choose iteration count automatically

This commit is contained in:
Simon Bürger 2023-06-20 18:08:34 +01:00
parent 8cd10019db
commit 7648ed7496

View File

@ -36,6 +36,29 @@ double get_timestamp()
int nranks = -1;
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
// run f() in a loop for roughly target_time seconds
// returns seconds per iteration it took
template <class F> double bench(F const &f, double target_time, int niter_warmup = 5)
{
device_timer_t timer;
timer.start();
for (int iter = 0; iter < niter_warmup; ++iter)
f();
timer.stop();
double secs = timer.last() / niter_warmup;
int niter = std::max(1, int(target_time / secs));
// niter = std::min(1000, niter);
// printfQuda("during warmup took %f s/iter, deciding on %d iters\n", secs, niter);
timer.reset(__FUNCTION__, __FILE__, __LINE__);
timer.start();
for (int iter = 0; iter < niter; ++iter)
f();
timer.stop();
return timer.last() / niter;
}
void initComms(int argc, char **argv)
{
// init MPI communication
@ -169,10 +192,8 @@ ColorSpinorField make_source(int L, int Ls = 1)
return src;
}
void benchmark_wilson(std::vector<int> const &L_list, int niter)
void benchmark_wilson(std::vector<int> const &L_list, double target_time)
{
int niter_warmup = 10;
printfQuda("==================== wilson dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
@ -184,6 +205,8 @@ void benchmark_wilson(std::vector<int> const &L_list, int niter)
for (int L : L_list)
{
// printfQuda("starting wilson L=%d\n", L);
auto U = make_gauge_field(L);
auto src = make_source(L);
@ -198,35 +221,26 @@ void benchmark_wilson(std::vector<int> const &L_list, int niter)
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
// Not used for simple Wilson fermions)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto res = ColorSpinorField(ColorSpinorParam(src));
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
// first run to get the quda tuning out of the way
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
double start_time = get_timestamp();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
double end_time = get_timestamp();
device_timer.stop();
f();
double flops = 1.0 * dirac.Flops();
double secs = device_timer.last() / niter;
// actual benchmarking
double start_time = get_timestamp();
double secs = bench(f, target_time);
double end_time = get_timestamp();
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
@ -240,10 +254,8 @@ void benchmark_wilson(std::vector<int> const &L_list, int niter)
}
}
void benchmark_dwf(std::vector<int> const &L_list, int niter)
void benchmark_dwf(std::vector<int> const &L_list, double target_time)
{
int niter_warmup = 10;
printfQuda("==================== domain wall dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
@ -255,6 +267,7 @@ void benchmark_dwf(std::vector<int> const &L_list, int niter)
int Ls = 12;
for (int L : L_list)
{
// printfQuda("starting dwf L=%d\n", L);
auto U = make_gauge_field(L);
auto src = make_source(L, Ls);
@ -270,35 +283,26 @@ void benchmark_dwf(std::vector<int> const &L_list, int niter)
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto res = ColorSpinorField(ColorSpinorParam(src));
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
// first run to get the quda tuning out of the way
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
double start_time = get_timestamp();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
double end_time = get_timestamp();
device_timer.stop();
f();
double flops = 1.0 * dirac.Flops();
double secs = device_timer.last() / niter;
// actual benchmarking
double start_time = get_timestamp();
double secs = bench(f, target_time);
double end_time = get_timestamp();
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L * Ls / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
@ -311,11 +315,11 @@ void benchmark_dwf(std::vector<int> const &L_list, int niter)
}
}
void benchmark_axpy(std::vector<int> const &L_list, int niter)
void benchmark_axpy(std::vector<int> const &L_list, double target_time)
{
// number of iterations for warmup / measurement
// (feel free to change for noise/time tradeoff)
constexpr int niter_warmup = 10;
constexpr int niter_warmup = 5;
printfQuda("==================== axpy / memory ====================\n");
@ -341,8 +345,9 @@ void benchmark_axpy(std::vector<int> const &L_list, int niter)
"GiB/s/rank", "Gflop/s/rank");
for (int L : L_list)
{
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
// printfQuda("starting axpy L=%d\n", L);
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
param.x[0] = L;
param.x[1] = L;
@ -369,20 +374,16 @@ void benchmark_axpy(std::vector<int> const &L_list, int niter)
double flops = 2 * field_elements;
double memory = 3 * sizeof(float) * field_elements;
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
// behaviour and such
for (int iter = 0; iter < niter_warmup; ++iter)
blas::axpy(1.234, fieldA, fieldB);
auto f = [&]() { blas::axpy(1.234, fieldA, fieldB); };
// running the actual benchmark
device_timer_t device_timer;
device_timer.start();
// first run to get the quda tuning out of the way
f();
// actual benchmarking
double start_time = get_timestamp();
for (int iter = 0; iter < niter; ++iter)
blas::axpy(1.234, fieldA, fieldB);
double secs = bench(f, target_time);
double end_time = get_timestamp();
device_timer.stop();
double secs = device_timer.last() / niter; // seconds per iteration
double mem_MiB = memory / 1024. / 1024.;
double GBps = mem_MiB / 1024 / secs;
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, mem_MiB, secs * 1e6, GBps,
@ -419,11 +420,11 @@ int main(int argc, char **argv)
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
mpi_grid[3]);
benchmark_axpy({8, 12, 16, 24, 32, 48}, 20);
benchmark_axpy({8, 12, 16, 24, 32, 48}, 1.0);
setVerbosity(QUDA_SILENT);
benchmark_wilson({8, 12, 16, 24, 32, 48}, 20);
benchmark_dwf({8, 12, 16, 24, 32}, 20);
benchmark_wilson({8, 12, 16, 24, 32, 48}, 1.0);
benchmark_dwf({8, 12, 16, 24, 32}, 1.0);
setVerbosity(QUDA_SUMMARIZE);
printfQuda("==================== done with all benchmarks ====================\n");