choose iteration count automatically
This commit is contained in:
parent
8cd10019db
commit
7648ed7496
@ -36,6 +36,29 @@ double get_timestamp()
|
||||
int nranks = -1;
|
||||
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
|
||||
|
||||
// run f() in a loop for roughly target_time seconds
|
||||
// returns seconds per iteration it took
|
||||
template <class F> double bench(F const &f, double target_time, int niter_warmup = 5)
|
||||
{
|
||||
device_timer_t timer;
|
||||
timer.start();
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
f();
|
||||
timer.stop();
|
||||
|
||||
double secs = timer.last() / niter_warmup;
|
||||
int niter = std::max(1, int(target_time / secs));
|
||||
// niter = std::min(1000, niter);
|
||||
// printfQuda("during warmup took %f s/iter, deciding on %d iters\n", secs, niter);
|
||||
|
||||
timer.reset(__FUNCTION__, __FILE__, __LINE__);
|
||||
timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
f();
|
||||
timer.stop();
|
||||
return timer.last() / niter;
|
||||
}
|
||||
|
||||
void initComms(int argc, char **argv)
|
||||
{
|
||||
// init MPI communication
|
||||
@ -169,10 +192,8 @@ ColorSpinorField make_source(int L, int Ls = 1)
|
||||
return src;
|
||||
}
|
||||
|
||||
void benchmark_wilson(std::vector<int> const &L_list, int niter)
|
||||
void benchmark_wilson(std::vector<int> const &L_list, double target_time)
|
||||
{
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("==================== wilson dirac operator ====================\n");
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||
@ -184,6 +205,8 @@ void benchmark_wilson(std::vector<int> const &L_list, int niter)
|
||||
|
||||
for (int L : L_list)
|
||||
{
|
||||
// printfQuda("starting wilson L=%d\n", L);
|
||||
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L);
|
||||
|
||||
@ -198,35 +221,26 @@ void benchmark_wilson(std::vector<int> const &L_list, int niter)
|
||||
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
|
||||
// Not used for simple Wilson fermions)
|
||||
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||
|
||||
auto res = ColorSpinorField(ColorSpinorParam(src));
|
||||
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
||||
|
||||
// actual benchmark with timings
|
||||
// first run to get the quda tuning out of the way
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
double start_time = get_timestamp();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
||||
double end_time = get_timestamp();
|
||||
device_timer.stop();
|
||||
f();
|
||||
double flops = 1.0 * dirac.Flops();
|
||||
|
||||
double secs = device_timer.last() / niter;
|
||||
// actual benchmarking
|
||||
double start_time = get_timestamp();
|
||||
double secs = bench(f, target_time);
|
||||
double end_time = get_timestamp();
|
||||
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
// this is the flop counting from Benchmark_Grid
|
||||
double Nc = 3;
|
||||
double Nd = 4;
|
||||
double Ns = 4;
|
||||
double flops =
|
||||
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops *= L * L * L * L / 2.0;
|
||||
#else
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
#endif
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
@ -240,10 +254,8 @@ void benchmark_wilson(std::vector<int> const &L_list, int niter)
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_dwf(std::vector<int> const &L_list, int niter)
|
||||
void benchmark_dwf(std::vector<int> const &L_list, double target_time)
|
||||
{
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("==================== domain wall dirac operator ====================\n");
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||
@ -255,6 +267,7 @@ void benchmark_dwf(std::vector<int> const &L_list, int niter)
|
||||
int Ls = 12;
|
||||
for (int L : L_list)
|
||||
{
|
||||
// printfQuda("starting dwf L=%d\n", L);
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L, Ls);
|
||||
|
||||
@ -270,35 +283,26 @@ void benchmark_dwf(std::vector<int> const &L_list, int niter)
|
||||
// insert gauge field into the dirac operator
|
||||
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
|
||||
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||
|
||||
auto res = ColorSpinorField(ColorSpinorParam(src));
|
||||
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
||||
|
||||
// actual benchmark with timings
|
||||
// first run to get the quda tuning out of the way
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
double start_time = get_timestamp();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
||||
double end_time = get_timestamp();
|
||||
device_timer.stop();
|
||||
f();
|
||||
double flops = 1.0 * dirac.Flops();
|
||||
|
||||
double secs = device_timer.last() / niter;
|
||||
// actual benchmarking
|
||||
double start_time = get_timestamp();
|
||||
double secs = bench(f, target_time);
|
||||
double end_time = get_timestamp();
|
||||
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
// this is the flop counting from Benchmark_Grid
|
||||
double Nc = 3;
|
||||
double Nd = 4;
|
||||
double Ns = 4;
|
||||
double flops =
|
||||
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops *= L * L * L * L * Ls / 2.0;
|
||||
#else
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
#endif
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
@ -311,11 +315,11 @@ void benchmark_dwf(std::vector<int> const &L_list, int niter)
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_axpy(std::vector<int> const &L_list, int niter)
|
||||
void benchmark_axpy(std::vector<int> const &L_list, double target_time)
|
||||
{
|
||||
// number of iterations for warmup / measurement
|
||||
// (feel free to change for noise/time tradeoff)
|
||||
constexpr int niter_warmup = 10;
|
||||
constexpr int niter_warmup = 5;
|
||||
|
||||
printfQuda("==================== axpy / memory ====================\n");
|
||||
|
||||
@ -341,8 +345,9 @@ void benchmark_axpy(std::vector<int> const &L_list, int niter)
|
||||
"GiB/s/rank", "Gflop/s/rank");
|
||||
for (int L : L_list)
|
||||
{
|
||||
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||
// are LOCAL, i.e. per rank / per GPU
|
||||
// printfQuda("starting axpy L=%d\n", L);
|
||||
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||
// are LOCAL, i.e. per rank / per GPU
|
||||
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
@ -369,20 +374,16 @@ void benchmark_axpy(std::vector<int> const &L_list, int niter)
|
||||
double flops = 2 * field_elements;
|
||||
double memory = 3 * sizeof(float) * field_elements;
|
||||
|
||||
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
|
||||
// behaviour and such
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
auto f = [&]() { blas::axpy(1.234, fieldA, fieldB); };
|
||||
|
||||
// running the actual benchmark
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
// first run to get the quda tuning out of the way
|
||||
f();
|
||||
|
||||
// actual benchmarking
|
||||
double start_time = get_timestamp();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
double secs = bench(f, target_time);
|
||||
double end_time = get_timestamp();
|
||||
device_timer.stop();
|
||||
double secs = device_timer.last() / niter; // seconds per iteration
|
||||
|
||||
double mem_MiB = memory / 1024. / 1024.;
|
||||
double GBps = mem_MiB / 1024 / secs;
|
||||
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, mem_MiB, secs * 1e6, GBps,
|
||||
@ -419,11 +420,11 @@ int main(int argc, char **argv)
|
||||
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
|
||||
mpi_grid[3]);
|
||||
|
||||
benchmark_axpy({8, 12, 16, 24, 32, 48}, 20);
|
||||
benchmark_axpy({8, 12, 16, 24, 32, 48}, 1.0);
|
||||
|
||||
setVerbosity(QUDA_SILENT);
|
||||
benchmark_wilson({8, 12, 16, 24, 32, 48}, 20);
|
||||
benchmark_dwf({8, 12, 16, 24, 32}, 20);
|
||||
benchmark_wilson({8, 12, 16, 24, 32, 48}, 1.0);
|
||||
benchmark_dwf({8, 12, 16, 24, 32}, 1.0);
|
||||
setVerbosity(QUDA_SUMMARIZE);
|
||||
|
||||
printfQuda("==================== done with all benchmarks ====================\n");
|
||||
|
Loading…
Reference in New Issue
Block a user