16 Commits

Author SHA1 Message Date
f81cb198ab add command line options to Benchmark_Grid 2024-11-18 23:50:45 +00:00
a7e1d9e67f lower loop counts a bit for p2p/latency 2024-10-11 18:27:00 +01:00
19c9dcb6ae fix order of ranks in latency/p2p 2024-10-10 11:40:44 +01:00
7d89380b80 point-to-point bandwith benchmark 2024-10-07 17:22:26 +01:00
4cd67805b9 make Latency benchmark proper one-way and increase statistics 2024-09-26 09:31:22 +01:00
f7e607eae4 proper warmup loop for latency 2024-05-09 23:33:04 +01:00
a267986800 naming consitency 2024-05-09 23:25:06 +01:00
a1ec08cdb3 point-to-point latency 2024-05-09 23:17:54 +01:00
d7647afa72 Merge remote-tracking branch 'upstream/main' into main 2024-01-23 10:10:52 +00:00
ba00493c7d Merge pull request 'fix incompatibility with latest Grid' (#5) from simon.buerger/lattice-benchmarks:main into main
Reviewed-on: portelli/lattice-benchmarks#5
2023-12-20 15:06:41 +00:00
6055e0503c simple latency benchmark 2023-12-20 13:43:51 +00:00
6ea093fc80 fix incompatibility with latest Grid 2023-12-18 16:48:19 +00:00
fa47ec5bbe Merge pull request 'refactor and repair the spack environment' (#4) from simon.buerger/lattice-benchmarks:fix_spack_environment into main
Reviewed-on: portelli/lattice-benchmarks#4
2023-07-05 15:11:40 +01:00
7235bfde4c refactor and repair the spack environment 2023-07-04 22:30:54 +01:00
e5c61c2db1 Merge pull request 'add indication of shared-memory directions in comms benchmark' (#2) from simon.buerger/lattice-benchmarks:feature/grid-shared-mem into main
Reviewed-on: portelli/lattice-benchmarks#2
2023-04-12 15:05:39 +01:00
80c80049d7 add indication of shared-memory directions in comms benchmark 2023-04-12 11:40:39 +01:00
6 changed files with 376 additions and 538 deletions

View File

@ -1,7 +1,7 @@
/*
Copyright © 2015 Peter Boyle <paboyle@ph.ed.ac.uk>
Copyright © 2022 Antonin Portelli <antonin.portelli@me.com>
Copyright © 2022 Simon Buerger <simon.buerger@rwth-aachen.de>
Copyright © 2024 Simon Buerger <simon.buerger@rwth-aachen.de>
This is a fork of Benchmark_ITT.cpp from Grid
@ -29,6 +29,43 @@ int NN_global;
nlohmann::json json_results;
// NOTE: Grid::GridClock is just a typedef to
// `std::chrono::high_resolution_clock`, but `Grid::usecond` rounds to
// microseconds (no idea why, probably wasnt ever relevant before), so we need
// our own wrapper here.
double usecond_precise()
{
using namespace std::chrono;
auto nsecs = duration_cast<nanoseconds>(GridClock::now() - Grid::theProgramStart);
return nsecs.count() * 1e-3;
}
std::vector<std::string> get_mpi_hostnames()
{
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
char hostname[MPI_MAX_PROCESSOR_NAME];
int name_len = 0;
MPI_Get_processor_name(hostname, &name_len);
// Allocate buffer to gather all hostnames
std::vector<char> all_hostnames(world_size * MPI_MAX_PROCESSOR_NAME);
// Use MPI_Allgather to gather all hostnames on all ranks
MPI_Allgather(hostname, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, all_hostnames.data(),
MPI_MAX_PROCESSOR_NAME, MPI_CHAR, MPI_COMM_WORLD);
// Convert the gathered hostnames back into a vector of std::string
std::vector<std::string> hostname_list(world_size);
for (int i = 0; i < world_size; ++i)
{
hostname_list[i] = std::string(&all_hostnames[i * MPI_MAX_PROCESSOR_NAME]);
}
return hostname_list;
}
struct time_statistics
{
double mean;
@ -73,6 +110,8 @@ class Benchmark
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
Grid::Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi, shm);
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
@ -85,7 +124,9 @@ class Benchmark
std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads()
<< std::endl;
std::cout << GridLogMessage << "* MPI tasks : " << GridCmdVectorIntToString(mpi)
std::cout << GridLogMessage << "* MPI layout : " << GridCmdVectorIntToString(mpi)
<< std::endl;
std::cout << GridLogMessage << "* Shm layout : " << GridCmdVectorIntToString(shm)
<< std::endl;
std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; "
@ -118,6 +159,7 @@ class Benchmark
for (unsigned int i = 0; i < mpi.size(); ++i)
{
tmp["mpi"].push_back(mpi[i]);
tmp["shm"].push_back(shm[i]);
}
tmp["ranks"] = NP;
tmp["nodes"] = NN;
@ -132,6 +174,8 @@ class Benchmark
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
Coordinate shm_layout;
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
for (int mu = 0; mu < Nd; mu++)
if (mpi_layout[mu] > 1)
@ -143,8 +187,8 @@ class Benchmark
std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in "
<< nmu << " dimensions" << std::endl;
grid_small_sep();
grid_printf("%5s %5s %15s %15s %15s %15s %15s\n", "L", "dir", "payload (B)",
"time (usec)", "rate (GB/s/node)", "std dev", "max");
grid_printf("%5s %5s %7s %15s %15s %15s %15s %15s\n", "L", "dir", "shm",
"payload (B)", "time (usec)", "rate (GB/s/node)", "std dev", "max");
for (int lat = 16; lat <= maxlat; lat += 8)
{
@ -173,74 +217,80 @@ class Benchmark
for (int dir = 0; dir < 8; dir++)
{
int mu = dir % 4;
if (mpi_layout[mu] > 1)
if (mpi_layout[mu] == 1) // skip directions that are not distributed
continue;
bool is_shm = mpi_layout[mu] == shm_layout[mu];
bool is_partial_shm = !is_shm && shm_layout[mu] != 1;
std::vector<double> times(Nloop);
for (int i = 0; i < NWARMUP; i++)
{
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
}
for (int i = 0; i < Nloop; i++)
{
std::vector<double> times(Nloop);
for (int i = 0; i < NWARMUP; i++)
dbytes = 0;
double start = usecond();
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes);
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
for (int i = 0; i < Nloop; i++)
else
{
dbytes = 0;
double start = usecond();
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes);
dbytes += bytes;
double stop = usecond();
t_time[i] = stop - start; // microseconds
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
timestat.statistics(t_time);
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
dbytes += bytes;
dbytes = dbytes * ppn;
double bidibytes = 2. * dbytes;
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
grid_printf("%5d %5d %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir, bytes,
timestat.mean, rate, rate_err, rate_max);
nlohmann::json tmp;
nlohmann::json tmp_rate;
tmp["L"] = lat;
tmp["dir"] = dir;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp["rate_GBps"] = tmp_rate;
json_results["comms"].push_back(tmp);
double stop = usecond();
t_time[i] = stop - start; // microseconds
}
timestat.statistics(t_time);
dbytes = dbytes * ppn;
double bidibytes = 2. * dbytes;
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
grid_printf("%5d %5d %7s %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir,
is_shm ? "yes"
: is_partial_shm ? "partial"
: "no",
bytes, timestat.mean, rate, rate_err, rate_max);
nlohmann::json tmp;
nlohmann::json tmp_rate;
tmp["L"] = lat;
tmp["dir"] = dir;
tmp["shared_mem"] = is_shm;
tmp["partial_shared_mem"] = is_partial_shm;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp["rate_GBps"] = tmp_rate;
json_results["comms"].push_back(tmp);
}
for (int d = 0; d < 8; d++)
{
@ -251,6 +301,170 @@ class Benchmark
return;
}
static void Latency(void)
{
int Nwarmup = 100;
int Nloop = 300;
std::cout << GridLogMessage << "Benchmarking point-to-point latency" << std::endl;
grid_small_sep();
grid_printf("from to mean(usec) err max\n");
int ranks;
int me;
MPI_Comm_size(MPI_COMM_WORLD, &ranks);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
int bytes = 8;
void *buf_from = acceleratorAllocDevice(bytes);
void *buf_to = acceleratorAllocDevice(bytes);
nlohmann::json json_latency;
for (int from = 0; from < ranks; ++from)
for (int to = 0; to < ranks; ++to)
{
if (from == to)
continue;
std::vector<double> t_time(Nloop);
time_statistics timestat;
MPI_Status status;
for (int i = -Nwarmup; i < Nloop; ++i)
{
double start = usecond_precise();
if (from == me)
{
auto err = MPI_Send(buf_from, bytes, MPI_CHAR, to, 0, MPI_COMM_WORLD);
assert(err == MPI_SUCCESS);
}
if (to == me)
{
auto err =
MPI_Recv(buf_to, bytes, MPI_CHAR, from, 0, MPI_COMM_WORLD, &status);
assert(err == MPI_SUCCESS);
}
double stop = usecond_precise();
if (i >= 0)
t_time[i] = stop - start;
}
// important: only 'from' and 'to' have meaningful timings. we use
// 'from's.
MPI_Bcast(t_time.data(), Nloop, MPI_DOUBLE, from, MPI_COMM_WORLD);
timestat.statistics(t_time);
grid_printf("%2d %2d %15.4f %15.3f %15.4f\n", from, to, timestat.mean,
timestat.err, timestat.max);
nlohmann::json tmp;
tmp["from"] = from;
tmp["to"] = to;
tmp["time_usec"] = timestat.mean;
tmp["time_usec_error"] = timestat.err;
tmp["time_usec_min"] = timestat.min;
tmp["time_usec_max"] = timestat.max;
tmp["time_usec_full"] = t_time;
json_latency.push_back(tmp);
}
json_results["latency"] = json_latency;
acceleratorFreeDevice(buf_from);
acceleratorFreeDevice(buf_to);
}
static void P2P(void)
{
// IMPORTANT: The P2P benchmark uses "MPI_COMM_WORLD" communicator, which is
// not the quite the same as Grid.communicator. Practically speaking, the
// latter one contains the same MPI-ranks but in a different order. Grid
// does this make sure it can exploit ranks with shared memory (i.e.
// multiple ranks on the same node) as best as possible.
// buffer-size to benchmark. This number is the same as the largest one used
// in the "Comms()" benchmark. ( L=48, Ls=12, double-prec-complex,
// half-color-spin-vector. ). Mostly an arbitrary choice, but nice to match
// it here
size_t bytes = 127401984;
int Nwarmup = 20;
int Nloop = 100;
std::cout << GridLogMessage << "Benchmarking point-to-point bandwidth" << std::endl;
grid_small_sep();
grid_printf("from to mean(usec) err min "
"bytes rate (GiB/s)\n");
int ranks;
int me;
MPI_Comm_size(MPI_COMM_WORLD, &ranks);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
void *buf_from = acceleratorAllocDevice(bytes);
void *buf_to = acceleratorAllocDevice(bytes);
nlohmann::json json_p2p;
for (int from = 0; from < ranks; ++from)
for (int to = 0; to < ranks; ++to)
{
if (from == to)
continue;
std::vector<double> t_time(Nloop);
time_statistics timestat;
MPI_Status status;
for (int i = -Nwarmup; i < Nloop; ++i)
{
double start = usecond_precise();
if (from == me)
{
auto err = MPI_Send(buf_from, bytes, MPI_CHAR, to, 0, MPI_COMM_WORLD);
assert(err == MPI_SUCCESS);
}
if (to == me)
{
auto err =
MPI_Recv(buf_to, bytes, MPI_CHAR, from, 0, MPI_COMM_WORLD, &status);
assert(err == MPI_SUCCESS);
}
double stop = usecond_precise();
if (i >= 0)
t_time[i] = stop - start;
}
// important: only 'from' and 'to' have meaningful timings. we use
// 'from's.
MPI_Bcast(t_time.data(), Nloop, MPI_DOUBLE, from, MPI_COMM_WORLD);
timestat.statistics(t_time);
double rate = bytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
double rate_min = rate * timestat.mean / timestat.max;
grid_printf("%2d %2d %15.4f %15.3f %15.4f %15d %15.2f\n", from, to, timestat.mean,
timestat.err, timestat.min, bytes, rate);
nlohmann::json tmp;
tmp["from"] = from;
tmp["to"] = to;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp["time_usec_error"] = timestat.err;
tmp["time_usec_min"] = timestat.min;
tmp["time_usec_max"] = timestat.max;
tmp["time_usec_full"] = t_time;
nlohmann::json tmp_rate;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp_rate["min"] = rate_min;
tmp["rate_GBps"] = tmp_rate;
json_p2p.push_back(tmp);
}
json_results["p2p"] = json_p2p;
acceleratorFreeDevice(buf_from);
acceleratorFreeDevice(buf_to);
}
static void Memory(void)
{
const int Nvec = 8;
@ -512,8 +726,6 @@ class Benchmark
FGrid->Broadcast(0, &ncall, sizeof(ncall));
Dw.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);
for (uint64_t i = 0; i < ncall; i++)
@ -708,7 +920,6 @@ class Benchmark
uint64_t ncall = 500;
FGrid->Broadcast(0, &ncall, sizeof(ncall));
Ds.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);
@ -776,11 +987,47 @@ int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
int Ls = 1;
bool do_su4 = true;
bool do_memory = true;
bool do_comms = true;
bool do_flops = true;
// NOTE: these two take O((number of ranks)^2) time, which might be a lot, so they are
// off by default
bool do_latency = false;
bool do_p2p = false;
std::string json_filename = ""; // empty indicates no json output
for (int i = 0; i < argc; i++)
{
if (std::string(argv[i]) == "--json-out")
auto arg = std::string(argv[i]);
if (arg == "--json-out")
json_filename = argv[i + 1];
if (arg == "--benchmark-su4")
do_su4 = true;
if (arg == "--benchmark-memory")
do_memory = true;
if (arg == "--benchmark-comms")
do_comms = true;
if (arg == "--benchmark-flops")
do_flops = true;
if (arg == "--benchmark-latency")
do_latency = true;
if (arg == "--benchmark-p2p")
do_p2p = true;
if (arg == "--no-benchmark-su4")
do_su4 = false;
if (arg == "--no-benchmark-memory")
do_memory = false;
if (arg == "--no-benchmark-comms")
do_comms = false;
if (arg == "--no-benchmark-flops")
do_flops = false;
if (arg == "--no-benchmark-latency")
do_latency = false;
if (arg == "--no-benchmark-p2p")
do_p2p = false;
}
CartesianCommunicator::SetCommunicatorPolicy(
@ -792,12 +1039,6 @@ int main(int argc, char **argv)
#endif
Benchmark::Decomposition();
int do_su4 = 1;
int do_memory = 1;
int do_comms = 1;
int do_flops = 1;
int Ls = 1;
int sel = 4;
std::vector<int> L_list({8, 12, 16, 24, 32});
int selm1 = sel - 1;
@ -830,6 +1071,22 @@ int main(int argc, char **argv)
Benchmark::Comms();
}
if (do_latency)
{
grid_big_sep();
std::cout << GridLogMessage << " Latency benchmark " << std::endl;
grid_big_sep();
Benchmark::Latency();
}
if (do_p2p)
{
grid_big_sep();
std::cout << GridLogMessage << " Point-To-Point benchmark " << std::endl;
grid_big_sep();
Benchmark::P2P();
}
if (do_flops)
{
Ls = 1;
@ -889,6 +1146,8 @@ int main(int argc, char **argv)
json_results["flops"] = tmp_flops;
}
json_results["hostnames"] = get_mpi_hostnames();
if (!json_filename.empty())
{
std::cout << GridLogMessage << "writing benchmark results to " << json_filename

View File

@ -4,7 +4,13 @@ set -euo pipefail
gcc_spec='gcc@9.4.0'
cuda_spec='cuda@11.4.0'
hdf5_spec='hdf5@1.10.7'
# hdf5 and fftw depend on OpenMPI, which we install manually. To make sure this
# dependency is picked by spack, we specify the compiler here explicitly. For
# most other packages we dont really care about the compiler (i.e. system
# compiler versus ${gcc_spec})
hdf5_spec="hdf5@1.10.7+cxx+threadsafe%${gcc_spec}"
fftw_spec="fftw%${gcc_spec}"
if (( $# != 1 )); then
echo "usage: $(basename "$0") <env dir>" 1>&2
@ -18,7 +24,7 @@ cd "${cwd}"
# General configuration ########################################################
# build with 128 tasks
echo 'config:
echo 'config:
build_jobs: 128
build_stage:
- $spack/var/spack/stage
@ -38,26 +44,23 @@ rm external.yaml
# Base compilers ###############################################################
# configure system base
spack env create base
spack env activate base
spack compiler find --scope site
# install GCC, CUDA & LLVM
spack install ${gcc_spec} ${cuda_spec} llvm
spack load llvm
# install GCC, CUDA
spack add ${gcc_spec} ${cuda_spec}
spack concretize
spack env depfile -o Makefile.tmp
make -j128 -f Makefile.tmp
spack compiler find --scope site
spack unload llvm
spack load ${gcc_spec}
spack compiler find --scope site
spack unload ${gcc_spec}
# Manual compilation of OpenMPI & UCX ##########################################
# set build directories
mkdir -p "${dir}"/build
cd "${dir}"/build
spack load ${gcc_spec} ${cuda_spec}
cuda_path=$(spack find --format "{prefix}" cuda)
gdrcopy_path=/mnt/lustre/tursafs1/apps/gdrcopy/2.3.1
@ -124,8 +127,8 @@ mkdir build_gpu; cd build_gpu
--with-cuda="${cuda_path}" --disable-getpwuid \
--with-verbs --with-slurm --enable-mpi-fortran=all \
--with-pmix=internal --with-libevent=internal
make -j 128
make install
make -j 128
make install
cd ..
# openmpi cpu build
@ -141,60 +144,62 @@ make -j 128
make install
cd "${dir}"
ucx_spec_gpu="ucx@1.12.0.GPU%${gcc_spec}"
ucx_spec_cpu="ucx@1.12.0.CPU%${gcc_spec}"
openmpi_spec_gpu="openmpi@4.1.1.GPU%${gcc_spec}"
openmpi_spec_cpu="openmpi@4.1.1.CPU%${gcc_spec}"
# Add externals to spack
echo "packages:
ucx:
externals:
- spec: \"ucx@1.12.0.GPU%gcc@9.4.0\"
- spec: \"${ucx_spec_gpu}\"
prefix: ${dir}/prefix/ucx_gpu
- spec: \"ucx@1.12.0.CPU%gcc@9.4.0\"
- spec: \"${ucx_spec_cpu}\"
prefix: ${dir}/prefix/ucx_cpu
buildable: False
openmpi:
externals:
- spec: \"openmpi@4.1.1.GPU%gcc@9.4.0\"
- spec: \"${openmpi_spec_gpu}\"
prefix: ${dir}/prefix/ompi_gpu
- spec: \"openmpi@4.1.1.CPU%gcc@9.4.0\"
- spec: \"${openmpi_spec_cpu}\"
prefix: ${dir}/prefix/ompi_cpu
buildable: False" > spack.yaml
spack config --scope site add -f spack.yaml
rm spack.yaml
spack install ucx@1.12.0.GPU%gcc@9.4.0 openmpi@4.1.1.GPU%gcc@9.4.0
spack install ucx@1.12.0.CPU%gcc@9.4.0 openmpi@4.1.1.CPU%gcc@9.4.0
spack env deactivate
cd "${cwd}"
# environments #################################################################
dev_tools=("autoconf" "automake" "libtool" "jq" "git")
ompi_gpu_hash=$(spack find --format "{hash}" openmpi@4.1.1.GPU)
ompi_cpu_hash=$(spack find --format "{hash}" openmpi@4.1.1.CPU)
spack env create grid-gpu
spack env activate grid-gpu
spack add ${gcc_spec} ${cuda_spec} "${dev_tools[@]}"
spack add ucx@1.12.0.GPU%gcc@9.4.0 openmpi@4.1.1.GPU%gcc@9.4.0
spack add ${hdf5_spec}+cxx+threadsafe ^/"${ompi_gpu_hash}"
spack add fftw ^/"${ompi_gpu_hash}"
spack add openssl gmp mpfr c-lime
spack install
spack compiler find --scope site
spack add ${gcc_spec} ${cuda_spec} ${ucx_spec_gpu} ${openmpi_spec_gpu}
spack add ${hdf5_spec} ${fftw_spec}
spack add openssl gmp mpfr c-lime "${dev_tools[@]}"
spack concretize
spack env depfile -o Makefile.tmp
make -j128 -f Makefile.tmp
spack env deactivate
spack env create grid-cpu
spack env activate grid-cpu
spack add llvm "${dev_tools[@]}"
spack add ucx@1.12.0.CPU%gcc@9.4.0 openmpi@4.1.1.CPU%gcc@9.4.0
spack add ${hdf5_spec}+cxx+threadsafe ^/"${ompi_cpu_hash}"
spack add fftw ^/"${ompi_cpu_hash}"
spack add openssl gmp mpfr c-lime
spack install
spack compiler find --scope site
spack add ${gcc_spec} ${ucx_spec_cpu} ${openmpi_spec_cpu}
spack add ${hdf5_spec} ${fftw_spec}
spack add openssl gmp mpfr c-lime "${dev_tools[@]}"
spack concretize
spack env depfile -o Makefile.tmp
make -j128 -f Makefile.tmp
spack env deactivate
spack install jq git
# Final setup ##################################################################
spack clean
spack gc -y
#spack gc -y # "spack gc" tends to get hung up for unknown reasons
# add more environment variables in module loading
spack config --scope site add 'modules:prefix_inspections:lib:[LD_LIBRARY_PATH,LIBRARY_PATH]'

View File

@ -1,14 +0,0 @@
{
BasedOnStyle: LLVM,
UseTab: Never,
IndentWidth: 2,
TabWidth: 2,
BreakBeforeBraces: Allman,
AllowShortIfStatementsOnASingleLine: false,
IndentCaseLabels: false,
ColumnLimit: 90,
AccessModifierOffset: -4,
NamespaceIndentation: All,
FixNamespaceComments: false,
SortIncludes: true,
}

View File

@ -1,381 +0,0 @@
#include <algorithm>
#include <array>
#include <blas_quda.h>
#include <cassert>
#include <color_spinor_field.h>
#include <dirac_quda.h>
#include <gauge_tools.h>
#include <memory>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
using namespace quda;
// remove to use QUDA's own flop counting instead of Grid's convention
#define FLOP_COUNTING_GRID
// This is the MPI grid, i.e. the layout of ranks
int nranks = -1;
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
void initComms(int argc, char **argv)
{
// init MPI communication
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
assert(1 <= nranks && nranks <= 100000);
mpi_grid[3] = nranks;
// this maps coordinates to rank number
auto lex_rank_from_coords = [](int const *coords, void *)
{
int rank = coords[0];
for (int i = 1; i < 4; i++)
rank = mpi_grid[i] * rank + coords[i];
return rank;
};
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
for (int d = 0; d < 4; d++)
if (mpi_grid[d] > 1)
commDimPartitionedSet(d);
}
// creates a random gauge field. L = local(!) size
cudaGaugeField make_gauge_field(int L)
{
GaugeFieldParam param;
// dimension and type of the lattice object
param.nDim = 4;
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
// solvers where it (to my understanding) refers to the number of (parallely processed)
// deflation vectors.
param.nColor = 3;
// boundary conditions (dont really care for benchmark)
param.t_boundary = QUDA_PERIODIC_T;
// for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller
// precisions are available in QUDA too
param.setPrecision(QUDA_SINGLE_PRECISION);
// no even/odd subset, we want a full lattice
param.siteSubset = QUDA_FULL_SITE_SUBSET;
// what kind of 3x3 matrices the field contains. A proper gauge field has SU(3)
// matrices, but (for example) smeared/thick links could have non-unitary links.
param.link_type = QUDA_SU3_LINKS;
// "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0
param.create = QUDA_NULL_FIELD_CREATE;
// field should be allocated directly on the accelerator/GPU
param.location = QUDA_CUDA_FIELD_LOCATION;
// "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real
// numbers (=3x3 complex numbers). Great feature in production (saving
// memory/cache/network bandwidth), not used for this benchmark.
param.reconstruct = QUDA_RECONSTRUCT_NO;
// "ghostExchange" would often be called "halo exchange" outside of Quda. This has
// nothing to do with ghost fields from continuum/perturbative qcd.
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
// This controls the physical order of elements. "float2" is the the default
param.order = QUDA_FLOAT2_GAUGE_ORDER;
// this means the field is a LORENTZ vector (which a gauge field must be). Has nothing
// to do with spin.
param.geometry = QUDA_VECTOR_GEOMETRY;
// create the field and fill with random SU(3) matrices
// std::cout << param << std::endl; // double-check parameters
auto U = cudaGaugeField(param);
gaugeGauss(U, /*seed=*/1234, 1.0);
return U;
}
// create a random source vector (L = local size)
ColorSpinorField make_source(int L, int Ls = 1)
{
// NOTE: `param.x` directly determines the size of the (local, per rank) memory
// allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a
// physical local volume of L^4, thus implicity choosing a dimension for the
// checkerboarding (shouldnt really matter of course which one).
ColorSpinorParam param;
param.nColor = 3;
param.nSpin = 4;
param.nVec = 1; // only a single vector
param.pad = 0;
param.siteSubset = QUDA_PARITY_SITE_SUBSET;
param.nDim = Ls == 1 ? 4 : 5;
param.x[0] = L / 2;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
param.x[4] = Ls;
param.pc_type = QUDA_4D_PC;
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
// somewhat surprisingly, the DiracWilson::Dslash(...) function only works with the
// UKQCD_GAMMA_BASIS
param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS;
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
param.setPrecision(QUDA_SINGLE_PRECISION);
param.location = QUDA_CUDA_FIELD_LOCATION;
// create the field and fill it with random values
auto src = ColorSpinorField(param);
quda::RNG rng(src, 1234);
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
/*printfQuda(
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
src.Bytes() * 1.0);*/
// src.PrintDims();
return src;
}
void benchmark_wilson()
{
int niter = 20;
int niter_warmup = 10;
printfQuda("==================== wilson dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
#else
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
"Benchmark_Grid)\n");
#endif
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
for (int L : {8, 12, 16, 24, 32, 48})
{
auto U = make_gauge_field(L);
auto src = make_source(L);
// create (Wilson) dirac operator
DiracParam param;
param.kappa = 0.10;
param.dagger = QUDA_DAG_NO;
param.matpcType = QUDA_MATPC_EVEN_EVEN;
auto dirac = DiracWilson(param);
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
// Not used for simple Wilson fermions)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto tmp = ColorSpinorField(ColorSpinorParam(src));
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
device_timer.stop();
double secs = device_timer.last() / niter;
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
}
}
void benchmark_dwf()
{
int niter = 20;
int niter_warmup = 10;
printfQuda("==================== domain wall dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
#else
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
"Benchmark_Grid)\n");
#endif
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
int Ls = 12;
for (int L : {8, 12, 16, 24, 32, 48})
{
auto U = make_gauge_field(L);
auto src = make_source(L, Ls);
// create dirac operator
DiracParam param;
param.kappa = 0.10;
param.Ls = Ls;
param.m5 = 0.1;
param.dagger = QUDA_DAG_NO;
param.matpcType = QUDA_MATPC_EVEN_EVEN;
auto dirac = DiracDomainWall(param);
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto tmp = ColorSpinorField(ColorSpinorParam(src));
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
device_timer.stop();
double secs = device_timer.last() / niter;
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L * Ls / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
}
}
void benchmark_axpy()
{
// number of iterations for warmup / measurement
// (feel free to change for noise/time tradeoff)
constexpr int niter_warmup = 10;
constexpr int niter = 20;
printfQuda("==================== axpy / memory ====================\n");
ColorSpinorParam param;
param.nDim = 4; // 4-dimensional lattice
param.x[4] = 1; // no fifth dimension
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
// QUDA. "3*4" will probably always be enabled, so we stick with this
param.nSpin = 4;
param.nVec = 1; // just a single vector
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
param.pad = 0; // no padding
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
param.setPrecision(QUDA_SINGLE_PRECISION);
// the following dont matter for an axpy benchmark, but need to choose something
param.pc_type = QUDA_4D_PC;
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
"GiB/s/rank", "Gflop/s/rank");
std::vector L_list = {8, 12, 16, 24, 32};
for (int L : L_list)
{
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
// number of (real) elements in one (local) field
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
param.nColor * param.nSpin;
// create the field(s)
auto fieldA = ColorSpinorField(param);
auto fieldB = ColorSpinorField(param);
assert(fieldA.Bytes() == sizeof(float) * field_elements); // sanity check
assert(fieldB.Bytes() == sizeof(float) * field_elements); // sanity check
// fill fields with random values
quda::RNG rng(fieldA, 1234);
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
// number of operations / bytes per iteration
// axpy is one addition, one multiplication, two read, one write
double flops = 2 * field_elements;
double memory = 3 * sizeof(float) * field_elements;
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
// behaviour and such
for (int iter = 0; iter < niter_warmup; ++iter)
blas::axpy(1.234, fieldA, fieldB);
// running the actual benchmark
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
blas::axpy(1.234, fieldA, fieldB);
device_timer.stop();
double secs = device_timer.last() / niter; // seconds per iteration
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
}
}
int main(int argc, char **argv)
{
initComms(argc, argv);
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
// verbosity options are:
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
setVerbosity(QUDA_SUMMARIZE);
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
mpi_grid[3]);
benchmark_axpy();
setVerbosity(QUDA_SILENT);
benchmark_wilson();
benchmark_dwf();
setVerbosity(QUDA_SUMMARIZE);
printfQuda("==================== done with all benchmarks ====================\n");
endQuda();
quda::comm_finalize();
MPI_Finalize();
}

View File

@ -1,10 +0,0 @@
#!/bin/bash
#CXX=/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/gcc-9.4.0-g3vyv3te4ah634euh7phyokb3fiurprp/bin/g++
QUDA_BUILD=/home/dp207/dp207/dc-burg2/quda_build
QUDA_SRC=/home/dp207/dp207/dc-burg2/quda
#QUDA_BUILD=
FLAGS="-DMPI_COMMS -DMULTI_GPU -DQUDA_PRECISION=14 -DQUDA_RECONSTRUCT=7 -g -O3 -Wall -Wextra -std=c++17 "
$CXX $FLAGS -I$QUDA_BUILD/include/targets/cuda -I$QUDA_SRC/include -I$QUDA_BUILD/include -isystem $QUDA_SRC/include/externals -isystem $QUDA_BUILD/_deps/eigen-src -c -o Benchmark_Quda.o Benchmark_Quda.cpp
LINK_FLAGS="-Wl,-rpath,$QUDA_BUILD/tests:$QUDA_BUILD/lib:/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs: $QUDA_BUILD/lib/libquda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libcuda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libnvidia-ml.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcudart_static.a -ldl /usr/lib64/librt.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcublas.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcufft.so -lpthread"
$CXX -g -O3 Benchmark_Quda.o -o Benchmark_Quda $LINK_FLAGS -lmpi

View File

@ -1,21 +0,0 @@
module load gcc/9.3.0
module load cuda/11.4.1
module load openmpi/4.1.1-cuda11.4
export QUDA_RESOURCE_PATH=$(pwd)/tuning
export OMP_NUM_THREADS=4
export OMPI_MCA_btl=^uct,openib
export OMPI_MCA_pml=ucx # by fabian. no idea what this is
#export UCX_TLS=rc,rc_x,sm,cuda_copy,cuda_ipc,gdr_copy
export UCX_TLS=gdr_copy,rc,rc_x,sm,cuda_copy,cuda_ipc
export UCX_RNDV_THRESH=16384
export UCX_RNDV_SCHEME=put_zcopy
export UCX_IB_GPU_DIRECT_RDMA=yes
export UCX_MEMTYPE_CACHE=n
export OMPI_MCA_io=romio321
export OMPI_MCA_btl_openib_allow_ib=true
export OMPI_MCA_btl_openib_device_type=infiniband
export OMPI_MCA_btl_openib_if_exclude=mlx5_1,mlx5_2,mlx5_3
export QUDA_REORDER_LOCATION=GPU # this is the default anyway