Compare commits
5 Commits
a1ad41bb06
...
5103c2a592
Author | SHA1 | Date | |
---|---|---|---|
5103c2a592 | |||
7648ed7496 | |||
8cd10019db | |||
0d588d065a | |||
38527db14d |
@ -73,6 +73,8 @@ class Benchmark
|
||||
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
|
||||
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
|
||||
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
||||
Grid::Coordinate shm;
|
||||
GlobalSharedMemory::GetShmDims(mpi, shm);
|
||||
|
||||
uint64_t NP = TmpGrid->RankCount();
|
||||
uint64_t NN = TmpGrid->NodeCount();
|
||||
@ -85,7 +87,9 @@ class Benchmark
|
||||
std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads()
|
||||
<< std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "* MPI tasks : " << GridCmdVectorIntToString(mpi)
|
||||
std::cout << GridLogMessage << "* MPI layout : " << GridCmdVectorIntToString(mpi)
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << "* Shm layout : " << GridCmdVectorIntToString(shm)
|
||||
<< std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; "
|
||||
@ -118,6 +122,7 @@ class Benchmark
|
||||
for (unsigned int i = 0; i < mpi.size(); ++i)
|
||||
{
|
||||
tmp["mpi"].push_back(mpi[i]);
|
||||
tmp["shm"].push_back(shm[i]);
|
||||
}
|
||||
tmp["ranks"] = NP;
|
||||
tmp["nodes"] = NN;
|
||||
@ -132,6 +137,8 @@ class Benchmark
|
||||
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
Coordinate shm_layout;
|
||||
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
if (mpi_layout[mu] > 1)
|
||||
@ -143,8 +150,8 @@ class Benchmark
|
||||
std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in "
|
||||
<< nmu << " dimensions" << std::endl;
|
||||
grid_small_sep();
|
||||
grid_printf("%5s %5s %15s %15s %15s %15s %15s\n", "L", "dir", "payload (B)",
|
||||
"time (usec)", "rate (GB/s/node)", "std dev", "max");
|
||||
grid_printf("%5s %5s %7s %15s %15s %15s %15s %15s\n", "L", "dir", "shm",
|
||||
"payload (B)", "time (usec)", "rate (GB/s/node)", "std dev", "max");
|
||||
|
||||
for (int lat = 16; lat <= maxlat; lat += 8)
|
||||
{
|
||||
@ -173,74 +180,80 @@ class Benchmark
|
||||
for (int dir = 0; dir < 8; dir++)
|
||||
{
|
||||
int mu = dir % 4;
|
||||
if (mpi_layout[mu] > 1)
|
||||
if (mpi_layout[mu] == 1) // skip directions that are not distributed
|
||||
continue;
|
||||
bool is_shm = mpi_layout[mu] == shm_layout[mu];
|
||||
bool is_partial_shm = !is_shm && shm_layout[mu] != 1;
|
||||
|
||||
std::vector<double> times(Nloop);
|
||||
for (int i = 0; i < NWARMUP; i++)
|
||||
{
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
|
||||
if (dir == mu)
|
||||
{
|
||||
int comm_proc = 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
else
|
||||
{
|
||||
int comm_proc = mpi_layout[mu] - 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
|
||||
recv_from_rank, bytes);
|
||||
}
|
||||
for (int i = 0; i < Nloop; i++)
|
||||
{
|
||||
|
||||
std::vector<double> times(Nloop);
|
||||
for (int i = 0; i < NWARMUP; i++)
|
||||
dbytes = 0;
|
||||
double start = usecond();
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
|
||||
if (dir == mu)
|
||||
{
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
|
||||
if (dir == mu)
|
||||
{
|
||||
int comm_proc = 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
else
|
||||
{
|
||||
int comm_proc = mpi_layout[mu] - 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
|
||||
(void *)&rbuf[dir][0], recv_from_rank, bytes);
|
||||
int comm_proc = 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
for (int i = 0; i < Nloop; i++)
|
||||
else
|
||||
{
|
||||
|
||||
dbytes = 0;
|
||||
double start = usecond();
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
|
||||
if (dir == mu)
|
||||
{
|
||||
int comm_proc = 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
else
|
||||
{
|
||||
int comm_proc = mpi_layout[mu] - 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
|
||||
(void *)&rbuf[dir][0], recv_from_rank, bytes);
|
||||
dbytes += bytes;
|
||||
|
||||
double stop = usecond();
|
||||
t_time[i] = stop - start; // microseconds
|
||||
int comm_proc = mpi_layout[mu] - 1;
|
||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||
}
|
||||
timestat.statistics(t_time);
|
||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
|
||||
recv_from_rank, bytes);
|
||||
dbytes += bytes;
|
||||
|
||||
dbytes = dbytes * ppn;
|
||||
double bidibytes = 2. * dbytes;
|
||||
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
|
||||
double rate_err = rate * timestat.err / timestat.mean;
|
||||
double rate_max = rate * timestat.mean / timestat.min;
|
||||
grid_printf("%5d %5d %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir, bytes,
|
||||
timestat.mean, rate, rate_err, rate_max);
|
||||
nlohmann::json tmp;
|
||||
nlohmann::json tmp_rate;
|
||||
tmp["L"] = lat;
|
||||
tmp["dir"] = dir;
|
||||
tmp["bytes"] = bytes;
|
||||
tmp["time_usec"] = timestat.mean;
|
||||
tmp_rate["mean"] = rate;
|
||||
tmp_rate["error"] = rate_err;
|
||||
tmp_rate["max"] = rate_max;
|
||||
tmp["rate_GBps"] = tmp_rate;
|
||||
json_results["comms"].push_back(tmp);
|
||||
double stop = usecond();
|
||||
t_time[i] = stop - start; // microseconds
|
||||
}
|
||||
timestat.statistics(t_time);
|
||||
|
||||
dbytes = dbytes * ppn;
|
||||
double bidibytes = 2. * dbytes;
|
||||
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
|
||||
double rate_err = rate * timestat.err / timestat.mean;
|
||||
double rate_max = rate * timestat.mean / timestat.min;
|
||||
grid_printf("%5d %5d %7s %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir,
|
||||
is_shm ? "yes"
|
||||
: is_partial_shm ? "partial"
|
||||
: "no",
|
||||
bytes, timestat.mean, rate, rate_err, rate_max);
|
||||
nlohmann::json tmp;
|
||||
nlohmann::json tmp_rate;
|
||||
tmp["L"] = lat;
|
||||
tmp["dir"] = dir;
|
||||
tmp["shared_mem"] = is_shm;
|
||||
tmp["partial_shared_mem"] = is_partial_shm;
|
||||
tmp["bytes"] = bytes;
|
||||
tmp["time_usec"] = timestat.mean;
|
||||
tmp_rate["mean"] = rate;
|
||||
tmp_rate["error"] = rate_err;
|
||||
tmp_rate["max"] = rate_max;
|
||||
tmp["rate_GBps"] = tmp_rate;
|
||||
json_results["comms"].push_back(tmp);
|
||||
}
|
||||
for (int d = 0; d < 8; d++)
|
||||
{
|
||||
|
@ -2,23 +2,68 @@
|
||||
#include <array>
|
||||
#include <blas_quda.h>
|
||||
#include <cassert>
|
||||
#include <chrono>
|
||||
#include <color_spinor_field.h>
|
||||
#include <communicator_quda.h>
|
||||
#include <dirac_quda.h>
|
||||
#include <fstream>
|
||||
#include <gauge_tools.h>
|
||||
#include <memory>
|
||||
#include <mpi.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
using namespace quda;
|
||||
|
||||
// remove to use QUDA's own flop counting instead of Grid's convention
|
||||
#define FLOP_COUNTING_GRID
|
||||
|
||||
#include "json.hpp"
|
||||
using nlohmann::json;
|
||||
json json_results;
|
||||
|
||||
using namespace quda;
|
||||
|
||||
// timestamp = seconds since program start.
|
||||
// these are written to the json output with the goal of later matching them against
|
||||
// power-measurments to determine energy efficiency.
|
||||
using Clock = std::chrono::steady_clock;
|
||||
Clock::time_point program_start_time = Clock::now();
|
||||
double get_timestamp()
|
||||
{
|
||||
auto dur = Clock::now() - program_start_time;
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(dur).count() * 1.0e-6;
|
||||
}
|
||||
|
||||
// This is the MPI grid, i.e. the layout of ranks
|
||||
int nranks = -1;
|
||||
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
|
||||
|
||||
// run f() in a loop for roughly target_time seconds
|
||||
// returns seconds per iteration it took
|
||||
template <class F> double bench(F const &f, double target_time, int niter_warmup = 5)
|
||||
{
|
||||
device_timer_t timer;
|
||||
timer.start();
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
f();
|
||||
timer.stop();
|
||||
|
||||
double secs = timer.last() / niter_warmup;
|
||||
int niter = std::max(1, int(target_time / secs));
|
||||
// niter = std::min(1000, niter);
|
||||
// printfQuda("during warmup took %f s/iter, deciding on %d iters\n", secs, niter);
|
||||
|
||||
// important: each rank has its own timer, so their measurements can slightly vary. But
|
||||
// 'niter' needs to be consistent (bug took me a couple hours to track down)
|
||||
comm_broadcast_global(&niter, sizeof(niter), 0);
|
||||
|
||||
timer.reset(__FUNCTION__, __FILE__, __LINE__);
|
||||
timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
f();
|
||||
timer.stop();
|
||||
return timer.last() / niter;
|
||||
}
|
||||
|
||||
void initComms(int argc, char **argv)
|
||||
{
|
||||
// init MPI communication
|
||||
@ -43,6 +88,9 @@ void initComms(int argc, char **argv)
|
||||
for (int d = 0; d < 4; d++)
|
||||
if (mpi_grid[d] > 1)
|
||||
commDimPartitionedSet(d);
|
||||
|
||||
json_results["geometry"]["ranks"] = nranks;
|
||||
json_results["geometry"]["mpi"] = mpi_grid;
|
||||
}
|
||||
|
||||
// creates a random gauge field. L = local(!) size
|
||||
@ -149,11 +197,8 @@ ColorSpinorField make_source(int L, int Ls = 1)
|
||||
return src;
|
||||
}
|
||||
|
||||
void benchmark_wilson()
|
||||
void benchmark_wilson(std::vector<int> const &L_list, double target_time)
|
||||
{
|
||||
int niter = 20;
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("==================== wilson dirac operator ====================\n");
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||
@ -163,8 +208,10 @@ void benchmark_wilson()
|
||||
#endif
|
||||
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||
|
||||
for (int L : {8, 12, 16, 24, 32, 48})
|
||||
for (int L : L_list)
|
||||
{
|
||||
// printfQuda("starting wilson L=%d\n", L);
|
||||
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L);
|
||||
|
||||
@ -179,44 +226,41 @@ void benchmark_wilson()
|
||||
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
|
||||
// Not used for simple Wilson fermions)
|
||||
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||
auto res = ColorSpinorField(ColorSpinorParam(src));
|
||||
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
|
||||
|
||||
auto tmp = ColorSpinorField(ColorSpinorParam(src));
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
|
||||
// actual benchmark with timings
|
||||
// first run to get the quda tuning out of the way
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
device_timer.stop();
|
||||
f();
|
||||
double flops = 1.0 * dirac.Flops();
|
||||
|
||||
double secs = device_timer.last() / niter;
|
||||
// actual benchmarking
|
||||
double start_time = get_timestamp();
|
||||
double secs = bench(f, target_time);
|
||||
double end_time = get_timestamp();
|
||||
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
// this is the flop counting from Benchmark_Grid
|
||||
double Nc = 3;
|
||||
double Nd = 4;
|
||||
double Ns = 4;
|
||||
double flops =
|
||||
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops *= L * L * L * L / 2.0;
|
||||
#else
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
#endif
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
|
||||
json tmp;
|
||||
tmp["L"] = L;
|
||||
tmp["Gflops_wilson"] = flops / secs * 1e-9;
|
||||
tmp["start_time"] = start_time;
|
||||
tmp["end_time"] = end_time;
|
||||
json_results["flops"]["results"].push_back(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_dwf()
|
||||
void benchmark_dwf(std::vector<int> const &L_list, double target_time)
|
||||
{
|
||||
int niter = 20;
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("==================== domain wall dirac operator ====================\n");
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||
@ -226,8 +270,9 @@ void benchmark_dwf()
|
||||
#endif
|
||||
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||
int Ls = 12;
|
||||
for (int L : {8, 12, 16, 24})
|
||||
for (int L : L_list)
|
||||
{
|
||||
// printfQuda("starting dwf L=%d\n", L);
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L, Ls);
|
||||
|
||||
@ -243,45 +288,43 @@ void benchmark_dwf()
|
||||
// insert gauge field into the dirac operator
|
||||
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
|
||||
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||
auto res = ColorSpinorField(ColorSpinorParam(src));
|
||||
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
|
||||
|
||||
auto tmp = ColorSpinorField(ColorSpinorParam(src));
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
|
||||
// actual benchmark with timings
|
||||
// first run to get the quda tuning out of the way
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
device_timer.stop();
|
||||
f();
|
||||
double flops = 1.0 * dirac.Flops();
|
||||
|
||||
double secs = device_timer.last() / niter;
|
||||
// actual benchmarking
|
||||
double start_time = get_timestamp();
|
||||
double secs = bench(f, target_time);
|
||||
double end_time = get_timestamp();
|
||||
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
// this is the flop counting from Benchmark_Grid
|
||||
double Nc = 3;
|
||||
double Nd = 4;
|
||||
double Ns = 4;
|
||||
double flops =
|
||||
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops *= L * L * L * L * Ls / 2.0;
|
||||
#else
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
#endif
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
json tmp;
|
||||
tmp["L"] = L;
|
||||
tmp["Gflops_dwf4"] = flops / secs * 1e-9;
|
||||
tmp["start_time"] = start_time;
|
||||
tmp["end_time"] = end_time;
|
||||
json_results["flops"]["results"].push_back(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_axpy()
|
||||
void benchmark_axpy(std::vector<int> const &L_list, double target_time)
|
||||
{
|
||||
// number of iterations for warmup / measurement
|
||||
// (feel free to change for noise/time tradeoff)
|
||||
constexpr int niter_warmup = 10;
|
||||
constexpr int niter = 20;
|
||||
constexpr int niter_warmup = 5;
|
||||
|
||||
printfQuda("==================== axpy / memory ====================\n");
|
||||
|
||||
@ -305,11 +348,11 @@ void benchmark_axpy()
|
||||
|
||||
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
|
||||
"GiB/s/rank", "Gflop/s/rank");
|
||||
std::vector L_list = {8, 12, 16, 24, 32, 48};
|
||||
for (int L : L_list)
|
||||
{
|
||||
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||
// are LOCAL, i.e. per rank / per GPU
|
||||
// printfQuda("starting axpy L=%d\n", L);
|
||||
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||
// are LOCAL, i.e. per rank / per GPU
|
||||
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
@ -336,26 +379,41 @@ void benchmark_axpy()
|
||||
double flops = 2 * field_elements;
|
||||
double memory = 3 * sizeof(float) * field_elements;
|
||||
|
||||
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
|
||||
// behaviour and such
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
auto f = [&]() { blas::axpy(1.234, fieldA, fieldB); };
|
||||
|
||||
// running the actual benchmark
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
device_timer.stop();
|
||||
double secs = device_timer.last() / niter; // seconds per iteration
|
||||
// first run to get the quda tuning out of the way
|
||||
f();
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
|
||||
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
|
||||
// actual benchmarking
|
||||
double start_time = get_timestamp();
|
||||
double secs = bench(f, target_time);
|
||||
double end_time = get_timestamp();
|
||||
|
||||
double mem_MiB = memory / 1024. / 1024.;
|
||||
double GBps = mem_MiB / 1024 / secs;
|
||||
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, mem_MiB, secs * 1e6, GBps,
|
||||
flops / secs * 1e-9);
|
||||
|
||||
json tmp;
|
||||
tmp["L"] = L;
|
||||
tmp["size_MB"] = mem_MiB;
|
||||
tmp["GBps"] = GBps;
|
||||
tmp["GFlops"] = flops / secs * 1e-9;
|
||||
tmp["start_time"] = start_time;
|
||||
tmp["end_time"] = end_time;
|
||||
json_results["axpy"].push_back(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
std::string json_filename = ""; // empty indicates no json output
|
||||
for (int i = 0; i < argc; i++)
|
||||
{
|
||||
if (std::string(argv[i]) == "--json-out")
|
||||
json_filename = argv[i + 1];
|
||||
}
|
||||
|
||||
initComms(argc, argv);
|
||||
|
||||
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
|
||||
@ -367,14 +425,28 @@ int main(int argc, char **argv)
|
||||
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
|
||||
mpi_grid[3]);
|
||||
|
||||
benchmark_axpy();
|
||||
benchmark_axpy({8, 12, 16, 24, 32, 48}, 1.0);
|
||||
|
||||
setVerbosity(QUDA_SILENT);
|
||||
benchmark_wilson();
|
||||
benchmark_dwf();
|
||||
benchmark_wilson({8, 12, 16, 24, 32, 48}, 1.0);
|
||||
benchmark_dwf({8, 12, 16, 24, 32}, 1.0);
|
||||
setVerbosity(QUDA_SUMMARIZE);
|
||||
|
||||
printfQuda("==================== done with all benchmarks ====================\n");
|
||||
|
||||
if (!json_filename.empty())
|
||||
{
|
||||
printfQuda("writing benchmark results to %s\n", json_filename.c_str());
|
||||
|
||||
int me = 0;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
||||
if (me == 0)
|
||||
{
|
||||
std::ofstream json_file(json_filename);
|
||||
json_file << std::setw(2) << json_results;
|
||||
}
|
||||
}
|
||||
|
||||
endQuda();
|
||||
quda::comm_finalize();
|
||||
MPI_Finalize();
|
||||
|
@ -28,5 +28,5 @@ mkdir -p "${PREFIX_DIR}"
|
||||
|
||||
LINK_FLAGS="-Wl,-rpath,$QUDA_DIR/lib: $QUDA_DIR/lib/libquda.so $EXTRA_LIBS -lpthread -lmpi"
|
||||
|
||||
g++ $BUILD_FLAGS -I$QUDA_DIR/include -c -o $BUILD_DIR/Benchmark_Quda.o $script_dir/Benchmark_Quda.cpp
|
||||
g++ $BUILD_FLAGS -I$QUDA_DIR/include/targets/cuda -I$QUDA_DIR/include -c -o $BUILD_DIR/Benchmark_Quda.o $script_dir/Benchmark_Quda.cpp
|
||||
g++ -g -O3 $BUILD_DIR/Benchmark_Quda.o -o $PREFIX_DIR/Benchmark_Quda $LINK_FLAGS -lmpi
|
||||
|
Loading…
Reference in New Issue
Block a user