Compare commits

...

5 Commits

3 changed files with 217 additions and 132 deletions

View File

@ -73,6 +73,8 @@ class Benchmark
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
Grid::Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi, shm);
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
@ -85,7 +87,9 @@ class Benchmark
std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads()
<< std::endl;
std::cout << GridLogMessage << "* MPI tasks : " << GridCmdVectorIntToString(mpi)
std::cout << GridLogMessage << "* MPI layout : " << GridCmdVectorIntToString(mpi)
<< std::endl;
std::cout << GridLogMessage << "* Shm layout : " << GridCmdVectorIntToString(shm)
<< std::endl;
std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; "
@ -118,6 +122,7 @@ class Benchmark
for (unsigned int i = 0; i < mpi.size(); ++i)
{
tmp["mpi"].push_back(mpi[i]);
tmp["shm"].push_back(shm[i]);
}
tmp["ranks"] = NP;
tmp["nodes"] = NN;
@ -132,6 +137,8 @@ class Benchmark
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
Coordinate shm_layout;
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
for (int mu = 0; mu < Nd; mu++)
if (mpi_layout[mu] > 1)
@ -143,8 +150,8 @@ class Benchmark
std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in "
<< nmu << " dimensions" << std::endl;
grid_small_sep();
grid_printf("%5s %5s %15s %15s %15s %15s %15s\n", "L", "dir", "payload (B)",
"time (usec)", "rate (GB/s/node)", "std dev", "max");
grid_printf("%5s %5s %7s %15s %15s %15s %15s %15s\n", "L", "dir", "shm",
"payload (B)", "time (usec)", "rate (GB/s/node)", "std dev", "max");
for (int lat = 16; lat <= maxlat; lat += 8)
{
@ -173,74 +180,80 @@ class Benchmark
for (int dir = 0; dir < 8; dir++)
{
int mu = dir % 4;
if (mpi_layout[mu] > 1)
if (mpi_layout[mu] == 1) // skip directions that are not distributed
continue;
bool is_shm = mpi_layout[mu] == shm_layout[mu];
bool is_partial_shm = !is_shm && shm_layout[mu] != 1;
std::vector<double> times(Nloop);
for (int i = 0; i < NWARMUP; i++)
{
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
}
for (int i = 0; i < Nloop; i++)
{
std::vector<double> times(Nloop);
for (int i = 0; i < NWARMUP; i++)
dbytes = 0;
double start = usecond();
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes);
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
for (int i = 0; i < Nloop; i++)
else
{
dbytes = 0;
double start = usecond();
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
(void *)&rbuf[dir][0], recv_from_rank, bytes);
dbytes += bytes;
double stop = usecond();
t_time[i] = stop - start; // microseconds
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
timestat.statistics(t_time);
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
dbytes += bytes;
dbytes = dbytes * ppn;
double bidibytes = 2. * dbytes;
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
grid_printf("%5d %5d %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir, bytes,
timestat.mean, rate, rate_err, rate_max);
nlohmann::json tmp;
nlohmann::json tmp_rate;
tmp["L"] = lat;
tmp["dir"] = dir;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp["rate_GBps"] = tmp_rate;
json_results["comms"].push_back(tmp);
double stop = usecond();
t_time[i] = stop - start; // microseconds
}
timestat.statistics(t_time);
dbytes = dbytes * ppn;
double bidibytes = 2. * dbytes;
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
grid_printf("%5d %5d %7s %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir,
is_shm ? "yes"
: is_partial_shm ? "partial"
: "no",
bytes, timestat.mean, rate, rate_err, rate_max);
nlohmann::json tmp;
nlohmann::json tmp_rate;
tmp["L"] = lat;
tmp["dir"] = dir;
tmp["shared_mem"] = is_shm;
tmp["partial_shared_mem"] = is_partial_shm;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp["rate_GBps"] = tmp_rate;
json_results["comms"].push_back(tmp);
}
for (int d = 0; d < 8; d++)
{

View File

@ -2,23 +2,68 @@
#include <array>
#include <blas_quda.h>
#include <cassert>
#include <chrono>
#include <color_spinor_field.h>
#include <communicator_quda.h>
#include <dirac_quda.h>
#include <fstream>
#include <gauge_tools.h>
#include <memory>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
using namespace quda;
// remove to use QUDA's own flop counting instead of Grid's convention
#define FLOP_COUNTING_GRID
#include "json.hpp"
using nlohmann::json;
json json_results;
using namespace quda;
// timestamp = seconds since program start.
// these are written to the json output with the goal of later matching them against
// power-measurments to determine energy efficiency.
using Clock = std::chrono::steady_clock;
Clock::time_point program_start_time = Clock::now();
double get_timestamp()
{
auto dur = Clock::now() - program_start_time;
return std::chrono::duration_cast<std::chrono::microseconds>(dur).count() * 1.0e-6;
}
// This is the MPI grid, i.e. the layout of ranks
int nranks = -1;
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
// run f() in a loop for roughly target_time seconds
// returns seconds per iteration it took
template <class F> double bench(F const &f, double target_time, int niter_warmup = 5)
{
device_timer_t timer;
timer.start();
for (int iter = 0; iter < niter_warmup; ++iter)
f();
timer.stop();
double secs = timer.last() / niter_warmup;
int niter = std::max(1, int(target_time / secs));
// niter = std::min(1000, niter);
// printfQuda("during warmup took %f s/iter, deciding on %d iters\n", secs, niter);
// important: each rank has its own timer, so their measurements can slightly vary. But
// 'niter' needs to be consistent (bug took me a couple hours to track down)
comm_broadcast_global(&niter, sizeof(niter), 0);
timer.reset(__FUNCTION__, __FILE__, __LINE__);
timer.start();
for (int iter = 0; iter < niter; ++iter)
f();
timer.stop();
return timer.last() / niter;
}
void initComms(int argc, char **argv)
{
// init MPI communication
@ -43,6 +88,9 @@ void initComms(int argc, char **argv)
for (int d = 0; d < 4; d++)
if (mpi_grid[d] > 1)
commDimPartitionedSet(d);
json_results["geometry"]["ranks"] = nranks;
json_results["geometry"]["mpi"] = mpi_grid;
}
// creates a random gauge field. L = local(!) size
@ -149,11 +197,8 @@ ColorSpinorField make_source(int L, int Ls = 1)
return src;
}
void benchmark_wilson()
void benchmark_wilson(std::vector<int> const &L_list, double target_time)
{
int niter = 20;
int niter_warmup = 10;
printfQuda("==================== wilson dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
@ -163,8 +208,10 @@ void benchmark_wilson()
#endif
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
for (int L : {8, 12, 16, 24, 32, 48})
for (int L : L_list)
{
// printfQuda("starting wilson L=%d\n", L);
auto U = make_gauge_field(L);
auto src = make_source(L);
@ -179,44 +226,41 @@ void benchmark_wilson()
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
// Not used for simple Wilson fermions)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto res = ColorSpinorField(ColorSpinorParam(src));
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
auto tmp = ColorSpinorField(ColorSpinorParam(src));
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
// first run to get the quda tuning out of the way
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
device_timer.stop();
f();
double flops = 1.0 * dirac.Flops();
double secs = device_timer.last() / niter;
// actual benchmarking
double start_time = get_timestamp();
double secs = bench(f, target_time);
double end_time = get_timestamp();
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
json tmp;
tmp["L"] = L;
tmp["Gflops_wilson"] = flops / secs * 1e-9;
tmp["start_time"] = start_time;
tmp["end_time"] = end_time;
json_results["flops"]["results"].push_back(tmp);
}
}
void benchmark_dwf()
void benchmark_dwf(std::vector<int> const &L_list, double target_time)
{
int niter = 20;
int niter_warmup = 10;
printfQuda("==================== domain wall dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
@ -226,8 +270,9 @@ void benchmark_dwf()
#endif
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
int Ls = 12;
for (int L : {8, 12, 16, 24})
for (int L : L_list)
{
// printfQuda("starting dwf L=%d\n", L);
auto U = make_gauge_field(L);
auto src = make_source(L, Ls);
@ -243,45 +288,43 @@ void benchmark_dwf()
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto res = ColorSpinorField(ColorSpinorParam(src));
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
auto tmp = ColorSpinorField(ColorSpinorParam(src));
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
// first run to get the quda tuning out of the way
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
device_timer.stop();
f();
double flops = 1.0 * dirac.Flops();
double secs = device_timer.last() / niter;
// actual benchmarking
double start_time = get_timestamp();
double secs = bench(f, target_time);
double end_time = get_timestamp();
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L * Ls / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
json tmp;
tmp["L"] = L;
tmp["Gflops_dwf4"] = flops / secs * 1e-9;
tmp["start_time"] = start_time;
tmp["end_time"] = end_time;
json_results["flops"]["results"].push_back(tmp);
}
}
void benchmark_axpy()
void benchmark_axpy(std::vector<int> const &L_list, double target_time)
{
// number of iterations for warmup / measurement
// (feel free to change for noise/time tradeoff)
constexpr int niter_warmup = 10;
constexpr int niter = 20;
constexpr int niter_warmup = 5;
printfQuda("==================== axpy / memory ====================\n");
@ -305,11 +348,11 @@ void benchmark_axpy()
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
"GiB/s/rank", "Gflop/s/rank");
std::vector L_list = {8, 12, 16, 24, 32, 48};
for (int L : L_list)
{
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
// printfQuda("starting axpy L=%d\n", L);
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
param.x[0] = L;
param.x[1] = L;
@ -336,26 +379,41 @@ void benchmark_axpy()
double flops = 2 * field_elements;
double memory = 3 * sizeof(float) * field_elements;
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
// behaviour and such
for (int iter = 0; iter < niter_warmup; ++iter)
blas::axpy(1.234, fieldA, fieldB);
auto f = [&]() { blas::axpy(1.234, fieldA, fieldB); };
// running the actual benchmark
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
blas::axpy(1.234, fieldA, fieldB);
device_timer.stop();
double secs = device_timer.last() / niter; // seconds per iteration
// first run to get the quda tuning out of the way
f();
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
// actual benchmarking
double start_time = get_timestamp();
double secs = bench(f, target_time);
double end_time = get_timestamp();
double mem_MiB = memory / 1024. / 1024.;
double GBps = mem_MiB / 1024 / secs;
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, mem_MiB, secs * 1e6, GBps,
flops / secs * 1e-9);
json tmp;
tmp["L"] = L;
tmp["size_MB"] = mem_MiB;
tmp["GBps"] = GBps;
tmp["GFlops"] = flops / secs * 1e-9;
tmp["start_time"] = start_time;
tmp["end_time"] = end_time;
json_results["axpy"].push_back(tmp);
}
}
int main(int argc, char **argv)
{
std::string json_filename = ""; // empty indicates no json output
for (int i = 0; i < argc; i++)
{
if (std::string(argv[i]) == "--json-out")
json_filename = argv[i + 1];
}
initComms(argc, argv);
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
@ -367,14 +425,28 @@ int main(int argc, char **argv)
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
mpi_grid[3]);
benchmark_axpy();
benchmark_axpy({8, 12, 16, 24, 32, 48}, 1.0);
setVerbosity(QUDA_SILENT);
benchmark_wilson();
benchmark_dwf();
benchmark_wilson({8, 12, 16, 24, 32, 48}, 1.0);
benchmark_dwf({8, 12, 16, 24, 32}, 1.0);
setVerbosity(QUDA_SUMMARIZE);
printfQuda("==================== done with all benchmarks ====================\n");
if (!json_filename.empty())
{
printfQuda("writing benchmark results to %s\n", json_filename.c_str());
int me = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
if (me == 0)
{
std::ofstream json_file(json_filename);
json_file << std::setw(2) << json_results;
}
}
endQuda();
quda::comm_finalize();
MPI_Finalize();

View File

@ -28,5 +28,5 @@ mkdir -p "${PREFIX_DIR}"
LINK_FLAGS="-Wl,-rpath,$QUDA_DIR/lib: $QUDA_DIR/lib/libquda.so $EXTRA_LIBS -lpthread -lmpi"
g++ $BUILD_FLAGS -I$QUDA_DIR/include -c -o $BUILD_DIR/Benchmark_Quda.o $script_dir/Benchmark_Quda.cpp
g++ $BUILD_FLAGS -I$QUDA_DIR/include/targets/cuda -I$QUDA_DIR/include -c -o $BUILD_DIR/Benchmark_Quda.o $script_dir/Benchmark_Quda.cpp
g++ -g -O3 $BUILD_DIR/Benchmark_Quda.o -o $PREFIX_DIR/Benchmark_Quda $LINK_FLAGS -lmpi