forked from portelli/lattice-benchmarks
Compare commits
6 Commits
main
...
6c15981737
Author | SHA1 | Date | |
---|---|---|---|
6c15981737 | |||
0af6b9047a | |||
9de49f8672 | |||
176b1ba776 | |||
b95984c230 | |||
abb5fcfbb1 |
14
Quda/.clang-format
Normal file
14
Quda/.clang-format
Normal file
@ -0,0 +1,14 @@
|
||||
{
|
||||
BasedOnStyle: LLVM,
|
||||
UseTab: Never,
|
||||
IndentWidth: 2,
|
||||
TabWidth: 2,
|
||||
BreakBeforeBraces: Allman,
|
||||
AllowShortIfStatementsOnASingleLine: false,
|
||||
IndentCaseLabels: false,
|
||||
ColumnLimit: 90,
|
||||
AccessModifierOffset: -4,
|
||||
NamespaceIndentation: All,
|
||||
FixNamespaceComments: false,
|
||||
SortIncludes: true,
|
||||
}
|
381
Quda/Benchmark_Quda.cpp
Normal file
381
Quda/Benchmark_Quda.cpp
Normal file
@ -0,0 +1,381 @@
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <blas_quda.h>
|
||||
#include <cassert>
|
||||
#include <color_spinor_field.h>
|
||||
#include <dirac_quda.h>
|
||||
#include <gauge_tools.h>
|
||||
#include <memory>
|
||||
#include <mpi.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
using namespace quda;
|
||||
|
||||
// remove to use QUDA's own flop counting instead of Grid's convention
|
||||
#define FLOP_COUNTING_GRID
|
||||
|
||||
// This is the MPI grid, i.e. the layout of ranks
|
||||
int nranks = -1;
|
||||
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
|
||||
|
||||
void initComms(int argc, char **argv)
|
||||
{
|
||||
// init MPI communication
|
||||
MPI_Init(&argc, &argv);
|
||||
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
|
||||
assert(1 <= nranks && nranks <= 100000);
|
||||
|
||||
mpi_grid[3] = nranks;
|
||||
|
||||
// this maps coordinates to rank number
|
||||
auto lex_rank_from_coords = [](int const *coords, void *)
|
||||
{
|
||||
int rank = coords[0];
|
||||
for (int i = 1; i < 4; i++)
|
||||
rank = mpi_grid[i] * rank + coords[i];
|
||||
return rank;
|
||||
};
|
||||
|
||||
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
|
||||
|
||||
for (int d = 0; d < 4; d++)
|
||||
if (mpi_grid[d] > 1)
|
||||
commDimPartitionedSet(d);
|
||||
}
|
||||
|
||||
// creates a random gauge field. L = local(!) size
|
||||
cudaGaugeField make_gauge_field(int L)
|
||||
{
|
||||
GaugeFieldParam param;
|
||||
|
||||
// dimension and type of the lattice object
|
||||
param.nDim = 4;
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
param.x[2] = L;
|
||||
param.x[3] = L;
|
||||
|
||||
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
|
||||
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
|
||||
// solvers where it (to my understanding) refers to the number of (parallely processed)
|
||||
// deflation vectors.
|
||||
param.nColor = 3;
|
||||
|
||||
// boundary conditions (dont really care for benchmark)
|
||||
param.t_boundary = QUDA_PERIODIC_T;
|
||||
|
||||
// for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller
|
||||
// precisions are available in QUDA too
|
||||
param.setPrecision(QUDA_SINGLE_PRECISION);
|
||||
|
||||
// no even/odd subset, we want a full lattice
|
||||
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
||||
|
||||
// what kind of 3x3 matrices the field contains. A proper gauge field has SU(3)
|
||||
// matrices, but (for example) smeared/thick links could have non-unitary links.
|
||||
param.link_type = QUDA_SU3_LINKS;
|
||||
|
||||
// "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0
|
||||
param.create = QUDA_NULL_FIELD_CREATE;
|
||||
|
||||
// field should be allocated directly on the accelerator/GPU
|
||||
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||
|
||||
// "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real
|
||||
// numbers (=3x3 complex numbers). Great feature in production (saving
|
||||
// memory/cache/network bandwidth), not used for this benchmark.
|
||||
param.reconstruct = QUDA_RECONSTRUCT_NO;
|
||||
|
||||
// "ghostExchange" would often be called "halo exchange" outside of Quda. This has
|
||||
// nothing to do with ghost fields from continuum/perturbative qcd.
|
||||
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
|
||||
|
||||
// This controls the physical order of elements. "float2" is the the default
|
||||
param.order = QUDA_FLOAT2_GAUGE_ORDER;
|
||||
|
||||
// this means the field is a LORENTZ vector (which a gauge field must be). Has nothing
|
||||
// to do with spin.
|
||||
param.geometry = QUDA_VECTOR_GEOMETRY;
|
||||
|
||||
// create the field and fill with random SU(3) matrices
|
||||
// std::cout << param << std::endl; // double-check parameters
|
||||
auto U = cudaGaugeField(param);
|
||||
gaugeGauss(U, /*seed=*/1234, 1.0);
|
||||
return U;
|
||||
}
|
||||
|
||||
// create a random source vector (L = local size)
|
||||
ColorSpinorField make_source(int L, int Ls = 1)
|
||||
{
|
||||
// NOTE: `param.x` directly determines the size of the (local, per rank) memory
|
||||
// allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a
|
||||
// physical local volume of L^4, thus implicity choosing a dimension for the
|
||||
// checkerboarding (shouldnt really matter of course which one).
|
||||
ColorSpinorParam param;
|
||||
param.nColor = 3;
|
||||
param.nSpin = 4;
|
||||
param.nVec = 1; // only a single vector
|
||||
param.pad = 0;
|
||||
param.siteSubset = QUDA_PARITY_SITE_SUBSET;
|
||||
param.nDim = Ls == 1 ? 4 : 5;
|
||||
param.x[0] = L / 2;
|
||||
param.x[1] = L;
|
||||
param.x[2] = L;
|
||||
param.x[3] = L;
|
||||
param.x[4] = Ls;
|
||||
param.pc_type = QUDA_4D_PC;
|
||||
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||
|
||||
// somewhat surprisingly, the DiracWilson::Dslash(...) function only works with the
|
||||
// UKQCD_GAMMA_BASIS
|
||||
param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS;
|
||||
|
||||
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||
param.setPrecision(QUDA_SINGLE_PRECISION);
|
||||
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||
|
||||
// create the field and fill it with random values
|
||||
auto src = ColorSpinorField(param);
|
||||
quda::RNG rng(src, 1234);
|
||||
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
|
||||
/*printfQuda(
|
||||
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
|
||||
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
|
||||
src.Bytes() * 1.0);*/
|
||||
// src.PrintDims();
|
||||
|
||||
return src;
|
||||
}
|
||||
|
||||
void benchmark_wilson()
|
||||
{
|
||||
int niter = 20;
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("==================== wilson dirac operator ====================\n");
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||
#else
|
||||
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
|
||||
"Benchmark_Grid)\n");
|
||||
#endif
|
||||
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||
|
||||
for (int L : {8, 12, 16, 24, 32, 48})
|
||||
{
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L);
|
||||
|
||||
// create (Wilson) dirac operator
|
||||
DiracParam param;
|
||||
param.kappa = 0.10;
|
||||
param.dagger = QUDA_DAG_NO;
|
||||
param.matpcType = QUDA_MATPC_EVEN_EVEN;
|
||||
auto dirac = DiracWilson(param);
|
||||
|
||||
// insert gauge field into the dirac operator
|
||||
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
|
||||
// Not used for simple Wilson fermions)
|
||||
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||
|
||||
auto tmp = ColorSpinorField(ColorSpinorParam(src));
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
|
||||
// actual benchmark with timings
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
device_timer.stop();
|
||||
|
||||
double secs = device_timer.last() / niter;
|
||||
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
// this is the flop counting from Benchmark_Grid
|
||||
double Nc = 3;
|
||||
double Nd = 4;
|
||||
double Ns = 4;
|
||||
double flops =
|
||||
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops *= L * L * L * L / 2.0;
|
||||
#else
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
#endif
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_dwf()
|
||||
{
|
||||
int niter = 20;
|
||||
int niter_warmup = 10;
|
||||
|
||||
printfQuda("==================== domain wall dirac operator ====================\n");
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||
#else
|
||||
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
|
||||
"Benchmark_Grid)\n");
|
||||
#endif
|
||||
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||
int Ls = 12;
|
||||
for (int L : {8, 12, 16, 24, 32, 48})
|
||||
{
|
||||
auto U = make_gauge_field(L);
|
||||
auto src = make_source(L, Ls);
|
||||
|
||||
// create dirac operator
|
||||
DiracParam param;
|
||||
param.kappa = 0.10;
|
||||
param.Ls = Ls;
|
||||
param.m5 = 0.1;
|
||||
param.dagger = QUDA_DAG_NO;
|
||||
param.matpcType = QUDA_MATPC_EVEN_EVEN;
|
||||
auto dirac = DiracDomainWall(param);
|
||||
|
||||
// insert gauge field into the dirac operator
|
||||
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
|
||||
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||
|
||||
auto tmp = ColorSpinorField(ColorSpinorParam(src));
|
||||
|
||||
// couple iterations without timing to warm up
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
|
||||
// actual benchmark with timings
|
||||
dirac.Flops(); // reset flops counter
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
|
||||
device_timer.stop();
|
||||
|
||||
double secs = device_timer.last() / niter;
|
||||
|
||||
#ifdef FLOP_COUNTING_GRID
|
||||
// this is the flop counting from Benchmark_Grid
|
||||
double Nc = 3;
|
||||
double Nd = 4;
|
||||
double Ns = 4;
|
||||
double flops =
|
||||
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||
flops *= L * L * L * L * Ls / 2.0;
|
||||
#else
|
||||
double flops = 1.0 * dirac.Flops() / niter;
|
||||
#endif
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
void benchmark_axpy()
|
||||
{
|
||||
// number of iterations for warmup / measurement
|
||||
// (feel free to change for noise/time tradeoff)
|
||||
constexpr int niter_warmup = 10;
|
||||
constexpr int niter = 20;
|
||||
|
||||
printfQuda("==================== axpy / memory ====================\n");
|
||||
|
||||
ColorSpinorParam param;
|
||||
param.nDim = 4; // 4-dimensional lattice
|
||||
param.x[4] = 1; // no fifth dimension
|
||||
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
|
||||
// QUDA. "3*4" will probably always be enabled, so we stick with this
|
||||
param.nSpin = 4;
|
||||
param.nVec = 1; // just a single vector
|
||||
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
|
||||
param.pad = 0; // no padding
|
||||
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
|
||||
param.setPrecision(QUDA_SINGLE_PRECISION);
|
||||
|
||||
// the following dont matter for an axpy benchmark, but need to choose something
|
||||
param.pc_type = QUDA_4D_PC;
|
||||
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
|
||||
|
||||
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
|
||||
"GiB/s/rank", "Gflop/s/rank");
|
||||
std::vector L_list = {8, 12, 16, 24, 32};
|
||||
for (int L : L_list)
|
||||
{
|
||||
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||
// are LOCAL, i.e. per rank / per GPU
|
||||
|
||||
param.x[0] = L;
|
||||
param.x[1] = L;
|
||||
param.x[2] = L;
|
||||
param.x[3] = L;
|
||||
|
||||
// number of (real) elements in one (local) field
|
||||
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
|
||||
param.nColor * param.nSpin;
|
||||
|
||||
// create the field(s)
|
||||
auto fieldA = ColorSpinorField(param);
|
||||
auto fieldB = ColorSpinorField(param);
|
||||
assert(fieldA.Bytes() == sizeof(float) * field_elements); // sanity check
|
||||
assert(fieldB.Bytes() == sizeof(float) * field_elements); // sanity check
|
||||
|
||||
// fill fields with random values
|
||||
quda::RNG rng(fieldA, 1234);
|
||||
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
|
||||
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
|
||||
|
||||
// number of operations / bytes per iteration
|
||||
// axpy is one addition, one multiplication, two read, one write
|
||||
double flops = 2 * field_elements;
|
||||
double memory = 3 * sizeof(float) * field_elements;
|
||||
|
||||
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
|
||||
// behaviour and such
|
||||
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
|
||||
// running the actual benchmark
|
||||
device_timer_t device_timer;
|
||||
device_timer.start();
|
||||
for (int iter = 0; iter < niter; ++iter)
|
||||
blas::axpy(1.234, fieldA, fieldB);
|
||||
device_timer.stop();
|
||||
double secs = device_timer.last() / niter; // seconds per iteration
|
||||
|
||||
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
|
||||
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
initComms(argc, argv);
|
||||
|
||||
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
|
||||
|
||||
// verbosity options are:
|
||||
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
|
||||
setVerbosity(QUDA_SUMMARIZE);
|
||||
|
||||
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
|
||||
mpi_grid[3]);
|
||||
|
||||
benchmark_axpy();
|
||||
|
||||
setVerbosity(QUDA_SILENT);
|
||||
benchmark_wilson();
|
||||
benchmark_dwf();
|
||||
setVerbosity(QUDA_SUMMARIZE);
|
||||
|
||||
printfQuda("==================== done with all benchmarks ====================\n");
|
||||
endQuda();
|
||||
quda::comm_finalize();
|
||||
MPI_Finalize();
|
||||
}
|
10
Quda/build.sh
Executable file
10
Quda/build.sh
Executable file
@ -0,0 +1,10 @@
|
||||
#!/bin/bash
|
||||
#CXX=/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/gcc-9.4.0-g3vyv3te4ah634euh7phyokb3fiurprp/bin/g++
|
||||
QUDA_BUILD=/home/dp207/dp207/dc-burg2/quda_build
|
||||
QUDA_SRC=/home/dp207/dp207/dc-burg2/quda
|
||||
#QUDA_BUILD=
|
||||
|
||||
FLAGS="-DMPI_COMMS -DMULTI_GPU -DQUDA_PRECISION=14 -DQUDA_RECONSTRUCT=7 -g -O3 -Wall -Wextra -std=c++17 "
|
||||
$CXX $FLAGS -I$QUDA_BUILD/include/targets/cuda -I$QUDA_SRC/include -I$QUDA_BUILD/include -isystem $QUDA_SRC/include/externals -isystem $QUDA_BUILD/_deps/eigen-src -c -o Benchmark_Quda.o Benchmark_Quda.cpp
|
||||
LINK_FLAGS="-Wl,-rpath,$QUDA_BUILD/tests:$QUDA_BUILD/lib:/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs: $QUDA_BUILD/lib/libquda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libcuda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libnvidia-ml.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcudart_static.a -ldl /usr/lib64/librt.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcublas.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcufft.so -lpthread"
|
||||
$CXX -g -O3 Benchmark_Quda.o -o Benchmark_Quda $LINK_FLAGS -lmpi
|
21
Quda/env.sh
Normal file
21
Quda/env.sh
Normal file
@ -0,0 +1,21 @@
|
||||
module load gcc/9.3.0
|
||||
module load cuda/11.4.1
|
||||
module load openmpi/4.1.1-cuda11.4
|
||||
|
||||
export QUDA_RESOURCE_PATH=$(pwd)/tuning
|
||||
export OMP_NUM_THREADS=4
|
||||
export OMPI_MCA_btl=^uct,openib
|
||||
export OMPI_MCA_pml=ucx # by fabian. no idea what this is
|
||||
#export UCX_TLS=rc,rc_x,sm,cuda_copy,cuda_ipc,gdr_copy
|
||||
export UCX_TLS=gdr_copy,rc,rc_x,sm,cuda_copy,cuda_ipc
|
||||
export UCX_RNDV_THRESH=16384
|
||||
export UCX_RNDV_SCHEME=put_zcopy
|
||||
export UCX_IB_GPU_DIRECT_RDMA=yes
|
||||
export UCX_MEMTYPE_CACHE=n
|
||||
|
||||
export OMPI_MCA_io=romio321
|
||||
export OMPI_MCA_btl_openib_allow_ib=true
|
||||
export OMPI_MCA_btl_openib_device_type=infiniband
|
||||
export OMPI_MCA_btl_openib_if_exclude=mlx5_1,mlx5_2,mlx5_3
|
||||
|
||||
export QUDA_REORDER_LOCATION=GPU # this is the default anyway
|
Reference in New Issue
Block a user