1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-10 19:36:56 +01:00

Integrator works now

This commit is contained in:
Guido Cossu
2017-02-24 17:03:42 +00:00
parent 902afcfbaf
commit 7270c6a150
9 changed files with 528 additions and 63 deletions

View File

@ -77,7 +77,8 @@ template <class Impl>
class LaplacianAdjointField: public Metric<typename Impl::Field> {
OperatorFunction<typename Impl::Field> &Solver;
LaplacianParams param;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerInvHalf;
public:
INHERIT_GIMPL_TYPES(Impl);
@ -87,10 +88,15 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
AlgRemez remez(param.lo,param.hi,param.precision);
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerNegHalf.Init(remez,param.tolerance,true);
PowerHalf.Init(remez,param.tolerance,false);
PowerInvHalf.Init(remez,param.tolerance,true);
};
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
@ -98,6 +104,11 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
}
void M(const GaugeField& in, GaugeField& out) {
// in is an antihermitian matrix
// test
//GaugeField herm = in + adj(in);
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
@ -116,17 +127,21 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
}
}
void MDeriv(const GaugeField& in, GaugeField& der, bool dag) {
void MDeriv(const GaugeField& in, GaugeField& der) {
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField in_mu = PeekIndex<LorentzIndex>(in, mu);
for (int mu = 0; mu < Nd; mu++){
GaugeLinkField der_mu(der._grid);
if (!dag)
der_mu =
factor * Cshift(in_mu, mu, +1) * adj(U[mu]) + adj(U[mu]) * in_mu;
else
der_mu = factor * U[mu] * Cshift(in_mu, mu, +1) + in_mu * U[mu];
}
der_mu = zero;
for (int nu = 0; nu < Nd; nu++){
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
}
// the minus sign comes by using the in_nu instead of the
// adjoint in the last multiplication
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
}
}
void Minv(const GaugeField& in, GaugeField& inverted){
@ -134,14 +149,12 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
Solver(HermOp, in, inverted);
}
void MInvSquareRoot(GaugeField& P){
// Takes a gaussian gauge field and multiplies by the metric
// need the rational approximation for the square root
void MSquareRoot(GaugeField& P){
GaugeField Gp(P._grid);
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerNegHalf);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
msCG(HermOp,P,Gp);
P = Gp; // now P has the correct distribution
P = Gp;
}

View File

@ -39,7 +39,8 @@ public:
virtual void ImportGauge(const Field&) = 0;
virtual void M(const Field&, Field&) = 0;
virtual void Minv(const Field&, Field&) = 0;
virtual void MInvSquareRoot(Field&) = 0;
virtual void MSquareRoot(Field&) = 0;
virtual void MDeriv(const Field&, Field&) = 0;
};
@ -54,9 +55,12 @@ public:
virtual void Minv(const Field& in, Field& out){
out = in;
}
virtual void MInvSquareRoot(Field& P){
virtual void MSquareRoot(Field& P){
// do nothing
}
virtual void MDeriv(const Field& in, Field& out){
out = zero;
}
};
@ -64,17 +68,17 @@ public:
// Generalised momenta
///////////////////////////////
template <typename Implementation, typename Metric>
template <typename Implementation>
class GeneralisedMomenta{
public:
typedef typename Implementation::Field MomentaField; //for readability
Metric M;
typedef typename Implementation::GaugeLinkField MomentaLinkField; //for readability
Metric<MomentaField>& M;
MomentaField Mom;
GeneralisedMomenta(GridBase* grid): Mom(grid){}
GeneralisedMomenta(GridBase* grid, Metric<MomentaField>& M): M(M), Mom(grid){}
// Correct
void MomentaDistribution(GridParallelRNG& pRNG){
// Generate a distribution for
// 1/2 P^dag G P
@ -83,26 +87,45 @@ public:
// Generate gaussian momenta
Implementation::generate_momenta(Mom, pRNG);
// Modify the distribution with the metric
M.MInvSquareRoot(Mom);
M.MSquareRoot(Mom);
}
void Derivative(MomentaField& in, MomentaField& der){
// Correct
RealD MomentaAction(){
MomentaField inv(Mom._grid);
inv = zero;
M.Minv(Mom, inv);
LatticeComplex Hloc(Mom._grid);
Hloc = zero;
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the operators
auto Mom_mu = PeekIndex<LorentzIndex>(Mom, mu);
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
Hloc += trace(Mom_mu * inv_mu);
}
Complex Hsum = sum(Hloc);
return Hsum.real();
}
// Correct
void DerivativeU(MomentaField& in, MomentaField& der){
// Compute the derivative of the kinetic term
// with respect to the gauge field
MomentaField MomDer(in._grid);
MomentaField MDer(in._grid);
MomentaField X(in._grid);
M.Minv(in, X); // X = G in
M.MDeriv(X, MomDer, DaggerNo); // MomDer = dM/dU X
// MomDer is just the derivative
MomDer = adj(X)* MomDer;
// Traceless Antihermitian
// assuming we are in the algebra
der = Implementation::projectForce(MomDer);
X = zero;
M.Minv(in, X); // X = G in
M.MDeriv(X, MDer); // MDer = U * dS/dU
der = Implementation::projectForce(MDer); // Ta if gauge fields
}
//
void DerivativeP(MomentaField& der){
der = zero;
M.Minv(Mom, der);
der = Implementation::projectForce(der);
}
};