1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 04:37:05 +01:00

Integrator works now

This commit is contained in:
Guido Cossu
2017-02-24 17:03:42 +00:00
parent 902afcfbaf
commit 7270c6a150
9 changed files with 528 additions and 63 deletions

View File

@ -138,7 +138,15 @@ class HMCWrapperTemplate: public HMCRunnerBase<ReaderClass> {
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
// Metric
//TrivialMetric<typename Implementation::Field> Mtr;
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
LaplacianParams LapPar(0.0001, 1.0, 1000, 1e-8, 12, 64);
RealD Kappa = 0.9;
LaplacianAdjointField<PeriodicGimplR> Laplacian(UGrid, CG, LapPar, Kappa);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing, Laplacian);
if (Parameters.StartingType == "HotStart") {
// Hot start

View File

@ -202,7 +202,7 @@ class HybridMonteCarlo {
RealD H0 = TheIntegrator.S(U); // initial state action
std::streamsize current_precision = std::cout.precision();
std::cout.precision(17);
std::cout.precision(15);
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
@ -210,7 +210,19 @@ class HybridMonteCarlo {
RealD H1 = TheIntegrator.S(U); // updated state action
std::cout.precision(17);
///////////////////////////////////////////////////////////
if(0){
std::cout << "------------------------- Reversibility test" << std::endl;
TheIntegrator.reverse_momenta();
TheIntegrator.integrate(U);
H1 = TheIntegrator.S(U); // updated state action
std::cout << "--------------------------------------------" << std::endl;
}
///////////////////////////////////////////////////////////
std::cout.precision(15);
std::cout << GridLogMessage << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout.precision(current_precision);

View File

@ -78,7 +78,7 @@ class Integrator {
std::vector<double> t_P;
//MomentaField P;
GeneralisedMomenta<FieldImplementation, TrivialMetric<MomentaField>> P;
GeneralisedMomenta<FieldImplementation > P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
@ -125,9 +125,15 @@ class Integrator {
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force)/U._grid->gSites());
std::cout << GridLogIntegrator << "Force average: " << force_abs << std::endl;
Mom -= force * ep;
Mom -= force * ep;
}
MomentaField MomDer(P.Mom._grid);
P.M.ImportGauge(U);
P.DerivativeU(P.Mom, MomDer);
Mom -= MomDer * ep;
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
@ -141,7 +147,7 @@ class Integrator {
MomentaField Msum(P.Mom._grid);
Msum = zero;
for (int a = 0; a < as[level].actions.size(); ++a) {
// Compute the force
// Compute the force terms for the lagrangian part
// We need to compute the derivative of the actions
// only once
Field force(U._grid);
@ -153,7 +159,7 @@ class Integrator {
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force) / U._grid->gSites());
std::cout << GridLogIntegrator << "Force average: " << force_abs
std::cout << GridLogIntegrator << "|Force| site average: " << force_abs
<< std::endl;
Msum += force;
}
@ -162,21 +168,44 @@ class Integrator {
MomentaField OldMom = P.Mom;
double threshold = 1e-6;
P.M.ImportGauge(U);
MomentaField MomDer(P.Mom._grid);
MomentaField MomDer1(P.Mom._grid);
MomDer1 = zero;
MomentaField diff(P.Mom._grid);
// be careful here, we need the first step
// in every trajectory
static int call = 0;
if (call == 1)
P.DerivativeU(P.Mom, MomDer1);
call = 1;
// Here run recursively
int counter = 1;
RealD RelativeError;
do {
MomentaField MomDer(P.Mom._grid);
MomentaField X(P.Mom._grid);
OldMom = NewMom;
std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl;
// Compute the derivative of the kinetic term
// with respect to the gauge field
P.DerivativeU(NewMom, MomDer);
NewMom = P.Mom - ep * (MomDer + Msum);
Real force_abs = std::sqrt(norm2(MomDer) / U._grid->gSites());
std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs
<< std::endl;
} while (norm2(NewMom - OldMom) > threshold);
NewMom = P.Mom - ep* 0.5 * (2.0*Msum + MomDer + MomDer1);
diff = NewMom - OldMom;
counter++;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom));
std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl;
OldMom = NewMom;
} while (RelativeError > threshold);
P.Mom = NewMom;
// update the auxiliary fields momenta
// todo
}
@ -204,19 +233,44 @@ class Integrator {
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
Real threshold = 1e-6;
P.M.ImportGauge(U);
MomentaField Mom1(P.Mom._grid);
MomentaField Mom2(P.Mom._grid);
RealD RelativeError;
Field diff(U._grid);
Real threshold = 1e-6;
int counter = 1;
int MaxCounter = 1000;
Field OldU = U;
Field NewU = U;
P.M.ImportGauge(U);
P.DerivativeP(Mom1); // first term in the derivative
do {
OldU = NewU; // some redundancy to be eliminated
std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl;
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
FieldImplementation::update_field(Mom1 + Mom2, NewU, ep);
MomentaField sum = (Mom1 + Mom2);
//std::cout << GridLogMessage << "sum Norm " << norm2(sum) << std::endl;
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
auto Pmu = PeekIndex<LorentzIndex>(sum, mu);
Umu = expMat(Pmu, ep * 0.5, 12) * Umu;
PokeIndex<LorentzIndex>(NewU, ProjectOnGroup(Umu), mu);
}
diff = NewU - OldU;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU));
std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl;
P.M.ImportGauge(NewU);
} while (norm2(NewU - OldU) > threshold);
OldU = NewU; // some redundancy to be eliminated
counter++;
} while (RelativeError > threshold && counter < MaxCounter);
U = NewU;
}
@ -225,10 +279,10 @@ class Integrator {
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<MomentaField>& M)
: Params(Par),
as(Aset),
P(grid),
P(grid, M),
levels(Aset.size()),
Smearer(Sm),
Representations(grid) {
@ -260,6 +314,10 @@ class Integrator {
}
void reverse_momenta(){
P.Mom *= 1.0;
}
// to be used by the actionlevel class to iterate
// over the representations
struct _refresh {
@ -278,7 +336,10 @@ class Integrator {
void refresh(Field& U, GridParallelRNG& pRNG) {
assert(P.Mom._grid == U._grid);
std::cout << GridLogIntegrator << "Integrator refresh\n";
//FieldImplementation::generate_momenta(P, pRNG);
P.M.ImportGauge(U);
P.MomentaDistribution(pRNG);
// Update the smeared fields, can be implemented as observer
@ -325,7 +386,9 @@ class Integrator {
// Calculate action
RealD S(Field& U) { // here also U not used
RealD H = - FieldImplementation::FieldSquareNorm(P.Mom); // - trace (P*P)
//RealD H = - FieldImplementation::FieldSquareNorm(P.Mom); // - trace (P*P)
P.M.ImportGauge(U);
RealD H = - P.MomentaAction();
RealD Hterm;
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
@ -369,6 +432,7 @@ class Integrator {
// and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6);
}

View File

@ -294,7 +294,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
// correct
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
@ -311,9 +311,9 @@ class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
std::string integrator_name(){return "ImplicitLeapFrog";}
ImplicitLeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm){};
grid, Par, Aset, Sm, M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
@ -335,19 +335,89 @@ class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
}
if (level == fl) { // lowest level
this->implicit_update_U(U, eps / 2.0);
this->implicit_update_U(U, eps);
} else { // recursive function call
this->step(U, level + 1, first_step, last_step);
}
int mm = last_step ? 1 : 2;
this->update_P(U, level, mm * eps / 2.0);
//int mm = last_step ? 1 : 2;
if (last_step){
this->update_P(U, level, eps / 2.0);
} else {
this->implicit_update_P(U, level, eps);
}
}
}
};
// This is not completely tested
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitMinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitMininumNorm2";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, lambda * eps);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, first_step, 0);
}
this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps);
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, 0, last_step);
}
//int mm = (last_step) ? 1 : 2;
//this->update_P(U, level, lambda * eps * mm);
if (last_step) {
this->update_P(U, level, eps * lambda);
} else {
this->implicit_update_P(U, level, lambda * eps*2.0);
}
}
}
};