mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 00:45:36 +00:00
stop tracking Eigen
This commit is contained in:
parent
86d9607224
commit
67d105663b
@ -1,11 +0,0 @@
|
||||
#ifndef EIGEN_ARRAY_MODULE_H
|
||||
#define EIGEN_ARRAY_MODULE_H
|
||||
|
||||
// include Core first to handle Eigen2 support macros
|
||||
#include "Core"
|
||||
|
||||
#ifndef EIGEN2_SUPPORT
|
||||
#error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core.
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_ARRAY_MODULE_H
|
@ -1,32 +0,0 @@
|
||||
#ifndef EIGEN_CHOLESKY_MODULE_H
|
||||
#define EIGEN_CHOLESKY_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup Cholesky_Module Cholesky module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
|
||||
* Those decompositions are accessible via the following MatrixBase methods:
|
||||
* - MatrixBase::llt(),
|
||||
* - MatrixBase::ldlt()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Cholesky>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/Cholesky/LLT.h"
|
||||
#include "src/Cholesky/LDLT.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#include "src/Cholesky/LLT_MKL.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_CHOLESKY_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,45 +0,0 @@
|
||||
#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
|
||||
#define EIGEN_CHOLMODSUPPORT_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
extern "C" {
|
||||
#include <cholmod.h>
|
||||
}
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup CholmodSupport_Module CholmodSupport module
|
||||
*
|
||||
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
|
||||
* It provides the two following main factorization classes:
|
||||
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
|
||||
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
|
||||
*
|
||||
* For the sake of completeness, this module also propose the two following classes:
|
||||
* - class CholmodSimplicialLLT
|
||||
* - class CholmodSimplicialLDLT
|
||||
* Note that these classes does not bring any particular advantage compared to the built-in
|
||||
* SimplicialLLT and SimplicialLDLT factorization classes.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/CholmodSupport>
|
||||
* \endcode
|
||||
*
|
||||
* In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies.
|
||||
* The dependencies depend on how cholmod has been compiled.
|
||||
* For a cmake based project, you can use our FindCholmod.cmake module to help you in this task.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/SparseSolve.h"
|
||||
|
||||
#include "src/CholmodSupport/CholmodSupport.h"
|
||||
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H
|
||||
|
366
latan/Eigen/Core
366
latan/Eigen/Core
@ -1,366 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2007-2011 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CORE_H
|
||||
#define EIGEN_CORE_H
|
||||
|
||||
// first thing Eigen does: stop the compiler from committing suicide
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
// then include this file where all our macros are defined. It's really important to do it first because
|
||||
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
|
||||
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
|
||||
#include "src/Core/util/Macros.h"
|
||||
|
||||
#include <complex>
|
||||
|
||||
// this include file manages BLAS and MKL related macros
|
||||
// and inclusion of their respective header files
|
||||
#include "src/Core/util/MKL_support.h"
|
||||
|
||||
// if alignment is disabled, then disable vectorization. Note: EIGEN_ALIGN is the proper check, it takes into
|
||||
// account both the user's will (EIGEN_DONT_ALIGN) and our own platform checks
|
||||
#if !EIGEN_ALIGN
|
||||
#ifndef EIGEN_DONT_VECTORIZE
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
|
||||
#if (_MSC_VER >= 1500) // 2008 or later
|
||||
// Remember that usage of defined() in a #define is undefined by the standard.
|
||||
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
|
||||
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64)
|
||||
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
|
||||
#endif
|
||||
#endif
|
||||
#else
|
||||
// Remember that usage of defined() in a #define is undefined by the standard
|
||||
#if (defined __SSE2__) && ( (!defined __GNUC__) || (defined __INTEL_COMPILER) || EIGEN_GNUC_AT_LEAST(4,2) )
|
||||
#define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DONT_VECTORIZE
|
||||
|
||||
#if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
|
||||
|
||||
// Defines symbols for compile-time detection of which instructions are
|
||||
// used.
|
||||
// EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_SSE
|
||||
#define EIGEN_VECTORIZE_SSE2
|
||||
|
||||
// Detect sse3/ssse3/sse4:
|
||||
// gcc and icc defines __SSE3__, ...
|
||||
// there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you
|
||||
// want to force the use of those instructions with msvc.
|
||||
#ifdef __SSE3__
|
||||
#define EIGEN_VECTORIZE_SSE3
|
||||
#endif
|
||||
#ifdef __SSSE3__
|
||||
#define EIGEN_VECTORIZE_SSSE3
|
||||
#endif
|
||||
#ifdef __SSE4_1__
|
||||
#define EIGEN_VECTORIZE_SSE4_1
|
||||
#endif
|
||||
#ifdef __SSE4_2__
|
||||
#define EIGEN_VECTORIZE_SSE4_2
|
||||
#endif
|
||||
|
||||
// include files
|
||||
|
||||
// This extern "C" works around a MINGW-w64 compilation issue
|
||||
// https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354
|
||||
// In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do).
|
||||
// However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations
|
||||
// with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know;
|
||||
// so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
|
||||
// notice that since these are C headers, the extern "C" is theoretically needed anyways.
|
||||
extern "C" {
|
||||
#include <emmintrin.h>
|
||||
#include <xmmintrin.h>
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
#include <pmmintrin.h>
|
||||
#endif
|
||||
#ifdef EIGEN_VECTORIZE_SSSE3
|
||||
#include <tmmintrin.h>
|
||||
#endif
|
||||
#ifdef EIGEN_VECTORIZE_SSE4_1
|
||||
#include <smmintrin.h>
|
||||
#endif
|
||||
#ifdef EIGEN_VECTORIZE_SSE4_2
|
||||
#include <nmmintrin.h>
|
||||
#endif
|
||||
} // end extern "C"
|
||||
#elif defined __ALTIVEC__
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_ALTIVEC
|
||||
#include <altivec.h>
|
||||
// We need to #undef all these ugly tokens defined in <altivec.h>
|
||||
// => use __vector instead of vector
|
||||
#undef bool
|
||||
#undef vector
|
||||
#undef pixel
|
||||
#elif defined __ARM_NEON__
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_NEON
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
|
||||
#define EIGEN_HAS_OPENMP
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_HAS_OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
// MSVC for windows mobile does not have the errno.h file
|
||||
#if !(defined(_MSC_VER) && defined(_WIN32_WCE)) && !defined(__ARMCC_VERSION)
|
||||
#define EIGEN_HAS_ERRNO
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_HAS_ERRNO
|
||||
#include <cerrno>
|
||||
#endif
|
||||
#include <cstddef>
|
||||
#include <cstdlib>
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
#include <functional>
|
||||
#include <iosfwd>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <limits>
|
||||
#include <climits> // for CHAR_BIT
|
||||
// for min/max:
|
||||
#include <algorithm>
|
||||
|
||||
// for outputting debug info
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
#include <iostream>
|
||||
#endif
|
||||
|
||||
// required for __cpuid, needs to be included after cmath
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
#if defined(_CPPUNWIND) || defined(__EXCEPTIONS)
|
||||
#define EIGEN_EXCEPTIONS
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_EXCEPTIONS
|
||||
#include <new>
|
||||
#endif
|
||||
|
||||
/** \brief Namespace containing all symbols from the %Eigen library. */
|
||||
namespace Eigen {
|
||||
|
||||
inline static const char *SimdInstructionSetsInUse(void) {
|
||||
#if defined(EIGEN_VECTORIZE_SSE4_2)
|
||||
return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
|
||||
#elif defined(EIGEN_VECTORIZE_SSE4_1)
|
||||
return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
|
||||
#elif defined(EIGEN_VECTORIZE_SSSE3)
|
||||
return "SSE, SSE2, SSE3, SSSE3";
|
||||
#elif defined(EIGEN_VECTORIZE_SSE3)
|
||||
return "SSE, SSE2, SSE3";
|
||||
#elif defined(EIGEN_VECTORIZE_SSE2)
|
||||
return "SSE, SSE2";
|
||||
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
|
||||
return "AltiVec";
|
||||
#elif defined(EIGEN_VECTORIZE_NEON)
|
||||
return "ARM NEON";
|
||||
#else
|
||||
return "None";
|
||||
#endif
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#define STAGE10_FULL_EIGEN2_API 10
|
||||
#define STAGE20_RESOLVE_API_CONFLICTS 20
|
||||
#define STAGE30_FULL_EIGEN3_API 30
|
||||
#define STAGE40_FULL_EIGEN3_STRICTNESS 40
|
||||
#define STAGE99_NO_EIGEN2_SUPPORT 99
|
||||
|
||||
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS
|
||||
#define EIGEN2_SUPPORT
|
||||
#define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS
|
||||
#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
|
||||
#define EIGEN2_SUPPORT
|
||||
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
|
||||
#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS
|
||||
#define EIGEN2_SUPPORT
|
||||
#define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS
|
||||
#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API
|
||||
#define EIGEN2_SUPPORT
|
||||
#define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API
|
||||
#elif defined EIGEN2_SUPPORT
|
||||
// default to stage 3, that's what it's always meant
|
||||
#define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
|
||||
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
|
||||
#else
|
||||
#define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#undef minor
|
||||
#endif
|
||||
|
||||
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
|
||||
// ensure QNX/QCC support
|
||||
using std::size_t;
|
||||
// gcc 4.6.0 wants std:: for ptrdiff_t
|
||||
using std::ptrdiff_t;
|
||||
|
||||
/** \defgroup Core_Module Core module
|
||||
* This is the main module of Eigen providing dense matrix and vector support
|
||||
* (both fixed and dynamic size) with all the features corresponding to a BLAS library
|
||||
* and much more...
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Core>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
/** \defgroup Support_modules Support modules [category]
|
||||
* Category of modules which add support for external libraries.
|
||||
*/
|
||||
|
||||
#include "src/Core/util/Constants.h"
|
||||
#include "src/Core/util/ForwardDeclarations.h"
|
||||
#include "src/Core/util/Meta.h"
|
||||
#include "src/Core/util/XprHelper.h"
|
||||
#include "src/Core/util/StaticAssert.h"
|
||||
#include "src/Core/util/Memory.h"
|
||||
|
||||
#include "src/Core/NumTraits.h"
|
||||
#include "src/Core/MathFunctions.h"
|
||||
#include "src/Core/GenericPacketMath.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_SSE
|
||||
#include "src/Core/arch/SSE/PacketMath.h"
|
||||
#include "src/Core/arch/SSE/MathFunctions.h"
|
||||
#include "src/Core/arch/SSE/Complex.h"
|
||||
#elif defined EIGEN_VECTORIZE_ALTIVEC
|
||||
#include "src/Core/arch/AltiVec/PacketMath.h"
|
||||
#include "src/Core/arch/AltiVec/Complex.h"
|
||||
#elif defined EIGEN_VECTORIZE_NEON
|
||||
#include "src/Core/arch/NEON/PacketMath.h"
|
||||
#include "src/Core/arch/NEON/Complex.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/arch/Default/Settings.h"
|
||||
|
||||
#include "src/Core/Functors.h"
|
||||
#include "src/Core/DenseCoeffsBase.h"
|
||||
#include "src/Core/DenseBase.h"
|
||||
#include "src/Core/MatrixBase.h"
|
||||
#include "src/Core/EigenBase.h"
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
|
||||
// at least confirmed with Doxygen 1.5.5 and 1.5.6
|
||||
#include "src/Core/Assign.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/BlasUtil.h"
|
||||
#include "src/Core/DenseStorage.h"
|
||||
#include "src/Core/NestByValue.h"
|
||||
#include "src/Core/ForceAlignedAccess.h"
|
||||
#include "src/Core/ReturnByValue.h"
|
||||
#include "src/Core/NoAlias.h"
|
||||
#include "src/Core/PlainObjectBase.h"
|
||||
#include "src/Core/Matrix.h"
|
||||
#include "src/Core/Array.h"
|
||||
#include "src/Core/CwiseBinaryOp.h"
|
||||
#include "src/Core/CwiseUnaryOp.h"
|
||||
#include "src/Core/CwiseNullaryOp.h"
|
||||
#include "src/Core/CwiseUnaryView.h"
|
||||
#include "src/Core/SelfCwiseBinaryOp.h"
|
||||
#include "src/Core/Dot.h"
|
||||
#include "src/Core/StableNorm.h"
|
||||
#include "src/Core/MapBase.h"
|
||||
#include "src/Core/Stride.h"
|
||||
#include "src/Core/Map.h"
|
||||
#include "src/Core/Block.h"
|
||||
#include "src/Core/VectorBlock.h"
|
||||
#include "src/Core/Transpose.h"
|
||||
#include "src/Core/DiagonalMatrix.h"
|
||||
#include "src/Core/Diagonal.h"
|
||||
#include "src/Core/DiagonalProduct.h"
|
||||
#include "src/Core/PermutationMatrix.h"
|
||||
#include "src/Core/Transpositions.h"
|
||||
#include "src/Core/Redux.h"
|
||||
#include "src/Core/Visitor.h"
|
||||
#include "src/Core/Fuzzy.h"
|
||||
#include "src/Core/IO.h"
|
||||
#include "src/Core/Swap.h"
|
||||
#include "src/Core/CommaInitializer.h"
|
||||
#include "src/Core/Flagged.h"
|
||||
#include "src/Core/ProductBase.h"
|
||||
#include "src/Core/GeneralProduct.h"
|
||||
#include "src/Core/TriangularMatrix.h"
|
||||
#include "src/Core/SelfAdjointView.h"
|
||||
#include "src/Core/products/GeneralBlockPanelKernel.h"
|
||||
#include "src/Core/products/Parallelizer.h"
|
||||
#include "src/Core/products/CoeffBasedProduct.h"
|
||||
#include "src/Core/products/GeneralMatrixVector.h"
|
||||
#include "src/Core/products/GeneralMatrixMatrix.h"
|
||||
#include "src/Core/SolveTriangular.h"
|
||||
#include "src/Core/products/GeneralMatrixMatrixTriangular.h"
|
||||
#include "src/Core/products/SelfadjointMatrixVector.h"
|
||||
#include "src/Core/products/SelfadjointMatrixMatrix.h"
|
||||
#include "src/Core/products/SelfadjointProduct.h"
|
||||
#include "src/Core/products/SelfadjointRank2Update.h"
|
||||
#include "src/Core/products/TriangularMatrixVector.h"
|
||||
#include "src/Core/products/TriangularMatrixMatrix.h"
|
||||
#include "src/Core/products/TriangularSolverMatrix.h"
|
||||
#include "src/Core/products/TriangularSolverVector.h"
|
||||
#include "src/Core/BandMatrix.h"
|
||||
|
||||
#include "src/Core/BooleanRedux.h"
|
||||
#include "src/Core/Select.h"
|
||||
#include "src/Core/VectorwiseOp.h"
|
||||
#include "src/Core/Random.h"
|
||||
#include "src/Core/Replicate.h"
|
||||
#include "src/Core/Reverse.h"
|
||||
#include "src/Core/ArrayBase.h"
|
||||
#include "src/Core/ArrayWrapper.h"
|
||||
|
||||
#ifdef EIGEN_USE_BLAS
|
||||
#include "src/Core/products/GeneralMatrixMatrix_MKL.h"
|
||||
#include "src/Core/products/GeneralMatrixVector_MKL.h"
|
||||
#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h"
|
||||
#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h"
|
||||
#include "src/Core/products/SelfadjointMatrixVector_MKL.h"
|
||||
#include "src/Core/products/TriangularMatrixMatrix_MKL.h"
|
||||
#include "src/Core/products/TriangularMatrixVector_MKL.h"
|
||||
#include "src/Core/products/TriangularSolverMatrix_MKL.h"
|
||||
#endif // EIGEN_USE_BLAS
|
||||
|
||||
#ifdef EIGEN_USE_MKL_VML
|
||||
#include "src/Core/Assign_MKL.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/GlobalFunctions.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "Eigen2Support"
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_CORE_H
|
@ -1,7 +0,0 @@
|
||||
#include "Core"
|
||||
#include "LU"
|
||||
#include "Cholesky"
|
||||
#include "QR"
|
||||
#include "SVD"
|
||||
#include "Geometry"
|
||||
#include "Eigenvalues"
|
@ -1,2 +0,0 @@
|
||||
#include "Dense"
|
||||
//#include "Sparse"
|
@ -1,82 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN2SUPPORT_H
|
||||
#define EIGEN2SUPPORT_H
|
||||
|
||||
#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H))
|
||||
#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup Eigen2Support_Module Eigen2 support module
|
||||
* This module provides a couple of deprecated functions improving the compatibility with Eigen2.
|
||||
*
|
||||
* To use it, define EIGEN2_SUPPORT before including any Eigen header
|
||||
* \code
|
||||
* #define EIGEN2_SUPPORT
|
||||
* \endcode
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/Eigen2Support/Macros.h"
|
||||
#include "src/Eigen2Support/Memory.h"
|
||||
#include "src/Eigen2Support/Meta.h"
|
||||
#include "src/Eigen2Support/Lazy.h"
|
||||
#include "src/Eigen2Support/Cwise.h"
|
||||
#include "src/Eigen2Support/CwiseOperators.h"
|
||||
#include "src/Eigen2Support/TriangularSolver.h"
|
||||
#include "src/Eigen2Support/Block.h"
|
||||
#include "src/Eigen2Support/VectorBlock.h"
|
||||
#include "src/Eigen2Support/Minor.h"
|
||||
#include "src/Eigen2Support/MathFunctions.h"
|
||||
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
// Eigen2 used to include iostream
|
||||
#include<iostream>
|
||||
|
||||
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
|
||||
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::Vector##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
|
||||
|
||||
#define EIGEN_USING_MATRIX_TYPEDEFS \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
|
||||
|
||||
#define USING_PART_OF_NAMESPACE_EIGEN \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS \
|
||||
using Eigen::Matrix; \
|
||||
using Eigen::MatrixBase; \
|
||||
using Eigen::ei_random; \
|
||||
using Eigen::ei_real; \
|
||||
using Eigen::ei_imag; \
|
||||
using Eigen::ei_conj; \
|
||||
using Eigen::ei_abs; \
|
||||
using Eigen::ei_abs2; \
|
||||
using Eigen::ei_sqrt; \
|
||||
using Eigen::ei_exp; \
|
||||
using Eigen::ei_log; \
|
||||
using Eigen::ei_sin; \
|
||||
using Eigen::ei_cos;
|
||||
|
||||
#endif // EIGEN2SUPPORT_H
|
@ -1,46 +0,0 @@
|
||||
#ifndef EIGEN_EIGENVALUES_MODULE_H
|
||||
#define EIGEN_EIGENVALUES_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include "Cholesky"
|
||||
#include "Jacobi"
|
||||
#include "Householder"
|
||||
#include "LU"
|
||||
#include "Geometry"
|
||||
|
||||
/** \defgroup Eigenvalues_Module Eigenvalues module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module mainly provides various eigenvalue solvers.
|
||||
* This module also provides some MatrixBase methods, including:
|
||||
* - MatrixBase::eigenvalues(),
|
||||
* - MatrixBase::operatorNorm()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Eigenvalues>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Eigenvalues/Tridiagonalization.h"
|
||||
#include "src/Eigenvalues/RealSchur.h"
|
||||
#include "src/Eigenvalues/EigenSolver.h"
|
||||
#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
|
||||
#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h"
|
||||
#include "src/Eigenvalues/HessenbergDecomposition.h"
|
||||
#include "src/Eigenvalues/ComplexSchur.h"
|
||||
#include "src/Eigenvalues/ComplexEigenSolver.h"
|
||||
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#include "src/Eigenvalues/RealSchur_MKL.h"
|
||||
#include "src/Eigenvalues/ComplexSchur_MKL.h"
|
||||
#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_EIGENVALUES_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,63 +0,0 @@
|
||||
#ifndef EIGEN_GEOMETRY_MODULE_H
|
||||
#define EIGEN_GEOMETRY_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include "SVD"
|
||||
#include "LU"
|
||||
#include <limits>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
/** \defgroup Geometry_Module Geometry module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides support for:
|
||||
* - fixed-size homogeneous transformations
|
||||
* - translation, scaling, 2D and 3D rotations
|
||||
* - quaternions
|
||||
* - \ref MatrixBase::cross() "cross product"
|
||||
* - \ref MatrixBase::unitOrthogonal() "orthognal vector generation"
|
||||
* - some linear components: parametrized-lines and hyperplanes
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Geometry>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Geometry/OrthoMethods.h"
|
||||
#include "src/Geometry/EulerAngles.h"
|
||||
|
||||
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
|
||||
#include "src/Geometry/Homogeneous.h"
|
||||
#include "src/Geometry/RotationBase.h"
|
||||
#include "src/Geometry/Rotation2D.h"
|
||||
#include "src/Geometry/Quaternion.h"
|
||||
#include "src/Geometry/AngleAxis.h"
|
||||
#include "src/Geometry/Transform.h"
|
||||
#include "src/Geometry/Translation.h"
|
||||
#include "src/Geometry/Scaling.h"
|
||||
#include "src/Geometry/Hyperplane.h"
|
||||
#include "src/Geometry/ParametrizedLine.h"
|
||||
#include "src/Geometry/AlignedBox.h"
|
||||
#include "src/Geometry/Umeyama.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_SSE
|
||||
#include "src/Geometry/arch/Geometry_SSE.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "src/Eigen2Support/Geometry/All.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_GEOMETRY_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||
|
@ -1,23 +0,0 @@
|
||||
#ifndef EIGEN_HOUSEHOLDER_MODULE_H
|
||||
#define EIGEN_HOUSEHOLDER_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup Householder_Module Householder module
|
||||
* This module provides Householder transformations.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Householder>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Householder/Householder.h"
|
||||
#include "src/Householder/HouseholderSequence.h"
|
||||
#include "src/Householder/BlockHouseholder.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_HOUSEHOLDER_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,40 +0,0 @@
|
||||
#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
|
||||
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
#include "OrderingMethods"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \ingroup Sparse_modules
|
||||
* \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module
|
||||
*
|
||||
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
|
||||
* Those solvers are accessible via the following classes:
|
||||
* - ConjugateGradient for selfadjoint (hermitian) matrices,
|
||||
* - BiCGSTAB for general square matrices.
|
||||
*
|
||||
* These iterative solvers are associated with some preconditioners:
|
||||
* - IdentityPreconditioner - not really useful
|
||||
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
|
||||
* - IncompleteILUT - incomplete LU factorization with dual thresholding
|
||||
*
|
||||
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/IterativeLinearSolvers>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/SparseSolve.h"
|
||||
|
||||
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
|
||||
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
|
||||
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
|
||||
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
|
||||
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
|
@ -1,26 +0,0 @@
|
||||
#ifndef EIGEN_JACOBI_MODULE_H
|
||||
#define EIGEN_JACOBI_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup Jacobi_Module Jacobi module
|
||||
* This module provides Jacobi and Givens rotations.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Jacobi>
|
||||
* \endcode
|
||||
*
|
||||
* In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation:
|
||||
* - MatrixBase::applyOnTheLeft()
|
||||
* - MatrixBase::applyOnTheRight().
|
||||
*/
|
||||
|
||||
#include "src/Jacobi/Jacobi.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_JACOBI_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||
|
@ -1,41 +0,0 @@
|
||||
#ifndef EIGEN_LU_MODULE_H
|
||||
#define EIGEN_LU_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup LU_Module LU module
|
||||
* This module includes %LU decomposition and related notions such as matrix inversion and determinant.
|
||||
* This module defines the following MatrixBase methods:
|
||||
* - MatrixBase::inverse()
|
||||
* - MatrixBase::determinant()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/LU>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/Kernel.h"
|
||||
#include "src/misc/Image.h"
|
||||
#include "src/LU/FullPivLU.h"
|
||||
#include "src/LU/PartialPivLU.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#include "src/LU/PartialPivLU_MKL.h"
|
||||
#endif
|
||||
#include "src/LU/Determinant.h"
|
||||
#include "src/LU/Inverse.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_SSE
|
||||
#include "src/LU/arch/Inverse_SSE.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "src/Eigen2Support/LU.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_LU_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,32 +0,0 @@
|
||||
#ifndef EIGEN_REGRESSION_MODULE_H
|
||||
#define EIGEN_REGRESSION_MODULE_H
|
||||
|
||||
#ifndef EIGEN2_SUPPORT
|
||||
#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT)
|
||||
#endif
|
||||
|
||||
// exclude from normal eigen3-only documentation
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include "Eigenvalues"
|
||||
#include "Geometry"
|
||||
|
||||
/** \defgroup LeastSquares_Module LeastSquares module
|
||||
* This module provides linear regression and related features.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/LeastSquares>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Eigen2Support/LeastSquares.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN2_SUPPORT
|
||||
|
||||
#endif // EIGEN_REGRESSION_MODULE_H
|
@ -1,23 +0,0 @@
|
||||
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
|
||||
#define EIGEN_ORDERINGMETHODS_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \ingroup Sparse_modules
|
||||
* \defgroup OrderingMethods_Module OrderingMethods module
|
||||
*
|
||||
* This module is currently for internal use only.
|
||||
*
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/OrderingMethods>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/OrderingMethods/Amd.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_ORDERINGMETHODS_MODULE_H
|
@ -1,46 +0,0 @@
|
||||
#ifndef EIGEN_PASTIXSUPPORT_MODULE_H
|
||||
#define EIGEN_PASTIXSUPPORT_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include <complex.h>
|
||||
extern "C" {
|
||||
#include <pastix_nompi.h>
|
||||
#include <pastix.h>
|
||||
}
|
||||
|
||||
#ifdef complex
|
||||
#undef complex
|
||||
#endif
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup PaStiXSupport_Module PaStiXSupport module
|
||||
*
|
||||
* This module provides an interface to the <a href="http://pastix.gforge.inria.fr/">PaSTiX</a> library.
|
||||
* PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver.
|
||||
* It provides the two following main factorization classes:
|
||||
* - class PastixLLT : a supernodal, parallel LLt Cholesky factorization.
|
||||
* - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
|
||||
* - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern).
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/PaStiXSupport>
|
||||
* \endcode
|
||||
*
|
||||
* In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies.
|
||||
* The dependencies depend on how PaSTiX has been compiled.
|
||||
* For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/SparseSolve.h"
|
||||
|
||||
#include "src/PaStiXSupport/PaStiXSupport.h"
|
||||
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_PASTIXSUPPORT_MODULE_H
|
@ -1,30 +0,0 @@
|
||||
#ifndef EIGEN_PARDISOSUPPORT_MODULE_H
|
||||
#define EIGEN_PARDISOSUPPORT_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include <mkl_pardiso.h>
|
||||
|
||||
#include <unsupported/Eigen/SparseExtra>
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup PardisoSupport_Module PardisoSupport module
|
||||
*
|
||||
* This module brings support for the Intel(R) MKL PARDISO direct sparse solvers.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/PardisoSupport>
|
||||
* \endcode
|
||||
*
|
||||
* In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies.
|
||||
* See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/PardisoSupport/PardisoSupport.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_PARDISOSUPPORT_MODULE_H
|
@ -1,45 +0,0 @@
|
||||
#ifndef EIGEN_QR_MODULE_H
|
||||
#define EIGEN_QR_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include "Cholesky"
|
||||
#include "Jacobi"
|
||||
#include "Householder"
|
||||
|
||||
/** \defgroup QR_Module QR module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides various QR decompositions
|
||||
* This module also provides some MatrixBase methods, including:
|
||||
* - MatrixBase::qr(),
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/QR>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/QR/HouseholderQR.h"
|
||||
#include "src/QR/FullPivHouseholderQR.h"
|
||||
#include "src/QR/ColPivHouseholderQR.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#include "src/QR/HouseholderQR_MKL.h"
|
||||
#include "src/QR/ColPivHouseholderQR_MKL.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "src/Eigen2Support/QR.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "Eigenvalues"
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_QR_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,34 +0,0 @@
|
||||
|
||||
#ifndef EIGEN_QTMALLOC_MODULE_H
|
||||
#define EIGEN_QTMALLOC_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#if (!EIGEN_MALLOC_ALREADY_ALIGNED)
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
void *qMalloc(size_t size)
|
||||
{
|
||||
return Eigen::internal::aligned_malloc(size);
|
||||
}
|
||||
|
||||
void qFree(void *ptr)
|
||||
{
|
||||
Eigen::internal::aligned_free(ptr);
|
||||
}
|
||||
|
||||
void *qRealloc(void *ptr, size_t size)
|
||||
{
|
||||
void* newPtr = Eigen::internal::aligned_malloc(size);
|
||||
memcpy(newPtr, ptr, size);
|
||||
Eigen::internal::aligned_free(ptr);
|
||||
return newPtr;
|
||||
}
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_QTMALLOC_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,37 +0,0 @@
|
||||
#ifndef EIGEN_SVD_MODULE_H
|
||||
#define EIGEN_SVD_MODULE_H
|
||||
|
||||
#include "QR"
|
||||
#include "Householder"
|
||||
#include "Jacobi"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup SVD_Module SVD module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides SVD decomposition for matrices (both real and complex).
|
||||
* This decomposition is accessible via the following MatrixBase method:
|
||||
* - MatrixBase::jacobiSvd()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SVD>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#include "src/SVD/JacobiSVD_MKL.h"
|
||||
#endif
|
||||
#include "src/SVD/UpperBidiagonalization.h"
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "src/Eigen2Support/SVD.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SVD_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -1,23 +0,0 @@
|
||||
#ifndef EIGEN_SPARSE_MODULE_H
|
||||
#define EIGEN_SPARSE_MODULE_H
|
||||
|
||||
/** \defgroup Sparse_modules Sparse modules
|
||||
*
|
||||
* Meta-module including all related modules:
|
||||
* - SparseCore
|
||||
* - OrderingMethods
|
||||
* - SparseCholesky
|
||||
* - IterativeLinearSolvers
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Sparse>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "SparseCore"
|
||||
#include "OrderingMethods"
|
||||
#include "SparseCholesky"
|
||||
#include "IterativeLinearSolvers"
|
||||
|
||||
#endif // EIGEN_SPARSE_MODULE_H
|
||||
|
@ -1,30 +0,0 @@
|
||||
#ifndef EIGEN_SPARSECHOLESKY_MODULE_H
|
||||
#define EIGEN_SPARSECHOLESKY_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \ingroup Sparse_modules
|
||||
* \defgroup SparseCholesky_Module SparseCholesky module
|
||||
*
|
||||
* This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices.
|
||||
* Those decompositions are accessible via the following classes:
|
||||
* - SimplicialLLt,
|
||||
* - SimplicialLDLt
|
||||
*
|
||||
* Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SparseCholesky>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/SparseSolve.h"
|
||||
|
||||
#include "src/SparseCholesky/SimplicialCholesky.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SPARSECHOLESKY_MODULE_H
|
@ -1,66 +0,0 @@
|
||||
#ifndef EIGEN_SPARSECORE_MODULE_H
|
||||
#define EIGEN_SPARSECORE_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
/** \ingroup Sparse_modules
|
||||
* \defgroup SparseCore_Module SparseCore module
|
||||
*
|
||||
* This module provides a sparse matrix representation, and basic associatd matrix manipulations
|
||||
* and operations.
|
||||
*
|
||||
* See the \ref TutorialSparse "Sparse tutorial"
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SparseCore>
|
||||
* \endcode
|
||||
*
|
||||
* This module depends on: Core.
|
||||
*/
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** The type used to identify a general sparse storage. */
|
||||
struct Sparse {};
|
||||
|
||||
}
|
||||
|
||||
#include "src/SparseCore/SparseUtil.h"
|
||||
#include "src/SparseCore/SparseMatrixBase.h"
|
||||
#include "src/SparseCore/CompressedStorage.h"
|
||||
#include "src/SparseCore/AmbiVector.h"
|
||||
#include "src/SparseCore/SparseMatrix.h"
|
||||
#include "src/SparseCore/MappedSparseMatrix.h"
|
||||
#include "src/SparseCore/SparseVector.h"
|
||||
#include "src/SparseCore/CoreIterators.h"
|
||||
#include "src/SparseCore/SparseBlock.h"
|
||||
#include "src/SparseCore/SparseTranspose.h"
|
||||
#include "src/SparseCore/SparseCwiseUnaryOp.h"
|
||||
#include "src/SparseCore/SparseCwiseBinaryOp.h"
|
||||
#include "src/SparseCore/SparseDot.h"
|
||||
#include "src/SparseCore/SparsePermutation.h"
|
||||
#include "src/SparseCore/SparseAssign.h"
|
||||
#include "src/SparseCore/SparseRedux.h"
|
||||
#include "src/SparseCore/SparseFuzzy.h"
|
||||
#include "src/SparseCore/ConservativeSparseSparseProduct.h"
|
||||
#include "src/SparseCore/SparseSparseProductWithPruning.h"
|
||||
#include "src/SparseCore/SparseProduct.h"
|
||||
#include "src/SparseCore/SparseDenseProduct.h"
|
||||
#include "src/SparseCore/SparseDiagonalProduct.h"
|
||||
#include "src/SparseCore/SparseTriangularView.h"
|
||||
#include "src/SparseCore/SparseSelfAdjointView.h"
|
||||
#include "src/SparseCore/TriangularSolver.h"
|
||||
#include "src/SparseCore/SparseView.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SPARSECORE_MODULE_H
|
||||
|
@ -1,27 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_STDDEQUE_MODULE_H
|
||||
#define EIGEN_STDDEQUE_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
#include <deque>
|
||||
|
||||
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
|
||||
|
||||
#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)
|
||||
|
||||
#else
|
||||
|
||||
#include "src/StlSupport/StdDeque.h"
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_STDDEQUE_MODULE_H
|
@ -1,26 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_STDLIST_MODULE_H
|
||||
#define EIGEN_STDLIST_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
#include <list>
|
||||
|
||||
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
|
||||
|
||||
#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)
|
||||
|
||||
#else
|
||||
|
||||
#include "src/StlSupport/StdList.h"
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_STDLIST_MODULE_H
|
@ -1,27 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_STDVECTOR_MODULE_H
|
||||
#define EIGEN_STDVECTOR_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
#include <vector>
|
||||
|
||||
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
|
||||
|
||||
#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)
|
||||
|
||||
#else
|
||||
|
||||
#include "src/StlSupport/StdVector.h"
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_STDVECTOR_MODULE_H
|
@ -1,59 +0,0 @@
|
||||
#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
|
||||
#define EIGEN_SUPERLUSUPPORT_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#ifdef EMPTY
|
||||
#define EIGEN_EMPTY_WAS_ALREADY_DEFINED
|
||||
#endif
|
||||
|
||||
typedef int int_t;
|
||||
#include <slu_Cnames.h>
|
||||
#include <supermatrix.h>
|
||||
#include <slu_util.h>
|
||||
|
||||
// slu_util.h defines a preprocessor token named EMPTY which is really polluting,
|
||||
// so we remove it in favor of a SUPERLU_EMPTY token.
|
||||
// If EMPTY was already defined then we don't undef it.
|
||||
|
||||
#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED)
|
||||
# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED
|
||||
#elif defined(EMPTY)
|
||||
# undef EMPTY
|
||||
#endif
|
||||
|
||||
#define SUPERLU_EMPTY (-1)
|
||||
|
||||
namespace Eigen { struct SluMatrix; }
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup SuperLUSupport_Module SuperLUSupport module
|
||||
*
|
||||
* This module provides an interface to the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library.
|
||||
* It provides the following factorization class:
|
||||
* - class SuperLU: a supernodal sequential LU factorization.
|
||||
* - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
|
||||
*
|
||||
* \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SuperLUSupport>
|
||||
* \endcode
|
||||
*
|
||||
* In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies.
|
||||
* The dependencies depend on how superlu has been compiled.
|
||||
* For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/SparseSolve.h"
|
||||
|
||||
#include "src/SuperLUSupport/SuperLUSupport.h"
|
||||
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H
|
@ -1,36 +0,0 @@
|
||||
#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
|
||||
#define EIGEN_UMFPACKSUPPORT_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
extern "C" {
|
||||
#include <umfpack.h>
|
||||
}
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup UmfPackSupport_Module UmfPackSupport module
|
||||
*
|
||||
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
|
||||
* It provides the following factorization class:
|
||||
* - class UmfPackLU: a multifrontal sequential LU factorization.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/UmfPackSupport>
|
||||
* \endcode
|
||||
*
|
||||
* In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies.
|
||||
* The dependencies depend on how umfpack has been compiled.
|
||||
* For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/misc/SparseSolve.h"
|
||||
|
||||
#include "src/UmfPackSupport/UmfPackSupport.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_UMFPACKSUPPORT_MODULE_H
|
@ -1,591 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_LDLT_H
|
||||
#define EIGEN_LDLT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, int UpLo> struct LDLT_Traits;
|
||||
}
|
||||
|
||||
/** \ingroup Cholesky_Module
|
||||
*
|
||||
* \class LDLT
|
||||
*
|
||||
* \brief Robust Cholesky decomposition of a matrix with pivoting
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
|
||||
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
|
||||
* The other triangular part won't be read.
|
||||
*
|
||||
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
|
||||
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
|
||||
* is lower triangular with a unit diagonal and D is a diagonal matrix.
|
||||
*
|
||||
* The decomposition uses pivoting to ensure stability, so that L will have
|
||||
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
|
||||
* on D also stabilizes the computation.
|
||||
*
|
||||
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
|
||||
* decomposition to determine whether a system of equations has a solution.
|
||||
*
|
||||
* \sa MatrixBase::ldlt(), class LLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo> class LDLT
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
UpLo = _UpLo
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
|
||||
|
||||
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
|
||||
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
|
||||
|
||||
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via LDLT::compute(const MatrixType&).
|
||||
*/
|
||||
LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem \a size.
|
||||
* \sa LDLT()
|
||||
*/
|
||||
LDLT(Index size)
|
||||
: m_matrix(size, size),
|
||||
m_transpositions(size),
|
||||
m_temporary(size),
|
||||
m_isInitialized(false)
|
||||
{}
|
||||
|
||||
/** \brief Constructor with decomposition
|
||||
*
|
||||
* This calculates the decomposition for the input \a matrix.
|
||||
* \sa LDLT(Index size)
|
||||
*/
|
||||
LDLT(const MatrixType& matrix)
|
||||
: m_matrix(matrix.rows(), matrix.cols()),
|
||||
m_transpositions(matrix.rows()),
|
||||
m_temporary(matrix.rows()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Clear any existing decomposition
|
||||
* \sa rankUpdate(w,sigma)
|
||||
*/
|
||||
void setZero()
|
||||
{
|
||||
m_isInitialized = false;
|
||||
}
|
||||
|
||||
/** \returns a view of the upper triangular matrix U */
|
||||
inline typename Traits::MatrixU matrixU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return Traits::getU(m_matrix);
|
||||
}
|
||||
|
||||
/** \returns a view of the lower triangular matrix L */
|
||||
inline typename Traits::MatrixL matrixL() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return Traits::getL(m_matrix);
|
||||
}
|
||||
|
||||
/** \returns the permutation matrix P as a transposition sequence.
|
||||
*/
|
||||
inline const TranspositionType& transpositionsP() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_transpositions;
|
||||
}
|
||||
|
||||
/** \returns the coefficients of the diagonal matrix D */
|
||||
inline Diagonal<const MatrixType> vectorD() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_matrix.diagonal();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix is positive (semidefinite) */
|
||||
inline bool isPositive() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_sign == 1;
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
inline bool isPositiveDefinite() const
|
||||
{
|
||||
return isPositive();
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns true if the matrix is negative (semidefinite) */
|
||||
inline bool isNegative(void) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_sign == -1;
|
||||
}
|
||||
|
||||
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
|
||||
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
|
||||
* \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
|
||||
* \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
|
||||
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
|
||||
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
|
||||
*
|
||||
* \sa MatrixBase::ldlt()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<LDLT, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows()==b.rows()
|
||||
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
|
||||
{
|
||||
*result = this->solve(b);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
|
||||
|
||||
LDLT& compute(const MatrixType& matrix);
|
||||
|
||||
template <typename Derived>
|
||||
LDLT& rankUpdate(const MatrixBase<Derived>& w,RealScalar alpha=1);
|
||||
|
||||
/** \returns the internal LDLT decomposition matrix
|
||||
*
|
||||
* TODO: document the storage layout
|
||||
*/
|
||||
inline const MatrixType& matrixLDLT() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
MatrixType reconstructedMatrix() const;
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return Success;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
|
||||
* The strict upper part is used during the decomposition, the strict lower
|
||||
* part correspond to the coefficients of L (its diagonal is equal to 1 and
|
||||
* is not stored), and the diagonal entries correspond to D.
|
||||
*/
|
||||
MatrixType m_matrix;
|
||||
TranspositionType m_transpositions;
|
||||
TmpMatrixType m_temporary;
|
||||
int m_sign;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int UpLo> struct ldlt_inplace;
|
||||
|
||||
template<> struct ldlt_inplace<Lower>
|
||||
{
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace>
|
||||
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
eigen_assert(mat.rows()==mat.cols());
|
||||
const Index size = mat.rows();
|
||||
|
||||
if (size <= 1)
|
||||
{
|
||||
transpositions.setIdentity();
|
||||
if(sign)
|
||||
*sign = real(mat.coeff(0,0))>0 ? 1:-1;
|
||||
return true;
|
||||
}
|
||||
|
||||
RealScalar cutoff(0), biggest_in_corner;
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
// Find largest diagonal element
|
||||
Index index_of_biggest_in_corner;
|
||||
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
index_of_biggest_in_corner += k;
|
||||
|
||||
if(k == 0)
|
||||
{
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails.
|
||||
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
|
||||
|
||||
if(sign)
|
||||
*sign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
|
||||
}
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
|
||||
break;
|
||||
}
|
||||
|
||||
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||||
if(k != index_of_biggest_in_corner)
|
||||
{
|
||||
// apply the transposition while taking care to consider only
|
||||
// the lower triangular part
|
||||
Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
|
||||
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
|
||||
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
|
||||
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
|
||||
for(int i=k+1;i<index_of_biggest_in_corner;++i)
|
||||
{
|
||||
Scalar tmp = mat.coeffRef(i,k);
|
||||
mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i));
|
||||
mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp);
|
||||
}
|
||||
if(NumTraits<Scalar>::IsComplex)
|
||||
mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k));
|
||||
}
|
||||
|
||||
// partition the matrix:
|
||||
// A00 | - | -
|
||||
// lu = A10 | A11 | -
|
||||
// A20 | A21 | A22
|
||||
Index rs = size - k - 1;
|
||||
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
|
||||
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
|
||||
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
|
||||
|
||||
if(k>0)
|
||||
{
|
||||
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
|
||||
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
|
||||
if(rs>0)
|
||||
A21.noalias() -= A20 * temp.head(k);
|
||||
}
|
||||
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
|
||||
A21 /= mat.coeffRef(k,k);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Reference for the algorithm: Davis and Hager, "Multiple Rank
|
||||
// Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
|
||||
// Trivial rearrangements of their computations (Timothy E. Holy)
|
||||
// allow their algorithm to work for rank-1 updates even if the
|
||||
// original matrix is not of full rank.
|
||||
// Here only rank-1 updates are implemented, to reduce the
|
||||
// requirement for intermediate storage and improve accuracy
|
||||
template<typename MatrixType, typename WDerived>
|
||||
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, typename MatrixType::RealScalar sigma=1)
|
||||
{
|
||||
using internal::isfinite;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
const Index size = mat.rows();
|
||||
eigen_assert(mat.cols() == size && w.size()==size);
|
||||
|
||||
RealScalar alpha = 1;
|
||||
|
||||
// Apply the update
|
||||
for (Index j = 0; j < size; j++)
|
||||
{
|
||||
// Check for termination due to an original decomposition of low-rank
|
||||
if (!(isfinite)(alpha))
|
||||
break;
|
||||
|
||||
// Update the diagonal terms
|
||||
RealScalar dj = real(mat.coeff(j,j));
|
||||
Scalar wj = w.coeff(j);
|
||||
RealScalar swj2 = sigma*abs2(wj);
|
||||
RealScalar gamma = dj*alpha + swj2;
|
||||
|
||||
mat.coeffRef(j,j) += swj2/alpha;
|
||||
alpha += swj2/dj;
|
||||
|
||||
|
||||
// Update the terms of L
|
||||
Index rs = size-j-1;
|
||||
w.tail(rs) -= wj * mat.col(j).tail(rs);
|
||||
if(gamma != 0)
|
||||
mat.col(j).tail(rs) += (sigma*conj(wj)/gamma)*w.tail(rs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
|
||||
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, typename MatrixType::RealScalar sigma=1)
|
||||
{
|
||||
// Apply the permutation to the input w
|
||||
tmp = transpositions * w;
|
||||
|
||||
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct ldlt_inplace<Upper>
|
||||
{
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace>
|
||||
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
|
||||
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, typename MatrixType::RealScalar sigma=1)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
|
||||
{
|
||||
typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
|
||||
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
|
||||
static inline MatrixL getL(const MatrixType& m) { return m; }
|
||||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
|
||||
{
|
||||
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
|
||||
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
|
||||
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
|
||||
static inline MatrixU getU(const MatrixType& m) { return m; }
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
|
||||
m_matrix = a;
|
||||
|
||||
m_transpositions.resize(size);
|
||||
m_isInitialized = false;
|
||||
m_temporary.resize(size);
|
||||
|
||||
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
|
||||
* \param w a vector to be incorporated into the decomposition.
|
||||
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
|
||||
* \sa setZero()
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename Derived>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w,typename NumTraits<typename MatrixType::Scalar>::Real sigma)
|
||||
{
|
||||
const Index size = w.rows();
|
||||
if (m_isInitialized)
|
||||
{
|
||||
eigen_assert(m_matrix.rows()==size);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_matrix.resize(size,size);
|
||||
m_matrix.setZero();
|
||||
m_transpositions.resize(size);
|
||||
for (Index i = 0; i < size; i++)
|
||||
m_transpositions.coeffRef(i) = i;
|
||||
m_temporary.resize(size);
|
||||
m_sign = sigma>=0 ? 1 : -1;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
template<typename _MatrixType, int _UpLo, typename Rhs>
|
||||
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
||||
: solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
|
||||
{
|
||||
typedef LDLT<_MatrixType,_UpLo> LDLTType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
|
||||
// dst = P b
|
||||
dst = dec().transpositionsP() * rhs();
|
||||
|
||||
// dst = L^-1 (P b)
|
||||
dec().matrixL().solveInPlace(dst);
|
||||
|
||||
// dst = D^-1 (L^-1 P b)
|
||||
// more precisely, use pseudo-inverse of D (see bug 241)
|
||||
using std::abs;
|
||||
using std::max;
|
||||
typedef typename LDLTType::MatrixType MatrixType;
|
||||
typedef typename LDLTType::Scalar Scalar;
|
||||
typedef typename LDLTType::RealScalar RealScalar;
|
||||
const Diagonal<const MatrixType> vectorD = dec().vectorD();
|
||||
RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
|
||||
RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
|
||||
for (Index i = 0; i < vectorD.size(); ++i) {
|
||||
if(abs(vectorD(i)) > tolerance)
|
||||
dst.row(i) /= vectorD(i);
|
||||
else
|
||||
dst.row(i).setZero();
|
||||
}
|
||||
|
||||
// dst = L^-T (D^-1 L^-1 P b)
|
||||
dec().matrixU().solveInPlace(dst);
|
||||
|
||||
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
|
||||
dst = dec().transpositionsP().transpose() * dst;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/** \internal use x = ldlt_object.solve(x);
|
||||
*
|
||||
* This is the \em in-place version of solve().
|
||||
*
|
||||
* \param bAndX represents both the right-hand side matrix b and result x.
|
||||
*
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not
|
||||
* needed anymore.
|
||||
*
|
||||
* \sa LDLT::solve(), MatrixBase::ldlt()
|
||||
*/
|
||||
template<typename MatrixType,int _UpLo>
|
||||
template<typename Derived>
|
||||
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows() == bAndX.rows());
|
||||
|
||||
bAndX = this->solve(bAndX);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: P^T L D L^* P.
|
||||
* This function is provided for debug purpose. */
|
||||
template<typename MatrixType, int _UpLo>
|
||||
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
const Index size = m_matrix.rows();
|
||||
MatrixType res(size,size);
|
||||
|
||||
// P
|
||||
res.setIdentity();
|
||||
res = transpositionsP() * res;
|
||||
// L^* P
|
||||
res = matrixU() * res;
|
||||
// D(L^*P)
|
||||
res = vectorD().asDiagonal() * res;
|
||||
// L(DL^*P)
|
||||
res = matrixL() * res;
|
||||
// P^T (LDL^*P)
|
||||
res = transpositionsP().transpose() * res;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \cholesky_module
|
||||
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
|
||||
*/
|
||||
template<typename MatrixType, unsigned int UpLo>
|
||||
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
|
||||
SelfAdjointView<MatrixType, UpLo>::ldlt() const
|
||||
{
|
||||
return LDLT<PlainObject,UpLo>(m_matrix);
|
||||
}
|
||||
|
||||
/** \cholesky_module
|
||||
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::ldlt() const
|
||||
{
|
||||
return LDLT<PlainObject>(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LDLT_H
|
@ -1,488 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_LLT_H
|
||||
#define EIGEN_LLT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal{
|
||||
template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
}
|
||||
|
||||
/** \ingroup Cholesky_Module
|
||||
*
|
||||
* \class LLT
|
||||
*
|
||||
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
|
||||
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
|
||||
* The other triangular part won't be read.
|
||||
*
|
||||
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
|
||||
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
|
||||
*
|
||||
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
|
||||
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
|
||||
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
|
||||
* situations like generalised eigen problems with hermitian matrices.
|
||||
*
|
||||
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
|
||||
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
|
||||
* has a solution.
|
||||
*
|
||||
* Example: \include LLT_example.cpp
|
||||
* Output: \verbinclude LLT_example.out
|
||||
*
|
||||
* \sa MatrixBase::llt(), class LDLT
|
||||
*/
|
||||
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
|
||||
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
||||
* the strict lower part does not have to store correct values.
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo> class LLT
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
enum {
|
||||
PacketSize = internal::packet_traits<Scalar>::size,
|
||||
AlignmentMask = int(PacketSize)-1,
|
||||
UpLo = _UpLo
|
||||
};
|
||||
|
||||
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via LLT::compute(const MatrixType&).
|
||||
*/
|
||||
LLT() : m_matrix(), m_isInitialized(false) {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem \a size.
|
||||
* \sa LLT()
|
||||
*/
|
||||
LLT(Index size) : m_matrix(size, size),
|
||||
m_isInitialized(false) {}
|
||||
|
||||
LLT(const MatrixType& matrix)
|
||||
: m_matrix(matrix.rows(), matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \returns a view of the upper triangular matrix U */
|
||||
inline typename Traits::MatrixU matrixU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return Traits::getU(m_matrix);
|
||||
}
|
||||
|
||||
/** \returns a view of the lower triangular matrix L */
|
||||
inline typename Traits::MatrixL matrixL() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return Traits::getL(m_matrix);
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
|
||||
* theoretically exists and is unique regardless of b.
|
||||
*
|
||||
* Example: \include LLT_solve.cpp
|
||||
* Output: \verbinclude LLT_solve.out
|
||||
*
|
||||
* \sa solveInPlace(), MatrixBase::llt()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<LLT, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows()==b.rows()
|
||||
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
|
||||
{
|
||||
*result = this->solve(b);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool isPositiveDefinite() const { return true; }
|
||||
#endif
|
||||
|
||||
template<typename Derived>
|
||||
void solveInPlace(MatrixBase<Derived> &bAndX) const;
|
||||
|
||||
LLT& compute(const MatrixType& matrix);
|
||||
|
||||
/** \returns the LLT decomposition matrix
|
||||
*
|
||||
* TODO: document the storage layout
|
||||
*/
|
||||
inline const MatrixType& matrixLLT() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
MatrixType reconstructedMatrix() const;
|
||||
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
template<typename VectorType>
|
||||
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
|
||||
|
||||
protected:
|
||||
/** \internal
|
||||
* Used to compute and store L
|
||||
* The strict upper part is not used and even not initialized.
|
||||
*/
|
||||
MatrixType m_matrix;
|
||||
bool m_isInitialized;
|
||||
ComputationInfo m_info;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar, int UpLo> struct llt_inplace;
|
||||
|
||||
template<typename MatrixType, typename VectorType>
|
||||
static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::ColXpr ColXpr;
|
||||
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
|
||||
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
|
||||
typedef Matrix<Scalar,Dynamic,1> TempVectorType;
|
||||
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
|
||||
|
||||
int n = mat.cols();
|
||||
eigen_assert(mat.rows()==n && vec.size()==n);
|
||||
|
||||
TempVectorType temp;
|
||||
|
||||
if(sigma>0)
|
||||
{
|
||||
// This version is based on Givens rotations.
|
||||
// It is faster than the other one below, but only works for updates,
|
||||
// i.e., for sigma > 0
|
||||
temp = sqrt(sigma) * vec;
|
||||
|
||||
for(int i=0; i<n; ++i)
|
||||
{
|
||||
JacobiRotation<Scalar> g;
|
||||
g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
|
||||
|
||||
int rs = n-i-1;
|
||||
if(rs>0)
|
||||
{
|
||||
ColXprSegment x(mat.col(i).tail(rs));
|
||||
TempVecSegment y(temp.tail(rs));
|
||||
apply_rotation_in_the_plane(x, y, g);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
temp = vec;
|
||||
RealScalar beta = 1;
|
||||
for(int j=0; j<n; ++j)
|
||||
{
|
||||
RealScalar Ljj = real(mat.coeff(j,j));
|
||||
RealScalar dj = abs2(Ljj);
|
||||
Scalar wj = temp.coeff(j);
|
||||
RealScalar swj2 = sigma*abs2(wj);
|
||||
RealScalar gamma = dj*beta + swj2;
|
||||
|
||||
RealScalar x = dj + swj2/beta;
|
||||
if (x<=RealScalar(0))
|
||||
return j;
|
||||
RealScalar nLjj = sqrt(x);
|
||||
mat.coeffRef(j,j) = nLjj;
|
||||
beta += swj2/dj;
|
||||
|
||||
// Update the terms of L
|
||||
Index rs = n-j-1;
|
||||
if(rs)
|
||||
{
|
||||
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
|
||||
if(gamma != 0)
|
||||
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*conj(wj)/gamma)*temp.tail(rs);
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
template<typename Scalar> struct llt_inplace<Scalar, Lower>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
template<typename MatrixType>
|
||||
static typename MatrixType::Index unblocked(MatrixType& mat)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
eigen_assert(mat.rows()==mat.cols());
|
||||
const Index size = mat.rows();
|
||||
for(Index k = 0; k < size; ++k)
|
||||
{
|
||||
Index rs = size-k-1; // remaining size
|
||||
|
||||
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
|
||||
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
|
||||
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
|
||||
|
||||
RealScalar x = real(mat.coeff(k,k));
|
||||
if (k>0) x -= A10.squaredNorm();
|
||||
if (x<=RealScalar(0))
|
||||
return k;
|
||||
mat.coeffRef(k,k) = x = sqrt(x);
|
||||
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
|
||||
if (rs>0) A21 *= RealScalar(1)/x;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
static typename MatrixType::Index blocked(MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
eigen_assert(m.rows()==m.cols());
|
||||
Index size = m.rows();
|
||||
if(size<32)
|
||||
return unblocked(m);
|
||||
|
||||
Index blockSize = size/8;
|
||||
blockSize = (blockSize/16)*16;
|
||||
blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
|
||||
|
||||
for (Index k=0; k<size; k+=blockSize)
|
||||
{
|
||||
// partition the matrix:
|
||||
// A00 | - | -
|
||||
// lu = A10 | A11 | -
|
||||
// A20 | A21 | A22
|
||||
Index bs = (std::min)(blockSize, size-k);
|
||||
Index rs = size - k - bs;
|
||||
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
|
||||
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
|
||||
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
|
||||
|
||||
Index ret;
|
||||
if((ret=unblocked(A11))>=0) return k+ret;
|
||||
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
|
||||
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename VectorType>
|
||||
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
|
||||
{
|
||||
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar> struct llt_inplace<Scalar, Upper>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
template<typename MatrixType>
|
||||
static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return llt_inplace<Scalar, Lower>::unblocked(matt);
|
||||
}
|
||||
template<typename MatrixType>
|
||||
static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return llt_inplace<Scalar, Lower>::blocked(matt);
|
||||
}
|
||||
template<typename MatrixType, typename VectorType>
|
||||
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
|
||||
{
|
||||
typedef const TriangularView<const MatrixType, Lower> MatrixL;
|
||||
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
|
||||
static inline MatrixL getL(const MatrixType& m) { return m; }
|
||||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
static bool inplace_decomposition(MatrixType& m)
|
||||
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
|
||||
};
|
||||
|
||||
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
|
||||
{
|
||||
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
|
||||
typedef const TriangularView<const MatrixType, Upper> MatrixU;
|
||||
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
|
||||
static inline MatrixU getU(const MatrixType& m) { return m; }
|
||||
static bool inplace_decomposition(MatrixType& m)
|
||||
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
|
||||
*
|
||||
* \returns a reference to *this
|
||||
*
|
||||
* Example: \include TutorialLinAlgComputeTwice.cpp
|
||||
* Output: \verbinclude TutorialLinAlgComputeTwice.out
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_matrix = a;
|
||||
|
||||
m_isInitialized = true;
|
||||
bool ok = Traits::inplace_decomposition(m_matrix);
|
||||
m_info = ok ? Success : NumericalIssue;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a rank one update (or dowdate) of the current decomposition.
|
||||
* If A = LL^* before the rank one update,
|
||||
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
|
||||
* of same dimension.
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
template<typename VectorType>
|
||||
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
|
||||
eigen_assert(v.size()==m_matrix.cols());
|
||||
eigen_assert(m_isInitialized);
|
||||
if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
|
||||
m_info = NumericalIssue;
|
||||
else
|
||||
m_info = Success;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
template<typename _MatrixType, int UpLo, typename Rhs>
|
||||
struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
|
||||
: solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
|
||||
{
|
||||
typedef LLT<_MatrixType,UpLo> LLTType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dst = rhs();
|
||||
dec().solveInPlace(dst);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/** \internal use x = llt_object.solve(x);
|
||||
*
|
||||
* This is the \em in-place version of solve().
|
||||
*
|
||||
* \param bAndX represents both the right-hand side matrix b and result x.
|
||||
*
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not
|
||||
* needed anymore.
|
||||
*
|
||||
* \sa LLT::solve(), MatrixBase::llt()
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename Derived>
|
||||
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows()==bAndX.rows());
|
||||
matrixL().solveInPlace(bAndX);
|
||||
matrixU().solveInPlace(bAndX);
|
||||
}
|
||||
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: L L^*.
|
||||
* This function is provided for debug purpose. */
|
||||
template<typename MatrixType, int _UpLo>
|
||||
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return matrixL() * matrixL().adjoint().toDenseMatrix();
|
||||
}
|
||||
|
||||
/** \cholesky_module
|
||||
* \returns the LLT decomposition of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const LLT<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::llt() const
|
||||
{
|
||||
return LLT<PlainObject>(derived());
|
||||
}
|
||||
|
||||
/** \cholesky_module
|
||||
* \returns the LLT decomposition of \c *this
|
||||
*/
|
||||
template<typename MatrixType, unsigned int UpLo>
|
||||
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
|
||||
SelfAdjointView<MatrixType, UpLo>::llt() const
|
||||
{
|
||||
return LLT<PlainObject,UpLo>(m_matrix);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LLT_H
|
@ -1,102 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
* Neither the name of Intel Corporation nor the names of its contributors may
|
||||
be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
********************************************************************************
|
||||
* Content : Eigen bindings to Intel(R) MKL
|
||||
* LLt decomposition based on LAPACKE_?potrf function.
|
||||
********************************************************************************
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_LLT_MKL_H
|
||||
#define EIGEN_LLT_MKL_H
|
||||
|
||||
#include "Eigen/src/Core/util/MKL_support.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar> struct mkl_llt;
|
||||
|
||||
#define EIGEN_MKL_LLT(EIGTYPE, MKLTYPE, MKLPREFIX) \
|
||||
template<> struct mkl_llt<EIGTYPE> \
|
||||
{ \
|
||||
template<typename MatrixType> \
|
||||
static inline typename MatrixType::Index potrf(MatrixType& m, char uplo) \
|
||||
{ \
|
||||
lapack_int matrix_order; \
|
||||
lapack_int size, lda, info, StorageOrder; \
|
||||
EIGTYPE* a; \
|
||||
eigen_assert(m.rows()==m.cols()); \
|
||||
/* Set up parameters for ?potrf */ \
|
||||
size = m.rows(); \
|
||||
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
|
||||
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
|
||||
a = &(m.coeffRef(0,0)); \
|
||||
lda = m.outerStride(); \
|
||||
\
|
||||
info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \
|
||||
info = (info==0) ? Success : NumericalIssue; \
|
||||
return info; \
|
||||
} \
|
||||
}; \
|
||||
template<> struct llt_inplace<EIGTYPE, Lower> \
|
||||
{ \
|
||||
template<typename MatrixType> \
|
||||
static typename MatrixType::Index blocked(MatrixType& m) \
|
||||
{ \
|
||||
return mkl_llt<EIGTYPE>::potrf(m, 'L'); \
|
||||
} \
|
||||
template<typename MatrixType, typename VectorType> \
|
||||
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
|
||||
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
|
||||
}; \
|
||||
template<> struct llt_inplace<EIGTYPE, Upper> \
|
||||
{ \
|
||||
template<typename MatrixType> \
|
||||
static typename MatrixType::Index blocked(MatrixType& m) \
|
||||
{ \
|
||||
return mkl_llt<EIGTYPE>::potrf(m, 'U'); \
|
||||
} \
|
||||
template<typename MatrixType, typename VectorType> \
|
||||
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
|
||||
{ \
|
||||
Transpose<MatrixType> matt(mat); \
|
||||
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_MKL_LLT(double, double, d)
|
||||
EIGEN_MKL_LLT(float, float, s)
|
||||
EIGEN_MKL_LLT(dcomplex, MKL_Complex16, z)
|
||||
EIGEN_MKL_LLT(scomplex, MKL_Complex8, c)
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LLT_MKL_H
|
@ -1,579 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CHOLMODSUPPORT_H
|
||||
#define EIGEN_CHOLMODSUPPORT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar, typename CholmodType>
|
||||
void cholmod_configure_matrix(CholmodType& mat)
|
||||
{
|
||||
if (internal::is_same<Scalar,float>::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_REAL;
|
||||
mat.dtype = CHOLMOD_SINGLE;
|
||||
}
|
||||
else if (internal::is_same<Scalar,double>::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_REAL;
|
||||
mat.dtype = CHOLMOD_DOUBLE;
|
||||
}
|
||||
else if (internal::is_same<Scalar,std::complex<float> >::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_COMPLEX;
|
||||
mat.dtype = CHOLMOD_SINGLE;
|
||||
}
|
||||
else if (internal::is_same<Scalar,std::complex<double> >::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_COMPLEX;
|
||||
mat.dtype = CHOLMOD_DOUBLE;
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(false && "Scalar type not supported by CHOLMOD");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
|
||||
* Note that the data are shared.
|
||||
*/
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
|
||||
{
|
||||
typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType;
|
||||
cholmod_sparse res;
|
||||
res.nzmax = mat.nonZeros();
|
||||
res.nrow = mat.rows();;
|
||||
res.ncol = mat.cols();
|
||||
res.p = mat.outerIndexPtr();
|
||||
res.i = mat.innerIndexPtr();
|
||||
res.x = mat.valuePtr();
|
||||
res.sorted = 1;
|
||||
if(mat.isCompressed())
|
||||
{
|
||||
res.packed = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
res.packed = 0;
|
||||
res.nz = mat.innerNonZeroPtr();
|
||||
}
|
||||
|
||||
res.dtype = 0;
|
||||
res.stype = -1;
|
||||
|
||||
if (internal::is_same<_Index,int>::value)
|
||||
{
|
||||
res.itype = CHOLMOD_INT;
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(false && "Index type different than int is not supported yet");
|
||||
}
|
||||
|
||||
// setup res.xtype
|
||||
internal::cholmod_configure_matrix<_Scalar>(res);
|
||||
|
||||
res.stype = 0;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
||||
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
|
||||
|
||||
if(UpLo==Upper) res.stype = 1;
|
||||
if(UpLo==Lower) res.stype = -1;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename Derived>
|
||||
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
cholmod_dense res;
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
res.nzmax = res.nrow * res.ncol;
|
||||
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
|
||||
res.x = mat.derived().data();
|
||||
res.z = 0;
|
||||
|
||||
internal::cholmod_configure_matrix<Scalar>(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename Scalar, int Flags, typename Index>
|
||||
MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
|
||||
{
|
||||
return MappedSparseMatrix<Scalar,Flags,Index>
|
||||
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
|
||||
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
|
||||
}
|
||||
|
||||
enum CholmodMode {
|
||||
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
|
||||
};
|
||||
|
||||
|
||||
/** \ingroup CholmodSupport_Module
|
||||
* \class CholmodBase
|
||||
* \brief The base class for the direct Cholesky factorization of Cholmod
|
||||
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo, typename Derived>
|
||||
class CholmodBase : internal::noncopyable
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef MatrixType CholMatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
public:
|
||||
|
||||
CholmodBase()
|
||||
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
}
|
||||
|
||||
CholmodBase(const MatrixType& matrix)
|
||||
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodBase()
|
||||
{
|
||||
if(m_cholmodFactor)
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
cholmod_finish(&m_cholmod);
|
||||
}
|
||||
|
||||
inline Index cols() const { return m_cholmodFactor->n; }
|
||||
inline Index rows() const { return m_cholmodFactor->n; }
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
Derived& compute(const MatrixType& matrix)
|
||||
{
|
||||
analyzePattern(matrix);
|
||||
factorize(matrix);
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<CholmodBase, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
eigen_assert(rows()==b.rows()
|
||||
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::sparse_solve_retval<CholmodBase, Rhs>
|
||||
solve(const SparseMatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
eigen_assert(rows()==b.rows()
|
||||
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
{
|
||||
if(m_cholmodFactor)
|
||||
{
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
m_cholmodFactor = 0;
|
||||
}
|
||||
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
||||
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
||||
|
||||
this->m_isInitialized = true;
|
||||
this->m_info = Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
void factorize(const MatrixType& matrix)
|
||||
{
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
||||
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
||||
|
||||
this->m_info = Success;
|
||||
m_factorizationIsOk = true;
|
||||
}
|
||||
|
||||
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
|
||||
* See the Cholmod user guide for details. */
|
||||
cholmod_common& cholmod() { return m_cholmod; }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
||||
const Index size = m_cholmodFactor->n;
|
||||
eigen_assert(size==b.rows());
|
||||
|
||||
// note: cd stands for Cholmod Dense
|
||||
cholmod_dense b_cd = viewAsCholmod(b.const_cast_derived());
|
||||
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
|
||||
if(!x_cd)
|
||||
{
|
||||
this->m_info = NumericalIssue;
|
||||
}
|
||||
// TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
|
||||
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
|
||||
cholmod_free_dense(&x_cd, &m_cholmod);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
|
||||
void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
||||
const Index size = m_cholmodFactor->n;
|
||||
eigen_assert(size==b.rows());
|
||||
|
||||
// note: cs stands for Cholmod Sparse
|
||||
cholmod_sparse b_cs = viewAsCholmod(b);
|
||||
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
|
||||
if(!x_cs)
|
||||
{
|
||||
this->m_info = NumericalIssue;
|
||||
}
|
||||
// TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
|
||||
dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
|
||||
cholmod_free_sparse(&x_cs, &m_cholmod);
|
||||
}
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename Stream>
|
||||
void dumpMemory(Stream& s)
|
||||
{}
|
||||
|
||||
protected:
|
||||
mutable cholmod_common m_cholmod;
|
||||
cholmod_factor* m_cholmodFactor;
|
||||
mutable ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
int m_factorizationIsOk;
|
||||
int m_analysisIsOk;
|
||||
};
|
||||
|
||||
/** \ingroup CholmodSupport_Module
|
||||
* \class CholmodSimplicialLLT
|
||||
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
|
||||
* using the Cholmod library.
|
||||
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Thefore, it has little practical interest.
|
||||
* The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
CholmodSimplicialLLT() : Base() { init(); }
|
||||
|
||||
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodSimplicialLLT() {}
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_cholmod.final_asis = 0;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
m_cholmod.final_ll = 1;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** \ingroup CholmodSupport_Module
|
||||
* \class CholmodSimplicialLDLT
|
||||
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
|
||||
* using the Cholmod library.
|
||||
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Thefore, it has little practical interest.
|
||||
* The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
CholmodSimplicialLDLT() : Base() { init(); }
|
||||
|
||||
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodSimplicialLDLT() {}
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
}
|
||||
};
|
||||
|
||||
/** \ingroup CholmodSupport_Module
|
||||
* \class CholmodSupernodalLLT
|
||||
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
|
||||
* using the Cholmod library.
|
||||
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
|
||||
* The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
CholmodSupernodalLLT() : Base() { init(); }
|
||||
|
||||
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodSupernodalLLT() {}
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
||||
}
|
||||
};
|
||||
|
||||
/** \ingroup CholmodSupport_Module
|
||||
* \class CholmodDecomposition
|
||||
* \brief A general Cholesky factorization and solver based on Cholmod
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
|
||||
* using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* This variant permits to change the underlying Cholesky method at runtime.
|
||||
* On the other hand, it does not provide access to the result of the factorization.
|
||||
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
CholmodDecomposition() : Base() { init(); }
|
||||
|
||||
CholmodDecomposition(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodDecomposition() {}
|
||||
|
||||
void setMode(CholmodMode mode)
|
||||
{
|
||||
switch(mode)
|
||||
{
|
||||
case CholmodAuto:
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
break;
|
||||
case CholmodSimplicialLLt:
|
||||
m_cholmod.final_asis = 0;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
m_cholmod.final_ll = 1;
|
||||
break;
|
||||
case CholmodSupernodalLLt:
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
||||
break;
|
||||
case CholmodLDLt:
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
|
||||
struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
|
||||
: solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
|
||||
{
|
||||
typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
|
||||
struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
|
||||
: sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
|
||||
{
|
||||
typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
|
||||
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CHOLMODSUPPORT_H
|
@ -1,308 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ARRAY_H
|
||||
#define EIGEN_ARRAY_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Array
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief General-purpose arrays with easy API for coefficient-wise operations
|
||||
*
|
||||
* The %Array class is very similar to the Matrix class. It provides
|
||||
* general-purpose one- and two-dimensional arrays. The difference between the
|
||||
* %Array and the %Matrix class is primarily in the API: the API for the
|
||||
* %Array class provides easy access to coefficient-wise operations, while the
|
||||
* API for the %Matrix class provides easy access to linear-algebra
|
||||
* operations.
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
|
||||
*
|
||||
* \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
typedef ArrayXpr XprKind;
|
||||
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
class Array
|
||||
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef PlainObjectBase<Array> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
|
||||
|
||||
enum { Options = _Options };
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
|
||||
protected:
|
||||
template <typename Derived, typename OtherDerived, bool IsVector>
|
||||
friend struct internal::conservative_resize_like_impl;
|
||||
|
||||
using Base::m_storage;
|
||||
|
||||
public:
|
||||
|
||||
using Base::base;
|
||||
using Base::coeff;
|
||||
using Base::coeffRef;
|
||||
|
||||
/**
|
||||
* The usage of
|
||||
* using Base::operator=;
|
||||
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
|
||||
* the usage of 'using'. This should be done only for operator=.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
/** Copies the value of the expression \a other into \c *this with automatic resizing.
|
||||
*
|
||||
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
|
||||
* it will be initialized.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Array& operator=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
return Base::_set(other);
|
||||
}
|
||||
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
|
||||
{
|
||||
return Base::_set(other);
|
||||
}
|
||||
|
||||
/** Default constructor.
|
||||
*
|
||||
* For fixed-size matrices, does nothing.
|
||||
*
|
||||
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
|
||||
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
|
||||
* a matrix to 0 is not supported.
|
||||
*
|
||||
* \sa resize(Index,Index)
|
||||
*/
|
||||
EIGEN_STRONG_INLINE explicit Array() : Base()
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
// FIXME is it still needed ??
|
||||
/** \internal */
|
||||
Array(internal::constructor_without_unaligned_array_assert)
|
||||
: Base(internal::constructor_without_unaligned_array_assert())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
*
|
||||
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
|
||||
* it is redundant to pass the dimension here, so it makes more sense to use the default
|
||||
* constructor Matrix() instead.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE explicit Array(Index dim)
|
||||
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
|
||||
eigen_assert(dim >= 0);
|
||||
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_STRONG_INLINE Array(const T0& x, const T1& y)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
this->template _init2<T0,T1>(x, y);
|
||||
}
|
||||
#else
|
||||
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
|
||||
*
|
||||
* This is useful for dynamic-size matrices. For fixed-size matrices,
|
||||
* it is redundant to pass these parameters, so one should use the default constructor
|
||||
* Matrix() instead. */
|
||||
Array(Index rows, Index cols);
|
||||
/** constructs an initialized 2D vector with given coefficients */
|
||||
Array(const Scalar& x, const Scalar& y);
|
||||
#endif
|
||||
|
||||
/** constructs an initialized 3D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
m_storage.data()[2] = z;
|
||||
}
|
||||
/** constructs an initialized 4D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
m_storage.data()[2] = z;
|
||||
m_storage.data()[3] = w;
|
||||
}
|
||||
|
||||
explicit Array(const Scalar *data);
|
||||
|
||||
/** Constructor copying the value of the expression \a other */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other)
|
||||
: Base(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::_set_noalias(other);
|
||||
}
|
||||
/** Copy constructor */
|
||||
EIGEN_STRONG_INLINE Array(const Array& other)
|
||||
: Base(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::_set_noalias(other);
|
||||
}
|
||||
/** Copy constructor with in-place evaluation */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::resize(other.rows(), other.cols());
|
||||
other.evalTo(*this);
|
||||
}
|
||||
|
||||
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
|
||||
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::resize(other.rows(), other.cols());
|
||||
*this = other;
|
||||
}
|
||||
|
||||
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
|
||||
* data pointers.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
void swap(ArrayBase<OtherDerived> const & other)
|
||||
{ this->_swap(other.derived()); }
|
||||
|
||||
inline Index innerStride() const { return 1; }
|
||||
inline Index outerStride() const { return this->innerSize(); }
|
||||
|
||||
#ifdef EIGEN_ARRAY_PLUGIN
|
||||
#include EIGEN_ARRAY_PLUGIN
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
||||
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
|
||||
friend struct internal::matrix_swap_impl;
|
||||
};
|
||||
|
||||
/** \defgroup arraytypedefs Global array typedefs
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
|
||||
*
|
||||
* The general patterns are the following:
|
||||
*
|
||||
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
|
||||
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
|
||||
* for complex double.
|
||||
*
|
||||
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
|
||||
*
|
||||
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
|
||||
* a fixed-size 1D array of 4 complex floats.
|
||||
*
|
||||
* \sa class Array
|
||||
*/
|
||||
|
||||
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
|
||||
/** \ingroup arraytypedefs */ \
|
||||
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup arraytypedefs */ \
|
||||
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
|
||||
/** \ingroup arraytypedefs */ \
|
||||
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
|
||||
/** \ingroup arraytypedefs */ \
|
||||
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
|
||||
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
|
||||
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
|
||||
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
|
||||
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
|
||||
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
|
||||
|
||||
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
|
||||
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
|
||||
|
||||
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
|
||||
|
||||
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
|
||||
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::Vector##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
|
||||
|
||||
#define EIGEN_USING_ARRAY_TYPEDEFS \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
|
||||
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ARRAY_H
|
@ -1,228 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ARRAYBASE_H
|
||||
#define EIGEN_ARRAYBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename ExpressionType> class MatrixWrapper;
|
||||
|
||||
/** \class ArrayBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for all 1D and 2D array, and related expressions
|
||||
*
|
||||
* An array is similar to a dense vector or matrix. While matrices are mathematical
|
||||
* objects with well defined linear algebra operators, an array is just a collection
|
||||
* of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
|
||||
* all operations applied to an array are performed coefficient wise. Furthermore,
|
||||
* arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
|
||||
* constructors allowing to easily write generic code working for both scalar values
|
||||
* and arrays.
|
||||
*
|
||||
* This class is the base that is inherited by all array expression types.
|
||||
*
|
||||
* \tparam Derived is the derived type, e.g., an array or an expression type.
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
|
||||
*
|
||||
* \sa class MatrixBase, \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived> class ArrayBase
|
||||
: public DenseBase<Derived>
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** The base class for a given storage type. */
|
||||
typedef ArrayBase StorageBaseType;
|
||||
|
||||
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
|
||||
|
||||
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef DenseBase<Derived> Base;
|
||||
using Base::RowsAtCompileTime;
|
||||
using Base::ColsAtCompileTime;
|
||||
using Base::SizeAtCompileTime;
|
||||
using Base::MaxRowsAtCompileTime;
|
||||
using Base::MaxColsAtCompileTime;
|
||||
using Base::MaxSizeAtCompileTime;
|
||||
using Base::IsVectorAtCompileTime;
|
||||
using Base::Flags;
|
||||
using Base::CoeffReadCost;
|
||||
|
||||
using Base::derived;
|
||||
using Base::const_cast_derived;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::coeff;
|
||||
using Base::coeffRef;
|
||||
using Base::lazyAssign;
|
||||
using Base::operator=;
|
||||
using Base::operator+=;
|
||||
using Base::operator-=;
|
||||
using Base::operator*=;
|
||||
using Base::operator/=;
|
||||
|
||||
typedef typename Base::CoeffReturnType CoeffReturnType;
|
||||
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
|
||||
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
|
||||
* reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
|
||||
* PlainObject or const PlainObject&.
|
||||
*/
|
||||
typedef Array<typename internal::traits<Derived>::Scalar,
|
||||
internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime,
|
||||
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
||||
internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime
|
||||
> PlainObject;
|
||||
|
||||
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
|
||||
# include "../plugins/CommonCwiseUnaryOps.h"
|
||||
# include "../plugins/MatrixCwiseUnaryOps.h"
|
||||
# include "../plugins/ArrayCwiseUnaryOps.h"
|
||||
# include "../plugins/CommonCwiseBinaryOps.h"
|
||||
# include "../plugins/MatrixCwiseBinaryOps.h"
|
||||
# include "../plugins/ArrayCwiseBinaryOps.h"
|
||||
# ifdef EIGEN_ARRAYBASE_PLUGIN
|
||||
# include EIGEN_ARRAYBASE_PLUGIN
|
||||
# endif
|
||||
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
|
||||
|
||||
/** Special case of the template operator=, in order to prevent the compiler
|
||||
* from generating a default operator= (issue hit with g++ 4.1)
|
||||
*/
|
||||
Derived& operator=(const ArrayBase& other)
|
||||
{
|
||||
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
Derived& operator+=(const Scalar& scalar)
|
||||
{ return *this = derived() + scalar; }
|
||||
Derived& operator-=(const Scalar& scalar)
|
||||
{ return *this = derived() - scalar; }
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const ArrayBase<OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const ArrayBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator*=(const ArrayBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator/=(const ArrayBase<OtherDerived>& other);
|
||||
|
||||
public:
|
||||
ArrayBase<Derived>& array() { return *this; }
|
||||
const ArrayBase<Derived>& array() const { return *this; }
|
||||
|
||||
/** \returns an \link MatrixBase Matrix \endlink expression of this array
|
||||
* \sa MatrixBase::array() */
|
||||
MatrixWrapper<Derived> matrix() { return derived(); }
|
||||
const MatrixWrapper<const Derived> matrix() const { return derived(); }
|
||||
|
||||
// template<typename Dest>
|
||||
// inline void evalTo(Dest& dst) const { dst = matrix(); }
|
||||
|
||||
protected:
|
||||
ArrayBase() : Base() {}
|
||||
|
||||
private:
|
||||
explicit ArrayBase(Index);
|
||||
ArrayBase(Index,Index);
|
||||
template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
|
||||
protected:
|
||||
// mixing arrays and matrices is not legal
|
||||
template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& )
|
||||
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
|
||||
// mixing arrays and matrices is not legal
|
||||
template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& )
|
||||
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
|
||||
};
|
||||
|
||||
/** replaces \c *this by \c *this - \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
|
||||
{
|
||||
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
|
||||
tmp = other.derived();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this + \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
|
||||
tmp = other.derived();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other coefficient wise.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
|
||||
tmp = other.derived();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this / \a other coefficient wise.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
|
||||
tmp = other.derived();
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ARRAYBASE_H
|
@ -1,254 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ARRAYWRAPPER_H
|
||||
#define EIGEN_ARRAYWRAPPER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class ArrayWrapper
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a mathematical vector or matrix as an array object
|
||||
*
|
||||
* This class is the return type of MatrixBase::array(), and most of the time
|
||||
* this is the only way it is use.
|
||||
*
|
||||
* \sa MatrixBase::array(), class MatrixWrapper
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<ArrayWrapper<ExpressionType> >
|
||||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
{
|
||||
typedef ArrayXpr XprKind;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename ExpressionType>
|
||||
class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
|
||||
{
|
||||
public:
|
||||
typedef ArrayBase<ArrayWrapper> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<ExpressionType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
|
||||
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
|
||||
|
||||
inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
inline Index rows() const { return m_expression.rows(); }
|
||||
inline Index cols() const { return m_expression.cols(); }
|
||||
inline Index outerStride() const { return m_expression.outerStride(); }
|
||||
inline Index innerStride() const { return m_expression.innerStride(); }
|
||||
|
||||
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
|
||||
inline const Scalar* data() const { return m_expression.data(); }
|
||||
|
||||
inline CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_expression.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_expression.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
template<typename Dest>
|
||||
inline void evalTo(Dest& dst) const { dst = m_expression; }
|
||||
|
||||
const typename internal::remove_all<NestedExpressionType>::type&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_expression;
|
||||
}
|
||||
|
||||
/** Forwards the resizing request to the nested expression
|
||||
* \sa DenseBase::resize(Index) */
|
||||
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
|
||||
/** Forwards the resizing request to the nested expression
|
||||
* \sa DenseBase::resize(Index,Index)*/
|
||||
void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
|
||||
|
||||
protected:
|
||||
NestedExpressionType m_expression;
|
||||
};
|
||||
|
||||
/** \class MatrixWrapper
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of an array as a mathematical vector or matrix
|
||||
*
|
||||
* This class is the return type of ArrayBase::matrix(), and most of the time
|
||||
* this is the only way it is use.
|
||||
*
|
||||
* \sa MatrixBase::matrix(), class ArrayWrapper
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<MatrixWrapper<ExpressionType> >
|
||||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename ExpressionType>
|
||||
class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
|
||||
{
|
||||
public:
|
||||
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<ExpressionType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
|
||||
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
|
||||
|
||||
inline MatrixWrapper(ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
inline Index rows() const { return m_expression.rows(); }
|
||||
inline Index cols() const { return m_expression.cols(); }
|
||||
inline Index outerStride() const { return m_expression.outerStride(); }
|
||||
inline Index innerStride() const { return m_expression.innerStride(); }
|
||||
|
||||
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
|
||||
inline const Scalar* data() const { return m_expression.data(); }
|
||||
|
||||
inline CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_expression.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return m_expression.derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_expression.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
const typename internal::remove_all<NestedExpressionType>::type&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_expression;
|
||||
}
|
||||
|
||||
/** Forwards the resizing request to the nested expression
|
||||
* \sa DenseBase::resize(Index) */
|
||||
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
|
||||
/** Forwards the resizing request to the nested expression
|
||||
* \sa DenseBase::resize(Index,Index)*/
|
||||
void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
|
||||
|
||||
protected:
|
||||
NestedExpressionType m_expression;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ARRAYWRAPPER_H
|
@ -1,583 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
|
||||
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ASSIGN_H
|
||||
#define EIGEN_ASSIGN_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for traversal and unrolling *
|
||||
***************************************************************************/
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
struct assign_traits
|
||||
{
|
||||
public:
|
||||
enum {
|
||||
DstIsAligned = Derived::Flags & AlignedBit,
|
||||
DstHasDirectAccess = Derived::Flags & DirectAccessBit,
|
||||
SrcIsAligned = OtherDerived::Flags & AlignedBit,
|
||||
JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
|
||||
: int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
|
||||
: int(Derived::RowsAtCompileTime),
|
||||
InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
|
||||
: int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
|
||||
: int(Derived::MaxRowsAtCompileTime),
|
||||
MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
|
||||
PacketSize = packet_traits<typename Derived::Scalar>::size
|
||||
};
|
||||
|
||||
enum {
|
||||
StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
|
||||
MightVectorize = StorageOrdersAgree
|
||||
&& (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
|
||||
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
|
||||
&& int(DstIsAligned) && int(SrcIsAligned),
|
||||
MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
|
||||
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
|
||||
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
|
||||
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
|
||||
so it's only good for large enough sizes. */
|
||||
MaySliceVectorize = MightVectorize && DstHasDirectAccess
|
||||
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
|
||||
/* slice vectorization can be slow, so we only want it if the slices are big, which is
|
||||
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
|
||||
in a fixed-size matrix */
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
|
||||
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
|
||||
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
|
||||
: int(MayLinearize) ? int(LinearTraversal)
|
||||
: int(DefaultTraversal),
|
||||
Vectorized = int(Traversal) == InnerVectorizedTraversal
|
||||
|| int(Traversal) == LinearVectorizedTraversal
|
||||
|| int(Traversal) == SliceVectorizedTraversal
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
|
||||
MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
|
||||
&& int(OtherDerived::CoeffReadCost) != Dynamic
|
||||
&& int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
|
||||
MayUnrollInner = int(InnerSize) != Dynamic
|
||||
&& int(OtherDerived::CoeffReadCost) != Dynamic
|
||||
&& int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
|
||||
? (
|
||||
int(MayUnrollCompletely) ? int(CompleteUnrolling)
|
||||
: int(MayUnrollInner) ? int(InnerUnrolling)
|
||||
: int(NoUnrolling)
|
||||
)
|
||||
: int(Traversal) == int(LinearVectorizedTraversal)
|
||||
? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
|
||||
: int(Traversal) == int(LinearTraversal)
|
||||
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
|
||||
: int(NoUnrolling)
|
||||
};
|
||||
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(DstIsAligned)
|
||||
EIGEN_DEBUG_VAR(SrcIsAligned)
|
||||
EIGEN_DEBUG_VAR(JointAlignment)
|
||||
EIGEN_DEBUG_VAR(InnerSize)
|
||||
EIGEN_DEBUG_VAR(InnerMaxSize)
|
||||
EIGEN_DEBUG_VAR(PacketSize)
|
||||
EIGEN_DEBUG_VAR(StorageOrdersAgree)
|
||||
EIGEN_DEBUG_VAR(MightVectorize)
|
||||
EIGEN_DEBUG_VAR(MayLinearize)
|
||||
EIGEN_DEBUG_VAR(MayInnerVectorize)
|
||||
EIGEN_DEBUG_VAR(MayLinearVectorize)
|
||||
EIGEN_DEBUG_VAR(MaySliceVectorize)
|
||||
EIGEN_DEBUG_VAR(Traversal)
|
||||
EIGEN_DEBUG_VAR(UnrollingLimit)
|
||||
EIGEN_DEBUG_VAR(MayUnrollCompletely)
|
||||
EIGEN_DEBUG_VAR(MayUnrollInner)
|
||||
EIGEN_DEBUG_VAR(Unrolling)
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : meta-unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/************************
|
||||
*** Default traversal ***
|
||||
************************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct assign_DefaultTraversal_CompleteUnrolling
|
||||
{
|
||||
enum {
|
||||
outer = Index / Derived1::InnerSizeAtCompileTime,
|
||||
inner = Index % Derived1::InnerSizeAtCompileTime
|
||||
};
|
||||
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
dst.copyCoeffByOuterInner(outer, inner, src);
|
||||
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct assign_DefaultTraversal_InnerUnrolling
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, int outer)
|
||||
{
|
||||
dst.copyCoeffByOuterInner(outer, Index, src);
|
||||
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, int) {}
|
||||
};
|
||||
|
||||
/***********************
|
||||
*** Linear traversal ***
|
||||
***********************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct assign_LinearTraversal_CompleteUnrolling
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
dst.copyCoeff(Index, src);
|
||||
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
/**************************
|
||||
*** Inner vectorization ***
|
||||
**************************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct assign_innervec_CompleteUnrolling
|
||||
{
|
||||
enum {
|
||||
outer = Index / Derived1::InnerSizeAtCompileTime,
|
||||
inner = Index % Derived1::InnerSizeAtCompileTime,
|
||||
JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
|
||||
};
|
||||
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
|
||||
assign_innervec_CompleteUnrolling<Derived1, Derived2,
|
||||
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct assign_innervec_InnerUnrolling
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, int outer)
|
||||
{
|
||||
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
|
||||
assign_innervec_InnerUnrolling<Derived1, Derived2,
|
||||
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, int) {}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived1, typename Derived2,
|
||||
int Traversal = assign_traits<Derived1, Derived2>::Traversal,
|
||||
int Unrolling = assign_traits<Derived1, Derived2>::Unrolling,
|
||||
int Version = Specialized>
|
||||
struct assign_impl;
|
||||
|
||||
/************************
|
||||
*** Default traversal ***
|
||||
************************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Unrolling, int Version>
|
||||
struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling, Version>
|
||||
{
|
||||
static inline void run(Derived1 &, const Derived2 &) { }
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const Index innerSize = dst.innerSize();
|
||||
const Index outerSize = dst.outerSize();
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
for(Index inner = 0; inner < innerSize; ++inner)
|
||||
dst.copyCoeffByOuterInner(outer, inner, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling, Version>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
|
||||
::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const Index outerSize = dst.outerSize();
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
|
||||
::run(dst, src, outer);
|
||||
}
|
||||
};
|
||||
|
||||
/***********************
|
||||
*** Linear traversal ***
|
||||
***********************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const Index size = dst.size();
|
||||
for(Index i = 0; i < size; ++i)
|
||||
dst.copyCoeff(i, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling, Version>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
|
||||
::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
/**************************
|
||||
*** Inner vectorization ***
|
||||
**************************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const Index innerSize = dst.innerSize();
|
||||
const Index outerSize = dst.outerSize();
|
||||
const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
for(Index inner = 0; inner < innerSize; inner+=packetSize)
|
||||
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling, Version>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
|
||||
::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const Index outerSize = dst.outerSize();
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
|
||||
::run(dst, src, outer);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************
|
||||
*** Linear vectorization ***
|
||||
***************************/
|
||||
|
||||
template <bool IsAligned = false>
|
||||
struct unaligned_assign_impl
|
||||
{
|
||||
template <typename Derived, typename OtherDerived>
|
||||
static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct unaligned_assign_impl<false>
|
||||
{
|
||||
// MSVC must not inline this functions. If it does, it fails to optimize the
|
||||
// packet access path.
|
||||
#ifdef _MSC_VER
|
||||
template <typename Derived, typename OtherDerived>
|
||||
static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
|
||||
#else
|
||||
template <typename Derived, typename OtherDerived>
|
||||
static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
|
||||
#endif
|
||||
{
|
||||
for (typename Derived::Index index = start; index < end; ++index)
|
||||
dst.copyCoeff(index, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const Index size = dst.size();
|
||||
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
|
||||
enum {
|
||||
packetSize = PacketTraits::size,
|
||||
dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
|
||||
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
|
||||
};
|
||||
const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
|
||||
: internal::first_aligned(&dst.coeffRef(0), size);
|
||||
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
|
||||
|
||||
unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
|
||||
|
||||
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
|
||||
{
|
||||
dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
|
||||
}
|
||||
|
||||
unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
enum { size = Derived1::SizeAtCompileTime,
|
||||
packetSize = packet_traits<typename Derived1::Scalar>::size,
|
||||
alignedSize = (size/packetSize)*packetSize };
|
||||
|
||||
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
|
||||
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
/**************************
|
||||
*** Slice vectorization ***
|
||||
***************************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Version>
|
||||
struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Version>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
|
||||
enum {
|
||||
packetSize = PacketTraits::size,
|
||||
alignable = PacketTraits::AlignedOnScalar,
|
||||
dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
|
||||
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
|
||||
};
|
||||
const Index packetAlignedMask = packetSize - 1;
|
||||
const Index innerSize = dst.innerSize();
|
||||
const Index outerSize = dst.outerSize();
|
||||
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
|
||||
Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
|
||||
: internal::first_aligned(&dst.coeffRef(0,0), innerSize);
|
||||
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
{
|
||||
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
|
||||
// do the non-vectorizable part of the assignment
|
||||
for(Index inner = 0; inner<alignedStart ; ++inner)
|
||||
dst.copyCoeffByOuterInner(outer, inner, src);
|
||||
|
||||
// do the vectorizable part of the assignment
|
||||
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
|
||||
dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
|
||||
|
||||
// do the non-vectorizable part of the assignment
|
||||
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
|
||||
dst.copyCoeffByOuterInner(outer, inner, src);
|
||||
|
||||
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : implementation of DenseBase methods
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
|
||||
::lazyAssign(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
enum{
|
||||
SameType = internal::is_same<typename Derived::Scalar,typename OtherDerived::Scalar>::value
|
||||
};
|
||||
|
||||
EIGEN_STATIC_ASSERT_LVALUE(Derived)
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
internal::assign_traits<Derived, OtherDerived>::debug();
|
||||
#endif
|
||||
eigen_assert(rows() == other.rows() && cols() == other.cols());
|
||||
internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
|
||||
: int(InvalidTraversal)>::run(derived(),other.derived());
|
||||
#ifndef EIGEN_NO_DEBUG
|
||||
checkTransposeAliasing(other.derived());
|
||||
#endif
|
||||
return derived();
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, typename OtherDerived,
|
||||
bool EvalBeforeAssigning = (int(OtherDerived::Flags) & EvalBeforeAssigningBit) != 0,
|
||||
bool NeedToTranspose = Derived::IsVectorAtCompileTime
|
||||
&& OtherDerived::IsVectorAtCompileTime
|
||||
&& ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
|
||||
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
|
||||
// revert to || as soon as not needed anymore.
|
||||
(int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
|
||||
&& int(Derived::SizeAtCompileTime) != 1>
|
||||
struct assign_selector;
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct assign_selector<Derived,OtherDerived,false,false> {
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
|
||||
};
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct assign_selector<Derived,OtherDerived,true,false> {
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
|
||||
};
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct assign_selector<Derived,OtherDerived,false,true> {
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
|
||||
};
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct assign_selector<Derived,OtherDerived,true,true> {
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
|
||||
{
|
||||
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
|
||||
{
|
||||
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template <typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template <typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
|
||||
{
|
||||
other.derived().evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
other.evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ASSIGN_H
|
@ -1,224 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
* Neither the name of Intel Corporation nor the names of its contributors may
|
||||
be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
********************************************************************************
|
||||
* Content : Eigen bindings to Intel(R) MKL
|
||||
* MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
|
||||
********************************************************************************
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_ASSIGN_VML_H
|
||||
#define EIGEN_ASSIGN_VML_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Op> struct vml_call
|
||||
{ enum { IsSupported = 0 }; };
|
||||
|
||||
template<typename Dst, typename Src, typename UnaryOp>
|
||||
class vml_assign_traits
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
DstHasDirectAccess = Dst::Flags & DirectAccessBit,
|
||||
SrcHasDirectAccess = Src::Flags & DirectAccessBit,
|
||||
|
||||
StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
|
||||
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
|
||||
: int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
|
||||
: int(Dst::RowsAtCompileTime),
|
||||
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
|
||||
: int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
|
||||
: int(Dst::MaxRowsAtCompileTime),
|
||||
MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
|
||||
|
||||
MightEnableVml = vml_call<UnaryOp>::IsSupported && StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess
|
||||
&& Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
|
||||
MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
|
||||
VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
|
||||
LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD,
|
||||
MayEnableVml = MightEnableVml && LargeEnough,
|
||||
MayLinearize = MayEnableVml && MightLinearize
|
||||
};
|
||||
public:
|
||||
enum {
|
||||
Traversal = MayLinearize ? LinearVectorizedTraversal
|
||||
: MayEnableVml ? InnerVectorizedTraversal
|
||||
: DefaultTraversal
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling,
|
||||
int VmlTraversal = vml_assign_traits<Derived1, Derived2, UnaryOp>::Traversal >
|
||||
struct vml_assign_impl
|
||||
: assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>
|
||||
{
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
|
||||
struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, InnerVectorizedTraversal>
|
||||
{
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
|
||||
{
|
||||
// in case we want to (or have to) skip VML at runtime we can call:
|
||||
// assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
|
||||
const Index innerSize = dst.innerSize();
|
||||
const Index outerSize = dst.outerSize();
|
||||
for(Index outer = 0; outer < outerSize; ++outer) {
|
||||
const Scalar *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) :
|
||||
&(src.nestedExpression().coeffRef(0, outer));
|
||||
Scalar *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer));
|
||||
vml_call<UnaryOp>::run(src.functor(), innerSize, src_ptr, dst_ptr );
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
|
||||
struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, LinearVectorizedTraversal>
|
||||
{
|
||||
static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
|
||||
{
|
||||
// in case we want to (or have to) skip VML at runtime we can call:
|
||||
// assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
|
||||
vml_call<UnaryOp>::run(src.functor(), dst.size(), src.nestedExpression().data(), dst.data() );
|
||||
}
|
||||
};
|
||||
|
||||
// Macroses
|
||||
|
||||
#define EIGEN_MKL_VML_SPECIALIZE_ASSIGN(TRAVERSAL,UNROLLING) \
|
||||
template<typename Derived1, typename Derived2, typename UnaryOp> \
|
||||
struct assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>, TRAVERSAL, UNROLLING, Specialized> { \
|
||||
static inline void run(Derived1 &dst, const Eigen::CwiseUnaryOp<UnaryOp, Derived2> &src) { \
|
||||
vml_assign_impl<Derived1,Derived2,UnaryOp,TRAVERSAL,UNROLLING>::run(dst, src); \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,NoUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,CompleteUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,InnerUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,NoUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,CompleteUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,NoUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,CompleteUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,InnerUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,CompleteUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,NoUnrolling)
|
||||
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(SliceVectorizedTraversal,NoUnrolling)
|
||||
|
||||
|
||||
#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
|
||||
#define EIGEN_MKL_VML_MODE VML_HA
|
||||
#else
|
||||
#define EIGEN_MKL_VML_MODE VML_LA
|
||||
#endif
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
|
||||
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
|
||||
enum { IsSupported = 1 }; \
|
||||
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
|
||||
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
|
||||
VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst); \
|
||||
} \
|
||||
};
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
|
||||
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
|
||||
enum { IsSupported = 1 }; \
|
||||
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
|
||||
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
|
||||
MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
|
||||
VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst, vmlMode); \
|
||||
} \
|
||||
};
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
|
||||
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
|
||||
enum { IsSupported = 1 }; \
|
||||
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& func, \
|
||||
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
|
||||
EIGENTYPE exponent = func.m_exponent; \
|
||||
MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
|
||||
VMLOP(&size, (const VMLTYPE*)src, (const VMLTYPE*)&exponent, \
|
||||
(VMLTYPE*)dst, &vmlMode); \
|
||||
} \
|
||||
};
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vs##VMLOP, float, float) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vd##VMLOP, double, double)
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vc##VMLOP, scomplex, MKL_Complex8) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vz##VMLOP, dcomplex, MKL_Complex16)
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP)
|
||||
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vms##VMLOP, float, float) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmd##VMLOP, double, double)
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmc##VMLOP, scomplex, MKL_Complex8) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmz##VMLOP, dcomplex, MKL_Complex16)
|
||||
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP)
|
||||
|
||||
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sin, Sin)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan)
|
||||
//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln)
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sqrt, Sqrt)
|
||||
|
||||
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr)
|
||||
|
||||
// The vm*powx functions are not avaibale in the windows version of MKL.
|
||||
#ifdef _WIN32
|
||||
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmspowx_, float, float)
|
||||
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdpowx_, double, double)
|
||||
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcpowx_, scomplex, MKL_Complex8)
|
||||
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzpowx_, dcomplex, MKL_Complex16)
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ASSIGN_VML_H
|
@ -1,334 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BANDMATRIX_H
|
||||
#define EIGEN_BANDMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived>
|
||||
class BandMatrixBase : public EigenBase<Derived>
|
||||
{
|
||||
public:
|
||||
|
||||
enum {
|
||||
Flags = internal::traits<Derived>::Flags,
|
||||
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
|
||||
Supers = internal::traits<Derived>::Supers,
|
||||
Subs = internal::traits<Derived>::Subs,
|
||||
Options = internal::traits<Derived>::Options
|
||||
};
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
|
||||
typedef typename DenseMatrixType::Index Index;
|
||||
typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
|
||||
typedef EigenBase<Derived> Base;
|
||||
|
||||
protected:
|
||||
enum {
|
||||
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
|
||||
? 1 + Supers + Subs
|
||||
: Dynamic,
|
||||
SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
using Base::derived;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
|
||||
/** \returns the number of super diagonals */
|
||||
inline Index supers() const { return derived().supers(); }
|
||||
|
||||
/** \returns the number of sub diagonals */
|
||||
inline Index subs() const { return derived().subs(); }
|
||||
|
||||
/** \returns an expression of the underlying coefficient matrix */
|
||||
inline const CoefficientsType& coeffs() const { return derived().coeffs(); }
|
||||
|
||||
/** \returns an expression of the underlying coefficient matrix */
|
||||
inline CoefficientsType& coeffs() { return derived().coeffs(); }
|
||||
|
||||
/** \returns a vector expression of the \a i -th column,
|
||||
* only the meaningful part is returned.
|
||||
* \warning the internal storage must be column major. */
|
||||
inline Block<CoefficientsType,Dynamic,1> col(Index i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
Index start = 0;
|
||||
Index len = coeffs().rows();
|
||||
if (i<=supers())
|
||||
{
|
||||
start = supers()-i;
|
||||
len = (std::min)(rows(),std::max<Index>(0,coeffs().rows() - (supers()-i)));
|
||||
}
|
||||
else if (i>=rows()-subs())
|
||||
len = std::max<Index>(0,coeffs().rows() - (i + 1 - rows() + subs()));
|
||||
return Block<CoefficientsType,Dynamic,1>(coeffs(), start, i, len, 1);
|
||||
}
|
||||
|
||||
/** \returns a vector expression of the main diagonal */
|
||||
inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal()
|
||||
{ return Block<CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
|
||||
|
||||
/** \returns a vector expression of the main diagonal (const version) */
|
||||
inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const
|
||||
{ return Block<const CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
|
||||
|
||||
template<int Index> struct DiagonalIntReturnType {
|
||||
enum {
|
||||
ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
|
||||
Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
|
||||
ActualIndex = ReturnOpposite ? -Index : Index,
|
||||
DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
|
||||
? Dynamic
|
||||
: (ActualIndex<0
|
||||
? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
|
||||
: EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
|
||||
};
|
||||
typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
|
||||
typedef typename internal::conditional<Conjugate,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
|
||||
BuildType>::type Type;
|
||||
};
|
||||
|
||||
/** \returns a vector expression of the \a N -th sub or super diagonal */
|
||||
template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal()
|
||||
{
|
||||
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
|
||||
}
|
||||
|
||||
/** \returns a vector expression of the \a N -th sub or super diagonal */
|
||||
template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const
|
||||
{
|
||||
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
|
||||
}
|
||||
|
||||
/** \returns a vector expression of the \a i -th sub or super diagonal */
|
||||
inline Block<CoefficientsType,1,Dynamic> diagonal(Index i)
|
||||
{
|
||||
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
|
||||
return Block<CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
|
||||
}
|
||||
|
||||
/** \returns a vector expression of the \a i -th sub or super diagonal */
|
||||
inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const
|
||||
{
|
||||
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
|
||||
return Block<const CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
|
||||
}
|
||||
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{
|
||||
dst.resize(rows(),cols());
|
||||
dst.setZero();
|
||||
dst.diagonal() = diagonal();
|
||||
for (Index i=1; i<=supers();++i)
|
||||
dst.diagonal(i) = diagonal(i);
|
||||
for (Index i=1; i<=subs();++i)
|
||||
dst.diagonal(-i) = diagonal(-i);
|
||||
}
|
||||
|
||||
DenseMatrixType toDenseMatrix() const
|
||||
{
|
||||
DenseMatrixType res(rows(),cols());
|
||||
evalTo(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
inline Index diagonalLength(Index i) const
|
||||
{ return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); }
|
||||
};
|
||||
|
||||
/**
|
||||
* \class BandMatrix
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a rectangular matrix with a banded storage
|
||||
*
|
||||
* \param _Scalar Numeric type, i.e. float, double, int
|
||||
* \param Rows Number of rows, or \b Dynamic
|
||||
* \param Cols Number of columns, or \b Dynamic
|
||||
* \param Supers Number of super diagonal
|
||||
* \param Subs Number of sub diagonal
|
||||
* \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
|
||||
* The former controls \ref TopicStorageOrders "storage order", and defaults to
|
||||
* column-major. The latter controls whether the matrix represents a selfadjoint
|
||||
* matrix in which case either Supers of Subs have to be null.
|
||||
*
|
||||
* \sa class TridiagonalMatrix
|
||||
*/
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
|
||||
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Dense StorageKind;
|
||||
typedef DenseIndex Index;
|
||||
enum {
|
||||
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _Rows,
|
||||
MaxColsAtCompileTime = _Cols,
|
||||
Flags = LvalueBit,
|
||||
Supers = _Supers,
|
||||
Subs = _Subs,
|
||||
Options = _Options,
|
||||
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
|
||||
};
|
||||
typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> CoefficientsType;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
|
||||
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::traits<BandMatrix>::Scalar Scalar;
|
||||
typedef typename internal::traits<BandMatrix>::Index Index;
|
||||
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
|
||||
|
||||
inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
|
||||
: m_coeffs(1+supers+subs,cols),
|
||||
m_rows(rows), m_supers(supers), m_subs(subs)
|
||||
{
|
||||
}
|
||||
|
||||
/** \returns the number of columns */
|
||||
inline Index rows() const { return m_rows.value(); }
|
||||
|
||||
/** \returns the number of rows */
|
||||
inline Index cols() const { return m_coeffs.cols(); }
|
||||
|
||||
/** \returns the number of super diagonals */
|
||||
inline Index supers() const { return m_supers.value(); }
|
||||
|
||||
/** \returns the number of sub diagonals */
|
||||
inline Index subs() const { return m_subs.value(); }
|
||||
|
||||
inline const CoefficientsType& coeffs() const { return m_coeffs; }
|
||||
inline CoefficientsType& coeffs() { return m_coeffs; }
|
||||
|
||||
protected:
|
||||
|
||||
CoefficientsType m_coeffs;
|
||||
internal::variable_if_dynamic<Index, Rows> m_rows;
|
||||
internal::variable_if_dynamic<Index, Supers> m_supers;
|
||||
internal::variable_if_dynamic<Index, Subs> m_subs;
|
||||
};
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
class BandMatrixWrapper;
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
{
|
||||
typedef typename _CoefficientsType::Scalar Scalar;
|
||||
typedef typename _CoefficientsType::StorageKind StorageKind;
|
||||
typedef typename _CoefficientsType::Index Index;
|
||||
enum {
|
||||
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _Rows,
|
||||
MaxColsAtCompileTime = _Cols,
|
||||
Flags = LvalueBit,
|
||||
Supers = _Supers,
|
||||
Subs = _Subs,
|
||||
Options = _Options,
|
||||
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
|
||||
};
|
||||
typedef _CoefficientsType CoefficientsType;
|
||||
};
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
|
||||
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
|
||||
typedef typename internal::traits<BandMatrixWrapper>::Index Index;
|
||||
|
||||
inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
|
||||
: m_coeffs(coeffs),
|
||||
m_rows(rows), m_supers(supers), m_subs(subs)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(cols);
|
||||
//internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
|
||||
}
|
||||
|
||||
/** \returns the number of columns */
|
||||
inline Index rows() const { return m_rows.value(); }
|
||||
|
||||
/** \returns the number of rows */
|
||||
inline Index cols() const { return m_coeffs.cols(); }
|
||||
|
||||
/** \returns the number of super diagonals */
|
||||
inline Index supers() const { return m_supers.value(); }
|
||||
|
||||
/** \returns the number of sub diagonals */
|
||||
inline Index subs() const { return m_subs.value(); }
|
||||
|
||||
inline const CoefficientsType& coeffs() const { return m_coeffs; }
|
||||
|
||||
protected:
|
||||
|
||||
const CoefficientsType& m_coeffs;
|
||||
internal::variable_if_dynamic<Index, _Rows> m_rows;
|
||||
internal::variable_if_dynamic<Index, _Supers> m_supers;
|
||||
internal::variable_if_dynamic<Index, _Subs> m_subs;
|
||||
};
|
||||
|
||||
/**
|
||||
* \class TridiagonalMatrix
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a tridiagonal matrix with a compact banded storage
|
||||
*
|
||||
* \param _Scalar Numeric type, i.e. float, double, int
|
||||
* \param Size Number of rows and cols, or \b Dynamic
|
||||
* \param _Options Can be 0 or \b SelfAdjoint
|
||||
*
|
||||
* \sa class BandMatrix
|
||||
*/
|
||||
template<typename Scalar, int Size, int Options>
|
||||
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
|
||||
{
|
||||
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
|
||||
typedef typename Base::Index Index;
|
||||
public:
|
||||
TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
|
||||
|
||||
inline typename Base::template DiagonalIntReturnType<1>::Type super()
|
||||
{ return Base::template diagonal<1>(); }
|
||||
inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
|
||||
{ return Base::template diagonal<1>(); }
|
||||
inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
|
||||
{ return Base::template diagonal<-1>(); }
|
||||
inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
|
||||
{ return Base::template diagonal<-1>(); }
|
||||
protected:
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BANDMATRIX_H
|
@ -1,357 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BLOCK_H
|
||||
#define EIGEN_BLOCK_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Block
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a fixed-size or dynamic-size block
|
||||
*
|
||||
* \param XprType the type of the expression in which we are taking a block
|
||||
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
|
||||
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
|
||||
* \param _DirectAccessStatus \internal used for partial specialization
|
||||
*
|
||||
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
|
||||
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
|
||||
* most of the time this is the only way it is used.
|
||||
*
|
||||
* However, if you want to directly maniputate block expressions,
|
||||
* for instance if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* Here is an example illustrating the dynamic case:
|
||||
* \include class_Block.cpp
|
||||
* Output: \verbinclude class_Block.out
|
||||
*
|
||||
* \note Even though this expression has dynamic size, in the case where \a XprType
|
||||
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
|
||||
* it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* Here is an example illustrating the fixed-size case:
|
||||
* \include class_FixedBlock.cpp
|
||||
* Output: \verbinclude class_FixedBlock.out
|
||||
*
|
||||
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess>
|
||||
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess> > : traits<XprType>
|
||||
{
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
||||
typedef typename traits<XprType>::XprKind XprKind;
|
||||
typedef typename nested<XprType>::type XprTypeNested;
|
||||
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
|
||||
enum{
|
||||
MatrixRows = traits<XprType>::RowsAtCompileTime,
|
||||
MatrixCols = traits<XprType>::ColsAtCompileTime,
|
||||
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
|
||||
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
|
||||
MaxRowsAtCompileTime = BlockRows==0 ? 0
|
||||
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
|
||||
: int(traits<XprType>::MaxRowsAtCompileTime),
|
||||
MaxColsAtCompileTime = BlockCols==0 ? 0
|
||||
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
|
||||
: int(traits<XprType>::MaxColsAtCompileTime),
|
||||
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
|
||||
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
: XprTypeIsRowMajor,
|
||||
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
|
||||
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
|
||||
? int(inner_stride_at_compile_time<XprType>::ret)
|
||||
: int(outer_stride_at_compile_time<XprType>::ret),
|
||||
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
|
||||
? int(outer_stride_at_compile_time<XprType>::ret)
|
||||
: int(inner_stride_at_compile_time<XprType>::ret),
|
||||
MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
|
||||
&& (InnerStrideAtCompileTime == 1)
|
||||
? PacketAccessBit : 0,
|
||||
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
|
||||
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
|
||||
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
|
||||
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
|
||||
DirectAccessBit |
|
||||
MaskPacketAccessBit |
|
||||
MaskAlignedBit),
|
||||
Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess> class Block
|
||||
: public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Block>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Block)
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
/** Column or Row constructor
|
||||
*/
|
||||
inline Block(XprType& xpr, Index i)
|
||||
: m_xpr(xpr),
|
||||
// It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
|
||||
// and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1,
|
||||
// all other cases are invalid.
|
||||
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
|
||||
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
|
||||
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
|
||||
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
|
||||
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
|
||||
{
|
||||
eigen_assert( (i>=0) && (
|
||||
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
|
||||
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
|
||||
}
|
||||
|
||||
/** Fixed-size constructor
|
||||
*/
|
||||
inline Block(XprType& xpr, Index startRow, Index startCol)
|
||||
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
|
||||
m_blockRows(BlockRows), m_blockCols(BlockCols)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
|
||||
eigen_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= xpr.rows()
|
||||
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= xpr.cols());
|
||||
}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
*/
|
||||
inline Block(XprType& xpr,
|
||||
Index startRow, Index startCol,
|
||||
Index blockRows, Index blockCols)
|
||||
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
|
||||
m_blockRows(blockRows), m_blockCols(blockCols)
|
||||
{
|
||||
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
|
||||
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
|
||||
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow + blockRows <= xpr.rows()
|
||||
&& startCol >= 0 && blockCols >= 0 && startCol + blockCols <= xpr.cols());
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
inline Index rows() const { return m_blockRows.value(); }
|
||||
inline Index cols() const { return m_blockCols.value(); }
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(XprType)
|
||||
return m_xpr.const_cast_derived()
|
||||
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return m_xpr.derived()
|
||||
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_xpr.coeff(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(XprType)
|
||||
return m_xpr.const_cast_derived()
|
||||
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_xpr.const_cast_derived()
|
||||
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
inline const CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_xpr
|
||||
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_xpr.template packet<Unaligned>
|
||||
(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_xpr.const_cast_derived().template writePacket<Unaligned>
|
||||
(row + m_startRow.value(), col + m_startCol.value(), x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_xpr.template packet<Unaligned>
|
||||
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_xpr.const_cast_derived().template writePacket<Unaligned>
|
||||
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), x);
|
||||
}
|
||||
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \sa MapBase::data() */
|
||||
inline const Scalar* data() const;
|
||||
inline Index innerStride() const;
|
||||
inline Index outerStride() const;
|
||||
#endif
|
||||
|
||||
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
|
||||
{
|
||||
return m_xpr;
|
||||
}
|
||||
|
||||
Index startRow() const
|
||||
{
|
||||
return m_startRow.value();
|
||||
}
|
||||
|
||||
Index startCol() const
|
||||
{
|
||||
return m_startCol.value();
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
const typename XprType::Nested m_xpr;
|
||||
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
|
||||
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
|
||||
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
|
||||
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
|
||||
};
|
||||
|
||||
/** \internal */
|
||||
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
|
||||
class Block<XprType,BlockRows,BlockCols, InnerPanel,true>
|
||||
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel, true> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MapBase<Block> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Block)
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
/** Column or Row constructor
|
||||
*/
|
||||
inline Block(XprType& xpr, Index i)
|
||||
: Base(internal::const_cast_ptr(&xpr.coeffRef(
|
||||
(BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
|
||||
(BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
|
||||
BlockRows==1 ? 1 : xpr.rows(),
|
||||
BlockCols==1 ? 1 : xpr.cols()),
|
||||
m_xpr(xpr)
|
||||
{
|
||||
eigen_assert( (i>=0) && (
|
||||
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
|
||||
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
|
||||
init();
|
||||
}
|
||||
|
||||
/** Fixed-size constructor
|
||||
*/
|
||||
inline Block(XprType& xpr, Index startRow, Index startCol)
|
||||
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
|
||||
{
|
||||
eigen_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= xpr.rows()
|
||||
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= xpr.cols());
|
||||
init();
|
||||
}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
*/
|
||||
inline Block(XprType& xpr,
|
||||
Index startRow, Index startCol,
|
||||
Index blockRows, Index blockCols)
|
||||
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
|
||||
m_xpr(xpr)
|
||||
{
|
||||
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
|
||||
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
|
||||
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow + blockRows <= xpr.rows()
|
||||
&& startCol >= 0 && blockCols >= 0 && startCol + blockCols <= xpr.cols());
|
||||
init();
|
||||
}
|
||||
|
||||
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
|
||||
{
|
||||
return m_xpr;
|
||||
}
|
||||
|
||||
/** \sa MapBase::innerStride() */
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return internal::traits<Block>::HasSameStorageOrderAsXprType
|
||||
? m_xpr.innerStride()
|
||||
: m_xpr.outerStride();
|
||||
}
|
||||
|
||||
/** \sa MapBase::outerStride() */
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return m_outerStride;
|
||||
}
|
||||
|
||||
#ifndef __SUNPRO_CC
|
||||
// FIXME sunstudio is not friendly with the above friend...
|
||||
// META-FIXME there is no 'friend' keyword around here. Is this obsolete?
|
||||
protected:
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal used by allowAligned() */
|
||||
inline Block(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
|
||||
: Base(data, blockRows, blockCols), m_xpr(xpr)
|
||||
{
|
||||
init();
|
||||
}
|
||||
#endif
|
||||
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_outerStride = internal::traits<Block>::HasSameStorageOrderAsXprType
|
||||
? m_xpr.outerStride()
|
||||
: m_xpr.innerStride();
|
||||
}
|
||||
|
||||
typename XprType::Nested m_xpr;
|
||||
Index m_outerStride;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BLOCK_H
|
@ -1,138 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ALLANDANY_H
|
||||
#define EIGEN_ALLANDANY_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, int UnrollCount>
|
||||
struct all_unroller
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
static inline bool run(const Derived &mat)
|
||||
{
|
||||
return all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct all_unroller<Derived, 1>
|
||||
{
|
||||
static inline bool run(const Derived &mat) { return mat.coeff(0, 0); }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct all_unroller<Derived, Dynamic>
|
||||
{
|
||||
static inline bool run(const Derived &) { return false; }
|
||||
};
|
||||
|
||||
template<typename Derived, int UnrollCount>
|
||||
struct any_unroller
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
static inline bool run(const Derived &mat)
|
||||
{
|
||||
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct any_unroller<Derived, 1>
|
||||
{
|
||||
static inline bool run(const Derived &mat) { return mat.coeff(0, 0); }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct any_unroller<Derived, Dynamic>
|
||||
{
|
||||
static inline bool run(const Derived &) { return false; }
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns true if all coefficients are true
|
||||
*
|
||||
* Example: \include MatrixBase_all.cpp
|
||||
* Output: \verbinclude MatrixBase_all.out
|
||||
*
|
||||
* \sa any(), Cwise::operator<()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline bool DenseBase<Derived>::all() const
|
||||
{
|
||||
enum {
|
||||
unroll = SizeAtCompileTime != Dynamic
|
||||
&& CoeffReadCost != Dynamic
|
||||
&& NumTraits<Scalar>::AddCost != Dynamic
|
||||
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
|
||||
};
|
||||
if(unroll)
|
||||
return internal::all_unroller<Derived,
|
||||
unroll ? int(SizeAtCompileTime) : Dynamic
|
||||
>::run(derived());
|
||||
else
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
if (!coeff(i, j)) return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns true if at least one coefficient is true
|
||||
*
|
||||
* \sa all()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline bool DenseBase<Derived>::any() const
|
||||
{
|
||||
enum {
|
||||
unroll = SizeAtCompileTime != Dynamic
|
||||
&& CoeffReadCost != Dynamic
|
||||
&& NumTraits<Scalar>::AddCost != Dynamic
|
||||
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
|
||||
};
|
||||
if(unroll)
|
||||
return internal::any_unroller<Derived,
|
||||
unroll ? int(SizeAtCompileTime) : Dynamic
|
||||
>::run(derived());
|
||||
else
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
if (coeff(i, j)) return true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the number of coefficients which evaluate to true
|
||||
*
|
||||
* \sa all(), any()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::Index DenseBase<Derived>::count() const
|
||||
{
|
||||
return derived().template cast<bool>().template cast<Index>().sum();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ALLANDANY_H
|
@ -1,141 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CommaInitializer
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class used by the comma initializer operator
|
||||
*
|
||||
* This class is internally used to implement the comma initializer feature. It is
|
||||
* the return type of MatrixBase::operator<<, and most of the time this is the only
|
||||
* way it is used.
|
||||
*
|
||||
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
|
||||
*/
|
||||
template<typename XprType>
|
||||
struct CommaInitializer
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::Index Index;
|
||||
|
||||
inline CommaInitializer(XprType& xpr, const Scalar& s)
|
||||
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
|
||||
{
|
||||
m_xpr.coeffRef(0,0) = s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
|
||||
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
|
||||
{
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = 1;
|
||||
eigen_assert(m_row<m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==1);
|
||||
m_xpr.coeffRef(m_row, m_col++) = s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* inserts a matrix expression in the target matrix */
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if(other.cols()==0 || other.rows()==0)
|
||||
return *this;
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = other.rows();
|
||||
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
* Calling finished is 100% optional. Its purpose is to write expressions
|
||||
* like this:
|
||||
* \code
|
||||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
Index m_col; // current col id
|
||||
Index m_currentBlockRows; // current block height
|
||||
};
|
||||
|
||||
/** \anchor MatrixBaseCommaInitRef
|
||||
* Convenient operator to set the coefficients of a matrix.
|
||||
*
|
||||
* The coefficients must be provided in a row major order and exactly match
|
||||
* the size of the matrix. Otherwise an assertion is raised.
|
||||
*
|
||||
* Example: \include MatrixBase_set.cpp
|
||||
* Output: \verbinclude MatrixBase_set.out
|
||||
*
|
||||
* \sa CommaInitializer::finished(), class CommaInitializer
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
|
||||
}
|
||||
|
||||
/** \sa operator<<(const Scalar&) */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer<Derived>
|
||||
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMMAINITIALIZER_H
|
@ -1,229 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CWISE_BINARY_OP_H
|
||||
#define EIGEN_CWISE_BINARY_OP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CwiseBinaryOp
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
|
||||
*
|
||||
* \param BinaryOp template functor implementing the operator
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
*
|
||||
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
|
||||
* It is the return type of binary operators, by which we mean only those binary operators where
|
||||
* both the left-hand side and the right-hand side are Eigen expressions.
|
||||
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
|
||||
*
|
||||
* Most of the time, this is the only way that it is used, so you typically don't have to name
|
||||
* CwiseBinaryOp types explicitly.
|
||||
*
|
||||
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
// we must not inherit from traits<Lhs> since it has
|
||||
// the potential to cause problems with MSVC
|
||||
typedef typename remove_all<Lhs>::type Ancestor;
|
||||
typedef typename traits<Ancestor>::XprKind XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
|
||||
// we still want to handle the case when the result type is different.
|
||||
typedef typename result_of<
|
||||
BinaryOp(
|
||||
typename Lhs::Scalar,
|
||||
typename Rhs::Scalar
|
||||
)
|
||||
>::type Scalar;
|
||||
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
|
||||
typename traits<Rhs>::StorageKind>::ret StorageKind;
|
||||
typedef typename promote_index_type<typename traits<Lhs>::Index,
|
||||
typename traits<Rhs>::Index>::type Index;
|
||||
typedef typename Lhs::Nested LhsNested;
|
||||
typedef typename Rhs::Nested RhsNested;
|
||||
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
||||
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
||||
enum {
|
||||
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
||||
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
||||
LhsFlags = _LhsNested::Flags,
|
||||
RhsFlags = _RhsNested::Flags,
|
||||
SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
|
||||
StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
|
||||
Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
|
||||
HereditaryBits
|
||||
| (int(LhsFlags) & int(RhsFlags) &
|
||||
( AlignedBit
|
||||
| (StorageOrdersAgree ? LinearAccessBit : 0)
|
||||
| (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
|
||||
)
|
||||
)
|
||||
),
|
||||
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
|
||||
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
|
||||
};
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
|
||||
// that would take two operands of different types. If there were such an example, then this check should be
|
||||
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
|
||||
// currently they take only one typename Scalar template parameter.
|
||||
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
|
||||
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
|
||||
// add together a float matrix and a double matrix.
|
||||
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
|
||||
EIGEN_STATIC_ASSERT((internal::functor_allows_mixing_real_and_complex<BINOP>::ret \
|
||||
? int(internal::is_same<typename NumTraits<LHS>::Real, typename NumTraits<RHS>::Real>::value) \
|
||||
: int(internal::is_same<LHS, RHS>::value)), \
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
|
||||
class CwiseBinaryOpImpl;
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
class CwiseBinaryOp : internal::no_assignment_operator,
|
||||
public CwiseBinaryOpImpl<
|
||||
BinaryOp, Lhs, Rhs,
|
||||
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
|
||||
typename internal::traits<Rhs>::StorageKind>::ret>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename CwiseBinaryOpImpl<
|
||||
BinaryOp, Lhs, Rhs,
|
||||
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
|
||||
typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
|
||||
|
||||
typedef typename internal::nested<Lhs>::type LhsNested;
|
||||
typedef typename internal::nested<Rhs>::type RhsNested;
|
||||
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
|
||||
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
|
||||
|
||||
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& lhs, const Rhs& rhs, const BinaryOp& func = BinaryOp())
|
||||
: m_lhs(lhs), m_rhs(rhs), m_functor(func)
|
||||
{
|
||||
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
|
||||
// require the sizes to match
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
|
||||
eigen_assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const {
|
||||
// return the fixed size type if available to enable compile time optimizations
|
||||
if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
|
||||
return m_rhs.rows();
|
||||
else
|
||||
return m_lhs.rows();
|
||||
}
|
||||
EIGEN_STRONG_INLINE Index cols() const {
|
||||
// return the fixed size type if available to enable compile time optimizations
|
||||
if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
|
||||
return m_rhs.cols();
|
||||
else
|
||||
return m_lhs.cols();
|
||||
}
|
||||
|
||||
/** \returns the left hand side nested expression */
|
||||
const _LhsNested& lhs() const { return m_lhs; }
|
||||
/** \returns the right hand side nested expression */
|
||||
const _RhsNested& rhs() const { return m_rhs; }
|
||||
/** \returns the functor representing the binary operation */
|
||||
const BinaryOp& functor() const { return m_functor; }
|
||||
|
||||
protected:
|
||||
LhsNested m_lhs;
|
||||
RhsNested m_rhs;
|
||||
const BinaryOp m_functor;
|
||||
};
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
|
||||
: public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
|
||||
{
|
||||
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
return derived().functor()(derived().lhs().coeff(row, col),
|
||||
derived().rhs().coeff(row, col));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(row, col),
|
||||
derived().rhs().template packet<LoadMode>(row, col));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
|
||||
{
|
||||
return derived().functor()(derived().lhs().coeff(index),
|
||||
derived().rhs().coeff(index));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
|
||||
{
|
||||
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
|
||||
derived().rhs().template packet<LoadMode>(index));
|
||||
}
|
||||
};
|
||||
|
||||
/** replaces \c *this by \c *this - \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
|
||||
tmp = other.derived();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this + \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
|
||||
tmp = other.derived();
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CWISE_BINARY_OP_H
|
@ -1,864 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CWISE_NULLARY_OP_H
|
||||
#define EIGEN_CWISE_NULLARY_OP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CwiseNullaryOp
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Generic expression of a matrix where all coefficients are defined by a functor
|
||||
*
|
||||
* \param NullaryOp template functor implementing the operator
|
||||
* \param PlainObjectType the underlying plain matrix/array type
|
||||
*
|
||||
* This class represents an expression of a generic nullary operator.
|
||||
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* However, if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename NullaryOp, typename PlainObjectType>
|
||||
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
|
||||
{
|
||||
enum {
|
||||
Flags = (traits<PlainObjectType>::Flags
|
||||
& ( HereditaryBits
|
||||
| (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
|
||||
| (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
|
||||
| (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
|
||||
CoeffReadCost = functor_traits<NullaryOp>::Cost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename NullaryOp, typename PlainObjectType>
|
||||
class CwiseNullaryOp : internal::no_assignment_operator,
|
||||
public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
|
||||
|
||||
CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp())
|
||||
: m_rows(rows), m_cols(cols), m_functor(func)
|
||||
{
|
||||
eigen_assert(rows >= 0
|
||||
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& cols >= 0
|
||||
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index rows, Index cols) const
|
||||
{
|
||||
return m_functor(rows, cols);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_functor.packetOp(row, col);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
|
||||
{
|
||||
return m_functor(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_functor.packetOp(index);
|
||||
}
|
||||
|
||||
/** \returns the functor representing the nullary operation */
|
||||
const NullaryOp& functor() const { return m_functor; }
|
||||
|
||||
protected:
|
||||
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
|
||||
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
|
||||
const NullaryOp m_functor;
|
||||
};
|
||||
|
||||
|
||||
/** \returns an expression of a matrix defined by a custom functor \a func
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
|
||||
{
|
||||
return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
|
||||
}
|
||||
|
||||
/** \returns an expression of a matrix defined by a custom functor \a func
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
|
||||
else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
|
||||
}
|
||||
|
||||
/** \returns an expression of a matrix defined by a custom functor \a func
|
||||
*
|
||||
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
|
||||
{
|
||||
return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
|
||||
}
|
||||
|
||||
/** \returns an expression of a constant matrix of value \a value
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this DenseBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
|
||||
{
|
||||
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/** \returns an expression of a constant matrix of value \a value
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this DenseBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Constant(Index size, const Scalar& value)
|
||||
{
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/** \returns an expression of a constant matrix of value \a value
|
||||
*
|
||||
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Constant(const Scalar& value)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Sets a linearly space vector.
|
||||
*
|
||||
* The function generates 'size' equally spaced values in the closed interval [low,high].
|
||||
* This particular version of LinSpaced() uses sequential access, i.e. vector access is
|
||||
* assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization
|
||||
* and yields faster code than the random access version.
|
||||
*
|
||||
* When size is set to 1, a vector of length 1 containing 'high' is returned.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include DenseBase_LinSpaced_seq.cpp
|
||||
* Output: \verbinclude DenseBase_LinSpaced_seq.out
|
||||
*
|
||||
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
|
||||
}
|
||||
|
||||
/**
|
||||
* \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
|
||||
* Special version for fixed size types which does not require the size parameter.
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,false>(low,high,Derived::SizeAtCompileTime));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Sets a linearly space vector.
|
||||
*
|
||||
* The function generates 'size' equally spaced values in the closed interval [low,high].
|
||||
* When size is set to 1, a vector of length 1 containing 'high' is returned.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include DenseBase_LinSpaced.cpp
|
||||
* Output: \verbinclude DenseBase_LinSpaced.out
|
||||
*
|
||||
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,true>(low,high,size));
|
||||
}
|
||||
|
||||
/**
|
||||
* \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&)
|
||||
* Special version for fixed size types which does not require the size parameter.
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,true>(low,high,Derived::SizeAtCompileTime));
|
||||
}
|
||||
|
||||
/** \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isApproxToConstant
|
||||
(const Scalar& value, RealScalar prec) const
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
if(!internal::isApprox(this->coeff(i, j), value, prec))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** This is just an alias for isApproxToConstant().
|
||||
*
|
||||
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isConstant
|
||||
(const Scalar& value, RealScalar prec) const
|
||||
{
|
||||
return isApproxToConstant(value, prec);
|
||||
}
|
||||
|
||||
/** Alias for setConstant(): sets all coefficients in this expression to \a value.
|
||||
*
|
||||
* \sa setConstant(), Constant(), class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& value)
|
||||
{
|
||||
setConstant(value);
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to \a value.
|
||||
*
|
||||
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& value)
|
||||
{
|
||||
return derived() = Constant(rows(), cols(), value);
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setConstant_int.cpp
|
||||
* Output: \verbinclude Matrix_setConstant_int.out
|
||||
*
|
||||
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& value)
|
||||
{
|
||||
resize(size);
|
||||
return setConstant(value);
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
* \param value the value to which all coefficients are set
|
||||
*
|
||||
* Example: \include Matrix_setConstant_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setConstant_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& value)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setConstant(value);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Sets a linearly space vector.
|
||||
*
|
||||
* The function generates 'size' equally spaced values in the closed interval [low,high].
|
||||
* When size is set to 1, a vector of length 1 containing 'high' is returned.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include DenseBase_setLinSpaced.cpp
|
||||
* Output: \verbinclude DenseBase_setLinSpaced.out
|
||||
*
|
||||
* \sa CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return derived() = Derived::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Sets a linearly space vector.
|
||||
*
|
||||
* The function fill *this with equally spaced values in the closed interval [low,high].
|
||||
* When size is set to 1, a vector of length 1 containing 'high' is returned.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return setLinSpaced(size(), low, high);
|
||||
}
|
||||
|
||||
// zero:
|
||||
|
||||
/** \returns an expression of a zero matrix.
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_zero_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_zero_int_int.out
|
||||
*
|
||||
* \sa Zero(), Zero(Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Zero(Index rows, Index cols)
|
||||
{
|
||||
return Constant(rows, cols, Scalar(0));
|
||||
}
|
||||
|
||||
/** \returns an expression of a zero vector.
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_zero_int.cpp
|
||||
* Output: \verbinclude MatrixBase_zero_int.out
|
||||
*
|
||||
* \sa Zero(), Zero(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Zero(Index size)
|
||||
{
|
||||
return Constant(size, Scalar(0));
|
||||
}
|
||||
|
||||
/** \returns an expression of a fixed-size zero matrix or vector.
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_zero.cpp
|
||||
* Output: \verbinclude MatrixBase_zero.out
|
||||
*
|
||||
* \sa Zero(Index), Zero(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Zero()
|
||||
{
|
||||
return Constant(Scalar(0));
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to the zero matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isZero.cpp
|
||||
* Output: \verbinclude MatrixBase_isZero.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isZero(RealScalar prec) const
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to zero.
|
||||
*
|
||||
* Example: \include MatrixBase_setZero.cpp
|
||||
* Output: \verbinclude MatrixBase_setZero.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
|
||||
{
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setZero_int.cpp
|
||||
* Output: \verbinclude Matrix_setZero_int.out
|
||||
*
|
||||
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setZero(Index size)
|
||||
{
|
||||
resize(size);
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to zero.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setZero_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setZero_int_int.out
|
||||
*
|
||||
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setZero(Index rows, Index cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
|
||||
// ones:
|
||||
|
||||
/** \returns an expression of a matrix where all coefficients equal one.
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_ones_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_ones_int_int.out
|
||||
*
|
||||
* \sa Ones(), Ones(Index), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Ones(Index rows, Index cols)
|
||||
{
|
||||
return Constant(rows, cols, Scalar(1));
|
||||
}
|
||||
|
||||
/** \returns an expression of a vector where all coefficients equal one.
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Ones() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_ones_int.cpp
|
||||
* Output: \verbinclude MatrixBase_ones_int.out
|
||||
*
|
||||
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Ones(Index size)
|
||||
{
|
||||
return Constant(size, Scalar(1));
|
||||
}
|
||||
|
||||
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_ones.cpp
|
||||
* Output: \verbinclude MatrixBase_ones.out
|
||||
*
|
||||
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Ones()
|
||||
{
|
||||
return Constant(Scalar(1));
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to the matrix where all coefficients
|
||||
* are equal to 1, within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isOnes.cpp
|
||||
* Output: \verbinclude MatrixBase_isOnes.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isOnes
|
||||
(RealScalar prec) const
|
||||
{
|
||||
return isApproxToConstant(Scalar(1), prec);
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to one.
|
||||
*
|
||||
* Example: \include MatrixBase_setOnes.cpp
|
||||
* Output: \verbinclude MatrixBase_setOnes.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
|
||||
{
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to one.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setOnes_int.cpp
|
||||
* Output: \verbinclude Matrix_setOnes_int.out
|
||||
*
|
||||
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setOnes(Index size)
|
||||
{
|
||||
resize(size);
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to one.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setOnes_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setOnes_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
|
||||
// Identity:
|
||||
|
||||
/** \returns an expression of the identity matrix (not necessarily square).
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_identity_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_identity_int_int.out
|
||||
*
|
||||
* \sa Identity(), setIdentity(), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
MatrixBase<Derived>::Identity(Index rows, Index cols)
|
||||
{
|
||||
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns an expression of the identity matrix (not necessarily square).
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variant taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_identity.cpp
|
||||
* Output: \verbinclude MatrixBase_identity.out
|
||||
*
|
||||
* \sa Identity(Index,Index), setIdentity(), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
MatrixBase<Derived>::Identity()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to the identity matrix
|
||||
* (not necessarily square),
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isIdentity.cpp
|
||||
* Output: \verbinclude MatrixBase_isIdentity.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isIdentity
|
||||
(RealScalar prec) const
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
{
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
{
|
||||
if(i == j)
|
||||
{
|
||||
if(!internal::isApprox(this->coeff(i, j), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<RealScalar>(1), prec))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
|
||||
struct setIdentity_impl
|
||||
{
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
|
||||
{
|
||||
return m = Derived::Identity(m.rows(), m.cols());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct setIdentity_impl<Derived, true>
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
|
||||
{
|
||||
m.setZero();
|
||||
const Index size = (std::min)(m.rows(), m.cols());
|
||||
for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
|
||||
return m;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Writes the identity expression (not necessarily square) into *this.
|
||||
*
|
||||
* Example: \include MatrixBase_setIdentity.cpp
|
||||
* Output: \verbinclude MatrixBase_setIdentity.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
|
||||
{
|
||||
return internal::setIdentity_impl<Derived>::run(derived());
|
||||
}
|
||||
|
||||
/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setIdentity_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setIdentity_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
|
||||
{
|
||||
derived().resize(rows, cols);
|
||||
return setIdentity();
|
||||
}
|
||||
|
||||
/** \returns an expression of the i-th unit (basis) vector.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index size, Index i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return BasisReturnType(SquareMatrixType::Identity(size,size), i);
|
||||
}
|
||||
|
||||
/** \returns an expression of the i-th unit (basis) vector.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is for fixed-size vector only.
|
||||
*
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return BasisReturnType(SquareMatrixType::Identity(),i);
|
||||
}
|
||||
|
||||
/** \returns an expression of the X axis unit vector (1{,0}^*)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
|
||||
{ return Derived::Unit(0); }
|
||||
|
||||
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
|
||||
{ return Derived::Unit(1); }
|
||||
|
||||
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
|
||||
{ return Derived::Unit(2); }
|
||||
|
||||
/** \returns an expression of the W axis unit vector (0,0,0,1)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
|
||||
{ return Derived::Unit(3); }
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CWISE_NULLARY_OP_H
|
@ -1,126 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CWISE_UNARY_OP_H
|
||||
#define EIGEN_CWISE_UNARY_OP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CwiseUnaryOp
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
|
||||
*
|
||||
* \param UnaryOp template functor implementing the operator
|
||||
* \param XprType the type of the expression to which we are applying the unary operator
|
||||
*
|
||||
* This class represents an expression where a unary operator is applied to an expression.
|
||||
* It is the return type of all operations taking exactly 1 input expression, regardless of the
|
||||
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
|
||||
* is considered unary, because only the right-hand side is an expression, and its
|
||||
* return type is a specialization of CwiseUnaryOp.
|
||||
*
|
||||
* Most of the time, this is the only way that it is used, so you typically don't have to name
|
||||
* CwiseUnaryOp types explicitly.
|
||||
*
|
||||
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename UnaryOp, typename XprType>
|
||||
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
|
||||
: traits<XprType>
|
||||
{
|
||||
typedef typename result_of<
|
||||
UnaryOp(typename XprType::Scalar)
|
||||
>::type Scalar;
|
||||
typedef typename XprType::Nested XprTypeNested;
|
||||
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
|
||||
enum {
|
||||
Flags = _XprTypeNested::Flags & (
|
||||
HereditaryBits | LinearAccessBit | AlignedBit
|
||||
| (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
|
||||
CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename UnaryOp, typename XprType, typename StorageKind>
|
||||
class CwiseUnaryOpImpl;
|
||||
|
||||
template<typename UnaryOp, typename XprType>
|
||||
class CwiseUnaryOp : internal::no_assignment_operator,
|
||||
public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
|
||||
|
||||
inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
|
||||
: m_xpr(xpr), m_functor(func) {}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
|
||||
|
||||
/** \returns the functor representing the unary operation */
|
||||
const UnaryOp& functor() const { return m_functor; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
nestedExpression() const { return m_xpr; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
typename internal::remove_all<typename XprType::Nested>::type&
|
||||
nestedExpression() { return m_xpr.const_cast_derived(); }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const UnaryOp m_functor;
|
||||
};
|
||||
|
||||
// This is the generic implementation for dense storage.
|
||||
// It can be used for any expression types implementing the dense concept.
|
||||
template<typename UnaryOp, typename XprType>
|
||||
class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
|
||||
: public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
|
||||
typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
return derived().functor()(derived().nestedExpression().coeff(row, col));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(row, col));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
|
||||
{
|
||||
return derived().functor()(derived().nestedExpression().coeff(index));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
|
||||
{
|
||||
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CWISE_UNARY_OP_H
|
@ -1,136 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CWISE_UNARY_VIEW_H
|
||||
#define EIGEN_CWISE_UNARY_VIEW_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CwiseUnaryView
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
|
||||
*
|
||||
* \param ViewOp template functor implementing the view
|
||||
* \param MatrixType the type of the matrix we are applying the unary operator
|
||||
*
|
||||
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
|
||||
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ViewOp, typename MatrixType>
|
||||
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename result_of<
|
||||
ViewOp(typename traits<MatrixType>::Scalar)
|
||||
>::type Scalar;
|
||||
typedef typename MatrixType::Nested MatrixTypeNested;
|
||||
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
|
||||
CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits<ViewOp>::Cost,
|
||||
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
|
||||
// need to cast the sizeof's from size_t to int explicitly, otherwise:
|
||||
// "error: no integral type can represent all of the enumerator values
|
||||
InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
|
||||
? int(Dynamic)
|
||||
: int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
|
||||
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
|
||||
? int(Dynamic)
|
||||
: outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar))
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename ViewOp, typename MatrixType, typename StorageKind>
|
||||
class CwiseUnaryViewImpl;
|
||||
|
||||
template<typename ViewOp, typename MatrixType>
|
||||
class CwiseUnaryView : internal::no_assignment_operator,
|
||||
public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
|
||||
|
||||
inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp())
|
||||
: m_matrix(mat), m_functor(func) {}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
/** \returns the functor representing unary operation */
|
||||
const ViewOp& functor() const { return m_functor; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
nestedExpression() const { return m_matrix; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
nestedExpression() { return m_matrix.const_cast_derived(); }
|
||||
|
||||
protected:
|
||||
// FIXME changed from MatrixType::Nested because of a weird compilation error with sun CC
|
||||
typename internal::nested<MatrixType>::type m_matrix;
|
||||
ViewOp m_functor;
|
||||
};
|
||||
|
||||
template<typename ViewOp, typename MatrixType>
|
||||
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
|
||||
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
|
||||
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
|
||||
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
||||
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
|
||||
}
|
||||
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return derived().functor()(derived().nestedExpression().coeff(row, col));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return derived().functor()(derived().nestedExpression().coeff(index));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
|
||||
{
|
||||
return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index));
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CWISE_UNARY_VIEW_H
|
@ -1,533 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DENSEBASE_H
|
||||
#define EIGEN_DENSEBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class DenseBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for all dense matrices, vectors, and arrays
|
||||
*
|
||||
* This class is the base that is inherited by all dense objects (matrix, vector, arrays,
|
||||
* and related expression types). The common Eigen API for dense objects is contained in this class.
|
||||
*
|
||||
* \tparam Derived is the derived type, e.g., a matrix type or an expression.
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
|
||||
*
|
||||
* \sa \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived> class DenseBase
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
|
||||
#else
|
||||
: public DenseCoeffsBase<Derived>
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
{
|
||||
public:
|
||||
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
|
||||
/** \brief The type of indices
|
||||
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
|
||||
* \sa \ref TopicPreprocessorDirectives.
|
||||
*/
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef DenseCoeffsBase<Derived> Base;
|
||||
using Base::derived;
|
||||
using Base::const_cast_derived;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::rowIndexByOuterInner;
|
||||
using Base::colIndexByOuterInner;
|
||||
using Base::coeff;
|
||||
using Base::coeffByOuterInner;
|
||||
using Base::packet;
|
||||
using Base::packetByOuterInner;
|
||||
using Base::writePacket;
|
||||
using Base::writePacketByOuterInner;
|
||||
using Base::coeffRef;
|
||||
using Base::coeffRefByOuterInner;
|
||||
using Base::copyCoeff;
|
||||
using Base::copyCoeffByOuterInner;
|
||||
using Base::copyPacket;
|
||||
using Base::copyPacketByOuterInner;
|
||||
using Base::operator();
|
||||
using Base::operator[];
|
||||
using Base::x;
|
||||
using Base::y;
|
||||
using Base::z;
|
||||
using Base::w;
|
||||
using Base::stride;
|
||||
using Base::innerStride;
|
||||
using Base::outerStride;
|
||||
using Base::rowStride;
|
||||
using Base::colStride;
|
||||
typedef typename Base::CoeffReturnType CoeffReturnType;
|
||||
|
||||
enum {
|
||||
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
/**< The number of rows at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
/**< The number of columns at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
|
||||
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime>::ret),
|
||||
/**< This is equal to the number of coefficients, i.e. the number of
|
||||
* rows times the number of columns, or to \a Dynamic if this is not
|
||||
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
|
||||
|
||||
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
/**< This value is equal to the maximum possible number of rows that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of rows,
|
||||
* this value is set to \a Dynamic.
|
||||
*
|
||||
* This value is useful to know when evaluating an expression, in order to determine
|
||||
* whether it is possible to avoid doing a dynamic memory allocation.
|
||||
*
|
||||
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
|
||||
*/
|
||||
|
||||
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
|
||||
/**< This value is equal to the maximum possible number of columns that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of columns,
|
||||
* this value is set to \a Dynamic.
|
||||
*
|
||||
* This value is useful to know when evaluating an expression, in order to determine
|
||||
* whether it is possible to avoid doing a dynamic memory allocation.
|
||||
*
|
||||
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
|
||||
*/
|
||||
|
||||
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
|
||||
/**< This value is equal to the maximum possible number of coefficients that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of coefficients,
|
||||
* this value is set to \a Dynamic.
|
||||
*
|
||||
* This value is useful to know when evaluating an expression, in order to determine
|
||||
* whether it is possible to avoid doing a dynamic memory allocation.
|
||||
*
|
||||
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
|
||||
*/
|
||||
|
||||
IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
|
||||
|| internal::traits<Derived>::MaxColsAtCompileTime == 1,
|
||||
/**< This is set to true if either the number of rows or the number of
|
||||
* columns is known at compile-time to be equal to 1. Indeed, in that case,
|
||||
* we are dealing with a column-vector (if there is only one column) or with
|
||||
* a row-vector (if there is only one row). */
|
||||
|
||||
Flags = internal::traits<Derived>::Flags,
|
||||
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
|
||||
* constructed from this one. See the \ref flags "list of flags".
|
||||
*/
|
||||
|
||||
IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
|
||||
|
||||
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
|
||||
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
|
||||
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
|
||||
/**< This is a rough measure of how expensive it is to read one coefficient from
|
||||
* this expression.
|
||||
*/
|
||||
|
||||
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
|
||||
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
|
||||
};
|
||||
|
||||
enum { ThisConstantIsPrivateInPlainObjectBase };
|
||||
|
||||
/** \returns the number of nonzero coefficients which is in practice the number
|
||||
* of stored coefficients. */
|
||||
inline Index nonZeros() const { return size(); }
|
||||
/** \returns true if either the number of rows or the number of columns is equal to 1.
|
||||
* In other words, this function returns
|
||||
* \code rows()==1 || cols()==1 \endcode
|
||||
* \sa rows(), cols(), IsVectorAtCompileTime. */
|
||||
|
||||
/** \returns the outer size.
|
||||
*
|
||||
* \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
|
||||
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
|
||||
* column-major matrix, and the number of rows for a row-major matrix. */
|
||||
Index outerSize() const
|
||||
{
|
||||
return IsVectorAtCompileTime ? 1
|
||||
: int(IsRowMajor) ? this->rows() : this->cols();
|
||||
}
|
||||
|
||||
/** \returns the inner size.
|
||||
*
|
||||
* \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
|
||||
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a
|
||||
* column-major matrix, and the number of columns for a row-major matrix. */
|
||||
Index innerSize() const
|
||||
{
|
||||
return IsVectorAtCompileTime ? this->size()
|
||||
: int(IsRowMajor) ? this->cols() : this->rows();
|
||||
}
|
||||
|
||||
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
|
||||
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
|
||||
* nothing else.
|
||||
*/
|
||||
void resize(Index size)
|
||||
{
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(size);
|
||||
eigen_assert(size == this->size()
|
||||
&& "DenseBase::resize() does not actually allow to resize.");
|
||||
}
|
||||
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
|
||||
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
|
||||
* nothing else.
|
||||
*/
|
||||
void resize(Index rows, Index cols)
|
||||
{
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||
eigen_assert(rows == this->rows() && cols == this->cols()
|
||||
&& "DenseBase::resize() does not actually allow to resize.");
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
|
||||
/** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
|
||||
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
|
||||
/** \internal the return type of MatrixBase::eigenvalues() */
|
||||
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
||||
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** Copies \a other into *this. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const DenseBase<OtherDerived>& other);
|
||||
|
||||
/** Special case of the template operator=, in order to prevent the compiler
|
||||
* from generating a default operator= (issue hit with g++ 4.1)
|
||||
*/
|
||||
Derived& operator=(const DenseBase& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const EigenBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const EigenBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const EigenBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& func);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
CommaInitializer<Derived> operator<< (const Scalar& s);
|
||||
|
||||
template<unsigned int Added,unsigned int Removed>
|
||||
const Flagged<Derived, Added, Removed> flagged() const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
|
||||
|
||||
Eigen::Transpose<Derived> transpose();
|
||||
typedef const Transpose<const Derived> ConstTransposeReturnType;
|
||||
ConstTransposeReturnType transpose() const;
|
||||
void transposeInPlace();
|
||||
#ifndef EIGEN_NO_DEBUG
|
||||
protected:
|
||||
template<typename OtherDerived>
|
||||
void checkTransposeAliasing(const OtherDerived& other) const;
|
||||
public:
|
||||
#endif
|
||||
|
||||
typedef VectorBlock<Derived> SegmentReturnType;
|
||||
typedef const VectorBlock<const Derived> ConstSegmentReturnType;
|
||||
template<int Size> struct FixedSegmentReturnType { typedef VectorBlock<Derived, Size> Type; };
|
||||
template<int Size> struct ConstFixedSegmentReturnType { typedef const VectorBlock<const Derived, Size> Type; };
|
||||
|
||||
// Note: The "DenseBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
|
||||
SegmentReturnType segment(Index start, Index size);
|
||||
typename DenseBase::ConstSegmentReturnType segment(Index start, Index size) const;
|
||||
|
||||
SegmentReturnType head(Index size);
|
||||
typename DenseBase::ConstSegmentReturnType head(Index size) const;
|
||||
|
||||
SegmentReturnType tail(Index size);
|
||||
typename DenseBase::ConstSegmentReturnType tail(Index size) const;
|
||||
|
||||
template<int Size> typename FixedSegmentReturnType<Size>::Type head();
|
||||
template<int Size> typename ConstFixedSegmentReturnType<Size>::Type head() const;
|
||||
|
||||
template<int Size> typename FixedSegmentReturnType<Size>::Type tail();
|
||||
template<int Size> typename ConstFixedSegmentReturnType<Size>::Type tail() const;
|
||||
|
||||
template<int Size> typename FixedSegmentReturnType<Size>::Type segment(Index start);
|
||||
template<int Size> typename ConstFixedSegmentReturnType<Size>::Type segment(Index start) const;
|
||||
|
||||
static const ConstantReturnType
|
||||
Constant(Index rows, Index cols, const Scalar& value);
|
||||
static const ConstantReturnType
|
||||
Constant(Index size, const Scalar& value);
|
||||
static const ConstantReturnType
|
||||
Constant(const Scalar& value);
|
||||
|
||||
static const SequentialLinSpacedReturnType
|
||||
LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
|
||||
static const RandomAccessLinSpacedReturnType
|
||||
LinSpaced(Index size, const Scalar& low, const Scalar& high);
|
||||
static const SequentialLinSpacedReturnType
|
||||
LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
|
||||
static const RandomAccessLinSpacedReturnType
|
||||
LinSpaced(const Scalar& low, const Scalar& high);
|
||||
|
||||
template<typename CustomNullaryOp>
|
||||
static const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
|
||||
template<typename CustomNullaryOp>
|
||||
static const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
NullaryExpr(Index size, const CustomNullaryOp& func);
|
||||
template<typename CustomNullaryOp>
|
||||
static const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
NullaryExpr(const CustomNullaryOp& func);
|
||||
|
||||
static const ConstantReturnType Zero(Index rows, Index cols);
|
||||
static const ConstantReturnType Zero(Index size);
|
||||
static const ConstantReturnType Zero();
|
||||
static const ConstantReturnType Ones(Index rows, Index cols);
|
||||
static const ConstantReturnType Ones(Index size);
|
||||
static const ConstantReturnType Ones();
|
||||
|
||||
void fill(const Scalar& value);
|
||||
Derived& setConstant(const Scalar& value);
|
||||
Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
|
||||
Derived& setLinSpaced(const Scalar& low, const Scalar& high);
|
||||
Derived& setZero();
|
||||
Derived& setOnes();
|
||||
Derived& setRandom();
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const DenseBase<OtherDerived>& other,
|
||||
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isMuchSmallerThan(const RealScalar& other,
|
||||
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
template<typename OtherDerived>
|
||||
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
|
||||
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
inline Derived& operator*=(const Scalar& other);
|
||||
inline Derived& operator/=(const Scalar& other);
|
||||
|
||||
typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
|
||||
/** \returns the matrix or vector obtained by evaluating this expression.
|
||||
*
|
||||
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
|
||||
* a const reference, in order to avoid a useless copy.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE EvalReturnType eval() const
|
||||
{
|
||||
// Even though MSVC does not honor strong inlining when the return type
|
||||
// is a dynamic matrix, we desperately need strong inlining for fixed
|
||||
// size types on MSVC.
|
||||
return typename internal::eval<Derived>::type(derived());
|
||||
}
|
||||
|
||||
/** swaps *this with the expression \a other.
|
||||
*
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
void swap(const DenseBase<OtherDerived>& other,
|
||||
int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
|
||||
{
|
||||
SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
|
||||
}
|
||||
|
||||
/** swaps *this with the matrix or array \a other.
|
||||
*
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
void swap(PlainObjectBase<OtherDerived>& other)
|
||||
{
|
||||
SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
|
||||
}
|
||||
|
||||
|
||||
inline const NestByValue<Derived> nestByValue() const;
|
||||
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
|
||||
inline ForceAlignedAccess<Derived> forceAlignedAccess();
|
||||
template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
|
||||
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
|
||||
|
||||
Scalar sum() const;
|
||||
Scalar mean() const;
|
||||
Scalar trace() const;
|
||||
|
||||
Scalar prod() const;
|
||||
|
||||
typename internal::traits<Derived>::Scalar minCoeff() const;
|
||||
typename internal::traits<Derived>::Scalar maxCoeff() const;
|
||||
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
|
||||
|
||||
template<typename BinaryOp>
|
||||
typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
|
||||
redux(const BinaryOp& func) const;
|
||||
|
||||
template<typename Visitor>
|
||||
void visit(Visitor& func) const;
|
||||
|
||||
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
|
||||
|
||||
/** \returns the unique coefficient of a 1x1 expression */
|
||||
CoeffReturnType value() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
|
||||
eigen_assert(this->rows() == 1 && this->cols() == 1);
|
||||
return derived().coeff(0,0);
|
||||
}
|
||||
|
||||
/////////// Array module ///////////
|
||||
|
||||
bool all(void) const;
|
||||
bool any(void) const;
|
||||
Index count() const;
|
||||
|
||||
typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
|
||||
typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
|
||||
typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
|
||||
typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
|
||||
|
||||
ConstRowwiseReturnType rowwise() const;
|
||||
RowwiseReturnType rowwise();
|
||||
ConstColwiseReturnType colwise() const;
|
||||
ColwiseReturnType colwise();
|
||||
|
||||
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
|
||||
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
|
||||
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
|
||||
|
||||
template<typename ThenDerived,typename ElseDerived>
|
||||
const Select<Derived,ThenDerived,ElseDerived>
|
||||
select(const DenseBase<ThenDerived>& thenMatrix,
|
||||
const DenseBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
|
||||
select(const DenseBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
|
||||
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
|
||||
select(typename ElseDerived::Scalar thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<int p> RealScalar lpNorm() const;
|
||||
|
||||
template<int RowFactor, int ColFactor>
|
||||
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
|
||||
const Replicate<Derived,Dynamic,Dynamic> replicate(Index rowFacor,Index colFactor) const;
|
||||
|
||||
typedef Reverse<Derived, BothDirections> ReverseReturnType;
|
||||
typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
|
||||
ReverseReturnType reverse();
|
||||
ConstReverseReturnType reverse() const;
|
||||
void reverseInPlace();
|
||||
|
||||
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
|
||||
# include "../plugins/BlockMethods.h"
|
||||
# ifdef EIGEN_DENSEBASE_PLUGIN
|
||||
# include EIGEN_DENSEBASE_PLUGIN
|
||||
# endif
|
||||
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
|
||||
Block<Derived> corner(CornerType type, Index cRows, Index cCols);
|
||||
const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
|
||||
template<int CRows, int CCols>
|
||||
Block<Derived, CRows, CCols> corner(CornerType type);
|
||||
template<int CRows, int CCols>
|
||||
const Block<Derived, CRows, CCols> corner(CornerType type) const;
|
||||
|
||||
#endif // EIGEN2_SUPPORT
|
||||
|
||||
|
||||
// disable the use of evalTo for dense objects with a nice compilation error
|
||||
template<typename Dest> inline void evalTo(Dest& ) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
|
||||
}
|
||||
|
||||
protected:
|
||||
/** Default constructor. Do nothing. */
|
||||
DenseBase()
|
||||
{
|
||||
/* Just checks for self-consistency of the flags.
|
||||
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
|
||||
*/
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
|
||||
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
|
||||
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
explicit DenseBase(int);
|
||||
DenseBase(int,int);
|
||||
template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DENSEBASE_H
|
@ -1,754 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DENSECOEFFSBASE_H
|
||||
#define EIGEN_DENSECOEFFSBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename T> struct add_const_on_value_type_if_arithmetic
|
||||
{
|
||||
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
|
||||
};
|
||||
}
|
||||
|
||||
/** \brief Base class providing read-only coefficient access to matrices and arrays.
|
||||
* \ingroup Core_Module
|
||||
* \tparam Derived Type of the derived class
|
||||
* \tparam #ReadOnlyAccessors Constant indicating read-only access
|
||||
*
|
||||
* This class defines the \c operator() \c const function and friends, which can be used to read specific
|
||||
* entries of a matrix or array.
|
||||
*
|
||||
* \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
|
||||
* \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived>
|
||||
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
|
||||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
// Explanation for this CoeffReturnType typedef.
|
||||
// - This is the return type of the coeff() method.
|
||||
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
|
||||
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
|
||||
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
|
||||
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
|
||||
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
|
||||
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
|
||||
const Scalar&,
|
||||
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
|
||||
>::type CoeffReturnType;
|
||||
|
||||
typedef typename internal::add_const_on_value_type_if_arithmetic<
|
||||
typename internal::packet_traits<Scalar>::type
|
||||
>::type PacketReturnType;
|
||||
|
||||
typedef EigenBase<Derived> Base;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::derived;
|
||||
|
||||
EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
|
||||
{
|
||||
return int(Derived::RowsAtCompileTime) == 1 ? 0
|
||||
: int(Derived::ColsAtCompileTime) == 1 ? inner
|
||||
: int(Derived::Flags)&RowMajorBit ? outer
|
||||
: inner;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
|
||||
{
|
||||
return int(Derived::ColsAtCompileTime) == 1 ? 0
|
||||
: int(Derived::RowsAtCompileTime) == 1 ? inner
|
||||
: int(Derived::Flags)&RowMajorBit ? inner
|
||||
: outer;
|
||||
}
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator()(Index,Index) const \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator()(Index,Index) const \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameters \a row and \a col are in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator()(Index,Index) const \endlink.
|
||||
*
|
||||
* \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
|
||||
*/
|
||||
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeff(row, col);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
|
||||
{
|
||||
return coeff(rowIndexByOuterInner(outer, inner),
|
||||
colIndexByOuterInner(outer, inner));
|
||||
}
|
||||
|
||||
/** \returns the coefficient at given the given row and column.
|
||||
*
|
||||
* \sa operator()(Index,Index), operator[](Index)
|
||||
*/
|
||||
EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
|
||||
{
|
||||
eigen_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeff(row, col);
|
||||
}
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator[](Index) const \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator[](Index) const \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameter \a index is in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator[](Index) const \endlink.
|
||||
*
|
||||
* \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
coeff(Index index) const
|
||||
{
|
||||
eigen_internal_assert(index >= 0 && index < size());
|
||||
return derived().coeff(index);
|
||||
}
|
||||
|
||||
|
||||
/** \returns the coefficient at given index.
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
|
||||
* z() const, w() const
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
operator[](Index index) const
|
||||
{
|
||||
#ifndef EIGEN2_SUPPORT
|
||||
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
|
||||
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
|
||||
#endif
|
||||
eigen_assert(index >= 0 && index < size());
|
||||
return derived().coeff(index);
|
||||
}
|
||||
|
||||
/** \returns the coefficient at given index.
|
||||
*
|
||||
* This is synonymous to operator[](Index) const.
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
|
||||
* z() const, w() const
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
operator()(Index index) const
|
||||
{
|
||||
eigen_assert(index >= 0 && index < size());
|
||||
return derived().coeff(index);
|
||||
}
|
||||
|
||||
/** equivalent to operator[](0). */
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
x() const { return (*this)[0]; }
|
||||
|
||||
/** equivalent to operator[](1). */
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
y() const { return (*this)[1]; }
|
||||
|
||||
/** equivalent to operator[](2). */
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
z() const { return (*this)[2]; }
|
||||
|
||||
/** equivalent to operator[](3). */
|
||||
|
||||
EIGEN_STRONG_INLINE CoeffReturnType
|
||||
w() const { return (*this)[3]; }
|
||||
|
||||
/** \internal
|
||||
* \returns the packet of coefficients starting at the given row and column. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
|
||||
{
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().template packet<LoadMode>(row,col);
|
||||
}
|
||||
|
||||
|
||||
/** \internal */
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
|
||||
{
|
||||
return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
|
||||
colIndexByOuterInner(outer, inner));
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* \returns the packet of coefficients starting at the given index. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit and the LinearAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
eigen_internal_assert(index >= 0 && index < size());
|
||||
return derived().template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
protected:
|
||||
// explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
|
||||
// But some methods are only available in the DirectAccess case.
|
||||
// So we add dummy methods here with these names, so that "using... " doesn't fail.
|
||||
// It's not private so that the child class DenseBase can access them, and it's not public
|
||||
// either since it's an implementation detail, so has to be protected.
|
||||
void coeffRef();
|
||||
void coeffRefByOuterInner();
|
||||
void writePacket();
|
||||
void writePacketByOuterInner();
|
||||
void copyCoeff();
|
||||
void copyCoeffByOuterInner();
|
||||
void copyPacket();
|
||||
void copyPacketByOuterInner();
|
||||
void stride();
|
||||
void innerStride();
|
||||
void outerStride();
|
||||
void rowStride();
|
||||
void colStride();
|
||||
};
|
||||
|
||||
/** \brief Base class providing read/write coefficient access to matrices and arrays.
|
||||
* \ingroup Core_Module
|
||||
* \tparam Derived Type of the derived class
|
||||
* \tparam #WriteAccessors Constant indicating read/write access
|
||||
*
|
||||
* This class defines the non-const \c operator() function and friends, which can be used to write specific
|
||||
* entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
|
||||
* defines the const variant for reading specific entries.
|
||||
*
|
||||
* \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived>
|
||||
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
using Base::coeff;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::derived;
|
||||
using Base::rowIndexByOuterInner;
|
||||
using Base::colIndexByOuterInner;
|
||||
using Base::operator[];
|
||||
using Base::operator();
|
||||
using Base::x;
|
||||
using Base::y;
|
||||
using Base::z;
|
||||
using Base::w;
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator()(Index,Index) \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator()(Index,Index) \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameters \a row and \a col are in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator()(Index,Index) \endlink.
|
||||
*
|
||||
* \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
|
||||
*/
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
coeffRefByOuterInner(Index outer, Index inner)
|
||||
{
|
||||
return coeffRef(rowIndexByOuterInner(outer, inner),
|
||||
colIndexByOuterInner(outer, inner));
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given the given row and column.
|
||||
*
|
||||
* \sa operator[](Index)
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
operator()(Index row, Index col)
|
||||
{
|
||||
eigen_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator[](Index) \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator[](Index) \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameters \a row and \a col are in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator[](Index) \endlink.
|
||||
*
|
||||
* \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
coeffRef(Index index)
|
||||
{
|
||||
eigen_internal_assert(index >= 0 && index < size());
|
||||
return derived().coeffRef(index);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given index.
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
operator[](Index index)
|
||||
{
|
||||
#ifndef EIGEN2_SUPPORT
|
||||
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
|
||||
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
|
||||
#endif
|
||||
eigen_assert(index >= 0 && index < size());
|
||||
return derived().coeffRef(index);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given index.
|
||||
*
|
||||
* This is synonymous to operator[](Index).
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
|
||||
*/
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
operator()(Index index)
|
||||
{
|
||||
eigen_assert(index >= 0 && index < size());
|
||||
return derived().coeffRef(index);
|
||||
}
|
||||
|
||||
/** equivalent to operator[](0). */
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
x() { return (*this)[0]; }
|
||||
|
||||
/** equivalent to operator[](1). */
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
y() { return (*this)[1]; }
|
||||
|
||||
/** equivalent to operator[](2). */
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
z() { return (*this)[2]; }
|
||||
|
||||
/** equivalent to operator[](3). */
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar&
|
||||
w() { return (*this)[3]; }
|
||||
|
||||
/** \internal
|
||||
* Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacket
|
||||
(Index row, Index col, const typename internal::packet_traits<Scalar>::type& x)
|
||||
{
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
derived().template writePacket<StoreMode>(row,col,x);
|
||||
}
|
||||
|
||||
|
||||
/** \internal */
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacketByOuterInner
|
||||
(Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& x)
|
||||
{
|
||||
writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
|
||||
colIndexByOuterInner(outer, inner),
|
||||
x);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit and the LinearAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacket
|
||||
(Index index, const typename internal::packet_traits<Scalar>::type& x)
|
||||
{
|
||||
eigen_internal_assert(index >= 0 && index < size());
|
||||
derived().template writePacket<StoreMode>(index,x);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \internal Copies the coefficient at position (row,col) of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
derived().coeffRef(row, col) = other.derived().coeff(row, col);
|
||||
}
|
||||
|
||||
/** \internal Copies the coefficient at the given index of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
eigen_internal_assert(index >= 0 && index < size());
|
||||
derived().coeffRef(index) = other.derived().coeff(index);
|
||||
}
|
||||
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
const Index row = rowIndexByOuterInner(outer,inner);
|
||||
const Index col = colIndexByOuterInner(outer,inner);
|
||||
// derived() is important here: copyCoeff() may be reimplemented in Derived!
|
||||
derived().copyCoeff(row, col, other);
|
||||
}
|
||||
|
||||
/** \internal Copies the packet at position (row,col) of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
derived().template writePacket<StoreMode>(row, col,
|
||||
other.derived().template packet<LoadMode>(row, col));
|
||||
}
|
||||
|
||||
/** \internal Copies the packet at the given index of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
eigen_internal_assert(index >= 0 && index < size());
|
||||
derived().template writePacket<StoreMode>(index,
|
||||
other.derived().template packet<LoadMode>(index));
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
const Index row = rowIndexByOuterInner(outer,inner);
|
||||
const Index col = colIndexByOuterInner(outer,inner);
|
||||
// derived() is important here: copyCoeff() may be reimplemented in Derived!
|
||||
derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
|
||||
}
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
|
||||
* \ingroup Core_Module
|
||||
* \tparam Derived Type of the derived class
|
||||
* \tparam #DirectAccessors Constant indicating direct access
|
||||
*
|
||||
* This class defines functions to work with strides which can be used to access entries directly. This class
|
||||
* inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
|
||||
* \c operator() .
|
||||
*
|
||||
* \sa \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived>
|
||||
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::derived;
|
||||
|
||||
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
|
||||
*
|
||||
* \sa outerStride(), rowStride(), colStride()
|
||||
*/
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return derived().innerStride();
|
||||
}
|
||||
|
||||
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
|
||||
* in a column-major matrix).
|
||||
*
|
||||
* \sa innerStride(), rowStride(), colStride()
|
||||
*/
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return derived().outerStride();
|
||||
}
|
||||
|
||||
// FIXME shall we remove it ?
|
||||
inline Index stride() const
|
||||
{
|
||||
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
|
||||
}
|
||||
|
||||
/** \returns the pointer increment between two consecutive rows.
|
||||
*
|
||||
* \sa innerStride(), outerStride(), colStride()
|
||||
*/
|
||||
inline Index rowStride() const
|
||||
{
|
||||
return Derived::IsRowMajor ? outerStride() : innerStride();
|
||||
}
|
||||
|
||||
/** \returns the pointer increment between two consecutive columns.
|
||||
*
|
||||
* \sa innerStride(), outerStride(), rowStride()
|
||||
*/
|
||||
inline Index colStride() const
|
||||
{
|
||||
return Derived::IsRowMajor ? innerStride() : outerStride();
|
||||
}
|
||||
};
|
||||
|
||||
/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
|
||||
* \ingroup Core_Module
|
||||
* \tparam Derived Type of the derived class
|
||||
* \tparam #DirectWriteAccessors Constant indicating direct access
|
||||
*
|
||||
* This class defines functions to work with strides which can be used to access entries directly. This class
|
||||
* inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
|
||||
* \c operator().
|
||||
*
|
||||
* \sa \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived>
|
||||
class DenseCoeffsBase<Derived, DirectWriteAccessors>
|
||||
: public DenseCoeffsBase<Derived, WriteAccessors>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::derived;
|
||||
|
||||
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
|
||||
*
|
||||
* \sa outerStride(), rowStride(), colStride()
|
||||
*/
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return derived().innerStride();
|
||||
}
|
||||
|
||||
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
|
||||
* in a column-major matrix).
|
||||
*
|
||||
* \sa innerStride(), rowStride(), colStride()
|
||||
*/
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return derived().outerStride();
|
||||
}
|
||||
|
||||
// FIXME shall we remove it ?
|
||||
inline Index stride() const
|
||||
{
|
||||
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
|
||||
}
|
||||
|
||||
/** \returns the pointer increment between two consecutive rows.
|
||||
*
|
||||
* \sa innerStride(), outerStride(), colStride()
|
||||
*/
|
||||
inline Index rowStride() const
|
||||
{
|
||||
return Derived::IsRowMajor ? outerStride() : innerStride();
|
||||
}
|
||||
|
||||
/** \returns the pointer increment between two consecutive columns.
|
||||
*
|
||||
* \sa innerStride(), outerStride(), rowStride()
|
||||
*/
|
||||
inline Index colStride() const
|
||||
{
|
||||
return Derived::IsRowMajor ? innerStride() : outerStride();
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, bool JustReturnZero>
|
||||
struct first_aligned_impl
|
||||
{
|
||||
static inline typename Derived::Index run(const Derived&)
|
||||
{ return 0; }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct first_aligned_impl<Derived, false>
|
||||
{
|
||||
static inline typename Derived::Index run(const Derived& m)
|
||||
{
|
||||
return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
|
||||
*
|
||||
* There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
|
||||
* documentation.
|
||||
*/
|
||||
template<typename Derived>
|
||||
static inline typename Derived::Index first_aligned(const Derived& m)
|
||||
{
|
||||
return first_aligned_impl
|
||||
<Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
|
||||
::run(m);
|
||||
}
|
||||
|
||||
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
|
||||
struct inner_stride_at_compile_time
|
||||
{
|
||||
enum { ret = traits<Derived>::InnerStrideAtCompileTime };
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct inner_stride_at_compile_time<Derived, false>
|
||||
{
|
||||
enum { ret = 0 };
|
||||
};
|
||||
|
||||
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
|
||||
struct outer_stride_at_compile_time
|
||||
{
|
||||
enum { ret = traits<Derived>::OuterStrideAtCompileTime };
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct outer_stride_at_compile_time<Derived, false>
|
||||
{
|
||||
enum { ret = 0 };
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DENSECOEFFSBASE_H
|
@ -1,314 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MATRIXSTORAGE_H
|
||||
#define EIGEN_MATRIXSTORAGE_H
|
||||
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
|
||||
#else
|
||||
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
struct constructor_without_unaligned_array_assert {};
|
||||
|
||||
/** \internal
|
||||
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
|
||||
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
|
||||
*/
|
||||
template <typename T, int Size, int MatrixOrArrayOptions,
|
||||
int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0
|
||||
: (((Size*sizeof(T))%16)==0) ? 16
|
||||
: 0 >
|
||||
struct plain_array
|
||||
{
|
||||
T array[Size];
|
||||
plain_array() {}
|
||||
plain_array(constructor_without_unaligned_array_assert) {}
|
||||
};
|
||||
|
||||
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
|
||||
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
|
||||
#elif EIGEN_GNUC_AT_LEAST(4,7)
|
||||
// GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned.
|
||||
// See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900
|
||||
// Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined:
|
||||
template<typename PtrType>
|
||||
EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; }
|
||||
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
|
||||
eigen_assert((reinterpret_cast<size_t>(eigen_unaligned_array_assert_workaround_gcc47(array)) & sizemask) == 0 \
|
||||
&& "this assertion is explained here: " \
|
||||
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
|
||||
" **** READ THIS WEB PAGE !!! ****");
|
||||
#else
|
||||
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
|
||||
eigen_assert((reinterpret_cast<size_t>(array) & sizemask) == 0 \
|
||||
&& "this assertion is explained here: " \
|
||||
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
|
||||
" **** READ THIS WEB PAGE !!! ****");
|
||||
#endif
|
||||
|
||||
template <typename T, int Size, int MatrixOrArrayOptions>
|
||||
struct plain_array<T, Size, MatrixOrArrayOptions, 16>
|
||||
{
|
||||
EIGEN_USER_ALIGN16 T array[Size];
|
||||
plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf) }
|
||||
plain_array(constructor_without_unaligned_array_assert) {}
|
||||
};
|
||||
|
||||
template <typename T, int MatrixOrArrayOptions, int Alignment>
|
||||
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
|
||||
{
|
||||
EIGEN_USER_ALIGN16 T array[1];
|
||||
plain_array() {}
|
||||
plain_array(constructor_without_unaligned_array_assert) {}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class DenseStorage
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Stores the data of a matrix
|
||||
*
|
||||
* This class stores the data of fixed-size, dynamic-size or mixed matrices
|
||||
* in a way as compact as possible.
|
||||
*
|
||||
* \sa Matrix
|
||||
*/
|
||||
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
|
||||
|
||||
// purely fixed-size matrix
|
||||
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
public:
|
||||
inline explicit DenseStorage() {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()) {}
|
||||
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
|
||||
static inline DenseIndex rows(void) {return _Rows;}
|
||||
static inline DenseIndex cols(void) {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// null matrix
|
||||
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
|
||||
{
|
||||
public:
|
||||
inline explicit DenseStorage() {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert) {}
|
||||
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void swap(DenseStorage& ) {}
|
||||
static inline DenseIndex rows(void) {return _Rows;}
|
||||
static inline DenseIndex cols(void) {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline const T *data() const { return 0; }
|
||||
inline T *data() { return 0; }
|
||||
};
|
||||
|
||||
// more specializations for null matrices; these are necessary to resolve ambiguities
|
||||
template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
|
||||
: public DenseStorage<T, 0, 0, 0, _Options> { };
|
||||
|
||||
template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
|
||||
: public DenseStorage<T, 0, 0, 0, _Options> { };
|
||||
|
||||
template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
|
||||
: public DenseStorage<T, 0, 0, 0, _Options> { };
|
||||
|
||||
// dynamic-size matrix with fixed-size storage
|
||||
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
DenseIndex m_rows;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline explicit DenseStorage() : m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex, DenseIndex rows, DenseIndex cols) : m_rows(rows), m_cols(cols) {}
|
||||
inline void swap(DenseStorage& other)
|
||||
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex, DenseIndex rows, DenseIndex cols) { m_rows = rows; m_cols = cols; }
|
||||
inline void resize(DenseIndex, DenseIndex rows, DenseIndex cols) { m_rows = rows; m_cols = cols; }
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed width
|
||||
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
DenseIndex m_rows;
|
||||
public:
|
||||
inline explicit DenseStorage() : m_rows(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
|
||||
inline DenseStorage(DenseIndex, DenseIndex rows, DenseIndex) : m_rows(rows) {}
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
inline DenseIndex cols(void) const {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex, DenseIndex rows, DenseIndex) { m_rows = rows; }
|
||||
inline void resize(DenseIndex, DenseIndex rows, DenseIndex) { m_rows = rows; }
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed height
|
||||
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline explicit DenseStorage() : m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex, DenseIndex, DenseIndex cols) : m_cols(cols) {}
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
inline DenseIndex rows(void) const {return _Rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex cols) { m_cols = cols; }
|
||||
inline void resize(DenseIndex, DenseIndex, DenseIndex cols) { m_cols = cols; }
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// purely dynamic matrix.
|
||||
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
|
||||
{
|
||||
T *m_data;
|
||||
DenseIndex m_rows;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline explicit DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(0), m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex size, DenseIndex rows, DenseIndex cols)
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
|
||||
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
|
||||
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
|
||||
inline void swap(DenseStorage& other)
|
||||
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex size, DenseIndex rows, DenseIndex cols)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
void resize(DenseIndex size, DenseIndex rows, DenseIndex cols)
|
||||
{
|
||||
if(size != m_rows*m_cols)
|
||||
{
|
||||
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
|
||||
if (size)
|
||||
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
|
||||
}
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
};
|
||||
|
||||
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
|
||||
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
|
||||
{
|
||||
T *m_data;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline explicit DenseStorage() : m_data(0), m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols)
|
||||
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
|
||||
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
static inline DenseIndex rows(void) {return _Rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex cols)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
|
||||
m_cols = cols;
|
||||
}
|
||||
EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex cols)
|
||||
{
|
||||
if(size != _Rows*m_cols)
|
||||
{
|
||||
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
|
||||
if (size)
|
||||
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
|
||||
}
|
||||
m_cols = cols;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
};
|
||||
|
||||
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
|
||||
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
|
||||
{
|
||||
T *m_data;
|
||||
DenseIndex m_rows;
|
||||
public:
|
||||
inline explicit DenseStorage() : m_data(0), m_rows(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
|
||||
inline DenseStorage(DenseIndex size, DenseIndex rows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows)
|
||||
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
|
||||
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
static inline DenseIndex cols(void) {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex size, DenseIndex rows, DenseIndex)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
|
||||
m_rows = rows;
|
||||
}
|
||||
EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex rows, DenseIndex)
|
||||
{
|
||||
if(size != m_rows*_Cols)
|
||||
{
|
||||
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
|
||||
if (size)
|
||||
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
|
||||
}
|
||||
m_rows = rows;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATRIX_H
|
@ -1,236 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DIAGONAL_H
|
||||
#define EIGEN_DIAGONAL_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Diagonal
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
|
||||
* \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
|
||||
* A positive value means a superdiagonal, a negative value means a subdiagonal.
|
||||
* You can also use Dynamic so the index can be set at runtime.
|
||||
*
|
||||
* The matrix is not required to be square.
|
||||
*
|
||||
* This class represents an expression of the main diagonal, or any sub/super diagonal
|
||||
* of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the
|
||||
* time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index)
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, int DiagIndex>
|
||||
struct traits<Diagonal<MatrixType,DiagIndex> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
typedef typename MatrixType::StorageKind StorageKind;
|
||||
enum {
|
||||
RowsAtCompileTime = (int(DiagIndex) == Dynamic || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
|
||||
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
|
||||
MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
|
||||
ColsAtCompileTime = 1,
|
||||
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
|
||||
: DiagIndex == Dynamic ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
|
||||
MatrixType::MaxColsAtCompileTime)
|
||||
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
|
||||
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
|
||||
MaxColsAtCompileTime = 1,
|
||||
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
||||
Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit,
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
|
||||
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
|
||||
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
|
||||
OuterStrideAtCompileTime = 0
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename MatrixType, int DiagIndex> class Diagonal
|
||||
: public internal::dense_xpr_base< Diagonal<MatrixType,DiagIndex> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
|
||||
|
||||
inline Diagonal(MatrixType& matrix, Index index = DiagIndex) : m_matrix(matrix), m_index(index) {}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
|
||||
|
||||
inline Index rows() const
|
||||
{ return m_index.value()<0 ? (std::min)(m_matrix.cols(),m_matrix.rows()+m_index.value()) : (std::min)(m_matrix.rows(),m_matrix.cols()-m_index.value()); }
|
||||
|
||||
inline Index cols() const { return 1; }
|
||||
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return m_matrix.outerStride() + 1;
|
||||
}
|
||||
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<MatrixType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
|
||||
inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
|
||||
inline const Scalar* data() const { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index) const
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index row, Index) const
|
||||
{
|
||||
return m_matrix.coeff(row+rowOffset(), row+colOffset());
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
return m_matrix.const_cast_derived().coeffRef(index+rowOffset(), index+colOffset());
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index+rowOffset(), index+colOffset());
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_matrix.coeff(index+rowOffset(), index+colOffset());
|
||||
}
|
||||
|
||||
const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
int index() const
|
||||
{
|
||||
return m_index.value();
|
||||
}
|
||||
|
||||
protected:
|
||||
typename MatrixType::Nested m_matrix;
|
||||
const internal::variable_if_dynamic<Index, DiagIndex> m_index;
|
||||
|
||||
private:
|
||||
// some compilers may fail to optimize std::max etc in case of compile-time constants...
|
||||
EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); }
|
||||
EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
|
||||
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
|
||||
// triger a compile time error is someone try to call packet
|
||||
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
|
||||
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
|
||||
};
|
||||
|
||||
/** \returns an expression of the main diagonal of the matrix \c *this
|
||||
*
|
||||
* \c *this is not required to be square.
|
||||
*
|
||||
* Example: \include MatrixBase_diagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_diagonal.out
|
||||
*
|
||||
* \sa class Diagonal */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::DiagonalReturnType
|
||||
MatrixBase<Derived>::diagonal()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal(). */
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::ConstDiagonalReturnType
|
||||
MatrixBase<Derived>::diagonal() const
|
||||
{
|
||||
return ConstDiagonalReturnType(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
|
||||
*
|
||||
* \c *this is not required to be square.
|
||||
*
|
||||
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
|
||||
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
|
||||
*
|
||||
* Example: \include MatrixBase_diagonal_int.cpp
|
||||
* Output: \verbinclude MatrixBase_diagonal_int.out
|
||||
*
|
||||
* \sa MatrixBase::diagonal(), class Diagonal */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Dynamic>::Type
|
||||
MatrixBase<Derived>::diagonal(Index index)
|
||||
{
|
||||
return typename DiagonalIndexReturnType<Dynamic>::Type(derived(), index);
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal(Index). */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Dynamic>::Type
|
||||
MatrixBase<Derived>::diagonal(Index index) const
|
||||
{
|
||||
return typename ConstDiagonalIndexReturnType<Dynamic>::Type(derived(), index);
|
||||
}
|
||||
|
||||
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
|
||||
*
|
||||
* \c *this is not required to be square.
|
||||
*
|
||||
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
|
||||
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
|
||||
*
|
||||
* Example: \include MatrixBase_diagonal_template_int.cpp
|
||||
* Output: \verbinclude MatrixBase_diagonal_template_int.out
|
||||
*
|
||||
* \sa MatrixBase::diagonal(), class Diagonal */
|
||||
template<typename Derived>
|
||||
template<int Index>
|
||||
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index>::Type
|
||||
MatrixBase<Derived>::diagonal()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal<int>(). */
|
||||
template<typename Derived>
|
||||
template<int Index>
|
||||
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index>::Type
|
||||
MatrixBase<Derived>::diagonal() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DIAGONAL_H
|
@ -1,307 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DIAGONALMATRIX_H
|
||||
#define EIGEN_DIAGONALMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Derived>
|
||||
class DiagonalBase : public EigenBase<Derived>
|
||||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
|
||||
typedef typename DiagonalVectorType::Scalar Scalar;
|
||||
typedef typename DiagonalVectorType::RealScalar RealScalar;
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
|
||||
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
|
||||
IsVectorAtCompileTime = 0,
|
||||
Flags = 0
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
|
||||
typedef DenseMatrixType DenseType;
|
||||
typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
|
||||
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
|
||||
DenseMatrixType toDenseMatrix() const { return derived(); }
|
||||
template<typename DenseDerived>
|
||||
void evalTo(MatrixBase<DenseDerived> &other) const;
|
||||
template<typename DenseDerived>
|
||||
void addTo(MatrixBase<DenseDerived> &other) const
|
||||
{ other.diagonal() += diagonal(); }
|
||||
template<typename DenseDerived>
|
||||
void subTo(MatrixBase<DenseDerived> &other) const
|
||||
{ other.diagonal() -= diagonal(); }
|
||||
|
||||
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
|
||||
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
|
||||
|
||||
inline Index rows() const { return diagonal().size(); }
|
||||
inline Index cols() const { return diagonal().size(); }
|
||||
|
||||
template<typename MatrixDerived>
|
||||
const DiagonalProduct<MatrixDerived, Derived, OnTheLeft>
|
||||
operator*(const MatrixBase<MatrixDerived> &matrix) const;
|
||||
|
||||
inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> >
|
||||
inverse() const
|
||||
{
|
||||
return diagonal().cwiseInverse();
|
||||
}
|
||||
|
||||
inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
|
||||
operator*(const Scalar& scalar) const
|
||||
{
|
||||
return diagonal() * scalar;
|
||||
}
|
||||
friend inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
|
||||
operator*(const Scalar& scalar, const DiagonalBase& other)
|
||||
{
|
||||
return other.diagonal() * scalar;
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
|
||||
{
|
||||
return diagonal().isApprox(other.diagonal(), precision);
|
||||
}
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
|
||||
{
|
||||
return toDenseMatrix().isApprox(other, precision);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
template<typename DenseDerived>
|
||||
void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
|
||||
{
|
||||
other.setZero();
|
||||
other.diagonal() = diagonal();
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \class DiagonalMatrix
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a diagonal matrix with its storage
|
||||
*
|
||||
* \param _Scalar the type of coefficients
|
||||
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
|
||||
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
|
||||
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
|
||||
*
|
||||
* \sa class DiagonalWrapper
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
||||
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
|
||||
typedef Dense StorageKind;
|
||||
typedef DenseIndex Index;
|
||||
enum {
|
||||
Flags = LvalueBit
|
||||
};
|
||||
};
|
||||
}
|
||||
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
||||
class DiagonalMatrix
|
||||
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
|
||||
typedef const DiagonalMatrix& Nested;
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<DiagonalMatrix>::Index Index;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
DiagonalVectorType m_diagonal;
|
||||
|
||||
public:
|
||||
|
||||
/** const version of diagonal(). */
|
||||
inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
|
||||
/** \returns a reference to the stored vector of diagonal coefficients. */
|
||||
inline DiagonalVectorType& diagonal() { return m_diagonal; }
|
||||
|
||||
/** Default constructor without initialization */
|
||||
inline DiagonalMatrix() {}
|
||||
|
||||
/** Constructs a diagonal matrix with given dimension */
|
||||
inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
|
||||
|
||||
/** 2D constructor. */
|
||||
inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
|
||||
|
||||
/** 3D constructor. */
|
||||
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
|
||||
|
||||
/** Copy constructor. */
|
||||
template<typename OtherDerived>
|
||||
inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
|
||||
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
|
||||
#endif
|
||||
|
||||
/** generic constructor from expression of the diagonal coefficients */
|
||||
template<typename OtherDerived>
|
||||
explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
|
||||
{}
|
||||
|
||||
/** Copy operator. */
|
||||
template<typename OtherDerived>
|
||||
DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
|
||||
{
|
||||
m_diagonal = other.diagonal();
|
||||
return *this;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
DiagonalMatrix& operator=(const DiagonalMatrix& other)
|
||||
{
|
||||
m_diagonal = other.diagonal();
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Resizes to given size. */
|
||||
inline void resize(Index size) { m_diagonal.resize(size); }
|
||||
/** Sets all coefficients to zero. */
|
||||
inline void setZero() { m_diagonal.setZero(); }
|
||||
/** Resizes and sets all coefficients to zero. */
|
||||
inline void setZero(Index size) { m_diagonal.setZero(size); }
|
||||
/** Sets this matrix to be the identity matrix of the current size. */
|
||||
inline void setIdentity() { m_diagonal.setOnes(); }
|
||||
/** Sets this matrix to be the identity matrix of the given size. */
|
||||
inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
|
||||
};
|
||||
|
||||
/** \class DiagonalWrapper
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a diagonal matrix
|
||||
*
|
||||
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
|
||||
*
|
||||
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
|
||||
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
|
||||
* and most of the time this is the only way that it is used.
|
||||
*
|
||||
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _DiagonalVectorType>
|
||||
struct traits<DiagonalWrapper<_DiagonalVectorType> >
|
||||
{
|
||||
typedef _DiagonalVectorType DiagonalVectorType;
|
||||
typedef typename DiagonalVectorType::Scalar Scalar;
|
||||
typedef typename DiagonalVectorType::Index Index;
|
||||
typedef typename DiagonalVectorType::StorageKind StorageKind;
|
||||
enum {
|
||||
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
|
||||
MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
|
||||
Flags = traits<DiagonalVectorType>::Flags & LvalueBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _DiagonalVectorType>
|
||||
class DiagonalWrapper
|
||||
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef _DiagonalVectorType DiagonalVectorType;
|
||||
typedef DiagonalWrapper Nested;
|
||||
#endif
|
||||
|
||||
/** Constructor from expression of diagonal coefficients to wrap. */
|
||||
inline DiagonalWrapper(DiagonalVectorType& diagonal) : m_diagonal(diagonal) {}
|
||||
|
||||
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
|
||||
const DiagonalVectorType& diagonal() const { return m_diagonal; }
|
||||
|
||||
protected:
|
||||
typename DiagonalVectorType::Nested m_diagonal;
|
||||
};
|
||||
|
||||
/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include MatrixBase_asDiagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_asDiagonal.out
|
||||
*
|
||||
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
|
||||
**/
|
||||
template<typename Derived>
|
||||
inline const DiagonalWrapper<const Derived>
|
||||
MatrixBase<Derived>::asDiagonal() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to a diagonal matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isDiagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_isDiagonal.out
|
||||
*
|
||||
* \sa asDiagonal()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isDiagonal(RealScalar prec) const
|
||||
{
|
||||
if(cols() != rows()) return false;
|
||||
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
{
|
||||
RealScalar absOnDiagonal = internal::abs(coeff(j,j));
|
||||
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
|
||||
}
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < j; ++i)
|
||||
{
|
||||
if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
|
||||
if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DIAGONALMATRIX_H
|
@ -1,123 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DIAGONALPRODUCT_H
|
||||
#define EIGEN_DIAGONALPRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, typename DiagonalType, int ProductOrder>
|
||||
struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
|
||||
_StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
|
||||
_PacketOnDiag = !((int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
|
||||
||(int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)),
|
||||
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
|
||||
// FIXME currently we need same types, but in the future the next rule should be the one
|
||||
//_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::Flags)&PacketAccessBit))),
|
||||
_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && ((!_PacketOnDiag) || (bool(int(DiagonalType::Flags)&PacketAccessBit))),
|
||||
|
||||
Flags = (HereditaryBits & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),
|
||||
CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename DiagonalType, int ProductOrder>
|
||||
class DiagonalProduct : internal::no_assignment_operator,
|
||||
public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MatrixBase<DiagonalProduct> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
|
||||
|
||||
inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
|
||||
: m_matrix(matrix), m_diagonal(diagonal)
|
||||
{
|
||||
eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
enum {
|
||||
StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
|
||||
};
|
||||
const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
|
||||
|
||||
return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
|
||||
((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
|
||||
||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
|
||||
}
|
||||
|
||||
protected:
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
|
||||
{
|
||||
return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
|
||||
internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
|
||||
{
|
||||
enum {
|
||||
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
|
||||
DiagonalVectorPacketLoadMode = (LoadMode == Aligned && ((InnerSize%16) == 0)) ? Aligned : Unaligned
|
||||
};
|
||||
return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
|
||||
m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
|
||||
}
|
||||
|
||||
typename MatrixType::Nested m_matrix;
|
||||
typename DiagonalType::Nested m_diagonal;
|
||||
};
|
||||
|
||||
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename DiagonalDerived>
|
||||
inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
|
||||
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &diagonal) const
|
||||
{
|
||||
return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), diagonal.derived());
|
||||
}
|
||||
|
||||
/** \returns the diagonal matrix product of \c *this by the matrix \a matrix.
|
||||
*/
|
||||
template<typename DiagonalDerived>
|
||||
template<typename MatrixDerived>
|
||||
inline const DiagonalProduct<MatrixDerived, DiagonalDerived, OnTheLeft>
|
||||
DiagonalBase<DiagonalDerived>::operator*(const MatrixBase<MatrixDerived> &matrix) const
|
||||
{
|
||||
return DiagonalProduct<MatrixDerived, DiagonalDerived, OnTheLeft>(matrix.derived(), derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DIAGONALPRODUCT_H
|
@ -1,261 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DOT_H
|
||||
#define EIGEN_DOT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
|
||||
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
|
||||
// looking at the static assertions. Thus this is a trick to get better compile errors.
|
||||
template<typename T, typename U,
|
||||
// the NeedToTranspose condition here is taken straight from Assign.h
|
||||
bool NeedToTranspose = T::IsVectorAtCompileTime
|
||||
&& U::IsVectorAtCompileTime
|
||||
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
|
||||
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
|
||||
// revert to || as soon as not needed anymore.
|
||||
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
|
||||
>
|
||||
struct dot_nocheck
|
||||
{
|
||||
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
|
||||
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
{
|
||||
return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T, typename U>
|
||||
struct dot_nocheck<T, U, true>
|
||||
{
|
||||
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
|
||||
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
{
|
||||
return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the dot product of *this with other.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \note If the scalar type is complex numbers, then this function returns the hermitian
|
||||
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
|
||||
* second variable.
|
||||
*
|
||||
* \sa squaredNorm(), norm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
|
||||
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
|
||||
|
||||
eigen_assert(size() == other.size());
|
||||
|
||||
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
|
||||
* (conjugating the second variable). Of course this only makes a difference in the complex case.
|
||||
*
|
||||
* This method is only available in EIGEN2_SUPPORT mode.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa dot()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
eigen_assert(size() == other.size());
|
||||
|
||||
return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
//---------- implementation of L2 norm and related functions ----------
|
||||
|
||||
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
|
||||
* In both cases, it consists in the sum of the square of all the matrix entries.
|
||||
* For vectors, this is also equals to the dot product of \c *this with itself.
|
||||
*
|
||||
* \sa dot(), norm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
|
||||
{
|
||||
return internal::real((*this).cwiseAbs2().sum());
|
||||
}
|
||||
|
||||
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
|
||||
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
|
||||
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
|
||||
*
|
||||
* \sa dot(), squaredNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
||||
{
|
||||
return internal::sqrt(squaredNorm());
|
||||
}
|
||||
|
||||
/** \returns an expression of the quotient of *this by its own norm.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa norm(), normalize()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::normalized() const
|
||||
{
|
||||
typedef typename internal::nested<Derived>::type Nested;
|
||||
typedef typename internal::remove_reference<Nested>::type _Nested;
|
||||
_Nested n(derived());
|
||||
return n / n.norm();
|
||||
}
|
||||
|
||||
/** Normalizes the vector, i.e. divides it by its own norm.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa norm(), normalized()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::normalize()
|
||||
{
|
||||
*this /= norm();
|
||||
}
|
||||
|
||||
//---------- implementation of other norms ----------
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, int p>
|
||||
struct lpNorm_selector
|
||||
{
|
||||
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct lpNorm_selector<Derived, 1>
|
||||
{
|
||||
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return m.cwiseAbs().sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct lpNorm_selector<Derived, 2>
|
||||
{
|
||||
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return m.norm();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct lpNorm_selector<Derived, Infinity>
|
||||
{
|
||||
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return m.cwiseAbs().maxCoeff();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
||||
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
|
||||
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
||||
*
|
||||
* \sa norm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int p>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
MatrixBase<Derived>::lpNorm() const
|
||||
{
|
||||
return internal::lpNorm_selector<Derived, p>::run(*this);
|
||||
}
|
||||
|
||||
//---------- implementation of isOrthogonal / isUnitary ----------
|
||||
|
||||
/** \returns true if *this is approximately orthogonal to \a other,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isOrthogonal.cpp
|
||||
* Output: \verbinclude MatrixBase_isOrthogonal.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Derived>::isOrthogonal
|
||||
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
|
||||
{
|
||||
typename internal::nested<Derived,2>::type nested(derived());
|
||||
typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
|
||||
return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately an unitary matrix,
|
||||
* within the precision given by \a prec. In the case where the \a Scalar
|
||||
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
|
||||
*
|
||||
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
|
||||
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
|
||||
* orthonormal basis.
|
||||
*
|
||||
* Example: \include MatrixBase_isUnitary.cpp
|
||||
* Output: \verbinclude MatrixBase_isUnitary.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
|
||||
{
|
||||
typename Derived::Nested nested(derived());
|
||||
for(Index i = 0; i < cols(); ++i)
|
||||
{
|
||||
if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
|
||||
return false;
|
||||
for(Index j = 0; j < i; ++j)
|
||||
if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DOT_H
|
@ -1,160 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_EIGENBASE_H
|
||||
#define EIGEN_EIGENBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
|
||||
*
|
||||
* In other words, an EigenBase object is an object that can be copied into a MatrixBase.
|
||||
*
|
||||
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
|
||||
*
|
||||
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
|
||||
*
|
||||
* \sa \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived> struct EigenBase
|
||||
{
|
||||
// typedef typename internal::plain_matrix_type<Derived>::type PlainObject;
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
|
||||
/** \returns a reference to the derived object */
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
/** \returns a const reference to the derived object */
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
inline Derived& const_cast_derived() const
|
||||
{ return *static_cast<Derived*>(const_cast<EigenBase*>(this)); }
|
||||
inline const Derived& const_derived() const
|
||||
{ return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
|
||||
inline Index rows() const { return derived().rows(); }
|
||||
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
|
||||
inline Index cols() const { return derived().cols(); }
|
||||
/** \returns the number of coefficients, which is rows()*cols().
|
||||
* \sa rows(), cols(), SizeAtCompileTime. */
|
||||
inline Index size() const { return rows() * cols(); }
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{ derived().evalTo(dst); }
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
|
||||
template<typename Dest> inline void addTo(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
typename Dest::PlainObject res(rows(),cols());
|
||||
evalTo(res);
|
||||
dst += res;
|
||||
}
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
|
||||
template<typename Dest> inline void subTo(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
typename Dest::PlainObject res(rows(),cols());
|
||||
evalTo(res);
|
||||
dst -= res;
|
||||
}
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
|
||||
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
dst = dst * this->derived();
|
||||
}
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
|
||||
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
dst = this->derived() * dst;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of matrix base methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \brief Copies the generic expression \a other into *this.
|
||||
*
|
||||
* \details The expression must provide a (templated) evalTo(Derived& dst) const
|
||||
* function which does the actual job. In practice, this allows any user to write
|
||||
* its own special matrix without having to modify MatrixBase
|
||||
*
|
||||
* \returns a reference to *this.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().addTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().subTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived&
|
||||
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=() */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheLeft(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_EIGENBASE_H
|
@ -1,140 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_FLAGGED_H
|
||||
#define EIGEN_FLAGGED_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Flagged
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression with modified flags
|
||||
*
|
||||
* \param ExpressionType the type of the object of which we are modifying the flags
|
||||
* \param Added the flags added to the expression
|
||||
* \param Removed the flags removed from the expression (has priority over Added).
|
||||
*
|
||||
* This class represents an expression whose flags have been modified.
|
||||
* It is the return type of MatrixBase::flagged()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::flagged()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ExpressionType, unsigned int Added, unsigned int Removed>
|
||||
struct traits<Flagged<ExpressionType, Added, Removed> > : traits<ExpressionType>
|
||||
{
|
||||
enum { Flags = (ExpressionType::Flags | Added) & ~Removed };
|
||||
};
|
||||
}
|
||||
|
||||
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged
|
||||
: public MatrixBase<Flagged<ExpressionType, Added, Removed> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MatrixBase<Flagged> Base;
|
||||
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Flagged)
|
||||
typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
|
||||
ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
|
||||
typedef typename ExpressionType::InnerIterator InnerIterator;
|
||||
|
||||
inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index outerStride() const { return m_matrix.outerStride(); }
|
||||
inline Index innerStride() const { return m_matrix.innerStride(); }
|
||||
|
||||
inline CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_matrix.coeff(index);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.template packet<LoadMode>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_matrix.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
const ExpressionType& _expression() const { return m_matrix; }
|
||||
|
||||
template<typename OtherDerived>
|
||||
typename ExpressionType::PlainObject solveTriangular(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
protected:
|
||||
ExpressionTypeNested m_matrix;
|
||||
};
|
||||
|
||||
/** \returns an expression of *this with added and removed flags
|
||||
*
|
||||
* This is mostly for internal use.
|
||||
*
|
||||
* \sa class Flagged
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<unsigned int Added,unsigned int Removed>
|
||||
inline const Flagged<Derived, Added, Removed>
|
||||
DenseBase<Derived>::flagged() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_FLAGGED_H
|
@ -1,146 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_FORCEALIGNEDACCESS_H
|
||||
#define EIGEN_FORCEALIGNEDACCESS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class ForceAlignedAccess
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Enforce aligned packet loads and stores regardless of what is requested
|
||||
*
|
||||
* \param ExpressionType the type of the object of which we are forcing aligned packet access
|
||||
*
|
||||
* This class is the return type of MatrixBase::forceAlignedAccess()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::forceAlignedAccess()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
|
||||
{};
|
||||
}
|
||||
|
||||
template<typename ExpressionType> class ForceAlignedAccess
|
||||
: public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
|
||||
|
||||
inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
inline Index rows() const { return m_expression.rows(); }
|
||||
inline Index cols() const { return m_expression.cols(); }
|
||||
inline Index outerStride() const { return m_expression.outerStride(); }
|
||||
inline Index innerStride() const { return m_expression.innerStride(); }
|
||||
|
||||
inline const CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_expression.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_expression.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_expression.template packet<Aligned>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_expression.template packet<Aligned>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
|
||||
}
|
||||
|
||||
operator const ExpressionType&() const { return m_expression; }
|
||||
|
||||
protected:
|
||||
const ExpressionType& m_expression;
|
||||
|
||||
private:
|
||||
ForceAlignedAccess& operator=(const ForceAlignedAccess&);
|
||||
};
|
||||
|
||||
/** \returns an expression of *this with forced aligned access
|
||||
* \sa forceAlignedAccessIf(),class ForceAlignedAccess
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const ForceAlignedAccess<Derived>
|
||||
MatrixBase<Derived>::forceAlignedAccess() const
|
||||
{
|
||||
return ForceAlignedAccess<Derived>(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of *this with forced aligned access
|
||||
* \sa forceAlignedAccessIf(), class ForceAlignedAccess
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline ForceAlignedAccess<Derived>
|
||||
MatrixBase<Derived>::forceAlignedAccess()
|
||||
{
|
||||
return ForceAlignedAccess<Derived>(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of *this with forced aligned access if \a Enable is true.
|
||||
* \sa forceAlignedAccess(), class ForceAlignedAccess
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<bool Enable>
|
||||
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
|
||||
MatrixBase<Derived>::forceAlignedAccessIf() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns an expression of *this with forced aligned access if \a Enable is true.
|
||||
* \sa forceAlignedAccess(), class ForceAlignedAccess
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<bool Enable>
|
||||
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
|
||||
MatrixBase<Derived>::forceAlignedAccessIf()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_FORCEALIGNEDACCESS_H
|
@ -1,975 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_FUNCTORS_H
|
||||
#define EIGEN_FUNCTORS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// associative functors:
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the sum of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_sum_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return internal::padd(a,b); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
|
||||
{ return internal::predux(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_sum_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasAdd
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the product of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
|
||||
*/
|
||||
template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
|
||||
enum {
|
||||
// TODO vectorize mixed product
|
||||
Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
|
||||
};
|
||||
typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
|
||||
EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return internal::pmul(a,b); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
|
||||
{ return internal::predux_mul(a); }
|
||||
};
|
||||
template<typename LhsScalar,typename RhsScalar>
|
||||
struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
|
||||
enum {
|
||||
Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
|
||||
PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the conjugate product of two scalars
|
||||
*
|
||||
* This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
|
||||
*/
|
||||
template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
|
||||
|
||||
enum {
|
||||
Conj = NumTraits<LhsScalar>::IsComplex
|
||||
};
|
||||
|
||||
typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
|
||||
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
|
||||
EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
|
||||
{ return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
|
||||
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
|
||||
};
|
||||
template<typename LhsScalar,typename RhsScalar>
|
||||
struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<LhsScalar>::MulCost,
|
||||
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the min of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_min_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return internal::pmin(a,b); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
|
||||
{ return internal::predux_min(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_min_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasMin
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the max of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_max_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return internal::pmax(a,b); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
|
||||
{ return internal::predux_max(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_max_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasMax
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the hypot of two scalars
|
||||
*
|
||||
* \sa MatrixBase::stableNorm(), class Redux
|
||||
*/
|
||||
template<typename Scalar> struct scalar_hypot_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
|
||||
// typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
|
||||
{
|
||||
using std::max;
|
||||
using std::min;
|
||||
Scalar p = (max)(_x, _y);
|
||||
Scalar q = (min)(_x, _y);
|
||||
Scalar qp = q/p;
|
||||
return p * sqrt(Scalar(1) + qp*qp);
|
||||
}
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_hypot_op<Scalar> > {
|
||||
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the pow of two scalars
|
||||
*/
|
||||
template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
|
||||
inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return internal::pow(a, b); }
|
||||
};
|
||||
template<typename Scalar, typename OtherScalar>
|
||||
struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
|
||||
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
|
||||
};
|
||||
|
||||
// other binary functors:
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the difference of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator-
|
||||
*/
|
||||
template<typename Scalar> struct scalar_difference_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return internal::psub(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_difference_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasSub
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the quotient of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, Cwise::operator/()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_quotient_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
|
||||
{ return internal::pdiv(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_quotient_op<Scalar> > {
|
||||
enum {
|
||||
Cost = 2 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasDiv
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the and of two booleans
|
||||
*
|
||||
* \sa class CwiseBinaryOp, ArrayBase::operator&&
|
||||
*/
|
||||
struct scalar_boolean_and_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
|
||||
EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
|
||||
};
|
||||
template<> struct functor_traits<scalar_boolean_and_op> {
|
||||
enum {
|
||||
Cost = NumTraits<bool>::AddCost,
|
||||
PacketAccess = false
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the or of two booleans
|
||||
*
|
||||
* \sa class CwiseBinaryOp, ArrayBase::operator||
|
||||
*/
|
||||
struct scalar_boolean_or_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
|
||||
EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
|
||||
};
|
||||
template<> struct functor_traits<scalar_boolean_or_op> {
|
||||
enum {
|
||||
Cost = NumTraits<bool>::AddCost,
|
||||
PacketAccess = false
|
||||
};
|
||||
};
|
||||
|
||||
// unary functors:
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the opposite of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::operator-
|
||||
*/
|
||||
template<typename Scalar> struct scalar_opposite_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pnegate(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_opposite_op<Scalar> >
|
||||
{ enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasNegate };
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the absolute value of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::abs
|
||||
*/
|
||||
template<typename Scalar> struct scalar_abs_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs(a); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pabs(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_abs_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasAbs
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the squared absolute value of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::abs2
|
||||
*/
|
||||
template<typename Scalar> struct scalar_abs2_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs2(a); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pmul(a,a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_abs2_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the conjugate of a complex value
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_conjugate_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return internal::conj(a); }
|
||||
template<typename Packet>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_conjugate_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
|
||||
PacketAccess = packet_traits<Scalar>::HasConj
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to cast a scalar to another type
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::cast()
|
||||
*/
|
||||
template<typename Scalar, typename NewType>
|
||||
struct scalar_cast_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
|
||||
typedef NewType result_type;
|
||||
EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
|
||||
};
|
||||
template<typename Scalar, typename NewType>
|
||||
struct functor_traits<scalar_cast_op<Scalar,NewType> >
|
||||
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to extract the real part of a complex
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::real()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_real_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::real(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_real_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to extract the imaginary part of a complex
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::imag()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_imag_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::imag(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_imag_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to extract the real part of a complex as a reference
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::real()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_real_ref_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::real_ref(*const_cast<Scalar*>(&a)); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_real_ref_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to extract the imaginary part of a complex as a reference
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::imag()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_imag_ref_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::imag_ref(*const_cast<Scalar*>(&a)); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_imag_ref_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \brief Template functor to compute the exponential of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::exp()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_exp_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::exp(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_exp_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \brief Template functor to compute the logarithm of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::log()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_log_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::log(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_log_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to multiply a scalar by a fixed other one
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
|
||||
*/
|
||||
/* NOTE why doing the pset1() in packetOp *is* an optimization ?
|
||||
* indeed it seems better to declare m_other as a Packet and do the pset1() once
|
||||
* in the constructor. However, in practice:
|
||||
* - GCC does not like m_other as a Packet and generate a load every time it needs it
|
||||
* - on the other hand GCC is able to moves the pset1() outside the loop :)
|
||||
* - simpler code ;)
|
||||
* (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_multiple_op {
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pmul(a, pset1<Packet>(m_other)); }
|
||||
typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_multiple_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
|
||||
|
||||
template<typename Scalar1, typename Scalar2>
|
||||
struct scalar_multiple2_op {
|
||||
typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
|
||||
EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
|
||||
EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
|
||||
typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
|
||||
};
|
||||
template<typename Scalar1,typename Scalar2>
|
||||
struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
|
||||
{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to divide a scalar by a fixed other one
|
||||
*
|
||||
* This functor is used to implement the quotient of a matrix by
|
||||
* a scalar where the scalar type is not necessarily a floating point type.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::operator/
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_quotient1_op {
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pdiv(a, pset1<Packet>(m_other)); }
|
||||
typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_quotient1_op<Scalar> >
|
||||
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
|
||||
|
||||
// nullary functors
|
||||
|
||||
template<typename Scalar>
|
||||
struct scalar_constant_op {
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
|
||||
const Scalar m_other;
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_constant_op<Scalar> >
|
||||
// FIXME replace this packet test by a safe one
|
||||
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
|
||||
|
||||
template<typename Scalar> struct scalar_identity_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_identity_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
|
||||
|
||||
template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
|
||||
|
||||
// linear access for packet ops:
|
||||
// 1) initialization
|
||||
// base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
|
||||
// 2) each step (where size is 1 for coeff access or PacketSize for packet access)
|
||||
// base += [size*step, ..., size*step]
|
||||
//
|
||||
// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
|
||||
// in order to avoid the padd() in operator() ?
|
||||
template <typename Scalar>
|
||||
struct linspaced_op_impl<Scalar,false>
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
|
||||
linspaced_op_impl(Scalar low, Scalar step) :
|
||||
m_low(low), m_step(step),
|
||||
m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
|
||||
m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const
|
||||
{
|
||||
m_base = padd(m_base, pset1<Packet>(m_step));
|
||||
return m_low+i*m_step;
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
const Packet m_packetStep;
|
||||
mutable Packet m_base;
|
||||
};
|
||||
|
||||
// random access for packet ops:
|
||||
// 1) each step
|
||||
// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
|
||||
template <typename Scalar>
|
||||
struct linspaced_op_impl<Scalar,true>
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
|
||||
linspaced_op_impl(Scalar low, Scalar step) :
|
||||
m_low(low), m_step(step),
|
||||
m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
const Packet m_lowPacket;
|
||||
const Packet m_stepPacket;
|
||||
const Packet m_interPacket;
|
||||
};
|
||||
|
||||
// ----- Linspace functor ----------------------------------------------------------------
|
||||
|
||||
// Forward declaration (we default to random access which does not really give
|
||||
// us a speed gain when using packet access but it allows to use the functor in
|
||||
// nested expressions).
|
||||
template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
|
||||
template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
|
||||
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
|
||||
template <typename Scalar, bool RandomAccess> struct linspaced_op
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
linspaced_op(Scalar low, Scalar high, int num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
|
||||
|
||||
// We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
|
||||
// there row==0 and col is used for the actual iteration.
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
|
||||
{
|
||||
eigen_assert(col==0 || row==0);
|
||||
return impl(col + row);
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
|
||||
|
||||
// We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
|
||||
// there row==0 and col is used for the actual iteration.
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
|
||||
{
|
||||
eigen_assert(col==0 || row==0);
|
||||
return impl.packetOp(col + row);
|
||||
}
|
||||
|
||||
// This proxy object handles the actual required temporaries, the different
|
||||
// implementations (random vs. sequential access) as well as the
|
||||
// correct piping to size 2/4 packet operations.
|
||||
const linspaced_op_impl<Scalar,RandomAccess> impl;
|
||||
};
|
||||
|
||||
// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
|
||||
// to indicate whether a functor allows linear access, just always answering 'yes' except for
|
||||
// scalar_identity_op.
|
||||
// FIXME move this to functor_traits adding a functor_default
|
||||
template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
|
||||
template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
|
||||
|
||||
// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
|
||||
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
|
||||
// FIXME move this to functor_traits adding a functor_default
|
||||
template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
|
||||
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
|
||||
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
|
||||
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to add a scalar to a fixed other one
|
||||
* \sa class CwiseUnaryOp, Array::operator+
|
||||
*/
|
||||
/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
|
||||
template<typename Scalar>
|
||||
struct scalar_add_op {
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
|
||||
inline scalar_add_op(const Scalar& other) : m_other(other) { }
|
||||
inline Scalar operator() (const Scalar& a) const { return a + m_other; }
|
||||
inline const Packet packetOp(const Packet& a) const
|
||||
{ return internal::padd(a, pset1<Packet>(m_other)); }
|
||||
const Scalar m_other;
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_add_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the square root of a scalar
|
||||
* \sa class CwiseUnaryOp, Cwise::sqrt()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_sqrt_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::sqrt(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_sqrt_op<Scalar> >
|
||||
{ enum {
|
||||
Cost = 5 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasSqrt
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the cosine of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::cos()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_cos_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
|
||||
inline Scalar operator() (const Scalar& a) const { return internal::cos(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_cos_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = 5 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasCos
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the sine of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::sin()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_sin_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::sin(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_sin_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = 5 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasSin
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the tan of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::tan()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_tan_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::tan(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_tan_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = 5 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasTan
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the arc cosine of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::acos()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_acos_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::acos(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_acos_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = 5 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasACos
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the arc sine of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::asin()
|
||||
*/
|
||||
template<typename Scalar> struct scalar_asin_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
|
||||
inline const Scalar operator() (const Scalar& a) const { return internal::asin(a); }
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_asin_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = 5 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasASin
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to raise a scalar to a power
|
||||
* \sa class CwiseUnaryOp, Cwise::pow
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_pow_op {
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
|
||||
inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
|
||||
inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
|
||||
const Scalar m_exponent;
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_pow_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the quotient between a scalar and array entries.
|
||||
* \sa class CwiseUnaryOp, Cwise::inverse()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_inverse_mult_op {
|
||||
scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
|
||||
inline Scalar operator() (const Scalar& a) const { return m_other / a; }
|
||||
template<typename Packet>
|
||||
inline const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pdiv(pset1<Packet>(m_other),a); }
|
||||
Scalar m_other;
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the inverse of a scalar
|
||||
* \sa class CwiseUnaryOp, Cwise::inverse()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_inverse_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
|
||||
inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
|
||||
template<typename Packet>
|
||||
inline const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_inverse_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the square of a scalar
|
||||
* \sa class CwiseUnaryOp, Cwise::square()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_square_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
|
||||
inline Scalar operator() (const Scalar& a) const { return a*a; }
|
||||
template<typename Packet>
|
||||
inline const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pmul(a,a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_square_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the cube of a scalar
|
||||
* \sa class CwiseUnaryOp, Cwise::cube()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct scalar_cube_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
|
||||
inline Scalar operator() (const Scalar& a) const { return a*a*a; }
|
||||
template<typename Packet>
|
||||
inline const Packet packetOp(const Packet& a) const
|
||||
{ return internal::pmul(a,pmul(a,a)); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_cube_op<Scalar> >
|
||||
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
|
||||
|
||||
// default functor traits for STL functors:
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::multiplies<T> >
|
||||
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::divides<T> >
|
||||
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::plus<T> >
|
||||
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::minus<T> >
|
||||
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::negate<T> >
|
||||
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::logical_or<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::logical_and<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::logical_not<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::greater<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::less<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::greater_equal<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::less_equal<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::equal_to<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::not_equal_to<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::binder2nd<T> >
|
||||
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::binder1st<T> >
|
||||
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::unary_negate<T> >
|
||||
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::binary_negate<T> >
|
||||
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
#ifdef EIGEN_STDEXT_SUPPORT
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct functor_traits<std::project1st<T0,T1> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct functor_traits<std::project2nd<T0,T1> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct functor_traits<std::select2nd<std::pair<T0,T1> > >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct functor_traits<std::select1st<std::pair<T0,T1> > >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct functor_traits<std::unary_compose<T0,T1> >
|
||||
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1,typename T2>
|
||||
struct functor_traits<std::binary_compose<T0,T1,T2> >
|
||||
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
|
||||
|
||||
#endif // EIGEN_STDEXT_SUPPORT
|
||||
|
||||
// allow to add new functors and specializations of functor_traits from outside Eigen.
|
||||
// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
|
||||
#ifdef EIGEN_FUNCTORS_PLUGIN
|
||||
#include EIGEN_FUNCTORS_PLUGIN
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_FUNCTORS_H
|
@ -1,150 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_FUZZY_H
|
||||
#define EIGEN_FUZZY_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal
|
||||
{
|
||||
|
||||
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
|
||||
struct isApprox_selector
|
||||
{
|
||||
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec)
|
||||
{
|
||||
using std::min;
|
||||
typename internal::nested<Derived,2>::type nested(x);
|
||||
typename internal::nested<OtherDerived,2>::type otherNested(y);
|
||||
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct isApprox_selector<Derived, OtherDerived, true>
|
||||
{
|
||||
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar)
|
||||
{
|
||||
return x.matrix() == y.matrix();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
|
||||
struct isMuchSmallerThan_object_selector
|
||||
{
|
||||
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec)
|
||||
{
|
||||
return x.cwiseAbs2().sum() <= abs2(prec) * y.cwiseAbs2().sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
|
||||
{
|
||||
static bool run(const Derived& x, const OtherDerived&, typename Derived::RealScalar)
|
||||
{
|
||||
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
|
||||
struct isMuchSmallerThan_scalar_selector
|
||||
{
|
||||
static bool run(const Derived& x, const typename Derived::RealScalar& y, typename Derived::RealScalar prec)
|
||||
{
|
||||
return x.cwiseAbs2().sum() <= abs2(prec * y);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct isMuchSmallerThan_scalar_selector<Derived, true>
|
||||
{
|
||||
static bool run(const Derived& x, const typename Derived::RealScalar&, typename Derived::RealScalar)
|
||||
{
|
||||
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
|
||||
* are considered to be approximately equal within precision \f$ p \f$ if
|
||||
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
|
||||
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
|
||||
* L2 norm).
|
||||
*
|
||||
* \note Because of the multiplicativeness of this comparison, one can't use this function
|
||||
* to check whether \c *this is approximately equal to the zero matrix or vector.
|
||||
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
|
||||
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
|
||||
* RealScalar&, RealScalar) instead.
|
||||
*
|
||||
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool DenseBase<Derived>::isApprox(
|
||||
const DenseBase<OtherDerived>& other,
|
||||
RealScalar prec
|
||||
) const
|
||||
{
|
||||
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
|
||||
}
|
||||
|
||||
/** \returns \c true if the norm of \c *this is much smaller than \a other,
|
||||
* within the precision determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
|
||||
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
|
||||
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
|
||||
*
|
||||
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
|
||||
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
|
||||
* of a reference matrix of same dimensions.
|
||||
*
|
||||
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isMuchSmallerThan(
|
||||
const typename NumTraits<Scalar>::Real& other,
|
||||
RealScalar prec
|
||||
) const
|
||||
{
|
||||
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
|
||||
}
|
||||
|
||||
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
|
||||
* within the precision determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
|
||||
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
|
||||
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
|
||||
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
|
||||
*
|
||||
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool DenseBase<Derived>::isMuchSmallerThan(
|
||||
const DenseBase<OtherDerived>& other,
|
||||
RealScalar prec
|
||||
) const
|
||||
{
|
||||
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_FUZZY_H
|
@ -1,613 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_GENERAL_PRODUCT_H
|
||||
#define EIGEN_GENERAL_PRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class GeneralProduct
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the product of two general matrices or vectors
|
||||
*
|
||||
* \param LhsNested the type used to store the left-hand side
|
||||
* \param RhsNested the type used to store the right-hand side
|
||||
* \param ProductMode the type of the product
|
||||
*
|
||||
* This class represents an expression of the product of two general matrices.
|
||||
* We call a general matrix, a dense matrix with full storage. For instance,
|
||||
* This excludes triangular, selfadjoint, and sparse matrices.
|
||||
* It is the return type of the operator* between general matrices. Its template
|
||||
* arguments are determined automatically by ProductReturnType. Therefore,
|
||||
* GeneralProduct should never be used direclty. To determine the result type of a
|
||||
* function which involves a matrix product, use ProductReturnType::Type.
|
||||
*
|
||||
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
|
||||
class GeneralProduct;
|
||||
|
||||
enum {
|
||||
Large = 2,
|
||||
Small = 3
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int Rows, int Cols, int Depth> struct product_type_selector;
|
||||
|
||||
template<int Size, int MaxSize> struct product_size_category
|
||||
{
|
||||
enum { is_large = MaxSize == Dynamic ||
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
|
||||
value = is_large ? Large
|
||||
: Size == 1 ? 1
|
||||
: Small
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs> struct product_type
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type _Lhs;
|
||||
typedef typename remove_all<Rhs>::type _Rhs;
|
||||
enum {
|
||||
MaxRows = _Lhs::MaxRowsAtCompileTime,
|
||||
Rows = _Lhs::RowsAtCompileTime,
|
||||
MaxCols = _Rhs::MaxColsAtCompileTime,
|
||||
Cols = _Rhs::ColsAtCompileTime,
|
||||
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
|
||||
_Rhs::MaxRowsAtCompileTime),
|
||||
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
|
||||
_Rhs::RowsAtCompileTime),
|
||||
LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
};
|
||||
|
||||
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
|
||||
// is to work around an internal compiler error with gcc 4.1 and 4.2.
|
||||
private:
|
||||
enum {
|
||||
rows_select = product_size_category<Rows,MaxRows>::value,
|
||||
cols_select = product_size_category<Cols,MaxCols>::value,
|
||||
depth_select = product_size_category<Depth,MaxDepth>::value
|
||||
};
|
||||
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
|
||||
|
||||
public:
|
||||
enum {
|
||||
value = selector::ret
|
||||
};
|
||||
#ifdef EIGEN_DEBUG_PRODUCT
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(Rows);
|
||||
EIGEN_DEBUG_VAR(Cols);
|
||||
EIGEN_DEBUG_VAR(Depth);
|
||||
EIGEN_DEBUG_VAR(rows_select);
|
||||
EIGEN_DEBUG_VAR(cols_select);
|
||||
EIGEN_DEBUG_VAR(depth_select);
|
||||
EIGEN_DEBUG_VAR(value);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
/* The following allows to select the kind of product at compile time
|
||||
* based on the three dimensions of the product.
|
||||
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
|
||||
// FIXME I'm not sure the current mapping is the ideal one.
|
||||
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
|
||||
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
|
||||
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
|
||||
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
|
||||
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
|
||||
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \class ProductReturnType
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class to get the correct and optimized returned type of operator*
|
||||
*
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
* \param ProductMode the type of the product (determined automatically by internal::product_mode)
|
||||
*
|
||||
* This class defines the typename Type representing the optimized product expression
|
||||
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
|
||||
* is the recommended way to define the result type of a function returning an expression
|
||||
* which involve a matrix product. The class Product should never be
|
||||
* used directly.
|
||||
*
|
||||
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct ProductReturnType
|
||||
{
|
||||
// TODO use the nested type to reduce instanciations ????
|
||||
// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
|
||||
{
|
||||
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
|
||||
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
|
||||
{
|
||||
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
|
||||
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
|
||||
};
|
||||
|
||||
// this is a workaround for sun CC
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
|
||||
{};
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of Inner Vector Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
// FIXME : maybe the "inner product" could return a Scalar
|
||||
// instead of a 1x1 matrix ??
|
||||
// Pro: more natural for the user
|
||||
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
|
||||
// product ends up to a row-vector times col-vector product... To tackle this use
|
||||
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
|
||||
: traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, InnerProduct>
|
||||
: internal::no_assignment_operator,
|
||||
public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
|
||||
{
|
||||
typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
|
||||
public:
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
/** Convertion to scalar */
|
||||
operator const typename Base::Scalar() const {
|
||||
return Base::coeff(0,0);
|
||||
}
|
||||
};
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of Outer Vector Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
namespace internal {
|
||||
template<int StorageOrder> struct outer_product_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
|
||||
: traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, OuterProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
|
||||
{
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
||||
{
|
||||
internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<> struct outer_product_selector<ColMajor> {
|
||||
template<typename ProductType, typename Dest>
|
||||
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
|
||||
typedef typename Dest::Index Index;
|
||||
// FIXME make sure lhs is sequentially stored
|
||||
// FIXME not very good if rhs is real and lhs complex while alpha is real too
|
||||
const Index cols = dest.cols();
|
||||
for (Index j=0; j<cols; ++j)
|
||||
dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct outer_product_selector<RowMajor> {
|
||||
template<typename ProductType, typename Dest>
|
||||
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
|
||||
typedef typename Dest::Index Index;
|
||||
// FIXME make sure rhs is sequentially stored
|
||||
// FIXME not very good if lhs is real and rhs complex while alpha is real too
|
||||
const Index rows = dest.rows();
|
||||
for (Index i=0; i<rows; ++i)
|
||||
dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of General Matrix Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
|
||||
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
|
||||
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
|
||||
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
|
||||
* Therefore we need a lower level meta selector.
|
||||
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
|
||||
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
|
||||
{};
|
||||
|
||||
template<int Side, int StorageOrder, bool BlasCompatible>
|
||||
struct gemv_selector;
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, GemvProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
|
||||
{
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
|
||||
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
|
||||
typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
|
||||
{
|
||||
eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
|
||||
internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
|
||||
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The vector is on the left => transposition
|
||||
template<int StorageOrder, bool BlasCompatible>
|
||||
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
Transpose<Dest> destT(dest);
|
||||
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
|
||||
gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
|
||||
::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
|
||||
(prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize>
|
||||
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size>
|
||||
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize>
|
||||
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
|
||||
{
|
||||
#if EIGEN_ALIGN_STATICALLY
|
||||
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
|
||||
#else
|
||||
// Some architectures cannot align on the stack,
|
||||
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
|
||||
enum {
|
||||
ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
|
||||
PacketSize = internal::packet_traits<Scalar>::size
|
||||
};
|
||||
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
|
||||
EIGEN_STRONG_INLINE Scalar* data() {
|
||||
return ForceAlignment
|
||||
? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
|
||||
: m_data.array;
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,ColMajor,true>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::LhsScalar LhsScalar;
|
||||
typedef typename ProductType::RhsScalar RhsScalar;
|
||||
typedef typename ProductType::Scalar ResScalar;
|
||||
typedef typename ProductType::RealScalar RealScalar;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
|
||||
|
||||
ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
|
||||
* RhsBlasTraits::extractScalarFactor(prod.rhs());
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
// on, the other hand it is good for the cache to pack the vector anyways...
|
||||
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
|
||||
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
|
||||
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
|
||||
};
|
||||
|
||||
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
|
||||
|
||||
bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
|
||||
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
|
||||
|
||||
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
|
||||
evalToDest ? dest.data() : static_dest.data());
|
||||
|
||||
if(!evalToDest)
|
||||
{
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
int size = dest.size();
|
||||
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
if(!alphaIsCompatible)
|
||||
{
|
||||
MappedDest(actualDestPtr, dest.size()).setZero();
|
||||
compatibleAlpha = RhsScalar(1);
|
||||
}
|
||||
else
|
||||
MappedDest(actualDestPtr, dest.size()) = dest;
|
||||
}
|
||||
|
||||
general_matrix_vector_product
|
||||
<Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
actualLhs.data(), actualLhs.outerStride(),
|
||||
actualRhs.data(), actualRhs.innerStride(),
|
||||
actualDestPtr, 1,
|
||||
compatibleAlpha);
|
||||
|
||||
if (!evalToDest)
|
||||
{
|
||||
if(!alphaIsCompatible)
|
||||
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
|
||||
else
|
||||
dest = MappedDest(actualDestPtr, dest.size());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,RowMajor,true>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::LhsScalar LhsScalar;
|
||||
typedef typename ProductType::RhsScalar RhsScalar;
|
||||
typedef typename ProductType::Scalar ResScalar;
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::_ActualRhsType _ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
|
||||
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
|
||||
* RhsBlasTraits::extractScalarFactor(prod.rhs());
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
// on, the other hand it is good for the cache to pack the vector anyways...
|
||||
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
|
||||
};
|
||||
|
||||
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
|
||||
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
|
||||
|
||||
if(!DirectlyUseRhs)
|
||||
{
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
int size = actualRhs.size();
|
||||
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
|
||||
}
|
||||
|
||||
general_matrix_vector_product
|
||||
<Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
actualLhs.data(), actualLhs.outerStride(),
|
||||
actualRhsPtr, 1,
|
||||
dest.data(), dest.innerStride(),
|
||||
actualAlpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,ColMajor,false>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename Dest::Index Index;
|
||||
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
|
||||
const Index size = prod.rhs().rows();
|
||||
for(Index k=0; k<size; ++k)
|
||||
dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,RowMajor,false>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename Dest::Index Index;
|
||||
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
|
||||
const Index rows = prod.rows();
|
||||
for(Index i=0; i<rows; ++i)
|
||||
dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of matrix base methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the matrix product of \c *this and \a other.
|
||||
*
|
||||
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
|
||||
*
|
||||
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const typename ProductReturnType<Derived, OtherDerived>::Type
|
||||
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
// A note regarding the function declaration: In MSVC, this function will sometimes
|
||||
// not be inlined since DenseStorage is an unwindable object for dynamic
|
||||
// matrices and product types are holding a member to store the result.
|
||||
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwiseProduct(v2)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
#ifdef EIGEN_DEBUG_PRODUCT
|
||||
internal::product_type<Derived,OtherDerived>::debug();
|
||||
#endif
|
||||
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
|
||||
*
|
||||
* The returned product will behave like any other expressions: the coefficients of the product will be
|
||||
* computed once at a time as requested. This might be useful in some extremely rare cases when only
|
||||
* a small and no coherent fraction of the result's coefficients have to be computed.
|
||||
*
|
||||
* \warning This version of the matrix product can be much much slower. So use it only if you know
|
||||
* what you are doing and that you measured a true speed improvement.
|
||||
*
|
||||
* \sa operator*(const MatrixBase&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
const typename LazyProductReturnType<Derived,OtherDerived>::Type
|
||||
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwiseProduct(v2)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
|
||||
return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PRODUCT_H
|
@ -1,328 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_GENERIC_PACKET_MATH_H
|
||||
#define EIGEN_GENERIC_PACKET_MATH_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal
|
||||
* \file GenericPacketMath.h
|
||||
*
|
||||
* Default implementation for types not supported by the vectorization.
|
||||
* In practice these functions are provided to make easier the writing
|
||||
* of generic vectorized code.
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_DEBUG_ALIGNED_LOAD
|
||||
#define EIGEN_DEBUG_ALIGNED_LOAD
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
|
||||
#define EIGEN_DEBUG_UNALIGNED_LOAD
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEBUG_ALIGNED_STORE
|
||||
#define EIGEN_DEBUG_ALIGNED_STORE
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEBUG_UNALIGNED_STORE
|
||||
#define EIGEN_DEBUG_UNALIGNED_STORE
|
||||
#endif
|
||||
|
||||
struct default_packet_traits
|
||||
{
|
||||
enum {
|
||||
HasAdd = 1,
|
||||
HasSub = 1,
|
||||
HasMul = 1,
|
||||
HasNegate = 1,
|
||||
HasAbs = 1,
|
||||
HasAbs2 = 1,
|
||||
HasMin = 1,
|
||||
HasMax = 1,
|
||||
HasConj = 1,
|
||||
HasSetLinear = 1,
|
||||
|
||||
HasDiv = 0,
|
||||
HasSqrt = 0,
|
||||
HasExp = 0,
|
||||
HasLog = 0,
|
||||
HasPow = 0,
|
||||
|
||||
HasSin = 0,
|
||||
HasCos = 0,
|
||||
HasTan = 0,
|
||||
HasASin = 0,
|
||||
HasACos = 0,
|
||||
HasATan = 0
|
||||
};
|
||||
};
|
||||
|
||||
template<typename T> struct packet_traits : default_packet_traits
|
||||
{
|
||||
typedef T type;
|
||||
enum {
|
||||
Vectorizable = 0,
|
||||
size = 1,
|
||||
AlignedOnScalar = 0
|
||||
};
|
||||
enum {
|
||||
HasAdd = 0,
|
||||
HasSub = 0,
|
||||
HasMul = 0,
|
||||
HasNegate = 0,
|
||||
HasAbs = 0,
|
||||
HasAbs2 = 0,
|
||||
HasMin = 0,
|
||||
HasMax = 0,
|
||||
HasConj = 0,
|
||||
HasSetLinear = 0
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal \returns a + b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
padd(const Packet& a,
|
||||
const Packet& b) { return a+b; }
|
||||
|
||||
/** \internal \returns a - b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
psub(const Packet& a,
|
||||
const Packet& b) { return a-b; }
|
||||
|
||||
/** \internal \returns -a (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pnegate(const Packet& a) { return -a; }
|
||||
|
||||
/** \internal \returns conj(a) (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pconj(const Packet& a) { return conj(a); }
|
||||
|
||||
/** \internal \returns a * b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pmul(const Packet& a,
|
||||
const Packet& b) { return a*b; }
|
||||
|
||||
/** \internal \returns a / b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pdiv(const Packet& a,
|
||||
const Packet& b) { return a/b; }
|
||||
|
||||
/** \internal \returns the min of \a a and \a b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pmin(const Packet& a,
|
||||
const Packet& b) { using std::min; return (min)(a, b); }
|
||||
|
||||
/** \internal \returns the max of \a a and \a b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pmax(const Packet& a,
|
||||
const Packet& b) { using std::max; return (max)(a, b); }
|
||||
|
||||
/** \internal \returns the absolute value of \a a */
|
||||
template<typename Packet> inline Packet
|
||||
pabs(const Packet& a) { return abs(a); }
|
||||
|
||||
/** \internal \returns the bitwise and of \a a and \a b */
|
||||
template<typename Packet> inline Packet
|
||||
pand(const Packet& a, const Packet& b) { return a & b; }
|
||||
|
||||
/** \internal \returns the bitwise or of \a a and \a b */
|
||||
template<typename Packet> inline Packet
|
||||
por(const Packet& a, const Packet& b) { return a | b; }
|
||||
|
||||
/** \internal \returns the bitwise xor of \a a and \a b */
|
||||
template<typename Packet> inline Packet
|
||||
pxor(const Packet& a, const Packet& b) { return a ^ b; }
|
||||
|
||||
/** \internal \returns the bitwise andnot of \a a and \a b */
|
||||
template<typename Packet> inline Packet
|
||||
pandnot(const Packet& a, const Packet& b) { return a & (!b); }
|
||||
|
||||
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
|
||||
template<typename Packet> inline Packet
|
||||
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
|
||||
|
||||
/** \internal \returns a packet version of \a *from, (un-aligned load) */
|
||||
template<typename Packet> inline Packet
|
||||
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
|
||||
|
||||
/** \internal \returns a packet with elements of \a *from duplicated, e.g.: (from[0],from[0],from[1],from[1]) */
|
||||
template<typename Packet> inline Packet
|
||||
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
|
||||
|
||||
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
|
||||
template<typename Packet> inline Packet
|
||||
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
|
||||
|
||||
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
|
||||
template<typename Scalar> inline typename packet_traits<Scalar>::type
|
||||
plset(const Scalar& a) { return a; }
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
|
||||
template<typename Scalar, typename Packet> inline void pstore(Scalar* to, const Packet& from)
|
||||
{ (*to) = from; }
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
|
||||
template<typename Scalar, typename Packet> inline void pstoreu(Scalar* to, const Packet& from)
|
||||
{ (*to) = from; }
|
||||
|
||||
/** \internal tries to do cache prefetching of \a addr */
|
||||
template<typename Scalar> inline void prefetch(const Scalar* addr)
|
||||
{
|
||||
#if !defined(_MSC_VER)
|
||||
__builtin_prefetch(addr);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** \internal \returns the first element of a packet */
|
||||
template<typename Packet> inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
|
||||
template<typename Packet> inline Packet
|
||||
preduxp(const Packet* vecs) { return vecs[0]; }
|
||||
|
||||
/** \internal \returns the sum of the elements of \a a*/
|
||||
template<typename Packet> inline typename unpacket_traits<Packet>::type predux(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the product of the elements of \a a*/
|
||||
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the min of the elements of \a a*/
|
||||
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the max of the elements of \a a*/
|
||||
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the reversed elements of \a a*/
|
||||
template<typename Packet> inline Packet preverse(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
|
||||
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
|
||||
template<typename Packet> inline Packet pcplxflip(const Packet& a)
|
||||
{ return Packet(imag(a),real(a)); }
|
||||
|
||||
/**************************
|
||||
* Special math functions
|
||||
***************************/
|
||||
|
||||
/** \internal \returns the sine of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet psin(const Packet& a) { return sin(a); }
|
||||
|
||||
/** \internal \returns the cosine of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet pcos(const Packet& a) { return cos(a); }
|
||||
|
||||
/** \internal \returns the tan of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet ptan(const Packet& a) { return tan(a); }
|
||||
|
||||
/** \internal \returns the arc sine of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet pasin(const Packet& a) { return asin(a); }
|
||||
|
||||
/** \internal \returns the arc cosine of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet pacos(const Packet& a) { return acos(a); }
|
||||
|
||||
/** \internal \returns the exp of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet pexp(const Packet& a) { return exp(a); }
|
||||
|
||||
/** \internal \returns the log of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet plog(const Packet& a) { return log(a); }
|
||||
|
||||
/** \internal \returns the square-root of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet psqrt(const Packet& a) { return sqrt(a); }
|
||||
|
||||
/***************************************************************************
|
||||
* The following functions might not have to be overwritten for vectorized types
|
||||
***************************************************************************/
|
||||
|
||||
/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
|
||||
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
|
||||
template<typename Packet>
|
||||
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
|
||||
{
|
||||
pstore(to, pset1<Packet>(a));
|
||||
}
|
||||
|
||||
/** \internal \returns a * b + c (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
pmadd(const Packet& a,
|
||||
const Packet& b,
|
||||
const Packet& c)
|
||||
{ return padd(pmul(a, b),c); }
|
||||
|
||||
/** \internal \returns a packet version of \a *from.
|
||||
* If LoadMode equals #Aligned, \a from must be 16 bytes aligned */
|
||||
template<typename Packet, int LoadMode>
|
||||
inline Packet ploadt(const typename unpacket_traits<Packet>::type* from)
|
||||
{
|
||||
if(LoadMode == Aligned)
|
||||
return pload<Packet>(from);
|
||||
else
|
||||
return ploadu<Packet>(from);
|
||||
}
|
||||
|
||||
/** \internal copy the packet \a from to \a *to.
|
||||
* If StoreMode equals #Aligned, \a to must be 16 bytes aligned */
|
||||
template<typename Scalar, typename Packet, int LoadMode>
|
||||
inline void pstoret(Scalar* to, const Packet& from)
|
||||
{
|
||||
if(LoadMode == Aligned)
|
||||
pstore(to, from);
|
||||
else
|
||||
pstoreu(to, from);
|
||||
}
|
||||
|
||||
/** \internal default implementation of palign() allowing partial specialization */
|
||||
template<int Offset,typename PacketType>
|
||||
struct palign_impl
|
||||
{
|
||||
// by default data are aligned, so there is nothing to be done :)
|
||||
static inline void run(PacketType&, const PacketType&) {}
|
||||
};
|
||||
|
||||
/** \internal update \a first using the concatenation of the \a Offset last elements
|
||||
* of \a first and packet_size minus \a Offset first elements of \a second */
|
||||
template<int Offset,typename PacketType>
|
||||
inline void palign(PacketType& first, const PacketType& second)
|
||||
{
|
||||
palign_impl<Offset,PacketType>::run(first,second);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Fast complex products (GCC generates a function call which is very slow)
|
||||
***************************************************************************/
|
||||
|
||||
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
|
||||
{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
|
||||
|
||||
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
|
||||
{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_GENERIC_PACKET_MATH_H
|
||||
|
@ -1,103 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_GLOBAL_FUNCTIONS_H
|
||||
#define EIGEN_GLOBAL_FUNCTIONS_H
|
||||
|
||||
#define EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(NAME,FUNCTOR) \
|
||||
template<typename Derived> \
|
||||
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
|
||||
NAME(const Eigen::ArrayBase<Derived>& x) { \
|
||||
return x.derived(); \
|
||||
}
|
||||
|
||||
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
|
||||
\
|
||||
template<typename Derived> \
|
||||
struct NAME##_retval<ArrayBase<Derived> > \
|
||||
{ \
|
||||
typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
|
||||
}; \
|
||||
template<typename Derived> \
|
||||
struct NAME##_impl<ArrayBase<Derived> > \
|
||||
{ \
|
||||
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
|
||||
{ \
|
||||
return x.derived(); \
|
||||
} \
|
||||
};
|
||||
|
||||
|
||||
namespace std
|
||||
{
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(real,scalar_real_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(imag,scalar_imag_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sin,scalar_sin_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(cos,scalar_cos_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(asin,scalar_asin_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(acos,scalar_acos_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(tan,scalar_tan_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(exp,scalar_exp_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(log,scalar_log_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(abs,scalar_abs_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sqrt,scalar_sqrt_op)
|
||||
|
||||
template<typename Derived>
|
||||
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived>
|
||||
pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) {
|
||||
return x.derived().pow(exponent);
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>
|
||||
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<Derived>& exponents)
|
||||
{
|
||||
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>(
|
||||
x.derived(),
|
||||
exponents.derived()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
/**
|
||||
* \brief Component-wise division of a scalar by array elements.
|
||||
**/
|
||||
template <typename Derived>
|
||||
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>
|
||||
operator/(typename Derived::Scalar s, const Eigen::ArrayBase<Derived>& a)
|
||||
{
|
||||
return Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>(
|
||||
a.derived(),
|
||||
Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>(s)
|
||||
);
|
||||
}
|
||||
|
||||
namespace internal
|
||||
{
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(sin,scalar_sin_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(cos,scalar_cos_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(asin,scalar_asin_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(acos,scalar_acos_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(tan,scalar_tan_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(exp,scalar_exp_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(log,scalar_log_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs,scalar_abs_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(sqrt,scalar_sqrt_op)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: cleanly disable those functions that are not supported on Array (internal::real_ref, internal::random, internal::isApprox...)
|
||||
|
||||
#endif // EIGEN_GLOBAL_FUNCTIONS_H
|
@ -1,249 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_IO_H
|
||||
#define EIGEN_IO_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
enum { DontAlignCols = 1 };
|
||||
enum { StreamPrecision = -1,
|
||||
FullPrecision = -2 };
|
||||
|
||||
namespace internal {
|
||||
template<typename Derived>
|
||||
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
|
||||
}
|
||||
|
||||
/** \class IOFormat
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Stores a set of parameters controlling the way matrices are printed
|
||||
*
|
||||
* List of available parameters:
|
||||
* - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision.
|
||||
* The default is the special value \c StreamPrecision which means to use the
|
||||
* stream's own precision setting, as set for instance using \c cout.precision(3). The other special value
|
||||
* \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point
|
||||
* type.
|
||||
* - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which
|
||||
* allows to disable the alignment of columns, resulting in faster code.
|
||||
* - \b coeffSeparator string printed between two coefficients of the same row
|
||||
* - \b rowSeparator string printed between two rows
|
||||
* - \b rowPrefix string printed at the beginning of each row
|
||||
* - \b rowSuffix string printed at the end of each row
|
||||
* - \b matPrefix string printed at the beginning of the matrix
|
||||
* - \b matSuffix string printed at the end of the matrix
|
||||
*
|
||||
* Example: \include IOFormat.cpp
|
||||
* Output: \verbinclude IOFormat.out
|
||||
*
|
||||
* \sa DenseBase::format(), class WithFormat
|
||||
*/
|
||||
struct IOFormat
|
||||
{
|
||||
/** Default contructor, see class IOFormat for the meaning of the parameters */
|
||||
IOFormat(int _precision = StreamPrecision, int _flags = 0,
|
||||
const std::string& _coeffSeparator = " ",
|
||||
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
|
||||
const std::string& _matPrefix="", const std::string& _matSuffix="")
|
||||
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
|
||||
coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
|
||||
{
|
||||
rowSpacer = "";
|
||||
int i = int(matSuffix.length())-1;
|
||||
while (i>=0 && matSuffix[i]!='\n')
|
||||
{
|
||||
rowSpacer += ' ';
|
||||
i--;
|
||||
}
|
||||
}
|
||||
std::string matPrefix, matSuffix;
|
||||
std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
|
||||
std::string coeffSeparator;
|
||||
int precision;
|
||||
int flags;
|
||||
};
|
||||
|
||||
/** \class WithFormat
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Pseudo expression providing matrix output with given format
|
||||
*
|
||||
* \param ExpressionType the type of the object on which IO stream operations are performed
|
||||
*
|
||||
* This class represents an expression with stream operators controlled by a given IOFormat.
|
||||
* It is the return type of DenseBase::format()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* See class IOFormat for some examples.
|
||||
*
|
||||
* \sa DenseBase::format(), class IOFormat
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
class WithFormat
|
||||
{
|
||||
public:
|
||||
|
||||
WithFormat(const ExpressionType& matrix, const IOFormat& format)
|
||||
: m_matrix(matrix), m_format(format)
|
||||
{}
|
||||
|
||||
friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
|
||||
{
|
||||
return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename ExpressionType::Nested m_matrix;
|
||||
IOFormat m_format;
|
||||
};
|
||||
|
||||
/** \returns a WithFormat proxy object allowing to print a matrix the with given
|
||||
* format \a fmt.
|
||||
*
|
||||
* See class IOFormat for some examples.
|
||||
*
|
||||
* \sa class IOFormat, class WithFormat
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const WithFormat<Derived>
|
||||
DenseBase<Derived>::format(const IOFormat& fmt) const
|
||||
{
|
||||
return WithFormat<Derived>(derived(), fmt);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar, bool IsInteger>
|
||||
struct significant_decimals_default_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline int run()
|
||||
{
|
||||
using std::ceil;
|
||||
return cast<RealScalar,int>(ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct significant_decimals_default_impl<Scalar, true>
|
||||
{
|
||||
static inline int run()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct significant_decimals_impl
|
||||
: significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
|
||||
{};
|
||||
|
||||
/** \internal
|
||||
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
|
||||
template<typename Derived>
|
||||
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
|
||||
{
|
||||
if(_m.size() == 0)
|
||||
{
|
||||
s << fmt.matPrefix << fmt.matSuffix;
|
||||
return s;
|
||||
}
|
||||
|
||||
typename Derived::Nested m = _m;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Derived::Index Index;
|
||||
|
||||
Index width = 0;
|
||||
|
||||
std::streamsize explicit_precision;
|
||||
if(fmt.precision == StreamPrecision)
|
||||
{
|
||||
explicit_precision = 0;
|
||||
}
|
||||
else if(fmt.precision == FullPrecision)
|
||||
{
|
||||
if (NumTraits<Scalar>::IsInteger)
|
||||
{
|
||||
explicit_precision = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
explicit_precision = significant_decimals_impl<Scalar>::run();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
explicit_precision = fmt.precision;
|
||||
}
|
||||
|
||||
bool align_cols = !(fmt.flags & DontAlignCols);
|
||||
if(align_cols)
|
||||
{
|
||||
// compute the largest width
|
||||
for(Index j = 1; j < m.cols(); ++j)
|
||||
for(Index i = 0; i < m.rows(); ++i)
|
||||
{
|
||||
std::stringstream sstr;
|
||||
if(explicit_precision) sstr.precision(explicit_precision);
|
||||
sstr << m.coeff(i,j);
|
||||
width = std::max<Index>(width, Index(sstr.str().length()));
|
||||
}
|
||||
}
|
||||
std::streamsize old_precision = 0;
|
||||
if(explicit_precision) old_precision = s.precision(explicit_precision);
|
||||
s << fmt.matPrefix;
|
||||
for(Index i = 0; i < m.rows(); ++i)
|
||||
{
|
||||
if (i)
|
||||
s << fmt.rowSpacer;
|
||||
s << fmt.rowPrefix;
|
||||
if(width) s.width(width);
|
||||
s << m.coeff(i, 0);
|
||||
for(Index j = 1; j < m.cols(); ++j)
|
||||
{
|
||||
s << fmt.coeffSeparator;
|
||||
if (width) s.width(width);
|
||||
s << m.coeff(i, j);
|
||||
}
|
||||
s << fmt.rowSuffix;
|
||||
if( i < m.rows() - 1)
|
||||
s << fmt.rowSeparator;
|
||||
}
|
||||
s << fmt.matSuffix;
|
||||
if(explicit_precision) s.precision(old_precision);
|
||||
return s;
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \relates DenseBase
|
||||
*
|
||||
* Outputs the matrix, to the given stream.
|
||||
*
|
||||
* If you wish to print the matrix with a format different than the default, use DenseBase::format().
|
||||
*
|
||||
* It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
|
||||
* If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
|
||||
*
|
||||
* \sa DenseBase::format()
|
||||
*/
|
||||
template<typename Derived>
|
||||
std::ostream & operator <<
|
||||
(std::ostream & s,
|
||||
const DenseBase<Derived> & m)
|
||||
{
|
||||
return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_IO_H
|
@ -1,192 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MAP_H
|
||||
#define EIGEN_MAP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Map
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief A matrix or vector expression mapping an existing array of data.
|
||||
*
|
||||
* \tparam PlainObjectType the equivalent matrix type of the mapped data
|
||||
* \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned.
|
||||
* The default is \c #Unaligned.
|
||||
* \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout
|
||||
* of an ordinary, contiguous array. This can be overridden by specifying strides.
|
||||
* The type passed here must be a specialization of the Stride template, see examples below.
|
||||
*
|
||||
* This class represents a matrix or vector expression mapping an existing array of data.
|
||||
* It can be used to let Eigen interface without any overhead with non-Eigen data structures,
|
||||
* such as plain C arrays or structures from other libraries. By default, it assumes that the
|
||||
* data is laid out contiguously in memory. You can however override this by explicitly specifying
|
||||
* inner and outer strides.
|
||||
*
|
||||
* Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix:
|
||||
* \include Map_simple.cpp
|
||||
* Output: \verbinclude Map_simple.out
|
||||
*
|
||||
* If you need to map non-contiguous arrays, you can do so by specifying strides:
|
||||
*
|
||||
* Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer
|
||||
* increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time
|
||||
* fixed value.
|
||||
* \include Map_inner_stride.cpp
|
||||
* Output: \verbinclude Map_inner_stride.out
|
||||
*
|
||||
* Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping
|
||||
* as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns.
|
||||
* Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is
|
||||
* a short version of \c OuterStride<Dynamic> because the default template parameter of OuterStride
|
||||
* is \c Dynamic
|
||||
* \include Map_outer_stride.cpp
|
||||
* Output: \verbinclude Map_outer_stride.out
|
||||
*
|
||||
* For more details and for an example of specifying both an inner and an outer stride, see class Stride.
|
||||
*
|
||||
* \b Tip: to change the array of data mapped by a Map object, you can use the C++
|
||||
* placement new syntax:
|
||||
*
|
||||
* Example: \include Map_placement_new.cpp
|
||||
* Output: \verbinclude Map_placement_new.out
|
||||
*
|
||||
* This class is the return type of PlainObjectBase::Map() but can also be used directly.
|
||||
*
|
||||
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename PlainObjectType, int MapOptions, typename StrideType>
|
||||
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
|
||||
: public traits<PlainObjectType>
|
||||
{
|
||||
typedef traits<PlainObjectType> TraitsBase;
|
||||
typedef typename PlainObjectType::Index Index;
|
||||
typedef typename PlainObjectType::Scalar Scalar;
|
||||
enum {
|
||||
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
|
||||
? int(PlainObjectType::InnerStrideAtCompileTime)
|
||||
: int(StrideType::InnerStrideAtCompileTime),
|
||||
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
|
||||
? int(PlainObjectType::OuterStrideAtCompileTime)
|
||||
: int(StrideType::OuterStrideAtCompileTime),
|
||||
HasNoInnerStride = InnerStrideAtCompileTime == 1,
|
||||
HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
|
||||
HasNoStride = HasNoInnerStride && HasNoOuterStride,
|
||||
IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
|
||||
IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
|
||||
KeepsPacketAccess = bool(HasNoInnerStride)
|
||||
&& ( bool(IsDynamicSize)
|
||||
|| HasNoOuterStride
|
||||
|| ( OuterStrideAtCompileTime!=Dynamic
|
||||
&& ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ),
|
||||
Flags0 = TraitsBase::Flags & (~NestByRefBit),
|
||||
Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
|
||||
Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
|
||||
? int(Flags1) : int(Flags1 & ~LinearAccessBit),
|
||||
Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
|
||||
Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
|
||||
};
|
||||
private:
|
||||
enum { Options }; // Expressions don't have Options
|
||||
};
|
||||
}
|
||||
|
||||
template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
|
||||
: public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MapBase<Map> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
|
||||
|
||||
typedef typename Base::PointerType PointerType;
|
||||
#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
|
||||
typedef const Scalar* PointerArgType;
|
||||
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
|
||||
#else
|
||||
typedef PointerType PointerArgType;
|
||||
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
|
||||
#endif
|
||||
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
|
||||
}
|
||||
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
|
||||
: IsVectorAtCompileTime ? this->size()
|
||||
: int(Flags)&RowMajorBit ? this->cols()
|
||||
: this->rows();
|
||||
}
|
||||
|
||||
/** Constructor in the fixed-size case.
|
||||
*
|
||||
* \param data pointer to the array to map
|
||||
* \param stride optional Stride object, passing the strides.
|
||||
*/
|
||||
inline Map(PointerArgType data, const StrideType& stride = StrideType())
|
||||
: Base(cast_to_pointer_type(data)), m_stride(stride)
|
||||
{
|
||||
PlainObjectType::Base::_check_template_params();
|
||||
}
|
||||
|
||||
/** Constructor in the dynamic-size vector case.
|
||||
*
|
||||
* \param data pointer to the array to map
|
||||
* \param size the size of the vector expression
|
||||
* \param stride optional Stride object, passing the strides.
|
||||
*/
|
||||
inline Map(PointerArgType data, Index size, const StrideType& stride = StrideType())
|
||||
: Base(cast_to_pointer_type(data), size), m_stride(stride)
|
||||
{
|
||||
PlainObjectType::Base::_check_template_params();
|
||||
}
|
||||
|
||||
/** Constructor in the dynamic-size matrix case.
|
||||
*
|
||||
* \param data pointer to the array to map
|
||||
* \param rows the number of rows of the matrix expression
|
||||
* \param cols the number of columns of the matrix expression
|
||||
* \param stride optional Stride object, passing the strides.
|
||||
*/
|
||||
inline Map(PointerArgType data, Index rows, Index cols, const StrideType& stride = StrideType())
|
||||
: Base(cast_to_pointer_type(data), rows, cols), m_stride(stride)
|
||||
{
|
||||
PlainObjectType::Base::_check_template_params();
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
|
||||
protected:
|
||||
StrideType m_stride;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
|
||||
::Array(const Scalar *data)
|
||||
{
|
||||
this->_set_noalias(Eigen::Map<const Array>(data));
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
|
||||
::Matrix(const Scalar *data)
|
||||
{
|
||||
this->_set_noalias(Eigen::Map<const Matrix>(data));
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAP_H
|
@ -1,242 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MAPBASE_H
|
||||
#define EIGEN_MAPBASE_H
|
||||
|
||||
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
|
||||
EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
|
||||
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class MapBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for Map and Block expression with direct access
|
||||
*
|
||||
* \sa class Map, class Block
|
||||
*/
|
||||
template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
||||
: public internal::dense_xpr_base<Derived>::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Derived>::type Base;
|
||||
enum {
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
SizeAtCompileTime = Base::SizeAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename internal::conditional<
|
||||
bool(internal::is_lvalue<Derived>::value),
|
||||
Scalar *,
|
||||
const Scalar *>::type
|
||||
PointerType;
|
||||
|
||||
using Base::derived;
|
||||
// using Base::RowsAtCompileTime;
|
||||
// using Base::ColsAtCompileTime;
|
||||
// using Base::SizeAtCompileTime;
|
||||
using Base::MaxRowsAtCompileTime;
|
||||
using Base::MaxColsAtCompileTime;
|
||||
using Base::MaxSizeAtCompileTime;
|
||||
using Base::IsVectorAtCompileTime;
|
||||
using Base::Flags;
|
||||
using Base::IsRowMajor;
|
||||
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::coeff;
|
||||
using Base::coeffRef;
|
||||
using Base::lazyAssign;
|
||||
using Base::eval;
|
||||
|
||||
using Base::innerStride;
|
||||
using Base::outerStride;
|
||||
using Base::rowStride;
|
||||
using Base::colStride;
|
||||
|
||||
// bug 217 - compile error on ICC 11.1
|
||||
using Base::operator=;
|
||||
|
||||
typedef typename Base::CoeffReturnType CoeffReturnType;
|
||||
|
||||
inline Index rows() const { return m_rows.value(); }
|
||||
inline Index cols() const { return m_cols.value(); }
|
||||
|
||||
/** Returns a pointer to the first coefficient of the matrix or vector.
|
||||
*
|
||||
* \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride().
|
||||
*
|
||||
* \sa innerStride(), outerStride()
|
||||
*/
|
||||
inline const Scalar* data() const { return m_data; }
|
||||
|
||||
inline const Scalar& coeff(Index row, Index col) const
|
||||
{
|
||||
return m_data[col * colStride() + row * rowStride()];
|
||||
}
|
||||
|
||||
inline const Scalar& coeff(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
|
||||
return m_data[index * innerStride()];
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return this->m_data[col * colStride() + row * rowStride()];
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
|
||||
return this->m_data[index * innerStride()];
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return internal::ploadt<PacketScalar, LoadMode>
|
||||
(m_data + (col * colStride() + row * rowStride()));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
|
||||
return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
|
||||
}
|
||||
|
||||
inline MapBase(PointerType data) : m_data(data), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
checkSanity();
|
||||
}
|
||||
|
||||
inline MapBase(PointerType data, Index size)
|
||||
: m_data(data),
|
||||
m_rows(RowsAtCompileTime == Dynamic ? size : Index(RowsAtCompileTime)),
|
||||
m_cols(ColsAtCompileTime == Dynamic ? size : Index(ColsAtCompileTime))
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
eigen_assert(size >= 0);
|
||||
eigen_assert(data == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
|
||||
checkSanity();
|
||||
}
|
||||
|
||||
inline MapBase(PointerType data, Index rows, Index cols)
|
||||
: m_data(data), m_rows(rows), m_cols(cols)
|
||||
{
|
||||
eigen_assert( (data == 0)
|
||||
|| ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)));
|
||||
checkSanity();
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
void checkSanity() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
|
||||
internal::inner_stride_at_compile_time<Derived>::ret==1),
|
||||
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
|
||||
eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % 16) == 0)
|
||||
&& "data is not aligned");
|
||||
}
|
||||
|
||||
PointerType m_data;
|
||||
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
|
||||
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
|
||||
};
|
||||
|
||||
template<typename Derived> class MapBase<Derived, WriteAccessors>
|
||||
: public MapBase<Derived, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MapBase<Derived, ReadOnlyAccessors> Base;
|
||||
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::PacketScalar PacketScalar;
|
||||
typedef typename Base::Index Index;
|
||||
typedef typename Base::PointerType PointerType;
|
||||
|
||||
using Base::derived;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::coeff;
|
||||
using Base::coeffRef;
|
||||
|
||||
using Base::innerStride;
|
||||
using Base::outerStride;
|
||||
using Base::rowStride;
|
||||
using Base::colStride;
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<Derived>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
|
||||
inline const Scalar* data() const { return this->m_data; }
|
||||
inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error
|
||||
|
||||
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
|
||||
{
|
||||
return this->m_data[col * colStride() + row * rowStride()];
|
||||
}
|
||||
|
||||
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
|
||||
return this->m_data[index * innerStride()];
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
internal::pstoret<Scalar, PacketScalar, StoreMode>
|
||||
(this->m_data + (col * colStride() + row * rowStride()), x);
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
|
||||
internal::pstoret<Scalar, PacketScalar, StoreMode>
|
||||
(this->m_data + index * innerStride(), x);
|
||||
}
|
||||
|
||||
explicit inline MapBase(PointerType data) : Base(data) {}
|
||||
inline MapBase(PointerType data, Index size) : Base(data, size) {}
|
||||
inline MapBase(PointerType data, Index rows, Index cols) : Base(data, rows, cols) {}
|
||||
|
||||
Derived& operator=(const MapBase& other)
|
||||
{
|
||||
Base::Base::operator=(other);
|
||||
return derived();
|
||||
}
|
||||
|
||||
using Base::Base::operator=;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAPBASE_H
|
@ -1,842 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MATHFUNCTIONS_H
|
||||
#define EIGEN_MATHFUNCTIONS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal \struct global_math_functions_filtering_base
|
||||
*
|
||||
* What it does:
|
||||
* Defines a typedef 'type' as follows:
|
||||
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
|
||||
* global_math_functions_filtering_base<T>::type is a typedef for it.
|
||||
* - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
|
||||
*
|
||||
* How it's used:
|
||||
* To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
|
||||
* When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
|
||||
* is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
|
||||
* So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
|
||||
* won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
|
||||
*
|
||||
* How it's implemented:
|
||||
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
|
||||
* the typename dummy by an integer template parameter, it doesn't work anymore!
|
||||
*/
|
||||
|
||||
template<typename T, typename dummy = void>
|
||||
struct global_math_functions_filtering_base
|
||||
{
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
template<typename T> struct always_void { typedef void type; };
|
||||
|
||||
template<typename T>
|
||||
struct global_math_functions_filtering_base
|
||||
<T,
|
||||
typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
|
||||
>
|
||||
{
|
||||
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
|
||||
};
|
||||
|
||||
#define EIGEN_MATHFUNC_IMPL(func, scalar) func##_impl<typename global_math_functions_filtering_base<scalar>::type>
|
||||
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename func##_retval<typename global_math_functions_filtering_base<scalar>::type>::type
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of real *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct real_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename RealScalar>
|
||||
struct real_impl<std::complex<RealScalar> >
|
||||
{
|
||||
static inline RealScalar run(const std::complex<RealScalar>& x)
|
||||
{
|
||||
using std::real;
|
||||
return real(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct real_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of imag *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct imag_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar&)
|
||||
{
|
||||
return RealScalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename RealScalar>
|
||||
struct imag_impl<std::complex<RealScalar> >
|
||||
{
|
||||
static inline RealScalar run(const std::complex<RealScalar>& x)
|
||||
{
|
||||
using std::imag;
|
||||
return imag(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct imag_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of real_ref *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct real_ref_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar& run(Scalar& x)
|
||||
{
|
||||
return reinterpret_cast<RealScalar*>(&x)[0];
|
||||
}
|
||||
static inline const RealScalar& run(const Scalar& x)
|
||||
{
|
||||
return reinterpret_cast<const RealScalar*>(&x)[0];
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct real_ref_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real & type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
|
||||
{
|
||||
return real_ref_impl<Scalar>::run(x);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of imag_ref *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar, bool IsComplex>
|
||||
struct imag_ref_default_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar& run(Scalar& x)
|
||||
{
|
||||
return reinterpret_cast<RealScalar*>(&x)[1];
|
||||
}
|
||||
static inline const RealScalar& run(const Scalar& x)
|
||||
{
|
||||
return reinterpret_cast<RealScalar*>(&x)[1];
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct imag_ref_default_impl<Scalar, false>
|
||||
{
|
||||
static inline Scalar run(Scalar&)
|
||||
{
|
||||
return Scalar(0);
|
||||
}
|
||||
static inline const Scalar run(const Scalar&)
|
||||
{
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct imag_ref_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real & type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
|
||||
{
|
||||
return imag_ref_impl<Scalar>::run(x);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of conj *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct conj_impl
|
||||
{
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename RealScalar>
|
||||
struct conj_impl<std::complex<RealScalar> >
|
||||
{
|
||||
static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x)
|
||||
{
|
||||
using std::conj;
|
||||
return conj(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct conj_retval
|
||||
{
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of abs *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
using std::abs;
|
||||
return abs(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) abs(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of abs2 *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs2_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return x*x;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename RealScalar>
|
||||
struct abs2_impl<std::complex<RealScalar> >
|
||||
{
|
||||
static inline RealScalar run(const std::complex<RealScalar>& x)
|
||||
{
|
||||
return real(x)*real(x) + imag(x)*imag(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs2_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of norm1 *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar, bool IsComplex>
|
||||
struct norm1_default_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return abs(real(x)) + abs(imag(x));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct norm1_default_impl<Scalar, false>
|
||||
{
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
return abs(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct norm1_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of hypot *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct hypot_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
using std::max;
|
||||
using std::min;
|
||||
RealScalar _x = abs(x);
|
||||
RealScalar _y = abs(y);
|
||||
RealScalar p = (max)(_x, _y);
|
||||
RealScalar q = (min)(_x, _y);
|
||||
RealScalar qp = q/p;
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct hypot_retval
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of cast *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename OldType, typename NewType>
|
||||
struct cast_impl
|
||||
{
|
||||
static inline NewType run(const OldType& x)
|
||||
{
|
||||
return static_cast<NewType>(x);
|
||||
}
|
||||
};
|
||||
|
||||
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
|
||||
|
||||
template<typename OldType, typename NewType>
|
||||
inline NewType cast(const OldType& x)
|
||||
{
|
||||
return cast_impl<OldType, NewType>::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of sqrt *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar, bool IsInteger>
|
||||
struct sqrt_default_impl
|
||||
{
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
using std::sqrt;
|
||||
return sqrt(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct sqrt_default_impl<Scalar, true>
|
||||
{
|
||||
static inline Scalar run(const Scalar&)
|
||||
{
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
eigen_assert(!NumTraits<Scalar>::IsInteger);
|
||||
#else
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
#endif
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct sqrt_impl : sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct sqrt_retval
|
||||
{
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of standard unary real functions (exp, log, sin, cos, ... *
|
||||
****************************************************************************/
|
||||
|
||||
// This macro instanciate all the necessary template mechanism which is common to all unary real functions.
|
||||
#define EIGEN_MATHFUNC_STANDARD_REAL_UNARY(NAME) \
|
||||
template<typename Scalar, bool IsInteger> struct NAME##_default_impl { \
|
||||
static inline Scalar run(const Scalar& x) { using std::NAME; return NAME(x); } \
|
||||
}; \
|
||||
template<typename Scalar> struct NAME##_default_impl<Scalar, true> { \
|
||||
static inline Scalar run(const Scalar&) { \
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) \
|
||||
return Scalar(0); \
|
||||
} \
|
||||
}; \
|
||||
template<typename Scalar> struct NAME##_impl \
|
||||
: NAME##_default_impl<Scalar, NumTraits<Scalar>::IsInteger> \
|
||||
{}; \
|
||||
template<typename Scalar> struct NAME##_retval { typedef Scalar type; }; \
|
||||
template<typename Scalar> \
|
||||
inline EIGEN_MATHFUNC_RETVAL(NAME, Scalar) NAME(const Scalar& x) { \
|
||||
return EIGEN_MATHFUNC_IMPL(NAME, Scalar)::run(x); \
|
||||
}
|
||||
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(exp)
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(log)
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(sin)
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(cos)
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(tan)
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(asin)
|
||||
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(acos)
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of atan2 *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar, bool IsInteger>
|
||||
struct atan2_default_impl
|
||||
{
|
||||
typedef Scalar retval;
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
using std::atan2;
|
||||
return atan2(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct atan2_default_impl<Scalar, true>
|
||||
{
|
||||
static inline Scalar run(const Scalar&, const Scalar&)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct atan2_impl : atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct atan2_retval
|
||||
{
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of pow *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar, bool IsInteger>
|
||||
struct pow_default_impl
|
||||
{
|
||||
typedef Scalar retval;
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
using std::pow;
|
||||
return pow(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct pow_default_impl<Scalar, true>
|
||||
{
|
||||
static inline Scalar run(Scalar x, Scalar y)
|
||||
{
|
||||
Scalar res(1);
|
||||
eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
|
||||
if(y & 1) res *= x;
|
||||
y >>= 1;
|
||||
while(y)
|
||||
{
|
||||
x *= x;
|
||||
if(y&1) res *= x;
|
||||
y >>= 1;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct pow_retval
|
||||
{
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of random *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar,
|
||||
bool IsComplex,
|
||||
bool IsInteger>
|
||||
struct random_default_impl {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct random_retval
|
||||
{
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
|
||||
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
|
||||
|
||||
template<typename Scalar>
|
||||
struct random_default_impl<Scalar, false, false>
|
||||
{
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
|
||||
}
|
||||
static inline Scalar run()
|
||||
{
|
||||
return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
|
||||
}
|
||||
};
|
||||
|
||||
enum {
|
||||
floor_log2_terminate,
|
||||
floor_log2_move_up,
|
||||
floor_log2_move_down,
|
||||
floor_log2_bogus
|
||||
};
|
||||
|
||||
template<unsigned int n, int lower, int upper> struct floor_log2_selector
|
||||
{
|
||||
enum { middle = (lower + upper) / 2,
|
||||
value = (upper <= lower + 1) ? int(floor_log2_terminate)
|
||||
: (n < (1 << middle)) ? int(floor_log2_move_down)
|
||||
: (n==0) ? int(floor_log2_bogus)
|
||||
: int(floor_log2_move_up)
|
||||
};
|
||||
};
|
||||
|
||||
template<unsigned int n,
|
||||
int lower = 0,
|
||||
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
|
||||
int selector = floor_log2_selector<n, lower, upper>::value>
|
||||
struct floor_log2 {};
|
||||
|
||||
template<unsigned int n, int lower, int upper>
|
||||
struct floor_log2<n, lower, upper, floor_log2_move_down>
|
||||
{
|
||||
enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
|
||||
};
|
||||
|
||||
template<unsigned int n, int lower, int upper>
|
||||
struct floor_log2<n, lower, upper, floor_log2_move_up>
|
||||
{
|
||||
enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
|
||||
};
|
||||
|
||||
template<unsigned int n, int lower, int upper>
|
||||
struct floor_log2<n, lower, upper, floor_log2_terminate>
|
||||
{
|
||||
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
|
||||
};
|
||||
|
||||
template<unsigned int n, int lower, int upper>
|
||||
struct floor_log2<n, lower, upper, floor_log2_bogus>
|
||||
{
|
||||
// no value, error at compile time
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct random_default_impl<Scalar, false, true>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
|
||||
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
|
||||
}
|
||||
|
||||
static inline Scalar run()
|
||||
{
|
||||
#ifdef EIGEN_MAKING_DOCS
|
||||
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
|
||||
#else
|
||||
enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
|
||||
scalar_bits = sizeof(Scalar) * CHAR_BIT,
|
||||
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits))
|
||||
};
|
||||
Scalar x = Scalar(std::rand() >> shift);
|
||||
Scalar offset = NumTraits<Scalar>::IsSigned ? Scalar(1 << (rand_bits-1)) : Scalar(0);
|
||||
return x - offset;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct random_default_impl<Scalar, true, false>
|
||||
{
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return Scalar(random(real(x), real(y)),
|
||||
random(imag(x), imag(y)));
|
||||
}
|
||||
static inline Scalar run()
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
return Scalar(random<RealScalar>(), random<RealScalar>());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of fuzzy comparisons *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar,
|
||||
bool IsComplex,
|
||||
bool IsInteger>
|
||||
struct scalar_fuzzy_default_impl {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct scalar_fuzzy_default_impl<Scalar, false, false>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
template<typename OtherScalar>
|
||||
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
|
||||
{
|
||||
return abs(x) <= abs(y) * prec;
|
||||
}
|
||||
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
||||
{
|
||||
using std::min;
|
||||
return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
|
||||
}
|
||||
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
||||
{
|
||||
return x <= y || isApprox(x, y, prec);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct scalar_fuzzy_default_impl<Scalar, false, true>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
template<typename OtherScalar>
|
||||
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
|
||||
{
|
||||
return x == Scalar(0);
|
||||
}
|
||||
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
|
||||
{
|
||||
return x == y;
|
||||
}
|
||||
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
|
||||
{
|
||||
return x <= y;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct scalar_fuzzy_default_impl<Scalar, true, false>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
template<typename OtherScalar>
|
||||
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
|
||||
{
|
||||
return abs2(x) <= abs2(y) * prec * prec;
|
||||
}
|
||||
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
||||
{
|
||||
using std::min;
|
||||
return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
|
||||
|
||||
template<typename Scalar, typename OtherScalar>
|
||||
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
|
||||
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline bool isApprox(const Scalar& x, const Scalar& y,
|
||||
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
|
||||
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
|
||||
}
|
||||
|
||||
/******************************************
|
||||
*** The special case of the bool type ***
|
||||
******************************************/
|
||||
|
||||
template<> struct random_impl<bool>
|
||||
{
|
||||
static inline bool run()
|
||||
{
|
||||
return random<int>(0,1)==0 ? false : true;
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct scalar_fuzzy_impl<bool>
|
||||
{
|
||||
typedef bool RealScalar;
|
||||
|
||||
template<typename OtherScalar>
|
||||
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
|
||||
{
|
||||
return !x;
|
||||
}
|
||||
|
||||
static inline bool isApprox(bool x, bool y, bool)
|
||||
{
|
||||
return x == y;
|
||||
}
|
||||
|
||||
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
|
||||
{
|
||||
return (!x) || y;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/****************************************************************************
|
||||
* Special functions *
|
||||
****************************************************************************/
|
||||
|
||||
// std::isfinite is non standard, so let's define our own version,
|
||||
// even though it is not very efficient.
|
||||
template<typename T> bool (isfinite)(const T& x)
|
||||
{
|
||||
return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATHFUNCTIONS_H
|
@ -1,405 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MATRIX_H
|
||||
#define EIGEN_MATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Matrix
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief The matrix class, also used for vectors and row-vectors
|
||||
*
|
||||
* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
|
||||
* Vectors are matrices with one column, and row-vectors are matrices with one row.
|
||||
*
|
||||
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
|
||||
*
|
||||
* The first three template parameters are required:
|
||||
* \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
|
||||
* User defined sclar types are supported as well (see \ref user_defined_scalars "here").
|
||||
* \tparam _Rows Number of rows, or \b Dynamic
|
||||
* \tparam _Cols Number of columns, or \b Dynamic
|
||||
*
|
||||
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
|
||||
* \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
|
||||
* \b #AutoAlign or \b #DontAlign.
|
||||
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
|
||||
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
|
||||
* \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
|
||||
* \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
|
||||
*
|
||||
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
|
||||
*
|
||||
* \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
|
||||
* \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
|
||||
* \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
|
||||
*
|
||||
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
|
||||
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
|
||||
*
|
||||
* \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
|
||||
* \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
|
||||
*
|
||||
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
|
||||
*
|
||||
* You can access elements of vectors and matrices using normal subscripting:
|
||||
*
|
||||
* \code
|
||||
* Eigen::VectorXd v(10);
|
||||
* v[0] = 0.1;
|
||||
* v[1] = 0.2;
|
||||
* v(0) = 0.3;
|
||||
* v(1) = 0.4;
|
||||
*
|
||||
* Eigen::MatrixXi m(10, 10);
|
||||
* m(0, 1) = 1;
|
||||
* m(0, 2) = 2;
|
||||
* m(0, 3) = 3;
|
||||
* \endcode
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
|
||||
*
|
||||
* <i><b>Some notes:</b></i>
|
||||
*
|
||||
* <dl>
|
||||
* <dt><b>\anchor dense Dense versus sparse:</b></dt>
|
||||
* <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
|
||||
*
|
||||
* Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
|
||||
* This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
|
||||
*
|
||||
* <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
|
||||
* <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
|
||||
* of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
|
||||
* to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
|
||||
*
|
||||
* Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
|
||||
* variables, and the array of coefficients is allocated dynamically on the heap.
|
||||
*
|
||||
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
|
||||
* If you want this behavior, see the Sparse module.</dd>
|
||||
*
|
||||
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
|
||||
* <dd>In most cases, one just leaves these parameters to the default values.
|
||||
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
|
||||
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
|
||||
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
|
||||
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
|
||||
* </dl>
|
||||
*
|
||||
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
|
||||
* \ref TopicStorageOrders
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Dense StorageKind;
|
||||
typedef DenseIndex Index;
|
||||
typedef MatrixXpr XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _MaxRows,
|
||||
MaxColsAtCompileTime = _MaxCols,
|
||||
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
|
||||
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
||||
Options = _Options,
|
||||
InnerStrideAtCompileTime = 1,
|
||||
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
class Matrix
|
||||
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
public:
|
||||
|
||||
/** \brief Base class typedef.
|
||||
* \sa PlainObjectBase
|
||||
*/
|
||||
typedef PlainObjectBase<Matrix> Base;
|
||||
|
||||
enum { Options = _Options };
|
||||
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)
|
||||
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
|
||||
using Base::base;
|
||||
using Base::coeffRef;
|
||||
|
||||
/**
|
||||
* \brief Assigns matrices to each other.
|
||||
*
|
||||
* \note This is a special case of the templated operator=. Its purpose is
|
||||
* to prevent a default operator= from hiding the templated operator=.
|
||||
*
|
||||
* \callgraph
|
||||
*/
|
||||
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
|
||||
{
|
||||
return Base::_set(other);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
|
||||
*
|
||||
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
|
||||
* it will be initialized.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return Base::_set(other);
|
||||
}
|
||||
|
||||
/* Here, doxygen failed to copy the brief information when using \copydoc */
|
||||
|
||||
/**
|
||||
* \brief Copies the generic expression \a other into *this.
|
||||
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
|
||||
{
|
||||
return Base::operator=(func);
|
||||
}
|
||||
|
||||
/** \brief Default constructor.
|
||||
*
|
||||
* For fixed-size matrices, does nothing.
|
||||
*
|
||||
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
|
||||
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
|
||||
* a matrix to 0 is not supported.
|
||||
*
|
||||
* \sa resize(Index,Index)
|
||||
*/
|
||||
EIGEN_STRONG_INLINE explicit Matrix() : Base()
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
// FIXME is it still needed
|
||||
Matrix(internal::constructor_without_unaligned_array_assert)
|
||||
: Base(internal::constructor_without_unaligned_array_assert())
|
||||
{ Base::_check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED }
|
||||
|
||||
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
*
|
||||
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
|
||||
* it is redundant to pass the dimension here, so it makes more sense to use the default
|
||||
* constructor Matrix() instead.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE explicit Matrix(Index dim)
|
||||
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
|
||||
eigen_assert(dim >= 0);
|
||||
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::template _init2<T0,T1>(x, y);
|
||||
}
|
||||
#else
|
||||
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
|
||||
*
|
||||
* This is useful for dynamic-size matrices. For fixed-size matrices,
|
||||
* it is redundant to pass these parameters, so one should use the default constructor
|
||||
* Matrix() instead. */
|
||||
Matrix(Index rows, Index cols);
|
||||
/** \brief Constructs an initialized 2D vector with given coefficients */
|
||||
Matrix(const Scalar& x, const Scalar& y);
|
||||
#endif
|
||||
|
||||
/** \brief Constructs an initialized 3D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
m_storage.data()[2] = z;
|
||||
}
|
||||
/** \brief Constructs an initialized 4D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
m_storage.data()[2] = z;
|
||||
m_storage.data()[3] = w;
|
||||
}
|
||||
|
||||
explicit Matrix(const Scalar *data);
|
||||
|
||||
/** \brief Constructor copying the value of the expression \a other */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
|
||||
: Base(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
// This test resides here, to bring the error messages closer to the user. Normally, these checks
|
||||
// are performed deeply within the library, thus causing long and scary error traces.
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
Base::_check_template_params();
|
||||
Base::_set_noalias(other);
|
||||
}
|
||||
/** \brief Copy constructor */
|
||||
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
|
||||
: Base(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::_set_noalias(other);
|
||||
}
|
||||
/** \brief Copy constructor with in-place evaluation */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::resize(other.rows(), other.cols());
|
||||
other.evalTo(*this);
|
||||
}
|
||||
|
||||
/** \brief Copy constructor for generic expressions.
|
||||
* \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
|
||||
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::resize(other.rows(), other.cols());
|
||||
// FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
|
||||
// go for pure _set() implementations, right?
|
||||
*this = other;
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* \brief Override MatrixBase::swap() since for dynamic-sized matrices
|
||||
* of same type it is enough to swap the data pointers.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
void swap(MatrixBase<OtherDerived> const & other)
|
||||
{ this->_swap(other.derived()); }
|
||||
|
||||
inline Index innerStride() const { return 1; }
|
||||
inline Index outerStride() const { return this->innerSize(); }
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
template<typename OtherDerived>
|
||||
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
|
||||
template<typename OtherDerived>
|
||||
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived>
|
||||
explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
|
||||
template<typename OtherDerived>
|
||||
Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
|
||||
#endif
|
||||
|
||||
// allow to extend Matrix outside Eigen
|
||||
#ifdef EIGEN_MATRIX_PLUGIN
|
||||
#include EIGEN_MATRIX_PLUGIN
|
||||
#endif
|
||||
|
||||
protected:
|
||||
template <typename Derived, typename OtherDerived, bool IsVector>
|
||||
friend struct internal::conservative_resize_like_impl;
|
||||
|
||||
using Base::m_storage;
|
||||
};
|
||||
|
||||
/** \defgroup matrixtypedefs Global matrix typedefs
|
||||
*
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* Eigen defines several typedef shortcuts for most common matrix and vector types.
|
||||
*
|
||||
* The general patterns are the following:
|
||||
*
|
||||
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
|
||||
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
|
||||
* for complex double.
|
||||
*
|
||||
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
|
||||
*
|
||||
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
|
||||
* a fixed-size vector of 4 complex floats.
|
||||
*
|
||||
* \sa class Matrix
|
||||
*/
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
|
||||
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
|
||||
|
||||
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
|
||||
#undef EIGEN_MAKE_TYPEDEFS
|
||||
#undef EIGEN_MAKE_FIXED_TYPEDEFS
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATRIX_H
|
@ -1,511 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MATRIXBASE_H
|
||||
#define EIGEN_MATRIXBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class MatrixBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for all dense matrices, vectors, and expressions
|
||||
*
|
||||
* This class is the base that is inherited by all matrix, vector, and related expression
|
||||
* types. Most of the Eigen API is contained in this class, and its base classes. Other important
|
||||
* classes for the Eigen API are Matrix, and VectorwiseOp.
|
||||
*
|
||||
* Note that some methods are defined in other modules such as the \ref LU_Module LU module
|
||||
* for all functions related to matrix inversions.
|
||||
*
|
||||
* \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc.
|
||||
*
|
||||
* When writing a function taking Eigen objects as argument, if you want your function
|
||||
* to take as argument any matrix, vector, or expression, just let it take a
|
||||
* MatrixBase argument. As an example, here is a function printFirstRow which, given
|
||||
* a matrix, vector, or expression \a x, prints the first row of \a x.
|
||||
*
|
||||
* \code
|
||||
template<typename Derived>
|
||||
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
|
||||
{
|
||||
cout << x.row(0) << endl;
|
||||
}
|
||||
* \endcode
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
|
||||
*
|
||||
* \sa \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename Derived> class MatrixBase
|
||||
: public DenseBase<Derived>
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef MatrixBase StorageBaseType;
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef DenseBase<Derived> Base;
|
||||
using Base::RowsAtCompileTime;
|
||||
using Base::ColsAtCompileTime;
|
||||
using Base::SizeAtCompileTime;
|
||||
using Base::MaxRowsAtCompileTime;
|
||||
using Base::MaxColsAtCompileTime;
|
||||
using Base::MaxSizeAtCompileTime;
|
||||
using Base::IsVectorAtCompileTime;
|
||||
using Base::Flags;
|
||||
using Base::CoeffReadCost;
|
||||
|
||||
using Base::derived;
|
||||
using Base::const_cast_derived;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::size;
|
||||
using Base::coeff;
|
||||
using Base::coeffRef;
|
||||
using Base::lazyAssign;
|
||||
using Base::eval;
|
||||
using Base::operator+=;
|
||||
using Base::operator-=;
|
||||
using Base::operator*=;
|
||||
using Base::operator/=;
|
||||
|
||||
typedef typename Base::CoeffReturnType CoeffReturnType;
|
||||
typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
|
||||
typedef typename Base::RowXpr RowXpr;
|
||||
typedef typename Base::ColXpr ColXpr;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** type of the equivalent square matrix */
|
||||
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
|
||||
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \returns the size of the main diagonal, which is min(rows(),cols()).
|
||||
* \sa rows(), cols(), SizeAtCompileTime. */
|
||||
inline Index diagonalSize() const { return (std::min)(rows(),cols()); }
|
||||
|
||||
/** \brief The plain matrix type corresponding to this expression.
|
||||
*
|
||||
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
|
||||
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
|
||||
* that the return type of eval() is either PlainObject or const PlainObject&.
|
||||
*/
|
||||
typedef Matrix<typename internal::traits<Derived>::Scalar,
|
||||
internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime,
|
||||
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
||||
internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime
|
||||
> PlainObject;
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
|
||||
/** \internal the return type of MatrixBase::adjoint() */
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
|
||||
ConstTransposeReturnType
|
||||
>::type AdjointReturnType;
|
||||
/** \internal Return type of eigenvalues() */
|
||||
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
|
||||
/** \internal the return type of identity */
|
||||
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType;
|
||||
/** \internal the return type of unit vectors */
|
||||
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
|
||||
internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime> BasisReturnType;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
|
||||
# include "../plugins/CommonCwiseUnaryOps.h"
|
||||
# include "../plugins/CommonCwiseBinaryOps.h"
|
||||
# include "../plugins/MatrixCwiseUnaryOps.h"
|
||||
# include "../plugins/MatrixCwiseBinaryOps.h"
|
||||
# ifdef EIGEN_MATRIXBASE_PLUGIN
|
||||
# include EIGEN_MATRIXBASE_PLUGIN
|
||||
# endif
|
||||
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
|
||||
|
||||
/** Special case of the template operator=, in order to prevent the compiler
|
||||
* from generating a default operator= (issue hit with g++ 4.1)
|
||||
*/
|
||||
Derived& operator=(const MatrixBase& other);
|
||||
|
||||
// We cannot inherit here via Base::operator= since it is causing
|
||||
// trouble with MSVC.
|
||||
|
||||
template <typename OtherDerived>
|
||||
Derived& operator=(const DenseBase<OtherDerived>& other);
|
||||
|
||||
template <typename OtherDerived>
|
||||
Derived& operator=(const EigenBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& other);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const MatrixBase<OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
const typename ProductReturnType<Derived,OtherDerived>::Type
|
||||
operator*(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const typename LazyProductReturnType<Derived,OtherDerived>::Type
|
||||
lazyProduct(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator*=(const EigenBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
void applyOnTheLeft(const EigenBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
void applyOnTheRight(const EigenBase<OtherDerived>& other);
|
||||
|
||||
template<typename DiagonalDerived>
|
||||
const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
|
||||
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
dot(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived>
|
||||
Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
|
||||
#endif
|
||||
|
||||
RealScalar squaredNorm() const;
|
||||
RealScalar norm() const;
|
||||
RealScalar stableNorm() const;
|
||||
RealScalar blueNorm() const;
|
||||
RealScalar hypotNorm() const;
|
||||
const PlainObject normalized() const;
|
||||
void normalize();
|
||||
|
||||
const AdjointReturnType adjoint() const;
|
||||
void adjointInPlace();
|
||||
|
||||
typedef Diagonal<Derived> DiagonalReturnType;
|
||||
DiagonalReturnType diagonal();
|
||||
typedef const Diagonal<const Derived> ConstDiagonalReturnType;
|
||||
const ConstDiagonalReturnType diagonal() const;
|
||||
|
||||
template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
|
||||
template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
|
||||
|
||||
template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
|
||||
template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
|
||||
|
||||
// Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
|
||||
// On the other hand they confuse MSVC8...
|
||||
#if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later
|
||||
typename MatrixBase::template DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index);
|
||||
typename MatrixBase::template ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const;
|
||||
#else
|
||||
typename DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index);
|
||||
typename ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const;
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
|
||||
template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
|
||||
|
||||
// huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
|
||||
// of an integer constant. Solution: overload the part() method template wrt template parameters list.
|
||||
template<template<typename T, int N> class U>
|
||||
const DiagonalWrapper<ConstDiagonalReturnType> part() const
|
||||
{ return diagonal().asDiagonal(); }
|
||||
#endif // EIGEN2_SUPPORT
|
||||
|
||||
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
|
||||
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
|
||||
|
||||
template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView();
|
||||
template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
|
||||
|
||||
template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
|
||||
template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };
|
||||
|
||||
template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
|
||||
template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
|
||||
|
||||
const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0),
|
||||
typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
|
||||
static const IdentityReturnType Identity();
|
||||
static const IdentityReturnType Identity(Index rows, Index cols);
|
||||
static const BasisReturnType Unit(Index size, Index i);
|
||||
static const BasisReturnType Unit(Index i);
|
||||
static const BasisReturnType UnitX();
|
||||
static const BasisReturnType UnitY();
|
||||
static const BasisReturnType UnitZ();
|
||||
static const BasisReturnType UnitW();
|
||||
|
||||
const DiagonalWrapper<const Derived> asDiagonal() const;
|
||||
const PermutationWrapper<const Derived> asPermutation() const;
|
||||
|
||||
Derived& setIdentity();
|
||||
Derived& setIdentity(Index rows, Index cols);
|
||||
|
||||
bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
bool isUpperTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isLowerTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
|
||||
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
|
||||
* \warning When using floating point scalar values you probably should rather use a
|
||||
* fuzzy comparison such as isApprox()
|
||||
* \sa isApprox(), operator!= */
|
||||
template<typename OtherDerived>
|
||||
inline bool operator==(const MatrixBase<OtherDerived>& other) const
|
||||
{ return cwiseEqual(other).all(); }
|
||||
|
||||
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
|
||||
* \warning When using floating point scalar values you probably should rather use a
|
||||
* fuzzy comparison such as isApprox()
|
||||
* \sa isApprox(), operator== */
|
||||
template<typename OtherDerived>
|
||||
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
|
||||
{ return cwiseNotEqual(other).any(); }
|
||||
|
||||
NoAlias<Derived,Eigen::MatrixBase > noalias();
|
||||
|
||||
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
|
||||
inline ForceAlignedAccess<Derived> forceAlignedAccess();
|
||||
template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
|
||||
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
|
||||
|
||||
Scalar trace() const;
|
||||
|
||||
/////////// Array module ///////////
|
||||
|
||||
template<int p> RealScalar lpNorm() const;
|
||||
|
||||
MatrixBase<Derived>& matrix() { return *this; }
|
||||
const MatrixBase<Derived>& matrix() const { return *this; }
|
||||
|
||||
/** \returns an \link ArrayBase Array \endlink expression of this matrix
|
||||
* \sa ArrayBase::matrix() */
|
||||
ArrayWrapper<Derived> array() { return derived(); }
|
||||
const ArrayWrapper<const Derived> array() const { return derived(); }
|
||||
|
||||
/////////// LU module ///////////
|
||||
|
||||
const FullPivLU<PlainObject> fullPivLu() const;
|
||||
const PartialPivLU<PlainObject> partialPivLu() const;
|
||||
|
||||
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
|
||||
const LU<PlainObject> lu() const;
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
const LU<PlainObject> eigen2_lu() const;
|
||||
#endif
|
||||
|
||||
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
|
||||
const PartialPivLU<PlainObject> lu() const;
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename ResultType>
|
||||
void computeInverse(MatrixBase<ResultType> *result) const {
|
||||
*result = this->inverse();
|
||||
}
|
||||
#endif
|
||||
|
||||
const internal::inverse_impl<Derived> inverse() const;
|
||||
template<typename ResultType>
|
||||
void computeInverseAndDetWithCheck(
|
||||
ResultType& inverse,
|
||||
typename ResultType::Scalar& determinant,
|
||||
bool& invertible,
|
||||
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
|
||||
) const;
|
||||
template<typename ResultType>
|
||||
void computeInverseWithCheck(
|
||||
ResultType& inverse,
|
||||
bool& invertible,
|
||||
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
|
||||
) const;
|
||||
Scalar determinant() const;
|
||||
|
||||
/////////// Cholesky module ///////////
|
||||
|
||||
const LLT<PlainObject> llt() const;
|
||||
const LDLT<PlainObject> ldlt() const;
|
||||
|
||||
/////////// QR module ///////////
|
||||
|
||||
const HouseholderQR<PlainObject> householderQr() const;
|
||||
const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
|
||||
const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
const QR<PlainObject> qr() const;
|
||||
#endif
|
||||
|
||||
EigenvaluesReturnType eigenvalues() const;
|
||||
RealScalar operatorNorm() const;
|
||||
|
||||
/////////// SVD module ///////////
|
||||
|
||||
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
SVD<PlainObject> svd() const;
|
||||
#endif
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/// \internal helper struct to form the return type of the cross product
|
||||
template<typename OtherDerived> struct cross_product_return_type {
|
||||
typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
|
||||
typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
|
||||
};
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename OtherDerived>
|
||||
typename cross_product_return_type<OtherDerived>::type
|
||||
cross(const MatrixBase<OtherDerived>& other) const;
|
||||
template<typename OtherDerived>
|
||||
PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
|
||||
PlainObject unitOrthogonal(void) const;
|
||||
Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
|
||||
|
||||
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
|
||||
ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
|
||||
// put this as separate enum value to work around possible GCC 4.3 bug (?)
|
||||
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
|
||||
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
|
||||
HomogeneousReturnType homogeneous() const;
|
||||
#endif
|
||||
|
||||
enum {
|
||||
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
|
||||
};
|
||||
typedef Block<const Derived,
|
||||
internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
|
||||
internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne;
|
||||
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>,
|
||||
const ConstStartMinusOne > HNormalizedReturnType;
|
||||
|
||||
const HNormalizedReturnType hnormalized() const;
|
||||
|
||||
////////// Householder module ///////////
|
||||
|
||||
void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
|
||||
template<typename EssentialPart>
|
||||
void makeHouseholder(EssentialPart& essential,
|
||||
Scalar& tau, RealScalar& beta) const;
|
||||
template<typename EssentialPart>
|
||||
void applyHouseholderOnTheLeft(const EssentialPart& essential,
|
||||
const Scalar& tau,
|
||||
Scalar* workspace);
|
||||
template<typename EssentialPart>
|
||||
void applyHouseholderOnTheRight(const EssentialPart& essential,
|
||||
const Scalar& tau,
|
||||
Scalar* workspace);
|
||||
|
||||
///////// Jacobi module /////////
|
||||
|
||||
template<typename OtherScalar>
|
||||
void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
|
||||
template<typename OtherScalar>
|
||||
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
|
||||
|
||||
///////// MatrixFunctions module /////////
|
||||
|
||||
typedef typename internal::stem_function<Scalar>::type StemFunction;
|
||||
const MatrixExponentialReturnValue<Derived> exp() const;
|
||||
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
|
||||
const MatrixFunctionReturnValue<Derived> cosh() const;
|
||||
const MatrixFunctionReturnValue<Derived> sinh() const;
|
||||
const MatrixFunctionReturnValue<Derived> cos() const;
|
||||
const MatrixFunctionReturnValue<Derived> sin() const;
|
||||
const MatrixSquareRootReturnValue<Derived> sqrt() const;
|
||||
const MatrixLogarithmReturnValue<Derived> log() const;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
|
||||
EvalBeforeAssigningBit>& other);
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
|
||||
EvalBeforeAssigningBit>& other);
|
||||
|
||||
/** \deprecated because .lazy() is deprecated
|
||||
* Overloaded for cache friendly product evaluation */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
|
||||
{ return lazyAssign(other._expression()); }
|
||||
|
||||
template<unsigned int Added>
|
||||
const Flagged<Derived, Added, 0> marked() const;
|
||||
const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
|
||||
|
||||
inline const Cwise<Derived> cwise() const;
|
||||
inline Cwise<Derived> cwise();
|
||||
|
||||
VectorBlock<Derived> start(Index size);
|
||||
const VectorBlock<const Derived> start(Index size) const;
|
||||
VectorBlock<Derived> end(Index size);
|
||||
const VectorBlock<const Derived> end(Index size) const;
|
||||
template<int Size> VectorBlock<Derived,Size> start();
|
||||
template<int Size> const VectorBlock<const Derived,Size> start() const;
|
||||
template<int Size> VectorBlock<Derived,Size> end();
|
||||
template<int Size> const VectorBlock<const Derived,Size> end() const;
|
||||
|
||||
Minor<Derived> minor(Index row, Index col);
|
||||
const Minor<Derived> minor(Index row, Index col) const;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
MatrixBase() : Base() {}
|
||||
|
||||
private:
|
||||
explicit MatrixBase(int);
|
||||
MatrixBase(int,int);
|
||||
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
|
||||
protected:
|
||||
// mixing arrays and matrices is not legal
|
||||
template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& )
|
||||
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
|
||||
// mixing arrays and matrices is not legal
|
||||
template<typename OtherDerived> Derived& operator-=(const ArrayBase<OtherDerived>& )
|
||||
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATRIXBASE_H
|
@ -1,111 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_NESTBYVALUE_H
|
||||
#define EIGEN_NESTBYVALUE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class NestByValue
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression which must be nested by value
|
||||
*
|
||||
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
|
||||
*
|
||||
* This class is the return type of MatrixBase::nestByValue()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::nestByValue()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
|
||||
{};
|
||||
}
|
||||
|
||||
template<typename ExpressionType> class NestByValue
|
||||
: public internal::dense_xpr_base< NestByValue<ExpressionType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<NestByValue>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
|
||||
|
||||
inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
inline Index rows() const { return m_expression.rows(); }
|
||||
inline Index cols() const { return m_expression.cols(); }
|
||||
inline Index outerStride() const { return m_expression.outerStride(); }
|
||||
inline Index innerStride() const { return m_expression.innerStride(); }
|
||||
|
||||
inline const CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_expression.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_expression.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
operator const ExpressionType&() const { return m_expression; }
|
||||
|
||||
protected:
|
||||
const ExpressionType m_expression;
|
||||
};
|
||||
|
||||
/** \returns an expression of the temporary version of *this.
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const NestByValue<Derived>
|
||||
DenseBase<Derived>::nestByValue() const
|
||||
{
|
||||
return NestByValue<Derived>(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_NESTBYVALUE_H
|
@ -1,125 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_NOALIAS_H
|
||||
#define EIGEN_NOALIAS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class NoAlias
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Pseudo expression providing an operator = assuming no aliasing
|
||||
*
|
||||
* \param ExpressionType the type of the object on which to do the lazy assignment
|
||||
*
|
||||
* This class represents an expression with special assignment operators
|
||||
* assuming no aliasing between the target expression and the source expression.
|
||||
* More precisely it alloas to bypass the EvalBeforeAssignBit flag of the source expression.
|
||||
* It is the return type of MatrixBase::noalias()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::noalias()
|
||||
*/
|
||||
template<typename ExpressionType, template <typename> class StorageBase>
|
||||
class NoAlias
|
||||
{
|
||||
typedef typename ExpressionType::Scalar Scalar;
|
||||
public:
|
||||
NoAlias(ExpressionType& expression) : m_expression(expression) {}
|
||||
|
||||
/** Behaves like MatrixBase::lazyAssign(other)
|
||||
* \sa MatrixBase::lazyAssign() */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
|
||||
{ return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
|
||||
|
||||
/** \sa MatrixBase::operator+= */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
|
||||
{
|
||||
typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
|
||||
SelfAdder tmp(m_expression);
|
||||
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
|
||||
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
|
||||
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
|
||||
return m_expression;
|
||||
}
|
||||
|
||||
/** \sa MatrixBase::operator-= */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
|
||||
{
|
||||
typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
|
||||
SelfAdder tmp(m_expression);
|
||||
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
|
||||
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
|
||||
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
|
||||
return m_expression;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{ other.derived().addTo(m_expression); return m_expression; }
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{ other.derived().subTo(m_expression); return m_expression; }
|
||||
|
||||
template<typename Lhs, typename Rhs, int NestingFlags>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
|
||||
{ return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
|
||||
|
||||
template<typename Lhs, typename Rhs, int NestingFlags>
|
||||
EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
|
||||
{ return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
|
||||
#endif
|
||||
|
||||
protected:
|
||||
ExpressionType& m_expression;
|
||||
};
|
||||
|
||||
/** \returns a pseudo expression of \c *this with an operator= assuming
|
||||
* no aliasing between \c *this and the source expression.
|
||||
*
|
||||
* More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag.
|
||||
* Currently, even though several expressions may alias, only product
|
||||
* expressions have this flag. Therefore, noalias() is only usefull when
|
||||
* the source expression contains a matrix product.
|
||||
*
|
||||
* Here are some examples where noalias is usefull:
|
||||
* \code
|
||||
* D.noalias() = A * B;
|
||||
* D.noalias() += A.transpose() * B;
|
||||
* D.noalias() -= 2 * A * B.adjoint();
|
||||
* \endcode
|
||||
*
|
||||
* On the other hand the following example will lead to a \b wrong result:
|
||||
* \code
|
||||
* A.noalias() = A * B;
|
||||
* \endcode
|
||||
* because the result matrix A is also an operand of the matrix product. Therefore,
|
||||
* there is no alternative than evaluating A * B in a temporary, that is the default
|
||||
* behavior when you write:
|
||||
* \code
|
||||
* A = A * B;
|
||||
* \endcode
|
||||
*
|
||||
* \sa class NoAlias
|
||||
*/
|
||||
template<typename Derived>
|
||||
NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_NOALIAS_H
|
@ -1,147 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_NUMTRAITS_H
|
||||
#define EIGEN_NUMTRAITS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class NumTraits
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
|
||||
*
|
||||
* \param T the numeric type at hand
|
||||
*
|
||||
* This class stores enums, typedefs and static methods giving information about a numeric type.
|
||||
*
|
||||
* The provided data consists of:
|
||||
* \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
|
||||
* then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
|
||||
* is a typedef to \a U.
|
||||
* \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values,
|
||||
* such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
|
||||
* \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
|
||||
* take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
|
||||
* only intended as a helper for code that needs to explicitly promote types.
|
||||
* \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
|
||||
* this means, just use \a T here.
|
||||
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
|
||||
* type, and to 0 otherwise.
|
||||
* \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
|
||||
* and to \c 0 otherwise.
|
||||
* \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
|
||||
* to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
|
||||
* Stay vague here. No need to do architecture-specific stuff.
|
||||
* \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
|
||||
* \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
|
||||
* be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
|
||||
* \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
|
||||
* \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
|
||||
* value by the fuzzy comparison operators.
|
||||
* \li highest() and lowest() functions returning the highest and lowest possible values respectively.
|
||||
*/
|
||||
|
||||
template<typename T> struct GenericNumTraits
|
||||
{
|
||||
enum {
|
||||
IsInteger = std::numeric_limits<T>::is_integer,
|
||||
IsSigned = std::numeric_limits<T>::is_signed,
|
||||
IsComplex = 0,
|
||||
RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
|
||||
typedef T Real;
|
||||
typedef typename internal::conditional<
|
||||
IsInteger,
|
||||
typename internal::conditional<sizeof(T)<=2, float, double>::type,
|
||||
T
|
||||
>::type NonInteger;
|
||||
typedef T Nested;
|
||||
|
||||
static inline Real epsilon() { return std::numeric_limits<T>::epsilon(); }
|
||||
static inline Real dummy_precision()
|
||||
{
|
||||
// make sure to override this for floating-point types
|
||||
return Real(0);
|
||||
}
|
||||
static inline T highest() { return (std::numeric_limits<T>::max)(); }
|
||||
static inline T lowest() { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
enum {
|
||||
HasFloatingPoint = !IsInteger
|
||||
};
|
||||
typedef NonInteger FloatingPoint;
|
||||
#endif
|
||||
};
|
||||
|
||||
template<typename T> struct NumTraits : GenericNumTraits<T>
|
||||
{};
|
||||
|
||||
template<> struct NumTraits<float>
|
||||
: GenericNumTraits<float>
|
||||
{
|
||||
static inline float dummy_precision() { return 1e-5f; }
|
||||
};
|
||||
|
||||
template<> struct NumTraits<double> : GenericNumTraits<double>
|
||||
{
|
||||
static inline double dummy_precision() { return 1e-12; }
|
||||
};
|
||||
|
||||
template<> struct NumTraits<long double>
|
||||
: GenericNumTraits<long double>
|
||||
{
|
||||
static inline long double dummy_precision() { return 1e-15l; }
|
||||
};
|
||||
|
||||
template<typename _Real> struct NumTraits<std::complex<_Real> >
|
||||
: GenericNumTraits<std::complex<_Real> >
|
||||
{
|
||||
typedef _Real Real;
|
||||
enum {
|
||||
IsComplex = 1,
|
||||
RequireInitialization = NumTraits<_Real>::RequireInitialization,
|
||||
ReadCost = 2 * NumTraits<_Real>::ReadCost,
|
||||
AddCost = 2 * NumTraits<Real>::AddCost,
|
||||
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
|
||||
};
|
||||
|
||||
static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
|
||||
static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
|
||||
};
|
||||
|
||||
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
|
||||
struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
|
||||
{
|
||||
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
|
||||
typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
|
||||
typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
|
||||
typedef ArrayType & Nested;
|
||||
|
||||
enum {
|
||||
IsComplex = NumTraits<Scalar>::IsComplex,
|
||||
IsInteger = NumTraits<Scalar>::IsInteger,
|
||||
IsSigned = NumTraits<Scalar>::IsSigned,
|
||||
RequireInitialization = 1,
|
||||
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
|
||||
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
|
||||
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_NUMTRAITS_H
|
@ -1,687 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PERMUTATIONMATRIX_H
|
||||
#define EIGEN_PERMUTATIONMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
|
||||
|
||||
/** \class PermutationBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for permutations
|
||||
*
|
||||
* \param Derived the derived class
|
||||
*
|
||||
* This class is the base class for all expressions representing a permutation matrix,
|
||||
* internally stored as a vector of integers.
|
||||
* The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
|
||||
* \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
|
||||
* \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
|
||||
* This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
|
||||
* \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
|
||||
*
|
||||
* Permutation matrices are square and invertible.
|
||||
*
|
||||
* Notice that in addition to the member functions and operators listed here, there also are non-member
|
||||
* operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
|
||||
* on either side.
|
||||
*
|
||||
* \sa class PermutationMatrix, class PermutationWrapper
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
|
||||
struct permut_matrix_product_retval;
|
||||
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
|
||||
struct permut_sparsematrix_product_retval;
|
||||
enum PermPermProduct_t {PermPermProduct};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
class PermutationBase : public EigenBase<Derived>
|
||||
{
|
||||
typedef internal::traits<Derived> Traits;
|
||||
typedef EigenBase<Derived> Base;
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
enum {
|
||||
Flags = Traits::Flags,
|
||||
CoeffReadCost = Traits::CoeffReadCost,
|
||||
RowsAtCompileTime = Traits::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Traits::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename Traits::Scalar Scalar;
|
||||
typedef typename Traits::Index Index;
|
||||
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
|
||||
DenseMatrixType;
|
||||
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
|
||||
PlainPermutationType;
|
||||
using Base::derived;
|
||||
#endif
|
||||
|
||||
/** Copies the other permutation into *this */
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const PermutationBase<OtherDerived>& other)
|
||||
{
|
||||
indices() = other.indices();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Assignment from the Transpositions \a tr */
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const TranspositionsBase<OtherDerived>& tr)
|
||||
{
|
||||
setIdentity(tr.size());
|
||||
for(Index k=size()-1; k>=0; --k)
|
||||
applyTranspositionOnTheRight(k,tr.coeff(k));
|
||||
return derived();
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
Derived& operator=(const PermutationBase& other)
|
||||
{
|
||||
indices() = other.indices();
|
||||
return derived();
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns the number of rows */
|
||||
inline Index rows() const { return Index(indices().size()); }
|
||||
|
||||
/** \returns the number of columns */
|
||||
inline Index cols() const { return Index(indices().size()); }
|
||||
|
||||
/** \returns the size of a side of the respective square matrix, i.e., the number of indices */
|
||||
inline Index size() const { return Index(indices().size()); }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename DenseDerived>
|
||||
void evalTo(MatrixBase<DenseDerived>& other) const
|
||||
{
|
||||
other.setZero();
|
||||
for (int i=0; i<rows();++i)
|
||||
other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
|
||||
* is inefficient to return this Matrix object by value. For efficiency, favor using
|
||||
* the Matrix constructor taking EigenBase objects.
|
||||
*/
|
||||
DenseMatrixType toDenseMatrix() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return derived().indices(); }
|
||||
/** \returns a reference to the stored array representing the permutation. */
|
||||
IndicesType& indices() { return derived().indices(); }
|
||||
|
||||
/** Resizes to given size.
|
||||
*/
|
||||
inline void resize(Index size)
|
||||
{
|
||||
indices().resize(size);
|
||||
}
|
||||
|
||||
/** Sets *this to be the identity permutation matrix */
|
||||
void setIdentity()
|
||||
{
|
||||
for(Index i = 0; i < size(); ++i)
|
||||
indices().coeffRef(i) = i;
|
||||
}
|
||||
|
||||
/** Sets *this to be the identity permutation matrix of given size.
|
||||
*/
|
||||
void setIdentity(Index size)
|
||||
{
|
||||
resize(size);
|
||||
setIdentity();
|
||||
}
|
||||
|
||||
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
|
||||
*
|
||||
* \returns a reference to *this.
|
||||
*
|
||||
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
|
||||
* this has linear complexity and requires a lot of branching.
|
||||
*
|
||||
* \sa applyTranspositionOnTheRight(int,int)
|
||||
*/
|
||||
Derived& applyTranspositionOnTheLeft(Index i, Index j)
|
||||
{
|
||||
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
|
||||
for(Index k = 0; k < size(); ++k)
|
||||
{
|
||||
if(indices().coeff(k) == i) indices().coeffRef(k) = j;
|
||||
else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
|
||||
}
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
|
||||
*
|
||||
* \returns a reference to *this.
|
||||
*
|
||||
* This is a fast operation, it only consists in swapping two indices.
|
||||
*
|
||||
* \sa applyTranspositionOnTheLeft(int,int)
|
||||
*/
|
||||
Derived& applyTranspositionOnTheRight(Index i, Index j)
|
||||
{
|
||||
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
|
||||
std::swap(indices().coeffRef(i), indices().coeffRef(j));
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns the inverse permutation matrix.
|
||||
*
|
||||
* \note \note_try_to_help_rvo
|
||||
*/
|
||||
inline Transpose<PermutationBase> inverse() const
|
||||
{ return derived(); }
|
||||
/** \returns the tranpose permutation matrix.
|
||||
*
|
||||
* \note \note_try_to_help_rvo
|
||||
*/
|
||||
inline Transpose<PermutationBase> transpose() const
|
||||
{ return derived(); }
|
||||
|
||||
/**** multiplication helpers to hopefully get RVO ****/
|
||||
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
protected:
|
||||
template<typename OtherDerived>
|
||||
void assignTranspose(const PermutationBase<OtherDerived>& other)
|
||||
{
|
||||
for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
|
||||
}
|
||||
template<typename Lhs,typename Rhs>
|
||||
void assignProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
eigen_assert(lhs.cols() == rhs.rows());
|
||||
for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
|
||||
}
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
/** \returns the product permutation matrix.
|
||||
*
|
||||
* \note \note_try_to_help_rvo
|
||||
*/
|
||||
template<typename Other>
|
||||
inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
|
||||
{ return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); }
|
||||
|
||||
/** \returns the product of a permutation with another inverse permutation.
|
||||
*
|
||||
* \note \note_try_to_help_rvo
|
||||
*/
|
||||
template<typename Other>
|
||||
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const
|
||||
{ return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
|
||||
|
||||
/** \returns the product of an inverse permutation with another permutation.
|
||||
*
|
||||
* \note \note_try_to_help_rvo
|
||||
*/
|
||||
template<typename Other> friend
|
||||
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
|
||||
{ return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
||||
/** \class PermutationMatrix
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Permutation matrix
|
||||
*
|
||||
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
|
||||
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
|
||||
* \param IndexType the interger type of the indices
|
||||
*
|
||||
* This class represents a permutation matrix, internally stored as a vector of integers.
|
||||
*
|
||||
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
|
||||
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
|
||||
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
typedef IndexType Index;
|
||||
typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
||||
};
|
||||
}
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
|
||||
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
|
||||
{
|
||||
typedef PermutationBase<PermutationMatrix> Base;
|
||||
typedef internal::traits<PermutationMatrix> Traits;
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
#endif
|
||||
|
||||
inline PermutationMatrix()
|
||||
{}
|
||||
|
||||
/** Constructs an uninitialized permutation matrix of given size.
|
||||
*/
|
||||
inline PermutationMatrix(int size) : m_indices(size)
|
||||
{}
|
||||
|
||||
/** Copy constructor. */
|
||||
template<typename OtherDerived>
|
||||
inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
|
||||
: m_indices(other.indices()) {}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Standard copy constructor. Defined only to prevent a default copy constructor
|
||||
* from hiding the other templated constructor */
|
||||
inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
|
||||
#endif
|
||||
|
||||
/** Generic constructor from expression of the indices. The indices
|
||||
* array has the meaning that the permutations sends each integer i to indices[i].
|
||||
*
|
||||
* \warning It is your responsibility to check that the indices array that you passes actually
|
||||
* describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
|
||||
* array's size.
|
||||
*/
|
||||
template<typename Other>
|
||||
explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices)
|
||||
{}
|
||||
|
||||
/** Convert the Transpositions \a tr to a permutation matrix */
|
||||
template<typename Other>
|
||||
explicit PermutationMatrix(const TranspositionsBase<Other>& tr)
|
||||
: m_indices(tr.size())
|
||||
{
|
||||
*this = tr;
|
||||
}
|
||||
|
||||
/** Copies the other permutation into *this */
|
||||
template<typename Other>
|
||||
PermutationMatrix& operator=(const PermutationBase<Other>& other)
|
||||
{
|
||||
m_indices = other.indices();
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Assignment from the Transpositions \a tr */
|
||||
template<typename Other>
|
||||
PermutationMatrix& operator=(const TranspositionsBase<Other>& tr)
|
||||
{
|
||||
return Base::operator=(tr.derived());
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
PermutationMatrix& operator=(const PermutationMatrix& other)
|
||||
{
|
||||
m_indices = other.m_indices;
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return m_indices; }
|
||||
/** \returns a reference to the stored array representing the permutation. */
|
||||
IndicesType& indices() { return m_indices; }
|
||||
|
||||
|
||||
/**** multiplication helpers to hopefully get RVO ****/
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Other>
|
||||
PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
|
||||
: m_indices(other.nestedPermutation().size())
|
||||
{
|
||||
for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
|
||||
}
|
||||
template<typename Lhs,typename Rhs>
|
||||
PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
|
||||
: m_indices(lhs.indices().size())
|
||||
{
|
||||
Base::assignProduct(lhs,rhs);
|
||||
}
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
IndicesType m_indices;
|
||||
};
|
||||
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
|
||||
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
|
||||
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
typedef IndexType Index;
|
||||
typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
|
||||
};
|
||||
}
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
|
||||
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
|
||||
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
|
||||
{
|
||||
typedef PermutationBase<Map> Base;
|
||||
typedef internal::traits<Map> Traits;
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
typedef typename IndicesType::Scalar Index;
|
||||
#endif
|
||||
|
||||
inline Map(const Index* indices)
|
||||
: m_indices(indices)
|
||||
{}
|
||||
|
||||
inline Map(const Index* indices, Index size)
|
||||
: m_indices(indices,size)
|
||||
{}
|
||||
|
||||
/** Copies the other permutation into *this */
|
||||
template<typename Other>
|
||||
Map& operator=(const PermutationBase<Other>& other)
|
||||
{ return Base::operator=(other.derived()); }
|
||||
|
||||
/** Assignment from the Transpositions \a tr */
|
||||
template<typename Other>
|
||||
Map& operator=(const TranspositionsBase<Other>& tr)
|
||||
{ return Base::operator=(tr.derived()); }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
Map& operator=(const Map& other)
|
||||
{
|
||||
m_indices = other.m_indices;
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return m_indices; }
|
||||
/** \returns a reference to the stored array representing the permutation. */
|
||||
IndicesType& indices() { return m_indices; }
|
||||
|
||||
protected:
|
||||
|
||||
IndicesType m_indices;
|
||||
};
|
||||
|
||||
/** \class PermutationWrapper
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Class to view a vector of integers as a permutation matrix
|
||||
*
|
||||
* \param _IndicesType the type of the vector of integer (can be any compatible expression)
|
||||
*
|
||||
* This class allows to view any vector expression of integers as a permutation matrix.
|
||||
*
|
||||
* \sa class PermutationBase, class PermutationMatrix
|
||||
*/
|
||||
|
||||
struct PermutationStorage {};
|
||||
|
||||
template<typename _IndicesType> class TranspositionsWrapper;
|
||||
namespace internal {
|
||||
template<typename _IndicesType>
|
||||
struct traits<PermutationWrapper<_IndicesType> >
|
||||
{
|
||||
typedef PermutationStorage StorageKind;
|
||||
typedef typename _IndicesType::Scalar Scalar;
|
||||
typedef typename _IndicesType::Scalar Index;
|
||||
typedef _IndicesType IndicesType;
|
||||
enum {
|
||||
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
|
||||
Flags = 0,
|
||||
CoeffReadCost = _IndicesType::CoeffReadCost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _IndicesType>
|
||||
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
|
||||
{
|
||||
typedef PermutationBase<PermutationWrapper> Base;
|
||||
typedef internal::traits<PermutationWrapper> Traits;
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
#endif
|
||||
|
||||
inline PermutationWrapper(const IndicesType& indices)
|
||||
: m_indices(indices)
|
||||
{}
|
||||
|
||||
/** const version of indices(). */
|
||||
const typename internal::remove_all<typename IndicesType::Nested>::type&
|
||||
indices() const { return m_indices; }
|
||||
|
||||
protected:
|
||||
|
||||
typename IndicesType::Nested m_indices;
|
||||
};
|
||||
|
||||
/** \returns the matrix with the permutation applied to the columns.
|
||||
*/
|
||||
template<typename Derived, typename PermutationDerived>
|
||||
inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
|
||||
operator*(const MatrixBase<Derived>& matrix,
|
||||
const PermutationBase<PermutationDerived> &permutation)
|
||||
{
|
||||
return internal::permut_matrix_product_retval
|
||||
<PermutationDerived, Derived, OnTheRight>
|
||||
(permutation.derived(), matrix.derived());
|
||||
}
|
||||
|
||||
/** \returns the matrix with the permutation applied to the rows.
|
||||
*/
|
||||
template<typename Derived, typename PermutationDerived>
|
||||
inline const internal::permut_matrix_product_retval
|
||||
<PermutationDerived, Derived, OnTheLeft>
|
||||
operator*(const PermutationBase<PermutationDerived> &permutation,
|
||||
const MatrixBase<Derived>& matrix)
|
||||
{
|
||||
return internal::permut_matrix_product_retval
|
||||
<PermutationDerived, Derived, OnTheLeft>
|
||||
(permutation.derived(), matrix.derived());
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
|
||||
struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
|
||||
{
|
||||
typedef typename MatrixType::PlainObject ReturnType;
|
||||
};
|
||||
|
||||
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
|
||||
struct permut_matrix_product_retval
|
||||
: public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
|
||||
{
|
||||
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
|
||||
|
||||
permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
|
||||
: m_permutation(perm), m_matrix(matrix)
|
||||
{}
|
||||
|
||||
inline int rows() const { return m_matrix.rows(); }
|
||||
inline int cols() const { return m_matrix.cols(); }
|
||||
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{
|
||||
const int n = Side==OnTheLeft ? rows() : cols();
|
||||
|
||||
if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix))
|
||||
{
|
||||
// apply the permutation inplace
|
||||
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
|
||||
mask.fill(false);
|
||||
int r = 0;
|
||||
while(r < m_permutation.size())
|
||||
{
|
||||
// search for the next seed
|
||||
while(r<m_permutation.size() && mask[r]) r++;
|
||||
if(r>=m_permutation.size())
|
||||
break;
|
||||
// we got one, let's follow it until we are back to the seed
|
||||
int k0 = r++;
|
||||
int kPrev = k0;
|
||||
mask.coeffRef(k0) = true;
|
||||
for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k))
|
||||
{
|
||||
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
|
||||
.swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
|
||||
(dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
|
||||
|
||||
mask.coeffRef(k) = true;
|
||||
kPrev = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(int i = 0; i < n; ++i)
|
||||
{
|
||||
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
|
||||
(dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i)
|
||||
|
||||
=
|
||||
|
||||
Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime>
|
||||
(m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
const PermutationType& m_permutation;
|
||||
typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
/* Template partial specialization for transposed/inverse permutations */
|
||||
|
||||
template<typename Derived>
|
||||
struct traits<Transpose<PermutationBase<Derived> > >
|
||||
: traits<Derived>
|
||||
{};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
class Transpose<PermutationBase<Derived> >
|
||||
: public EigenBase<Transpose<PermutationBase<Derived> > >
|
||||
{
|
||||
typedef Derived PermutationType;
|
||||
typedef typename PermutationType::IndicesType IndicesType;
|
||||
typedef typename PermutationType::PlainPermutationType PlainPermutationType;
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef internal::traits<PermutationType> Traits;
|
||||
typedef typename Derived::DenseMatrixType DenseMatrixType;
|
||||
enum {
|
||||
Flags = Traits::Flags,
|
||||
CoeffReadCost = Traits::CoeffReadCost,
|
||||
RowsAtCompileTime = Traits::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Traits::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename Traits::Scalar Scalar;
|
||||
#endif
|
||||
|
||||
Transpose(const PermutationType& p) : m_permutation(p) {}
|
||||
|
||||
inline int rows() const { return m_permutation.rows(); }
|
||||
inline int cols() const { return m_permutation.cols(); }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename DenseDerived>
|
||||
void evalTo(MatrixBase<DenseDerived>& other) const
|
||||
{
|
||||
other.setZero();
|
||||
for (int i=0; i<rows();++i)
|
||||
other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \return the equivalent permutation matrix */
|
||||
PlainPermutationType eval() const { return *this; }
|
||||
|
||||
DenseMatrixType toDenseMatrix() const { return *this; }
|
||||
|
||||
/** \returns the matrix with the inverse permutation applied to the columns.
|
||||
*/
|
||||
template<typename OtherDerived> friend
|
||||
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
|
||||
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
|
||||
{
|
||||
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
|
||||
}
|
||||
|
||||
/** \returns the matrix with the inverse permutation applied to the rows.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
|
||||
operator*(const MatrixBase<OtherDerived>& matrix) const
|
||||
{
|
||||
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
|
||||
}
|
||||
|
||||
const PermutationType& nestedPermutation() const { return m_permutation; }
|
||||
|
||||
protected:
|
||||
const PermutationType& m_permutation;
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PERMUTATIONMATRIX_H
|
@ -1,768 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_DENSESTORAGEBASE_H
|
||||
#define EIGEN_DENSESTORAGEBASE_H
|
||||
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
|
||||
#else
|
||||
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_ALWAYS_INLINE void check_rows_cols_for_overflow(Index rows, Index cols)
|
||||
{
|
||||
// http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
|
||||
// we assume Index is signed
|
||||
Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
|
||||
bool error = (rows < 0 || cols < 0) ? true
|
||||
: (rows == 0 || cols == 0) ? false
|
||||
: (rows > max_index / cols);
|
||||
if (error)
|
||||
throw_std_bad_alloc();
|
||||
}
|
||||
|
||||
template <typename Derived, typename OtherDerived = Derived, bool IsVector = bool(Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl;
|
||||
|
||||
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \class PlainObjectBase
|
||||
* \brief %Dense storage base class for matrices and arrays.
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
|
||||
*
|
||||
* \sa \ref TopicClassHierarchy
|
||||
*/
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
namespace internal {
|
||||
|
||||
// this is a warkaround to doxygen not being able to understand the inheritence logic
|
||||
// when it is hidden by the dense_xpr_base helper struct.
|
||||
template<typename Derived> struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase<Derived> {};
|
||||
/** This class is just a workaround for Doxygen and it does not not actually exist. */
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct dense_xpr_base_dispatcher_for_doxygen<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
|
||||
/** This class is just a workaround for Doxygen and it does not not actually exist. */
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct dense_xpr_base_dispatcher_for_doxygen<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
: public ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen<Derived>
|
||||
#else
|
||||
template<typename Derived>
|
||||
class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
#endif
|
||||
{
|
||||
public:
|
||||
enum { Options = internal::traits<Derived>::Options };
|
||||
typedef typename internal::dense_xpr_base<Derived>::type Base;
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Derived DenseType;
|
||||
|
||||
using Base::RowsAtCompileTime;
|
||||
using Base::ColsAtCompileTime;
|
||||
using Base::SizeAtCompileTime;
|
||||
using Base::MaxRowsAtCompileTime;
|
||||
using Base::MaxColsAtCompileTime;
|
||||
using Base::MaxSizeAtCompileTime;
|
||||
using Base::IsVectorAtCompileTime;
|
||||
using Base::Flags;
|
||||
|
||||
template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
|
||||
friend class Eigen::Map<Derived, Unaligned>;
|
||||
typedef Eigen::Map<Derived, Unaligned> MapType;
|
||||
friend class Eigen::Map<const Derived, Unaligned>;
|
||||
typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
|
||||
friend class Eigen::Map<Derived, Aligned>;
|
||||
typedef Eigen::Map<Derived, Aligned> AlignedMapType;
|
||||
friend class Eigen::Map<const Derived, Aligned>;
|
||||
typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType;
|
||||
template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
|
||||
template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
|
||||
template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; };
|
||||
template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; };
|
||||
|
||||
protected:
|
||||
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
|
||||
|
||||
public:
|
||||
enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 };
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
|
||||
|
||||
Base& base() { return *static_cast<Base*>(this); }
|
||||
const Base& base() const { return *static_cast<const Base*>(this); }
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar& coeff(Index row, Index col) const
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
return m_storage.data()[col + row * m_storage.cols()];
|
||||
else // column-major
|
||||
return m_storage.data()[row + col * m_storage.rows()];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
|
||||
{
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
return m_storage.data()[col + row * m_storage.cols()];
|
||||
else // column-major
|
||||
return m_storage.data()[row + col * m_storage.rows()];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
return m_storage.data()[col + row * m_storage.cols()];
|
||||
else // column-major
|
||||
return m_storage.data()[row + col * m_storage.rows()];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return internal::ploadt<PacketScalar, LoadMode>
|
||||
(m_storage.data() + (Flags & RowMajorBit
|
||||
? col + row * m_storage.cols()
|
||||
: row + col * m_storage.rows()));
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
|
||||
{
|
||||
return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
internal::pstoret<Scalar, PacketScalar, StoreMode>
|
||||
(m_storage.data() + (Flags & RowMajorBit
|
||||
? col + row * m_storage.cols()
|
||||
: row + col * m_storage.rows()), x);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
|
||||
}
|
||||
|
||||
/** \returns a const pointer to the data array of this matrix */
|
||||
EIGEN_STRONG_INLINE const Scalar *data() const
|
||||
{ return m_storage.data(); }
|
||||
|
||||
/** \returns a pointer to the data array of this matrix */
|
||||
EIGEN_STRONG_INLINE Scalar *data()
|
||||
{ return m_storage.data(); }
|
||||
|
||||
/** Resizes \c *this to a \a rows x \a cols matrix.
|
||||
*
|
||||
* This method is intended for dynamic-size matrices, although it is legal to call it on any
|
||||
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
|
||||
* of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
|
||||
*
|
||||
* If the current number of coefficients of \c *this exactly matches the
|
||||
* product \a rows * \a cols, then no memory allocation is performed and
|
||||
* the current values are left unchanged. In all other cases, including
|
||||
* shrinking, the data is reallocated and all previous values are lost.
|
||||
*
|
||||
* Example: \include Matrix_resize_int_int.cpp
|
||||
* Output: \verbinclude Matrix_resize_int_int.out
|
||||
*
|
||||
* \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
|
||||
*/
|
||||
EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
|
||||
{
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
internal::check_rows_cols_for_overflow(rows, cols);
|
||||
Index size = rows*cols;
|
||||
bool size_changed = size != this->size();
|
||||
m_storage.resize(size, rows, cols);
|
||||
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
#else
|
||||
internal::check_rows_cols_for_overflow(rows, cols);
|
||||
m_storage.resize(rows*cols, rows, cols);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Resizes \c *this to a vector of length \a size
|
||||
*
|
||||
* \only_for_vectors. This method does not work for
|
||||
* partially dynamic matrices when the static dimension is anything other
|
||||
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
|
||||
*
|
||||
* Example: \include Matrix_resize_int.cpp
|
||||
* Output: \verbinclude Matrix_resize_int.out
|
||||
*
|
||||
* \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
|
||||
*/
|
||||
inline void resize(Index size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
|
||||
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
bool size_changed = size != this->size();
|
||||
#endif
|
||||
if(RowsAtCompileTime == 1)
|
||||
m_storage.resize(size, 1, size);
|
||||
else
|
||||
m_storage.resize(size, size, 1);
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
|
||||
* as in the example below.
|
||||
*
|
||||
* Example: \include Matrix_resize_NoChange_int.cpp
|
||||
* Output: \verbinclude Matrix_resize_NoChange_int.out
|
||||
*
|
||||
* \sa resize(Index,Index)
|
||||
*/
|
||||
inline void resize(NoChange_t, Index cols)
|
||||
{
|
||||
resize(rows(), cols);
|
||||
}
|
||||
|
||||
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
|
||||
* as in the example below.
|
||||
*
|
||||
* Example: \include Matrix_resize_int_NoChange.cpp
|
||||
* Output: \verbinclude Matrix_resize_int_NoChange.out
|
||||
*
|
||||
* \sa resize(Index,Index)
|
||||
*/
|
||||
inline void resize(Index rows, NoChange_t)
|
||||
{
|
||||
resize(rows, cols());
|
||||
}
|
||||
|
||||
/** Resizes \c *this to have the same dimensions as \a other.
|
||||
* Takes care of doing all the checking that's needed.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
|
||||
{
|
||||
const OtherDerived& other = _other.derived();
|
||||
internal::check_rows_cols_for_overflow(other.rows(), other.cols());
|
||||
const Index othersize = other.rows()*other.cols();
|
||||
if(RowsAtCompileTime == 1)
|
||||
{
|
||||
eigen_assert(other.rows() == 1 || other.cols() == 1);
|
||||
resize(1, othersize);
|
||||
}
|
||||
else if(ColsAtCompileTime == 1)
|
||||
{
|
||||
eigen_assert(other.rows() == 1 || other.cols() == 1);
|
||||
resize(othersize, 1);
|
||||
}
|
||||
else resize(other.rows(), other.cols());
|
||||
}
|
||||
|
||||
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
|
||||
*
|
||||
* The method is intended for matrices of dynamic size. If you only want to change the number
|
||||
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
|
||||
* conservativeResize(Index, NoChange_t).
|
||||
*
|
||||
* Matrices are resized relative to the top-left element. In case values need to be
|
||||
* appended to the matrix they will be uninitialized.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols)
|
||||
{
|
||||
internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols);
|
||||
}
|
||||
|
||||
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
|
||||
*
|
||||
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
|
||||
* the number of columns unchanged.
|
||||
*
|
||||
* In case the matrix is growing, new rows will be uninitialized.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t)
|
||||
{
|
||||
// Note: see the comment in conservativeResize(Index,Index)
|
||||
conservativeResize(rows, cols());
|
||||
}
|
||||
|
||||
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
|
||||
*
|
||||
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
|
||||
* the number of rows unchanged.
|
||||
*
|
||||
* In case the matrix is growing, new columns will be uninitialized.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols)
|
||||
{
|
||||
// Note: see the comment in conservativeResize(Index,Index)
|
||||
conservativeResize(rows(), cols);
|
||||
}
|
||||
|
||||
/** Resizes the vector to \a size while retaining old values.
|
||||
*
|
||||
* \only_for_vectors. This method does not work for
|
||||
* partially dynamic matrices when the static dimension is anything other
|
||||
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
|
||||
*
|
||||
* When values are appended, they will be uninitialized.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE void conservativeResize(Index size)
|
||||
{
|
||||
internal::conservative_resize_like_impl<Derived>::run(*this, size);
|
||||
}
|
||||
|
||||
/** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
|
||||
*
|
||||
* The method is intended for matrices of dynamic size. If you only want to change the number
|
||||
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
|
||||
* conservativeResize(Index, NoChange_t).
|
||||
*
|
||||
* Matrices are resized relative to the top-left element. In case values need to be
|
||||
* appended to the matrix they will copied from \c other.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
|
||||
}
|
||||
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
|
||||
{
|
||||
return _set(other);
|
||||
}
|
||||
|
||||
/** \sa MatrixBase::lazyAssign() */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
_resize_to_match(other);
|
||||
return Base::lazyAssign(other.derived());
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
|
||||
{
|
||||
resize(func.rows(), func.cols());
|
||||
return Base::operator=(func);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE explicit PlainObjectBase() : m_storage()
|
||||
{
|
||||
// _check_template_params();
|
||||
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
// FIXME is it still needed ?
|
||||
/** \internal */
|
||||
PlainObjectBase(internal::constructor_without_unaligned_array_assert)
|
||||
: m_storage(internal::constructor_without_unaligned_array_assert())
|
||||
{
|
||||
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
#endif
|
||||
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
|
||||
: m_storage(size, rows, cols)
|
||||
{
|
||||
// _check_template_params();
|
||||
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
/** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
_resize_to_match(other);
|
||||
Base::operator=(other.derived());
|
||||
return this->derived();
|
||||
}
|
||||
|
||||
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
|
||||
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
_check_template_params();
|
||||
internal::check_rows_cols_for_overflow(other.derived().rows(), other.derived().cols());
|
||||
Base::operator=(other.derived());
|
||||
}
|
||||
|
||||
/** \name Map
|
||||
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
|
||||
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
|
||||
* \a data pointers.
|
||||
*
|
||||
* \see class Map
|
||||
*/
|
||||
//@{
|
||||
static inline ConstMapType Map(const Scalar* data)
|
||||
{ return ConstMapType(data); }
|
||||
static inline MapType Map(Scalar* data)
|
||||
{ return MapType(data); }
|
||||
static inline ConstMapType Map(const Scalar* data, Index size)
|
||||
{ return ConstMapType(data, size); }
|
||||
static inline MapType Map(Scalar* data, Index size)
|
||||
{ return MapType(data, size); }
|
||||
static inline ConstMapType Map(const Scalar* data, Index rows, Index cols)
|
||||
{ return ConstMapType(data, rows, cols); }
|
||||
static inline MapType Map(Scalar* data, Index rows, Index cols)
|
||||
{ return MapType(data, rows, cols); }
|
||||
|
||||
static inline ConstAlignedMapType MapAligned(const Scalar* data)
|
||||
{ return ConstAlignedMapType(data); }
|
||||
static inline AlignedMapType MapAligned(Scalar* data)
|
||||
{ return AlignedMapType(data); }
|
||||
static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size)
|
||||
{ return ConstAlignedMapType(data, size); }
|
||||
static inline AlignedMapType MapAligned(Scalar* data, Index size)
|
||||
{ return AlignedMapType(data, size); }
|
||||
static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols)
|
||||
{ return ConstAlignedMapType(data, rows, cols); }
|
||||
static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols)
|
||||
{ return AlignedMapType(data, rows, cols); }
|
||||
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
|
||||
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
|
||||
//@}
|
||||
|
||||
using Base::setConstant;
|
||||
Derived& setConstant(Index size, const Scalar& value);
|
||||
Derived& setConstant(Index rows, Index cols, const Scalar& value);
|
||||
|
||||
using Base::setZero;
|
||||
Derived& setZero(Index size);
|
||||
Derived& setZero(Index rows, Index cols);
|
||||
|
||||
using Base::setOnes;
|
||||
Derived& setOnes(Index size);
|
||||
Derived& setOnes(Index rows, Index cols);
|
||||
|
||||
using Base::setRandom;
|
||||
Derived& setRandom(Index size);
|
||||
Derived& setRandom(Index rows, Index cols);
|
||||
|
||||
#ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
|
||||
#include EIGEN_PLAINOBJECTBASE_PLUGIN
|
||||
#endif
|
||||
|
||||
protected:
|
||||
/** \internal Resizes *this in preparation for assigning \a other to it.
|
||||
* Takes care of doing all the checking that's needed.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
|
||||
{
|
||||
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
|
||||
eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
|
||||
: (rows() == other.rows() && cols() == other.cols())))
|
||||
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(other);
|
||||
#else
|
||||
resizeLike(other);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
|
||||
*
|
||||
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
|
||||
* it will be initialized.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*
|
||||
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
|
||||
*
|
||||
* \internal
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
_set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
|
||||
return this->derived();
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
|
||||
|
||||
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
|
||||
* is the case when creating a new matrix) so one can enforce lazy evaluation.
|
||||
*
|
||||
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
// I don't think we need this resize call since the lazyAssign will anyways resize
|
||||
// and lazyAssign will be called by the assign selector.
|
||||
//_resize_to_match(other);
|
||||
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
|
||||
// it wouldn't allow to copy a row-vector into a column-vector.
|
||||
return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
|
||||
}
|
||||
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) &&
|
||||
bool(NumTraits<T1>::IsInteger),
|
||||
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
|
||||
eigen_assert(rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
||||
internal::check_rows_cols_for_overflow(rows, cols);
|
||||
m_storage.resize(rows*cols,rows,cols);
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
}
|
||||
|
||||
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
|
||||
friend struct internal::matrix_swap_impl;
|
||||
|
||||
/** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
|
||||
* data pointers.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
void _swap(DenseBase<OtherDerived> const & other)
|
||||
{
|
||||
enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
|
||||
internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
|
||||
}
|
||||
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
static EIGEN_STRONG_INLINE void _check_template_params()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor)
|
||||
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0)
|
||||
&& ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
|
||||
&& ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
|
||||
&& ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
|
||||
&& ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
|
||||
&& (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
|
||||
&& (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
|
||||
&& (Options & (DontAlign|RowMajor)) == Options),
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
}
|
||||
#endif
|
||||
|
||||
private:
|
||||
enum { ThisConstantIsPrivateInPlainObjectBase };
|
||||
};
|
||||
|
||||
template <typename Derived, typename OtherDerived, bool IsVector>
|
||||
struct internal::conservative_resize_like_impl
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
|
||||
{
|
||||
if (_this.rows() == rows && _this.cols() == cols) return;
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
|
||||
|
||||
if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
|
||||
(!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
|
||||
{
|
||||
internal::check_rows_cols_for_overflow(rows, cols);
|
||||
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
// The storage order does not allow us to use reallocation.
|
||||
typename Derived::PlainObject tmp(rows,cols);
|
||||
const Index common_rows = (std::min)(rows, _this.rows());
|
||||
const Index common_cols = (std::min)(cols, _this.cols());
|
||||
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
|
||||
_this.derived().swap(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
|
||||
|
||||
// Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
|
||||
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
|
||||
// dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
|
||||
// conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
|
||||
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
|
||||
|
||||
if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
|
||||
(!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns
|
||||
{
|
||||
const Index new_rows = other.rows() - _this.rows();
|
||||
const Index new_cols = other.cols() - _this.cols();
|
||||
_this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
|
||||
if (new_rows>0)
|
||||
_this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
|
||||
else if (new_cols>0)
|
||||
_this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
// The storage order does not allow us to use reallocation.
|
||||
typename Derived::PlainObject tmp(other);
|
||||
const Index common_rows = (std::min)(tmp.rows(), _this.rows());
|
||||
const Index common_cols = (std::min)(tmp.cols(), _this.cols());
|
||||
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
|
||||
_this.derived().swap(tmp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
struct conservative_resize_like_impl<Derived,OtherDerived,true>
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
static void run(DenseBase<Derived>& _this, Index size)
|
||||
{
|
||||
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
|
||||
const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
|
||||
_this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
|
||||
}
|
||||
|
||||
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
|
||||
|
||||
const Index num_new_elements = other.size() - _this.size();
|
||||
|
||||
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
|
||||
const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
|
||||
_this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
|
||||
|
||||
if (num_new_elements > 0)
|
||||
_this.tail(num_new_elements) = other.tail(num_new_elements);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
|
||||
struct matrix_swap_impl
|
||||
{
|
||||
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
|
||||
{
|
||||
a.base().swap(b);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixTypeA, typename MatrixTypeB>
|
||||
struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
|
||||
{
|
||||
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
|
||||
{
|
||||
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DENSESTORAGEBASE_H
|
@ -1,98 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public
|
||||
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PRODUCT_H
|
||||
#define EIGEN_PRODUCT_H
|
||||
|
||||
template<typename Lhs, typename Rhs> class Product;
|
||||
template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
|
||||
|
||||
/** \class Product
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the product of two arbitrary matrices or vectors
|
||||
*
|
||||
* \param Lhs the type of the left-hand side expression
|
||||
* \param Rhs the type of the right-hand side expression
|
||||
*
|
||||
* This class represents an expression of the product of two arbitrary matrices.
|
||||
*
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<Product<Lhs, Rhs> >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef typename remove_all<Lhs>::type LhsCleaned;
|
||||
typedef typename remove_all<Rhs>::type RhsCleaned;
|
||||
typedef typename scalar_product_traits<typename traits<LhsCleaned>::Scalar, typename traits<RhsCleaned>::Scalar>::ReturnType Scalar;
|
||||
typedef typename promote_storage_type<typename traits<LhsCleaned>::StorageKind,
|
||||
typename traits<RhsCleaned>::StorageKind>::ret StorageKind;
|
||||
typedef typename promote_index_type<typename traits<LhsCleaned>::Index,
|
||||
typename traits<RhsCleaned>::Index>::type Index;
|
||||
enum {
|
||||
RowsAtCompileTime = LhsCleaned::RowsAtCompileTime,
|
||||
ColsAtCompileTime = RhsCleaned::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = LhsCleaned::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = RhsCleaned::MaxColsAtCompileTime,
|
||||
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0), // TODO should be no storage order
|
||||
CoeffReadCost = 0 // TODO CoeffReadCost should not be part of the expression traits
|
||||
};
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
|
||||
typename internal::traits<Rhs>::StorageKind>::ret>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename ProductImpl<
|
||||
Lhs, Rhs,
|
||||
typename internal::promote_storage_type<typename Lhs::StorageKind,
|
||||
typename Rhs::StorageKind>::ret>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
|
||||
|
||||
typedef typename Lhs::Nested LhsNested;
|
||||
typedef typename Rhs::Nested RhsNested;
|
||||
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
||||
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
||||
|
||||
Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
eigen_assert(lhs.cols() == rhs.rows()
|
||||
&& "invalid matrix product"
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_lhs.rows(); }
|
||||
inline Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
const LhsNestedCleaned& lhs() const { return m_lhs; }
|
||||
const RhsNestedCleaned& rhs() const { return m_rhs; }
|
||||
|
||||
protected:
|
||||
|
||||
const LhsNested m_lhs;
|
||||
const RhsNested m_rhs;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class ProductImpl<Lhs,Rhs,Dense> : public internal::dense_xpr_base<Product<Lhs,Rhs> >::type
|
||||
{
|
||||
typedef Product<Lhs, Rhs> Derived;
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Product<Lhs, Rhs> >::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
||||
};
|
||||
|
||||
#endif // EIGEN_PRODUCT_H
|
@ -1,278 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PRODUCTBASE_H
|
||||
#define EIGEN_PRODUCTBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class ProductBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename Derived, typename _Lhs, typename _Rhs>
|
||||
struct traits<ProductBase<Derived,_Lhs,_Rhs> >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef typename remove_all<_Lhs>::type Lhs;
|
||||
typedef typename remove_all<_Rhs>::type Rhs;
|
||||
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
|
||||
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
|
||||
typename traits<Rhs>::StorageKind>::ret StorageKind;
|
||||
typedef typename promote_index_type<typename traits<Lhs>::Index,
|
||||
typename traits<Rhs>::Index>::type Index;
|
||||
enum {
|
||||
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
|
||||
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
|
||||
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
|
||||
// Note that EvalBeforeNestingBit and NestByRefBit
|
||||
// are not used in practice because nested is overloaded for products
|
||||
CoeffReadCost = 0 // FIXME why is it needed ?
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
|
||||
typedef ProductBase<Derived, Lhs, Rhs > Base; \
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
|
||||
typedef typename Base::LhsNested LhsNested; \
|
||||
typedef typename Base::_LhsNested _LhsNested; \
|
||||
typedef typename Base::LhsBlasTraits LhsBlasTraits; \
|
||||
typedef typename Base::ActualLhsType ActualLhsType; \
|
||||
typedef typename Base::_ActualLhsType _ActualLhsType; \
|
||||
typedef typename Base::RhsNested RhsNested; \
|
||||
typedef typename Base::_RhsNested _RhsNested; \
|
||||
typedef typename Base::RhsBlasTraits RhsBlasTraits; \
|
||||
typedef typename Base::ActualRhsType ActualRhsType; \
|
||||
typedef typename Base::_ActualRhsType _ActualRhsType; \
|
||||
using Base::m_lhs; \
|
||||
using Base::m_rhs;
|
||||
|
||||
template<typename Derived, typename Lhs, typename Rhs>
|
||||
class ProductBase : public MatrixBase<Derived>
|
||||
{
|
||||
public:
|
||||
typedef MatrixBase<Derived> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
|
||||
|
||||
typedef typename Lhs::Nested LhsNested;
|
||||
typedef typename internal::remove_all<LhsNested>::type _LhsNested;
|
||||
typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
|
||||
typedef typename internal::traits<Lhs>::Scalar LhsScalar;
|
||||
|
||||
typedef typename Rhs::Nested RhsNested;
|
||||
typedef typename internal::remove_all<RhsNested>::type _RhsNested;
|
||||
typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
|
||||
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
|
||||
typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
|
||||
typedef typename internal::traits<Rhs>::Scalar RhsScalar;
|
||||
|
||||
// Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
|
||||
|
||||
public:
|
||||
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
|
||||
ProductBase(const Lhs& lhs, const Rhs& rhs)
|
||||
: m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
eigen_assert(lhs.cols() == rhs.rows()
|
||||
&& "invalid matrix product"
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_lhs.rows(); }
|
||||
inline Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { derived().scaleAndAddTo(dst,alpha); }
|
||||
|
||||
const _LhsNested& lhs() const { return m_lhs; }
|
||||
const _RhsNested& rhs() const { return m_rhs; }
|
||||
|
||||
// Implicit conversion to the nested type (trigger the evaluation of the product)
|
||||
operator const PlainObject& () const
|
||||
{
|
||||
m_result.resize(m_lhs.rows(), m_rhs.cols());
|
||||
derived().evalTo(m_result);
|
||||
return m_result;
|
||||
}
|
||||
|
||||
const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
|
||||
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
|
||||
|
||||
template<int Index>
|
||||
const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
|
||||
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
|
||||
|
||||
const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
|
||||
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
|
||||
|
||||
// restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
|
||||
typename Base::CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
|
||||
#else
|
||||
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
|
||||
eigen_assert(this->rows() == 1 && this->cols() == 1);
|
||||
Matrix<Scalar,1,1> result = *this;
|
||||
return result.coeff(row,col);
|
||||
#endif
|
||||
}
|
||||
|
||||
typename Base::CoeffReturnType coeff(Index i) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
|
||||
eigen_assert(this->rows() == 1 && this->cols() == 1);
|
||||
Matrix<Scalar,1,1> result = *this;
|
||||
return result.coeff(i);
|
||||
}
|
||||
|
||||
const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
|
||||
eigen_assert(this->rows() == 1 && this->cols() == 1);
|
||||
return derived().coeffRef(row,col);
|
||||
}
|
||||
|
||||
const Scalar& coeffRef(Index i) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
|
||||
eigen_assert(this->rows() == 1 && this->cols() == 1);
|
||||
return derived().coeffRef(i);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
LhsNested m_lhs;
|
||||
RhsNested m_rhs;
|
||||
|
||||
mutable PlainObject m_result;
|
||||
};
|
||||
|
||||
// here we need to overload the nested rule for products
|
||||
// such that the nested type is a const reference to a plain matrix
|
||||
namespace internal {
|
||||
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
|
||||
struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
|
||||
{
|
||||
typedef PlainObject const& type;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename NestedProduct>
|
||||
class ScaledProduct;
|
||||
|
||||
// Note that these two operator* functions are not defined as member
|
||||
// functions of ProductBase, because, otherwise we would have to
|
||||
// define all overloads defined in MatrixBase. Furthermore, Using
|
||||
// "using Base::operator*" would not work with MSVC.
|
||||
//
|
||||
// Also note that here we accept any compatible scalar types
|
||||
template<typename Derived,typename Lhs,typename Rhs>
|
||||
const ScaledProduct<Derived>
|
||||
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::Scalar x)
|
||||
{ return ScaledProduct<Derived>(prod.derived(), x); }
|
||||
|
||||
template<typename Derived,typename Lhs,typename Rhs>
|
||||
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
|
||||
const ScaledProduct<Derived> >::type
|
||||
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::RealScalar x)
|
||||
{ return ScaledProduct<Derived>(prod.derived(), x); }
|
||||
|
||||
|
||||
template<typename Derived,typename Lhs,typename Rhs>
|
||||
const ScaledProduct<Derived>
|
||||
operator*(typename Derived::Scalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
|
||||
{ return ScaledProduct<Derived>(prod.derived(), x); }
|
||||
|
||||
template<typename Derived,typename Lhs,typename Rhs>
|
||||
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
|
||||
const ScaledProduct<Derived> >::type
|
||||
operator*(typename Derived::RealScalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
|
||||
{ return ScaledProduct<Derived>(prod.derived(), x); }
|
||||
|
||||
namespace internal {
|
||||
template<typename NestedProduct>
|
||||
struct traits<ScaledProduct<NestedProduct> >
|
||||
: traits<ProductBase<ScaledProduct<NestedProduct>,
|
||||
typename NestedProduct::_LhsNested,
|
||||
typename NestedProduct::_RhsNested> >
|
||||
{
|
||||
typedef typename traits<NestedProduct>::StorageKind StorageKind;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename NestedProduct>
|
||||
class ScaledProduct
|
||||
: public ProductBase<ScaledProduct<NestedProduct>,
|
||||
typename NestedProduct::_LhsNested,
|
||||
typename NestedProduct::_RhsNested>
|
||||
{
|
||||
public:
|
||||
typedef ProductBase<ScaledProduct<NestedProduct>,
|
||||
typename NestedProduct::_LhsNested,
|
||||
typename NestedProduct::_RhsNested> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
|
||||
|
||||
ScaledProduct(const NestedProduct& prod, Scalar x)
|
||||
: Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
|
||||
|
||||
template<typename Dest>
|
||||
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); }
|
||||
|
||||
template<typename Dest>
|
||||
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { m_prod.derived().scaleAndAddTo(dst,alpha * m_alpha); }
|
||||
|
||||
const Scalar& alpha() const { return m_alpha; }
|
||||
|
||||
protected:
|
||||
const NestedProduct& m_prod;
|
||||
Scalar m_alpha;
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* Overloaded to perform an efficient C = (A*B).lazy() */
|
||||
template<typename Derived>
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
Derived& MatrixBase<Derived>::lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
other.derived().evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PRODUCTBASE_H
|
@ -1,152 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_RANDOM_H
|
||||
#define EIGEN_RANDOM_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar> struct scalar_random_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
|
||||
template<typename Index>
|
||||
inline const Scalar operator() (Index, Index = 0) const { return random<Scalar>(); }
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_random_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns a random matrix expression
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Random() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_random_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_random_int_int.out
|
||||
*
|
||||
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
|
||||
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
|
||||
* behavior with expressions involving random matrices.
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
|
||||
DenseBase<Derived>::Random(Index rows, Index cols)
|
||||
{
|
||||
return NullaryExpr(rows, cols, internal::scalar_random_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns a random vector expression
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Random() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_random_int.cpp
|
||||
* Output: \verbinclude MatrixBase_random_int.out
|
||||
*
|
||||
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
|
||||
* a temporary vector whenever it is nested in a larger expression. This prevents unexpected
|
||||
* behavior with expressions involving random matrices.
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
|
||||
DenseBase<Derived>::Random(Index size)
|
||||
{
|
||||
return NullaryExpr(size, internal::scalar_random_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns a fixed-size random matrix or vector expression
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_random.cpp
|
||||
* Output: \verbinclude MatrixBase_random.out
|
||||
*
|
||||
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
|
||||
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
|
||||
* behavior with expressions involving random matrices.
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
|
||||
DenseBase<Derived>::Random()
|
||||
{
|
||||
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op<Scalar>());
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to random values.
|
||||
*
|
||||
* Example: \include MatrixBase_setRandom.cpp
|
||||
* Output: \verbinclude MatrixBase_setRandom.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Derived& DenseBase<Derived>::setRandom()
|
||||
{
|
||||
return *this = Random(rows(), cols());
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to random values.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setRandom_int.cpp
|
||||
* Output: \verbinclude Matrix_setRandom_int.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, MatrixBase::Random()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setRandom(Index size)
|
||||
{
|
||||
resize(size);
|
||||
return setRandom();
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to random values.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setRandom_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setRandom_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), setRandom(Index), class CwiseNullaryOp, MatrixBase::Random()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setRandom(Index rows, Index cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setRandom();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_RANDOM_H
|
@ -1,406 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_REDUX_H
|
||||
#define EIGEN_REDUX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// TODO
|
||||
// * implement other kind of vectorization
|
||||
// * factorize code
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_traits
|
||||
{
|
||||
public:
|
||||
enum {
|
||||
PacketSize = packet_traits<typename Derived::Scalar>::size,
|
||||
InnerMaxSize = int(Derived::IsRowMajor)
|
||||
? Derived::MaxColsAtCompileTime
|
||||
: Derived::MaxRowsAtCompileTime
|
||||
};
|
||||
|
||||
enum {
|
||||
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||
&& (functor_traits<Func>::PacketAccess),
|
||||
MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
|
||||
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
|
||||
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
|
||||
: int(DefaultTraversal)
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Cost = ( Derived::SizeAtCompileTime == Dynamic
|
||||
|| Derived::CoeffReadCost == Dynamic
|
||||
|| (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
|
||||
) ? Dynamic
|
||||
: Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
||||
+ (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
|
||||
? CompleteUnrolling
|
||||
: NoUnrolling
|
||||
};
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Func, typename Derived, int Start, int Length>
|
||||
struct redux_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
||||
{
|
||||
return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
||||
redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct redux_novec_unroller<Func, Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
outer = Start / Derived::InnerSizeAtCompileTime,
|
||||
inner = Start % Derived::InnerSizeAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
|
||||
{
|
||||
return mat.coeffByOuterInner(outer, inner);
|
||||
}
|
||||
};
|
||||
|
||||
// This is actually dead code and will never be called. It is required
|
||||
// to prevent false warnings regarding failed inlining though
|
||||
// for 0 length run() will never be called at all.
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct redux_novec_unroller<Func, Derived, Start, 0>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
|
||||
};
|
||||
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Func, typename Derived, int Start, int Length>
|
||||
struct redux_vec_unroller
|
||||
{
|
||||
enum {
|
||||
PacketSize = packet_traits<typename Derived::Scalar>::size,
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
|
||||
{
|
||||
return func.packetOp(
|
||||
redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
||||
redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct redux_vec_unroller<Func, Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
index = Start * packet_traits<typename Derived::Scalar>::size,
|
||||
outer = index / int(Derived::InnerSizeAtCompileTime),
|
||||
inner = index % int(Derived::InnerSizeAtCompileTime),
|
||||
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
|
||||
{
|
||||
return mat.template packetByOuterInner<alignment>(outer, inner);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Func, typename Derived,
|
||||
int Traversal = redux_traits<Func, Derived>::Traversal,
|
||||
int Unrolling = redux_traits<Func, Derived>::Unrolling
|
||||
>
|
||||
struct redux_impl;
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Derived::Index Index;
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
||||
Scalar res;
|
||||
res = mat.coeffByOuterInner(0, 0);
|
||||
for(Index i = 1; i < mat.innerSize(); ++i)
|
||||
res = func(res, mat.coeffByOuterInner(0, i));
|
||||
for(Index i = 1; i < mat.outerSize(); ++i)
|
||||
for(Index j = 0; j < mat.innerSize(); ++j)
|
||||
res = func(res, mat.coeffByOuterInner(i, j));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
|
||||
: public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename Derived::Index Index;
|
||||
|
||||
static Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
const Index size = mat.size();
|
||||
eigen_assert(size && "you are using an empty matrix");
|
||||
const Index packetSize = packet_traits<Scalar>::size;
|
||||
const Index alignedStart = internal::first_aligned(mat);
|
||||
enum {
|
||||
alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
|
||||
? Aligned : Unaligned
|
||||
};
|
||||
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
|
||||
const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
|
||||
const Index alignedEnd2 = alignedStart + alignedSize2;
|
||||
const Index alignedEnd = alignedStart + alignedSize;
|
||||
Scalar res;
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart);
|
||||
if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
|
||||
{
|
||||
PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize);
|
||||
for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
|
||||
{
|
||||
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index));
|
||||
packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize));
|
||||
}
|
||||
|
||||
packet_res0 = func.packetOp(packet_res0,packet_res1);
|
||||
if(alignedEnd>alignedEnd2)
|
||||
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2));
|
||||
}
|
||||
res = func.predux(packet_res0);
|
||||
|
||||
for(Index index = 0; index < alignedStart; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
|
||||
for(Index index = alignedEnd; index < size; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = mat.coeff(0);
|
||||
for(Index index = 1; index < size; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename Derived::Index Index;
|
||||
|
||||
static Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
||||
const Index innerSize = mat.innerSize();
|
||||
const Index outerSize = mat.outerSize();
|
||||
enum {
|
||||
packetSize = packet_traits<Scalar>::size
|
||||
};
|
||||
const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
|
||||
Scalar res;
|
||||
if(packetedInnerSize)
|
||||
{
|
||||
PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
|
||||
for(Index j=0; j<outerSize; ++j)
|
||||
for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
|
||||
packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
|
||||
|
||||
res = func.predux(packet_res);
|
||||
for(Index j=0; j<outerSize; ++j)
|
||||
for(Index i=packetedInnerSize; i<innerSize; ++i)
|
||||
res = func(res, mat.coeffByOuterInner(j,i));
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type PacketScalar;
|
||||
enum {
|
||||
PacketSize = packet_traits<Scalar>::size,
|
||||
Size = Derived::SizeAtCompileTime,
|
||||
VectorizedSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
||||
Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
|
||||
if (VectorizedSize != Size)
|
||||
res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : public API
|
||||
***************************************************************************/
|
||||
|
||||
|
||||
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
|
||||
*
|
||||
* The template parameter \a BinaryOp is the type of the functor \a func which must be
|
||||
* an associative operator. Both current STL and TR1 functor styles are handled.
|
||||
*
|
||||
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename Func>
|
||||
EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
|
||||
DenseBase<Derived>::redux(const Func& func) const
|
||||
{
|
||||
typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
|
||||
return internal::redux_impl<Func, ThisNested>
|
||||
::run(derived(), func);
|
||||
}
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::minCoeff() const
|
||||
{
|
||||
return this->redux(Eigen::internal::scalar_min_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::maxCoeff() const
|
||||
{
|
||||
return this->redux(Eigen::internal::scalar_max_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the sum of all coefficients of *this
|
||||
*
|
||||
* \sa trace(), prod(), mean()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::sum() const
|
||||
{
|
||||
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
||||
return Scalar(0);
|
||||
return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the mean of all coefficients of *this
|
||||
*
|
||||
* \sa trace(), prod(), sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::mean() const
|
||||
{
|
||||
return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
|
||||
}
|
||||
|
||||
/** \returns the product of all coefficients of *this
|
||||
*
|
||||
* Example: \include MatrixBase_prod.cpp
|
||||
* Output: \verbinclude MatrixBase_prod.out
|
||||
*
|
||||
* \sa sum(), mean(), trace()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::prod() const
|
||||
{
|
||||
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
||||
return Scalar(1);
|
||||
return this->redux(Eigen::internal::scalar_product_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
||||
*
|
||||
* \c *this can be any matrix, not necessarily square.
|
||||
*
|
||||
* \sa diagonal(), sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::trace() const
|
||||
{
|
||||
return derived().diagonal().sum();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_REDUX_H
|
@ -1,177 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_REPLICATE_H
|
||||
#define EIGEN_REPLICATE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/**
|
||||
* \class Replicate
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the multiple replication of a matrix or vector
|
||||
*
|
||||
* \param MatrixType the type of the object we are replicating
|
||||
*
|
||||
* This class represents an expression of the multiple replication of a matrix or vector.
|
||||
* It is the return type of DenseBase::replicate() and most of the time
|
||||
* this is the only way it is used.
|
||||
*
|
||||
* \sa DenseBase::replicate()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType,int RowFactor,int ColFactor>
|
||||
struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||||
typedef typename traits<MatrixType>::XprKind XprKind;
|
||||
enum {
|
||||
Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
|
||||
};
|
||||
typedef typename nested<MatrixType,Factor>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic
|
||||
? Dynamic
|
||||
: RowFactor * MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = ColFactor==Dynamic || int(MatrixType::ColsAtCompileTime)==Dynamic
|
||||
? Dynamic
|
||||
: ColFactor * MatrixType::ColsAtCompileTime,
|
||||
//FIXME we don't propagate the max sizes !!!
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ColsAtCompileTime,
|
||||
IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1
|
||||
: MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0
|
||||
: (MatrixType::Flags & RowMajorBit) ? 1 : 0,
|
||||
Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0),
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
|
||||
: public internal::dense_xpr_base< Replicate<MatrixType,RowFactor,ColFactor> >::type
|
||||
{
|
||||
typedef typename internal::traits<Replicate>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<Replicate>::_MatrixTypeNested _MatrixTypeNested;
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Replicate>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)
|
||||
|
||||
template<typename OriginalMatrixType>
|
||||
inline explicit Replicate(const OriginalMatrixType& matrix)
|
||||
: m_matrix(matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
|
||||
eigen_assert(RowFactor!=Dynamic && ColFactor!=Dynamic);
|
||||
}
|
||||
|
||||
template<typename OriginalMatrixType>
|
||||
inline Replicate(const OriginalMatrixType& matrix, Index rowFactor, Index colFactor)
|
||||
: m_matrix(matrix), m_rowFactor(rowFactor), m_colFactor(colFactor)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); }
|
||||
inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); }
|
||||
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
// try to avoid using modulo; this is a pure optimization strategy
|
||||
const Index actual_row = internal::traits<MatrixType>::RowsAtCompileTime==1 ? 0
|
||||
: RowFactor==1 ? row
|
||||
: row%m_matrix.rows();
|
||||
const Index actual_col = internal::traits<MatrixType>::ColsAtCompileTime==1 ? 0
|
||||
: ColFactor==1 ? col
|
||||
: col%m_matrix.cols();
|
||||
|
||||
return m_matrix.coeff(actual_row, actual_col);
|
||||
}
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
const Index actual_row = internal::traits<MatrixType>::RowsAtCompileTime==1 ? 0
|
||||
: RowFactor==1 ? row
|
||||
: row%m_matrix.rows();
|
||||
const Index actual_col = internal::traits<MatrixType>::ColsAtCompileTime==1 ? 0
|
||||
: ColFactor==1 ? col
|
||||
: col%m_matrix.cols();
|
||||
|
||||
return m_matrix.template packet<LoadMode>(actual_row, actual_col);
|
||||
}
|
||||
|
||||
const _MatrixTypeNested& nestedExpression() const
|
||||
{
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixTypeNested m_matrix;
|
||||
const internal::variable_if_dynamic<Index, RowFactor> m_rowFactor;
|
||||
const internal::variable_if_dynamic<Index, ColFactor> m_colFactor;
|
||||
};
|
||||
|
||||
/**
|
||||
* \return an expression of the replication of \c *this
|
||||
*
|
||||
* Example: \include MatrixBase_replicate.cpp
|
||||
* Output: \verbinclude MatrixBase_replicate.out
|
||||
*
|
||||
* \sa VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int RowFactor, int ColFactor>
|
||||
inline const Replicate<Derived,RowFactor,ColFactor>
|
||||
DenseBase<Derived>::replicate() const
|
||||
{
|
||||
return Replicate<Derived,RowFactor,ColFactor>(derived());
|
||||
}
|
||||
|
||||
/**
|
||||
* \return an expression of the replication of \c *this
|
||||
*
|
||||
* Example: \include MatrixBase_replicate_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_replicate_int_int.out
|
||||
*
|
||||
* \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const Replicate<Derived,Dynamic,Dynamic>
|
||||
DenseBase<Derived>::replicate(Index rowFactor,Index colFactor) const
|
||||
{
|
||||
return Replicate<Derived,Dynamic,Dynamic>(derived(),rowFactor,colFactor);
|
||||
}
|
||||
|
||||
/**
|
||||
* \return an expression of the replication of each column (or row) of \c *this
|
||||
*
|
||||
* Example: \include DirectionWise_replicate_int.cpp
|
||||
* Output: \verbinclude DirectionWise_replicate_int.out
|
||||
*
|
||||
* \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate
|
||||
*/
|
||||
template<typename ExpressionType, int Direction>
|
||||
const typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
|
||||
VectorwiseOp<ExpressionType,Direction>::replicate(Index factor) const
|
||||
{
|
||||
return typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
|
||||
(_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_REPLICATE_H
|
@ -1,88 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_RETURNBYVALUE_H
|
||||
#define EIGEN_RETURNBYVALUE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class ReturnByValue
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived>
|
||||
struct traits<ReturnByValue<Derived> >
|
||||
: public traits<typename traits<Derived>::ReturnType>
|
||||
{
|
||||
enum {
|
||||
// We're disabling the DirectAccess because e.g. the constructor of
|
||||
// the Block-with-DirectAccess expression requires to have a coeffRef method.
|
||||
// Also, we don't want to have to implement the stride stuff.
|
||||
Flags = (traits<typename traits<Derived>::ReturnType>::Flags
|
||||
| EvalBeforeNestingBit) & ~DirectAccessBit
|
||||
};
|
||||
};
|
||||
|
||||
/* The ReturnByValue object doesn't even have a coeff() method.
|
||||
* So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix.
|
||||
* So internal::nested always gives the plain return matrix type.
|
||||
*
|
||||
* FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ??
|
||||
*/
|
||||
template<typename Derived,int n,typename PlainObject>
|
||||
struct nested<ReturnByValue<Derived>, n, PlainObject>
|
||||
{
|
||||
typedef typename traits<Derived>::ReturnType type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived> class ReturnByValue
|
||||
: public internal::dense_xpr_base< ReturnByValue<Derived> >::type
|
||||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::ReturnType ReturnType;
|
||||
|
||||
typedef typename internal::dense_xpr_base<ReturnByValue>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue)
|
||||
|
||||
template<typename Dest>
|
||||
inline void evalTo(Dest& dst) const
|
||||
{ static_cast<const Derived*>(this)->evalTo(dst); }
|
||||
inline Index rows() const { return static_cast<const Derived*>(this)->rows(); }
|
||||
inline Index cols() const { return static_cast<const Derived*>(this)->cols(); }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
#define Unusable YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT
|
||||
class Unusable{
|
||||
Unusable(const Unusable&) {}
|
||||
Unusable& operator=(const Unusable&) {return *this;}
|
||||
};
|
||||
const Unusable& coeff(Index) const { return *reinterpret_cast<const Unusable*>(this); }
|
||||
const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
|
||||
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
|
||||
Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
|
||||
#endif
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
other.evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_RETURNBYVALUE_H
|
@ -1,224 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_REVERSE_H
|
||||
#define EIGEN_REVERSE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Reverse
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the reverse of a vector or matrix
|
||||
*
|
||||
* \param MatrixType the type of the object of which we are taking the reverse
|
||||
*
|
||||
* This class represents an expression of the reverse of a vector.
|
||||
* It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::reverse(), VectorwiseOp::reverse()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType, int Direction>
|
||||
struct traits<Reverse<MatrixType, Direction> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||||
typedef typename traits<MatrixType>::XprKind XprKind;
|
||||
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
|
||||
// let's enable LinearAccess only with vectorization because of the product overhead
|
||||
LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
|
||||
? LinearAccessBit : 0,
|
||||
|
||||
Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
|
||||
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond
|
||||
{
|
||||
static inline PacketScalar run(const PacketScalar& x) { return preverse(x); }
|
||||
};
|
||||
|
||||
template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false>
|
||||
{
|
||||
static inline PacketScalar run(const PacketScalar& x) { return x; }
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename MatrixType, int Direction> class Reverse
|
||||
: public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Reverse>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
|
||||
using Base::IsRowMajor;
|
||||
|
||||
// next line is necessary because otherwise const version of operator()
|
||||
// is hidden by non-const version defined in this file
|
||||
using Base::operator();
|
||||
|
||||
protected:
|
||||
enum {
|
||||
PacketSize = internal::packet_traits<Scalar>::size,
|
||||
IsColMajor = !IsRowMajor,
|
||||
ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
|
||||
ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
|
||||
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
|
||||
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
|
||||
ReversePacket = (Direction == BothDirections)
|
||||
|| ((Direction == Vertical) && IsColMajor)
|
||||
|| ((Direction == Horizontal) && IsRowMajor)
|
||||
};
|
||||
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
|
||||
public:
|
||||
|
||||
inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
inline Index innerStride() const
|
||||
{
|
||||
return -m_matrix.innerStride();
|
||||
}
|
||||
|
||||
inline Scalar& operator()(Index row, Index col)
|
||||
{
|
||||
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
|
||||
return coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
|
||||
ReverseCol ? m_matrix.cols() - col - 1 : col);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
|
||||
ReverseCol ? m_matrix.cols() - col - 1 : col);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_matrix.coeff(m_matrix.size() - index - 1);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
|
||||
}
|
||||
|
||||
inline Scalar& operator()(Index index)
|
||||
{
|
||||
eigen_assert(index >= 0 && index < m_matrix.size());
|
||||
return coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return reverse_packet::run(m_matrix.template packet<LoadMode>(
|
||||
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
|
||||
ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(
|
||||
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
|
||||
ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
|
||||
reverse_packet::run(x));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
|
||||
}
|
||||
|
||||
const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
protected:
|
||||
typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
/** \returns an expression of the reverse of *this.
|
||||
*
|
||||
* Example: \include MatrixBase_reverse.cpp
|
||||
* Output: \verbinclude MatrixBase_reverse.out
|
||||
*
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::ReverseReturnType
|
||||
DenseBase<Derived>::reverse()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the const version of reverse(). */
|
||||
template<typename Derived>
|
||||
inline const typename DenseBase<Derived>::ConstReverseReturnType
|
||||
DenseBase<Derived>::reverse() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the "in place" version of reverse: it reverses \c *this.
|
||||
*
|
||||
* In most cases it is probably better to simply use the reversed expression
|
||||
* of a matrix. However, when reversing the matrix data itself is really needed,
|
||||
* then this "in-place" version is probably the right choice because it provides
|
||||
* the following additional features:
|
||||
* - less error prone: doing the same operation with .reverse() requires special care:
|
||||
* \code m = m.reverse().eval(); \endcode
|
||||
* - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
|
||||
* - it allows future optimizations (cache friendliness, etc.)
|
||||
*
|
||||
* \sa reverse() */
|
||||
template<typename Derived>
|
||||
inline void DenseBase<Derived>::reverseInPlace()
|
||||
{
|
||||
derived() = derived().reverse().eval();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_REVERSE_H
|
@ -1,162 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SELECT_H
|
||||
#define EIGEN_SELECT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Select
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a coefficient wise version of the C++ ternary operator ?:
|
||||
*
|
||||
* \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix
|
||||
* \param ThenMatrixType the type of the \em then expression
|
||||
* \param ElseMatrixType the type of the \em else expression
|
||||
*
|
||||
* This class represents an expression of a coefficient wise version of the C++ ternary operator ?:.
|
||||
* It is the return type of DenseBase::select() and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
|
||||
struct traits<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
|
||||
: traits<ThenMatrixType>
|
||||
{
|
||||
typedef typename traits<ThenMatrixType>::Scalar Scalar;
|
||||
typedef Dense StorageKind;
|
||||
typedef typename traits<ThenMatrixType>::XprKind XprKind;
|
||||
typedef typename ConditionMatrixType::Nested ConditionMatrixNested;
|
||||
typedef typename ThenMatrixType::Nested ThenMatrixNested;
|
||||
typedef typename ElseMatrixType::Nested ElseMatrixNested;
|
||||
enum {
|
||||
RowsAtCompileTime = ConditionMatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime,
|
||||
Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits,
|
||||
CoeffReadCost = traits<typename remove_all<ConditionMatrixNested>::type>::CoeffReadCost
|
||||
+ EIGEN_SIZE_MAX(traits<typename remove_all<ThenMatrixNested>::type>::CoeffReadCost,
|
||||
traits<typename remove_all<ElseMatrixNested>::type>::CoeffReadCost)
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
|
||||
class Select : internal::no_assignment_operator,
|
||||
public internal::dense_xpr_base< Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Select>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Select)
|
||||
|
||||
Select(const ConditionMatrixType& conditionMatrix,
|
||||
const ThenMatrixType& thenMatrix,
|
||||
const ElseMatrixType& elseMatrix)
|
||||
: m_condition(conditionMatrix), m_then(thenMatrix), m_else(elseMatrix)
|
||||
{
|
||||
eigen_assert(m_condition.rows() == m_then.rows() && m_condition.rows() == m_else.rows());
|
||||
eigen_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols());
|
||||
}
|
||||
|
||||
Index rows() const { return m_condition.rows(); }
|
||||
Index cols() const { return m_condition.cols(); }
|
||||
|
||||
const Scalar coeff(Index i, Index j) const
|
||||
{
|
||||
if (m_condition.coeff(i,j))
|
||||
return m_then.coeff(i,j);
|
||||
else
|
||||
return m_else.coeff(i,j);
|
||||
}
|
||||
|
||||
const Scalar coeff(Index i) const
|
||||
{
|
||||
if (m_condition.coeff(i))
|
||||
return m_then.coeff(i);
|
||||
else
|
||||
return m_else.coeff(i);
|
||||
}
|
||||
|
||||
const ConditionMatrixType& conditionMatrix() const
|
||||
{
|
||||
return m_condition;
|
||||
}
|
||||
|
||||
const ThenMatrixType& thenMatrix() const
|
||||
{
|
||||
return m_then;
|
||||
}
|
||||
|
||||
const ElseMatrixType& elseMatrix() const
|
||||
{
|
||||
return m_else;
|
||||
}
|
||||
|
||||
protected:
|
||||
typename ConditionMatrixType::Nested m_condition;
|
||||
typename ThenMatrixType::Nested m_then;
|
||||
typename ElseMatrixType::Nested m_else;
|
||||
};
|
||||
|
||||
|
||||
/** \returns a matrix where each coefficient (i,j) is equal to \a thenMatrix(i,j)
|
||||
* if \c *this(i,j), and \a elseMatrix(i,j) otherwise.
|
||||
*
|
||||
* Example: \include MatrixBase_select.cpp
|
||||
* Output: \verbinclude MatrixBase_select.out
|
||||
*
|
||||
* \sa class Select
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ThenDerived,typename ElseDerived>
|
||||
inline const Select<Derived,ThenDerived,ElseDerived>
|
||||
DenseBase<Derived>::select(const DenseBase<ThenDerived>& thenMatrix,
|
||||
const DenseBase<ElseDerived>& elseMatrix) const
|
||||
{
|
||||
return Select<Derived,ThenDerived,ElseDerived>(derived(), thenMatrix.derived(), elseMatrix.derived());
|
||||
}
|
||||
|
||||
/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with
|
||||
* the \em else expression being a scalar value.
|
||||
*
|
||||
* \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
|
||||
DenseBase<Derived>::select(const DenseBase<ThenDerived>& thenMatrix,
|
||||
typename ThenDerived::Scalar elseScalar) const
|
||||
{
|
||||
return Select<Derived,ThenDerived,typename ThenDerived::ConstantReturnType>(
|
||||
derived(), thenMatrix.derived(), ThenDerived::Constant(rows(),cols(),elseScalar));
|
||||
}
|
||||
|
||||
/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with
|
||||
* the \em then expression being a scalar value.
|
||||
*
|
||||
* \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
|
||||
DenseBase<Derived>::select(typename ElseDerived::Scalar thenScalar,
|
||||
const DenseBase<ElseDerived>& elseMatrix) const
|
||||
{
|
||||
return Select<Derived,typename ElseDerived::ConstantReturnType,ElseDerived>(
|
||||
derived(), ElseDerived::Constant(rows(),cols(),thenScalar), elseMatrix.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SELECT_H
|
@ -1,314 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SELFADJOINTMATRIX_H
|
||||
#define EIGEN_SELFADJOINTMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class SelfAdjointView
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
*
|
||||
* \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
|
||||
*
|
||||
* \param MatrixType the type of the dense matrix storing the coefficients
|
||||
* \param TriangularPart can be either \c #Lower or \c #Upper
|
||||
*
|
||||
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
|
||||
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
|
||||
* and most of the time this is the only way that it is used.
|
||||
*
|
||||
* \sa class TriangularBase, MatrixBase::selfadjointView()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, unsigned int UpLo>
|
||||
struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
|
||||
{
|
||||
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
|
||||
typedef MatrixType ExpressionType;
|
||||
typedef typename MatrixType::PlainObject DenseMatrixType;
|
||||
enum {
|
||||
Mode = UpLo | SelfAdjoint,
|
||||
Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
|
||||
& (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
|
||||
CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template <typename Lhs, int LhsMode, bool LhsIsVector,
|
||||
typename Rhs, int RhsMode, bool RhsIsVector>
|
||||
struct SelfadjointProductMatrix;
|
||||
|
||||
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
|
||||
template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
: public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef TriangularBase<SelfAdjointView> Base;
|
||||
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
|
||||
|
||||
/** \brief The type of coefficients in this matrix */
|
||||
typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
|
||||
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
enum {
|
||||
Mode = internal::traits<SelfAdjointView>::Mode
|
||||
};
|
||||
typedef typename MatrixType::PlainObject PlainObject;
|
||||
|
||||
inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
|
||||
{}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index outerStride() const { return m_matrix.outerStride(); }
|
||||
inline Index innerStride() const { return m_matrix.innerStride(); }
|
||||
|
||||
/** \sa MatrixBase::coeff()
|
||||
* \warning the coordinates must fit into the referenced triangular part
|
||||
*/
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
Base::check_coordinates_internal(row, col);
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
/** \sa MatrixBase::coeffRef()
|
||||
* \warning the coordinates must fit into the referenced triangular part
|
||||
*/
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
Base::check_coordinates_internal(row, col);
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
|
||||
|
||||
const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
|
||||
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
|
||||
|
||||
/** Efficient self-adjoint matrix times vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return SelfadjointProductMatrix
|
||||
<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
|
||||
(m_matrix, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient vector/matrix times self-adjoint matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
|
||||
{
|
||||
return SelfadjointProductMatrix
|
||||
<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
|
||||
(lhs.derived(),rhs.m_matrix);
|
||||
}
|
||||
|
||||
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
|
||||
* \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
|
||||
* \returns a reference to \c *this
|
||||
*
|
||||
* The vectors \a u and \c v \b must be column vectors, however they can be
|
||||
* a adjoint expression without any overhead. Only the meaningful triangular
|
||||
* part of the matrix is updated, the rest is left unchanged.
|
||||
*
|
||||
* \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
|
||||
*/
|
||||
template<typename DerivedU, typename DerivedV>
|
||||
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));
|
||||
|
||||
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
|
||||
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*
|
||||
* Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
|
||||
* call this function with u.adjoint().
|
||||
*
|
||||
* \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
|
||||
*/
|
||||
template<typename DerivedU>
|
||||
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));
|
||||
|
||||
/////////// Cholesky module ///////////
|
||||
|
||||
const LLT<PlainObject, UpLo> llt() const;
|
||||
const LDLT<PlainObject, UpLo> ldlt() const;
|
||||
|
||||
/////////// Eigenvalue module ///////////
|
||||
|
||||
/** Real part of #Scalar */
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
/** Return type of eigenvalues() */
|
||||
typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
||||
|
||||
EigenvaluesReturnType eigenvalues() const;
|
||||
RealScalar operatorNorm() const;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived>
|
||||
SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
enum {
|
||||
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
|
||||
};
|
||||
m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
|
||||
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
|
||||
return *this;
|
||||
}
|
||||
template<typename OtherMatrixType, unsigned int OtherMode>
|
||||
SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
|
||||
{
|
||||
enum {
|
||||
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
|
||||
};
|
||||
m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
|
||||
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
protected:
|
||||
MatrixTypeNested m_matrix;
|
||||
};
|
||||
|
||||
|
||||
// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
|
||||
// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
|
||||
// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
|
||||
// {
|
||||
// return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
|
||||
// }
|
||||
|
||||
// selfadjoint to dense matrix
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
||||
};
|
||||
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
|
||||
|
||||
if(row == col)
|
||||
dst.coeffRef(row, col) = real(src.coeff(row, col));
|
||||
else if(row < col)
|
||||
dst.coeffRef(col, row) = conj(dst.coeffRef(row, col) = src.coeff(row, col));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
|
||||
{
|
||||
static inline void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
||||
};
|
||||
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
|
||||
|
||||
if(row == col)
|
||||
dst.coeffRef(row, col) = real(src.coeff(row, col));
|
||||
else if(row > col)
|
||||
dst.coeffRef(col, row) = conj(dst.coeffRef(row, col) = src.coeff(row, col));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
|
||||
{
|
||||
static inline void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
for(Index i = 0; i < j; ++i)
|
||||
{
|
||||
dst.copyCoeff(i, j, src);
|
||||
dst.coeffRef(j,i) = conj(dst.coeff(i,j));
|
||||
}
|
||||
dst.copyCoeff(j, j, src);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
|
||||
{
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
for(Index i = 0; i < dst.rows(); ++i)
|
||||
{
|
||||
for(Index j = 0; j < i; ++j)
|
||||
{
|
||||
dst.copyCoeff(i, j, src);
|
||||
dst.coeffRef(j,i) = conj(dst.coeff(i,j));
|
||||
}
|
||||
dst.copyCoeff(i, i, src);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
template<unsigned int UpLo>
|
||||
typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
|
||||
MatrixBase<Derived>::selfadjointView() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<unsigned int UpLo>
|
||||
typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
|
||||
MatrixBase<Derived>::selfadjointView()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SELFADJOINTMATRIX_H
|
@ -1,194 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SELFCWISEBINARYOP_H
|
||||
#define EIGEN_SELFCWISEBINARYOP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class SelfCwiseBinaryOp
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \internal
|
||||
*
|
||||
* \brief Internal helper class for optimizing operators like +=, -=
|
||||
*
|
||||
* This is a pseudo expression class re-implementing the copyCoeff/copyPacket
|
||||
* method to directly performs a +=/-= operations in an optimal way. In particular,
|
||||
* this allows to make sure that the input/output data are loaded only once using
|
||||
* aligned packet loads.
|
||||
*
|
||||
* \sa class SwapWrapper for a similar trick.
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct traits<SelfCwiseBinaryOp<BinaryOp,Lhs,Rhs> >
|
||||
: traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >
|
||||
{
|
||||
enum {
|
||||
// Note that it is still a good idea to preserve the DirectAccessBit
|
||||
// so that assign can correctly align the data.
|
||||
Flags = traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >::Flags | (Lhs::Flags&DirectAccessBit) | (Lhs::Flags&LvalueBit),
|
||||
OuterStrideAtCompileTime = Lhs::OuterStrideAtCompileTime,
|
||||
InnerStrideAtCompileTime = Lhs::InnerStrideAtCompileTime
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp
|
||||
: public internal::dense_xpr_base< SelfCwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<SelfCwiseBinaryOp>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(SelfCwiseBinaryOp)
|
||||
|
||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
||||
|
||||
inline SelfCwiseBinaryOp(Lhs& xpr, const BinaryOp& func = BinaryOp()) : m_matrix(xpr), m_functor(func) {}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index outerStride() const { return m_matrix.outerStride(); }
|
||||
inline Index innerStride() const { return m_matrix.innerStride(); }
|
||||
inline const Scalar* data() const { return m_matrix.data(); }
|
||||
|
||||
// note that this function is needed by assign to correctly align loads/stores
|
||||
// TODO make Assign use .data()
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(Lhs)
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.coeffRef(row, col);
|
||||
}
|
||||
|
||||
// note that this function is needed by assign to correctly align loads/stores
|
||||
// TODO make Assign use .data()
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(Lhs)
|
||||
return m_matrix.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
Scalar& tmp = m_matrix.coeffRef(row,col);
|
||||
tmp = m_functor(tmp, _other.coeff(row,col));
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(index >= 0 && index < m_matrix.size());
|
||||
Scalar& tmp = m_matrix.coeffRef(index);
|
||||
tmp = m_functor(tmp, _other.coeff(index));
|
||||
}
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
m_matrix.template writePacket<StoreMode>(row, col,
|
||||
m_functor.packetOp(m_matrix.template packet<StoreMode>(row, col),_other.template packet<LoadMode>(row, col)) );
|
||||
}
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(Index index, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(index >= 0 && index < m_matrix.size());
|
||||
m_matrix.template writePacket<StoreMode>(index,
|
||||
m_functor.packetOp(m_matrix.template packet<StoreMode>(index),_other.template packet<LoadMode>(index)) );
|
||||
}
|
||||
|
||||
// reimplement lazyAssign to handle complex *= real
|
||||
// see CwiseBinaryOp ctor for details
|
||||
template<typename RhsDerived>
|
||||
EIGEN_STRONG_INLINE SelfCwiseBinaryOp& lazyAssign(const DenseBase<RhsDerived>& rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs,RhsDerived)
|
||||
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename RhsDerived::Scalar);
|
||||
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
internal::assign_traits<SelfCwiseBinaryOp, RhsDerived>::debug();
|
||||
#endif
|
||||
eigen_assert(rows() == rhs.rows() && cols() == rhs.cols());
|
||||
internal::assign_impl<SelfCwiseBinaryOp, RhsDerived>::run(*this,rhs.derived());
|
||||
#ifndef EIGEN_NO_DEBUG
|
||||
this->checkTransposeAliasing(rhs.derived());
|
||||
#endif
|
||||
return *this;
|
||||
}
|
||||
|
||||
// overloaded to honor evaluation of special matrices
|
||||
// maybe another solution would be to not use SelfCwiseBinaryOp
|
||||
// at first...
|
||||
SelfCwiseBinaryOp& operator=(const Rhs& _rhs)
|
||||
{
|
||||
typename internal::nested<Rhs>::type rhs(_rhs);
|
||||
return Base::operator=(rhs);
|
||||
}
|
||||
|
||||
Lhs& expression() const
|
||||
{
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
const BinaryOp& functor() const
|
||||
{
|
||||
return m_functor;
|
||||
}
|
||||
|
||||
protected:
|
||||
Lhs& m_matrix;
|
||||
const BinaryOp& m_functor;
|
||||
|
||||
private:
|
||||
SelfCwiseBinaryOp& operator=(const SelfCwiseBinaryOp&);
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
|
||||
{
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
|
||||
tmp = PlainObject::Constant(rows(),cols(),other);
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
|
||||
{
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
|
||||
internal::scalar_quotient_op<Scalar>,
|
||||
internal::scalar_product_op<Scalar> >::type BinOp;
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
|
||||
tmp = PlainObject::Constant(rows(),cols(), NumTraits<Scalar>::IsInteger ? other : Scalar(1)/other);
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SELFCWISEBINARYOP_H
|
@ -1,260 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SOLVETRIANGULAR_H
|
||||
#define EIGEN_SOLVETRIANGULAR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Forward declarations:
|
||||
// The following two routines are implemented in the products/TriangularSolver*.h files
|
||||
template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
|
||||
struct triangular_solve_vector;
|
||||
|
||||
template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder, int OtherStorageOrder>
|
||||
struct triangular_solve_matrix;
|
||||
|
||||
// small helper struct extracting some traits on the underlying solver operation
|
||||
template<typename Lhs, typename Rhs, int Side>
|
||||
class trsolve_traits
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1
|
||||
};
|
||||
public:
|
||||
enum {
|
||||
Unrolling = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8)
|
||||
? CompleteUnrolling : NoUnrolling,
|
||||
RhsVectors = RhsIsVectorAtCompileTime ? 1 : Dynamic
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs,
|
||||
int Side, // can be OnTheLeft/OnTheRight
|
||||
int Mode, // can be Upper/Lower | UnitDiag
|
||||
int Unrolling = trsolve_traits<Lhs,Rhs,Side>::Unrolling,
|
||||
int RhsVectors = trsolve_traits<Lhs,Rhs,Side>::RhsVectors
|
||||
>
|
||||
struct triangular_solver_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs, int Side, int Mode>
|
||||
struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,1>
|
||||
{
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
typedef blas_traits<Lhs> LhsProductTraits;
|
||||
typedef typename LhsProductTraits::ExtractType ActualLhsType;
|
||||
typedef Map<Matrix<RhsScalar,Dynamic,1>, Aligned> MappedRhs;
|
||||
static void run(const Lhs& lhs, Rhs& rhs)
|
||||
{
|
||||
ActualLhsType actualLhs = LhsProductTraits::extract(lhs);
|
||||
|
||||
// FIXME find a way to allow an inner stride if packet_traits<Scalar>::size==1
|
||||
|
||||
bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1;
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhs,rhs.size(),
|
||||
(useRhsDirectly ? rhs.data() : 0));
|
||||
|
||||
if(!useRhsDirectly)
|
||||
MappedRhs(actualRhs,rhs.size()) = rhs;
|
||||
|
||||
triangular_solve_vector<LhsScalar, RhsScalar, typename Lhs::Index, Side, Mode, LhsProductTraits::NeedToConjugate,
|
||||
(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor>
|
||||
::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs);
|
||||
|
||||
if(!useRhsDirectly)
|
||||
rhs = MappedRhs(actualRhs, rhs.size());
|
||||
}
|
||||
};
|
||||
|
||||
// the rhs is a matrix
|
||||
template<typename Lhs, typename Rhs, int Side, int Mode>
|
||||
struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,Dynamic>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef typename Rhs::Index Index;
|
||||
typedef blas_traits<Lhs> LhsProductTraits;
|
||||
typedef typename LhsProductTraits::DirectLinearAccessType ActualLhsType;
|
||||
|
||||
static void run(const Lhs& lhs, Rhs& rhs)
|
||||
{
|
||||
typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsProductTraits::extract(lhs);
|
||||
|
||||
const Index size = lhs.rows();
|
||||
const Index othersize = Side==OnTheLeft? rhs.cols() : rhs.rows();
|
||||
|
||||
typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
|
||||
Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType;
|
||||
|
||||
BlockingType blocking(rhs.rows(), rhs.cols(), size);
|
||||
|
||||
triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor,
|
||||
(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor>
|
||||
::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.outerStride(), blocking);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* meta-unrolling implementation
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode, int Index, int Size,
|
||||
bool Stop = Index==Size>
|
||||
struct triangular_solver_unroller;
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
|
||||
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,false> {
|
||||
enum {
|
||||
IsLower = ((Mode&Lower)==Lower),
|
||||
I = IsLower ? Index : Size - Index - 1,
|
||||
S = IsLower ? 0 : I+1
|
||||
};
|
||||
static void run(const Lhs& lhs, Rhs& rhs)
|
||||
{
|
||||
if (Index>0)
|
||||
rhs.coeffRef(I) -= lhs.row(I).template segment<Index>(S).transpose()
|
||||
.cwiseProduct(rhs.template segment<Index>(S)).sum();
|
||||
|
||||
if(!(Mode & UnitDiag))
|
||||
rhs.coeffRef(I) /= lhs.coeff(I,I);
|
||||
|
||||
triangular_solver_unroller<Lhs,Rhs,Mode,Index+1,Size>::run(lhs,rhs);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
|
||||
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,true> {
|
||||
static void run(const Lhs&, Rhs&) {}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode>
|
||||
struct triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,CompleteUnrolling,1> {
|
||||
static void run(const Lhs& lhs, Rhs& rhs)
|
||||
{ triangular_solver_unroller<Lhs,Rhs,Mode,0,Rhs::SizeAtCompileTime>::run(lhs,rhs); }
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode>
|
||||
struct triangular_solver_selector<Lhs,Rhs,OnTheRight,Mode,CompleteUnrolling,1> {
|
||||
static void run(const Lhs& lhs, Rhs& rhs)
|
||||
{
|
||||
Transpose<const Lhs> trLhs(lhs);
|
||||
Transpose<Rhs> trRhs(rhs);
|
||||
|
||||
triangular_solver_unroller<Transpose<const Lhs>,Transpose<Rhs>,
|
||||
((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
|
||||
0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* TriangularView methods
|
||||
***************************************************************************/
|
||||
|
||||
/** "in-place" version of TriangularView::solve() where the result is written in \a other
|
||||
*
|
||||
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
|
||||
* This function will const_cast it, so constness isn't honored here.
|
||||
*
|
||||
* See TriangularView:solve() for the details.
|
||||
*/
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<int Side, typename OtherDerived>
|
||||
void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
|
||||
{
|
||||
OtherDerived& other = _other.const_cast_derived();
|
||||
eigen_assert( cols() == rows() && ((Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols())) );
|
||||
eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
|
||||
|
||||
enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
|
||||
typedef typename internal::conditional<copy,
|
||||
typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
|
||||
OtherCopy otherCopy(other);
|
||||
|
||||
internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
|
||||
Side, Mode>::run(nestedExpression(), otherCopy);
|
||||
|
||||
if (copy)
|
||||
other = otherCopy;
|
||||
}
|
||||
|
||||
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
|
||||
*
|
||||
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
|
||||
* \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if
|
||||
* \a Side==OnTheRight.
|
||||
*
|
||||
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
|
||||
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
|
||||
* is an upper (resp. lower) triangular matrix.
|
||||
*
|
||||
* Example: \include MatrixBase_marked.cpp
|
||||
* Output: \verbinclude MatrixBase_marked.out
|
||||
*
|
||||
* This function returns an expression of the inverse-multiply and can works in-place if it is assigned
|
||||
* to the same matrix or vector \a other.
|
||||
*
|
||||
* For users coming from BLAS, this function (and more specifically solveInPlace()) offer
|
||||
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
|
||||
*
|
||||
* \sa TriangularView::solveInPlace()
|
||||
*/
|
||||
template<typename Derived, unsigned int Mode>
|
||||
template<int Side, typename Other>
|
||||
const internal::triangular_solve_retval<Side,TriangularView<Derived,Mode>,Other>
|
||||
TriangularView<Derived,Mode>::solve(const MatrixBase<Other>& other) const
|
||||
{
|
||||
return internal::triangular_solve_retval<Side,TriangularView,Other>(*this, other.derived());
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
||||
template<int Side, typename TriangularType, typename Rhs>
|
||||
struct traits<triangular_solve_retval<Side, TriangularType, Rhs> >
|
||||
{
|
||||
typedef typename internal::plain_matrix_type_column_major<Rhs>::type ReturnType;
|
||||
};
|
||||
|
||||
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval
|
||||
: public ReturnByValue<triangular_solve_retval<Side, TriangularType, Rhs> >
|
||||
{
|
||||
typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
|
||||
typedef ReturnByValue<triangular_solve_retval> Base;
|
||||
typedef typename Base::Index Index;
|
||||
|
||||
triangular_solve_retval(const TriangularType& tri, const Rhs& rhs)
|
||||
: m_triangularMatrix(tri), m_rhs(rhs)
|
||||
{}
|
||||
|
||||
inline Index rows() const { return m_rhs.rows(); }
|
||||
inline Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{
|
||||
if(!(is_same<RhsNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_rhs)))
|
||||
dst = m_rhs;
|
||||
m_triangularMatrix.template solveInPlace<Side>(dst);
|
||||
}
|
||||
|
||||
protected:
|
||||
const TriangularType& m_triangularMatrix;
|
||||
typename Rhs::Nested m_rhs;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SOLVETRIANGULAR_H
|
@ -1,177 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_STABLENORM_H
|
||||
#define EIGEN_STABLENORM_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename ExpressionType, typename Scalar>
|
||||
inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
|
||||
{
|
||||
Scalar max = bl.cwiseAbs().maxCoeff();
|
||||
if (max>scale)
|
||||
{
|
||||
ssq = ssq * abs2(scale/max);
|
||||
scale = max;
|
||||
invScale = Scalar(1)/scale;
|
||||
}
|
||||
// TODO if the max is much much smaller than the current scale,
|
||||
// then we can neglect this sub vector
|
||||
ssq += (bl*invScale).squaredNorm();
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
|
||||
* This version use a blockwise two passes algorithm:
|
||||
* 1 - find the absolute largest coefficient \c s
|
||||
* 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
|
||||
*
|
||||
* For architecture/scalar types supporting vectorization, this version
|
||||
* is faster than blueNorm(). Otherwise the blueNorm() is much faster.
|
||||
*
|
||||
* \sa norm(), blueNorm(), hypotNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
MatrixBase<Derived>::stableNorm() const
|
||||
{
|
||||
using std::min;
|
||||
const Index blockSize = 4096;
|
||||
RealScalar scale(0);
|
||||
RealScalar invScale(1);
|
||||
RealScalar ssq(0); // sum of square
|
||||
enum {
|
||||
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
|
||||
};
|
||||
Index n = size();
|
||||
Index bi = internal::first_aligned(derived());
|
||||
if (bi>0)
|
||||
internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
|
||||
for (; bi<n; bi+=blockSize)
|
||||
internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
|
||||
return scale * internal::sqrt(ssq);
|
||||
}
|
||||
|
||||
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
|
||||
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
|
||||
* ACM TOMS, Vol 4, Issue 1, 1978.
|
||||
*
|
||||
* For architecture/scalar types without vectorization, this version
|
||||
* is much faster than stableNorm(). Otherwise the stableNorm() is faster.
|
||||
*
|
||||
* \sa norm(), stableNorm(), hypotNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
MatrixBase<Derived>::blueNorm() const
|
||||
{
|
||||
using std::pow;
|
||||
using std::min;
|
||||
using std::max;
|
||||
static bool initialized = false;
|
||||
static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
|
||||
if(!initialized)
|
||||
{
|
||||
int ibeta, it, iemin, iemax, iexp;
|
||||
RealScalar abig, eps;
|
||||
// This program calculates the machine-dependent constants
|
||||
// bl, b2, slm, s2m, relerr overfl
|
||||
// from the "basic" machine-dependent numbers
|
||||
// ibeta, it, iemin, iemax, rbig.
|
||||
// The following define the basic machine-dependent constants.
|
||||
// For portability, the PORT subprograms "ilmaeh" and "rlmach"
|
||||
// are used. For any specific computer, each of the assignment
|
||||
// statements can be replaced
|
||||
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
|
||||
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
|
||||
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
|
||||
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
|
||||
rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number
|
||||
|
||||
iexp = -((1-iemin)/2);
|
||||
b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
|
||||
iexp = (iemax + 1 - it)/2;
|
||||
b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
|
||||
|
||||
iexp = (2-iemin)/2;
|
||||
s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
|
||||
iexp = - ((iemax+it)/2);
|
||||
s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
|
||||
|
||||
overfl = rbig*s2m; // overflow boundary for abig
|
||||
eps = RealScalar(pow(double(ibeta), 1-it));
|
||||
relerr = internal::sqrt(eps); // tolerance for neglecting asml
|
||||
abig = RealScalar(1.0/eps - 1.0);
|
||||
initialized = true;
|
||||
}
|
||||
Index n = size();
|
||||
RealScalar ab2 = b2 / RealScalar(n);
|
||||
RealScalar asml = RealScalar(0);
|
||||
RealScalar amed = RealScalar(0);
|
||||
RealScalar abig = RealScalar(0);
|
||||
for(Index j=0; j<n; ++j)
|
||||
{
|
||||
RealScalar ax = internal::abs(coeff(j));
|
||||
if(ax > ab2) abig += internal::abs2(ax*s2m);
|
||||
else if(ax < b1) asml += internal::abs2(ax*s1m);
|
||||
else amed += internal::abs2(ax);
|
||||
}
|
||||
if(abig > RealScalar(0))
|
||||
{
|
||||
abig = internal::sqrt(abig);
|
||||
if(abig > overfl)
|
||||
{
|
||||
return rbig;
|
||||
}
|
||||
if(amed > RealScalar(0))
|
||||
{
|
||||
abig = abig/s2m;
|
||||
amed = internal::sqrt(amed);
|
||||
}
|
||||
else
|
||||
return abig/s2m;
|
||||
}
|
||||
else if(asml > RealScalar(0))
|
||||
{
|
||||
if (amed > RealScalar(0))
|
||||
{
|
||||
abig = internal::sqrt(amed);
|
||||
amed = internal::sqrt(asml) / s1m;
|
||||
}
|
||||
else
|
||||
return internal::sqrt(asml)/s1m;
|
||||
}
|
||||
else
|
||||
return internal::sqrt(amed);
|
||||
asml = (min)(abig, amed);
|
||||
abig = (max)(abig, amed);
|
||||
if(asml <= abig*relerr)
|
||||
return abig;
|
||||
else
|
||||
return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
|
||||
}
|
||||
|
||||
/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
|
||||
* This version use a concatenation of hypot() calls, and it is very slow.
|
||||
*
|
||||
* \sa norm(), stableNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
MatrixBase<Derived>::hypotNorm() const
|
||||
{
|
||||
return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_STABLENORM_H
|
@ -1,108 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_STRIDE_H
|
||||
#define EIGEN_STRIDE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Stride
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Holds strides information for Map
|
||||
*
|
||||
* This class holds the strides information for mapping arrays with strides with class Map.
|
||||
*
|
||||
* It holds two values: the inner stride and the outer stride.
|
||||
*
|
||||
* The inner stride is the pointer increment between two consecutive entries within a given row of a
|
||||
* row-major matrix or within a given column of a column-major matrix.
|
||||
*
|
||||
* The outer stride is the pointer increment between two consecutive rows of a row-major matrix or
|
||||
* between two consecutive columns of a column-major matrix.
|
||||
*
|
||||
* These two values can be passed either at compile-time as template parameters, or at runtime as
|
||||
* arguments to the constructor.
|
||||
*
|
||||
* Indeed, this class takes two template parameters:
|
||||
* \param _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
|
||||
* \param _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
|
||||
*
|
||||
* Here is an example:
|
||||
* \include Map_general_stride.cpp
|
||||
* Output: \verbinclude Map_general_stride.out
|
||||
*
|
||||
* \sa class InnerStride, class OuterStride, \ref TopicStorageOrders
|
||||
*/
|
||||
template<int _OuterStrideAtCompileTime, int _InnerStrideAtCompileTime>
|
||||
class Stride
|
||||
{
|
||||
public:
|
||||
typedef DenseIndex Index;
|
||||
enum {
|
||||
InnerStrideAtCompileTime = _InnerStrideAtCompileTime,
|
||||
OuterStrideAtCompileTime = _OuterStrideAtCompileTime
|
||||
};
|
||||
|
||||
/** Default constructor, for use when strides are fixed at compile time */
|
||||
Stride()
|
||||
: m_outer(OuterStrideAtCompileTime), m_inner(InnerStrideAtCompileTime)
|
||||
{
|
||||
eigen_assert(InnerStrideAtCompileTime != Dynamic && OuterStrideAtCompileTime != Dynamic);
|
||||
}
|
||||
|
||||
/** Constructor allowing to pass the strides at runtime */
|
||||
Stride(Index outerStride, Index innerStride)
|
||||
: m_outer(outerStride), m_inner(innerStride)
|
||||
{
|
||||
eigen_assert(innerStride>=0 && outerStride>=0);
|
||||
}
|
||||
|
||||
/** Copy constructor */
|
||||
Stride(const Stride& other)
|
||||
: m_outer(other.outer()), m_inner(other.inner())
|
||||
{}
|
||||
|
||||
/** \returns the outer stride */
|
||||
inline Index outer() const { return m_outer.value(); }
|
||||
/** \returns the inner stride */
|
||||
inline Index inner() const { return m_inner.value(); }
|
||||
|
||||
protected:
|
||||
internal::variable_if_dynamic<Index, OuterStrideAtCompileTime> m_outer;
|
||||
internal::variable_if_dynamic<Index, InnerStrideAtCompileTime> m_inner;
|
||||
};
|
||||
|
||||
/** \brief Convenience specialization of Stride to specify only an inner stride
|
||||
* See class Map for some examples */
|
||||
template<int Value = Dynamic>
|
||||
class InnerStride : public Stride<0, Value>
|
||||
{
|
||||
typedef Stride<0, Value> Base;
|
||||
public:
|
||||
typedef DenseIndex Index;
|
||||
InnerStride() : Base() {}
|
||||
InnerStride(Index v) : Base(0, v) {}
|
||||
};
|
||||
|
||||
/** \brief Convenience specialization of Stride to specify only an outer stride
|
||||
* See class Map for some examples */
|
||||
template<int Value = Dynamic>
|
||||
class OuterStride : public Stride<Value, 0>
|
||||
{
|
||||
typedef Stride<Value, 0> Base;
|
||||
public:
|
||||
typedef DenseIndex Index;
|
||||
OuterStride() : Base() {}
|
||||
OuterStride(Index v) : Base(v,0) {}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_STRIDE_H
|
@ -1,126 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SWAP_H
|
||||
#define EIGEN_SWAP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class SwapWrapper
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \internal
|
||||
*
|
||||
* \brief Internal helper class for swapping two expressions
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<SwapWrapper<ExpressionType> > : traits<ExpressionType> {};
|
||||
}
|
||||
|
||||
template<typename ExpressionType> class SwapWrapper
|
||||
: public internal::dense_xpr_base<SwapWrapper<ExpressionType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<SwapWrapper>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(SwapWrapper)
|
||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
||||
|
||||
inline SwapWrapper(ExpressionType& xpr) : m_expression(xpr) {}
|
||||
|
||||
inline Index rows() const { return m_expression.rows(); }
|
||||
inline Index cols() const { return m_expression.cols(); }
|
||||
inline Index outerStride() const { return m_expression.outerStride(); }
|
||||
inline Index innerStride() const { return m_expression.innerStride(); }
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<ExpressionType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
|
||||
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
|
||||
inline const Scalar* data() const { return m_expression.data(); }
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return m_expression.coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return m_expression.coeffRef(index);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
Scalar tmp = m_expression.coeff(row, col);
|
||||
m_expression.coeffRef(row, col) = _other.coeff(row, col);
|
||||
_other.coeffRef(row, col) = tmp;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(index >= 0 && index < m_expression.size());
|
||||
Scalar tmp = m_expression.coeff(index);
|
||||
m_expression.coeffRef(index) = _other.coeff(index);
|
||||
_other.coeffRef(index) = tmp;
|
||||
}
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
Packet tmp = m_expression.template packet<StoreMode>(row, col);
|
||||
m_expression.template writePacket<StoreMode>(row, col,
|
||||
_other.template packet<LoadMode>(row, col)
|
||||
);
|
||||
_other.template writePacket<LoadMode>(row, col, tmp);
|
||||
}
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(Index index, const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
eigen_internal_assert(index >= 0 && index < m_expression.size());
|
||||
Packet tmp = m_expression.template packet<StoreMode>(index);
|
||||
m_expression.template writePacket<StoreMode>(index,
|
||||
_other.template packet<LoadMode>(index)
|
||||
);
|
||||
_other.template writePacket<LoadMode>(index, tmp);
|
||||
}
|
||||
|
||||
ExpressionType& expression() const { return m_expression; }
|
||||
|
||||
protected:
|
||||
ExpressionType& m_expression;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SWAP_H
|
@ -1,414 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_TRANSPOSE_H
|
||||
#define EIGEN_TRANSPOSE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Transpose
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the transpose of a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object of which we are taking the transpose
|
||||
*
|
||||
* This class represents an expression of the transpose of a matrix.
|
||||
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType>
|
||||
struct traits<Transpose<MatrixType> > : traits<MatrixType>
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
|
||||
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||||
typedef typename traits<MatrixType>::XprKind XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
||||
Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
|
||||
Flags1 = Flags0 | FlagsLvalueBit,
|
||||
Flags = Flags1 ^ RowMajorBit,
|
||||
CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
|
||||
InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
|
||||
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename StorageKind> class TransposeImpl;
|
||||
|
||||
template<typename MatrixType> class Transpose
|
||||
: public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
||||
|
||||
inline Transpose(MatrixType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
||||
|
||||
inline Index rows() const { return m_matrix.cols(); }
|
||||
inline Index cols() const { return m_matrix.rows(); }
|
||||
|
||||
/** \returns the nested expression */
|
||||
const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
nestedExpression() const { return m_matrix; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
nestedExpression() { return m_matrix.const_cast_derived(); }
|
||||
|
||||
protected:
|
||||
typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
|
||||
struct TransposeImpl_base
|
||||
{
|
||||
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct TransposeImpl_base<MatrixType, false>
|
||||
{
|
||||
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
|
||||
: public internal::TransposeImpl_base<MatrixType>::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
|
||||
|
||||
inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
|
||||
inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<MatrixType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
|
||||
inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
|
||||
inline const Scalar* data() const { return derived().nestedExpression().data(); }
|
||||
|
||||
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
return derived().nestedExpression().const_cast_derived().coeffRef(col, row);
|
||||
}
|
||||
|
||||
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
return derived().nestedExpression().const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index row, Index col) const
|
||||
{
|
||||
return derived().nestedExpression().coeffRef(col, row);
|
||||
}
|
||||
|
||||
inline const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
return derived().nestedExpression().coeffRef(index);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
return derived().nestedExpression().coeff(col, row);
|
||||
}
|
||||
|
||||
inline CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return derived().nestedExpression().coeff(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
return derived().nestedExpression().template packet<LoadMode>(col, row);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
||||
{
|
||||
derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(col, row, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(Index index) const
|
||||
{
|
||||
return derived().nestedExpression().template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& x)
|
||||
{
|
||||
derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
};
|
||||
|
||||
/** \returns an expression of the transpose of *this.
|
||||
*
|
||||
* Example: \include MatrixBase_transpose.cpp
|
||||
* Output: \verbinclude MatrixBase_transpose.out
|
||||
*
|
||||
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
|
||||
* \code
|
||||
* m = m.transpose(); // bug!!! caused by aliasing effect
|
||||
* \endcode
|
||||
* Instead, use the transposeInPlace() method:
|
||||
* \code
|
||||
* m.transposeInPlace();
|
||||
* \endcode
|
||||
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
||||
* \code
|
||||
* m = m.transpose().eval();
|
||||
* \endcode
|
||||
*
|
||||
* \sa transposeInPlace(), adjoint() */
|
||||
template<typename Derived>
|
||||
inline Transpose<Derived>
|
||||
DenseBase<Derived>::transpose()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the const version of transpose().
|
||||
*
|
||||
* Make sure you read the warning for transpose() !
|
||||
*
|
||||
* \sa transposeInPlace(), adjoint() */
|
||||
template<typename Derived>
|
||||
inline const typename DenseBase<Derived>::ConstTransposeReturnType
|
||||
DenseBase<Derived>::transpose() const
|
||||
{
|
||||
return ConstTransposeReturnType(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
|
||||
*
|
||||
* Example: \include MatrixBase_adjoint.cpp
|
||||
* Output: \verbinclude MatrixBase_adjoint.out
|
||||
*
|
||||
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
|
||||
* \code
|
||||
* m = m.adjoint(); // bug!!! caused by aliasing effect
|
||||
* \endcode
|
||||
* Instead, use the adjointInPlace() method:
|
||||
* \code
|
||||
* m.adjointInPlace();
|
||||
* \endcode
|
||||
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
||||
* \code
|
||||
* m = m.adjoint().eval();
|
||||
* \endcode
|
||||
*
|
||||
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::AdjointReturnType
|
||||
MatrixBase<Derived>::adjoint() const
|
||||
{
|
||||
return this->transpose(); // in the complex case, the .conjugate() is be implicit here
|
||||
// due to implicit conversion to return type
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* "in place" transpose implementation
|
||||
***************************************************************************/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType,
|
||||
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
|
||||
struct inplace_transpose_selector;
|
||||
|
||||
template<typename MatrixType>
|
||||
struct inplace_transpose_selector<MatrixType,true> { // square matrix
|
||||
static void run(MatrixType& m) {
|
||||
m.template triangularView<StrictlyUpper>().swap(m.transpose());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct inplace_transpose_selector<MatrixType,false> { // non square matrix
|
||||
static void run(MatrixType& m) {
|
||||
if (m.rows()==m.cols())
|
||||
m.template triangularView<StrictlyUpper>().swap(m.transpose());
|
||||
else
|
||||
m = m.transpose().eval();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
|
||||
* Thus, doing
|
||||
* \code
|
||||
* m.transposeInPlace();
|
||||
* \endcode
|
||||
* has the same effect on m as doing
|
||||
* \code
|
||||
* m = m.transpose().eval();
|
||||
* \endcode
|
||||
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
||||
* in a bug caused by aliasing.
|
||||
*
|
||||
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
|
||||
* If you just need the transpose of a matrix, use transpose().
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
*
|
||||
* \sa transpose(), adjoint(), adjointInPlace() */
|
||||
template<typename Derived>
|
||||
inline void DenseBase<Derived>::transposeInPlace()
|
||||
{
|
||||
internal::inplace_transpose_selector<Derived>::run(derived());
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* "in place" adjoint implementation
|
||||
***************************************************************************/
|
||||
|
||||
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
|
||||
* Thus, doing
|
||||
* \code
|
||||
* m.adjointInPlace();
|
||||
* \endcode
|
||||
* has the same effect on m as doing
|
||||
* \code
|
||||
* m = m.adjoint().eval();
|
||||
* \endcode
|
||||
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
||||
* in a bug caused by aliasing.
|
||||
*
|
||||
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
|
||||
* If you just need the adjoint of a matrix, use adjoint().
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
*
|
||||
* \sa transpose(), adjoint(), transposeInPlace() */
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::adjointInPlace()
|
||||
{
|
||||
derived() = adjoint().eval();
|
||||
}
|
||||
|
||||
#ifndef EIGEN_NO_DEBUG
|
||||
|
||||
// The following is to detect aliasing problems in most common cases.
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename BinOp,typename NestedXpr,typename Rhs>
|
||||
struct blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> >
|
||||
: blas_traits<NestedXpr>
|
||||
{
|
||||
typedef SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> XprType;
|
||||
static inline const XprType extract(const XprType& x) { return x; }
|
||||
};
|
||||
|
||||
template<bool DestIsTransposed, typename OtherDerived>
|
||||
struct check_transpose_aliasing_compile_time_selector
|
||||
{
|
||||
enum { ret = bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed };
|
||||
};
|
||||
|
||||
template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
|
||||
struct check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
|
||||
{
|
||||
enum { ret = bool(blas_traits<DerivedA>::IsTransposed) != DestIsTransposed
|
||||
|| bool(blas_traits<DerivedB>::IsTransposed) != DestIsTransposed
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
|
||||
struct check_transpose_aliasing_run_time_selector
|
||||
{
|
||||
static bool run(const Scalar* dest, const OtherDerived& src)
|
||||
{
|
||||
return (bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
|
||||
struct check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
|
||||
{
|
||||
static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
|
||||
{
|
||||
return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.lhs())))
|
||||
|| ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.rhs())));
|
||||
}
|
||||
};
|
||||
|
||||
// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
|
||||
// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
|
||||
// This is actually a good warning: in expressions that don't have any transposing, the condition is
|
||||
// known at compile time to be false, and using that, we can avoid generating the code of the assert again
|
||||
// and again for all these expressions that don't need it.
|
||||
|
||||
template<typename Derived, typename OtherDerived,
|
||||
bool MightHaveTransposeAliasing
|
||||
= check_transpose_aliasing_compile_time_selector
|
||||
<blas_traits<Derived>::IsTransposed,OtherDerived>::ret
|
||||
>
|
||||
struct checkTransposeAliasing_impl
|
||||
{
|
||||
static void run(const Derived& dst, const OtherDerived& other)
|
||||
{
|
||||
eigen_assert((!check_transpose_aliasing_run_time_selector
|
||||
<typename Derived::Scalar,blas_traits<Derived>::IsTransposed,OtherDerived>
|
||||
::run(extract_data(dst), other))
|
||||
&& "aliasing detected during tranposition, use transposeInPlace() "
|
||||
"or evaluate the rhs into a temporary using .eval()");
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
|
||||
{
|
||||
static void run(const Derived&, const OtherDerived&)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
|
||||
{
|
||||
internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_TRANSPOSE_H
|
@ -1,436 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_TRANSPOSITIONS_H
|
||||
#define EIGEN_TRANSPOSITIONS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Transpositions
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a sequence of transpositions (row/column interchange)
|
||||
*
|
||||
* \param SizeAtCompileTime the number of transpositions, or Dynamic
|
||||
* \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
|
||||
*
|
||||
* This class represents a permutation transformation as a sequence of \em n transpositions
|
||||
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
|
||||
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
|
||||
* the rows \c i and \c indices[i] of the matrix \c M.
|
||||
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
|
||||
*
|
||||
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is
|
||||
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
|
||||
*
|
||||
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
|
||||
* \code
|
||||
* Transpositions tr;
|
||||
* MatrixXf mat;
|
||||
* mat = tr * mat;
|
||||
* \endcode
|
||||
* In this example, we detect that the matrix appears on both side, and so the transpositions
|
||||
* are applied in-place without any temporary or extra copy.
|
||||
*
|
||||
* \sa class PermutationMatrix
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
class TranspositionsBase
|
||||
{
|
||||
typedef internal::traits<Derived> Traits;
|
||||
|
||||
public:
|
||||
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
typedef typename IndicesType::Scalar Index;
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** Copies the \a other transpositions into \c *this */
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const TranspositionsBase<OtherDerived>& other)
|
||||
{
|
||||
indices() = other.indices();
|
||||
return derived();
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
Derived& operator=(const TranspositionsBase& other)
|
||||
{
|
||||
indices() = other.indices();
|
||||
return derived();
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns the number of transpositions */
|
||||
inline Index size() const { return indices().size(); }
|
||||
|
||||
/** Direct access to the underlying index vector */
|
||||
inline const Index& coeff(Index i) const { return indices().coeff(i); }
|
||||
/** Direct access to the underlying index vector */
|
||||
inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
|
||||
/** Direct access to the underlying index vector */
|
||||
inline const Index& operator()(Index i) const { return indices()(i); }
|
||||
/** Direct access to the underlying index vector */
|
||||
inline Index& operator()(Index i) { return indices()(i); }
|
||||
/** Direct access to the underlying index vector */
|
||||
inline const Index& operator[](Index i) const { return indices()(i); }
|
||||
/** Direct access to the underlying index vector */
|
||||
inline Index& operator[](Index i) { return indices()(i); }
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return derived().indices(); }
|
||||
/** \returns a reference to the stored array representing the transpositions. */
|
||||
IndicesType& indices() { return derived().indices(); }
|
||||
|
||||
/** Resizes to given size. */
|
||||
inline void resize(int size)
|
||||
{
|
||||
indices().resize(size);
|
||||
}
|
||||
|
||||
/** Sets \c *this to represents an identity transformation */
|
||||
void setIdentity()
|
||||
{
|
||||
for(int i = 0; i < indices().size(); ++i)
|
||||
coeffRef(i) = i;
|
||||
}
|
||||
|
||||
// FIXME: do we want such methods ?
|
||||
// might be usefull when the target matrix expression is complex, e.g.:
|
||||
// object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
|
||||
/*
|
||||
template<typename MatrixType>
|
||||
void applyForwardToRows(MatrixType& mat) const
|
||||
{
|
||||
for(Index k=0 ; k<size() ; ++k)
|
||||
if(m_indices(k)!=k)
|
||||
mat.row(k).swap(mat.row(m_indices(k)));
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void applyBackwardToRows(MatrixType& mat) const
|
||||
{
|
||||
for(Index k=size()-1 ; k>=0 ; --k)
|
||||
if(m_indices(k)!=k)
|
||||
mat.row(k).swap(mat.row(m_indices(k)));
|
||||
}
|
||||
*/
|
||||
|
||||
/** \returns the inverse transformation */
|
||||
inline Transpose<TranspositionsBase> inverse() const
|
||||
{ return Transpose<TranspositionsBase>(derived()); }
|
||||
|
||||
/** \returns the tranpose transformation */
|
||||
inline Transpose<TranspositionsBase> transpose() const
|
||||
{ return Transpose<TranspositionsBase>(derived()); }
|
||||
|
||||
protected:
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
|
||||
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
|
||||
{
|
||||
typedef IndexType Index;
|
||||
typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
||||
};
|
||||
}
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
|
||||
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
|
||||
{
|
||||
typedef internal::traits<Transpositions> Traits;
|
||||
public:
|
||||
|
||||
typedef TranspositionsBase<Transpositions> Base;
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
typedef typename IndicesType::Scalar Index;
|
||||
|
||||
inline Transpositions() {}
|
||||
|
||||
/** Copy constructor. */
|
||||
template<typename OtherDerived>
|
||||
inline Transpositions(const TranspositionsBase<OtherDerived>& other)
|
||||
: m_indices(other.indices()) {}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Standard copy constructor. Defined only to prevent a default copy constructor
|
||||
* from hiding the other templated constructor */
|
||||
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
|
||||
#endif
|
||||
|
||||
/** Generic constructor from expression of the transposition indices. */
|
||||
template<typename Other>
|
||||
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
|
||||
{}
|
||||
|
||||
/** Copies the \a other transpositions into \c *this */
|
||||
template<typename OtherDerived>
|
||||
Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
Transpositions& operator=(const Transpositions& other)
|
||||
{
|
||||
m_indices = other.m_indices;
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Constructs an uninitialized permutation matrix of given size.
|
||||
*/
|
||||
inline Transpositions(Index size) : m_indices(size)
|
||||
{}
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return m_indices; }
|
||||
/** \returns a reference to the stored array representing the transpositions. */
|
||||
IndicesType& indices() { return m_indices; }
|
||||
|
||||
protected:
|
||||
|
||||
IndicesType m_indices;
|
||||
};
|
||||
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
|
||||
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
|
||||
{
|
||||
typedef IndexType Index;
|
||||
typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
|
||||
};
|
||||
}
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
|
||||
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
|
||||
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
|
||||
{
|
||||
typedef internal::traits<Map> Traits;
|
||||
public:
|
||||
|
||||
typedef TranspositionsBase<Map> Base;
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
typedef typename IndicesType::Scalar Index;
|
||||
|
||||
inline Map(const Index* indices)
|
||||
: m_indices(indices)
|
||||
{}
|
||||
|
||||
inline Map(const Index* indices, Index size)
|
||||
: m_indices(indices,size)
|
||||
{}
|
||||
|
||||
/** Copies the \a other transpositions into \c *this */
|
||||
template<typename OtherDerived>
|
||||
Map& operator=(const TranspositionsBase<OtherDerived>& other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
Map& operator=(const Map& other)
|
||||
{
|
||||
m_indices = other.m_indices;
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return m_indices; }
|
||||
|
||||
/** \returns a reference to the stored array representing the transpositions. */
|
||||
IndicesType& indices() { return m_indices; }
|
||||
|
||||
protected:
|
||||
|
||||
IndicesType m_indices;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<typename _IndicesType>
|
||||
struct traits<TranspositionsWrapper<_IndicesType> >
|
||||
{
|
||||
typedef typename _IndicesType::Scalar Index;
|
||||
typedef _IndicesType IndicesType;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _IndicesType>
|
||||
class TranspositionsWrapper
|
||||
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
|
||||
{
|
||||
typedef internal::traits<TranspositionsWrapper> Traits;
|
||||
public:
|
||||
|
||||
typedef TranspositionsBase<TranspositionsWrapper> Base;
|
||||
typedef typename Traits::IndicesType IndicesType;
|
||||
typedef typename IndicesType::Scalar Index;
|
||||
|
||||
inline TranspositionsWrapper(IndicesType& indices)
|
||||
: m_indices(indices)
|
||||
{}
|
||||
|
||||
/** Copies the \a other transpositions into \c *this */
|
||||
template<typename OtherDerived>
|
||||
TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
|
||||
{
|
||||
m_indices = other.m_indices;
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** const version of indices(). */
|
||||
const IndicesType& indices() const { return m_indices; }
|
||||
|
||||
/** \returns a reference to the stored array representing the transpositions. */
|
||||
IndicesType& indices() { return m_indices; }
|
||||
|
||||
protected:
|
||||
|
||||
const typename IndicesType::Nested m_indices;
|
||||
};
|
||||
|
||||
/** \returns the \a matrix with the \a transpositions applied to the columns.
|
||||
*/
|
||||
template<typename Derived, typename TranspositionsDerived>
|
||||
inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
|
||||
operator*(const MatrixBase<Derived>& matrix,
|
||||
const TranspositionsBase<TranspositionsDerived> &transpositions)
|
||||
{
|
||||
return internal::transposition_matrix_product_retval
|
||||
<TranspositionsDerived, Derived, OnTheRight>
|
||||
(transpositions.derived(), matrix.derived());
|
||||
}
|
||||
|
||||
/** \returns the \a matrix with the \a transpositions applied to the rows.
|
||||
*/
|
||||
template<typename Derived, typename TranspositionDerived>
|
||||
inline const internal::transposition_matrix_product_retval
|
||||
<TranspositionDerived, Derived, OnTheLeft>
|
||||
operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
|
||||
const MatrixBase<Derived>& matrix)
|
||||
{
|
||||
return internal::transposition_matrix_product_retval
|
||||
<TranspositionDerived, Derived, OnTheLeft>
|
||||
(transpositions.derived(), matrix.derived());
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
|
||||
struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
|
||||
{
|
||||
typedef typename MatrixType::PlainObject ReturnType;
|
||||
};
|
||||
|
||||
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
|
||||
struct transposition_matrix_product_retval
|
||||
: public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
|
||||
{
|
||||
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
|
||||
typedef typename TranspositionType::Index Index;
|
||||
|
||||
transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
|
||||
: m_transpositions(tr), m_matrix(matrix)
|
||||
{}
|
||||
|
||||
inline int rows() const { return m_matrix.rows(); }
|
||||
inline int cols() const { return m_matrix.cols(); }
|
||||
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{
|
||||
const int size = m_transpositions.size();
|
||||
Index j = 0;
|
||||
|
||||
if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
|
||||
dst = m_matrix;
|
||||
|
||||
for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
|
||||
if((j=m_transpositions.coeff(k))!=k)
|
||||
{
|
||||
if(Side==OnTheLeft)
|
||||
dst.row(k).swap(dst.row(j));
|
||||
else if(Side==OnTheRight)
|
||||
dst.col(k).swap(dst.col(j));
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
const TranspositionType& m_transpositions;
|
||||
typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/* Template partial specialization for transposed/inverse transpositions */
|
||||
|
||||
template<typename TranspositionsDerived>
|
||||
class Transpose<TranspositionsBase<TranspositionsDerived> >
|
||||
{
|
||||
typedef TranspositionsDerived TranspositionType;
|
||||
typedef typename TranspositionType::IndicesType IndicesType;
|
||||
public:
|
||||
|
||||
Transpose(const TranspositionType& t) : m_transpositions(t) {}
|
||||
|
||||
inline int size() const { return m_transpositions.size(); }
|
||||
|
||||
/** \returns the \a matrix with the inverse transpositions applied to the columns.
|
||||
*/
|
||||
template<typename Derived> friend
|
||||
inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
|
||||
operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
|
||||
{
|
||||
return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
|
||||
}
|
||||
|
||||
/** \returns the \a matrix with the inverse transpositions applied to the rows.
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
|
||||
operator*(const MatrixBase<Derived>& matrix) const
|
||||
{
|
||||
return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
|
||||
}
|
||||
|
||||
protected:
|
||||
const TranspositionType& m_transpositions;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_TRANSPOSITIONS_H
|
@ -1,828 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_TRIANGULARMATRIX_H
|
||||
#define EIGEN_TRIANGULARMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;
|
||||
|
||||
}
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class TriangularBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for triangular part in a matrix
|
||||
*/
|
||||
template<typename Derived> class TriangularBase : public EigenBase<Derived>
|
||||
{
|
||||
public:
|
||||
|
||||
enum {
|
||||
Mode = internal::traits<Derived>::Mode,
|
||||
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
|
||||
typedef DenseMatrixType DenseType;
|
||||
|
||||
inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }
|
||||
|
||||
inline Index rows() const { return derived().rows(); }
|
||||
inline Index cols() const { return derived().cols(); }
|
||||
inline Index outerStride() const { return derived().outerStride(); }
|
||||
inline Index innerStride() const { return derived().innerStride(); }
|
||||
|
||||
inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); }
|
||||
inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }
|
||||
|
||||
/** \see MatrixBase::copyCoeff(row,col)
|
||||
*/
|
||||
template<typename Other>
|
||||
EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
|
||||
{
|
||||
derived().coeffRef(row, col) = other.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar operator()(Index row, Index col) const
|
||||
{
|
||||
check_coordinates(row, col);
|
||||
return coeff(row,col);
|
||||
}
|
||||
inline Scalar& operator()(Index row, Index col)
|
||||
{
|
||||
check_coordinates(row, col);
|
||||
return coeffRef(row,col);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename DenseDerived>
|
||||
void evalTo(MatrixBase<DenseDerived> &other) const;
|
||||
template<typename DenseDerived>
|
||||
void evalToLazy(MatrixBase<DenseDerived> &other) const;
|
||||
|
||||
DenseMatrixType toDenseMatrix() const
|
||||
{
|
||||
DenseMatrixType res(rows(), cols());
|
||||
evalToLazy(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
void check_coordinates(Index row, Index col) const
|
||||
{
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(row);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(col);
|
||||
eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
|
||||
const int mode = int(Mode) & ~SelfAdjoint;
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(mode);
|
||||
eigen_assert((mode==Upper && col>=row)
|
||||
|| (mode==Lower && col<=row)
|
||||
|| ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
|
||||
|| ((mode==StrictlyLower || mode==UnitLower) && col<row));
|
||||
}
|
||||
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
void check_coordinates_internal(Index row, Index col) const
|
||||
{
|
||||
check_coordinates(row, col);
|
||||
}
|
||||
#else
|
||||
void check_coordinates_internal(Index , Index ) const {}
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
/** \class TriangularView
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for triangular part in a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking the triangular part
|
||||
* \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
|
||||
* #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
|
||||
* This is in fact a bit field; it must have either #Upper or #Lower,
|
||||
* and additionnaly it may have #UnitDiag or #ZeroDiag or neither.
|
||||
*
|
||||
* This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
|
||||
* matrices one should speak of "trapezoid" parts. This class is the return type
|
||||
* of MatrixBase::triangularView() and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::triangularView()
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename MatrixType, unsigned int _Mode>
|
||||
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
|
||||
{
|
||||
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
|
||||
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
|
||||
typedef MatrixType ExpressionType;
|
||||
typedef typename MatrixType::PlainObject DenseMatrixType;
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
|
||||
CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<int Mode, bool LhsIsTriangular,
|
||||
typename Lhs, bool LhsIsVector,
|
||||
typename Rhs, bool RhsIsVector>
|
||||
struct TriangularProduct;
|
||||
|
||||
template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef TriangularBase<TriangularView> Base;
|
||||
typedef typename internal::traits<TriangularView>::Scalar Scalar;
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
|
||||
typedef DenseMatrixType PlainObject;
|
||||
|
||||
protected:
|
||||
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
|
||||
typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
|
||||
|
||||
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
|
||||
|
||||
public:
|
||||
using Base::evalToLazy;
|
||||
|
||||
|
||||
typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<TriangularView>::Index Index;
|
||||
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
TransposeMode = (Mode & Upper ? Lower : 0)
|
||||
| (Mode & Lower ? Upper : 0)
|
||||
| (Mode & (UnitDiag))
|
||||
| (Mode & (ZeroDiag))
|
||||
};
|
||||
|
||||
inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
|
||||
{}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index outerStride() const { return m_matrix.outerStride(); }
|
||||
inline Index innerStride() const { return m_matrix.innerStride(); }
|
||||
|
||||
/** \sa MatrixBase::operator+=() */
|
||||
template<typename Other> TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
|
||||
/** \sa MatrixBase::operator-=() */
|
||||
template<typename Other> TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
|
||||
/** \sa MatrixBase::operator*=() */
|
||||
TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
|
||||
/** \sa MatrixBase::operator/=() */
|
||||
TriangularView& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }
|
||||
|
||||
/** \sa MatrixBase::fill() */
|
||||
void fill(const Scalar& value) { setConstant(value); }
|
||||
/** \sa MatrixBase::setConstant() */
|
||||
TriangularView& setConstant(const Scalar& value)
|
||||
{ return *this = MatrixType::Constant(rows(), cols(), value); }
|
||||
/** \sa MatrixBase::setZero() */
|
||||
TriangularView& setZero() { return setConstant(Scalar(0)); }
|
||||
/** \sa MatrixBase::setOnes() */
|
||||
TriangularView& setOnes() { return setConstant(Scalar(1)); }
|
||||
|
||||
/** \sa MatrixBase::coeff()
|
||||
* \warning the coordinates must fit into the referenced triangular part
|
||||
*/
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
Base::check_coordinates_internal(row, col);
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
/** \sa MatrixBase::coeffRef()
|
||||
* \warning the coordinates must fit into the referenced triangular part
|
||||
*/
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
Base::check_coordinates_internal(row, col);
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
|
||||
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
|
||||
|
||||
/** Assigns a triangular matrix to a triangular part of a dense matrix */
|
||||
template<typename OtherDerived>
|
||||
TriangularView& operator=(const TriangularBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
TriangularView& operator=(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
TriangularView& operator=(const TriangularView& other)
|
||||
{ return *this = other.nestedExpression(); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
void lazyAssign(const TriangularBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
void lazyAssign(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
/** \sa MatrixBase::conjugate() */
|
||||
inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
|
||||
{ return m_matrix.conjugate(); }
|
||||
/** \sa MatrixBase::conjugate() const */
|
||||
inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
|
||||
{ return m_matrix.conjugate(); }
|
||||
|
||||
/** \sa MatrixBase::adjoint() const */
|
||||
inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
|
||||
{ return m_matrix.adjoint(); }
|
||||
|
||||
/** \sa MatrixBase::transpose() */
|
||||
inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
return m_matrix.const_cast_derived().transpose();
|
||||
}
|
||||
/** \sa MatrixBase::transpose() const */
|
||||
inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
|
||||
{
|
||||
return m_matrix.transpose();
|
||||
}
|
||||
|
||||
/** Efficient triangular matrix times vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
|
||||
(m_matrix, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient vector/matrix times triangular matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
(lhs.derived(),rhs.m_matrix);
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename OtherDerived>
|
||||
struct eigen2_product_return_type
|
||||
{
|
||||
typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
|
||||
typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
|
||||
typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
|
||||
typedef typename ProdRetType::PlainObject type;
|
||||
};
|
||||
template<typename OtherDerived>
|
||||
const typename eigen2_product_return_type<OtherDerived>::type
|
||||
operator*(const EigenBase<OtherDerived>& rhs) const
|
||||
{
|
||||
typename OtherDerived::PlainObject::DenseType rhsPlainObject;
|
||||
rhs.evalTo(rhsPlainObject);
|
||||
return this->toDenseMatrix() * rhsPlainObject;
|
||||
}
|
||||
template<typename OtherMatrixType>
|
||||
bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
|
||||
{
|
||||
return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
|
||||
}
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
|
||||
{
|
||||
return this->toDenseMatrix().isApprox(other, precision);
|
||||
}
|
||||
#endif // EIGEN2_SUPPORT
|
||||
|
||||
template<int Side, typename Other>
|
||||
inline const internal::triangular_solve_retval<Side,TriangularView, Other>
|
||||
solve(const MatrixBase<Other>& other) const;
|
||||
|
||||
template<int Side, typename OtherDerived>
|
||||
void solveInPlace(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename Other>
|
||||
inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other>
|
||||
solve(const MatrixBase<Other>& other) const
|
||||
{ return solve<OnTheLeft>(other); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
void solveInPlace(const MatrixBase<OtherDerived>& other) const
|
||||
{ return solveInPlace<OnTheLeft>(other); }
|
||||
|
||||
const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
|
||||
return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
|
||||
}
|
||||
SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
|
||||
return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void swap(TriangularBase<OtherDerived> const & other)
|
||||
{
|
||||
TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void swap(MatrixBase<OtherDerived> const & other)
|
||||
{
|
||||
SwapWrapper<MatrixType> swaper(const_cast<MatrixType&>(m_matrix));
|
||||
TriangularView<SwapWrapper<MatrixType>,Mode>(swaper).lazyAssign(other.derived());
|
||||
}
|
||||
|
||||
Scalar determinant() const
|
||||
{
|
||||
if (Mode & UnitDiag)
|
||||
return 1;
|
||||
else if (Mode & ZeroDiag)
|
||||
return 0;
|
||||
else
|
||||
return m_matrix.diagonal().prod();
|
||||
}
|
||||
|
||||
// TODO simplify the following:
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
setZero();
|
||||
return assignProduct(other,1);
|
||||
}
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
return assignProduct(other,1);
|
||||
}
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
return assignProduct(other,-1);
|
||||
}
|
||||
|
||||
|
||||
template<typename ProductDerived>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
|
||||
{
|
||||
setZero();
|
||||
return assignProduct(other,other.alpha());
|
||||
}
|
||||
|
||||
template<typename ProductDerived>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
|
||||
{
|
||||
return assignProduct(other,other.alpha());
|
||||
}
|
||||
|
||||
template<typename ProductDerived>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
|
||||
{
|
||||
return assignProduct(other,-other.alpha());
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
|
||||
|
||||
MatrixTypeNested m_matrix;
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of triangular evaluation/assignment
|
||||
***************************************************************************/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
|
||||
struct triangular_assignment_selector
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);
|
||||
|
||||
eigen_assert( Mode == Upper || Mode == Lower
|
||||
|| Mode == StrictlyUpper || Mode == StrictlyLower
|
||||
|| Mode == UnitUpper || Mode == UnitLower);
|
||||
if((Mode == Upper && row <= col)
|
||||
|| (Mode == Lower && row >= col)
|
||||
|| (Mode == StrictlyUpper && row < col)
|
||||
|| (Mode == StrictlyLower && row > col)
|
||||
|| (Mode == UnitUpper && row < col)
|
||||
|| (Mode == UnitLower && row > col))
|
||||
dst.copyCoeff(row, col, src);
|
||||
else if(ClearOpposite)
|
||||
{
|
||||
if (Mode&UnitDiag && row==col)
|
||||
dst.coeffRef(row, col) = Scalar(1);
|
||||
else
|
||||
dst.coeffRef(row, col) = Scalar(0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// prevent buggy user code from causing an infinite recursion
|
||||
template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
|
||||
{
|
||||
static inline void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
Index maxi = (std::min)(j, dst.rows()-1);
|
||||
for(Index i = 0; i <= maxi; ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
if (ClearOpposite)
|
||||
for(Index i = maxi+1; i < dst.rows(); ++i)
|
||||
dst.coeffRef(i, j) = Scalar(0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
for(Index i = j; i < dst.rows(); ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
Index maxi = (std::min)(j, dst.rows());
|
||||
if (ClearOpposite)
|
||||
for(Index i = 0; i < maxi; ++i)
|
||||
dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
Index maxi = (std::min)(j, dst.rows());
|
||||
for(Index i = 0; i < maxi; ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
if (ClearOpposite)
|
||||
for(Index i = maxi; i < dst.rows(); ++i)
|
||||
dst.coeffRef(i, j) = Scalar(0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
for(Index i = j+1; i < dst.rows(); ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
Index maxi = (std::min)(j, dst.rows()-1);
|
||||
if (ClearOpposite)
|
||||
for(Index i = 0; i <= maxi; ++i)
|
||||
dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
Index maxi = (std::min)(j, dst.rows());
|
||||
for(Index i = 0; i < maxi; ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
if (ClearOpposite)
|
||||
{
|
||||
for(Index i = maxi+1; i < dst.rows(); ++i)
|
||||
dst.coeffRef(i, j) = 0;
|
||||
}
|
||||
}
|
||||
dst.diagonal().setOnes();
|
||||
}
|
||||
};
|
||||
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
||||
struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
|
||||
{
|
||||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(Index j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
Index maxi = (std::min)(j, dst.rows());
|
||||
for(Index i = maxi+1; i < dst.rows(); ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
if (ClearOpposite)
|
||||
{
|
||||
for(Index i = 0; i < maxi; ++i)
|
||||
dst.coeffRef(i, j) = 0;
|
||||
}
|
||||
}
|
||||
dst.diagonal().setOnes();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
// FIXME should we keep that possibility
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename OtherDerived>
|
||||
inline TriangularView<MatrixType, Mode>&
|
||||
TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
if(OtherDerived::Flags & EvalBeforeAssigningBit)
|
||||
{
|
||||
typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
|
||||
other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
|
||||
lazyAssign(other_evaluated);
|
||||
}
|
||||
else
|
||||
lazyAssign(other.derived());
|
||||
return *this;
|
||||
}
|
||||
|
||||
// FIXME should we keep that possibility
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename OtherDerived>
|
||||
void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
enum {
|
||||
unroll = MatrixType::SizeAtCompileTime != Dynamic
|
||||
&& internal::traits<OtherDerived>::CoeffReadCost != Dynamic
|
||||
&& MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
|
||||
};
|
||||
eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
|
||||
|
||||
internal::triangular_assignment_selector
|
||||
<MatrixType, OtherDerived, int(Mode),
|
||||
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
|
||||
false // do not change the opposite triangular part
|
||||
>::run(m_matrix.const_cast_derived(), other.derived());
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename OtherDerived>
|
||||
inline TriangularView<MatrixType, Mode>&
|
||||
TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
|
||||
{
|
||||
eigen_assert(Mode == int(OtherDerived::Mode));
|
||||
if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
|
||||
{
|
||||
typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
|
||||
other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
|
||||
lazyAssign(other_evaluated);
|
||||
}
|
||||
else
|
||||
lazyAssign(other.derived().nestedExpression());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename OtherDerived>
|
||||
void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
|
||||
{
|
||||
enum {
|
||||
unroll = MatrixType::SizeAtCompileTime != Dynamic
|
||||
&& internal::traits<OtherDerived>::CoeffReadCost != Dynamic
|
||||
&& MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
|
||||
<= EIGEN_UNROLLING_LIMIT
|
||||
};
|
||||
eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
|
||||
|
||||
internal::triangular_assignment_selector
|
||||
<MatrixType, OtherDerived, int(Mode),
|
||||
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
|
||||
false // preserve the opposite triangular part
|
||||
>::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of TriangularBase methods
|
||||
***************************************************************************/
|
||||
|
||||
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
|
||||
* If the matrix is triangular, the opposite part is set to zero. */
|
||||
template<typename Derived>
|
||||
template<typename DenseDerived>
|
||||
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
|
||||
{
|
||||
if(internal::traits<Derived>::Flags & EvalBeforeAssigningBit)
|
||||
{
|
||||
typename internal::plain_matrix_type<Derived>::type other_evaluated(rows(), cols());
|
||||
evalToLazy(other_evaluated);
|
||||
other.derived().swap(other_evaluated);
|
||||
}
|
||||
else
|
||||
evalToLazy(other.derived());
|
||||
}
|
||||
|
||||
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
|
||||
* If the matrix is triangular, the opposite part is set to zero. */
|
||||
template<typename Derived>
|
||||
template<typename DenseDerived>
|
||||
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
|
||||
{
|
||||
enum {
|
||||
unroll = DenseDerived::SizeAtCompileTime != Dynamic
|
||||
&& internal::traits<Derived>::CoeffReadCost != Dynamic
|
||||
&& DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
|
||||
<= EIGEN_UNROLLING_LIMIT
|
||||
};
|
||||
other.derived().resize(this->rows(), this->cols());
|
||||
|
||||
internal::triangular_assignment_selector
|
||||
<DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
|
||||
unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
|
||||
true // clear the opposite triangular part
|
||||
>::run(other.derived(), derived().nestedExpression());
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of TriangularView methods
|
||||
***************************************************************************/
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
|
||||
// implementation of part<>(), including the SelfAdjoint case.
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
struct eigen2_part_return_type
|
||||
{
|
||||
typedef TriangularView<MatrixType, Mode> type;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct eigen2_part_return_type<MatrixType, SelfAdjoint>
|
||||
{
|
||||
typedef SelfAdjointView<MatrixType, Upper> type;
|
||||
};
|
||||
}
|
||||
|
||||
/** \deprecated use MatrixBase::triangularView() */
|
||||
template<typename Derived>
|
||||
template<unsigned int Mode>
|
||||
const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \deprecated use MatrixBase::triangularView() */
|
||||
template<typename Derived>
|
||||
template<unsigned int Mode>
|
||||
typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* \returns an expression of a triangular view extracted from the current matrix
|
||||
*
|
||||
* The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
|
||||
* \c #Lower, \c #StrictlyLower, \c #UnitLower.
|
||||
*
|
||||
* Example: \include MatrixBase_extract.cpp
|
||||
* Output: \verbinclude MatrixBase_extract.out
|
||||
*
|
||||
* \sa class TriangularView
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<unsigned int Mode>
|
||||
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
|
||||
MatrixBase<Derived>::triangularView()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the const version of MatrixBase::triangularView() */
|
||||
template<typename Derived>
|
||||
template<unsigned int Mode>
|
||||
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
|
||||
MatrixBase<Derived>::triangularView() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to an upper triangular matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* \sa isLowerTriangular()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isUpperTriangular(RealScalar prec) const
|
||||
{
|
||||
RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
{
|
||||
Index maxi = (std::min)(j, rows()-1);
|
||||
for(Index i = 0; i <= maxi; ++i)
|
||||
{
|
||||
RealScalar absValue = internal::abs(coeff(i,j));
|
||||
if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
|
||||
}
|
||||
}
|
||||
RealScalar threshold = maxAbsOnUpperPart * prec;
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = j+1; i < rows(); ++i)
|
||||
if(internal::abs(coeff(i, j)) > threshold) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to a lower triangular matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* \sa isUpperTriangular()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isLowerTriangular(RealScalar prec) const
|
||||
{
|
||||
RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = j; i < rows(); ++i)
|
||||
{
|
||||
RealScalar absValue = internal::abs(coeff(i,j));
|
||||
if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
|
||||
}
|
||||
RealScalar threshold = maxAbsOnLowerPart * prec;
|
||||
for(Index j = 1; j < cols(); ++j)
|
||||
{
|
||||
Index maxi = (std::min)(j, rows()-1);
|
||||
for(Index i = 0; i < maxi; ++i)
|
||||
if(internal::abs(coeff(i, j)) > threshold) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_TRIANGULARMATRIX_H
|
@ -1,284 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_VECTORBLOCK_H
|
||||
#define EIGEN_VECTORBLOCK_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class VectorBlock
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a fixed-size or dynamic-size sub-vector
|
||||
*
|
||||
* \param VectorType the type of the object in which we are taking a sub-vector
|
||||
* \param Size size of the sub-vector we are taking at compile time (optional)
|
||||
*
|
||||
* This class represents an expression of either a fixed-size or dynamic-size sub-vector.
|
||||
* It is the return type of DenseBase::segment(Index,Index) and DenseBase::segment<int>(Index) and
|
||||
* most of the time this is the only way it is used.
|
||||
*
|
||||
* However, if you want to directly maniputate sub-vector expressions,
|
||||
* for instance if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* Here is an example illustrating the dynamic case:
|
||||
* \include class_VectorBlock.cpp
|
||||
* Output: \verbinclude class_VectorBlock.out
|
||||
*
|
||||
* \note Even though this expression has dynamic size, in the case where \a VectorType
|
||||
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
|
||||
* it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* Here is an example illustrating the fixed-size case:
|
||||
* \include class_FixedVectorBlock.cpp
|
||||
* Output: \verbinclude class_FixedVectorBlock.out
|
||||
*
|
||||
* \sa class Block, DenseBase::segment(Index,Index,Index,Index), DenseBase::segment(Index,Index)
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename VectorType, int Size>
|
||||
struct traits<VectorBlock<VectorType, Size> >
|
||||
: public traits<Block<VectorType,
|
||||
traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
|
||||
traits<VectorType>::Flags & RowMajorBit ? Size : 1> >
|
||||
{
|
||||
};
|
||||
}
|
||||
|
||||
template<typename VectorType, int Size> class VectorBlock
|
||||
: public Block<VectorType,
|
||||
internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
|
||||
internal::traits<VectorType>::Flags & RowMajorBit ? Size : 1>
|
||||
{
|
||||
typedef Block<VectorType,
|
||||
internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
|
||||
internal::traits<VectorType>::Flags & RowMajorBit ? Size : 1> Base;
|
||||
enum {
|
||||
IsColVector = !(internal::traits<VectorType>::Flags & RowMajorBit)
|
||||
};
|
||||
public:
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(VectorBlock)
|
||||
|
||||
using Base::operator=;
|
||||
|
||||
/** Dynamic-size constructor
|
||||
*/
|
||||
inline VectorBlock(VectorType& vector, Index start, Index size)
|
||||
: Base(vector,
|
||||
IsColVector ? start : 0, IsColVector ? 0 : start,
|
||||
IsColVector ? size : 1, IsColVector ? 1 : size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
|
||||
}
|
||||
|
||||
/** Fixed-size constructor
|
||||
*/
|
||||
inline VectorBlock(VectorType& vector, Index start)
|
||||
: Base(vector, IsColVector ? start : 0, IsColVector ? 0 : start)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** \returns a dynamic-size expression of a segment (i.e. a vector block) in *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \param start the first coefficient in the segment
|
||||
* \param size the number of coefficients in the segment
|
||||
*
|
||||
* Example: \include MatrixBase_segment_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_segment_int_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, segment(Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::SegmentReturnType
|
||||
DenseBase<Derived>::segment(Index start, Index size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return SegmentReturnType(derived(), start, size);
|
||||
}
|
||||
|
||||
/** This is the const version of segment(Index,Index).*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::ConstSegmentReturnType
|
||||
DenseBase<Derived>::segment(Index start, Index size) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return ConstSegmentReturnType(derived(), start, size);
|
||||
}
|
||||
|
||||
/** \returns a dynamic-size expression of the first coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \param size the number of coefficients in the block
|
||||
*
|
||||
* Example: \include MatrixBase_start_int.cpp
|
||||
* Output: \verbinclude MatrixBase_start_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, block(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::SegmentReturnType
|
||||
DenseBase<Derived>::head(Index size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return SegmentReturnType(derived(), 0, size);
|
||||
}
|
||||
|
||||
/** This is the const version of head(Index).*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::ConstSegmentReturnType
|
||||
DenseBase<Derived>::head(Index size) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return ConstSegmentReturnType(derived(), 0, size);
|
||||
}
|
||||
|
||||
/** \returns a dynamic-size expression of the last coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \param size the number of coefficients in the block
|
||||
*
|
||||
* Example: \include MatrixBase_end_int.cpp
|
||||
* Output: \verbinclude MatrixBase_end_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, block(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::SegmentReturnType
|
||||
DenseBase<Derived>::tail(Index size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return SegmentReturnType(derived(), this->size() - size, size);
|
||||
}
|
||||
|
||||
/** This is the const version of tail(Index).*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::ConstSegmentReturnType
|
||||
DenseBase<Derived>::tail(Index size) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return ConstSegmentReturnType(derived(), this->size() - size, size);
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* The template parameter \a Size is the number of coefficients in the block
|
||||
*
|
||||
* \param start the index of the first element of the sub-vector
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_segment.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_segment.out
|
||||
*
|
||||
* \sa class Block
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename DenseBase<Derived>::template FixedSegmentReturnType<Size>::Type
|
||||
DenseBase<Derived>::segment(Index start)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename FixedSegmentReturnType<Size>::Type(derived(), start);
|
||||
}
|
||||
|
||||
/** This is the const version of segment<int>(Index).*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename DenseBase<Derived>::template ConstFixedSegmentReturnType<Size>::Type
|
||||
DenseBase<Derived>::segment(Index start) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename ConstFixedSegmentReturnType<Size>::Type(derived(), start);
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of the first coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* The template parameter \a Size is the number of coefficients in the block
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_start.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_start.out
|
||||
*
|
||||
* \sa class Block
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename DenseBase<Derived>::template FixedSegmentReturnType<Size>::Type
|
||||
DenseBase<Derived>::head()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename FixedSegmentReturnType<Size>::Type(derived(), 0);
|
||||
}
|
||||
|
||||
/** This is the const version of head<int>().*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename DenseBase<Derived>::template ConstFixedSegmentReturnType<Size>::Type
|
||||
DenseBase<Derived>::head() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename ConstFixedSegmentReturnType<Size>::Type(derived(), 0);
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of the last coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* The template parameter \a Size is the number of coefficients in the block
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_end.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_end.out
|
||||
*
|
||||
* \sa class Block
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename DenseBase<Derived>::template FixedSegmentReturnType<Size>::Type
|
||||
DenseBase<Derived>::tail()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename FixedSegmentReturnType<Size>::Type(derived(), size() - Size);
|
||||
}
|
||||
|
||||
/** This is the const version of tail<int>.*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename DenseBase<Derived>::template ConstFixedSegmentReturnType<Size>::Type
|
||||
DenseBase<Derived>::tail() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename ConstFixedSegmentReturnType<Size>::Type(derived(), size() - Size);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_VECTORBLOCK_H
|
@ -1,598 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PARTIAL_REDUX_H
|
||||
#define EIGEN_PARTIAL_REDUX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class PartialReduxExpr
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Generic expression of a partially reduxed matrix
|
||||
*
|
||||
* \tparam MatrixType the type of the matrix we are applying the redux operation
|
||||
* \tparam MemberOp type of the member functor
|
||||
* \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal)
|
||||
*
|
||||
* This class represents an expression of a partial redux operator of a matrix.
|
||||
* It is the return type of some VectorwiseOp functions,
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa class VectorwiseOp
|
||||
*/
|
||||
|
||||
template< typename MatrixType, typename MemberOp, int Direction>
|
||||
class PartialReduxExpr;
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, typename MemberOp, int Direction>
|
||||
struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename MemberOp::result_type Scalar;
|
||||
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||||
typedef typename traits<MatrixType>::XprKind XprKind;
|
||||
typedef typename MatrixType::Scalar InputScalar;
|
||||
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
|
||||
Flags0 = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
|
||||
Flags = (Flags0 & ~RowMajorBit) | (RowsAtCompileTime == 1 ? RowMajorBit : 0),
|
||||
TraversalSize = Direction==Vertical ? RowsAtCompileTime : ColsAtCompileTime
|
||||
};
|
||||
#if EIGEN_GNUC_AT_LEAST(3,4)
|
||||
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
|
||||
#else
|
||||
typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
|
||||
#endif
|
||||
enum {
|
||||
CoeffReadCost = TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template< typename MatrixType, typename MemberOp, int Direction>
|
||||
class PartialReduxExpr : internal::no_assignment_operator,
|
||||
public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr)
|
||||
typedef typename internal::traits<PartialReduxExpr>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<PartialReduxExpr>::_MatrixTypeNested _MatrixTypeNested;
|
||||
|
||||
PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
|
||||
: m_matrix(mat), m_functor(func) {}
|
||||
|
||||
Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
|
||||
Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index i, Index j) const
|
||||
{
|
||||
if (Direction==Vertical)
|
||||
return m_functor(m_matrix.col(j));
|
||||
else
|
||||
return m_functor(m_matrix.row(i));
|
||||
}
|
||||
|
||||
const Scalar coeff(Index index) const
|
||||
{
|
||||
if (Direction==Vertical)
|
||||
return m_functor(m_matrix.col(index));
|
||||
else
|
||||
return m_functor(m_matrix.row(index));
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixTypeNested m_matrix;
|
||||
const MemberOp m_functor;
|
||||
};
|
||||
|
||||
#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
|
||||
template <typename ResultType> \
|
||||
struct member_##MEMBER { \
|
||||
EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
|
||||
typedef ResultType result_type; \
|
||||
template<typename Scalar, int Size> struct Cost \
|
||||
{ enum { value = COST }; }; \
|
||||
template<typename XprType> \
|
||||
EIGEN_STRONG_INLINE ResultType operator()(const XprType& mat) const \
|
||||
{ return mat.MEMBER(); } \
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
|
||||
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
|
||||
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost);
|
||||
|
||||
|
||||
template <typename BinaryOp, typename Scalar>
|
||||
struct member_redux {
|
||||
typedef typename result_of<
|
||||
BinaryOp(Scalar)
|
||||
>::type result_type;
|
||||
template<typename _Scalar, int Size> struct Cost
|
||||
{ enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
|
||||
member_redux(const BinaryOp func) : m_functor(func) {}
|
||||
template<typename Derived>
|
||||
inline result_type operator()(const DenseBase<Derived>& mat) const
|
||||
{ return mat.redux(m_functor); }
|
||||
const BinaryOp m_functor;
|
||||
};
|
||||
}
|
||||
|
||||
/** \class VectorwiseOp
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Pseudo expression providing partial reduction operations
|
||||
*
|
||||
* \param ExpressionType the type of the object on which to do partial reductions
|
||||
* \param Direction indicates the direction of the redux (#Vertical or #Horizontal)
|
||||
*
|
||||
* This class represents a pseudo expression with partial reduction features.
|
||||
* It is the return type of DenseBase::colwise() and DenseBase::rowwise()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* Example: \include MatrixBase_colwise.cpp
|
||||
* Output: \verbinclude MatrixBase_colwise.out
|
||||
*
|
||||
* \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
|
||||
*/
|
||||
template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename ExpressionType::Scalar Scalar;
|
||||
typedef typename ExpressionType::RealScalar RealScalar;
|
||||
typedef typename ExpressionType::Index Index;
|
||||
typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
|
||||
ExpressionType, ExpressionType&>::type ExpressionTypeNested;
|
||||
typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
|
||||
|
||||
template<template<typename _Scalar> class Functor,
|
||||
typename Scalar=typename internal::traits<ExpressionType>::Scalar> struct ReturnType
|
||||
{
|
||||
typedef PartialReduxExpr<ExpressionType,
|
||||
Functor<Scalar>,
|
||||
Direction
|
||||
> Type;
|
||||
};
|
||||
|
||||
template<typename BinaryOp> struct ReduxReturnType
|
||||
{
|
||||
typedef PartialReduxExpr<ExpressionType,
|
||||
internal::member_redux<BinaryOp,typename internal::traits<ExpressionType>::Scalar>,
|
||||
Direction
|
||||
> Type;
|
||||
};
|
||||
|
||||
enum {
|
||||
IsVertical = (Direction==Vertical) ? 1 : 0,
|
||||
IsHorizontal = (Direction==Horizontal) ? 1 : 0
|
||||
};
|
||||
|
||||
protected:
|
||||
|
||||
/** \internal
|
||||
* \returns the i-th subvector according to the \c Direction */
|
||||
typedef typename internal::conditional<Direction==Vertical,
|
||||
typename ExpressionType::ColXpr,
|
||||
typename ExpressionType::RowXpr>::type SubVector;
|
||||
SubVector subVector(Index i)
|
||||
{
|
||||
return SubVector(m_matrix.derived(),i);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* \returns the number of subvectors in the direction \c Direction */
|
||||
Index subVectors() const
|
||||
{ return Direction==Vertical?m_matrix.cols():m_matrix.rows(); }
|
||||
|
||||
template<typename OtherDerived> struct ExtendedType {
|
||||
typedef Replicate<OtherDerived,
|
||||
Direction==Vertical ? 1 : ExpressionType::RowsAtCompileTime,
|
||||
Direction==Horizontal ? 1 : ExpressionType::ColsAtCompileTime> Type;
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* Replicates a vector to match the size of \c *this */
|
||||
template<typename OtherDerived>
|
||||
typename ExtendedType<OtherDerived>::Type
|
||||
extendedTo(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(Direction==Vertical, OtherDerived::MaxColsAtCompileTime==1),
|
||||
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(Direction==Horizontal, OtherDerived::MaxRowsAtCompileTime==1),
|
||||
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
|
||||
return typename ExtendedType<OtherDerived>::Type
|
||||
(other.derived(),
|
||||
Direction==Vertical ? 1 : m_matrix.rows(),
|
||||
Direction==Horizontal ? 1 : m_matrix.cols());
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
/** \internal */
|
||||
inline const ExpressionType& _expression() const { return m_matrix; }
|
||||
|
||||
/** \returns a row or column vector expression of \c *this reduxed by \a func
|
||||
*
|
||||
* The template parameter \a BinaryOp is the type of the functor
|
||||
* of the custom redux operator. Note that func must be an associative operator.
|
||||
*
|
||||
* \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
|
||||
*/
|
||||
template<typename BinaryOp>
|
||||
const typename ReduxReturnType<BinaryOp>::Type
|
||||
redux(const BinaryOp& func = BinaryOp()) const
|
||||
{ return typename ReduxReturnType<BinaryOp>::Type(_expression(), func); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the smallest coefficient
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_minCoeff.cpp
|
||||
* Output: \verbinclude PartialRedux_minCoeff.out
|
||||
*
|
||||
* \sa DenseBase::minCoeff() */
|
||||
const typename ReturnType<internal::member_minCoeff>::Type minCoeff() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the largest coefficient
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_maxCoeff.cpp
|
||||
* Output: \verbinclude PartialRedux_maxCoeff.out
|
||||
*
|
||||
* \sa DenseBase::maxCoeff() */
|
||||
const typename ReturnType<internal::member_maxCoeff>::Type maxCoeff() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the squared norm
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_squaredNorm.cpp
|
||||
* Output: \verbinclude PartialRedux_squaredNorm.out
|
||||
*
|
||||
* \sa DenseBase::squaredNorm() */
|
||||
const typename ReturnType<internal::member_squaredNorm,RealScalar>::Type squaredNorm() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_norm.cpp
|
||||
* Output: \verbinclude PartialRedux_norm.out
|
||||
*
|
||||
* \sa DenseBase::norm() */
|
||||
const typename ReturnType<internal::member_norm,RealScalar>::Type norm() const
|
||||
{ return _expression(); }
|
||||
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression, using
|
||||
* blue's algorithm.
|
||||
*
|
||||
* \sa DenseBase::blueNorm() */
|
||||
const typename ReturnType<internal::member_blueNorm,RealScalar>::Type blueNorm() const
|
||||
{ return _expression(); }
|
||||
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression, avoiding
|
||||
* underflow and overflow.
|
||||
*
|
||||
* \sa DenseBase::stableNorm() */
|
||||
const typename ReturnType<internal::member_stableNorm,RealScalar>::Type stableNorm() const
|
||||
{ return _expression(); }
|
||||
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression, avoiding
|
||||
* underflow and overflow using a concatenation of hypot() calls.
|
||||
*
|
||||
* \sa DenseBase::hypotNorm() */
|
||||
const typename ReturnType<internal::member_hypotNorm,RealScalar>::Type hypotNorm() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the sum
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_sum.cpp
|
||||
* Output: \verbinclude PartialRedux_sum.out
|
||||
*
|
||||
* \sa DenseBase::sum() */
|
||||
const typename ReturnType<internal::member_sum>::Type sum() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the mean
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* \sa DenseBase::mean() */
|
||||
const typename ReturnType<internal::member_mean>::Type mean() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* whether \b all coefficients of each respective column (or row) are \c true.
|
||||
*
|
||||
* \sa DenseBase::all() */
|
||||
const typename ReturnType<internal::member_all>::Type all() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* whether \b at \b least one coefficient of each respective column (or row) is \c true.
|
||||
*
|
||||
* \sa DenseBase::any() */
|
||||
const typename ReturnType<internal::member_any>::Type any() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* the number of \c true coefficients of each respective column (or row).
|
||||
*
|
||||
* Example: \include PartialRedux_count.cpp
|
||||
* Output: \verbinclude PartialRedux_count.out
|
||||
*
|
||||
* \sa DenseBase::count() */
|
||||
const PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> count() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the product
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_prod.cpp
|
||||
* Output: \verbinclude PartialRedux_prod.out
|
||||
*
|
||||
* \sa DenseBase::prod() */
|
||||
const typename ReturnType<internal::member_prod>::Type prod() const
|
||||
{ return _expression(); }
|
||||
|
||||
|
||||
/** \returns a matrix expression
|
||||
* where each column (or row) are reversed.
|
||||
*
|
||||
* Example: \include Vectorwise_reverse.cpp
|
||||
* Output: \verbinclude Vectorwise_reverse.out
|
||||
*
|
||||
* \sa DenseBase::reverse() */
|
||||
const Reverse<ExpressionType, Direction> reverse() const
|
||||
{ return Reverse<ExpressionType, Direction>( _expression() ); }
|
||||
|
||||
typedef Replicate<ExpressionType,Direction==Vertical?Dynamic:1,Direction==Horizontal?Dynamic:1> ReplicateReturnType;
|
||||
const ReplicateReturnType replicate(Index factor) const;
|
||||
|
||||
/**
|
||||
* \return an expression of the replication of each column (or row) of \c *this
|
||||
*
|
||||
* Example: \include DirectionWise_replicate.cpp
|
||||
* Output: \verbinclude DirectionWise_replicate.out
|
||||
*
|
||||
* \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate
|
||||
*/
|
||||
// NOTE implemented here because of sunstudio's compilation errors
|
||||
template<int Factor> const Replicate<ExpressionType,(IsVertical?Factor:1),(IsHorizontal?Factor:1)>
|
||||
replicate(Index factor = Factor) const
|
||||
{
|
||||
return Replicate<ExpressionType,Direction==Vertical?Factor:1,Direction==Horizontal?Factor:1>
|
||||
(_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
|
||||
}
|
||||
|
||||
/////////// Artithmetic operators ///////////
|
||||
|
||||
/** Copies the vector \a other to each subvector of \c *this */
|
||||
template<typename OtherDerived>
|
||||
ExpressionType& operator=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
//eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME
|
||||
return const_cast<ExpressionType&>(m_matrix = extendedTo(other.derived()));
|
||||
}
|
||||
|
||||
/** Adds the vector \a other to each subvector of \c *this */
|
||||
template<typename OtherDerived>
|
||||
ExpressionType& operator+=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
return const_cast<ExpressionType&>(m_matrix += extendedTo(other.derived()));
|
||||
}
|
||||
|
||||
/** Substracts the vector \a other to each subvector of \c *this */
|
||||
template<typename OtherDerived>
|
||||
ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
return const_cast<ExpressionType&>(m_matrix -= extendedTo(other.derived()));
|
||||
}
|
||||
|
||||
/** Multiples each subvector of \c *this by the vector \a other */
|
||||
template<typename OtherDerived>
|
||||
ExpressionType& operator*=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
m_matrix *= extendedTo(other.derived());
|
||||
return const_cast<ExpressionType&>(m_matrix);
|
||||
}
|
||||
|
||||
/** Divides each subvector of \c *this by the vector \a other */
|
||||
template<typename OtherDerived>
|
||||
ExpressionType& operator/=(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
m_matrix /= extendedTo(other.derived());
|
||||
return const_cast<ExpressionType&>(m_matrix);
|
||||
}
|
||||
|
||||
/** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
|
||||
template<typename OtherDerived> EIGEN_STRONG_INLINE
|
||||
CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
|
||||
const ExpressionTypeNestedCleaned,
|
||||
const typename ExtendedType<OtherDerived>::Type>
|
||||
operator+(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
return m_matrix + extendedTo(other.derived());
|
||||
}
|
||||
|
||||
/** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
|
||||
template<typename OtherDerived>
|
||||
CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
|
||||
const ExpressionTypeNestedCleaned,
|
||||
const typename ExtendedType<OtherDerived>::Type>
|
||||
operator-(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
return m_matrix - extendedTo(other.derived());
|
||||
}
|
||||
|
||||
/** Returns the expression where each subvector is the product of the vector \a other
|
||||
* by the corresponding subvector of \c *this */
|
||||
template<typename OtherDerived> EIGEN_STRONG_INLINE
|
||||
CwiseBinaryOp<internal::scalar_product_op<Scalar>,
|
||||
const ExpressionTypeNestedCleaned,
|
||||
const typename ExtendedType<OtherDerived>::Type>
|
||||
operator*(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
return m_matrix * extendedTo(other.derived());
|
||||
}
|
||||
|
||||
/** Returns the expression where each subvector is the quotient of the corresponding
|
||||
* subvector of \c *this by the vector \a other */
|
||||
template<typename OtherDerived>
|
||||
CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
|
||||
const ExpressionTypeNestedCleaned,
|
||||
const typename ExtendedType<OtherDerived>::Type>
|
||||
operator/(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
||||
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
||||
return m_matrix / extendedTo(other.derived());
|
||||
}
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
|
||||
Homogeneous<ExpressionType,Direction> homogeneous() const;
|
||||
#endif
|
||||
|
||||
typedef typename ExpressionType::PlainObject CrossReturnType;
|
||||
template<typename OtherDerived>
|
||||
const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
enum {
|
||||
HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime
|
||||
: internal::traits<ExpressionType>::ColsAtCompileTime,
|
||||
HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1
|
||||
};
|
||||
typedef Block<const ExpressionType,
|
||||
Direction==Vertical ? int(HNormalized_SizeMinusOne)
|
||||
: int(internal::traits<ExpressionType>::RowsAtCompileTime),
|
||||
Direction==Horizontal ? int(HNormalized_SizeMinusOne)
|
||||
: int(internal::traits<ExpressionType>::ColsAtCompileTime)>
|
||||
HNormalized_Block;
|
||||
typedef Block<const ExpressionType,
|
||||
Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime),
|
||||
Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
|
||||
HNormalized_Factors;
|
||||
typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>,
|
||||
const HNormalized_Block,
|
||||
const Replicate<HNormalized_Factors,
|
||||
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
|
||||
Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
|
||||
HNormalizedReturnType;
|
||||
|
||||
const HNormalizedReturnType hnormalized() const;
|
||||
|
||||
protected:
|
||||
ExpressionTypeNested m_matrix;
|
||||
};
|
||||
|
||||
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
|
||||
*
|
||||
* Example: \include MatrixBase_colwise.cpp
|
||||
* Output: \verbinclude MatrixBase_colwise.out
|
||||
*
|
||||
* \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename DenseBase<Derived>::ConstColwiseReturnType
|
||||
DenseBase<Derived>::colwise() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
|
||||
*
|
||||
* \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::ColwiseReturnType
|
||||
DenseBase<Derived>::colwise()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
|
||||
*
|
||||
* Example: \include MatrixBase_rowwise.cpp
|
||||
* Output: \verbinclude MatrixBase_rowwise.out
|
||||
*
|
||||
* \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename DenseBase<Derived>::ConstRowwiseReturnType
|
||||
DenseBase<Derived>::rowwise() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
|
||||
*
|
||||
* \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename DenseBase<Derived>::RowwiseReturnType
|
||||
DenseBase<Derived>::rowwise()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PARTIAL_REDUX_H
|
@ -1,237 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_VISITOR_H
|
||||
#define EIGEN_VISITOR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Visitor, typename Derived, int UnrollCount>
|
||||
struct visitor_impl
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
static inline void run(const Derived &mat, Visitor& visitor)
|
||||
{
|
||||
visitor_impl<Visitor, Derived, UnrollCount-1>::run(mat, visitor);
|
||||
visitor(mat.coeff(row, col), row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived>
|
||||
struct visitor_impl<Visitor, Derived, 1>
|
||||
{
|
||||
static inline void run(const Derived &mat, Visitor& visitor)
|
||||
{
|
||||
return visitor.init(mat.coeff(0, 0), 0, 0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived>
|
||||
struct visitor_impl<Visitor, Derived, Dynamic>
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
static inline void run(const Derived& mat, Visitor& visitor)
|
||||
{
|
||||
visitor.init(mat.coeff(0,0), 0, 0);
|
||||
for(Index i = 1; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, 0), i, 0);
|
||||
for(Index j = 1; j < mat.cols(); ++j)
|
||||
for(Index i = 0; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, j), i, j);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
|
||||
*
|
||||
* The template parameter \a Visitor is the type of the visitor and provides the following interface:
|
||||
* \code
|
||||
* struct MyVisitor {
|
||||
* // called for the first coefficient
|
||||
* void init(const Scalar& value, Index i, Index j);
|
||||
* // called for all other coefficients
|
||||
* void operator() (const Scalar& value, Index i, Index j);
|
||||
* };
|
||||
* \endcode
|
||||
*
|
||||
* \note compared to one or two \em for \em loops, visitors offer automatic
|
||||
* unrolling for small fixed size matrix.
|
||||
*
|
||||
* \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename Visitor>
|
||||
void DenseBase<Derived>::visit(Visitor& visitor) const
|
||||
{
|
||||
enum { unroll = SizeAtCompileTime != Dynamic
|
||||
&& CoeffReadCost != Dynamic
|
||||
&& (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
|
||||
&& SizeAtCompileTime * CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
|
||||
<= EIGEN_UNROLLING_LIMIT };
|
||||
return internal::visitor_impl<Visitor, Derived,
|
||||
unroll ? int(SizeAtCompileTime) : Dynamic
|
||||
>::run(derived(), visitor);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal
|
||||
* \brief Base class to implement min and max visitors
|
||||
*/
|
||||
template <typename Derived>
|
||||
struct coeff_visitor
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
Index row, col;
|
||||
Scalar res;
|
||||
inline void init(const Scalar& value, Index i, Index j)
|
||||
{
|
||||
res = value;
|
||||
row = i;
|
||||
col = j;
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Visitor computing the min coefficient with its value and coordinates
|
||||
*
|
||||
* \sa DenseBase::minCoeff(Index*, Index*)
|
||||
*/
|
||||
template <typename Derived>
|
||||
struct min_coeff_visitor : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if(value < this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct functor_traits<min_coeff_visitor<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Visitor computing the max coefficient with its value and coordinates
|
||||
*
|
||||
* \sa DenseBase::maxCoeff(Index*, Index*)
|
||||
*/
|
||||
template <typename Derived>
|
||||
struct max_coeff_visitor : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if(value > this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct functor_traits<max_coeff_visitor<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
* and puts in *row and *col its location.
|
||||
*
|
||||
* \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visitor(), DenseBase::minCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::minCoeff(IndexType* row, IndexType* col) const
|
||||
{
|
||||
internal::min_coeff_visitor<Derived> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*row = minVisitor.row;
|
||||
if (col) *col = minVisitor.col;
|
||||
return minVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
* and puts in *index its location.
|
||||
*
|
||||
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::minCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::minCoeff(IndexType* index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
internal::min_coeff_visitor<Derived> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
|
||||
return minVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
* and puts in *row and *col its location.
|
||||
*
|
||||
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::maxCoeff(IndexType* row, IndexType* col) const
|
||||
{
|
||||
internal::max_coeff_visitor<Derived> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*row = maxVisitor.row;
|
||||
if (col) *col = maxVisitor.col;
|
||||
return maxVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
* and puts in *index its location.
|
||||
*
|
||||
* \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename IndexType>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::maxCoeff(IndexType* index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
internal::max_coeff_visitor<Derived> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
|
||||
return maxVisitor.res;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_VISITOR_H
|
@ -1,217 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMPLEX_ALTIVEC_H
|
||||
#define EIGEN_COMPLEX_ALTIVEC_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
|
||||
static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
|
||||
static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
|
||||
static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
|
||||
static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
|
||||
static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
|
||||
static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
|
||||
|
||||
//---------- float ----------
|
||||
struct Packet2cf
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf() {}
|
||||
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
|
||||
Packet4f v;
|
||||
};
|
||||
|
||||
template<> struct packet_traits<std::complex<float> > : default_packet_traits
|
||||
{
|
||||
typedef Packet2cf type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size = 2,
|
||||
|
||||
HasAdd = 1,
|
||||
HasSub = 1,
|
||||
HasMul = 1,
|
||||
HasDiv = 1,
|
||||
HasNegate = 1,
|
||||
HasAbs = 0,
|
||||
HasAbs2 = 0,
|
||||
HasMin = 0,
|
||||
HasMax = 0,
|
||||
HasSetLinear = 0
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
|
||||
{
|
||||
Packet2cf res;
|
||||
/* On AltiVec we cannot load 64-bit registers, so wa have to take care of alignment */
|
||||
if((ptrdiff_t(&from) % 16) == 0)
|
||||
res.v = pload<Packet4f>((const float *)&from);
|
||||
else
|
||||
res.v = ploadu<Packet4f>((const float *)&from);
|
||||
res.v = vec_perm(res.v, res.v, p16uc_PSET_HI);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_add(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_sub(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf((Packet4f)vec_xor((Packet4ui)a.v, p4ui_CONJ_XOR)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
Packet4f v1, v2;
|
||||
|
||||
// Permute and multiply the real parts of a and b
|
||||
v1 = vec_perm(a.v, a.v, p16uc_COMPLEX_RE);
|
||||
// Get the imaginary parts of a
|
||||
v2 = vec_perm(a.v, a.v, p16uc_COMPLEX_IM);
|
||||
// multiply a_re * b
|
||||
v1 = vec_madd(v1, b.v, p4f_ZERO);
|
||||
// multiply a_im * b and get the conjugate result
|
||||
v2 = vec_madd(v2, b.v, p4f_ZERO);
|
||||
v2 = (Packet4f) vec_xor((Packet4ui)v2, p4ui_CONJ_XOR);
|
||||
// permute back to a proper order
|
||||
v2 = vec_perm(v2, v2, p16uc_COMPLEX_REV);
|
||||
|
||||
return Packet2cf(vec_add(v1, v2));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_or(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_xor(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v, vec_nor(b.v,b.v))); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from)
|
||||
{
|
||||
return pset1<Packet2cf>(*from);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { vec_dstt((float *)addr, DST_CTRL(2,2,32), DST_CHAN); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
std::complex<float> EIGEN_ALIGN16 res[2];
|
||||
pstore((float *)&res, a.v);
|
||||
|
||||
return res[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
|
||||
{
|
||||
Packet4f rev_a;
|
||||
rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX_REV2);
|
||||
return Packet2cf(rev_a);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
Packet4f b;
|
||||
b = (Packet4f) vec_sld(a.v, a.v, 8);
|
||||
b = padd(a.v, b);
|
||||
return pfirst(Packet2cf(b));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
|
||||
{
|
||||
Packet4f b1, b2;
|
||||
|
||||
b1 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8);
|
||||
b2 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8);
|
||||
b2 = (Packet4f) vec_sld(b2, b2, 8);
|
||||
b2 = padd(b1, b2);
|
||||
|
||||
return Packet2cf(b2);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
Packet4f b;
|
||||
Packet2cf prod;
|
||||
b = (Packet4f) vec_sld(a.v, a.v, 8);
|
||||
prod = pmul(a, Packet2cf(b));
|
||||
|
||||
return pfirst(prod);
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet2cf>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first.v = vec_sld(first.v, second.v, 8);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
return internal::pmul(a, pconj(b));
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
return internal::pmul(pconj(a), b);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
return pconj(internal::pmul(a, b));
|
||||
}
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
// TODO optimize it for AltiVec
|
||||
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
|
||||
Packet4f s = vec_madd(b.v, b.v, p4f_ZERO);
|
||||
return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX_REV))));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x)
|
||||
{
|
||||
return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX_REV));
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMPLEX_ALTIVEC_H
|
@ -1,498 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PACKET_MATH_ALTIVEC_H
|
||||
#define EIGEN_PACKET_MATH_ALTIVEC_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_HAS_FUSE_CJMADD
|
||||
#define EIGEN_HAS_FUSE_CJMADD 1
|
||||
#endif
|
||||
|
||||
// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
|
||||
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
|
||||
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
|
||||
#endif
|
||||
|
||||
typedef __vector float Packet4f;
|
||||
typedef __vector int Packet4i;
|
||||
typedef __vector unsigned int Packet4ui;
|
||||
typedef __vector __bool int Packet4bi;
|
||||
typedef __vector short int Packet8i;
|
||||
typedef __vector unsigned char Packet16uc;
|
||||
|
||||
// We don't want to write the same code all the time, but we need to reuse the constants
|
||||
// and it doesn't really work to declare them global, so we define macros instead
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \
|
||||
Packet4f p4f_##NAME = (Packet4f) vec_splat_s32(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
|
||||
Packet4i p4i_##NAME = vec_splat_s32(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
|
||||
Packet4f p4f_##NAME = pset1<Packet4f>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
|
||||
Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
|
||||
Packet4i p4i_##NAME = pset1<Packet4i>(X)
|
||||
|
||||
#define DST_CHAN 1
|
||||
#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride))
|
||||
|
||||
// Define global static constants:
|
||||
static Packet4f p4f_COUNTDOWN = { 3.0, 2.0, 1.0, 0.0 };
|
||||
static Packet4i p4i_COUNTDOWN = { 3, 2, 1, 0 };
|
||||
static Packet16uc p16uc_REVERSE = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
|
||||
static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
|
||||
static Packet16uc p16uc_DUPLICATE = {0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
|
||||
|
||||
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0);
|
||||
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0);
|
||||
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1);
|
||||
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16);
|
||||
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1);
|
||||
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0);
|
||||
static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1);
|
||||
|
||||
template<> struct packet_traits<float> : default_packet_traits
|
||||
{
|
||||
typedef Packet4f type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=4,
|
||||
|
||||
// FIXME check the Has*
|
||||
HasSin = 0,
|
||||
HasCos = 0,
|
||||
HasLog = 0,
|
||||
HasExp = 0,
|
||||
HasSqrt = 0
|
||||
};
|
||||
};
|
||||
template<> struct packet_traits<int> : default_packet_traits
|
||||
{
|
||||
typedef Packet4i type;
|
||||
enum {
|
||||
// FIXME check the Has*
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=4
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
|
||||
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
|
||||
/*
|
||||
inline std::ostream & operator <<(std::ostream & s, const Packet4f & v)
|
||||
{
|
||||
union {
|
||||
Packet4f v;
|
||||
float n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const Packet4i & v)
|
||||
{
|
||||
union {
|
||||
Packet4i v;
|
||||
int n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
|
||||
{
|
||||
union {
|
||||
Packet4ui v;
|
||||
unsigned int n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const Packetbi & v)
|
||||
{
|
||||
union {
|
||||
Packet4bi v;
|
||||
unsigned int n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
*/
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
float EIGEN_ALIGN16 af[4];
|
||||
af[0] = from;
|
||||
Packet4f vc = vec_ld(0, af);
|
||||
vc = vec_splat(vc, 0);
|
||||
return vc;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
|
||||
int EIGEN_ALIGN16 ai[4];
|
||||
ai[0] = from;
|
||||
Packet4i vc = vec_ld(0, ai);
|
||||
vc = vec_splat(vc, 0);
|
||||
return vc;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return vec_add(pset1<Packet4f>(a), p4f_COUNTDOWN); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return vec_add(pset1<Packet4i>(a), p4i_COUNTDOWN); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_add(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_add(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_sub(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_sub(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return psub<Packet4f>(p4f_ZERO, a); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return psub<Packet4i>(p4i_ZERO, a); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_madd(a,b,p4f_ZERO); }
|
||||
/* Commented out: it's actually slower than processing it scalar
|
||||
*
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
|
||||
{
|
||||
// Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec
|
||||
//Set up constants, variables
|
||||
Packet4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel;
|
||||
|
||||
// Get the absolute values
|
||||
a1 = vec_abs(a);
|
||||
b1 = vec_abs(b);
|
||||
|
||||
// Get the signs using xor
|
||||
Packet4bi sgn = (Packet4bi) vec_cmplt(vec_xor(a, b), p4i_ZERO);
|
||||
|
||||
// Do the multiplication for the asbolute values.
|
||||
bswap = (Packet4i) vec_rl((Packet4ui) b1, (Packet4ui) p4i_MINUS16 );
|
||||
low_prod = vec_mulo((Packet8i) a1, (Packet8i)b1);
|
||||
high_prod = vec_msum((Packet8i) a1, (Packet8i) bswap, p4i_ZERO);
|
||||
high_prod = (Packet4i) vec_sl((Packet4ui) high_prod, (Packet4ui) p4i_MINUS16);
|
||||
prod = vec_add( low_prod, high_prod );
|
||||
|
||||
// NOR the product and select only the negative elements according to the sign mask
|
||||
prod_ = vec_nor(prod, prod);
|
||||
prod_ = vec_sel(p4i_ZERO, prod_, sgn);
|
||||
|
||||
// Add 1 to the result to get the negative numbers
|
||||
v1sel = vec_sel(p4i_ZERO, p4i_ONE, sgn);
|
||||
prod_ = vec_add(prod_, v1sel);
|
||||
|
||||
// Merge the results back to the final vector.
|
||||
prod = vec_sel(prod, prod_, sgn);
|
||||
|
||||
return prod;
|
||||
}
|
||||
*/
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
Packet4f t, y_0, y_1, res;
|
||||
|
||||
// Altivec does not offer a divide instruction, we have to do a reciprocal approximation
|
||||
y_0 = vec_re(b);
|
||||
|
||||
// Do one Newton-Raphson iteration to get the needed accuracy
|
||||
t = vec_nmsub(y_0, b, p4f_ONE);
|
||||
y_1 = vec_madd(y_0, t, y_0);
|
||||
|
||||
res = vec_madd(a, y_1, p4f_ZERO);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
|
||||
{ eigen_assert(false && "packet integer division are not supported by AltiVec");
|
||||
return pset1<Packet4i>(0);
|
||||
}
|
||||
|
||||
// for some weird raisons, it has to be overloaded for packet of integers
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a, b, c); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_min(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_max(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
|
||||
|
||||
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_or(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_xor(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, vec_nor(b, b)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
|
||||
{
|
||||
EIGEN_DEBUG_ALIGNED_LOAD
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
Packet16uc MSQ, LSQ;
|
||||
Packet16uc mask;
|
||||
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
|
||||
mask = vec_lvsl(0, from); // create the permute mask
|
||||
return (Packet4f) vec_perm(MSQ, LSQ, mask); // align the data
|
||||
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
|
||||
{
|
||||
EIGEN_DEBUG_ALIGNED_LOAD
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
Packet16uc MSQ, LSQ;
|
||||
Packet16uc mask;
|
||||
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
|
||||
mask = vec_lvsl(0, from); // create the permute mask
|
||||
return (Packet4i) vec_perm(MSQ, LSQ, mask); // align the data
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
|
||||
{
|
||||
Packet4f p;
|
||||
if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4f>(from);
|
||||
else p = ploadu<Packet4f>(from);
|
||||
return vec_perm(p, p, p16uc_DUPLICATE);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
|
||||
{
|
||||
Packet4i p;
|
||||
if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4i>(from);
|
||||
else p = ploadu<Packet4i>(from);
|
||||
return vec_perm(p, p, p16uc_DUPLICATE);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
|
||||
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
|
||||
{
|
||||
EIGEN_DEBUG_UNALIGNED_STORE
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
// Warning: not thread safe!
|
||||
Packet16uc MSQ, LSQ, edges;
|
||||
Packet16uc edgeAlign, align;
|
||||
|
||||
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
|
||||
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
|
||||
edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
|
||||
align = vec_lvsr( 0, to ); // permute map to misalign data
|
||||
MSQ = vec_perm(edges,(Packet16uc)from,align); // misalign the data (MSQ)
|
||||
LSQ = vec_perm((Packet16uc)from,edges,align); // misalign the data (LSQ)
|
||||
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
|
||||
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from)
|
||||
{
|
||||
EIGEN_DEBUG_UNALIGNED_STORE
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
// Warning: not thread safe!
|
||||
Packet16uc MSQ, LSQ, edges;
|
||||
Packet16uc edgeAlign, align;
|
||||
|
||||
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
|
||||
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
|
||||
edges=vec_perm(LSQ, MSQ, edgeAlign); // extract the edges
|
||||
align = vec_lvsr( 0, to ); // permute map to misalign data
|
||||
MSQ = vec_perm(edges, (Packet16uc) from, align); // misalign the data (MSQ)
|
||||
LSQ = vec_perm((Packet16uc) from, edges, align); // misalign the data (LSQ)
|
||||
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
|
||||
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
|
||||
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return (Packet4f)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return (Packet4i)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f b, sum;
|
||||
b = (Packet4f) vec_sld(a, a, 8);
|
||||
sum = vec_add(a, b);
|
||||
b = (Packet4f) vec_sld(sum, sum, 4);
|
||||
sum = vec_add(sum, b);
|
||||
return pfirst(sum);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
|
||||
{
|
||||
Packet4f v[4], sum[4];
|
||||
|
||||
// It's easier and faster to transpose then add as columns
|
||||
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
|
||||
// Do the transpose, first set of moves
|
||||
v[0] = vec_mergeh(vecs[0], vecs[2]);
|
||||
v[1] = vec_mergel(vecs[0], vecs[2]);
|
||||
v[2] = vec_mergeh(vecs[1], vecs[3]);
|
||||
v[3] = vec_mergel(vecs[1], vecs[3]);
|
||||
// Get the resulting vectors
|
||||
sum[0] = vec_mergeh(v[0], v[2]);
|
||||
sum[1] = vec_mergel(v[0], v[2]);
|
||||
sum[2] = vec_mergeh(v[1], v[3]);
|
||||
sum[3] = vec_mergel(v[1], v[3]);
|
||||
|
||||
// Now do the summation:
|
||||
// Lines 0+1
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
// Lines 2+3
|
||||
sum[1] = vec_add(sum[2], sum[3]);
|
||||
// Add the results
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
|
||||
return sum[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
Packet4i sum;
|
||||
sum = vec_sums(a, p4i_ZERO);
|
||||
sum = vec_sld(sum, p4i_ZERO, 12);
|
||||
return pfirst(sum);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
|
||||
{
|
||||
Packet4i v[4], sum[4];
|
||||
|
||||
// It's easier and faster to transpose then add as columns
|
||||
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
|
||||
// Do the transpose, first set of moves
|
||||
v[0] = vec_mergeh(vecs[0], vecs[2]);
|
||||
v[1] = vec_mergel(vecs[0], vecs[2]);
|
||||
v[2] = vec_mergeh(vecs[1], vecs[3]);
|
||||
v[3] = vec_mergel(vecs[1], vecs[3]);
|
||||
// Get the resulting vectors
|
||||
sum[0] = vec_mergeh(v[0], v[2]);
|
||||
sum[1] = vec_mergel(v[0], v[2]);
|
||||
sum[2] = vec_mergeh(v[1], v[3]);
|
||||
sum[3] = vec_mergel(v[1], v[3]);
|
||||
|
||||
// Now do the summation:
|
||||
// Lines 0+1
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
// Lines 2+3
|
||||
sum[1] = vec_add(sum[2], sum[3]);
|
||||
// Add the results
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
|
||||
return sum[0];
|
||||
}
|
||||
|
||||
// Other reduction functions:
|
||||
// mul
|
||||
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f prod;
|
||||
prod = pmul(a, (Packet4f)vec_sld(a, a, 8));
|
||||
return pfirst(pmul(prod, (Packet4f)vec_sld(prod, prod, 4)));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
EIGEN_ALIGN16 int aux[4];
|
||||
pstore(aux, a);
|
||||
return aux[0] * aux[1] * aux[2] * aux[3];
|
||||
}
|
||||
|
||||
// min
|
||||
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f b, res;
|
||||
b = vec_min(a, vec_sld(a, a, 8));
|
||||
res = vec_min(b, vec_sld(b, b, 4));
|
||||
return pfirst(res);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
Packet4i b, res;
|
||||
b = vec_min(a, vec_sld(a, a, 8));
|
||||
res = vec_min(b, vec_sld(b, b, 4));
|
||||
return pfirst(res);
|
||||
}
|
||||
|
||||
// max
|
||||
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f b, res;
|
||||
b = vec_max(a, vec_sld(a, a, 8));
|
||||
res = vec_max(b, vec_sld(b, b, 4));
|
||||
return pfirst(res);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
Packet4i b, res;
|
||||
b = vec_max(a, vec_sld(a, a, 8));
|
||||
res = vec_max(b, vec_sld(b, b, 4));
|
||||
return pfirst(res);
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet4f>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
|
||||
{
|
||||
if (Offset!=0)
|
||||
first = vec_sld(first, second, Offset*4);
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet4i>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
|
||||
{
|
||||
if (Offset!=0)
|
||||
first = vec_sld(first, second, Offset*4);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PACKET_MATH_ALTIVEC_H
|
@ -1,49 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
|
||||
/* All the parameters defined in this file can be specialized in the
|
||||
* architecture specific files, and/or by the user.
|
||||
* More to come... */
|
||||
|
||||
#ifndef EIGEN_DEFAULT_SETTINGS_H
|
||||
#define EIGEN_DEFAULT_SETTINGS_H
|
||||
|
||||
/** Defines the maximal loop size to enable meta unrolling of loops.
|
||||
* Note that the value here is expressed in Eigen's own notion of "number of FLOPS",
|
||||
* it does not correspond to the number of iterations or the number of instructions
|
||||
*/
|
||||
#ifndef EIGEN_UNROLLING_LIMIT
|
||||
#define EIGEN_UNROLLING_LIMIT 100
|
||||
#endif
|
||||
|
||||
/** Defines the threshold between a "small" and a "large" matrix.
|
||||
* This threshold is mainly used to select the proper product implementation.
|
||||
*/
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
|
||||
#endif
|
||||
|
||||
/** Defines the maximal width of the blocks used in the triangular product and solver
|
||||
* for vectors (level 2 blas xTRMV and xTRSV). The default is 8.
|
||||
*/
|
||||
#ifndef EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH
|
||||
#define EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH 8
|
||||
#endif
|
||||
|
||||
|
||||
/** Defines the default number of registers available for that architecture.
|
||||
* Currently it must be 8 or 16. Other values will fail.
|
||||
*/
|
||||
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
|
||||
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_DEFAULT_SETTINGS_H
|
@ -1,259 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMPLEX_NEON_H
|
||||
#define EIGEN_COMPLEX_NEON_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
|
||||
static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
|
||||
|
||||
//---------- float ----------
|
||||
struct Packet2cf
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf() {}
|
||||
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
|
||||
Packet4f v;
|
||||
};
|
||||
|
||||
template<> struct packet_traits<std::complex<float> > : default_packet_traits
|
||||
{
|
||||
typedef Packet2cf type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size = 2,
|
||||
|
||||
HasAdd = 1,
|
||||
HasSub = 1,
|
||||
HasMul = 1,
|
||||
HasDiv = 1,
|
||||
HasNegate = 1,
|
||||
HasAbs = 0,
|
||||
HasAbs2 = 0,
|
||||
HasMin = 0,
|
||||
HasMax = 0,
|
||||
HasSetLinear = 0
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
|
||||
{
|
||||
float32x2_t r64;
|
||||
r64 = vld1_f32((float *)&from);
|
||||
|
||||
return Packet2cf(vcombine_f32(r64, r64));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
|
||||
{
|
||||
Packet4ui b = vreinterpretq_u32_f32(a.v);
|
||||
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
Packet4f v1, v2;
|
||||
float32x2_t a_lo, a_hi;
|
||||
|
||||
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
|
||||
v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
|
||||
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
|
||||
v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
|
||||
// Multiply the real a with b
|
||||
v1 = vmulq_f32(v1, b.v);
|
||||
// Multiply the imag a with b
|
||||
v2 = vmulq_f32(v2, b.v);
|
||||
// Conjugate v2
|
||||
v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
|
||||
// Swap real/imag elements in v2.
|
||||
a_lo = vrev64_f32(vget_low_f32(v2));
|
||||
a_hi = vrev64_f32(vget_high_f32(v2));
|
||||
v2 = vcombine_f32(a_lo, a_hi);
|
||||
// Add and return the result
|
||||
return Packet2cf(vaddq_f32(v1, v2));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { __pld((float *)addr); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
std::complex<float> EIGEN_ALIGN16 x[2];
|
||||
vst1q_f32((float *)x, a.v);
|
||||
return x[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
|
||||
{
|
||||
float32x2_t a_lo, a_hi;
|
||||
Packet4f a_r128;
|
||||
|
||||
a_lo = vget_low_f32(a.v);
|
||||
a_hi = vget_high_f32(a.v);
|
||||
a_r128 = vcombine_f32(a_hi, a_lo);
|
||||
|
||||
return Packet2cf(a_r128);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
return Packet2cf(vrev64q_f32(a.v));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
float32x2_t a1, a2;
|
||||
std::complex<float> s;
|
||||
|
||||
a1 = vget_low_f32(a.v);
|
||||
a2 = vget_high_f32(a.v);
|
||||
a2 = vadd_f32(a1, a2);
|
||||
vst1_f32((float *)&s, a2);
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
|
||||
{
|
||||
Packet4f sum1, sum2, sum;
|
||||
|
||||
// Add the first two 64-bit float32x2_t of vecs[0]
|
||||
sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
|
||||
sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
|
||||
sum = vaddq_f32(sum1, sum2);
|
||||
|
||||
return Packet2cf(sum);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
float32x2_t a1, a2, v1, v2, prod;
|
||||
std::complex<float> s;
|
||||
|
||||
a1 = vget_low_f32(a.v);
|
||||
a2 = vget_high_f32(a.v);
|
||||
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
|
||||
v1 = vdup_lane_f32(a1, 0);
|
||||
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
|
||||
v2 = vdup_lane_f32(a1, 1);
|
||||
// Multiply the real a with b
|
||||
v1 = vmul_f32(v1, a2);
|
||||
// Multiply the imag a with b
|
||||
v2 = vmul_f32(v2, a2);
|
||||
// Conjugate v2
|
||||
v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
|
||||
// Swap real/imag elements in v2.
|
||||
v2 = vrev64_f32(v2);
|
||||
// Add v1, v2
|
||||
prod = vadd_f32(v1, v2);
|
||||
|
||||
vst1_f32((float *)&s, prod);
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet2cf>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first.v = vextq_f32(first.v, second.v, 2);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
return internal::pmul(a, pconj(b));
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
return internal::pmul(pconj(a), b);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
return pconj(internal::pmul(a, b));
|
||||
}
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
// TODO optimize it for AltiVec
|
||||
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
|
||||
Packet4f s, rev_s;
|
||||
float32x2_t a_lo, a_hi;
|
||||
|
||||
// this computes the norm
|
||||
s = vmulq_f32(b.v, b.v);
|
||||
a_lo = vrev64_f32(vget_low_f32(s));
|
||||
a_hi = vrev64_f32(vget_high_f32(s));
|
||||
rev_s = vcombine_f32(a_lo, a_hi);
|
||||
|
||||
return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMPLEX_NEON_H
|
@ -1,424 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
|
||||
// Heavily based on Gael's SSE version.
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PACKET_MATH_NEON_H
|
||||
#define EIGEN_PACKET_MATH_NEON_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
|
||||
#endif
|
||||
|
||||
// FIXME NEON has 16 quad registers, but since the current register allocator
|
||||
// is so bad, it is much better to reduce it to 8
|
||||
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
|
||||
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
|
||||
#endif
|
||||
|
||||
typedef float32x4_t Packet4f;
|
||||
typedef int32x4_t Packet4i;
|
||||
typedef uint32x4_t Packet4ui;
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
|
||||
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
|
||||
const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
|
||||
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
|
||||
|
||||
#if defined(__llvm__) && !defined(__clang__)
|
||||
//Special treatment for Apple's llvm-gcc, its NEON packet types are unions
|
||||
#define EIGEN_INIT_NEON_PACKET2(X, Y) {{X, Y}}
|
||||
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
|
||||
#else
|
||||
//Default initializer for packets
|
||||
#define EIGEN_INIT_NEON_PACKET2(X, Y) {X, Y}
|
||||
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
|
||||
#endif
|
||||
|
||||
#ifndef __pld
|
||||
#define __pld(x) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (x) : "cc" );
|
||||
#endif
|
||||
|
||||
template<> struct packet_traits<float> : default_packet_traits
|
||||
{
|
||||
typedef Packet4f type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size = 4,
|
||||
|
||||
HasDiv = 1,
|
||||
// FIXME check the Has*
|
||||
HasSin = 0,
|
||||
HasCos = 0,
|
||||
HasLog = 0,
|
||||
HasExp = 0,
|
||||
HasSqrt = 0
|
||||
};
|
||||
};
|
||||
template<> struct packet_traits<int> : default_packet_traits
|
||||
{
|
||||
typedef Packet4i type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=4
|
||||
// FIXME check the Has*
|
||||
};
|
||||
};
|
||||
|
||||
#if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
|
||||
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
|
||||
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
|
||||
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
|
||||
EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
|
||||
EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
|
||||
#endif
|
||||
|
||||
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
|
||||
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return vdupq_n_f32(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return vdupq_n_s32(from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
|
||||
{
|
||||
Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
|
||||
return vaddq_f32(pset1<Packet4f>(a), countdown);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
|
||||
{
|
||||
Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
|
||||
return vaddq_s32(pset1<Packet4i>(a), countdown);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
Packet4f inv, restep, div;
|
||||
|
||||
// NEON does not offer a divide instruction, we have to do a reciprocal approximation
|
||||
// However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
|
||||
// a reciprocal estimate AND a reciprocal step -which saves a few instructions
|
||||
// vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
|
||||
// Newton-Raphson and vrecpsq_f32()
|
||||
inv = vrecpeq_f32(b);
|
||||
|
||||
// This returns a differential, by which we will have to multiply inv to get a better
|
||||
// approximation of 1/b.
|
||||
restep = vrecpsq_f32(b, inv);
|
||||
inv = vmulq_f32(restep, inv);
|
||||
|
||||
// Finally, multiply a by 1/b and get the wanted result of the division.
|
||||
div = vmulq_f32(a, inv);
|
||||
|
||||
return div;
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
|
||||
{ eigen_assert(false && "packet integer division are not supported by NEON");
|
||||
return pset1<Packet4i>(0);
|
||||
}
|
||||
|
||||
// for some weird raisons, it has to be overloaded for packet of integers
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
|
||||
|
||||
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
|
||||
{
|
||||
float32x2_t lo, hi;
|
||||
lo = vdup_n_f32(*from);
|
||||
hi = vdup_n_f32(*(from+1));
|
||||
return vcombine_f32(lo, hi);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
|
||||
{
|
||||
int32x2_t lo, hi;
|
||||
lo = vdup_n_s32(*from);
|
||||
hi = vdup_n_s32(*(from+1));
|
||||
return vcombine_s32(lo, hi);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { __pld(addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { __pld(addr); }
|
||||
|
||||
// FIXME only store the 2 first elements ?
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
|
||||
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
|
||||
float32x2_t a_lo, a_hi;
|
||||
Packet4f a_r64;
|
||||
|
||||
a_r64 = vrev64q_f32(a);
|
||||
a_lo = vget_low_f32(a_r64);
|
||||
a_hi = vget_high_f32(a_r64);
|
||||
return vcombine_f32(a_hi, a_lo);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
|
||||
int32x2_t a_lo, a_hi;
|
||||
Packet4i a_r64;
|
||||
|
||||
a_r64 = vrev64q_s32(a);
|
||||
a_lo = vget_low_s32(a_r64);
|
||||
a_hi = vget_high_s32(a_r64);
|
||||
return vcombine_s32(a_hi, a_lo);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
float32x2_t a_lo, a_hi, sum;
|
||||
float s[2];
|
||||
|
||||
a_lo = vget_low_f32(a);
|
||||
a_hi = vget_high_f32(a);
|
||||
sum = vpadd_f32(a_lo, a_hi);
|
||||
sum = vpadd_f32(sum, sum);
|
||||
vst1_f32(s, sum);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
|
||||
{
|
||||
float32x4x2_t vtrn1, vtrn2, res1, res2;
|
||||
Packet4f sum1, sum2, sum;
|
||||
|
||||
// NEON zip performs interleaving of the supplied vectors.
|
||||
// We perform two interleaves in a row to acquire the transposed vector
|
||||
vtrn1 = vzipq_f32(vecs[0], vecs[2]);
|
||||
vtrn2 = vzipq_f32(vecs[1], vecs[3]);
|
||||
res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
|
||||
res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
|
||||
|
||||
// Do the addition of the resulting vectors
|
||||
sum1 = vaddq_f32(res1.val[0], res1.val[1]);
|
||||
sum2 = vaddq_f32(res2.val[0], res2.val[1]);
|
||||
sum = vaddq_f32(sum1, sum2);
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
int32x2_t a_lo, a_hi, sum;
|
||||
int32_t s[2];
|
||||
|
||||
a_lo = vget_low_s32(a);
|
||||
a_hi = vget_high_s32(a);
|
||||
sum = vpadd_s32(a_lo, a_hi);
|
||||
sum = vpadd_s32(sum, sum);
|
||||
vst1_s32(s, sum);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
|
||||
{
|
||||
int32x4x2_t vtrn1, vtrn2, res1, res2;
|
||||
Packet4i sum1, sum2, sum;
|
||||
|
||||
// NEON zip performs interleaving of the supplied vectors.
|
||||
// We perform two interleaves in a row to acquire the transposed vector
|
||||
vtrn1 = vzipq_s32(vecs[0], vecs[2]);
|
||||
vtrn2 = vzipq_s32(vecs[1], vecs[3]);
|
||||
res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
|
||||
res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
|
||||
|
||||
// Do the addition of the resulting vectors
|
||||
sum1 = vaddq_s32(res1.val[0], res1.val[1]);
|
||||
sum2 = vaddq_s32(res2.val[0], res2.val[1]);
|
||||
sum = vaddq_s32(sum1, sum2);
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
// Other reduction functions:
|
||||
// mul
|
||||
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
float32x2_t a_lo, a_hi, prod;
|
||||
float s[2];
|
||||
|
||||
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
|
||||
a_lo = vget_low_f32(a);
|
||||
a_hi = vget_high_f32(a);
|
||||
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
|
||||
prod = vmul_f32(a_lo, a_hi);
|
||||
// Multiply prod with its swapped value |a2*a4|a1*a3|
|
||||
prod = vmul_f32(prod, vrev64_f32(prod));
|
||||
vst1_f32(s, prod);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
int32x2_t a_lo, a_hi, prod;
|
||||
int32_t s[2];
|
||||
|
||||
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
|
||||
a_lo = vget_low_s32(a);
|
||||
a_hi = vget_high_s32(a);
|
||||
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
|
||||
prod = vmul_s32(a_lo, a_hi);
|
||||
// Multiply prod with its swapped value |a2*a4|a1*a3|
|
||||
prod = vmul_s32(prod, vrev64_s32(prod));
|
||||
vst1_s32(s, prod);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
|
||||
// min
|
||||
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
float32x2_t a_lo, a_hi, min;
|
||||
float s[2];
|
||||
|
||||
a_lo = vget_low_f32(a);
|
||||
a_hi = vget_high_f32(a);
|
||||
min = vpmin_f32(a_lo, a_hi);
|
||||
min = vpmin_f32(min, min);
|
||||
vst1_f32(s, min);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
int32x2_t a_lo, a_hi, min;
|
||||
int32_t s[2];
|
||||
|
||||
a_lo = vget_low_s32(a);
|
||||
a_hi = vget_high_s32(a);
|
||||
min = vpmin_s32(a_lo, a_hi);
|
||||
min = vpmin_s32(min, min);
|
||||
vst1_s32(s, min);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
|
||||
// max
|
||||
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
float32x2_t a_lo, a_hi, max;
|
||||
float s[2];
|
||||
|
||||
a_lo = vget_low_f32(a);
|
||||
a_hi = vget_high_f32(a);
|
||||
max = vpmax_f32(a_lo, a_hi);
|
||||
max = vpmax_f32(max, max);
|
||||
vst1_f32(s, max);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
int32x2_t a_lo, a_hi, max;
|
||||
int32_t s[2];
|
||||
|
||||
a_lo = vget_low_s32(a);
|
||||
a_hi = vget_high_s32(a);
|
||||
max = vpmax_s32(a_lo, a_hi);
|
||||
max = vpmax_s32(max, max);
|
||||
vst1_s32(s, max);
|
||||
|
||||
return s[0];
|
||||
}
|
||||
|
||||
// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
|
||||
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
|
||||
#define PALIGN_NEON(Offset,Type,Command) \
|
||||
template<>\
|
||||
struct palign_impl<Offset,Type>\
|
||||
{\
|
||||
EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
|
||||
{\
|
||||
if (Offset!=0)\
|
||||
first = Command(first, second, Offset);\
|
||||
}\
|
||||
};\
|
||||
|
||||
PALIGN_NEON(0,Packet4f,vextq_f32)
|
||||
PALIGN_NEON(1,Packet4f,vextq_f32)
|
||||
PALIGN_NEON(2,Packet4f,vextq_f32)
|
||||
PALIGN_NEON(3,Packet4f,vextq_f32)
|
||||
PALIGN_NEON(0,Packet4i,vextq_s32)
|
||||
PALIGN_NEON(1,Packet4i,vextq_s32)
|
||||
PALIGN_NEON(2,Packet4i,vextq_s32)
|
||||
PALIGN_NEON(3,Packet4i,vextq_s32)
|
||||
|
||||
#undef PALIGN_NEON
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PACKET_MATH_NEON_H
|
@ -1,436 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMPLEX_SSE_H
|
||||
#define EIGEN_COMPLEX_SSE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
//---------- float ----------
|
||||
struct Packet2cf
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf() {}
|
||||
EIGEN_STRONG_INLINE explicit Packet2cf(const __m128& a) : v(a) {}
|
||||
__m128 v;
|
||||
};
|
||||
|
||||
template<> struct packet_traits<std::complex<float> > : default_packet_traits
|
||||
{
|
||||
typedef Packet2cf type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size = 2,
|
||||
|
||||
HasAdd = 1,
|
||||
HasSub = 1,
|
||||
HasMul = 1,
|
||||
HasDiv = 1,
|
||||
HasNegate = 1,
|
||||
HasAbs = 0,
|
||||
HasAbs2 = 0,
|
||||
HasMin = 0,
|
||||
HasMax = 0,
|
||||
HasSetLinear = 0
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a)
|
||||
{
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
|
||||
return Packet2cf(_mm_xor_ps(a.v,mask));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
|
||||
{
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
|
||||
return Packet2cf(_mm_xor_ps(a.v,mask));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
// TODO optimize it for SSE3 and 4
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v),
|
||||
_mm_mul_ps(_mm_movehdup_ps(a.v),
|
||||
vec4f_swizzle1(b.v, 1, 0, 3, 2))));
|
||||
// return Packet2cf(_mm_addsub_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
|
||||
// _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
|
||||
// vec4f_swizzle1(b.v, 1, 0, 3, 2))));
|
||||
#else
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x00000000,0x80000000,0x00000000));
|
||||
return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
|
||||
_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
|
||||
vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_and_ps(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_or_ps(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_xor_ps(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_andnot_ps(a.v,b.v)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>(&real_ref(*from))); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>(&real_ref(*from))); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
|
||||
{
|
||||
Packet2cf res;
|
||||
#if EIGEN_GNUC_AT_MOST(4,2)
|
||||
// workaround annoying "may be used uninitialized in this function" warning with gcc 4.2
|
||||
res.v = _mm_loadl_pi(_mm_set1_ps(0.0f), reinterpret_cast<const __m64*>(&from));
|
||||
#else
|
||||
res.v = _mm_loadl_pi(res.v, (const __m64*)&from);
|
||||
#endif
|
||||
return Packet2cf(_mm_movelh_ps(res.v,res.v));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&real_ref(*to), from.v); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&real_ref(*to), from.v); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
#if EIGEN_GNUC_AT_MOST(4,3)
|
||||
// Workaround gcc 4.2 ICE - this is not performance wise ideal, but who cares...
|
||||
// This workaround also fix invalid code generation with gcc 4.3
|
||||
EIGEN_ALIGN16 std::complex<float> res[2];
|
||||
_mm_store_ps((float*)res, a.v);
|
||||
return res[0];
|
||||
#else
|
||||
std::complex<float> res;
|
||||
_mm_storel_pi((__m64*)&res, a.v);
|
||||
return res;
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(_mm_castps_pd(a.v)))); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
return pfirst(Packet2cf(_mm_add_ps(a.v, _mm_movehl_ps(a.v,a.v))));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
|
||||
{
|
||||
return Packet2cf(_mm_add_ps(_mm_movelh_ps(vecs[0].v,vecs[1].v), _mm_movehl_ps(vecs[1].v,vecs[0].v)));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
return pfirst(pmul(a, Packet2cf(_mm_movehl_ps(a.v,a.v))));
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet2cf>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first.v = _mm_movehl_ps(first.v, first.v);
|
||||
first.v = _mm_movelh_ps(first.v, second.v);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return internal::pmul(a, pconj(b));
|
||||
#else
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
|
||||
return Packet2cf(_mm_add_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
|
||||
_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
|
||||
vec4f_swizzle1(b.v, 1, 0, 3, 2))));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return internal::pmul(pconj(a), b);
|
||||
#else
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
|
||||
return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
|
||||
_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
|
||||
vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return pconj(internal::pmul(a, b));
|
||||
#else
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
|
||||
return Packet2cf(_mm_sub_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
|
||||
_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
|
||||
vec4f_swizzle1(b.v, 1, 0, 3, 2))));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4f, Packet2cf, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
|
||||
{ return Packet2cf(Eigen::internal::pmul(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet4f, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
|
||||
{ return Packet2cf(Eigen::internal::pmul(x.v, y)); }
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
// TODO optimize it for SSE3 and 4
|
||||
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
|
||||
__m128 s = _mm_mul_ps(b.v,b.v);
|
||||
return Packet2cf(_mm_div_ps(res.v,_mm_add_ps(s,_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(s), 0xb1)))));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pcplxflip/*<Packet2cf>*/(const Packet2cf& x)
|
||||
{
|
||||
return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2));
|
||||
}
|
||||
|
||||
|
||||
//---------- double ----------
|
||||
struct Packet1cd
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd() {}
|
||||
EIGEN_STRONG_INLINE explicit Packet1cd(const __m128d& a) : v(a) {}
|
||||
__m128d v;
|
||||
};
|
||||
|
||||
template<> struct packet_traits<std::complex<double> > : default_packet_traits
|
||||
{
|
||||
typedef Packet1cd type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 0,
|
||||
size = 1,
|
||||
|
||||
HasAdd = 1,
|
||||
HasSub = 1,
|
||||
HasMul = 1,
|
||||
HasDiv = 1,
|
||||
HasNegate = 1,
|
||||
HasAbs = 0,
|
||||
HasAbs2 = 0,
|
||||
HasMin = 0,
|
||||
HasMax = 0,
|
||||
HasSetLinear = 0
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; };
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(a.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
|
||||
{
|
||||
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
|
||||
return Packet1cd(_mm_xor_pd(a.v,mask));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
|
||||
{
|
||||
// TODO optimize it for SSE3 and 4
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return Packet1cd(_mm_addsub_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
|
||||
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
|
||||
vec2d_swizzle1(b.v, 1, 0))));
|
||||
#else
|
||||
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
|
||||
return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
|
||||
_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
|
||||
vec2d_swizzle1(b.v, 1, 0)), mask)));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_and_pd(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_or_pd(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_xor_pd(a.v,b.v)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_andnot_pd(a.v,b.v)); }
|
||||
|
||||
// FIXME force unaligned load, this is a temporary fix
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from)
|
||||
{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from)
|
||||
{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
|
||||
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
|
||||
|
||||
// FIXME force unaligned store, this is a temporary fix
|
||||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
|
||||
{
|
||||
EIGEN_ALIGN16 double res[2];
|
||||
_mm_store_pd(res, a.v);
|
||||
return std::complex<double>(res[0],res[1]);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
|
||||
{
|
||||
return pfirst(a);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
|
||||
{
|
||||
return vecs[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
|
||||
{
|
||||
return pfirst(a);
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet1cd>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
|
||||
{
|
||||
// FIXME is it sure we never have to align a Packet1cd?
|
||||
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return internal::pmul(a, pconj(b));
|
||||
#else
|
||||
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
|
||||
return Packet1cd(_mm_add_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
|
||||
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
|
||||
vec2d_swizzle1(b.v, 1, 0))));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return internal::pmul(pconj(a), b);
|
||||
#else
|
||||
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
|
||||
return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
|
||||
_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
|
||||
vec2d_swizzle1(b.v, 1, 0)), mask)));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
return pconj(internal::pmul(a, b));
|
||||
#else
|
||||
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
|
||||
return Packet1cd(_mm_sub_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
|
||||
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
|
||||
vec2d_swizzle1(b.v, 1, 0))));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2d, Packet1cd, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
|
||||
{ return Packet1cd(Eigen::internal::pmul(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet1cd, Packet2d, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
|
||||
{ return Packet1cd(Eigen::internal::pmul(x.v, y)); }
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
|
||||
{
|
||||
// TODO optimize it for SSE3 and 4
|
||||
Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
|
||||
__m128d s = _mm_mul_pd(b.v,b.v);
|
||||
return Packet1cd(_mm_div_pd(res.v, _mm_add_pd(s,_mm_shuffle_pd(s, s, 0x1))));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
|
||||
{
|
||||
return Packet1cd(preverse(x.v));
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMPLEX_SSE_H
|
@ -1,388 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2007 Julien Pommier
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
/* The sin, cos, exp, and log functions of this file come from
|
||||
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
|
||||
#define EIGEN_MATH_FUNCTIONS_SSE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f plog<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f x = _x;
|
||||
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
|
||||
|
||||
/* the smallest non denormalized float number */
|
||||
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
|
||||
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f);
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
|
||||
|
||||
|
||||
Packet4i emm0;
|
||||
|
||||
Packet4f invalid_mask = _mm_cmplt_ps(x, _mm_setzero_ps());
|
||||
Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
|
||||
|
||||
x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
|
||||
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
|
||||
|
||||
/* keep only the fractional part */
|
||||
x = _mm_and_ps(x, p4f_inv_mant_mask);
|
||||
x = _mm_or_ps(x, p4f_half);
|
||||
|
||||
emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
|
||||
Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
|
||||
|
||||
/* part2:
|
||||
if( x < SQRTHF ) {
|
||||
e -= 1;
|
||||
x = x + x - 1.0;
|
||||
} else { x = x - 1.0; }
|
||||
*/
|
||||
Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
|
||||
Packet4f tmp = _mm_and_ps(x, mask);
|
||||
x = psub(x, p4f_1);
|
||||
e = psub(e, _mm_and_ps(p4f_1, mask));
|
||||
x = padd(x, tmp);
|
||||
|
||||
Packet4f x2 = pmul(x,x);
|
||||
Packet4f x3 = pmul(x2,x);
|
||||
|
||||
Packet4f y, y1, y2;
|
||||
y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
|
||||
y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
|
||||
y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
|
||||
y = pmadd(y , x, p4f_cephes_log_p2);
|
||||
y1 = pmadd(y1, x, p4f_cephes_log_p5);
|
||||
y2 = pmadd(y2, x, p4f_cephes_log_p8);
|
||||
y = pmadd(y, x3, y1);
|
||||
y = pmadd(y, x3, y2);
|
||||
y = pmul(y, x3);
|
||||
|
||||
y1 = pmul(e, p4f_cephes_log_q1);
|
||||
tmp = pmul(x2, p4f_half);
|
||||
y = padd(y, y1);
|
||||
x = psub(x, tmp);
|
||||
y2 = pmul(e, p4f_cephes_log_q2);
|
||||
x = padd(x, y);
|
||||
x = padd(x, y2);
|
||||
// negative arg will be NAN, 0 will be -INF
|
||||
return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)),
|
||||
_mm_and_ps(iszero_mask, p4f_minus_inf));
|
||||
}
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f pexp<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f x = _x;
|
||||
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
|
||||
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
|
||||
|
||||
Packet4f tmp = _mm_setzero_ps(), fx;
|
||||
Packet4i emm0;
|
||||
|
||||
// clamp x
|
||||
x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
|
||||
|
||||
/* express exp(x) as exp(g + n*log(2)) */
|
||||
fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
|
||||
|
||||
/* how to perform a floorf with SSE: just below */
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
tmp = _mm_cvtepi32_ps(emm0);
|
||||
/* if greater, substract 1 */
|
||||
Packet4f mask = _mm_cmpgt_ps(tmp, fx);
|
||||
mask = _mm_and_ps(mask, p4f_1);
|
||||
fx = psub(tmp, mask);
|
||||
|
||||
tmp = pmul(fx, p4f_cephes_exp_C1);
|
||||
Packet4f z = pmul(fx, p4f_cephes_exp_C2);
|
||||
x = psub(x, tmp);
|
||||
x = psub(x, z);
|
||||
|
||||
z = pmul(x,x);
|
||||
|
||||
Packet4f y = p4f_cephes_exp_p0;
|
||||
y = pmadd(y, x, p4f_cephes_exp_p1);
|
||||
y = pmadd(y, x, p4f_cephes_exp_p2);
|
||||
y = pmadd(y, x, p4f_cephes_exp_p3);
|
||||
y = pmadd(y, x, p4f_cephes_exp_p4);
|
||||
y = pmadd(y, x, p4f_cephes_exp_p5);
|
||||
y = pmadd(y, z, x);
|
||||
y = padd(y, p4f_1);
|
||||
|
||||
// build 2^n
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
emm0 = _mm_add_epi32(emm0, p4i_0x7f);
|
||||
emm0 = _mm_slli_epi32(emm0, 23);
|
||||
return pmul(y, _mm_castsi128_ps(emm0));
|
||||
}
|
||||
|
||||
/* evaluation of 4 sines at onces, using SSE2 intrinsics.
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
take into account the special handling they have for greater values
|
||||
-- it does not return garbage for arguments over 8192, though, but
|
||||
the extra precision is missing).
|
||||
|
||||
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
||||
surprising but correct result.
|
||||
*/
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psin<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f x = _x;
|
||||
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4i(1, 1);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(2, 2);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(4, 4);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
|
||||
|
||||
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
|
||||
|
||||
Packet4i emm0, emm2;
|
||||
sign_bit = x;
|
||||
/* take the absolute value */
|
||||
x = pabs(x);
|
||||
|
||||
/* take the modulo */
|
||||
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = pmul(x, p4f_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, p4i_1);
|
||||
emm2 = _mm_and_si128(emm2, p4i_not1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_and_si128(emm2, p4i_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
emm2 = _mm_and_si128(emm2, p4i_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
|
||||
Packet4f poly_mask = _mm_castsi128_ps(emm2);
|
||||
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = pmul(y, p4f_minus_cephes_DP1);
|
||||
xmm2 = pmul(y, p4f_minus_cephes_DP2);
|
||||
xmm3 = pmul(y, p4f_minus_cephes_DP3);
|
||||
x = padd(x, xmm1);
|
||||
x = padd(x, xmm2);
|
||||
x = padd(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = p4f_coscof_p0;
|
||||
Packet4f z = _mm_mul_ps(x,x);
|
||||
|
||||
y = pmadd(y, z, p4f_coscof_p1);
|
||||
y = pmadd(y, z, p4f_coscof_p2);
|
||||
y = pmul(y, z);
|
||||
y = pmul(y, z);
|
||||
Packet4f tmp = pmul(z, p4f_half);
|
||||
y = psub(y, tmp);
|
||||
y = padd(y, p4f_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
Packet4f y2 = p4f_sincof_p0;
|
||||
y2 = pmadd(y2, z, p4f_sincof_p1);
|
||||
y2 = pmadd(y2, z, p4f_sincof_p2);
|
||||
y2 = pmul(y2, z);
|
||||
y2 = pmul(y2, x);
|
||||
y2 = padd(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
y2 = _mm_and_ps(poly_mask, y2);
|
||||
y = _mm_andnot_ps(poly_mask, y);
|
||||
y = _mm_or_ps(y,y2);
|
||||
/* update the sign */
|
||||
return _mm_xor_ps(y, sign_bit);
|
||||
}
|
||||
|
||||
/* almost the same as psin */
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f pcos<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f x = _x;
|
||||
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4i(1, 1);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(2, 2);
|
||||
_EIGEN_DECLARE_CONST_Packet4i(4, 4);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
|
||||
|
||||
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
|
||||
Packet4i emm0, emm2;
|
||||
|
||||
x = pabs(x);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = pmul(x, p4f_cephes_FOPI);
|
||||
|
||||
/* get the integer part of y */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, p4i_1);
|
||||
emm2 = _mm_and_si128(emm2, p4i_not1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm2 = _mm_sub_epi32(emm2, p4i_2);
|
||||
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_andnot_si128(emm2, p4i_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask */
|
||||
emm2 = _mm_and_si128(emm2, p4i_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
Packet4f sign_bit = _mm_castsi128_ps(emm0);
|
||||
Packet4f poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = pmul(y, p4f_minus_cephes_DP1);
|
||||
xmm2 = pmul(y, p4f_minus_cephes_DP2);
|
||||
xmm3 = pmul(y, p4f_minus_cephes_DP3);
|
||||
x = padd(x, xmm1);
|
||||
x = padd(x, xmm2);
|
||||
x = padd(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = p4f_coscof_p0;
|
||||
Packet4f z = pmul(x,x);
|
||||
|
||||
y = pmadd(y,z,p4f_coscof_p1);
|
||||
y = pmadd(y,z,p4f_coscof_p2);
|
||||
y = pmul(y, z);
|
||||
y = pmul(y, z);
|
||||
Packet4f tmp = _mm_mul_ps(z, p4f_half);
|
||||
y = psub(y, tmp);
|
||||
y = padd(y, p4f_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
Packet4f y2 = p4f_sincof_p0;
|
||||
y2 = pmadd(y2, z, p4f_sincof_p1);
|
||||
y2 = pmadd(y2, z, p4f_sincof_p2);
|
||||
y2 = pmul(y2, z);
|
||||
y2 = pmadd(y2, x, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
y2 = _mm_and_ps(poly_mask, y2);
|
||||
y = _mm_andnot_ps(poly_mask, y);
|
||||
y = _mm_or_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
return _mm_xor_ps(y, sign_bit);
|
||||
}
|
||||
|
||||
// This is based on Quake3's fast inverse square root.
|
||||
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
|
||||
|
||||
/* select only the inverse sqrt of non-zero inputs */
|
||||
Packet4f non_zero_mask = _mm_cmpgt_ps(_x, pset1<Packet4f>(std::numeric_limits<float>::epsilon()));
|
||||
Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
|
||||
|
||||
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
|
||||
return pmul(_x,x);
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATH_FUNCTIONS_SSE_H
|
@ -1,632 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PACKET_MATH_SSE_H
|
||||
#define EIGEN_PACKET_MATH_SSE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
|
||||
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
|
||||
#endif
|
||||
|
||||
typedef __m128 Packet4f;
|
||||
typedef __m128i Packet4i;
|
||||
typedef __m128d Packet2d;
|
||||
|
||||
template<> struct is_arithmetic<__m128> { enum { value = true }; };
|
||||
template<> struct is_arithmetic<__m128i> { enum { value = true }; };
|
||||
template<> struct is_arithmetic<__m128d> { enum { value = true }; };
|
||||
|
||||
#define vec4f_swizzle1(v,p,q,r,s) \
|
||||
(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p)))))
|
||||
|
||||
#define vec4i_swizzle1(v,p,q,r,s) \
|
||||
(_mm_shuffle_epi32( v, ((s)<<6|(r)<<4|(q)<<2|(p))))
|
||||
|
||||
#define vec2d_swizzle1(v,p,q) \
|
||||
(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), ((q*2+1)<<6|(q*2)<<4|(p*2+1)<<2|(p*2)))))
|
||||
|
||||
#define vec4f_swizzle2(a,b,p,q,r,s) \
|
||||
(_mm_shuffle_ps( (a), (b), ((s)<<6|(r)<<4|(q)<<2|(p))))
|
||||
|
||||
#define vec4i_swizzle2(a,b,p,q,r,s) \
|
||||
(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), ((s)<<6|(r)<<4|(q)<<2|(p))))))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
|
||||
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
|
||||
const Packet4f p4f_##NAME = _mm_castsi128_ps(pset1<Packet4i>(X))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
|
||||
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
|
||||
|
||||
|
||||
template<> struct packet_traits<float> : default_packet_traits
|
||||
{
|
||||
typedef Packet4f type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=4,
|
||||
|
||||
HasDiv = 1,
|
||||
HasSin = EIGEN_FAST_MATH,
|
||||
HasCos = EIGEN_FAST_MATH,
|
||||
HasLog = 1,
|
||||
HasExp = 1,
|
||||
HasSqrt = 1
|
||||
};
|
||||
};
|
||||
template<> struct packet_traits<double> : default_packet_traits
|
||||
{
|
||||
typedef Packet2d type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=2,
|
||||
|
||||
HasDiv = 1
|
||||
};
|
||||
};
|
||||
template<> struct packet_traits<int> : default_packet_traits
|
||||
{
|
||||
typedef Packet4i type;
|
||||
enum {
|
||||
// FIXME check the Has*
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=4
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
|
||||
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; };
|
||||
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
|
||||
|
||||
#if defined(_MSC_VER) && (_MSC_VER==1500)
|
||||
// Workaround MSVC 9 internal compiler error.
|
||||
// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
|
||||
// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps(from,from,from,from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set_epi32(from,from,from,from); }
|
||||
#else
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set1_ps(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
|
||||
{
|
||||
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
|
||||
return _mm_xor_ps(a,mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
|
||||
{
|
||||
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000));
|
||||
return _mm_xor_pd(a,mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
|
||||
{
|
||||
return psub(_mm_setr_epi32(0,0,0,0), a);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSE4_1
|
||||
return _mm_mullo_epi32(a,b);
|
||||
#else
|
||||
// this version is slightly faster than 4 scalar products
|
||||
return vec4i_swizzle1(
|
||||
vec4i_swizzle2(
|
||||
_mm_mul_epu32(a,b),
|
||||
_mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2),
|
||||
vec4i_swizzle1(b,1,0,3,2)),
|
||||
0,2,0,2),
|
||||
0,2,1,3);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
|
||||
{ eigen_assert(false && "packet integer division are not supported by SSE");
|
||||
return pset1<Packet4i>(0);
|
||||
}
|
||||
|
||||
// for some weird raisons, it has to be overloaded for packet of integers
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b)
|
||||
{
|
||||
// after some bench, this version *is* faster than a scalar implementation
|
||||
Packet4i mask = _mm_cmplt_epi32(a,b);
|
||||
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_max_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_max_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b)
|
||||
{
|
||||
// after some bench, this version *is* faster than a scalar implementation
|
||||
Packet4i mask = _mm_cmpgt_epi32(a,b);
|
||||
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const Packet4i*>(from)); }
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD
|
||||
#if (_MSC_VER==1600)
|
||||
// NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
|
||||
// (i.e., it does not generate an unaligned load!!
|
||||
// TODO On most architectures this version should also be faster than a single _mm_loadu_ps
|
||||
// so we could also enable it for MSVC08 but first we have to make this later does not generate crap when doing so...
|
||||
__m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
|
||||
res = _mm_loadh_pi(res, (const __m64*)(from+2));
|
||||
return res;
|
||||
#else
|
||||
return _mm_loadu_ps(from);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_pd(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from)); }
|
||||
#else
|
||||
// Fast unaligned loads. Note that here we cannot directly use intrinsics: this would
|
||||
// require pointer casting to incompatible pointer types and leads to invalid code
|
||||
// because of the strict aliasing rule. The "dummy" stuff are required to enforce
|
||||
// a correct instruction dependency.
|
||||
// TODO: do the same for MSVC (ICC is compatible)
|
||||
// NOTE: with the code below, MSVC's compiler crashes!
|
||||
|
||||
#if defined(__GNUC__) && defined(__i386__)
|
||||
// bug 195: gcc/i386 emits weird x87 fldl/fstpl instructions for _mm_load_sd
|
||||
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
|
||||
#elif defined(__clang__)
|
||||
// bug 201: Segfaults in __mm_loadh_pd with clang 2.8
|
||||
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
|
||||
#else
|
||||
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 0
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
|
||||
{
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD
|
||||
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
|
||||
return _mm_loadu_ps(from);
|
||||
#else
|
||||
__m128d res;
|
||||
res = _mm_load_sd((const double*)(from)) ;
|
||||
res = _mm_loadh_pd(res, (const double*)(from+2)) ;
|
||||
return _mm_castpd_ps(res);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
|
||||
{
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD
|
||||
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
|
||||
return _mm_loadu_pd(from);
|
||||
#else
|
||||
__m128d res;
|
||||
res = _mm_load_sd(from) ;
|
||||
res = _mm_loadh_pd(res,from+1);
|
||||
return res;
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
|
||||
{
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD
|
||||
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
|
||||
return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from));
|
||||
#else
|
||||
__m128d res;
|
||||
res = _mm_load_sd((const double*)(from)) ;
|
||||
res = _mm_loadh_pd(res, (const double*)(from+2)) ;
|
||||
return _mm_castpd_si128(res);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
|
||||
{
|
||||
return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(from))), 0, 0, 1, 1);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
|
||||
{ return pset1<Packet2d>(from[0]); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
|
||||
{
|
||||
Packet4i tmp;
|
||||
tmp = _mm_loadl_epi64(reinterpret_cast<const Packet4i*>(from));
|
||||
return vec4i_swizzle1(tmp, 0, 0, 1, 1);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<Packet4i*>(to), from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) {
|
||||
EIGEN_DEBUG_UNALIGNED_STORE
|
||||
_mm_storel_pd((to), from);
|
||||
_mm_storeh_pd((to+1), from);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castps_pd(from)); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castsi128_pd(from)); }
|
||||
|
||||
// some compilers might be tempted to perform multiple moves instead of using a vector path.
|
||||
template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
|
||||
{
|
||||
Packet4f pa = _mm_set_ss(a);
|
||||
pstore(to, vec4f_swizzle1(pa,0,0,0,0));
|
||||
}
|
||||
// some compilers might be tempted to perform multiple moves instead of using a vector path.
|
||||
template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
|
||||
{
|
||||
Packet2d pa = _mm_set_sd(a);
|
||||
pstore(to, vec2d_swizzle1(pa,0,0));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
|
||||
#if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER)
|
||||
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
|
||||
// Direct of the struct members fixed bug #62.
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
|
||||
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
|
||||
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
|
||||
#elif defined(_MSC_VER) && !defined(__INTEL_COMPILER)
|
||||
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
|
||||
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
|
||||
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
|
||||
#else
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); }
|
||||
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); }
|
||||
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); }
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
|
||||
{ return _mm_shuffle_ps(a,a,0x1B); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
|
||||
{ return _mm_shuffle_pd(a,a,0x1); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
|
||||
{ return _mm_shuffle_epi32(a,0x1B); }
|
||||
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
|
||||
{
|
||||
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
|
||||
return _mm_and_ps(a,mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a)
|
||||
{
|
||||
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
|
||||
return _mm_and_pd(a,mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_SSSE3
|
||||
return _mm_abs_epi32(a);
|
||||
#else
|
||||
Packet4i aux = _mm_srai_epi32(a,31);
|
||||
return _mm_sub_epi32(_mm_xor_si128(a,aux),aux);
|
||||
#endif
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
|
||||
{
|
||||
vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
|
||||
vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA));
|
||||
vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF));
|
||||
vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00));
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
// TODO implement SSE2 versions as well as integer versions
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
|
||||
{
|
||||
return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
|
||||
{
|
||||
return _mm_hadd_pd(vecs[0], vecs[1]);
|
||||
}
|
||||
// SSSE3 version:
|
||||
// EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs)
|
||||
// {
|
||||
// return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
|
||||
// }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f tmp0 = _mm_hadd_ps(a,a);
|
||||
return pfirst(_mm_hadd_ps(tmp0, tmp0));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return pfirst(_mm_hadd_pd(a, a)); }
|
||||
|
||||
// SSSE3 version:
|
||||
// EIGEN_STRONG_INLINE float predux(const Packet4i& a)
|
||||
// {
|
||||
// Packet4i tmp0 = _mm_hadd_epi32(a,a);
|
||||
// return pfirst(_mm_hadd_epi32(tmp0, tmp0));
|
||||
// }
|
||||
#else
|
||||
// SSE2 versions
|
||||
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
|
||||
return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
|
||||
{
|
||||
return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
|
||||
{
|
||||
Packet4f tmp0, tmp1, tmp2;
|
||||
tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
|
||||
tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
|
||||
tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
|
||||
tmp0 = _mm_add_ps(tmp0, tmp1);
|
||||
tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
|
||||
tmp1 = _mm_add_ps(tmp1, tmp2);
|
||||
tmp2 = _mm_movehl_ps(tmp1, tmp0);
|
||||
tmp0 = _mm_movelh_ps(tmp0, tmp1);
|
||||
return _mm_add_ps(tmp0, tmp2);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
|
||||
{
|
||||
return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
|
||||
}
|
||||
#endif // SSE3
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
|
||||
return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
|
||||
{
|
||||
Packet4i tmp0, tmp1, tmp2;
|
||||
tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
|
||||
tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
|
||||
tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
|
||||
tmp0 = _mm_add_epi32(tmp0, tmp1);
|
||||
tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
|
||||
tmp1 = _mm_add_epi32(tmp1, tmp2);
|
||||
tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
|
||||
tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
|
||||
return _mm_add_epi32(tmp0, tmp2);
|
||||
}
|
||||
|
||||
// Other reduction functions:
|
||||
|
||||
// mul
|
||||
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
|
||||
return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
|
||||
{
|
||||
return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
// after some experiments, it is seems this is the fastest way to implement it
|
||||
// for GCC (eg., reusing pmul is very slow !)
|
||||
// TODO try to call _mm_mul_epu32 directly
|
||||
EIGEN_ALIGN16 int aux[4];
|
||||
pstore(aux, a);
|
||||
return (aux[0] * aux[1]) * (aux[2] * aux[3]);;
|
||||
}
|
||||
|
||||
// min
|
||||
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
|
||||
return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
|
||||
{
|
||||
return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
// after some experiments, it is seems this is the fastest way to implement it
|
||||
// for GCC (eg., it does not like using std::min after the pstore !!)
|
||||
EIGEN_ALIGN16 int aux[4];
|
||||
pstore(aux, a);
|
||||
register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
|
||||
return aux0<aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
// max
|
||||
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
|
||||
{
|
||||
Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
|
||||
return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
|
||||
{
|
||||
return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
|
||||
{
|
||||
// after some experiments, it is seems this is the fastest way to implement it
|
||||
// for GCC (eg., it does not like using std::min after the pstore !!)
|
||||
EIGEN_ALIGN16 int aux[4];
|
||||
pstore(aux, a);
|
||||
register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
|
||||
return aux0>aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
#if (defined __GNUC__)
|
||||
// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
|
||||
// {
|
||||
// Packet4f res = b;
|
||||
// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
|
||||
// return res;
|
||||
// }
|
||||
// EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i)
|
||||
// {
|
||||
// Packet4i res = a;
|
||||
// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
|
||||
// return res;
|
||||
// }
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_SSSE3
|
||||
// SSSE3 versions
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet4f>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
|
||||
{
|
||||
if (Offset!=0)
|
||||
first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet4i>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
|
||||
{
|
||||
if (Offset!=0)
|
||||
first = _mm_alignr_epi8(second,first, Offset*4);
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet2d>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
|
||||
}
|
||||
};
|
||||
#else
|
||||
// SSE2 versions
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet4f>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first = _mm_move_ss(first,second);
|
||||
first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
|
||||
}
|
||||
else if (Offset==2)
|
||||
{
|
||||
first = _mm_movehl_ps(first,first);
|
||||
first = _mm_movelh_ps(first,second);
|
||||
}
|
||||
else if (Offset==3)
|
||||
{
|
||||
first = _mm_move_ss(first,second);
|
||||
first = _mm_shuffle_ps(first,second,0x93);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet4i>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
|
||||
first = _mm_shuffle_epi32(first,0x39);
|
||||
}
|
||||
else if (Offset==2)
|
||||
{
|
||||
first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
|
||||
first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
|
||||
}
|
||||
else if (Offset==3)
|
||||
{
|
||||
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
|
||||
first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet2d>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
|
||||
first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PACKET_MATH_SSE_H
|
@ -1,441 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COEFFBASED_PRODUCT_H
|
||||
#define EIGEN_COEFFBASED_PRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/*********************************************************************************
|
||||
* Coefficient based product implementation.
|
||||
* It is designed for the following use cases:
|
||||
* - small fixed sizes
|
||||
* - lazy products
|
||||
*********************************************************************************/
|
||||
|
||||
/* Since the all the dimensions of the product are small, here we can rely
|
||||
* on the generic Assign mechanism to evaluate the product per coeff (or packet).
|
||||
*
|
||||
* Note that here the inner-loops should always be unrolled.
|
||||
*/
|
||||
|
||||
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl;
|
||||
|
||||
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl;
|
||||
|
||||
template<typename LhsNested, typename RhsNested, int NestingFlags>
|
||||
struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef typename remove_all<LhsNested>::type _LhsNested;
|
||||
typedef typename remove_all<RhsNested>::type _RhsNested;
|
||||
typedef typename scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
|
||||
typedef typename promote_storage_type<typename traits<_LhsNested>::StorageKind,
|
||||
typename traits<_RhsNested>::StorageKind>::ret StorageKind;
|
||||
typedef typename promote_index_type<typename traits<_LhsNested>::Index,
|
||||
typename traits<_RhsNested>::Index>::type Index;
|
||||
|
||||
enum {
|
||||
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
||||
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
||||
LhsFlags = _LhsNested::Flags,
|
||||
RhsFlags = _RhsNested::Flags,
|
||||
|
||||
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
||||
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
||||
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
||||
|
||||
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
||||
|
||||
LhsRowMajor = LhsFlags & RowMajorBit,
|
||||
RhsRowMajor = RhsFlags & RowMajorBit,
|
||||
|
||||
SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
|
||||
|
||||
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
|
||||
&& (ColsAtCompileTime == Dynamic
|
||||
|| ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
|
||||
&& (RhsFlags&AlignedBit)
|
||||
)
|
||||
),
|
||||
|
||||
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
|
||||
&& (RowsAtCompileTime == Dynamic
|
||||
|| ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
|
||||
&& (LhsFlags&AlignedBit)
|
||||
)
|
||||
),
|
||||
|
||||
EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
: (RhsRowMajor && !CanVectorizeLhs),
|
||||
|
||||
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
|
||||
| (EvalToRowMajor ? RowMajorBit : 0)
|
||||
| NestingFlags
|
||||
| (LhsFlags & RhsFlags & AlignedBit)
|
||||
// TODO enable vectorization for mixed types
|
||||
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
|
||||
|
||||
CoeffReadCost = InnerSize == Dynamic ? Dynamic
|
||||
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
|
||||
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
|
||||
|
||||
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
|
||||
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
|
||||
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
|
||||
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
|
||||
*/
|
||||
CanVectorizeInner = SameType
|
||||
&& LhsRowMajor
|
||||
&& (!RhsRowMajor)
|
||||
&& (LhsFlags & RhsFlags & ActualPacketAccessBit)
|
||||
&& (LhsFlags & RhsFlags & AlignedBit)
|
||||
&& (InnerSize % packet_traits<Scalar>::size == 0)
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename LhsNested, typename RhsNested, int NestingFlags>
|
||||
class CoeffBasedProduct
|
||||
: internal::no_assignment_operator,
|
||||
public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MatrixBase<CoeffBasedProduct> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
|
||||
private:
|
||||
|
||||
typedef typename internal::traits<CoeffBasedProduct>::_LhsNested _LhsNested;
|
||||
typedef typename internal::traits<CoeffBasedProduct>::_RhsNested _RhsNested;
|
||||
|
||||
enum {
|
||||
PacketSize = internal::packet_traits<Scalar>::size,
|
||||
InnerSize = internal::traits<CoeffBasedProduct>::InnerSize,
|
||||
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
|
||||
CanVectorizeInner = internal::traits<CoeffBasedProduct>::CanVectorizeInner
|
||||
};
|
||||
|
||||
typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
|
||||
Unroll ? InnerSize-1 : Dynamic,
|
||||
_LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
|
||||
|
||||
typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
|
||||
|
||||
public:
|
||||
|
||||
inline CoeffBasedProduct(const CoeffBasedProduct& other)
|
||||
: Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
|
||||
{}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
: m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
// we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
|
||||
// We still allow to mix T and complex<T>.
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
eigen_assert(lhs.cols() == rhs.rows()
|
||||
&& "invalid matrix product"
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
Scalar res;
|
||||
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
|
||||
* which is why we don't set the LinearAccessBit.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
|
||||
{
|
||||
Scalar res;
|
||||
const Index row = RowsAtCompileTime == 1 ? 0 : index;
|
||||
const Index col = RowsAtCompileTime == 1 ? index : 0;
|
||||
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
|
||||
{
|
||||
PacketScalar res;
|
||||
internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
|
||||
Unroll ? InnerSize-1 : Dynamic,
|
||||
_LhsNested, _RhsNested, PacketScalar, LoadMode>
|
||||
::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
// Implicit conversion to the nested type (trigger the evaluation of the product)
|
||||
EIGEN_STRONG_INLINE operator const PlainObject& () const
|
||||
{
|
||||
m_result.lazyAssign(*this);
|
||||
return m_result;
|
||||
}
|
||||
|
||||
const _LhsNested& lhs() const { return m_lhs; }
|
||||
const _RhsNested& rhs() const { return m_rhs; }
|
||||
|
||||
const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const
|
||||
{ return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
|
||||
|
||||
template<int DiagonalIndex>
|
||||
const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
|
||||
{ return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
|
||||
|
||||
const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
|
||||
{ return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }
|
||||
|
||||
protected:
|
||||
typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
|
||||
typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
|
||||
|
||||
mutable PlainObject m_result;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// here we need to overload the nested rule for products
|
||||
// such that the nested type is a const reference to a plain matrix
|
||||
template<typename Lhs, typename Rhs, int N, typename PlainObject>
|
||||
struct nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
|
||||
{
|
||||
typedef PlainObject const& type;
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Normal product .coeff() implementation (with meta-unrolling)
|
||||
***************************************************************************/
|
||||
|
||||
/**************************************
|
||||
*** Scalar path - no vectorization ***
|
||||
**************************************/
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
|
||||
res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res += lhs.coeff(row, i) * rhs.coeff(i, col);
|
||||
}
|
||||
};
|
||||
|
||||
/*******************************************
|
||||
*** Scalar path with inner vectorization ***
|
||||
*******************************************/
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
|
||||
struct product_coeff_vectorized_unroller
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
|
||||
{
|
||||
product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
|
||||
pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet>
|
||||
struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
|
||||
{
|
||||
pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
|
||||
}
|
||||
};
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::PacketScalar Packet;
|
||||
typedef typename Lhs::Index Index;
|
||||
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
Packet pres;
|
||||
product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
|
||||
product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
|
||||
res = predux(pres);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
|
||||
struct product_coeff_vectorized_dyn_selector
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
|
||||
}
|
||||
};
|
||||
|
||||
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
|
||||
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
|
||||
template<typename Lhs, typename Rhs, int RhsCols>
|
||||
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int LhsRows>
|
||||
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = lhs.transpose().cwiseProduct(rhs).sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
|
||||
}
|
||||
};
|
||||
|
||||
/*******************
|
||||
*** Packet path ***
|
||||
*******************/
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COEFFBASED_PRODUCT_H
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user