t)");
data.setUnidimData(tvec, corr);
for (Index p = 0; p < nPar; p += 2)
for (Index p = 0; p < nPar; p += 2) // naming parameters
{
if((model == "cosh") or (model =="cosh1") or (model == "cosh2") or (model == "cosh3"))
{
@ -244,31 +244,14 @@ int main(int argc, char *argv[])
init(0) = data.y(nt/4,0)[central] - data.y(nt/4 + 1,0)[central] ;
init(1) = data.y(nt/4,0)[central] + init(0)*nt/4;
cout << "init(0) = " << init(0) << "\tinit(1) = " << init(1) << endl;
for (Index p = 2; p < nPar; p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
}
double standard = 10;
for (Index p = 0; p < nPar; p += 2)
double bound = 30.;
for (Index p = 0; p < nPar; p += 2) // setting appropriate limits for global min
{
// allows us to vary the gradient without flipping sign(ie slope direction)
if(init(p)>0) // positive gradient
{
globMin.setLowLimit(p, 0);
globMin.setHighLimit(p, init(p)*standard);
}
else // negative gradient (or flat)
{
globMin.setLowLimit(p, init(p)*standard);
globMin.setHighLimit(p, 0);
}
globMin.setLowLimit(p + 1, init(p + 1)-standard);
globMin.setHighLimit(p + 1, init(p + 1)+standard);
locMin.setLowLimit(p, init(p)/standard);
globMin.setLowLimit(p, -bound*fabs(init(p)));
globMin.setHighLimit(p, bound*fabs(init(p)));
globMin.setLowLimit(p + 1, -bound*fabs(init(p + 1)));
globMin.setHighLimit(p + 1, bound*fabs(init(p + 1)));
}
}
@ -281,17 +264,18 @@ int main(int argc, char *argv[])
for (Index p = 2; p < nPar; p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
}
for (Index p = 0; p < nPar; p += 2)
{
globMin.setLowLimit(p, 0.);
globMin.setHighLimit(p, 10.*init(p));
globMin.setLowLimit(p + 1, -10.*init(p + 1));
globMin.setHighLimit(p + 1, 10.*init(p + 1));
locMin.setLowLimit(p, 0.);
cout << "p: " << p << endl;
globMin.setLowLimit(p, 0.);
globMin.setHighLimit(p, 10.*init(p));
globMin.setLowLimit(p + 1, -10.*init(p + 1));
globMin.setHighLimit(p + 1, 10.*init(p + 1));
locMin.setLowLimit(p, 0.);
}
}
globMin.setPrecision(0.001);
@ -309,6 +293,7 @@ int main(int argc, char *argv[])
cout << "-- uncorrelated fit..." << endl;
}
cout << "using model '" << model << "'" << endl;
cout << "svdTol: " << svdTol << endl;
data.setSvdTolerance(svdTol);
data.assumeYYCorrelated(false, 0, 0);
fit = data.fit(unCorrMin, init, mod);
@ -366,7 +351,7 @@ int main(int argc, char *argv[])
}
}
p.reset();
p << Title("Uncorrelated Fit");
p << Title("Effective Mass");
p << PlotRange(Axis::x, 1, maxT);
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);