benchmark-quda #3

Open
simon.buerger wants to merge 16 commits from simon.buerger/lattice-benchmarks:benchmark-quda into main
Showing only changes of commit 9de49f8672 - Show all commits

View File

@ -1,56 +1,58 @@
#include <algorithm>
#include <array>
#include <blas_quda.h>
#include <cassert>
#include <color_spinor_field.h>
#include <mpi.h>
// #include <quda_internal.h>
#include <dirac_quda.h>
#include <gauge_tools.h>
#include <memory>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <cassert>
#include <dirac_quda.h>
#include <gauge_tools.h>
using namespace quda;
QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION;
// This is the MPI grid, i.e. the layout of ranks
int nranks = -1;
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
// This is the MPI grid, i.e. the layout of ranks, not the lattice volume
std::array<int, 4> gridsize = {1, 1, 1, 4};
void initComms(int argc, char **argv, std::array<int, 4> const &commDims)
void initComms(int argc, char **argv)
{
// init MPI communication
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
assert(1 <= nranks && nranks <= 100000);
mpi_grid[3] = nranks;
// this maps coordinates to rank number
auto lex_rank_from_coords = [](int const *coords, void *)
{
int rank = coords[0];
for (int i = 1; i < 4; i++)
rank = gridsize[i] * rank + coords[i];
rank = mpi_grid[i] * rank + coords[i];
return rank;
};
initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr);
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
for (int d = 0; d < 4; d++)
if (gridsize[d] > 1)
if (mpi_grid[d] > 1)
commDimPartitionedSet(d);
}
// creates a random gauge field
cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
// creates a random gauge field. L = local(!) size
cudaGaugeField make_gauge_field(int L)
{
GaugeFieldParam param;
// dimension and type of the lattice object
param.nDim = 4;
param.x[0] = geom[0];
param.x[1] = geom[1];
param.x[2] = geom[2];
param.x[3] = geom[3];
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
@ -101,8 +103,8 @@ cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
return U;
}
// create a random source vector
ColorSpinorField make_source(std::array<int, 4> const &geom)
// create a random source vector (L = local size)
ColorSpinorField make_source(int L)
{
ColorSpinorParam param;
param.nColor = 3;
@ -111,10 +113,10 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
param.pad = 0;
param.siteSubset = QUDA_FULL_SITE_SUBSET;
param.nDim = 4;
param.x[0] = geom[0];
param.x[1] = geom[1];
param.x[2] = geom[2];
param.x[3] = geom[3];
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
param.x[4] = 1; // no fifth dimension
param.pc_type = QUDA_4D_PC;
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
@ -136,130 +138,151 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
return src;
}
void benchmark(int L, int niter)
void benchmark_wilson()
{
std::array<int, 4> geom = {L, L, L, L};
int niter = 20;
int niter_warmup = 10;
printfQuda("======================= benchmarking L=%d =======================\n", L);
printfQuda("==================== wilson dirac operator ====================\n");
printfQuda("IMPORTANT: QUDAs own flop counting. Probably not the same as in Grid.\n");
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
auto U = make_gauge_field(geom);
printfQuda("created random gauge field, %.3f GiB (sanity check: should be %.3f)\n",
U.Bytes() / 1024. / 1024. / 1024.,
1.0 * L * L * L * L * 4 * 18 * 8 / 1024. / 1024. / 1024.);
auto src = make_source(geom);
printfQuda("created random source, %.3f GiB (sanity check: should be %.3f)\n",
src.Bytes() / 1024. / 1024. / 1024.,
1.0 * L * L * L * L * 12 * 2 * 8 / 1024. / 1024. / 1024.);
for (int L : {8, 12, 16, 24, 32})
{
auto U = make_gauge_field(L);
auto src = make_source(L);
// create (Wilson) dirac operator
DiracParam param;
param.kappa = 0.10;
param.dagger = QUDA_DAG_NO;
param.matpcType = QUDA_MATPC_EVEN_EVEN;
auto dirac = DiracWilson(param);
// create (Wilson) dirac operator
DiracParam param;
param.kappa = 0.10;
param.dagger = QUDA_DAG_NO;
param.matpcType = QUDA_MATPC_EVEN_EVEN;
auto dirac = DiracWilson(param);
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
// Not used for simple Wilson fermions)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
// Not used for simple Wilson fermions)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto tmp = ColorSpinorField(ColorSpinorParam(src));
auto tmp = ColorSpinorField(ColorSpinorParam(src));
printfQuda("benchmarking Dirac operator. geom=(%d,%d,%d,%d), niter=%d\n", geom[0],
geom[1], geom[2], geom[3], niter);
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.M(tmp, src);
// couple iterations without timing to warm up
printfQuda("warmup...\n");
for (int iter = 0; iter < 20; ++iter)
dirac.M(tmp, src);
// actual benchmark with timings
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.M(tmp, src);
device_timer.stop();
printfQuda("running...\n");
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.M(tmp, src);
device_timer.stop();
double secs = device_timer.last() / niter;
double flops = 1.0 * dirac.Flops() / niter;
double secs = device_timer.last();
double gflops = (dirac.Flops() * 1e-9) / secs;
printfQuda("Gflops = %6.2f\n", gflops);
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
}
}
void benchmark_axpy(int L)
void benchmark_axpy()
{
printfQuda("================ axpy L=%d ==============\n", L);
// number of iterations for warmup / measurement
// (feel free to change for noise/time tradeoff)
constexpr int niter_warmup = 10;
constexpr int niter = 20;
printfQuda("==================== axpy / memory ====================\n");
ColorSpinorParam param;
param.nColor = 3;
param.nDim = 4; // 4-dimensional lattice
param.x[4] = 1; // no fifth dimension
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
// QUDA. "3*4" will probably always be enabled, so we stick with this
param.nSpin = 4;
param.nVec = 1;
param.pad = 0;
param.siteSubset = QUDA_FULL_SITE_SUBSET;
param.nDim = 4;
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
param.x[4] = 1; // no fifth dimension
param.nVec = 1; // just a single vector
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
param.pad = 0; // no padding
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
param.setPrecision(QUDA_DOUBLE_PRECISION);
// the following dont matter for an axpy benchmark, but need to choose something
param.pc_type = QUDA_4D_PC;
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
param.setPrecision(QUDA_DOUBLE_PRECISION);
param.location = QUDA_CUDA_FIELD_LOCATION;
// create the field and fill it with random values
auto fieldA = ColorSpinorField(param);
auto fieldB = ColorSpinorField(param);
quda::RNG rng(fieldA, 1234);
auto size_bytes = size_t(8) * 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
param.nColor * param.nSpin;
assert(fieldA.Bytes() == size_bytes); // sanity check
assert(fieldB.Bytes() == size_bytes); // sanity check
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
"GiB/s/rank", "Gflop/s/rank");
std::vector L_list = {8, 12, 16, 24, 32};
for (int L : L_list)
{
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
// number of (real) elements in the field = number of fma instructions to do
double flops_per_iter =
2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin;
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
int niter = 20;
// number of (real) elements in one (local) field
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
param.nColor * param.nSpin;
printfQuda("warmup...\n");
for (int iter = 0; iter < 10; ++iter)
blas::axpy(1.234, fieldA, fieldB);
// create the field(s)
auto fieldA = ColorSpinorField(param);
auto fieldB = ColorSpinorField(param);
assert(fieldA.Bytes() == sizeof(double) * field_elements); // sanity check
assert(fieldB.Bytes() == sizeof(double) * field_elements); // sanity check
printfQuda("running...\n");
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
blas::axpy(1.234, fieldA, fieldB); // fieldB += 1.234*fieldA
device_timer.stop();
// fill fields with random values
quda::RNG rng(fieldA, 1234);
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
double secs = device_timer.last();
double gflops = (flops_per_iter * niter) * 1e-9 / secs;
printfQuda("Gflops = %6.2f\n", gflops);
printfQuda("bytes = %6.2f GiB\n", 3. * fieldA.Bytes() / 1024. / 1024. / 1024.);
printfQuda("bandwidth = %6.2f GiB/s\n",
fieldA.Bytes() * 3 / 1024. / 1024. / 1024. * niter / secs);
// number of operations / bytes per iteration
// axpy is one addition, one multiplication, two read, one write
double flops = 2 * field_elements;
double memory = 3 * sizeof(double) * field_elements;
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
// behaviour and such
for (int iter = 0; iter < niter_warmup; ++iter)
blas::axpy(1.234, fieldA, fieldB);
// running the actual benchmark
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
blas::axpy(1.234, fieldA, fieldB);
device_timer.stop();
double secs = device_timer.last() / niter; // seconds per iteration
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
}
}
int main(int argc, char **argv)
{
initComms(argc, argv, gridsize);
initComms(argc, argv);
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
// verbosity options are:
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
setVerbosity(QUDA_VERBOSE);
setVerbosity(QUDA_SUMMARIZE);
for (int L : {8, 12, 16, 24, 32})
benchmark_axpy(L);
for (int L : {16, 24, 32, 48, 64})
benchmark(L, 100);
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
mpi_grid[3]);
benchmark_axpy();
setVerbosity(QUDA_SILENT);
benchmark_wilson();
setVerbosity(QUDA_SUMMARIZE);
printfQuda("==================== done with all benchmarks ====================\n");
endQuda();
quda::comm_finalize();
MPI_Finalize();