1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-16 02:35:36 +00:00
Grid/lib/qcd/action/fermion/WilsonFermion.cc

478 lines
15 KiB
C++
Raw Normal View History

2016-07-06 11:41:27 +01:00
/*************************************************************************************
2016-07-06 11:41:27 +01:00
Grid physics library, www.github.com/paboyle/Grid
2016-07-06 11:41:27 +01:00
Source file: ./lib/qcd/action/fermion/WilsonFermion.cc
2016-07-06 11:41:27 +01:00
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
2016-07-06 11:41:27 +01:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
2016-07-06 11:41:27 +01:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2016-07-06 11:41:27 +01:00
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2016-07-06 11:41:27 +01:00
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
2017-02-22 18:09:33 +00:00
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion.h>
namespace Grid {
namespace QCD {
2017-02-22 18:09:33 +00:00
const std::vector<int> WilsonFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> WilsonFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
2016-07-06 11:41:27 +01:00
int WilsonFermionStatic::HandOptDslash;
2016-07-06 11:41:27 +01:00
/////////////////////////////////
// Constructor and gauge import
/////////////////////////////////
2016-07-06 11:41:27 +01:00
template <class Impl>
WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p,
const WilsonAnisotropyCoefficients &anis)
2016-07-06 11:41:27 +01:00
: Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil(&Fgrid, npoint, Even, directions, displacements),
2017-02-22 18:09:33 +00:00
StencilEven(&Hgrid, npoint, Even, directions,displacements), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements), // source is Odd
2016-07-06 11:41:27 +01:00
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
2016-12-08 17:28:28 +00:00
UmuOdd(&Hgrid),
_tmp(&Hgrid),
anisotropyCoeff(anis)
2016-12-08 17:28:28 +00:00
{
2016-07-06 11:41:27 +01:00
// Allocate the required comms buffer
ImportGauge(_Umu);
if (anisotropyCoeff.isAnisotropic){
diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0);
} else {
diag_mass = 4.0 + mass;
}
2016-07-06 11:41:27 +01:00
}
2016-07-06 11:41:27 +01:00
template <class Impl>
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu) {
GaugeField HUmu(_Umu._grid);
//Here multiply the anisotropy coefficients
if (anisotropyCoeff.isAnisotropic)
{
for (int mu = 0; mu < Nd; mu++)
{
GaugeLinkField U_dir = (-0.5)*PeekIndex<LorentzIndex>(_Umu, mu);
if (mu != anisotropyCoeff.t_direction)
U_dir *= (anisotropyCoeff.nu / anisotropyCoeff.xi_0);
PokeIndex<LorentzIndex>(HUmu, U_dir, mu);
}
}
else
{
HUmu = _Umu * (-0.5);
}
2016-07-06 11:41:27 +01:00
Impl::DoubleStore(GaugeGrid(), Umu, HUmu);
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd, Umu);
}
2016-07-06 11:41:27 +01:00
/////////////////////////////
// Implement the interface
/////////////////////////////
template <class Impl>
RealD WilsonFermion<Impl>::M(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Dhop(in, out, DaggerNo);
return axpy_norm(out, diag_mass, in, out);
2016-07-06 11:41:27 +01:00
}
template <class Impl>
RealD WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Dhop(in, out, DaggerYes);
return axpy_norm(out, diag_mass, in, out);
2016-07-06 11:41:27 +01:00
}
template <class Impl>
void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
2016-07-06 11:41:27 +01:00
}
2016-07-06 11:41:27 +01:00
template <class Impl>
void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
2016-07-06 11:41:27 +01:00
}
2017-02-22 18:09:33 +00:00
template <class Impl>
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
typename FermionField::scalar_type scal(diag_mass);
2017-02-22 18:09:33 +00:00
out = scal * in;
}
2016-07-06 11:41:27 +01:00
2017-02-22 18:09:33 +00:00
template <class Impl>
void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Mooee(in, out);
}
2016-07-06 11:41:27 +01:00
2017-02-22 18:09:33 +00:00
template<class Impl>
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
out = (1.0/(diag_mass))*in;
2017-02-22 18:09:33 +00:00
}
2017-02-22 18:09:33 +00:00
template<class Impl>
void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
template<class Impl>
void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m)
{
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
// what type LatticeComplex
conformable(_grid,out._grid);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
2017-02-22 18:09:33 +00:00
};
std::vector<int> latt_size = _grid->_fdimensions;
FermionField num (_grid); num = zero;
LatComplex wilson(_grid); wilson= zero;
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex denom(_grid); denom= zero;
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
// momphase = n * 2pi / L
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
wilson = wilson + 2.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in); // derivative term
denom=denom + sin(kmu)*sin(kmu);
2016-08-31 00:26:36 +01:00
}
2017-02-22 18:09:33 +00:00
wilson = wilson + _m; // 2 sin^2 k/2 + m
num = num + wilson*in; // -i gmu sin k + 2 sin^2 k/2 + m
denom= denom+wilson*wilson; // sin^2 k + (2 sin^2 k/2 + m)^2
denom= one/denom;
out = num*denom; // [ -i gmu sin k + 2 sin^2 k/2 + m] / [ sin^2 k + (2 sin^2 k/2 + m)^2 ]
}
2016-07-06 11:41:27 +01:00
///////////////////////////////////
// Internal
///////////////////////////////////
template <class Impl>
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
GaugeField &mat, const FermionField &A,
const FermionField &B, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
FermionField Btilde(B._grid);
FermionField Atilde(B._grid);
Atilde = A;//redundant
2016-07-06 11:41:27 +01:00
st.HaloExchange(B, compressor);
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma (1+g)<->(1-g) if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if (!dag) gamma += Nd;
////////////////////////
// Call the single hop
////////////////////////
parallel_for (int sss = 0; sss < B._grid->oSites(); sss++) {
2017-02-22 18:09:33 +00:00
Kernels::DhopDir(st, U, st.CommBuf(), sss, sss, B, Btilde, mu, gamma);
}
2016-07-06 11:41:27 +01:00
//////////////////////////////////////////////////
// spin trace outer product
//////////////////////////////////////////////////
Impl::InsertForce4D(mat, Btilde, Atilde, mu);
}
2016-07-06 11:41:27 +01:00
}
template <class Impl>
void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
2016-07-06 11:41:27 +01:00
conformable(U._grid, _grid);
conformable(U._grid, V._grid);
conformable(U._grid, mat._grid);
mat.checkerboard = U.checkerboard;
DerivInternal(Stencil, Umu, mat, U, V, dag);
}
template <class Impl>
void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
2016-07-06 11:41:27 +01:00
conformable(U._grid, _cbgrid);
conformable(U._grid, V._grid);
//conformable(U._grid, mat._grid); not general, leaving as a comment (Guido)
// Motivation: look at the SchurDiff operator
2016-07-06 11:41:27 +01:00
assert(V.checkerboard == Even);
assert(U.checkerboard == Odd);
mat.checkerboard = Odd;
DerivInternal(StencilEven, UmuOdd, mat, U, V, dag);
}
template <class Impl>
void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
2016-07-06 11:41:27 +01:00
conformable(U._grid, _cbgrid);
conformable(U._grid, V._grid);
//conformable(U._grid, mat._grid);
2016-07-06 11:41:27 +01:00
assert(V.checkerboard == Odd);
assert(U.checkerboard == Even);
mat.checkerboard = Even;
DerivInternal(StencilOdd, UmuEven, mat, U, V, dag);
}
template <class Impl>
2017-02-22 18:09:33 +00:00
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) {
2016-07-06 11:41:27 +01:00
conformable(in._grid, _grid); // verifies full grid
conformable(in._grid, out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
}
2016-01-03 01:38:11 +00:00
2016-07-06 11:41:27 +01:00
template <class Impl>
2017-02-22 18:09:33 +00:00
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) {
2016-07-06 11:41:27 +01:00
conformable(in._grid, _cbgrid); // verifies half grid
conformable(in._grid, out._grid); // drops the cb check
2016-07-06 11:41:27 +01:00
assert(in.checkerboard == Even);
out.checkerboard = Odd;
2015-12-17 22:34:28 +00:00
2016-07-06 11:41:27 +01:00
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
}
2016-07-06 11:41:27 +01:00
template <class Impl>
2017-02-22 18:09:33 +00:00
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag) {
2016-07-06 11:41:27 +01:00
conformable(in._grid, _cbgrid); // verifies half grid
conformable(in._grid, out._grid); // drops the cb check
2016-07-06 11:41:27 +01:00
assert(in.checkerboard == Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
}
template <class Impl>
2017-02-22 18:09:33 +00:00
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp) {
2016-07-06 11:41:27 +01:00
DhopDir(in, out, dir, disp);
}
template <class Impl>
2017-02-22 18:09:33 +00:00
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp) {
2016-07-06 11:41:27 +01:00
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
DhopDirDisp(in, out, dirdisp, gamma, DaggerNo);
};
template <class Impl>
2017-02-22 18:09:33 +00:00
void WilsonFermion<Impl>::DhopDirDisp(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag) {
2016-07-06 11:41:27 +01:00
Compressor compressor(dag);
Stencil.HaloExchange(in, compressor);
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopDir(Stencil, Umu, Stencil.CommBuf(), sss, sss, in, out, dirdisp, gamma);
}
2016-07-06 11:41:27 +01:00
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
st.HaloExchange(in, compressor);
if (dag == DaggerYes) {
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSiteDag(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in, out);
}
2016-07-06 11:41:27 +01:00
} else {
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSite(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in, out);
2016-07-06 11:41:27 +01:00
}
}
};
/*******************************************************************************
* Conserved current utilities for Wilson fermions, for contracting propagators
* to make a conserved current sink or inserting the conserved current
* sequentially.
******************************************************************************/
template <class Impl>
void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
Current curr_type,
unsigned int mu)
{
Gamma g5(Gamma::Algebra::Gamma5);
conformable(_grid, q_in_1._grid);
conformable(_grid, q_in_2._grid);
conformable(_grid, q_out._grid);
PropagatorField tmp1(_grid), tmp2(_grid);
q_out = zero;
// Forward, need q1(x + mu), q2(x). Backward, need q1(x), q2(x + mu).
// Inefficient comms method but not performance critical.
tmp1 = Cshift(q_in_1, mu, 1);
tmp2 = Cshift(q_in_2, mu, 1);
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
{
Kernels::ContractConservedCurrentSiteFwd(tmp1._odata[sU],
q_in_2._odata[sU],
q_out._odata[sU],
Umu, sU, mu);
Kernels::ContractConservedCurrentSiteBwd(q_in_1._odata[sU],
tmp2._odata[sU],
q_out._odata[sU],
Umu, sU, mu);
}
}
template <class Impl>
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
2018-03-02 11:47:38 +00:00
ComplexField &lattice_cmplx)
{
conformable(_grid, q_in._grid);
conformable(_grid, q_out._grid);
PropagatorField tmpFwd(_grid), tmpBwd(_grid), tmp(_grid);
unsigned int tshift = (mu == Tp) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
q_out = zero;
LatticeInteger coords(_grid);
LatticeCoordinate(coords, Tp);
// Need q(x + mu) and q(x - mu).
tmp = Cshift(q_in, mu, 1);
tmpFwd = tmp*lattice_cmplx;
tmp = lattice_cmplx*q_in;
tmpBwd = Cshift(tmp, mu, -1);
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
{
// Compute the sequential conserved current insertion only if our simd
// object contains a timeslice we need.
vInteger t_mask = ((coords._odata[sU] >= tmin) &&
(coords._odata[sU] <= tmax));
Integer timeSlices = Reduce(t_mask);
if (timeSlices > 0)
{
Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sU],
q_out._odata[sU],
Umu, sU, mu, t_mask);
}
// Repeat for backward direction.
t_mask = ((coords._odata[sU] >= (tmin + tshift)) &&
(coords._odata[sU] <= (tmax + tshift)));
//if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3)
unsigned int t0 = 0;
if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 ));
timeSlices = Reduce(t_mask);
if (timeSlices > 0)
{
Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sU],
q_out._odata[sU],
Umu, sU, mu, t_mask);
}
}
}
2016-07-06 11:41:27 +01:00
FermOpTemplateInstantiate(WilsonFermion);
AdjointFermOpTemplateInstantiate(WilsonFermion);
TwoIndexFermOpTemplateInstantiate(WilsonFermion);
2016-07-06 11:41:27 +01:00
GparityFermOpTemplateInstantiate(WilsonFermion);
}
}