mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-15 06:17:05 +01:00
Merge branch 'feature/dirichlet-gparity' of https://github.com/paboyle/Grid into feature/dirichlet-gparity
This commit is contained in:
@ -37,6 +37,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
// These can move into a params header and be given MacroMagic serialisation
|
||||
struct GparityWilsonImplParams {
|
||||
Coordinate twists;
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
GparityWilsonImplParams() : twists(Nd, 0) {};
|
||||
};
|
||||
|
||||
@ -66,7 +67,8 @@ struct StaggeredImplParams {
|
||||
RealD, mdtolerance,
|
||||
int, degree,
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
int, BoundsCheckFreq,
|
||||
RealD, BoundsCheckTol);
|
||||
|
||||
// MaxIter and tolerance, vectors??
|
||||
|
||||
@ -78,7 +80,8 @@ struct StaggeredImplParams {
|
||||
int _degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20,
|
||||
RealD mdtol = 1.0e-6)
|
||||
RealD mdtol = 1.0e-6,
|
||||
double _BoundsCheckTol=1e-6)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
@ -86,9 +89,52 @@ struct StaggeredImplParams {
|
||||
mdtolerance(mdtol),
|
||||
degree(_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
BoundsCheckFreq(_BoundsCheckFreq),
|
||||
BoundsCheckTol(_BoundsCheckTol){};
|
||||
};
|
||||
|
||||
/*Action parameters for the generalized rational action
|
||||
The approximation is for (M^dag M)^{1/inv_pow}
|
||||
where inv_pow is the denominator of the fractional power.
|
||||
Default inv_pow=2 for square root, making this equivalent to
|
||||
the OneFlavourRational action
|
||||
*/
|
||||
struct RationalActionParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
|
||||
int, inv_pow,
|
||||
RealD, lo, //low eigenvalue bound of rational approx
|
||||
RealD, hi, //high eigenvalue bound of rational approx
|
||||
int, MaxIter, //maximum iterations in msCG
|
||||
RealD, action_tolerance, //msCG tolerance in action evaluation
|
||||
int, action_degree, //rational approx tolerance in action evaluation
|
||||
RealD, md_tolerance, //msCG tolerance in MD integration
|
||||
int, md_degree, //rational approx tolerance in MD integration
|
||||
int, precision, //precision of floating point arithmetic
|
||||
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
|
||||
// constructor
|
||||
RationalActionParams(int _inv_pow = 2,
|
||||
RealD _lo = 0.0,
|
||||
RealD _hi = 1.0,
|
||||
int _maxit = 1000,
|
||||
RealD _action_tolerance = 1.0e-8,
|
||||
int _action_degree = 10,
|
||||
RealD _md_tolerance = 1.0e-8,
|
||||
int _md_degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: inv_pow(_inv_pow),
|
||||
lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
action_tolerance(_action_tolerance),
|
||||
action_degree(_action_degree),
|
||||
md_tolerance(_md_tolerance),
|
||||
md_degree(_md_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -65,13 +65,65 @@ NAMESPACE_BEGIN(Grid);
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
|
||||
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
|
||||
for noise X (aka GaussNoise).
|
||||
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
|
||||
*/
|
||||
template<class Field> void InversePowerBoundsCheck(int inv_pow,
|
||||
int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &ApproxNegPow)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise.Grid();
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
Field tmp1(FermionGrid), tmp2(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
|
||||
|
||||
tmp1 = X;
|
||||
|
||||
Field* in = &tmp1;
|
||||
Field* out = &tmp2;
|
||||
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
|
||||
msCG(HermOp, *in, *out); //backwards conventions!
|
||||
if(i!=inv_pow-1) std::swap(in, out);
|
||||
}
|
||||
Z = *out;
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
//Note: using mixed prec CG for the heatbath solver in this action class will not work
|
||||
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
|
||||
// You will find that the heatbath solver simply won't converge.
|
||||
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
|
||||
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
|
||||
public:
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
}
|
||||
|
||||
|
||||
//Use the same solver for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& CG,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
//Use the same solver for L,R in the heatbath but different solvers elsewhere
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
|
||||
|
||||
//Use different solvers for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
use_heatbath_forecasting(use_fc),
|
||||
initial_action(false)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
const FermionField &getPhi() const{ return Phi; }
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
@ -160,15 +195,15 @@ NAMESPACE_BEGIN(Grid);
|
||||
tmp[1] = Zero();
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
heatbathRefreshShiftCoefficients(0, -gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
@ -187,15 +222,15 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero();
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
@ -205,49 +240,117 @@ NAMESPACE_BEGIN(Grid);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
|
||||
//Mark that the next call to S is the first after refresh
|
||||
initial_action = true;
|
||||
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
norm2_eta = EtaDagEta;
|
||||
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
FermionField spProj_in(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
out = in;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
spProj(in, spProj_in, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_in, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
|
||||
out = out - Lop.k * tmp[1];
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(in, spProj_in, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_in, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
|
||||
out = out + Rop.k * tmp[1];
|
||||
}
|
||||
|
||||
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
|
||||
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
|
||||
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
|
||||
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
// = 1 * \eta
|
||||
out = in;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
spProj(in, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
|
||||
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = Lop.k * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(in, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
|
||||
|
||||
CG_soln = Zero();
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = - Rop.k * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
@ -271,7 +374,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
@ -281,6 +384,26 @@ NAMESPACE_BEGIN(Grid);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
if(initial_action){
|
||||
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
|
||||
RealD diff = action - norm2_eta;
|
||||
|
||||
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
|
||||
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
|
||||
|
||||
//If approximate solution
|
||||
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
|
||||
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
|
||||
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
|
||||
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
|
||||
|
||||
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
|
||||
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
|
||||
|
||||
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
|
||||
initial_action = false;
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
@ -329,6 +452,40 @@ NAMESPACE_BEGIN(Grid);
|
||||
};
|
||||
};
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
|
||||
private:
|
||||
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
|
||||
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
|
||||
|
||||
public:
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
|
||||
}
|
||||
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
|
||||
AbstractEOFAFermion<ImplF>& _RopF,
|
||||
AbstractEOFAFermion<ImplD>& _LopD,
|
||||
AbstractEOFAFermion<ImplD>& _RopD,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
@ -0,0 +1,372 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
|
||||
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
|
||||
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
|
||||
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
|
||||
|
||||
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
|
||||
BIG WARNING:
|
||||
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
|
||||
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
|
||||
Thus for DWF the numerator operator is the Pauli-Villars operator
|
||||
|
||||
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
|
||||
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
|
||||
*/
|
||||
|
||||
template<class Impl>
|
||||
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef RationalActionParams Params;
|
||||
Params param;
|
||||
|
||||
//For action evaluation
|
||||
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
//For the MD integration
|
||||
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
|
||||
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
|
||||
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
|
||||
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
|
||||
double error = remez.generateApprox(approx_degree,1,inv_pow);
|
||||
if(error > CG_tolerance)
|
||||
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
|
||||
|
||||
approx.Init(remez, CG_tolerance,false);
|
||||
approx_inv.Init(remez, CG_tolerance,true);
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
static constexpr bool Numerator = true;
|
||||
static constexpr bool Denominator = false;
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const GaugeField &U){
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
//Generate approximations for action eval
|
||||
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
|
||||
//Generate approximations for MD
|
||||
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
|
||||
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
}else{
|
||||
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
|
||||
ApproxPowerMD = ApproxPowerAction;
|
||||
ApproxNegPowerMD = ApproxNegPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
|
||||
|
||||
ApproxHalfPowerMD = ApproxHalfPowerAction;
|
||||
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
//Access the fermion field
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
// P(eta) \propto e^{- eta^dag eta}
|
||||
//
|
||||
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
|
||||
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
//Allow for manual specification of random field for testing
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
|
||||
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
// MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
|
||||
|
||||
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
|
||||
ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
|
||||
|
||||
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
int rcheck = rand();
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
|
||||
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
|
||||
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
RealD action = norm2(Y);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
|
||||
const int n_f = ApproxNegPowerMD.poles.size();
|
||||
const int n_pv = ApproxHalfPowerMD.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = ApproxNegPowerMD.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = ApproxHalfPowerMD.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -0,0 +1,93 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
|
||||
// cf. GeneralEvenOddRational.h for details
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
|
||||
private:
|
||||
typedef typename ImplD::FermionField FermionFieldD;
|
||||
typedef typename ImplF::FermionField FermionFieldF;
|
||||
|
||||
FermionOperator<ImplD> & NumOpD;
|
||||
FermionOperator<ImplD> & DenOpD;
|
||||
|
||||
FermionOperator<ImplF> & NumOpF;
|
||||
FermionOperator<ImplF> & DenOpF;
|
||||
|
||||
Integer ReliableUpdateFreq;
|
||||
protected:
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
|
||||
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
|
||||
precisionChange(Uf, Ud);
|
||||
|
||||
NumOpD.ImportGauge(Ud);
|
||||
DenOpD.ImportGauge(Ud);
|
||||
|
||||
NumOpF.ImportGauge(Uf);
|
||||
DenOpF.ImportGauge(Uf);
|
||||
}
|
||||
|
||||
public:
|
||||
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
|
||||
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
|
||||
const RationalActionParams & p, Integer _ReliableUpdateFreq
|
||||
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
|
||||
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -40,262 +40,31 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
MultiShiftFunction MDPowerNegHalf;
|
||||
MultiShiftFunction MDPowerQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
FermionField Noise; // spare noise field for bounds check
|
||||
static RationalActionParams transcribe(const Params &in){
|
||||
RationalActionParams out;
|
||||
out.inv_pow = 2;
|
||||
out.lo = in.lo;
|
||||
out.hi = in.hi;
|
||||
out.MaxIter = in.MaxIter;
|
||||
out.action_tolerance = out.md_tolerance = in.tolerance;
|
||||
out.action_degree = out.md_degree = in.degree;
|
||||
out.precision = in.precision;
|
||||
out.BoundsCheckFreq = in.BoundsCheckFreq;
|
||||
return out;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
Noise(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
MDPowerNegHalf.Init(remez,param.mdtolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
MDPowerQuarter.Init(remez,param.mdtolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){
|
||||
std::stringstream sstream;
|
||||
sstream<< "OneFlavourEvenOddRatioRationalPseudoFermionAction det("<< DenOp.Mass() << ") / det("<<NumOp.Mass()<<")";
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
Noise = etaOdd;
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
|
||||
// MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
if ( (r%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = Noise;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
ChebyBoundsCheck(MdagM,Noise,param.lo,param.hi);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = MDPowerNegHalf.poles.size();
|
||||
const int n_pv = MDPowerQuarter.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,MDPowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,MDPowerNegHalf);
|
||||
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = MDPowerNegHalf.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = MDPowerQuarter.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -40,6 +40,8 @@ directory
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||
|
||||
|
@ -88,15 +88,9 @@ NAMESPACE_BEGIN(Grid);
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
//
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
@ -104,12 +98,22 @@ NAMESPACE_BEGIN(Grid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (NumOp.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
@ -128,10 +132,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Even det factors
|
||||
DenOp.MooeeDag(etaEven,tmp);
|
||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
@ -151,12 +151,22 @@ public:
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
} else if (Parameters.StartingType == "CheckpointStartReseed") {
|
||||
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
|
||||
// Useful for creating new evolution streams from an existing stream
|
||||
|
||||
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
|
||||
// an existing RNG checkpoint first; make sure one is available and named correctly
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
Resources.SeedFixedIntegers();
|
||||
} else {
|
||||
// others
|
||||
std::cout << GridLogError << "Unrecognized StartingType\n";
|
||||
std::cout
|
||||
<< GridLogError
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
@ -80,7 +80,9 @@ public:
|
||||
std::cout << GridLogError << "Seeds not initialized" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
|
||||
sRNG_.SeedFixedIntegers(SerialSeeds);
|
||||
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
|
||||
pRNG_->SeedFixedIntegers(ParallelSeeds);
|
||||
}
|
||||
};
|
||||
|
@ -334,15 +334,19 @@ public:
|
||||
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
assert(P.Grid() == U.Grid());
|
||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
||||
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
|
||||
|
||||
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
|
||||
FieldImplementation::generate_momenta(P, sRNG, pRNG);
|
||||
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
// necessary to keep the fields updated even after a reject
|
||||
// of the Metropolis
|
||||
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
|
||||
Smearer.set_Field(U);
|
||||
// Set the (eventual) representations gauge fields
|
||||
|
||||
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
|
||||
Representations.update(U);
|
||||
|
||||
// The Smearer is attached to a pointer of the gauge field
|
||||
|
Reference in New Issue
Block a user