6 Commits

4 changed files with 426 additions and 0 deletions

14
Quda/.clang-format Normal file
View File

@ -0,0 +1,14 @@
{
BasedOnStyle: LLVM,
UseTab: Never,
IndentWidth: 2,
TabWidth: 2,
BreakBeforeBraces: Allman,
AllowShortIfStatementsOnASingleLine: false,
IndentCaseLabels: false,
ColumnLimit: 90,
AccessModifierOffset: -4,
NamespaceIndentation: All,
FixNamespaceComments: false,
SortIncludes: true,
}

381
Quda/Benchmark_Quda.cpp Normal file
View File

@ -0,0 +1,381 @@
#include <algorithm>
#include <array>
#include <blas_quda.h>
#include <cassert>
#include <color_spinor_field.h>
#include <dirac_quda.h>
#include <gauge_tools.h>
#include <memory>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
using namespace quda;
// remove to use QUDA's own flop counting instead of Grid's convention
#define FLOP_COUNTING_GRID
// This is the MPI grid, i.e. the layout of ranks
int nranks = -1;
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
void initComms(int argc, char **argv)
{
// init MPI communication
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
assert(1 <= nranks && nranks <= 100000);
mpi_grid[3] = nranks;
// this maps coordinates to rank number
auto lex_rank_from_coords = [](int const *coords, void *)
{
int rank = coords[0];
for (int i = 1; i < 4; i++)
rank = mpi_grid[i] * rank + coords[i];
return rank;
};
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
for (int d = 0; d < 4; d++)
if (mpi_grid[d] > 1)
commDimPartitionedSet(d);
}
// creates a random gauge field. L = local(!) size
cudaGaugeField make_gauge_field(int L)
{
GaugeFieldParam param;
// dimension and type of the lattice object
param.nDim = 4;
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
// solvers where it (to my understanding) refers to the number of (parallely processed)
// deflation vectors.
param.nColor = 3;
// boundary conditions (dont really care for benchmark)
param.t_boundary = QUDA_PERIODIC_T;
// for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller
// precisions are available in QUDA too
param.setPrecision(QUDA_SINGLE_PRECISION);
// no even/odd subset, we want a full lattice
param.siteSubset = QUDA_FULL_SITE_SUBSET;
// what kind of 3x3 matrices the field contains. A proper gauge field has SU(3)
// matrices, but (for example) smeared/thick links could have non-unitary links.
param.link_type = QUDA_SU3_LINKS;
// "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0
param.create = QUDA_NULL_FIELD_CREATE;
// field should be allocated directly on the accelerator/GPU
param.location = QUDA_CUDA_FIELD_LOCATION;
// "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real
// numbers (=3x3 complex numbers). Great feature in production (saving
// memory/cache/network bandwidth), not used for this benchmark.
param.reconstruct = QUDA_RECONSTRUCT_NO;
// "ghostExchange" would often be called "halo exchange" outside of Quda. This has
// nothing to do with ghost fields from continuum/perturbative qcd.
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
// This controls the physical order of elements. "float2" is the the default
param.order = QUDA_FLOAT2_GAUGE_ORDER;
// this means the field is a LORENTZ vector (which a gauge field must be). Has nothing
// to do with spin.
param.geometry = QUDA_VECTOR_GEOMETRY;
// create the field and fill with random SU(3) matrices
// std::cout << param << std::endl; // double-check parameters
auto U = cudaGaugeField(param);
gaugeGauss(U, /*seed=*/1234, 1.0);
return U;
}
// create a random source vector (L = local size)
ColorSpinorField make_source(int L, int Ls = 1)
{
// NOTE: `param.x` directly determines the size of the (local, per rank) memory
// allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a
// physical local volume of L^4, thus implicity choosing a dimension for the
// checkerboarding (shouldnt really matter of course which one).
ColorSpinorParam param;
param.nColor = 3;
param.nSpin = 4;
param.nVec = 1; // only a single vector
param.pad = 0;
param.siteSubset = QUDA_PARITY_SITE_SUBSET;
param.nDim = Ls == 1 ? 4 : 5;
param.x[0] = L / 2;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
param.x[4] = Ls;
param.pc_type = QUDA_4D_PC;
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
// somewhat surprisingly, the DiracWilson::Dslash(...) function only works with the
// UKQCD_GAMMA_BASIS
param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS;
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
param.setPrecision(QUDA_SINGLE_PRECISION);
param.location = QUDA_CUDA_FIELD_LOCATION;
// create the field and fill it with random values
auto src = ColorSpinorField(param);
quda::RNG rng(src, 1234);
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
/*printfQuda(
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
src.Bytes() * 1.0);*/
// src.PrintDims();
return src;
}
void benchmark_wilson()
{
int niter = 20;
int niter_warmup = 10;
printfQuda("==================== wilson dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
#else
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
"Benchmark_Grid)\n");
#endif
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
for (int L : {8, 12, 16, 24, 32, 48})
{
auto U = make_gauge_field(L);
auto src = make_source(L);
// create (Wilson) dirac operator
DiracParam param;
param.kappa = 0.10;
param.dagger = QUDA_DAG_NO;
param.matpcType = QUDA_MATPC_EVEN_EVEN;
auto dirac = DiracWilson(param);
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
// Not used for simple Wilson fermions)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto tmp = ColorSpinorField(ColorSpinorParam(src));
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
device_timer.stop();
double secs = device_timer.last() / niter;
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
}
}
void benchmark_dwf()
{
int niter = 20;
int niter_warmup = 10;
printfQuda("==================== domain wall dirac operator ====================\n");
#ifdef FLOP_COUNTING_GRID
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
#else
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
"Benchmark_Grid)\n");
#endif
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
int Ls = 12;
for (int L : {8, 12, 16, 24, 32, 48})
{
auto U = make_gauge_field(L);
auto src = make_source(L, Ls);
// create dirac operator
DiracParam param;
param.kappa = 0.10;
param.Ls = Ls;
param.m5 = 0.1;
param.dagger = QUDA_DAG_NO;
param.matpcType = QUDA_MATPC_EVEN_EVEN;
auto dirac = DiracDomainWall(param);
// insert gauge field into the dirac operator
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
dirac.updateFields(&U, nullptr, nullptr, nullptr);
auto tmp = ColorSpinorField(ColorSpinorParam(src));
// couple iterations without timing to warm up
for (int iter = 0; iter < niter_warmup; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
// actual benchmark with timings
dirac.Flops(); // reset flops counter
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
dirac.Dslash(tmp, src, QUDA_EVEN_PARITY);
device_timer.stop();
double secs = device_timer.last() / niter;
#ifdef FLOP_COUNTING_GRID
// this is the flop counting from Benchmark_Grid
double Nc = 3;
double Nd = 4;
double Ns = 4;
double flops =
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
flops *= L * L * L * L * Ls / 2.0;
#else
double flops = 1.0 * dirac.Flops() / niter;
#endif
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
}
}
void benchmark_axpy()
{
// number of iterations for warmup / measurement
// (feel free to change for noise/time tradeoff)
constexpr int niter_warmup = 10;
constexpr int niter = 20;
printfQuda("==================== axpy / memory ====================\n");
ColorSpinorParam param;
param.nDim = 4; // 4-dimensional lattice
param.x[4] = 1; // no fifth dimension
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
// QUDA. "3*4" will probably always be enabled, so we stick with this
param.nSpin = 4;
param.nVec = 1; // just a single vector
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
param.pad = 0; // no padding
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
param.setPrecision(QUDA_SINGLE_PRECISION);
// the following dont matter for an axpy benchmark, but need to choose something
param.pc_type = QUDA_4D_PC;
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
"GiB/s/rank", "Gflop/s/rank");
std::vector L_list = {8, 12, 16, 24, 32};
for (int L : L_list)
{
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
// are LOCAL, i.e. per rank / per GPU
param.x[0] = L;
param.x[1] = L;
param.x[2] = L;
param.x[3] = L;
// number of (real) elements in one (local) field
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
param.nColor * param.nSpin;
// create the field(s)
auto fieldA = ColorSpinorField(param);
auto fieldB = ColorSpinorField(param);
assert(fieldA.Bytes() == sizeof(float) * field_elements); // sanity check
assert(fieldB.Bytes() == sizeof(float) * field_elements); // sanity check
// fill fields with random values
quda::RNG rng(fieldA, 1234);
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
// number of operations / bytes per iteration
// axpy is one addition, one multiplication, two read, one write
double flops = 2 * field_elements;
double memory = 3 * sizeof(float) * field_elements;
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
// behaviour and such
for (int iter = 0; iter < niter_warmup; ++iter)
blas::axpy(1.234, fieldA, fieldB);
// running the actual benchmark
device_timer_t device_timer;
device_timer.start();
for (int iter = 0; iter < niter; ++iter)
blas::axpy(1.234, fieldA, fieldB);
device_timer.stop();
double secs = device_timer.last() / niter; // seconds per iteration
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
}
}
int main(int argc, char **argv)
{
initComms(argc, argv);
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
// verbosity options are:
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
setVerbosity(QUDA_SUMMARIZE);
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
mpi_grid[3]);
benchmark_axpy();
setVerbosity(QUDA_SILENT);
benchmark_wilson();
benchmark_dwf();
setVerbosity(QUDA_SUMMARIZE);
printfQuda("==================== done with all benchmarks ====================\n");
endQuda();
quda::comm_finalize();
MPI_Finalize();
}

10
Quda/build.sh Executable file
View File

@ -0,0 +1,10 @@
#!/bin/bash
#CXX=/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/gcc-9.4.0-g3vyv3te4ah634euh7phyokb3fiurprp/bin/g++
QUDA_BUILD=/home/dp207/dp207/dc-burg2/quda_build
QUDA_SRC=/home/dp207/dp207/dc-burg2/quda
#QUDA_BUILD=
FLAGS="-DMPI_COMMS -DMULTI_GPU -DQUDA_PRECISION=14 -DQUDA_RECONSTRUCT=7 -g -O3 -Wall -Wextra -std=c++17 "
$CXX $FLAGS -I$QUDA_BUILD/include/targets/cuda -I$QUDA_SRC/include -I$QUDA_BUILD/include -isystem $QUDA_SRC/include/externals -isystem $QUDA_BUILD/_deps/eigen-src -c -o Benchmark_Quda.o Benchmark_Quda.cpp
LINK_FLAGS="-Wl,-rpath,$QUDA_BUILD/tests:$QUDA_BUILD/lib:/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs: $QUDA_BUILD/lib/libquda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libcuda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libnvidia-ml.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcudart_static.a -ldl /usr/lib64/librt.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcublas.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcufft.so -lpthread"
$CXX -g -O3 Benchmark_Quda.o -o Benchmark_Quda $LINK_FLAGS -lmpi

21
Quda/env.sh Normal file
View File

@ -0,0 +1,21 @@
module load gcc/9.3.0
module load cuda/11.4.1
module load openmpi/4.1.1-cuda11.4
export QUDA_RESOURCE_PATH=$(pwd)/tuning
export OMP_NUM_THREADS=4
export OMPI_MCA_btl=^uct,openib
export OMPI_MCA_pml=ucx # by fabian. no idea what this is
#export UCX_TLS=rc,rc_x,sm,cuda_copy,cuda_ipc,gdr_copy
export UCX_TLS=gdr_copy,rc,rc_x,sm,cuda_copy,cuda_ipc
export UCX_RNDV_THRESH=16384
export UCX_RNDV_SCHEME=put_zcopy
export UCX_IB_GPU_DIRECT_RDMA=yes
export UCX_MEMTYPE_CACHE=n
export OMPI_MCA_io=romio321
export OMPI_MCA_btl_openib_allow_ib=true
export OMPI_MCA_btl_openib_device_type=infiniband
export OMPI_MCA_btl_openib_if_exclude=mlx5_1,mlx5_2,mlx5_3
export QUDA_REORDER_LOCATION=GPU # this is the default anyway