benchmark-quda #3
@ -1,56 +1,58 @@
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <blas_quda.h>
|
||||
#include <cassert>
|
||||
#include <color_spinor_field.h>
|
||||
#include <mpi.h>
|
||||
// #include <quda_internal.h>
|
||||
#include <dirac_quda.h>
|
||||
#include <gauge_tools.h>
|
||||
#include <memory>
|
||||
#include <mpi.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <dirac_quda.h>
|
||||
#include <gauge_tools.h>
|
||||
|
||||
using namespace quda;
|
||||
|
||||
QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION;
|
||||
// This is the MPI grid, i.e. the layout of ranks
|
||||
int nranks = -1;
|
||||
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
|
||||
|
||||
// This is the MPI grid, i.e. the layout of ranks, not the lattice volume
|
||||
std::array<int, 4> gridsize = {1, 1, 1, 4};
|
||||
|
||||
void initComms(int argc, char **argv, std::array<int, 4> const &commDims)
|
||||
void initComms(int argc, char **argv)
|
||||
{
|
||||
// init MPI communication
|
||||
MPI_Init(&argc, &argv);
|
||||
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
|
||||
assert(1 <= nranks && nranks <= 100000);
|
||||
|
||||
mpi_grid[3] = nranks;
|
||||
|
||||
// this maps coordinates to rank number
|
||||
auto lex_rank_from_coords = [](int const *coords, void *)
|
||||
{
|
||||
int rank = coords[0];
|
||||
for (int i = 1; i < 4; i++)
|
||||
rank = gridsize[i] * rank + coords[i];
|
||||
rank = mpi_grid[i] * rank + coords[i];
|
||||
return rank;
|
||||
};
|
||||
|
||||
initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr);
|
||||
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
|
||||
|
||||
for (int d = 0; d < 4; d++)
|
||||
if (gridsize[d] > 1)
|
||||
if (mpi_grid[d] > 1)
|
||||
commDimPartitionedSet(d);
|
||||
}
|
||||
|
||||
// creates a random gauge field
|
||||
cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
|
||||
// creates a random gauge field. L = local(!) size
|
||||
cudaGaugeField make_gauge_field(int L)
|
||||
{
|
||||
GaugeFieldParam param;
|
||||
|
||||
// dimension and type of the lattice object
|
||||
param.nDim = 4;
|
||||
param.x[0] = geom[0];
|
||||
param.x[1] = geom[1];
|
||||
param.x[2] = geom[2];
|
||||
param.x[3] = geom[3];
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
param.x[2] = L;
|
||||
param.x[3] = L;
|
||||
|
||||
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
|
||||
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
|
||||
@ -101,8 +103,8 @@ cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
|
||||
return U;
|
||||
}
|
||||
|
||||
// create a random source vector
|
||||
ColorSpinorField make_source(std::array<int, 4> const &geom)
|
||||
// create a random source vector (L = local size)
|
||||
ColorSpinorField make_source(int L)
|
||||
{
|
||||
ColorSpinorParam param;
|
||||
param.nColor = 3;
|
||||
@ -111,10 +113,10 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
|
||||
param.pad = 0;
|
||||
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
||||
param.nDim = 4;
|
||||
param.x[0] = geom[0];
|
||||
param.x[1] = geom[1];
|
||||
param.x[2] = geom[2];
|
||||
param.x[3] = geom[3];
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
param.x[2] = L;
|
||||
param.x[3] = L;
|
||||
param.x[4] = 1; // no fifth dimension
|
||||
param.pc_type = QUDA_4D_PC;
|
||||
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||
@ -136,20 +138,19 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
|
||||
return src;
|
||||
}
|
||||
|
||||
void benchmark(int L, int niter)
|
||||
void benchmark_wilson()
|
||||
{
|
||||
std::array<int, 4> geom = {L, L, L, L};
|
||||
int niter = 20;
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("======================= benchmarking L=%d =======================\n", L);
|
||||
printfQuda("==================== wilson dirac operator ====================\n");
|
||||
printfQuda("IMPORTANT: QUDAs own flop counting. Probably not the same as in Grid.\n");
|
||||
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||
|
||||
auto U = make_gauge_field(geom);
|
||||
printfQuda("created random gauge field, %.3f GiB (sanity check: should be %.3f)\n",
|
||||
U.Bytes() / 1024. / 1024. / 1024.,
|
||||
1.0 * L * L * L * L * 4 * 18 * 8 / 1024. / 1024. / 1024.);
|
||||
auto src = make_source(geom);
|
||||
printfQuda("created random source, %.3f GiB (sanity check: should be %.3f)\n",
|
||||
src.Bytes() / 1024. / 1024. / 1024.,
|
||||
1.0 * L * L * L * L * 12 * 2 * 8 / 1024. / 1024. / 1024.);
|
||||
for (int L : {8, 12, 16, 24, 32})
|
||||
{
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L);
|
||||
|
||||
// create (Wilson) dirac operator
|
||||
DiracParam param;
|
||||
@ -165,15 +166,11 @@ void benchmark(int L, int niter)
|
||||
|
||||
auto tmp = ColorSpinorField(ColorSpinorParam(src));
|
||||
|
||||
printfQuda("benchmarking Dirac operator. geom=(%d,%d,%d,%d), niter=%d\n", geom[0],
|
||||
geom[1], geom[2], geom[3], niter);
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
printfQuda("warmup...\n");
|
||||
for (int iter = 0; iter < 20; ++iter)
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.M(tmp, src);
|
||||
|
||||
printfQuda("running...\n");
|
||||
// actual benchmark with timings
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
@ -181,85 +178,111 @@ void benchmark(int L, int niter)
|
||||
dirac.M(tmp, src);
|
||||
device_timer.stop();
|
||||
|
||||
double secs = device_timer.last();
|
||||
double gflops = (dirac.Flops() * 1e-9) / secs;
|
||||
printfQuda("Gflops = %6.2f\n", gflops);
|
||||
double secs = device_timer.last() / niter;
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_axpy(int L)
|
||||
void benchmark_axpy()
|
||||
{
|
||||
printfQuda("================ axpy L=%d ==============\n", L);
|
||||
// number of iterations for warmup / measurement
|
||||
// (feel free to change for noise/time tradeoff)
|
||||
constexpr int niter_warmup = 10;
|
||||
constexpr int niter = 20;
|
||||
|
||||
printfQuda("==================== axpy / memory ====================\n");
|
||||
|
||||
ColorSpinorParam param;
|
||||
param.nColor = 3;
|
||||
param.nDim = 4; // 4-dimensional lattice
|
||||
param.x[4] = 1; // no fifth dimension
|
||||
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
|
||||
// QUDA. "3*4" will probably always be enabled, so we stick with this
|
||||
param.nSpin = 4;
|
||||
param.nVec = 1;
|
||||
param.pad = 0;
|
||||
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
||||
param.nDim = 4;
|
||||
param.nVec = 1; // just a single vector
|
||||
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
|
||||
param.pad = 0; // no padding
|
||||
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
|
||||
param.setPrecision(QUDA_DOUBLE_PRECISION);
|
||||
|
||||
// the following dont matter for an axpy benchmark, but need to choose something
|
||||
param.pc_type = QUDA_4D_PC;
|
||||
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
|
||||
|
||||
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
|
||||
"GiB/s/rank", "Gflop/s/rank");
|
||||
std::vector L_list = {8, 12, 16, 24, 32};
|
||||
for (int L : L_list)
|
||||
{
|
||||
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||
// are LOCAL, i.e. per rank / per GPU
|
||||
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
param.x[2] = L;
|
||||
param.x[3] = L;
|
||||
param.x[4] = 1; // no fifth dimension
|
||||
param.pc_type = QUDA_4D_PC;
|
||||
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
|
||||
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||
param.setPrecision(QUDA_DOUBLE_PRECISION);
|
||||
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||
|
||||
// create the field and fill it with random values
|
||||
// number of (real) elements in one (local) field
|
||||
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
|
||||
param.nColor * param.nSpin;
|
||||
|
||||
// create the field(s)
|
||||
auto fieldA = ColorSpinorField(param);
|
||||
auto fieldB = ColorSpinorField(param);
|
||||
assert(fieldA.Bytes() == sizeof(double) * field_elements); // sanity check
|
||||
assert(fieldB.Bytes() == sizeof(double) * field_elements); // sanity check
|
||||
|
||||
// fill fields with random values
|
||||
quda::RNG rng(fieldA, 1234);
|
||||
auto size_bytes = size_t(8) * 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
|
||||
param.nColor * param.nSpin;
|
||||
assert(fieldA.Bytes() == size_bytes); // sanity check
|
||||
assert(fieldB.Bytes() == size_bytes); // sanity check
|
||||
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
|
||||
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
|
||||
|
||||
// number of (real) elements in the field = number of fma instructions to do
|
||||
double flops_per_iter =
|
||||
2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin;
|
||||
// number of operations / bytes per iteration
|
||||
// axpy is one addition, one multiplication, two read, one write
|
||||
double flops = 2 * field_elements;
|
||||
double memory = 3 * sizeof(double) * field_elements;
|
||||
|
||||
int niter = 20;
|
||||
|
||||
printfQuda("warmup...\n");
|
||||
for (int iter = 0; iter < 10; ++iter)
|
||||
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
|
||||
// behaviour and such
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
|
||||
printfQuda("running...\n");
|
||||
// running the actual benchmark
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB); // fieldB += 1.234*fieldA
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
device_timer.stop();
|
||||
double secs = device_timer.last() / niter; // seconds per iteration
|
||||
|
||||
double secs = device_timer.last();
|
||||
double gflops = (flops_per_iter * niter) * 1e-9 / secs;
|
||||
printfQuda("Gflops = %6.2f\n", gflops);
|
||||
printfQuda("bytes = %6.2f GiB\n", 3. * fieldA.Bytes() / 1024. / 1024. / 1024.);
|
||||
printfQuda("bandwidth = %6.2f GiB/s\n",
|
||||
fieldA.Bytes() * 3 / 1024. / 1024. / 1024. * niter / secs);
|
||||
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
|
||||
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
initComms(argc, argv, gridsize);
|
||||
initComms(argc, argv);
|
||||
|
||||
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
|
||||
|
||||
// verbosity options are:
|
||||
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
|
||||
setVerbosity(QUDA_VERBOSE);
|
||||
setVerbosity(QUDA_SUMMARIZE);
|
||||
|
||||
for (int L : {8, 12, 16, 24, 32})
|
||||
benchmark_axpy(L);
|
||||
for (int L : {16, 24, 32, 48, 64})
|
||||
benchmark(L, 100);
|
||||
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
|
||||
mpi_grid[3]);
|
||||
|
||||
benchmark_axpy();
|
||||
|
||||
setVerbosity(QUDA_SILENT);
|
||||
benchmark_wilson();
|
||||
setVerbosity(QUDA_SUMMARIZE);
|
||||
|
||||
printfQuda("==================== done with all benchmarks ====================\n");
|
||||
endQuda();
|
||||
quda::comm_finalize();
|
||||
MPI_Finalize();
|
||||
|
Loading…
Reference in New Issue
Block a user