1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-06-15 14:17:04 +01:00

77 Commits

Author SHA1 Message Date
cd4d739f46 Merge pull request #19 from AndrewYongZhenNing/develop
Corrected Sinh model's definition, init fit parameter & fold definition.
2022-10-12 19:07:24 +01:00
a20dff68d1 Merge branch 'andrew-pr' into develop 2022-10-12 19:07:06 +01:00
7fd31d1fcc object to plot single point 2022-08-03 14:24:36 +01:00
f0c3fd4d7d PlotData fix 2022-08-03 14:24:20 +01:00
cb5a28dfa6 Merge branch 'develop' of https://github.com/AndrewYongZhenNing/LatAnalyze into develop 2022-05-03 10:06:21 +01:00
be72d31364 Added histogram feature to return xMax and xMin. 2022-05-03 10:04:50 +01:00
db08559632 Update Readme.md 2022-05-03 10:04:50 +01:00
8b259879ff utility to compute sample DWT 2022-05-03 10:04:50 +01:00
500210a2eb DWT working and tested 2022-05-03 10:04:50 +01:00
b9f61d8c17 first skeleton for DWT 2022-05-03 10:04:50 +01:00
51a46edb27 tool to merge samples 2022-05-03 10:04:50 +01:00
4436c575e6 correlation matrix plot compute dynamic range 2022-05-03 10:04:50 +01:00
e02a4bf30d data plots compatible with multi-column arrays 2022-05-03 10:04:50 +01:00
470aff3b4a Laplace filter in 2-pt fit 2022-04-29 16:45:02 +01:00
feb6f96589 Merge branch 'develop' of https://github.com/aportelli/LatAnalyze into develop 2022-04-15 11:25:46 +01:00
c442a437e5 Restructured sample-read to print stat err next to central value. 2022-03-25 09:38:32 +00:00
c9ea23dc92 Merge branch 'master' into develop 2022-03-10 08:34:53 +00:00
58a355478a Merge branch 'feature/dwt' into develop 2022-03-10 08:21:40 +00:00
4f919bc007 tool to merge samples 2022-03-10 08:21:26 +00:00
9455e2c66e correlation matrix plot compute dynamic range 2022-03-10 08:21:10 +00:00
43dd295f94 data plots compatible with multi-column arrays 2022-03-10 08:20:38 +00:00
9afd40a1ad utility to compute sample DWT 2022-03-10 08:16:40 +00:00
493d641e2f Modified fitSample routines to use SampleFitResult objects. 2022-03-04 10:36:30 +00:00
cd1aeac669 Merge from AP's develop. 2022-02-23 13:52:27 +00:00
9e78b96260 DWT working and tested 2022-02-18 14:06:52 +00:00
65a656f257 first skeleton for DWT 2022-02-17 19:24:34 +00:00
47d0b3f040 correlation dynamic range renaming 2022-02-16 19:03:19 +00:00
35f6733292 sample-plot-corr better palette 2022-02-16 18:55:24 +00:00
ebc1bd4c2e fit: stable variance inversion and SVD dynamic range 2022-02-16 18:55:08 +00:00
857a8e59c9 corr to var and SVD dynamic range 2022-02-16 18:54:16 +00:00
0de8091f3c Eigen plugin const 2022-02-16 18:53:45 +00:00
db99951dd4 removed redundant pValue private member 2022-01-14 16:58:44 +00:00
a389e01aa0 corrected own bug in strTo<T> 2022-01-14 16:58:24 +00:00
d11c6f725c Merge branch 'alt-fit-scan' into Tesseract 2022-01-14 16:10:14 +00:00
15a5471bef strTo<> now converts string of numbers to vector<Index> 2022-01-14 16:03:52 +00:00
e4cefae515 special macro to plot correlation matrices 2021-12-28 12:17:02 +01:00
8cd29c2bee XYStatData fixes 2021-12-26 22:21:03 +01:00
bac8356de5 Ignore verbose minimiser for samples 2021-12-21 18:18:14 +01:00
60d91cbff5 plot data with points 2021-12-20 01:30:26 +01:00
adf2c9cc69 normalised residuals routines 2021-12-20 01:30:03 +01:00
24a7b9c203 remove new covariance routine regression code 2021-12-20 01:29:29 +01:00
57c6004797 significant optimisation of covariance routines + checks 2021-12-20 01:25:13 +01:00
c796187d1e Absolute value plot (useful for log scale) 2021-12-14 13:13:36 +00:00
b92fb84e9d adding pthread link 2021-11-29 00:03:19 +00:00
5e04a0321e Merge branch 'master' into develop 2021-11-28 23:57:15 +00:00
78351a9b76 better interface for critical threaded sections 2021-11-28 23:51:56 +00:00
fe8c6c6630 Merge branch 'develop' of github.com:aportelli/LatAnalyze into develop 2021-11-28 23:26:20 +00:00
5f192ad30f Thread pool implementation 2021-11-28 23:26:17 +00:00
ccb837a244 Update build-macos.yml 2021-11-17 16:37:05 +00:00
499e173bac Update Readme.md 2021-11-17 16:20:56 +00:00
75485219d8 CI uses HDF5 1.10.8 hoping to solve compilation issues on Big Sur 2021-11-17 16:17:45 +00:00
a3054a0f44 first GitHub CI 2021-11-17 16:06:26 +00:00
d6e5ba724d CI scripts expose number of build tasks 2021-11-16 21:35:35 +00:00
9341a31cf4 gitignore update 2021-11-16 21:34:39 +00:00
b4b6bd22fa compatible with Minuit2 in ROOT 2021-11-16 21:34:25 +00:00
6eca1e6fc6 i) removed pvalue fit criteria
ii) overloaded fit() to output FitResult object of a particular sample
2021-10-07 17:44:10 +01:00
28aff209c4 New function fitSample to make XYSampleData::fit more modular:
Eg application: In fit scans, one may only want central fit for the uncorr fit to speed up process.
2021-09-22 15:53:26 +01:00
9c5ade4989 Changed fit criteria from chi2PerDof to pValue. 2021-09-22 12:35:41 +01:00
f0739047c3 XYSampleData throws Runtime exception error if central fit's chi2PerDof exceeds user-set/default bounds for chi2PerDof. This can be used to skip fits with bad fitranges. 2021-08-25 15:59:00 +01:00
6990d16ca0 Merge remote-tracking branch 'fork/develop' into develop 2021-08-25 14:55:52 +01:00
80e3c27d8e Added private variables to set bound on chi2perDof. This is used tas criteria for fit scans.
TODO: modify to exception handling.
2021-08-25 14:53:52 +01:00
2b52ee4512 Merge remote-tracking branch 'fork/develop' into develop 2021-05-21 15:33:52 +01:00
af31d1564d Previous commit failed to compile: needed to remove leftover lines. 2021-05-21 15:33:34 +01:00
938b96bf95 Merge remote-tracking branch 'fork/develop' into develop 2021-05-21 15:30:02 +01:00
375b8fd038 Removed criteria of rejecting fits if sample fit chi2PerDof is bad. 2021-05-21 15:29:24 +01:00
a7d020e0f9 Merge remote-tracking branch 'fork/develop' into develop 2021-05-20 11:51:53 +01:00
c48e2be20b Added feature to reject fit if 25% of sample fits are bad (with chi2perdof > 2 or is a NaN) 2021-05-20 11:51:29 +01:00
113b433b5e Merge remote-tracking branch 'fork/develop' into develop 2021-05-20 11:14:53 +01:00
9e8d534635 New methods in XYSampleData class to skip fits that are non-converging/large chi2PerDof.
This is tracked by boolean goodFit_.
2021-05-20 11:05:25 +01:00
68d22eca11 Badges update 2020-11-27 17:09:31 +00:00
d4704267d6 Dev version number 2020-11-27 13:34:58 +00:00
d67a25245e Merge tag 'v3.5.1' into develop 2020-11-27 13:34:26 +00:00
1b12f2ca2d latan-sample-fake now takes option -r/--seed where seed can be specified if fake bootstrap samples with 100% correlation are needed. 2020-11-13 07:56:58 +00:00
ddee922e72 1) restored original definition of sinh in makeSinhModel() and its init in parameterGuess(). 2) fold definition includes sign factor due to cosh/sinh model. 2020-07-10 08:33:28 +01:00
7b3b203ca9 Merge remote-tracking branch 'upstream/develop' into develop 2020-07-07 10:09:01 +01:00
3e3cdf2d69 2pt-fit.cpp now has correct number of arguments for fold function if --fold is called. 2020-07-07 10:07:48 +01:00
b6c2efa666 1) fold now requires second argument: modelPar to properly fold correlators with cosh/sinh form. 2) makeSinhModel has the appropriate alternate sign s.t the prefactor remains positive. 3) parameterGuess uses correct analytic form for sinh-type correlator's init(1), corresponding to the prefactor. 2020-07-07 10:07:05 +01:00
46 changed files with 2028 additions and 240 deletions

26
.github/workflows/build-macos.yml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Build macOS
on: [push]
jobs:
build:
runs-on: macos-11
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Install basic dependencies
run: brew install automake autoconf libtool bison flex
- name: Build dependencies
shell: bash
run: |
export PATH=/usr/local/opt/flex/bin:/usr/local/opt/bison/bin:${PATH}
cd ci-scripts
./install-deps.sh prefix 6
- name: Build LatAnalyze
shell: bash
run: |
export PATH=/usr/local/opt/flex/bin:/usr/local/opt/bison/bin:${PATH}
cd ci-scripts
./install-latan.sh prefix 6

26
.github/workflows/build-ubuntu.yml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Build Ubuntu
on: [push]
jobs:
build:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Install basic dependencies
run: |
sudo bash -c "$(wget -O - https://apt.llvm.org/llvm.sh)"
sudo apt install cmake bison flex
- name: Build dependencies
shell: bash
run: |
cd ci-scripts
CC=clang CXX=clang++ ./install-deps.sh prefix 6
- name: Build LatAnalyze
shell: bash
run: |
cd ci-scripts
CC=clang CXX=clang++ ./install-latan.sh prefix 6

1
.gitignore vendored
View File

@ -16,6 +16,7 @@ autom4te.cache/*
*.in~
config.h*
configure
configure~
.buildutils/*
aclocal.m4

View File

@ -1,21 +1,6 @@
# LatAnalyze
License: GNU General Public License v3
<table>
<tr>
<td>Last stable release</td>
<td><a href="https://travis-ci.org/aportelli/LatAnalyze">
<img src="https://travis-ci.org/aportelli/LatAnalyze.svg?branch=master"></a>
</td>
</tr>
<tr>
<td>Development branch</td>
<td><a href="https://travis-ci.org/aportelli/LatAnalyze">
<img src="https://travis-ci.org/aportelli/LatAnalyze.svg?branch=develop"></a>
</td>
</tr>
</table>
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) [![DOI](https://zenodo.org/badge/10201777.svg)](https://zenodo.org/badge/latestdoi/10201777) [![Build Ubuntu](https://github.com/aportelli/LatAnalyze/actions/workflows/build-ubuntu.yml/badge.svg)](https://github.com/aportelli/LatAnalyze/actions/workflows/build-ubuntu.yml) [![Build macOS](https://github.com/aportelli/LatAnalyze/actions/workflows/build-macos.yml/badge.svg)](https://github.com/aportelli/LatAnalyze/actions/workflows/build-macos.yml)
## Description
LatAnalyze is a C++11 library for statistical data analysis based on bootstrap
@ -164,4 +149,4 @@ Fixes:
#### v3.0
Commit `7b4f2884a5e99bbfab4d4bd7623f609a55403c39`.
First 'stable' version of LatAnalyze in C++. The v2.0 refers to the [C version](https://github.com/aportelli/LatAnalyze-legacy) and v1.0 to an old undistributed version.
**This version compiles fine on OS X with clang but does have many portability issues to other platforms/compilers, v3.1 is the first real release.**
**This version compiles fine on OS X with clang but does have many portability issues to other platforms/compilers, v3.1 is the first real release.**

View File

@ -1,15 +1,16 @@
#!/usr/bin/env bash
if (( $# != 1 )); then
echo "usage: `basename $0` <prefix>" 1>&2
if (( $# != 2 )); then
echo "usage: `basename $0` <prefix> <ntasks>" 1>&2
exit 1
fi
PREFIX=$1
NTASKS=$2
set -ex
mkdir -p local/build
for d in gsl nlopt minuit hdf5; do
if [ ! -e local/.built.${d} ]; then
./install-${d}.sh ${PREFIX}
./install-${d}.sh ${PREFIX} ${NTASKS}
fi
done

View File

@ -2,11 +2,12 @@
NAME='gsl-2.6'
if (( $# != 1 )); then
echo "usage: `basename $0` <prefix>" 1>&2
if (( $# != 2 )); then
echo "usage: `basename $0` <prefix> <ntasks>" 1>&2
exit 1
fi
PREFIX=$1
NTASKS=$2
set -ex
INITDIR=$(pwd -P)
@ -19,7 +20,7 @@ tar -xzvf ${NAME}.tar.gz
mkdir -p ${NAME}/build
cd ${NAME}/build
../configure --prefix=${PREFIX}
make -j4
make -j${NTASKS}
make install
cd ${INITDIR}/local
touch .built.gsl

View File

@ -1,12 +1,13 @@
#!/usr/bin/env bash
NAME='hdf5-1.10.5'
NAME='hdf5-1.10.8'
if (( $# != 1 )); then
echo "usage: `basename $0` <prefix>" 1>&2
if (( $# != 2 )); then
echo "usage: `basename $0` <prefix> <ntasks>" 1>&2
exit 1
fi
PREFIX=$1
NTASKS=$2
set -ex
INITDIR=$(pwd -P)
@ -19,7 +20,7 @@ tar -xzvf ${NAME}.tar.gz
mkdir ${NAME}/build
cd ${NAME}/build
../configure --prefix=${PREFIX} --enable-cxx
make -j4
make -j${NTASKS}
make install
cd ${INITDIR}/local
touch .built.hdf5

View File

@ -1,10 +1,11 @@
#!/usr/bin/env bash
if (( $# != 1 )); then
echo "usage: `basename $0` <prefix>" 1>&2
if (( $# != 2 )); then
echo "usage: `basename $0` <prefix> <ntasks>" 1>&2
exit 1
fi
PREFIX=$1
NTASKS=$2
set -ex
INITDIR=$(pwd -P)
@ -12,11 +13,11 @@ mkdir -p ${PREFIX}
cd ${PREFIX}
PREFIX=$(pwd -P)
cd ${INITDIR}
./install-deps.sh ${PREFIX}
./install-deps.sh ${PREFIX} ${NTASKS}
cd ..
./bootstrap.sh
mkdir -p build
cd build
../configure --prefix=${PREFIX} --with-minuit=${PREFIX} --with-nlopt=${PREFIX} --with-hdf5=${PREFIX} --with-gsl=${PREFIX} CXXFLAGS="${CXXFLAGS} -O3 -march=haswell -mtune=haswell"
make -j4
../configure --prefix=${PREFIX} --with-minuit=${PREFIX} --with-nlopt=${PREFIX} --with-hdf5=${PREFIX} --with-gsl=${PREFIX} CXXFLAGS="${CXXFLAGS} -O3 -march=native -mtune=native"
make -j${NTASKS}
make install

View File

@ -1,12 +1,12 @@
#!/usr/bin/env bash
NAME='Minuit2-5.34.14'
if (( $# != 1 )); then
echo "usage: `basename $0` <prefix>" 1>&2
if (( $# != 2 )); then
echo "usage: `basename $0` <prefix> <ntasks>" 1>&2
exit 1
fi
PREFIX=$1
NTASKS=$2
set -ex
INITDIR=$(pwd -P)
@ -14,12 +14,12 @@ mkdir -p ${PREFIX}
cd ${PREFIX}
PREFIX=$(pwd -P)
cd ${INITDIR}/local/build
wget http://www.cern.ch/mathlibs/sw/5_34_14/Minuit2/${NAME}.tar.gz
tar -xzvf ${NAME}.tar.gz
mkdir -p ${NAME}/build
cd ${NAME}/build
../configure --prefix=${PREFIX} --disable-openmp
make -j4
rm -rf root
git clone https://github.com/root-project/root.git
cd root/math/minuit2/
mkdir build; cd build
cmake .. -Dminuit2_standalone=ON -DCMAKE_INSTALL_PREFIX=${PREFIX}
make -j${NTASKS}
make install
cd ${INITDIR}/local
touch .built.minuit

View File

@ -2,11 +2,12 @@
NAME='2.6.1'
if (( $# != 1 )); then
echo "usage: `basename $0` <prefix>" 1>&2
if (( $# != 2 )); then
echo "usage: `basename $0` <prefix> <ntasks>" 1>&2
exit 1
fi
PREFIX=$1
NTASKS=$2
set -ex
INITDIR=$(pwd -P)
@ -20,7 +21,7 @@ NAME=nlopt-${NAME}
mkdir -p ${NAME}/build
cd ${NAME}/build
cmake -DCMAKE_INSTALL_PREFIX=${PREFIX} -DCMAKE_BUILD_WITH_INSTALL_NAME_DIR=TRUE -DCMAKE_INSTALL_NAME_DIR="${PREFIX}/lib" ..
make -j4
make -j${NTASKS}
make install
cd ${INITDIR}/local
touch .built.nlopt

View File

@ -2,7 +2,7 @@
# Initialization
AC_PREREQ([2.63])
AC_INIT([LatAnalyze],[3.5.1],[antonin.portelli@me.com],[LatAnalyze])
AC_INIT([LatAnalyze],[3.5.1-dev],[antonin.portelli@me.com],[LatAnalyze])
AC_CONFIG_AUX_DIR([.buildutils])
AC_CONFIG_SRCDIR([lib/Global.cpp])
AC_CONFIG_SRCDIR([utils/sample_read.cpp])
@ -36,7 +36,7 @@ AC_ARG_WITH([gsl],
AC_ARG_WITH([minuit],
[AS_HELP_STRING([--with-minuit=prefix],
[try this for a non-standard install prefix of the Minuit2 library])],
[AM_CXXFLAGS="$AM_CXXFLAGS -I$with_minuit/include"]
[AM_CXXFLAGS="$AM_CXXFLAGS -I$with_minuit/include -I$with_minuit/include/Minuit2 -I$with_minuit/include/Fit"]
[AM_LDFLAGS="$AM_LDFLAGS -L$with_minuit/lib"])
AC_ARG_WITH([nlopt],
[AS_HELP_STRING([--with-nlopt=prefix],
@ -74,6 +74,7 @@ CXXFLAGS_CPY=$CXXFLAGS
LDFLAGS_CPY=$LDFLAGS
CXXFLAGS="$AM_CXXFLAGS $CXXFLAGS"
LDFLAGS="$AM_LDFLAGS $LDFLAGS"
AC_CHECK_LIB([pthread],[pthread_create],[],[AC_MSG_ERROR([pthread library not found])])
AC_CHECK_LIB([m],[cos],[],[AC_MSG_ERROR([libm library not found])])
AC_CHECK_LIB([gslcblas],[cblas_dgemm],[],
[AC_MSG_ERROR([GSL CBLAS library not found])])
@ -90,10 +91,10 @@ AC_CHECK_LIB([hdf5_cpp],[H5Fopen],
[AC_MSG_ERROR([HDF5 library not found])], [-lhdf5])
SAVED_LDFLAGS=$LDFLAGS
LDFLAGS="$LDFLAGS -lMinuit2"
AC_MSG_CHECKING([for ROOT::Minuit2::BasicMinimumError in -lMinuit2]);
AC_MSG_CHECKING([for ROOT::Minuit2::VariableMetricMinimizer in -lMinuit2]);
AC_LINK_IFELSE(
[AC_LANG_PROGRAM([#include <Minuit2/BasicMinimumError.h>],
[ROOT::Minuit2::BasicMinimumError dummy(0)])],
[AC_LANG_PROGRAM([#include <Minuit2/VariableMetricMinimizer.h>],
[ROOT::Minuit2::VariableMetricMinimizer dummy()])],
[LIBS="$LIBS -lMinuit2"]
[AC_DEFINE([HAVE_MINUIT2],
[1],
@ -103,6 +104,20 @@ AC_LINK_IFELSE(
[have_minuit=false]
[AC_MSG_RESULT([no])])
AM_CONDITIONAL([HAVE_MINUIT], [test x$have_minuit = xtrue])
LDFLAGS="$LDFLAGS -lMinuit2Math"
AC_MSG_CHECKING([for ROOT::Math::MinimizerOptions in -lMinuit2Math]);
AC_LINK_IFELSE(
[AC_LANG_PROGRAM([#include <Minuit2/Math/MinimizerOptions.h>],
[ROOT::Math::MinimizerOptions dummy()])],
[LIBS="$LIBS -lMinuit2Math"]
[AC_DEFINE([HAVE_MINUIT2MATH],
[1],
[Define to 1 if you have the `Minuit2Math' library (-lMinuit2Math).])]
[have_minuitmath=true]
[AC_MSG_RESULT([yes])],
[have_minuitmath=false]
[AC_MSG_RESULT([no])])
AM_CONDITIONAL([HAVE_MINUITMATH], [test x$have_minuit = xtrue])
LDFLAGS=$SAVED_LDFLAGS
CXXFLAGS=$CXXFLAGS_CPY
LDFLAGS=$LDFLAGS_CPY

View File

@ -9,6 +9,7 @@ endif
noinst_PROGRAMS = \
exCompiledDoubleFunction\
exDerivative \
exDWT \
exFit \
exFitSample \
exIntegrator \
@ -19,7 +20,8 @@ noinst_PROGRAMS = \
exPlot \
exPValue \
exRand \
exRootFinder
exRootFinder \
exThreadPool
exCompiledDoubleFunction_SOURCES = exCompiledDoubleFunction.cpp
exCompiledDoubleFunction_CXXFLAGS = $(COM_CXXFLAGS)
@ -29,6 +31,10 @@ exDerivative_SOURCES = exDerivative.cpp
exDerivative_CXXFLAGS = $(COM_CXXFLAGS)
exDerivative_LDFLAGS = -L../lib/.libs -lLatAnalyze
exDWT_SOURCES = exDWT.cpp
exDWT_CXXFLAGS = $(COM_CXXFLAGS)
exDWT_LDFLAGS = -L../lib/.libs -lLatAnalyze
exFit_SOURCES = exFit.cpp
exFit_CXXFLAGS = $(COM_CXXFLAGS)
exFit_LDFLAGS = -L../lib/.libs -lLatAnalyze
@ -73,4 +79,8 @@ exRootFinder_SOURCES = exRootFinder.cpp
exRootFinder_CXXFLAGS = $(COM_CXXFLAGS)
exRootFinder_LDFLAGS = -L../lib/.libs -lLatAnalyze
exThreadPool_SOURCES = exThreadPool.cpp
exThreadPool_CXXFLAGS = $(COM_CXXFLAGS)
exThreadPool_LDFLAGS = -L../lib/.libs -lLatAnalyze
ACLOCAL_AMFLAGS = -I .buildutils/m4

28
examples/exDWT.cpp Normal file
View File

@ -0,0 +1,28 @@
#include <LatAnalyze/Numerical/DWT.hpp>
using namespace std;
using namespace Latan;
int main(void)
{
DVec data, dataRec;
vector<DWT::DWTLevel> dataDWT;
DWT dwt(DWTFilters::db3);
cout << "-- random data" << endl;
data.setRandom(16);
cout << data.transpose() << endl;
cout << "-- compute Daubechies 3 DWT" << endl;
dataDWT = dwt.forward(data, 4);
for (unsigned int l = 0; l < dataDWT.size(); ++l)
{
cout << "* level " << l << endl;
cout << "L= " << dataDWT[l].first.transpose() << endl;
cout << "H= " << dataDWT[l].second.transpose() << endl;
}
cout << "-- check inverse DWT" << endl;
dataRec = dwt.backward(dataDWT);
cout << "rel diff = " << 2.*(data - dataRec).norm()/(data + dataRec).norm() << endl;
return EXIT_SUCCESS;
}

29
examples/exThreadPool.cpp Normal file
View File

@ -0,0 +1,29 @@
#include <LatAnalyze/Core/ThreadPool.hpp>
using namespace std;
using namespace Latan;
int main(void)
{
ThreadPool pool;
cout << "Using " << pool.getThreadNum() << " threads" << endl;
for (unsigned int i = 1; i <= 20; ++i)
{
pool.addJob([i, &pool](void)
{
pool.critical([i](void)
{
cout << "job " << i << " wait for " << i*100 << " ms" << endl;
});
this_thread::sleep_for(chrono::milliseconds(i*100));
pool.critical([i](void)
{
cout << "job " << i << " done" << endl;
});
});
}
pool.terminate();
return EXIT_SUCCESS;
}

View File

@ -17,7 +17,7 @@
* along with LatAnalyze. If not, see <http://www.gnu.org/licenses/>.
*/
Derived pInverse(const double tolerance = 1.0e-10)
Derived pInverse(const double tolerance = 1.0e-10) const
{
auto svd = jacobiSvd(Eigen::ComputeThinU|Eigen::ComputeThinV);
const auto u = svd.matrixU();
@ -52,7 +52,7 @@ Derived pInverse(const double tolerance = 1.0e-10)
return v*s.asDiagonal()*u.transpose();
}
Derived singularValues(void)
Derived singularValues(void) const
{
auto svd = jacobiSvd();

View File

@ -29,7 +29,8 @@ using namespace Latan;
******************************************************************************/
DMat MATH_NAMESPACE::varToCorr(const DMat &var)
{
DMat res = var, invDiag = res.diagonal();
DMat res = var;
DVec invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
@ -37,6 +38,28 @@ DMat MATH_NAMESPACE::varToCorr(const DMat &var)
return res;
}
DMat MATH_NAMESPACE::corrToVar(const DMat &corr, const DVec &varDiag)
{
DMat res = corr;
DVec varSqrtDiag = varDiag.cwiseSqrt();
res = (varSqrtDiag*varSqrtDiag.transpose()).cwiseProduct(res);
return res;
}
double MATH_NAMESPACE::svdDynamicRange(const DMat &mat)
{
DVec s = mat.singularValues();
return s.maxCoeff()/s.minCoeff();
}
double MATH_NAMESPACE::svdDynamicRangeDb(const DMat &mat)
{
return 10.*log10(svdDynamicRange(mat));
}
/******************************************************************************
* Standard C functions *
******************************************************************************/

View File

@ -70,6 +70,11 @@ namespace MATH_NAMESPACE
// convert variance matrix to correlation matrix
DMat varToCorr(const DMat &var);
DMat corrToVar(const DMat &corr, const DVec &varDiag);
// matrix SVD dynamic range
double svdDynamicRange(const DMat &mat);
double svdDynamicRangeDb(const DMat &mat);
// Constants
constexpr double pi = 3.1415926535897932384626433832795028841970;

View File

@ -112,7 +112,7 @@ PlotHeadCommand::PlotHeadCommand(const string &command)
}
// PlotData constructor ////////////////////////////////////////////////////////
PlotData::PlotData(const DMatSample &x, const DMatSample &y)
PlotData::PlotData(const DMatSample &x, const DMatSample &y, const bool abs)
{
if (x[central].rows() != y[central].rows())
{
@ -122,16 +122,23 @@ PlotData::PlotData(const DMatSample &x, const DMatSample &y)
DMat d(x[central].rows(), 4);
string usingCmd, tmpFileName;
d.col(0) = x[central];
d.col(2) = y[central];
d.col(1) = x.variance().cwiseSqrt();
d.col(3) = y.variance().cwiseSqrt();
d.col(0) = x[central].col(0);
d.col(2) = y[central].col(0);
d.col(1) = x.variance().cwiseSqrt().col(0);
d.col(3) = y.variance().cwiseSqrt().col(0);
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:3:2:4 w xyerr");
if (!abs)
{
setCommand("'" + tmpFileName + "' u 1:3:2:4 w xyerr");
}
else
{
setCommand("'" + tmpFileName + "' u 1:(abs($3)):2:4 w xyerr");
}
}
PlotData::PlotData(const DVec &x, const DMatSample &y)
PlotData::PlotData(const DVec &x, const DMatSample &y, const bool abs)
{
if (x.rows() != y[central].rows())
{
@ -142,14 +149,21 @@ PlotData::PlotData(const DVec &x, const DMatSample &y)
string usingCmd, tmpFileName;
d.col(0) = x;
d.col(1) = y[central];
d.col(2) = y.variance().cwiseSqrt();
d.col(1) = y[central].col(0);
d.col(2) = y.variance().cwiseSqrt().col(0);
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:2:3 w yerr");
if (!abs)
{
setCommand("'" + tmpFileName + "' u 1:2:3 w yerr");
}
else
{
setCommand("'" + tmpFileName + "' u 1:(abs($2)):3 w yerr");
}
}
PlotData::PlotData(const DMatSample &x, const DVec &y)
PlotData::PlotData(const DMatSample &x, const DVec &y, const bool abs)
{
if (x[central].rows() != y.rows())
{
@ -159,24 +173,93 @@ PlotData::PlotData(const DMatSample &x, const DVec &y)
DMat d(x[central].rows(), 3), xerr, yerr;
string usingCmd, tmpFileName;
d.col(0) = x[central];
d.col(0) = x[central].col(0);
d.col(2) = y;
d.col(1) = x.variance().cwiseSqrt();
d.col(1) = x.variance().cwiseSqrt().col(0);
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
if (!abs)
{
setCommand("'" + tmpFileName + "' u 1:3:2 w xerr");
}
else
{
setCommand("'" + tmpFileName + "' u 1:(abs($3)):2 w xerr");
}
}
PlotData::PlotData(const XYStatData &data, const Index i, const Index j, const bool abs)
{
string usingCmd, tmpFileName;
if (!abs)
{
usingCmd = (data.isXExact(i)) ? "u 1:3:4 w yerr" : "u 1:3:2:4 w xyerr";
}
else
{
usingCmd = (data.isXExact(i)) ? "u 1:(abs($3)):4 w yerr" : "u 1:(abs($3)):2:4 w xyerr";
}
tmpFileName = dumpToTmpFile(data.getTable(i, j));
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' " + usingCmd);
}
// PlotPoint constructor ///////////////////////////////////////////////////////
PlotPoint::PlotPoint(const double x, const double y)
{
DMat d(1, 2);
string usingCmd, tmpFileName;
d(0, 0) = x;
d(0, 1) = y;
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:2");
}
PlotPoint::PlotPoint(const DSample &x, const double y)
{
DMat d(1, 3);
string usingCmd, tmpFileName;
d(0, 0) = x[central];
d(0, 2) = y;
d(0, 1) = sqrt(x.variance());
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:3:2 w xerr");
}
PlotData::PlotData(const XYStatData &data, const Index i, const Index j)
PlotPoint::PlotPoint(const double x, const DSample &y)
{
DMat d(1, 3);
string usingCmd, tmpFileName;
usingCmd = (data.isXExact(i)) ? "u 1:3:4 w yerr" : "u 1:3:2:4 w xyerr";
tmpFileName = dumpToTmpFile(data.getTable(i, j));
d(0, 0) = x;
d(0, 1) = y[central];
d(0, 2) = sqrt(y.variance());
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' " + usingCmd);
setCommand("'" + tmpFileName + "' u 1:2:3 w yerr");
}
PlotPoint::PlotPoint(const DSample &x, const DSample &y)
{
DMat d(1, 4);
string usingCmd, tmpFileName;
d(0, 0) = x[central];
d(0, 2) = y[central];
d(0, 1) = sqrt(x.variance());
d(0, 3) = sqrt(y.variance());
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:3:2:4 w xyerr");
}
// PlotLine constructor ////////////////////////////////////////////////////////
PlotLine::PlotLine(const DVec &x, const DVec &y)
{
@ -195,6 +278,24 @@ PlotLine::PlotLine(const DVec &x, const DVec &y)
setCommand("'" + tmpFileName + "' u 1:2 w lines");
}
// PlotPoints constructor ////////////////////////////////////////////////////////
PlotPoints::PlotPoints(const DVec &x, const DVec &y)
{
if (x.size() != y.size())
{
LATAN_ERROR(Size, "x and y vectors do not have the same size");
}
DMat d(x.size(), 2);
string usingCmd, tmpFileName;
d.col(0) = x;
d.col(1) = y;
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:2");
}
// PlotHLine constructor ///////////////////////////////////////////////////////
PlotHLine::PlotHLine(const double y)
{
@ -217,7 +318,8 @@ PlotBand::PlotBand(const double xMin, const double xMax, const double yMin,
// PlotFunction constructor ////////////////////////////////////////////////////
PlotFunction::PlotFunction(const DoubleFunction &function, const double xMin,
const double xMax, const unsigned int nPoint)
const double xMax, const unsigned int nPoint,
const bool abs)
{
DMat d(nPoint, 2);
string tmpFileName;
@ -230,7 +332,14 @@ PlotFunction::PlotFunction(const DoubleFunction &function, const double xMin,
}
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:2 w lines");
if (!abs)
{
setCommand("'" + tmpFileName + "' u 1:2 w lines");
}
else
{
setCommand("'" + tmpFileName + "' u 1:(abs($2)) w lines");
}
}
// PlotPredBand constructor ////////////////////////////////////////////////////

View File

@ -89,14 +89,27 @@ class PlotData: public PlotObject
{
public:
// constructor
PlotData(const DMatSample &x, const DMatSample &y);
PlotData(const DVec &x, const DMatSample &y);
PlotData(const DMatSample &x, const DVec &y);
PlotData(const XYStatData &data, const Index i = 0, const Index j = 0);
PlotData(const DMatSample &x, const DMatSample &y, const bool abs = false);
PlotData(const DVec &x, const DMatSample &y, const bool abs = false);
PlotData(const DMatSample &x, const DVec &y, const bool abs = false);
PlotData(const XYStatData &data, const Index i = 0, const Index j = 0,
const bool abs = false);
// destructor
virtual ~PlotData(void) = default;
};
class PlotPoint: public PlotObject
{
public:
// constructor
PlotPoint(const double x, const double y);
PlotPoint(const DSample &x, const double y);
PlotPoint(const double x, const DSample &y);
PlotPoint(const DSample &x, const DSample &y);
// destructor
virtual ~PlotPoint(void) = default;
};
class PlotHLine: public PlotObject
{
public:
@ -115,6 +128,15 @@ public:
virtual ~PlotLine(void) = default;
};
class PlotPoints: public PlotObject
{
public:
// constructor
PlotPoints(const DVec &x, const DVec &y);
// destructor
virtual ~PlotPoints(void) = default;
};
class PlotBand: public PlotObject
{
public:
@ -130,7 +152,8 @@ class PlotFunction: public PlotObject
public:
// constructor
PlotFunction(const DoubleFunction &function, const double xMin,
const double xMax, const unsigned int nPoint = 1000);
const double xMax, const unsigned int nPoint = 1000,
const bool abs = false);
// destructor
virtual ~PlotFunction(void) = default;
};
@ -182,6 +205,11 @@ PlotRange(Axis::x, -.5, (m).cols() - .5) <<\
PlotRange(Axis::y, (m).rows() - .5, -.5) <<\
PlotMatrixNoRange(m)
#define PlotCorrMatrix(m)\
PlotHeadCommand("set cbrange [-1:1]") <<\
PlotHeadCommand("set palette defined (0 'blue', 1 'white', 2 'red')") <<\
PlotMatrix(m)
/******************************************************************************
* Plot modifiers *
******************************************************************************/

117
lib/Core/ThreadPool.cpp Normal file
View File

@ -0,0 +1,117 @@
/*
* ThreadPool.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2021 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Core/ThreadPool.hpp>
#include <LatAnalyze/includes.hpp>
using namespace std;
using namespace Latan;
/******************************************************************************
* ThreadPool implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
ThreadPool::ThreadPool(void)
: ThreadPool(std::thread::hardware_concurrency())
{}
ThreadPool::ThreadPool(const unsigned int nThreads)
: nThreads_(nThreads)
{
for (unsigned int t = 0; t < nThreads_; ++t)
{
threads_.push_back(thread(&ThreadPool::workerLoop, this));
}
}
// destructor //////////////////////////////////////////////////////////////////
ThreadPool::~ThreadPool(void)
{
terminate();
}
// get the number of threads ///////////////////////////////////////////////////
unsigned int ThreadPool::getThreadNum(void) const
{
return nThreads_;
}
// get the pool mutex for synchronisation //////////////////////////////////////
std::mutex & ThreadPool::getMutex(void)
{
return mutex_;
}
// worker loop /////////////////////////////////////////////////////////////////
void ThreadPool::workerLoop(void)
{
while (true)
{
Job job;
{
unique_lock<mutex> lock(mutex_);
condition_.wait(lock, [this](){
return !queue_.empty() || terminatePool_;
});
if (terminatePool_ and queue_.empty())
{
return;
}
job = queue_.front();
queue_.pop();
}
job();
}
}
// add jobs ////////////////////////////////////////////////////////////////////
void ThreadPool::addJob(Job newJob)
{
{
unique_lock<mutex> lock(mutex_);
queue_.push(newJob);
}
condition_.notify_one();
}
// critical section ////////////////////////////////////////////////////////////
void ThreadPool::critical(Job fn)
{
unique_lock<mutex> lock(mutex_);
fn();
}
// wait for completion /////////////////////////////////////////////////////////
void ThreadPool::terminate(void)
{
{
unique_lock<mutex> lock(mutex_);
terminatePool_ = true;
}
condition_.notify_all();
for (auto &thread: threads_)
{
thread.join();
}
threads_.clear();
}

56
lib/Core/ThreadPool.hpp Normal file
View File

@ -0,0 +1,56 @@
/*
* ThreadPool.hpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2021 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_ThreadPool_hpp_
#define Latan_ThreadPool_hpp_
#include <LatAnalyze/Global.hpp>
class ThreadPool
{
public:
typedef std::function<void(void)> Job;
public:
// constructors/destructor
ThreadPool(void);
ThreadPool(const unsigned int nThreads);
virtual ~ThreadPool(void);
// get the number of threads
unsigned int getThreadNum(void) const;
// get the pool mutex for synchronisation
std::mutex & getMutex(void);
// add jobs
void addJob(Job newJob);
// critical section
void critical(Job fn);
// wait for completion and terminate
void terminate(void);
private:
// worker loop
void workerLoop(void);
private:
unsigned int nThreads_;
std::condition_variable condition_;
std::vector<std::thread> threads_;
bool terminatePool_{false};
std::queue<Job> queue_;
std::mutex mutex_;
};
#endif

View File

@ -108,6 +108,23 @@ inline std::string strFrom(const T x)
}
// specialization for vectors
template<>
inline std::vector<Index> strTo<std::vector<Index>>(const std::string &str)
{
std::vector<Index> res;
std::vector<double> vbuf;
double buf;
std::istringstream stream(str);
while (!stream.eof())
{
stream >> buf;
res.push_back(buf);
}
return res;
}
template<>
inline DVec strTo<DVec>(const std::string &str)
{

View File

@ -24,6 +24,7 @@
#include <array>
#include <chrono>
#include <complex>
#include <condition_variable>
#include <fstream>
#include <functional>
#include <iostream>
@ -40,6 +41,7 @@
#include <stack>
#include <string>
#include <sstream>
#include <thread>
#include <type_traits>
#include <unordered_map>
#include <utility>

View File

@ -32,6 +32,7 @@ libLatAnalyze_la_SOURCES = \
Core/MathParser.ypp \
Core/OptParser.cpp \
Core/Plot.cpp \
Core/ThreadPool.cpp \
Core/Utilities.cpp \
Functional/CompiledFunction.cpp \
Functional/CompiledModel.cpp \
@ -47,6 +48,8 @@ libLatAnalyze_la_SOURCES = \
Io/XmlReader.cpp \
Io/Xml/tinyxml2.cpp \
Numerical/Derivative.cpp \
Numerical/DWT.cpp \
Numerical/DWTFilters.cpp \
Numerical/GslFFT.cpp \
Numerical/GslHybridRootFinder.cpp\
Numerical/GslMinimizer.cpp \
@ -75,6 +78,7 @@ HPPFILES = \
Core/OptParser.hpp \
Core/ParserState.hpp \
Core/Plot.hpp \
Core/ThreadPool.hpp \
Core/stdincludes.hpp \
Core/Utilities.hpp \
Functional/CompiledFunction.hpp \
@ -90,6 +94,8 @@ HPPFILES = \
Io/IoObject.hpp \
Io/XmlReader.hpp \
Numerical/Derivative.hpp \
Numerical/DWT.hpp \
Numerical/DWTFilters.hpp \
Numerical/FFT.hpp \
Numerical/GslFFT.hpp \
Numerical/GslHybridRootFinder.hpp\

137
lib/Numerical/DWT.cpp Normal file
View File

@ -0,0 +1,137 @@
/*
* DWT.cpp, part of LatAnalyze
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Numerical/DWT.hpp>
#include <LatAnalyze/includes.hpp>
using namespace std;
using namespace Latan;
/******************************************************************************
* DWT implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
DWT::DWT(const DWTFilter &filter)
: filter_(filter)
{}
// convolution primitive ///////////////////////////////////////////////////////
void DWT::filterConvolution(DVec &out, const DVec &data,
const std::vector<double> &filter, const Index offset)
{
Index n = data.size(), nf = n*filter.size();
out.resize(n);
out.fill(0.);
for (unsigned int i = 0; i < filter.size(); ++i)
{
FOR_VEC(out, j)
{
out(j) += filter[i]*data((j + i + nf - offset) % n);
}
}
}
// downsampling/upsampling primitives //////////////////////////////////////////
void DWT::downsample(DVec &out, const DVec &in)
{
if (out.size() < in.size()/2)
{
LATAN_ERROR(Size, "output vector smaller than half the input vector size");
}
for (Index i = 0; i < in.size(); i += 2)
{
out(i/2) = in(i);
}
}
void DWT::upsample(DVec &out, const DVec &in)
{
if (out.size() < 2*in.size())
{
LATAN_ERROR(Size, "output vector smaller than twice the input vector size");
}
out.segment(0, 2*in.size()).fill(0.);
for (Index i = 0; i < in.size(); i ++)
{
out(2*i) = in(i);
}
}
// DWT /////////////////////////////////////////////////////////////////////////
std::vector<DWT::DWTLevel>
DWT::forward(const DVec &data, const unsigned int level) const
{
std::vector<DWTLevel> dwt(level);
DVec *finePt = const_cast<DVec *>(&data);
DVec tmp;
Index n = data.size(), o = filter_.fwdL.size()/2, minSize;
minSize = 1;
for (unsigned int l = 0; l < level; ++l) minSize *= 2;
if (n < minSize)
{
LATAN_ERROR(Size, "data vector too small for a " + strFrom(level)
+ "-level DWT (data size is " + strFrom(n) + ")");
}
for (unsigned int l = 0; l < level; ++l)
{
n /= 2;
dwt[l].first.resize(n);
dwt[l].second.resize(n);
filterConvolution(tmp, *finePt, filter_.fwdL, o);
downsample(dwt[l].first, tmp);
filterConvolution(tmp, *finePt, filter_.fwdH, o);
downsample(dwt[l].second, tmp);
finePt = &dwt[l].first;
}
return dwt;
}
DVec DWT::backward(const std::vector<DWTLevel>& dwt) const
{
unsigned int level = dwt.size();
Index n = dwt.back().second.size(), o = filter_.bwdL.size()/2 - 1;
DVec res, tmp, conv;
res = dwt.back().first;
for (int l = level - 2; l >= 0; --l)
{
n *= 2;
if (dwt[l].second.size() != n)
{
LATAN_ERROR(Size, "DWT result size mismatch");
}
}
n = dwt.back().second.size();
for (int l = level - 1; l >= 0; --l)
{
n *= 2;
tmp.resize(n);
upsample(tmp, res);
filterConvolution(conv, tmp, filter_.bwdL, o);
res = conv;
upsample(tmp, dwt[l].second);
filterConvolution(conv, tmp, filter_.bwdH, o);
res += conv;
}
return res;
}

55
lib/Numerical/DWT.hpp Normal file
View File

@ -0,0 +1,55 @@
/*
* DWT.hpp, part of LatAnalyze
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_DWT_hpp_
#define Latan_DWT_hpp_
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Numerical/DWTFilters.hpp>
BEGIN_LATAN_NAMESPACE
/******************************************************************************
* Discrete wavelet transform class *
******************************************************************************/
class DWT
{
public:
typedef std::pair<DVec, DVec> DWTLevel;
public:
// constructor
DWT(const DWTFilter &filter);
// destructor
virtual ~DWT(void) = default;
// convolution primitive
static void filterConvolution(DVec &out, const DVec &data,
const std::vector<double> &filter, const Index offset);
// downsampling/upsampling primitives
static void downsample(DVec &out, const DVec &in);
static void upsample(DVec &out, const DVec &in);
// DWT
std::vector<DWTLevel> forward(const DVec &data, const unsigned int level) const;
DVec backward(const std::vector<DWTLevel>& dwt) const;
private:
DWTFilter filter_;
};
END_LATAN_NAMESPACE
#endif // Latan_DWT_hpp_

View File

@ -0,0 +1,528 @@
/*
* DWTFilters.cpp, part of LatAnalyze
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Numerical/DWTFilters.hpp>
#include <LatAnalyze/includes.hpp>
// cf. http://wavelets.pybytes.com
// *here we implement the reverse filters more convenient for convolutions*
using namespace std;
using namespace Latan;
#define FILTDICT(x) {#x, &DWTFilters::x}
std::map<std::string, const DWTFilter *> DWTFilters::fromName = {
FILTDICT(haar),
FILTDICT(db2),
FILTDICT(db3),
FILTDICT(db4),
FILTDICT(db5),
FILTDICT(db6),
FILTDICT(bior13),
FILTDICT(bior15),
FILTDICT(bior22),
FILTDICT(bior24),
FILTDICT(bior31),
FILTDICT(bior33),
FILTDICT(bior35)
};
DWTFilter DWTFilters::haar = {
// fwdL
{0.7071067811865476,
0.7071067811865476},
// fwdH
{0.7071067811865476,
-0.7071067811865476},
// bwdL
{0.7071067811865476,
0.7071067811865476},
// bwdH
{-0.7071067811865476,
0.7071067811865476}
};
DWTFilter DWTFilters::db2 = {
// fwdL
{0.48296291314469025,
0.836516303737469,
0.22414386804185735,
-0.12940952255092145},
// fwdH
{-0.12940952255092145,
-0.22414386804185735,
0.836516303737469,
-0.48296291314469025},
// bwdL
{-0.12940952255092145,
0.22414386804185735,
0.836516303737469,
0.48296291314469025},
// bwdH
{-0.48296291314469025,
0.836516303737469,
-0.22414386804185735,
-0.12940952255092145}
};
DWTFilter DWTFilters::db3 = {
// fwdL
{0.3326705529509569,
0.8068915093133388,
0.4598775021193313,
-0.13501102001039084,
-0.08544127388224149,
0.035226291882100656},
// fwdH
{0.035226291882100656,
0.08544127388224149,
-0.13501102001039084,
-0.4598775021193313,
0.8068915093133388,
-0.3326705529509569},
// bwdL
{0.035226291882100656,
-0.08544127388224149,
-0.13501102001039084,
0.4598775021193313,
0.8068915093133388,
0.3326705529509569},
// bwdH
{-0.3326705529509569,
0.8068915093133388,
-0.4598775021193313,
-0.13501102001039084,
0.08544127388224149,
0.035226291882100656}
};
DWTFilter DWTFilters::db4 = {
// fwdL
{0.23037781330885523,
0.7148465705525415,
0.6308807679295904,
-0.02798376941698385,
-0.18703481171888114,
0.030841381835986965,
0.032883011666982945,
-0.010597401784997278},
// fwdH
{-0.010597401784997278,
-0.032883011666982945,
0.030841381835986965,
0.18703481171888114,
-0.02798376941698385,
-0.6308807679295904,
0.7148465705525415,
-0.23037781330885523},
// bwdL
{-0.010597401784997278,
0.032883011666982945,
0.030841381835986965,
-0.18703481171888114,
-0.02798376941698385,
0.6308807679295904,
0.7148465705525415,
0.23037781330885523},
// bwdH
{-0.23037781330885523,
0.7148465705525415,
-0.6308807679295904,
-0.02798376941698385,
0.18703481171888114,
0.030841381835986965,
-0.032883011666982945,
-0.010597401784997278}
};
DWTFilter DWTFilters::db5 = {
// fwdL
{0.160102397974125,
0.6038292697974729,
0.7243085284385744,
0.13842814590110342,
-0.24229488706619015,
-0.03224486958502952,
0.07757149384006515,
-0.006241490213011705,
-0.012580751999015526,
0.003335725285001549},
// fwdH
{0.003335725285001549,
0.012580751999015526,
-0.006241490213011705,
-0.07757149384006515,
-0.03224486958502952,
0.24229488706619015,
0.13842814590110342,
-0.7243085284385744,
0.6038292697974729,
-0.160102397974125},
// bwdL
{0.003335725285001549,
-0.012580751999015526,
-0.006241490213011705,
0.07757149384006515,
-0.03224486958502952,
-0.24229488706619015,
0.13842814590110342,
0.7243085284385744,
0.6038292697974729,
0.160102397974125},
// bwdH
{-0.160102397974125,
0.6038292697974729,
-0.7243085284385744,
0.13842814590110342,
0.24229488706619015,
-0.03224486958502952,
-0.07757149384006515,
-0.006241490213011705,
0.012580751999015526,
0.003335725285001549}
};
DWTFilter DWTFilters::db6 = {
// fwdL
{0.11154074335008017,
0.4946238903983854,
0.7511339080215775,
0.3152503517092432,
-0.22626469396516913,
-0.12976686756709563,
0.09750160558707936,
0.02752286553001629,
-0.031582039318031156,
0.0005538422009938016,
0.004777257511010651,
-0.00107730108499558},
// fwdH
{-0.00107730108499558,
-0.004777257511010651,
0.0005538422009938016,
0.031582039318031156,
0.02752286553001629,
-0.09750160558707936,
-0.12976686756709563,
0.22626469396516913,
0.3152503517092432,
-0.7511339080215775,
0.4946238903983854,
-0.11154074335008017},
// bwdL
{-0.00107730108499558,
0.004777257511010651,
0.0005538422009938016,
-0.031582039318031156,
0.02752286553001629,
0.09750160558707936,
-0.12976686756709563,
-0.22626469396516913,
0.3152503517092432,
0.7511339080215775,
0.4946238903983854,
0.11154074335008017},
// bwdH
{-0.11154074335008017,
0.4946238903983854,
-0.7511339080215775,
0.3152503517092432,
0.22626469396516913,
-0.12976686756709563,
-0.09750160558707936,
0.02752286553001629,
0.031582039318031156,
0.0005538422009938016,
-0.004777257511010651,
-0.00107730108499558}
};
DWTFilter DWTFilters::bior13 = {
// fwdL
{-0.08838834764831845,
0.08838834764831845,
0.7071067811865476,
0.7071067811865476,
0.08838834764831845,
-0.08838834764831845},
// fwdH
{0.0,
0.0,
0.7071067811865476,
-0.7071067811865476,
0.0,
0.0},
// bwdL
{0.0,
0.0,
0.7071067811865476,
0.7071067811865476,
0.0,
0.0},
// bwdH
{0.08838834764831845,
0.08838834764831845,
-0.7071067811865476,
0.7071067811865476,
-0.08838834764831845,
-0.08838834764831845}
};
DWTFilter DWTFilters::bior15 = {
// fwdL
{0.01657281518405971,
-0.01657281518405971,
-0.12153397801643787,
0.12153397801643787,
0.7071067811865476,
0.7071067811865476,
0.12153397801643787,
-0.12153397801643787,
-0.01657281518405971,
0.01657281518405971},
// fwdH
{0.0,
0.0,
0.0,
0.0,
0.7071067811865476,
-0.7071067811865476,
0.0,
0.0,
0.0,
0.0},
// bwdL
{0.0,
0.0,
0.0,
0.0,
0.7071067811865476,
0.7071067811865476,
0.0,
0.0,
0.0,
0.0},
// bwdH
{-0.01657281518405971,
-0.01657281518405971,
0.12153397801643787,
0.12153397801643787,
-0.7071067811865476,
0.7071067811865476,
-0.12153397801643787,
-0.12153397801643787,
0.01657281518405971,
0.01657281518405971}
};
DWTFilter DWTFilters::bior22 = {
// fwdL
{-0.1767766952966369,
0.3535533905932738,
1.0606601717798214,
0.3535533905932738,
-0.1767766952966369,
0.0},
// fwdH
{0.0,
0.0,
0.3535533905932738,
-0.7071067811865476,
0.3535533905932738,
0.0},
// bwdL
{0.0,
0.0,
0.3535533905932738,
0.7071067811865476,
0.3535533905932738,
0.0},
// bwdH
{0.1767766952966369,
0.3535533905932738,
-1.0606601717798214,
0.3535533905932738,
0.1767766952966369,
0.0}
};
DWTFilter DWTFilters::bior24 = {
// fwdL
{0.03314563036811942,
-0.06629126073623884,
-0.1767766952966369,
0.4198446513295126,
0.9943689110435825,
0.4198446513295126,
-0.1767766952966369,
-0.06629126073623884,
0.03314563036811942,
0.0},
// fwdH
{0.0,
0.0,
0.0,
0.0,
0.3535533905932738,
-0.7071067811865476,
0.3535533905932738,
0.0,
0.0,
0.0},
// bwdL
{0.0,
0.0,
0.0,
0.0,
0.3535533905932738,
0.7071067811865476,
0.3535533905932738,
0.0,
0.0,
0.0},
// bwdH
{-0.03314563036811942,
-0.06629126073623884,
0.1767766952966369,
0.4198446513295126,
-0.9943689110435825,
0.4198446513295126,
0.1767766952966369,
-0.06629126073623884,
-0.03314563036811942,
0.0}
};
DWTFilter DWTFilters::bior31 = {
// fwdL
{-0.3535533905932738,
1.0606601717798214,
1.0606601717798214,
-0.3535533905932738},
// fwdH
{0.1767766952966369,
-0.5303300858899107,
0.5303300858899107,
-0.1767766952966369},
// bwdL
{0.1767766952966369,
0.5303300858899107,
0.5303300858899107,
0.1767766952966369},
// bwdH
{0.3535533905932738,
1.0606601717798214,
-1.0606601717798214,
-0.3535533905932738}
};
DWTFilter DWTFilters::bior33 = {
// fwdL
{0.06629126073623884,
-0.19887378220871652,
-0.15467960838455727,
0.9943689110435825,
0.9943689110435825,
-0.15467960838455727,
-0.19887378220871652,
0.06629126073623884},
// fwdH
{0.0,
0.0,
0.1767766952966369,
-0.5303300858899107,
0.5303300858899107,
-0.1767766952966369,
0.0,
0.0},
// bwdL
{0.0,
0.0,
0.1767766952966369,
0.5303300858899107,
0.5303300858899107,
0.1767766952966369,
0.0,
0.0},
// bwdH
{-0.06629126073623884,
-0.19887378220871652,
0.15467960838455727,
0.9943689110435825,
-0.9943689110435825,
-0.15467960838455727,
0.19887378220871652,
0.06629126073623884}
};
DWTFilter DWTFilters::bior35 = {
// fwdL
{-0.013810679320049757,
0.04143203796014927,
0.052480581416189075,
-0.26792717880896527,
-0.07181553246425874,
0.966747552403483,
0.966747552403483,
-0.07181553246425874,
-0.26792717880896527,
0.052480581416189075,
0.04143203796014927,
-0.013810679320049757},
// fwdH
{0.0,
0.0,
0.0,
0.0,
0.1767766952966369,
-0.5303300858899107,
0.5303300858899107,
-0.1767766952966369,
0.0,
0.0,
0.0,
0.0},
// bwdL
{0.0,
0.0,
0.0,
0.0,
0.1767766952966369,
0.5303300858899107,
0.5303300858899107,
0.1767766952966369,
0.0,
0.0,
0.0,
0.0},
// bwdH
{0.013810679320049757,
0.04143203796014927,
-0.052480581416189075,
-0.26792717880896527,
0.07181553246425874,
0.966747552403483,
-0.966747552403483,
-0.07181553246425874,
0.26792717880896527,
0.052480581416189075,
-0.04143203796014927,
-0.013810679320049757}
};

View File

@ -0,0 +1,53 @@
/*
* DWTFilters.hpp, part of LatAnalyze
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_DWTFilters_hpp_
#define Latan_DWTFilters_hpp_
#include <LatAnalyze/Global.hpp>
BEGIN_LATAN_NAMESPACE
struct DWTFilter
{
const std::vector<double> fwdL, fwdH, bwdL, bwdH;
};
namespace DWTFilters
{
extern DWTFilter haar;
extern DWTFilter db2;
extern DWTFilter db3;
extern DWTFilter db4;
extern DWTFilter db5;
extern DWTFilter db6;
extern DWTFilter bior13;
extern DWTFilter bior15;
extern DWTFilter bior22;
extern DWTFilter bior24;
extern DWTFilter bior31;
extern DWTFilter bior33;
extern DWTFilter bior35;
extern std::map<std::string, const DWTFilter *> fromName;
}
END_LATAN_NAMESPACE
#endif // Latan_DWTFilters_hpp_

View File

@ -19,6 +19,20 @@
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
#include <LatAnalyze/includes.hpp>
// forward declaration necessary in the ROOT-based version of Minuit2
namespace ROOT
{
namespace Fit
{
class ParameterSettings;
};
};
// macros necessary in the ROOT-based version of Minuit2
#define ROOT_Math_VecTypes
#define MATHCORE_STANDALONE
#include <Minuit2/Minuit2Minimizer.h>
#include <Math/Functor.h>

View File

@ -253,16 +253,39 @@ DMatSample CorrelatorUtils::shift(const DMatSample &c, const Index ts)
}
}
DMatSample CorrelatorUtils::fold(const DMatSample &c)
DMatSample CorrelatorUtils::fold(const DMatSample &c, const CorrelatorModels::ModelPar &par)
{
const Index nt = c[central].rows();
DMatSample buf = c;
FOR_STAT_ARRAY(buf, s)
int sign;
bool fold = false;
switch (par.type)
{
for (Index t = 0; t < nt; ++t)
case CorrelatorType::cosh:
case CorrelatorType::cst:
sign = 1;
fold = true;
break;
case CorrelatorType::sinh:
sign = -1;
fold = true;
break;
case CorrelatorType::linear:
cout << "Linear model is asymmetric: will not fold." << endl;
break;
default:
break;
}
if (fold)
{
FOR_STAT_ARRAY(buf, s)
{
buf[s](t) = 0.5*(c[s](t) + c[s]((nt - t) % nt));
for (Index t = 0; t < nt; ++t)
{
buf[s](t) = 0.5*(c[s](t) + sign*c[s]((nt - t) % nt));
}
}
}

View File

@ -56,7 +56,7 @@ namespace CorrelatorModels
namespace CorrelatorUtils
{
DMatSample shift(const DMatSample &c, const Index ts);
DMatSample fold(const DMatSample &c);
DMatSample fold(const DMatSample &c, const CorrelatorModels::ModelPar &par);
DMatSample fourierTransform(const DMatSample &c, FFT &fft,
const unsigned int dir = FFT::Forward);
};

View File

@ -146,6 +146,16 @@ double Histogram::getX(const Index i) const
return x_(i);
}
double Histogram::getXMin(void) const
{
return xMin_;
}
double Histogram::getXMax(void) const
{
return xMax_;
}
double Histogram::operator[](const Index i) const
{
return bin_(i)*(isNormalized() ? norm_ : 1.);

View File

@ -52,6 +52,8 @@ public:
const StatArray<double> & getData(void) const;
const StatArray<double> & getWeight(void) const;
double getX(const Index i) const;
double getXMin(void) const;
double getXMax(void) const;
double operator[](const Index i) const;
double operator()(const double x) const;
// percentiles & confidence interval

View File

@ -103,6 +103,10 @@ public:
const Index nCol);
// resize all matrices
void resizeMat(const Index nRow, const Index nCol);
// covariance matrix
Mat<T> covarianceMatrix(const MatSample<T> &sample) const;
Mat<T> varianceMatrix(void) const;
Mat<T> correlationMatrix(void) const;
};
// non-member operators
@ -379,6 +383,78 @@ void MatSample<T>::resizeMat(const Index nRow, const Index nCol)
}
}
// covariance matrix ///////////////////////////////////////////////////////////
template <typename T>
Mat<T> MatSample<T>::covarianceMatrix(const MatSample<T> &sample) const
{
if (((*this)[central].cols() != 1) or (sample[central].cols() != 1))
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows(), n2 = sample[central].rows();
Index nSample = this->size();
Mat<T> tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
Mat<T> s1(n1, 1), s2(n2, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
s2.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
for (unsigned int s = 0; s < nSample; ++s)
{
s2 += sample[s];
tmp2.col(s) = sample[s];
}
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename T>
Mat<T> MatSample<T>::varianceMatrix(void) const
{
if ((*this)[central].cols() != 1)
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows();
Index nSample = this->size();
Mat<T> tmp1(n1, nSample), res(n1, n1);
Mat<T> s1(n1, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename T>
Mat<T> MatSample<T>::correlationMatrix(void) const
{
Mat<T> res = varianceMatrix();
Mat<T> invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
END_LATAN_NAMESPACE

View File

@ -51,14 +51,11 @@ public:
const T & operator[](const Index s) const;
// statistics
void bin(Index binSize);
T sum(const Index pos = 0, const Index n = -1) const;
T meanOld(const Index pos = 0, const Index n = -1) const;
T mean(const Index pos = 0, const Index n = -1) const;
T covariance(const StatArray<T, os> &array, const Index pos = 0,
const Index n = -1) const;
T covarianceMatrix(const StatArray<T, os> &array, const Index pos = 0,
const Index n = -1) const;
T variance(const Index pos = 0, const Index n = -1) const;
T varianceMatrix(const Index pos = 0, const Index n = -1) const;
T correlationMatrix(const Index pos = 0, const Index n = -1) const;
T covariance(const StatArray<T, os> &array) const;
T variance(void) const;
// IO type
virtual IoType getType(void) const;
public:
@ -66,7 +63,7 @@ public:
};
// reduction operations
namespace ReducOp
namespace StatOp
{
// general templates
template <typename T>
@ -148,128 +145,67 @@ void StatArray<T, os>::bin(Index binSize)
}
}
template <typename T, Index os>
T StatArray<T, os>::sum(const Index pos, const Index n) const
{
T result;
const Index m = (n >= 0) ? n : size();
result = (*this)[pos];
for (Index i = pos + 1; i < pos + m; ++i)
{
result += (*this)[i];
}
return result;
}
template <typename T, Index os>
T StatArray<T, os>::mean(const Index pos, const Index n) const
{
T result = T();
const Index m = (n >= 0) ? n : size();
if (m)
return sum(pos, n)/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::covariance(const StatArray<T, os> &array) const
{
T s1, s2, res;
s1 = array.sum();
s2 = this->sum();
res = StatOp::prod<T>(array[0], (*this)[0]);
for (Index i = 1; i < size(); ++i)
{
result = this->segment(pos+os, m).redux(&ReducOp::sum<T>);
res += StatOp::prod<T>(array[i], (*this)[i]);
}
return result/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::covariance(const StatArray<T, os> &array, const Index pos,
const Index n) const
{
T s1, s2, prs, res = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&ReducOp::sum<T>);
s2 = arraySeg.redux(&ReducOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &ReducOp::prod<T>)
.redux(&ReducOp::sum<T>);
res = prs - ReducOp::prod(s1, s2)/static_cast<double>(m);
}
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::covarianceMatrix(const StatArray<T, os> &array,
const Index pos, const Index n) const
{
T s1, s2, prs, res = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&ReducOp::sum<T>);
s2 = arraySeg.redux(&ReducOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &ReducOp::tensProd<T>)
.redux(&ReducOp::sum<T>);
res = prs - ReducOp::tensProd(s1, s2)/static_cast<double>(m);
}
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::variance(const Index pos, const Index n) const
{
return covariance(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::varianceMatrix(const Index pos, const Index n) const
{
return covarianceMatrix(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::correlationMatrix(const Index pos, const Index n) const
{
T res = varianceMatrix(pos, n);
T invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
res -= StatOp::prod<T>(s1, s2)/static_cast<double>(size());
res /= static_cast<double>(size() - 1);
return res;
}
// reduction operations ////////////////////////////////////////////////////////
namespace ReducOp
template <typename T, Index os>
T StatArray<T, os>::variance(void) const
{
template <typename T>
inline T sum(const T &a, const T &b)
{
return a + b;
}
return covariance(*this);
}
// reduction operations ////////////////////////////////////////////////////////
namespace StatOp
{
template <typename T>
inline T prod(const T &a, const T &b)
{
return a*b;
}
template <typename T>
inline T tensProd(const T &v1 __dumb, const T &v2 __dumb)
{
LATAN_ERROR(Implementation,
"tensorial product not implemented for this type");
}
template <>
inline Mat<double> prod(const Mat<double> &a, const Mat<double> &b)
{
return a.cwiseProduct(b);
}
template <>
inline Mat<double> tensProd(const Mat<double> &v1,
const Mat<double> &v2)
{
if ((v1.cols() != 1) or (v2.cols() != 1))
{
LATAN_ERROR(Size,
"tensorial product is only valid with column vectors");
}
return v1*v2.transpose();
}
}
// IO type /////////////////////////////////////////////////////////////////////

View File

@ -62,6 +62,11 @@ double SampleFitResult::getPValue(const Index s) const
return Math::chi2PValue(getChi2(s), getNDof());
}
double SampleFitResult::getCorrRangeDb(void) const
{
return corrRangeDb_;
}
double SampleFitResult::getCcdf(const Index s) const
{
return Math::chi2Ccdf(getChi2(s), getNDof());
@ -107,9 +112,11 @@ void SampleFitResult::print(const bool printXsi, ostream &out) const
getChi2(), static_cast<int>(getNDof()), getChi2PerDof(), getCcdf(),
getPValue());
out << buf << endl;
sprintf(buf, "correlation dynamic range= %.1f dB", getCorrRangeDb());
out << buf << endl;
for (Index p = 0; p < pMax; ++p)
{
sprintf(buf, "%8s= % e +/- %e", parName_[p].c_str(),
sprintf(buf, "%12s= % e +/- %e", parName_[p].c_str(),
(*this)[central](p), err(p));
out << buf << endl;
}
@ -249,6 +256,20 @@ const DMat & XYSampleData::getFitVarMatPInv(void)
return data_.getFitVarMatPInv();
}
const DMat & XYSampleData::getFitCorrMat(void)
{
computeVarMat();
return data_.getFitCorrMat();
}
const DMat & XYSampleData::getFitCorrMatPInv(void)
{
computeVarMat();
return data_.getFitCorrMatPInv();
}
// set data to a particular sample /////////////////////////////////////////////
void XYSampleData::setDataToSample(const Index s)
{
@ -279,42 +300,82 @@ const XYStatData & XYSampleData::getData(void)
}
// fit /////////////////////////////////////////////////////////////////////////
void XYSampleData::fitSample(std::vector<Minimizer *> &minimizer,
const std::vector<const DoubleModel *> &v,
SampleFitResult &result,
DVec &init,
Index s)
{
result.resize(nSample_);
result.chi2_.resize(nSample_);
result.model_.resize(v.size());
FitResult sampleResult;
setDataToSample(s);
if (s == central)
{
sampleResult = data_.fit(minimizer, init, v);
init = sampleResult.segment(0, init.size());
result.nPar_ = sampleResult.getNPar();
result.nDof_ = sampleResult.nDof_;
result.parName_ = sampleResult.parName_;
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
}
else
{
sampleResult = data_.fit(*(minimizer.back()), init, v);
}
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
for (unsigned int j = 0; j < v.size(); ++j)
{
result.model_[j].resize(nSample_);
result.model_[j][s] = sampleResult.getModel(j);
}
}
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v,
Index s)
{
computeVarMat();
SampleFitResult result;
DVec initCopy = init;
fitSample(minimizer, v, result, initCopy, s);
return result;
}
SampleFitResult XYSampleData::fit(Minimizer &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v,
Index s)
{
vector<Minimizer *> mv{&minimizer};
return fit(mv, init, v, s);
}
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v)
{
computeVarMat();
SampleFitResult result;
FitResult sampleResult;
DVec initCopy = init;
SampleFitResult result;
DVec initCopy = init;
Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity();
result.resize(nSample_);
result.chi2_.resize(nSample_);
result.model_.resize(v.size());
FOR_STAT_ARRAY(result, s)
{
setDataToSample(s);
if (s == central)
{
sampleResult = data_.fit(minimizer, initCopy, v);
initCopy = sampleResult.segment(0, initCopy.size());
}
else
{
sampleResult = data_.fit(*(minimizer.back()), initCopy, v);
}
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
for (unsigned int j = 0; j < v.size(); ++j)
{
result.model_[j].resize(nSample_);
result.model_[j][s] = sampleResult.getModel(j);
}
fitSample(minimizer, v, result, initCopy, s);
}
result.nPar_ = sampleResult.getNPar();
result.nDof_ = sampleResult.nDof_;
result.parName_ = sampleResult.parName_;
minimizer.back()->setVerbosity(verbCopy);
return result;
}
@ -346,6 +407,29 @@ XYSampleData XYSampleData::getResiduals(const SampleFitResult &fit)
return res;
}
XYSampleData XYSampleData::getNormalisedResiduals(const SampleFitResult &fit)
{
XYSampleData res(*this);
for (Index j = 0; j < getNYDim(); ++j)
{
const DoubleFunctionSample &f = fit.getModel(_, j);
for (auto &p: yData_[j])
{
res.y(p.first, j) -= f(x(p.first));
}
const DMat &var = res.getYYVar(j, j);
for (auto &p: yData_[j])
{
res.y(p.first, j) /= sqrt(var(p.first, p.first));
}
}
return res;
}
XYSampleData XYSampleData::getPartialResiduals(const SampleFitResult &fit,
const DVec &ref, const Index i)
{

View File

@ -49,6 +49,7 @@ public:
double getNDof(void) const;
Index getNPar(void) const;
double getPValue(const Index s = central) const;
double getCorrRangeDb(void) const;
double getCcdf(const Index s = central) const;
const DoubleFunction & getModel(const Index s = central,
const Index j = 0) const;
@ -60,6 +61,7 @@ public:
std::ostream &out = std::cout) const;
private:
DSample chi2_;
double corrRangeDb_{0.};
Index nDof_{0}, nPar_{0};
std::vector<DoubleFunctionSample> model_;
std::vector<std::string> parName_;
@ -91,17 +93,26 @@ public:
const DMat & getXYVar(const Index i, const Index j);
DVec getXError(const Index i);
DVec getYError(const Index j);
// get total fit variance matrix and its pseudo-inverse
// get total fit variance & correlation matrices and their pseudo-inverse
const DMat & getFitVarMat(void);
const DMat & getFitVarMatPInv(void);
const DMat & getFitCorrMat(void);
const DMat & getFitCorrMatPInv(void);
// set data to a particular sample
void setDataToSample(const Index s);
// get internal XYStatData
const XYStatData & getData(void);
// fit
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
void fitSample(std::vector<Minimizer *> &minimizer,
const std::vector<const DoubleModel *> &v,
SampleFitResult &sampleResult, DVec &init, Index s);
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v, Index s);
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v, Index s);
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v);
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v);
template <typename... Ts>
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
@ -111,6 +122,7 @@ public:
const DoubleModel &model, const Ts... models);
// residuals
XYSampleData getResiduals(const SampleFitResult &fit);
XYSampleData getNormalisedResiduals(const SampleFitResult &fit);
XYSampleData getPartialResiduals(const SampleFitResult &fit, const DVec &x,
const Index i);
private:

View File

@ -60,6 +60,11 @@ double FitResult::getCcdf(void) const
return Math::chi2Ccdf(getChi2(), getNDof());;
}
double FitResult::getCorrRangeDb(void) const
{
return corrRangeDb_;
}
const DoubleFunction & FitResult::getModel(const Index j) const
{
return model_[j];
@ -75,9 +80,11 @@ void FitResult::print(const bool printXsi, ostream &out) const
getChi2(), static_cast<int>(getNDof()), getChi2PerDof(), getCcdf(),
getPValue());
out << buf << endl;
sprintf(buf, "correlation dynamic range= %.1f dB", getCorrRangeDb());
out << buf << endl;
for (Index p = 0; p < pMax; ++p)
{
sprintf(buf, "%8s= %e", parName_[p].c_str(), (*this)(p));
sprintf(buf, "%12s= %e", parName_[p].c_str(), (*this)(p));
out << buf << endl;
}
}
@ -216,7 +223,7 @@ DVec XYStatData::getXError(const Index i) const
DVec XYStatData::getYError(const Index j) const
{
checkXDim(j);
checkYDim(j);
return yyVar_(j, j).diagonal().cwiseSqrt();
}
@ -259,6 +266,20 @@ const DMat & XYStatData::getFitVarMatPInv(void)
return fitVarInv_;
}
const DMat & XYStatData::getFitCorrMat(void)
{
updateFitVarMat();
return fitCorr_;
}
const DMat & XYStatData::getFitCorrMatPInv(void)
{
updateFitVarMat();
return fitCorrInv_;
}
// fit /////////////////////////////////////////////////////////////////////////
FitResult XYStatData::fit(vector<Minimizer *> &minimizer, const DVec &init,
const vector<const DoubleModel *> &v)
@ -337,9 +358,10 @@ FitResult XYStatData::fit(vector<Minimizer *> &minimizer, const DVec &init,
result = (*m)(chi2);
totalInit = result;
}
result.chi2_ = chi2(result);
result.nPar_ = nPar;
result.nDof_ = layout.totalYSize - nPar;
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
result.chi2_ = chi2(result);
result.nPar_ = nPar;
result.nDof_ = layout.totalYSize - nPar;
result.model_.resize(v.size());
for (unsigned int j = 0; j < v.size(); ++j)
{
@ -379,6 +401,27 @@ XYStatData XYStatData::getResiduals(const FitResult &fit)
return res;
}
XYStatData XYStatData::getNormalisedResiduals(const FitResult &fit)
{
XYStatData res(*this);
for (Index j = 0; j < getNYDim(); ++j)
{
const DoubleFunction &f = fit.getModel(j);
const DVec err = getYError(j);
Index row = 0;
for (auto &p: yData_[j])
{
res.y(p.first, j) -= f(x(p.first));
res.y(p.first, j) /= err(row);
row++;
}
}
return res;
}
XYStatData XYStatData::getPartialResiduals(const FitResult &fit,
const DVec &ref, const Index i)
{
@ -530,8 +573,11 @@ void XYStatData::updateFitVarMat(void)
chi2DataVec_.resize(layout.totalSize);
chi2ModVec_.resize(layout.totalSize);
chi2Vec_.resize(layout.totalSize);
fitVar_ = fitVar_.cwiseProduct(makeCorrFilter());
fitVarInv_ = fitVar_.pInverse(getSvdTolerance());
fitVar_ = fitVar_.cwiseProduct(makeCorrFilter());
fitCorr_ = Math::varToCorr(fitVar_);
fitCorrInv_ = fitCorr_.pInverse(getSvdTolerance());
fitVarInv_ = Math::corrToVar(fitCorrInv_, fitVar_.diagonal().cwiseInverse());
scheduleFitVarMatInit(false);
}
}

View File

@ -48,12 +48,13 @@ public:
Index getNPar(void) const;
double getPValue(void) const;
double getCcdf(void) const;
double getCorrRangeDb(void) const;
const DoubleFunction & getModel(const Index j = 0) const;
// IO
void print(const bool printXsi = false,
std::ostream &out = std::cout) const;
private:
double chi2_{0.};
double chi2_{0.}, corrRangeDb_{0.};
Index nDof_{0}, nPar_{0};
std::vector<DoubleFunction> model_;
std::vector<std::string> parName_;
@ -88,9 +89,11 @@ public:
DVec getXError(const Index i) const;
DVec getYError(const Index j) const;
DMat getTable(const Index i, const Index j) const;
// get total fit variance matrix and its pseudo-inverse
// get total fit variance & correlation matrices and their pseudo-inverse
const DMat & getFitVarMat(void);
const DMat & getFitVarMatPInv(void);
const DMat & getFitCorrMat(void);
const DMat & getFitCorrMatPInv(void);
// fit
FitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v);
@ -104,6 +107,7 @@ public:
const DoubleModel &model, const Ts... models);
// residuals
XYStatData getResiduals(const FitResult &fit);
XYStatData getNormalisedResiduals(const FitResult &fit);
XYStatData getPartialResiduals(const FitResult &fit, const DVec &ref,
const Index i);
protected:
@ -130,7 +134,7 @@ private:
std::vector<DVec> xData_;
std::vector<DVec> xMap_;
Mat<DMat> xxVar_, yyVar_, xyVar_;
DMat fitVar_, fitVarInv_;
DMat fitVar_, fitVarInv_, fitCorr_, fitCorrInv_;
DVec chi2DataVec_, chi2ModVec_, chi2Vec_;
DVec xBuf_;
bool initXMap_{true};

View File

@ -3,6 +3,7 @@
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Functional/CompiledModel.hpp>
#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Numerical/DWT.hpp>
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
@ -23,7 +24,7 @@ int main(int argc, char *argv[])
{
// parse arguments /////////////////////////////////////////////////////////
OptParser opt;
bool parsed, doPlot, doHeatmap, doCorr, fold, doScan;
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan;
string corrFileName, model, outFileName, outFmt, savePlot;
Index ti, tf, shift, nPar, thinning;
double svdTol;
@ -52,6 +53,8 @@ int main(int argc, char *argv[])
"only do the uncorrelated fit");
opt.addOption("" , "fold" , OptParser::OptType::trigger, true,
"fold the correlator");
opt.addOption("l" , "laplace" , OptParser::OptType::trigger, true,
"apply Laplace filter to the correlator");
opt.addOption("p", "plot" , OptParser::OptType::trigger, true,
"show the fit plot");
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
@ -74,6 +77,7 @@ int main(int argc, char *argv[])
ti = opt.optionValue<Index>("ti");
tf = opt.optionValue<Index>("tf");
thinning = opt.optionValue<Index>("t");
doLaplace = opt.gotOption("l");
shift = opt.optionValue<Index>("s");
model = opt.optionValue("m");
nPar = opt.optionValue<Index>("nPar");
@ -110,6 +114,18 @@ int main(int argc, char *argv[])
nt = corr[central].rows();
corr = corr.block(0, 0, nt, 1);
corr = CorrelatorUtils::shift(corr, shift);
if (doLaplace)
{
vector<double> filter = {1., -2., 1.};
DVec buf;
FOR_STAT_ARRAY(corr, s)
{
DWT::filterConvolution(buf, corr[s], filter, 1);
corr[s] = buf;
}
}
if (fold)
{
corr = CorrelatorUtils::fold(corr);
@ -140,6 +156,11 @@ int main(int argc, char *argv[])
}
}
if (fold)
{
corr = CorrelatorUtils::fold(corr,modelPar);
}
// fit /////////////////////////////////////////////////////////////////////
DVec init(nPar);
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
@ -282,7 +303,7 @@ int main(int argc, char *argv[])
DMat id = DMat::Identity(n, n),
var = fitter.data().getFitVarMat();
p << PlotMatrix(Math::varToCorr(var));
p << PlotCorrMatrix(Math::varToCorr(var));
p << Caption("correlation matrix");
p.display();
if (svdTol > 0.)

View File

@ -9,9 +9,11 @@ endif
bin_PROGRAMS = \
latan-plot \
latan-sample-combine \
latan-sample-dwt \
latan-sample-element \
latan-sample-fake \
latan-sample-ft \
latan-sample-merge \
latan-sample-plot \
latan-sample-plot-corr\
latan-sample-read \
@ -25,6 +27,10 @@ latan_sample_combine_SOURCES = sample-combine.cpp
latan_sample_combine_CXXFLAGS = $(COM_CXXFLAGS)
latan_sample_combine_LDFLAGS = -L../lib/.libs -lLatAnalyze
latan_sample_dwt_SOURCES = sample-dwt.cpp
latan_sample_dwt_CXXFLAGS = $(COM_CXXFLAGS)
latan_sample_dwt_LDFLAGS = -L../lib/.libs -lLatAnalyze
latan_sample_element_SOURCES = sample-element.cpp
latan_sample_element_CXXFLAGS = $(COM_CXXFLAGS)
latan_sample_element_LDFLAGS = -L../lib/.libs -lLatAnalyze
@ -37,6 +43,10 @@ latan_sample_ft_SOURCES = sample-ft.cpp
latan_sample_ft_CXXFLAGS = $(COM_CXXFLAGS)
latan_sample_ft_LDFLAGS = -L../lib/.libs -lLatAnalyze
latan_sample_merge_SOURCES = sample-merge.cpp
latan_sample_merge_CXXFLAGS = $(COM_CXXFLAGS)
latan_sample_merge_LDFLAGS = -L../lib/.libs -lLatAnalyze
latan_sample_plot_corr_SOURCES = sample-plot-corr.cpp
latan_sample_plot_corr_CXXFLAGS = $(COM_CXXFLAGS)
latan_sample_plot_corr_LDFLAGS = -L../lib/.libs -lLatAnalyze

167
utils/sample-dwt.cpp Normal file
View File

@ -0,0 +1,167 @@
/*
* sample-dwt.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli, Matt Spraggs
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Core/OptParser.hpp>
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Numerical/DWT.hpp>
using namespace std;
using namespace Latan;
int main(int argc, char *argv[])
{
// argument parsing ////////////////////////////////////////////////////////
OptParser opt;
bool parsed, doPlot, ss, saveAll;
unsigned int level;
string inFilename, outFilename, filterName;
opt.addOption("l", "level", OptParser::OptType::value, true,
"number of levels", "1");
opt.addOption("f", "filter", OptParser::OptType::value, true,
"filter name", "haar");
opt.addOption("s", "ss", OptParser::OptType::trigger, true,
"super-sampling (inverse DWT on data)");
opt.addOption("a", "all", OptParser::OptType::trigger, true,
"save all-levels");
opt.addOption("o", "output", OptParser::OptType::value, true,
"output file name, or directory name if --all is used (default: result not saved)", "");
opt.addOption("p", "plot", OptParser::OptType::trigger, true,
"show plot");
opt.addOption("" , "help" , OptParser::OptType::trigger, true,
"show this help message and exit");
parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help"))
{
cerr << "usage: " << argv[0];
cerr << " <options> <input file>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE;
}
inFilename = opt.getArgs()[0];
level = opt.optionValue<unsigned int>("l");
filterName = opt.optionValue("f");
ss = opt.gotOption("s");
saveAll = opt.gotOption("a");
outFilename = opt.optionValue("o");
doPlot = opt.gotOption("p");
// DWT /////////////////////////////////////////////////////////////////////
DMatSample in = Io::load<DMatSample>(inFilename), res;
Index nSample = in.size(), n = in[central].rows();
vector<DMatSample> out(ss ? 1 : level, DMatSample(nSample)),
outh(ss ? 0 : level, DMatSample(nSample));
DWT dwt(*DWTFilters::fromName.at(filterName));
vector<DWT::DWTLevel> dataDWT(level);
if (!ss)
{
cout << "-- compute discrete wavelet transform" << endl;
cout << "filter '" << filterName << "' / " << level << " level(s)" << endl;
FOR_STAT_ARRAY(in, s)
{
dataDWT = dwt.forward(in[s].col(0), level);
for (unsigned int l = 0; l < level; ++l)
{
out[l][s] = dataDWT[l].first;
outh[l][s] = dataDWT[l].second;
}
}
}
else
{
Index ssn = n;
cout << "-- compute inverse discrete wavelet transform" << endl;
cout << "filter '" << filterName << "' / " << level << " level(s)" << endl;
for (int l = level - 1; l >= 0; --l)
{
dataDWT[l].first.resize(ssn);
dataDWT[l].second.resize(ssn);
dataDWT[l].first.fill(0.);
dataDWT[l].second.fill(0.);
ssn *= 2;
}
FOR_STAT_ARRAY(in, s)
{
dataDWT.back().first = in[s].col(0);
out[0][s] = dwt.backward(dataDWT);
}
}
if (!outFilename.empty())
{
if (!ss and saveAll)
{
Latan::mkdir(outFilename);
for (unsigned int l = 0; l < level; ++l)
{
Io::save<DMatSample>(out[l], outFilename + "/L" + strFrom(l) + ".h5");
Io::save<DMatSample>(outh[l], outFilename + "/H" + strFrom(l) + ".h5");
}
}
else
{
Io::save<DMatSample>(out.back(), outFilename);
}
}
// plot ////////////////////////////////////////////////////////////////////
if (doPlot)
{
Plot p;
DVec x;
x.setLinSpaced(n, 0., n - 1.);
p << PlotRange(Axis::x, 0., n);
p << Title("original") << PlotData(x, in);
if (!ss)
{
Index ln = n, step = 1;
for (unsigned int l = 0; l < level; ++l)
{
ln /= 2;
step *= 2;
x.setLinSpaced(ln, 0., n - step);
p << Title("level " + strFrom(l + 1) + " L") << PlotData(x, out[l]);
p << Title("level " + strFrom(l + 1) + " H") << PlotData(x, outh[l]);
}
p.display();
}
else
{
double step = 1.;
DVec err;
for (unsigned int l = 0; l < level; ++l)
{
step /= 2.;
}
x.setLinSpaced(out[0][central].size(), 0., n - step);
err = out[0].variance().cwiseSqrt();
p << Title("supersampled") << Color("3") << PlotPredBand(x, out[0][central], err);
p << Color("3") << PlotLine(x, out[0][central]);
p.display();
}
}
return EXIT_SUCCESS;
}

View File

@ -18,30 +18,42 @@
*/
#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Core/OptParser.hpp>
using namespace std;
using namespace Latan;
int main(int argc, char *argv[])
{
OptParser opt;
Index nSample;
double val, err;
string outFileName;
if (argc != 5)
opt.addOption("r", "seed" , OptParser::OptType::value, true,
"random generator seed (default: random)");
opt.addOption("", "help" , OptParser::OptType::trigger, true,
"show this help message and exit");
bool parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() != 4) or opt.gotOption("help"))
{
cerr << "usage: " << argv[0];
cerr << " <central value> <error> <nSample> <output file>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE;
}
val = strTo<double>(argv[1]);
err = strTo<double>(argv[2]);
nSample = strTo<Index>(argv[3]);
outFileName = argv[4];
random_device rd;
mt19937 gen(rd());
SeedType seed = (opt.gotOption("r")) ? opt.optionValue<SeedType>("r") : rd();
mt19937 gen(seed);
normal_distribution<> dis(val, err);
DSample res(nSample);
@ -59,4 +71,4 @@ int main(int argc, char *argv[])
Io::save<DSample>(res, outFileName);
return EXIT_SUCCESS;
}
}

94
utils/sample-merge.cpp Normal file
View File

@ -0,0 +1,94 @@
/*
* sample-merge.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Core/OptParser.hpp>
#include <LatAnalyze/Io/Io.hpp>
using namespace std;
using namespace Latan;
int main(int argc, char *argv[])
{
// argument parsing ////////////////////////////////////////////////////////
OptParser opt;
bool parsed;
string outFileName = "";
vector<string> fileName;
unsigned int n = 0;
opt.addOption("o", "output", OptParser::OptType::value , true,
"output file name (default: result not saved)");
opt.addOption("" , "help" , OptParser::OptType::trigger, true,
"show this help message and exit");
parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() < 1) or opt.gotOption("help"))
{
cerr << "usage: " << argv[0];
cerr << " <sample 1> ... <sample n>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE;
}
n = opt.getArgs().size();
outFileName = opt.optionValue("o");
for (unsigned int i = 0; i < n; ++i)
{
fileName.push_back(opt.getArgs()[i]);
}
// figure out dimensions ///////////////////////////////////////////////////
Index nCol, nSample, totRows;
DMatSample buf;
buf = Io::load<DMatSample>(fileName[0]);
nSample = buf.size();
totRows = buf[central].rows();
nCol = buf[central].cols();
for (unsigned int i = 1; i < n; ++i)
{
buf = Io::load<DMatSample>(fileName[i]);
if (buf.size() != nSample)
{
LATAN_ERROR(Size, "sample size mismatch");
}
if (buf[central].cols() != nCol)
{
LATAN_ERROR(Size, "column size mismatch");
}
totRows += buf[central].rows();
}
// merge along rows ////////////////////////////////////////////////////////
DMatSample out(nSample, totRows, nCol);
Index rowo = 0, r;
for (unsigned int i = 0; i < n; ++i)
{
buf = Io::load<DMatSample>(fileName[i]);
r = buf[central].rows();
out.block(rowo, 0, r, nCol) = buf;
rowo += r;
}
if (!outFileName.empty())
{
Io::save<DMatSample>(out, outFileName);
}
return EXIT_SUCCESS;
}

View File

@ -67,7 +67,9 @@ int main(int argc, char *argv[])
sample = sample.block(0, 0, sample[central].rows(), 1);
var = sample.varianceMatrix();
corr = sample.correlationMatrix();
p << PlotMatrix(corr);
cout << "dynamic range " << Math::svdDynamicRangeDb(corr) << " dB" << endl;
p << PlotCorrMatrix(corr);
p.display();
if (!outVarName.empty())
{

View File

@ -38,9 +38,23 @@ int main(int argc, char *argv[])
{
DMatSample s = Io::load<DMatSample>(fileName);
string name = Io::getFirstName(fileName);
Index nRows = s[central].rows();
Index nCols = s[central].cols();
cout << scientific;
cout << "central value:\n" << s[central] << endl;
cout << "standard deviation:\n" << s.variance().cwiseSqrt() << endl;
cout << "central value +/- standard deviation\n" << endl;
cout << "Re:" << endl;
for(Index i = 0; i < nRows; i++)
{
cout << s[central](i,0) << " +/- " << s.variance().cwiseSqrt()(i,0) << endl;
}
if(nCols == 2)
{
cout << "\nIm:" << endl;
for(Index i = 0; i < nRows; i++)
{
cout << s[central](i,1) << " +/- " << s.variance().cwiseSqrt()(i,1) << endl;
}
}
if (!copy.empty())
{
Io::save(s, copy, File::Mode::write, name);
@ -51,8 +65,8 @@ int main(int argc, char *argv[])
DSample s = Io::load<DSample>(fileName);
string name = Io::getFirstName(fileName);
cout << scientific;
cout << "central value:\n" << s[central] << endl;
cout << "standard deviation:\n" << sqrt(s.variance()) << endl;
cout << "central value +/- standard deviation\n" << endl;
cout << s[central] << " +/- " << sqrt(s.variance()) << endl;
if (!copy.empty())
{
Io::save(s, copy, File::Mode::write, name);