1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00

Merge branch 'develop' into feature/hadrons

This commit is contained in:
Antonin Portelli 2017-04-10 17:00:53 +01:00
commit 53e76b41d2
45 changed files with 572 additions and 230 deletions

View File

@ -66,7 +66,8 @@ int main (int argc, char ** argv)
Vec tsum; tsum = zero;
GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(std::vector<int>({56,17,89,101}));
std::vector<double> stop(threads);
Vector<Vec> sum(threads);

View File

@ -65,7 +65,7 @@ int main (int argc, char ** argv)
uint64_t Nloop=NLOOP;
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
@ -100,7 +100,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
@ -138,7 +138,7 @@ int main (int argc, char ** argv)
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
@ -173,7 +173,7 @@ int main (int argc, char ** argv)
uint64_t Nloop=NLOOP;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedRandomDevice();
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typename ImprovedStaggeredFermionR::ImplParams params;

View File

@ -55,7 +55,7 @@ int main (int argc, char ** argv)
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
@ -88,7 +88,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
@ -119,7 +119,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
@ -150,7 +150,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);

View File

@ -69,7 +69,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedRandomDevice();
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeFermion src (&Grid); random(pRNG,src);
LatticeFermion result(&Grid); result=zero;

View File

@ -321,7 +321,7 @@ AM_CONDITIONAL(BUILD_COMMS_NONE, [ test "${comms_type}X" == "noneX" ])
############### RNG selection
AC_ARG_ENABLE([rng],[AC_HELP_STRING([--enable-rng=ranlux48|mt19937|sitmo],\
[Select Random Number Generator to be used])],\
[ac_RNG=${enable_rng}],[ac_RNG=ranlux48])
[ac_RNG=${enable_rng}],[ac_RNG=sitmo])
case ${ac_RNG} in
ranlux48)
@ -401,6 +401,7 @@ AC_CONFIG_FILES(tests/hadrons/Makefile)
AC_CONFIG_FILES(tests/hmc/Makefile)
AC_CONFIG_FILES(tests/solver/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(tests/testu01/Makefile)
AC_CONFIG_FILES(benchmarks/Makefile)
AC_CONFIG_FILES(extras/Makefile)
AC_CONFIG_FILES(extras/Hadrons/Makefile)

View File

@ -425,7 +425,7 @@ namespace Grid {
A[p]=zero;
}
GridParallelRNG RNG(Grid()); RNG.SeedRandomDevice();
GridParallelRNG RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34}));
Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val);
Complex one(1.0);

View File

@ -177,9 +177,11 @@ public:
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){

View File

@ -206,7 +206,7 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",GroupRank,r);
shm_unlink(shm_name);
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0660);
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
if ( fd < 0 ) { perror("failed shm_open"); assert(0); }
ftruncate(fd, size);
@ -226,7 +226,7 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",GroupRank,r);
int fd=shm_open(shm_name,O_RDWR,0660);
int fd=shm_open(shm_name,O_RDWR,0666);
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

View File

@ -30,12 +30,19 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define GRID_LATTICE_RNG_H
#include <random>
#ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
#endif
#if defined(RNG_SITMO)
#define RNG_FAST_DISCARD
#else
#undef RNG_FAST_DISCARD
#endif
namespace Grid {
//http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf ?
//////////////////////////////////////////////////////////////
// Allow the RNG state to be less dense than the fine grid
//////////////////////////////////////////////////////////////
@ -65,120 +72,139 @@ namespace Grid {
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
return multiplicity;
}
// Wrap seed_seq to give common interface with random_device
// Should rather wrap random_device and have a generate
class fixedSeed {
public:
typedef std::seed_seq::result_type result_type;
std::seed_seq src;
template<class int_type> fixedSeed(const std::vector<int_type> &seeds) : src(seeds.begin(),seeds.end()) {};
template< class RandomIt > void generate( RandomIt begin, RandomIt end ) {
src.generate(begin,end);
}
};
class deviceSeed {
public:
std::random_device rd;
typedef std::random_device::result_type result_type;
deviceSeed(void) : rd(){};
template< class RandomIt > void generate( RandomIt begin, RandomIt end ) {
for(RandomIt it=begin; it!=end;it++){
*it = rd();
}
}
};
// real scalars are one component
template<class scalar,class distribution,class generator> void fillScalar(scalar &s,distribution &dist,generator & gen)
template<class scalar,class distribution,class generator>
void fillScalar(scalar &s,distribution &dist,generator & gen)
{
s=dist(gen);
}
template<class distribution,class generator> void fillScalar(ComplexF &s,distribution &dist, generator &gen)
template<class distribution,class generator>
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
{
s=ComplexF(dist(gen),dist(gen));
}
template<class distribution,class generator> void fillScalar(ComplexD &s,distribution &dist,generator &gen)
template<class distribution,class generator>
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
{
s=ComplexD(dist(gen),dist(gen));
}
class GridRNGbase {
public:
int _seeded;
// One generator per site.
// Uniform and Gaussian distributions from these generators.
#ifdef RNG_RANLUX
typedef uint64_t RngStateType;
typedef std::ranlux48 RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 15;
#elif RNG_MT19937
#endif
#ifdef RNG_MT19937
typedef std::mt19937 RngEngine;
typedef uint32_t RngStateType;
static const int RngStateCount = std::mt19937::state_size;
#elif RNG_SITMO
#endif
#ifdef RNG_SITMO
typedef sitmo::prng_engine RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 4;
#endif
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD>> _uniform;
std::vector<std::normal_distribution<RealD>> _gaussian;
std::vector<std::discrete_distribution<int32_t>> _bernoulli;
void GetState(std::vector<RngStateType> & saved,int gen) {
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
// support for parallel init
///////////////////////
#ifdef RNG_FAST_DISCARD
static void Skip(RngEngine &eng)
{
/////////////////////////////////////////////////////////////////////////////////////
// Skip by 2^40 elements between successive lattice sites
// This goes by 10^12.
// Consider quenched updating; likely never exceeding rate of 1000 sweeps
// per second on any machine. This gives us of order 10^9 seconds, or 100 years
// skip ahead.
// For HMC unlikely to go at faster than a solve per second, and
// tens of seconds per trajectory so this is clean in all reasonable cases,
// and margin of safety is orders of magnitude.
// We could hack Sitmo to skip in the higher order words of state if necessary
/////////////////////////////////////////////////////////////////////////////////////
uint64_t skip = 0x1; skip = skip<<40;
eng.discard(skip);
}
#endif
static RngEngine Reseed(RngEngine &eng)
{
std::vector<uint32_t> newseed;
std::uniform_int_distribution<uint32_t> uid;
return Reseed(eng,newseed,uid);
}
static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed,
std::uniform_int_distribution<uint32_t> &uid)
{
const int reseeds=4;
newseed.resize(reseeds);
for(int i=0;i<reseeds;i++){
newseed[i] = uid(eng);
}
std::seed_seq sseq(newseed.begin(),newseed.end());
return RngEngine(sseq);
}
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
saved.resize(RngStateCount);
std::stringstream ss;
ss<<_generators[gen];
ss<<eng;
ss.seekg(0,ss.beg);
for(int i=0;i<RngStateCount;i++){
ss>>saved[i];
}
}
void SetState(std::vector<RngStateType> & saved,int gen){
void GetState(std::vector<RngStateType> & saved,int gen) {
GetState(saved,_generators[gen]);
}
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
assert(saved.size()==RngStateCount);
std::stringstream ss;
for(int i=0;i<RngStateCount;i++){
ss<< saved[i]<<" ";
}
ss.seekg(0,ss.beg);
ss>>_generators[gen];
ss>>eng;
}
void SetState(std::vector<RngStateType> & saved,int gen){
SetState(saved,_generators[gen]);
}
void SetEngine(RngEngine &Eng, int gen){
_generators[gen]=Eng;
}
void GetEngine(RngEngine &Eng, int gen){
Eng=_generators[gen];
}
template<class source> void Seed(source &src, int gen)
{
_generators[gen] = RngEngine(src);
}
};
class GridSerialRNG : public GridRNGbase {
public:
// FIXME ... do we require lockstep draws of randoms
// from all nodes keeping seeds consistent.
// place a barrier/broadcast in the fill routine
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_seeded=0;
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
typedef typename sobj::scalar_type scalar_type;
@ -191,7 +217,7 @@ namespace Grid {
for(int idx=0;idx<words;idx++){
fillScalar(buf[idx],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
};
@ -250,28 +276,18 @@ namespace Grid {
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template<class source> void Seed(source &src)
{
_generators[0] = RngEngine(src);
_seeded=1;
}
void SeedRandomDevice(void){
deviceSeed src;
Seed(src);
}
void SeedFixedIntegers(const std::vector<int> &seeds){
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
fixedSeed src(seeds);
Seed(src);
std::seed_seq src(seeds.begin(),seeds.end());
Seed(src,0);
}
};
class GridParallelRNG : public GridRNGbase {
public:
GridBase *_grid;
int _vol;
public:
int generator_idx(int os,int is){
return is*_grid->oSites()+os;
@ -285,15 +301,9 @@ namespace Grid {
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_seeded=0;
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
//FIXME implement generic IO and create state save/restore
//void SaveState(const std::string<char> &file);
//void LoadState(const std::string<char> &file);
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
typedef typename vobj::scalar_object scalar_object;
@ -306,7 +316,6 @@ namespace Grid {
int osites=_grid->oSites();
int words=sizeof(scalar_object)/sizeof(scalar_type);
parallel_for(int ss=0;ss<osites;ss++){
std::vector<scalar_object> buf(Nsimd);
@ -329,104 +338,114 @@ namespace Grid {
}
};
// This loop could be made faster to avoid the Ahmdahl by
// i) seed generators on each timeslice, for x=y=z=0;
// ii) seed generators on each z for x=y=0
// iii)seed generators on each y,z for x=0
// iv) seed generators on each y,z,x
// made possible by physical indexing.
template<class source> void Seed(source &src)
{
void SeedFixedIntegers(const std::vector<int> &seeds){
typedef typename source::result_type seed_t;
std::uniform_int_distribution<seed_t> uid;
// Everyone generates the same seed_seq based on input seeds
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
int numseed=4;
int gsites = _grid->_gsites;
std::vector<seed_t> site_init(numseed);
std::seed_seq source(seeds.begin(),seeds.end());
RngEngine master_engine(source);
#ifdef RNG_FAST_DISCARD
////////////////////////////////////////////////
// Skip ahead through a single stream.
// Applicable to SITMO and other has based/crypto RNGs
// Should be applicable to Mersenne Twister, but the C++11
// MT implementation does not implement fast discard even though
// in principle this is possible
////////////////////////////////////////////////
std::vector<int> gcoor;
int rank,o_idx,i_idx;
// Everybody loops over global volume.
for(int gidx=0;gidx<_grid->_gsites;gidx++){
// Master RngEngine
std::vector<seed_t> master_init(numseed); src.generate(master_init.begin(),master_init.end());
_grid->Broadcast(0,(void *)&master_init[0],sizeof(seed_t)*numseed);
fixedSeed master_seed(master_init);
RngEngine master_engine(master_seed);
// Per node RngEngine
std::vector<seed_t> node_init(numseed);
for(int r=0;r<_grid->ProcessorCount();r++) {
std::vector<seed_t> rank_init(numseed);
for(int i=0;i<numseed;i++) rank_init[i] = uid(master_engine);
std::cout << GridLogMessage << "SeedSeq for rank "<<r;
for(int i=0;i<numseed;i++) std::cout<<" "<<rank_init[i];
std::cout <<std::endl;
if ( r==_grid->ThisRank() ) {
for(int i=0;i<numseed;i++) node_init[i] = rank_init[i];
}
}
////////////////////////////////////////////////////
// Set up a seed_seq wrapper with these 8 words
// and draw for each site within node.
////////////////////////////////////////////////////
fixedSeed node_seed(node_init);
RngEngine node_engine(node_seed);
for(int gidx=0;gidx<gsites;gidx++){
int rank,o_idx,i_idx;
Skip(master_engine); // Skip to next RNG sequence
// Where is it?
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// If this is one of mine we take it
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
for(int i=0;i<numseed;i++) site_init[i] = uid(node_engine);
fixedSeed site_seed(site_init);
_generators[l_idx] = RngEngine(site_seed);
_generators[l_idx] = master_engine;
}
}
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient
// and maximally parallel; but NOT reproducible from machine to machine.
// Not ideal, but fastest way to reseed all nodes.
////////////////////////////////////////////////////////////////
{
// Obtain one Reseed per processor
int Nproc = _grid->ProcessorCount();
std::vector<RngEngine> seeders(Nproc);
int me= _grid->ThisRank();
for(int p=0;p<Nproc;p++){
seeders[p] = Reseed(master_engine);
}
master_engine = seeders[me];
}
{
// Obtain one reseeded generator per thread
int Nthread = GridThread::GetThreads();
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);
}
parallel_for(int t=0;t<Nthread;t++) {
// set up one per local site in threaded fashion
std::vector<uint32_t> newseeds;
std::uniform_int_distribution<uint32_t> uid;
for(int l=0;l<_grid->lSites();l++) {
if ( (l%Nthread)==t ) {
_generators[l] = Reseed(seeders[t],newseeds,uid);
}
}
}
}
_seeded=1;
}
void SeedRandomDevice(void){
deviceSeed src;
Seed(src);
#endif
}
void SeedFixedIntegers(const std::vector<int> &seeds){
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
fixedSeed src(seeds);
Seed(src);
////////////////////////////////////////////////////////////////////////
// Support for rigorous test of RNG's
// Return uniform random uint32_t from requested site generator
////////////////////////////////////////////////////////////////////////
uint32_t GlobalU01(int gsite){
uint32_t the_number;
// who
std::vector<int> gcoor;
int rank,o_idx,i_idx;
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// draw
int l_idx=generator_idx(o_idx,i_idx);
if( rank == _grid->ThisRank() ){
the_number = _uid[l_idx](_generators[l_idx]);
}
// share & return
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
return the_number;
}
};
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._uniform);
}
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._gaussian);
}
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._bernoulli);
}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._uniform);
}
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._gaussian);
}
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._bernoulli);
}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
}
#endif

View File

@ -491,10 +491,15 @@ static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG &parallel
#ifdef RNG_RANLUX
header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48");
#else
#endif
#ifdef RNG_MT19937
header.floating_point = std::string("UINT32");
header.data_type = std::string("MT19937");
#endif
#ifdef RNG_SITMO
header.floating_point = std::string("UINT64");
header.data_type = std::string("SITMO");
#endif
truncate(file);
offset = writeHeader(header,file);
@ -522,10 +527,15 @@ static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel
#ifdef RNG_RANLUX
assert(format == std::string("UINT64"));
assert(data_type == std::string("RANLUX48"));
#else
#endif
#ifdef RNG_MT19937
assert(format == std::string("UINT32"));
assert(data_type == std::string("MT19937"));
#endif
#ifdef RNG_SITMO
assert(format == std::string("UINT64"));
assert(data_type == std::string("SITMO"));
#endif
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>

View File

@ -58,6 +58,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>

View File

@ -0,0 +1,102 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: SchurDiagTwoKappa.h
Copyright (C) 2017
Author: Christoph Lehner
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _SCHUR_DIAG_TWO_KAPPA_H
#define _SCHUR_DIAG_TWO_KAPPA_H
namespace Grid {
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
INHERIT_IMPL_TYPES(Matrix);
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out._grid;
out.checkerboard = in.checkerboard;
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
parallel_for(int ss=0;ss<grid->oSites();ss++){
vobj tmp = s[ss % Ls]*in._odata[ss];
vstream(out._odata[ss],tmp);
}
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
}
#endif

View File

View File

@ -54,7 +54,7 @@ THE SOFTWARE.
#define GRID_MACRO_EMPTY()
#define GRID_MACRO_EVAL(...) GRID_MACRO_EVAL1024(__VA_ARGS__)
#define GRID_MACRO_EVAL(...) GRID_MACRO_EVAL64(__VA_ARGS__)
#define GRID_MACRO_EVAL1024(...) GRID_MACRO_EVAL512(GRID_MACRO_EVAL512(__VA_ARGS__))
#define GRID_MACRO_EVAL512(...) GRID_MACRO_EVAL256(GRID_MACRO_EVAL256(__VA_ARGS__))
#define GRID_MACRO_EVAL256(...) GRID_MACRO_EVAL128(GRID_MACRO_EVAL128(__VA_ARGS__))

View File

View File

@ -54,8 +54,8 @@ int main (int argc, char ** argv)
GridSerialRNG sRNGa;
GridSerialRNG sRNGb;
pRNGa.SeedRandomDevice();
sRNGa.SeedRandomDevice();
pRNGa.SeedFixedIntegers(std::vector<int>({45,12,81,9});
sRNGa.SeedFixedIntegers(std::vector<int>({45,12,81,9});
std::string rfile("./ckpoint_rng.4000");
NerscIO::writeRNGState(sRNGa,pRNGa,rfile);

View File

@ -41,7 +41,7 @@ int main (int argc, char ** argv)
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedRandomDevice();
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeComplex U(&Fine);
LatticeComplex ShiftU(&Fine);

View File

@ -125,7 +125,7 @@ template<class scal, class vec,class functor >
void Tester(const functor &func)
{
GridSerialRNG sRNG;
sRNG.SeedRandomDevice();
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
int Nsimd = vec::Nsimd();
@ -184,7 +184,7 @@ void IntTester(const functor &func)
typedef Integer scal;
typedef vInteger vec;
GridSerialRNG sRNG;
sRNG.SeedRandomDevice();
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
int Nsimd = vec::Nsimd();
@ -242,7 +242,7 @@ template<class reduced,class scal, class vec,class functor >
void ReductionTester(const functor &func)
{
GridSerialRNG sRNG;
sRNG.SeedRandomDevice();
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
int Nsimd = vec::Nsimd();
@ -343,7 +343,7 @@ template<class scal, class vec,class functor >
void PermTester(const functor &func)
{
GridSerialRNG sRNG;
sRNG.SeedRandomDevice();
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
int Nsimd = vec::Nsimd();
@ -409,7 +409,7 @@ template<class scal, class vec,class functor >
void ExchangeTester(const functor &func)
{
GridSerialRNG sRNG;
sRNG.SeedRandomDevice();
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
int Nsimd = vec::Nsimd();

View File

@ -52,7 +52,7 @@ int main (int argc, char ** argv)
GridRedBlackCartesian rbFine(latt_size,simd_layout,mpi_layout);
GridParallelRNG fRNG(&Fine);
// fRNG.SeedRandomDevice();
// fRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
std::vector<int> seeds({1,2,3,4});
fRNG.SeedFixedIntegers(seeds);

View File

@ -49,7 +49,7 @@ int main (int argc, char ** argv)
GridCartesian Fine (latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBFine(latt_size,simd_layout,mpi_layout,mask,1);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedRandomDevice();
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeComplex U(&Fine);
LatticeComplex ShiftU(&Fine);

View File

@ -49,7 +49,7 @@ int main (int argc, char ** argv)
GridCartesian Fine (latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBFine(latt_size,simd_layout,mpi_layout,mask,1);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedRandomDevice();
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeComplex err(&Fine);
LatticeComplex U(&Fine);

View File

@ -41,7 +41,7 @@ int main (int argc, char ** argv)
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridParallelRNG FineRNG(&Fine); FineRNG.SeedRandomDevice();
GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeComplex U(&Fine);
LatticeComplex ShiftU(&Fine);

View File

@ -245,7 +245,7 @@ int main(int argc, char *argv[])
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridSerialRNG sRNG;
sRNG.SeedRandomDevice();
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
std::cout << GridLogMessage << "======== Test algebra" << std::endl;
createTestAlgebra();

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(&Grid);
// std::vector<int> seeds({1,2,3,4});
// pRNG.SeedFixedIntegers(seeds);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
typedef typename GparityWilsonFermionR::FermionField FermionField;

View File

@ -86,7 +86,7 @@ int main(int argc, char** argv) {
// Projectors
GridParallelRNG gridRNG(grid);
gridRNG.SeedRandomDevice();
gridRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
SU3Adjoint::LatticeAdjMatrix Gauss(grid);
SU3::LatticeAlgebraVector ha(grid);
SU3::LatticeAlgebraVector hb(grid);

View File

@ -89,8 +89,8 @@ int main(int argc, char **argv) {
GridSerialRNG SerialRNG;
GridSerialRNG SerialRNG1;
FineRNG.SeedRandomDevice();
SerialRNG.SeedRandomDevice();
FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
SerialRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
std::cout << "SerialRNG" << SerialRNG._generators[0] << std::endl;

View File

@ -43,10 +43,10 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridSerialRNG sRNG; sRNG.SeedRandomDevice();
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
GridSerialRNG fsRNG; fsRNG.SeedFixedIntegers(seeds);
GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
GridParallelRNG fpRNG(&Grid); fpRNG.SeedFixedIntegers(seeds);
SpinMatrix rnd ;

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedRandomDevice();
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;

View File

@ -2,11 +2,10 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_even_odd.cc
Source file: ./tests/Test_wilson_tm_even_odd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
@ -62,7 +61,7 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(&Grid);
// std::vector<int> seeds({1,2,3,4});
// pRNG.SeedFixedIntegers(seeds);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeFermion src (&Grid); random(pRNG,src);
LatticeFermion phi (&Grid); random(pRNG,phi);
@ -89,8 +88,8 @@ int main (int argc, char ** argv)
}
RealD mass=0.1;
RealD mu = 0.1;
WilsonTMFermionR Dw(Umu,Grid,RBGrid,mass,mu);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid);
@ -207,7 +206,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw);
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -2,10 +2,11 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_tm_even_odd.cc
Source file: ./tests/Test_wilson_even_odd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
@ -61,7 +62,7 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(&Grid);
// std::vector<int> seeds({1,2,3,4});
// pRNG.SeedFixedIntegers(seeds);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeFermion src (&Grid); random(pRNG,src);
LatticeFermion phi (&Grid); random(pRNG,phi);
@ -88,8 +89,8 @@ int main (int argc, char ** argv)
}
RealD mass=0.1;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
RealD mu = 0.1;
WilsonTMFermionR Dw(Umu,Grid,RBGrid,mass,mu);
LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid);
@ -206,7 +207,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -53,7 +53,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
const int Ls=8;
const int Ls=10;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
@ -87,13 +87,27 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5 =1.8;
std::vector < std::complex<double> > omegas;
#if 0
for(int i=0;i<Ls;i++){
double imag = 0.;
if (i==0) imag=1.;
if (i==Ls-1) imag=-1.;
std::complex<double> temp (0.25+0.01*i, imag*0.1);
omegas.push_back(temp);
double imag = 0.;
if (i==0) imag=1.;
if (i==Ls-1) imag=-1.;
std::complex<double> temp (0.25+0.01*i, imag*0.01);
omegas.push_back(temp);
}
#else
omegas.push_back( std::complex<double>(1.45806438985048,-0) );
omegas.push_back( std::complex<double>(1.18231318389348,-0) );
omegas.push_back( std::complex<double>(0.830951166685955,-0) );
omegas.push_back( std::complex<double>(0.542352409156791,-0) );
omegas.push_back( std::complex<double>(0.341985020453729,-0) );
omegas.push_back( std::complex<double>(0.21137902619029,-0) );
omegas.push_back( std::complex<double>(0.126074299502912,-0) );
omegas.push_back( std::complex<double>(0.0990136651962626,-0) );
omegas.push_back( std::complex<double>(0.0686324988446592,0.0550658530827402) );
omegas.push_back( std::complex<double>(0.0686324988446592,-0.0550658530827402) );
#endif
ZMobiusFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, omegas,1.,0.);
// DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);

View File

@ -54,8 +54,8 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG RNG5(FGrid); RNG5.SeedRandomDevice();
GridParallelRNG RNG4(UGrid); RNG4.SeedRandomDevice();
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
FermionField phi (FGrid); gaussian(RNG5,phi);
FermionField Mphi (FGrid);

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeGaugeField U(&Grid);

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeGaugeField U(&Grid);

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeFermion phi (&Grid); gaussian(pRNG,phi);
LatticeFermion Mphi (&Grid);

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeFermion phi (&Grid); gaussian(pRNG,phi);
LatticeFermion Mphi (&Grid);

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedRandomDevice();
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeFermion phi (&Grid); gaussian(pRNG,phi);
LatticeFermion Mphi (&Grid);

View File

@ -43,7 +43,7 @@ Gamma::Algebra Gmu[] = {Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::A
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
const int Ls = 16;
const int Ls = 10;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
@ -80,13 +80,27 @@ int main(int argc, char** argv) {
RealD mass = 0.01;
RealD M5 = 1.8;
std::vector < std::complex<double> > omegas;
#if 0
for(int i=0;i<Ls;i++){
double imag = 0.;
if (i==0) imag=1.;
if (i==Ls-1) imag=-1.;
std::complex<double> temp (0.25+0.01*i, imag*0.01);
omegas.push_back(temp);
double imag = 0.;
if (i==0) imag=1.;
if (i==Ls-1) imag=-1.;
std::complex<double> temp (0.25+0.01*i, imag*0.01);
omegas.push_back(temp);
}
#else
omegas.push_back( std::complex<double>(1.45806438985048,-0) );
omegas.push_back( std::complex<double>(1.18231318389348,-0) );
omegas.push_back( std::complex<double>(0.830951166685955,-0) );
omegas.push_back( std::complex<double>(0.542352409156791,-0) );
omegas.push_back( std::complex<double>(0.341985020453729,-0) );
omegas.push_back( std::complex<double>(0.21137902619029,-0) );
omegas.push_back( std::complex<double>(0.126074299502912,-0) );
omegas.push_back( std::complex<double>(0.0990136651962626,-0) );
omegas.push_back( std::complex<double>(0.0686324988446592,0.0550658530827402) );
omegas.push_back( std::complex<double>(0.0686324988446592,-0.0550658530827402) );
#endif
ZMobiusFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, omegas,1.,0.);
LatticeFermion src_o(FrbGrid);

View File

@ -0,0 +1,3 @@
AM_LDFLAGS += -L$(LIBRARY_PATH) -ltestu01 -lprobdist -lmylib -lm
AM_CXXFLAGS += -I$(C_INCLUDE_PATH)
include Make.inc

View File

@ -0,0 +1,175 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_smallcrush.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// Wrap Grid's parallel RNG for testU01
#undef BIG_CRUSH // Big crush enable (long running)
#define MIDDLE_CRUSH // Big crush enable (long running)
#undef SMALL_CRUSH // Big crush enable (long running)
#undef TEST_RNG_STANDALONE // Test serial RNGs in isolation
extern "C" {
#include "TestU01.h"
}
std::vector<std::ranlux48> EngineRanlux;
std::vector<std::mt19937> EngineMT;
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
std::vector<sitmo::prng_engine> EngineSitmo;
std::uniform_int_distribution<uint32_t> uid;
uint32_t GetU01Ranlux(void) {
return uid(EngineRanlux[0]);
};
uint32_t GetU01MT(void) {
return uid(EngineMT[0]);
};
uint32_t GetU01Sitmo(void) {
return uid(EngineSitmo[0]);
};
typedef Grid::GridRNGbase::RngEngine RngEngine;
struct TestRNG {
public:
static GridParallelRNG *pRNG;
static GridSerialRNG *sRNG;
static GridBase *_grid;
static RngEngine Eng;
static uint64_t site;
static uint64_t gsites;
static char *name;
static void Init(GridParallelRNG *_pRNG,GridSerialRNG *_sRNG,GridBase *grid) {
pRNG = _pRNG;
sRNG = _sRNG;
_grid= grid;
gsites= grid->_gsites;
site = 0;
}
static uint32_t GetU01(void) {
uint32_t ret_val;
ret_val = pRNG->GlobalU01(site);
site=(site+1)%gsites;
return ret_val;
}
};
GridParallelRNG *TestRNG::pRNG;
GridSerialRNG *TestRNG::sRNG;
GridBase *TestRNG::_grid;
RngEngine TestRNG::Eng;
uint64_t TestRNG::site;
uint64_t TestRNG::gsites;
#ifdef RNG_SITMO
char * TestRNG::name = (char *)"Grid_Sitmo";
#endif
#ifdef RNG_RANLUX
char * TestRNG::name = (char *)"Grid_ranlux48";
#endif
#ifdef RNG_MT19937
char * TestRNG::name = (char *)"Grid_mt19937";
#endif
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
std::seed_seq seq(seeds.begin(),seeds.end());
EngineRanlux.push_back(std::ranlux48(seq));
EngineMT.push_back(std::mt19937(seq));
EngineSitmo.push_back(sitmo::prng_engine(seq));
std::cout << GridLogMessage<< "Initialising Grid RNGs "<<std::endl;
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(std::vector<int>({43,12,7019,9}));
GridSerialRNG sRNG;
sRNG.SeedFixedIntegers(std::vector<int>({102,12,99,15}));
std::cout << GridLogMessage<< "Initialised Grid RNGs "<<std::endl;
TestRNG::Init(&pRNG,&sRNG,&Grid);
std::cout << GridLogMessage<< "Grid RNG's are "<< std::string(TestRNG::name) <<std::endl;
unif01_Gen * gen;
#ifdef TEST_RNG_STANDALONE
std::cout << GridLogMessage<< "Testing Standalone Ranlux" <<std::endl;
gen = unif01_CreateExternGenBits ((char *)"GridRanlux",GetU01Ranlux);
bbattery_SmallCrush (gen);
unif01_DeleteExternGenBits(gen);
std::cout << GridLogMessage<< "Testing Standalone Ranlux is complete" <<std::endl;
std::cout << GridLogMessage<< "Testing Standalone Mersenne Twister" <<std::endl;
gen = unif01_CreateExternGenBits ((char *)"GridMT",GetU01MT);
bbattery_SmallCrush (gen);
unif01_DeleteExternGenBits(gen);
std::cout << GridLogMessage<< "Testing Standalone Mersenne Twister is complete" <<std::endl;
std::cout << GridLogMessage<< "Testing Standalone Sitmo" <<std::endl;
gen = unif01_CreateExternGenBits ((char *)"GridSitmo",GetU01Sitmo);
bbattery_SmallCrush (gen);
unif01_DeleteExternGenBits(gen);
std::cout << GridLogMessage<< "Testing Standalone Sitmo is complete" <<std::endl;
#endif
#ifdef BIG_CRUSH
std::cout << GridLogMessage<< "Testing Grid BigCrush for "<< std::string(TestRNG::name) <<std::endl;
gen = unif01_CreateExternGenBits(TestRNG::name,TestRNG::GetU01);
bbattery_BigCrush (gen);
std::cout << GridLogMessage<< "Testing Grid BigCrush "<< std::string(TestRNG::name)<<" is complete" <<std::endl;
#endif
#ifdef MIDDLE_CRUSH
std::cout << GridLogMessage<< "Testing Grid Crush for "<< std::string(TestRNG::name) <<std::endl;
gen = unif01_CreateExternGenBits(TestRNG::name,TestRNG::GetU01);
bbattery_Crush (gen);
std::cout << GridLogMessage<< "Testing Grid Crush "<< std::string(TestRNG::name)<<" is complete" <<std::endl;
#endif
#ifdef SMALL_CRUSH
std::cout << GridLogMessage<< "Testing Grid SmallCrush for "<< std::string(TestRNG::name) <<std::endl;
gen = unif01_CreateExternGenBits(TestRNG::name,TestRNG::GetU01);
bbattery_SmallCrush (gen);
std::cout << GridLogMessage<< "Testing Grid SmallCrush "<< std::string(TestRNG::name)<<" is complete" <<std::endl;
#endif
Grid_finalize();
}