1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Merge branch 'feature/hadrons' into feature/qed-fvol

This commit is contained in:
Antonin Portelli 2017-04-13 15:31:06 +01:00
commit a6a0da873f
236 changed files with 28447 additions and 3079 deletions

View File

@ -102,5 +102,5 @@ script:
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto
- make -j4
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then mpirun -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi

View File

@ -48,9 +48,9 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "= Benchmarking concurrent halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<" Ls "<<"\t\t"<<"bytes"<<"\t\t"<<"MB/s uni"<<"\t\t"<<"MB/s bidi"<<std::endl;
int maxlat=16;
for(int lat=4;lat<=maxlat;lat+=2){
for(int Ls=1;Ls<=16;Ls*=2){
int maxlat=24;
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
@ -124,8 +124,8 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<" Ls "<<"\t\t"<<"bytes"<<"\t\t"<<"MB/s uni"<<"\t\t"<<"MB/s bidi"<<std::endl;
for(int lat=4;lat<=maxlat;lat+=2){
for(int Ls=1;Ls<=16;Ls*=2){
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
std::vector<int> latt_size ({lat,lat,lat,lat});
@ -194,14 +194,14 @@ int main (int argc, char ** argv)
}
Nloop=100;
Nloop=10;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking concurrent STENCIL halo exchange in "<<nmu<<" dimensions"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<" Ls "<<"\t\t"<<"bytes"<<"\t\t"<<"MB/s uni"<<"\t\t"<<"MB/s bidi"<<std::endl;
for(int lat=4;lat<=maxlat;lat+=2){
for(int Ls=1;Ls<=16;Ls*=2){
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
@ -281,8 +281,8 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<" Ls "<<"\t\t"<<"bytes"<<"\t\t"<<"MB/s uni"<<"\t\t"<<"MB/s bidi"<<std::endl;
for(int lat=4;lat<=maxlat;lat+=2){
for(int Ls=1;Ls<=16;Ls*=2){
for(int lat=4;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=32;Ls*=2){
std::vector<int> latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
@ -324,8 +324,8 @@ int main (int argc, char ** argv)
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
// Grid.StencilSendToRecvFromComplete(requests);
// requests.resize(0);
Grid.StencilSendToRecvFromComplete(requests);
requests.resize(0);
comm_proc = mpi_layout[mu]-1;

View File

@ -48,16 +48,16 @@ typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
typedef WilsonFermion5D<DomainWallVec5dImplF> WilsonFermion5DF;
typedef WilsonFermion5D<DomainWallVec5dImplD> WilsonFermion5DD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> latt4 = GridDefaultLatt();
const int Ls=8;
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
@ -71,35 +71,66 @@ int main (int argc, char ** argv)
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
LatticeFermion src (FGrid); random(RNG5,src);
#if 0
src = zero;
{
std::vector<int> origin({0,0,0,latt4[2]-1,0});
SpinColourVectorF tmp;
tmp=zero;
tmp()(0)(0)=Complex(-2.0,0.0);
std::cout << " source site 0 " << tmp<<std::endl;
pokeSite(tmp,src,origin);
}
#else
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
#endif
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeField Umu(UGrid);
random(RNG4,Umu);
LatticeGaugeField Umu5d(FGrid);
SU3::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
#if 0
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
LatticeColourMatrix ttmp(UGrid);
ttmp = PeekIndex<LorentzIndex>(Umu,mu);
// if (mu !=2 ) ttmp = 0;
// ttmp = ttmp* pow(10.0,mu);
PokeIndex<LorentzIndex>(Umu,ttmp,mu);
}
std::cout << GridLogMessage << "Forced to diagonal " << std::endl;
#endif
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
// replicate across fifth dimension
LatticeGaugeField Umu5d(FGrid);
std::vector<LatticeColourMatrix> U(4,FGrid);
for(int ss=0;ss<Umu._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
Umu5d._odata[Ls*ss+s] = Umu._odata[ss];
}
}
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
std::vector<LatticeColourMatrix> U(4,FGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu5d,mu);
}
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
if (1)
{
@ -121,6 +152,7 @@ int main (int argc, char ** argv)
RealD NP = UGrid->_Nprocessors;
std::cout << GridLogMessage << "Creating action operator " << std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
@ -136,10 +168,11 @@ int main (int argc, char ** argv)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
int ncall =100;
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
@ -153,12 +186,22 @@ int main (int argc, char ** argv)
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
/*
if(( norm2(err)>1.0e-4) ) {
std::cout << "RESULT\n " << result<<std::endl;
std::cout << "REF \n " << ref <<std::endl;
std::cout << "ERR \n " << err <<std::endl;
FGrid->Barrier();
exit(-1);
}
*/
assert (norm2(err)< 1.0e-4 );
Dw.Report();
}
@ -182,21 +225,13 @@ int main (int argc, char ** argv)
LatticeFermion sresult(sFGrid);
WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5);
for(int x=0;x<latt4[0];x++){
for(int y=0;y<latt4[1];y++){
for(int z=0;z<latt4[2];z++){
for(int t=0;t<latt4[3];t++){
for(int s=0;s<Ls;s++){
std::vector<int> site({s,x,y,z,t});
SpinColourVector tmp;
peekSite(tmp,src,site);
pokeSite(tmp,ssrc,site);
}}}}}
localConvert(src,ssrc);
std::cout<<GridLogMessage<< "src norms "<< norm2(src)<<" " <<norm2(ssrc)<<std::endl;
FGrid->Barrier();
double t0=usecond();
sDw.Dhop(ssrc,sresult,0);
sDw.ZeroCounters();
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
sDw.Dhop(ssrc,sresult,0);
@ -210,46 +245,47 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Called Dw s_inner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
// std::cout<<GridLogMessage<< "res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
sDw.Report();
if(0){
for(int i=0;i< PerformanceCounter::NumTypes(); i++ ){
sDw.Dhop(ssrc,sresult,0);
PerformanceCounter Counter(i);
Counter.Start();
sDw.Dhop(ssrc,sresult,0);
Counter.Stop();
Counter.Report();
}
}
std::cout<<GridLogMessage<< "res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
RealD sum=0;
for(int x=0;x<latt4[0];x++){
for(int y=0;y<latt4[1];y++){
for(int z=0;z<latt4[2];z++){
for(int t=0;t<latt4[3];t++){
for(int s=0;s<Ls;s++){
std::vector<int> site({s,x,y,z,t});
SpinColourVector normal, simd;
peekSite(normal,result,site);
peekSite(simd,sresult,site);
sum=sum+norm2(normal-simd);
if (norm2(normal-simd) > 1.0e-6 ) {
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<norm2(normal-simd)<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" normal "<<normal<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" simd "<<simd<<std::endl;
}
}}}}}
std::cout<<GridLogMessage<<" difference between normal and simd is "<<sum<<std::endl;
assert (sum< 1.0e-4 );
err=zero;
localConvert(sresult,err);
err = err - ref;
sum = norm2(err);
std::cout<<GridLogMessage<<" difference between normal ref and simd is "<<sum<<std::endl;
if(sum > 1.0e-4 ){
std::cout<< "sD REF\n " <<ref << std::endl;
std::cout<< "sD ERR \n " <<err <<std::endl;
}
// assert(sum < 1.0e-4);
if (1) {
err=zero;
localConvert(sresult,err);
err = err - result;
sum = norm2(err);
std::cout<<GridLogMessage<<" difference between normal result and simd is "<<sum<<std::endl;
if(sum > 1.0e-4 ){
std::cout<< "sD REF\n " <<result << std::endl;
std::cout<< "sD ERR \n " << err <<std::endl;
}
assert(sum < 1.0e-4);
if(1){
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::DhopEO "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric )
std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll)
std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm )
std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
LatticeFermion sr_eo(sFGrid);
LatticeFermion ssrc_e (sFrbGrid);
LatticeFermion ssrc_o (sFrbGrid);
LatticeFermion sr_e (sFrbGrid);
@ -257,33 +293,23 @@ int main (int argc, char ** argv)
pickCheckerboard(Even,ssrc_e,ssrc);
pickCheckerboard(Odd,ssrc_o,ssrc);
setCheckerboard(sr_eo,ssrc_o);
setCheckerboard(sr_eo,ssrc_e);
// setCheckerboard(sr_eo,ssrc_o);
// setCheckerboard(sr_eo,ssrc_e);
sr_e = zero;
sr_o = zero;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::DhopEO "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
FGrid->Barrier();
sDw.DhopEO(ssrc_o, sr_e, DaggerNo);
sDw.ZeroCounters();
sDw.stat.init("DhopEO");
// sDw.stat.init("DhopEO");
double t0=usecond();
for (int i = 0; i < ncall; i++) {
sDw.DhopEO(ssrc_o, sr_e, DaggerNo);
}
double t1=usecond();
FGrid->Barrier();
sDw.stat.print();
// sDw.stat.print();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume*ncall)/2;
@ -298,22 +324,26 @@ int main (int argc, char ** argv)
pickCheckerboard(Even,ssrc_e,sresult);
pickCheckerboard(Odd ,ssrc_o,sresult);
ssrc_e = ssrc_e - sr_e;
RealD error = norm2(ssrc_e);
std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<< " vec nrm"<<norm2(sr_e) <<std::endl;
ssrc_o = ssrc_o - sr_o;
ssrc_o = ssrc_o - sr_o;
error+= norm2(ssrc_o);
std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<< " vec nrm"<<norm2(sr_o) <<std::endl;
if(error>1.0e-4) {
if(( error>1.0e-4) ) {
setCheckerboard(ssrc,ssrc_o);
setCheckerboard(ssrc,ssrc_e);
std::cout<< ssrc << std::endl;
std::cout<< "DIFF\n " <<ssrc << std::endl;
setCheckerboard(ssrc,sr_o);
setCheckerboard(ssrc,sr_e);
std::cout<< "CBRESULT\n " <<ssrc << std::endl;
std::cout<< "RESULT\n " <<sresult<< std::endl;
}
assert(error<1.0e-4);
}
}
if (1)
@ -324,25 +354,30 @@ int main (int argc, char ** argv)
// ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x
tmp = U[mu]*Cshift(src,mu+1,1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
}
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] - Gamma(Gmu[mu])*tmp._odata[i]; ;
ref._odata[i]+= tmp._odata[i] - Gamma(Gmu[mu])*tmp._odata[i]; ;
}
}
ref = -0.5*ref;
}
// dump=1;
Dw.Dhop(src,result,1);
std::cout << GridLogMessage << "Compare to naive wilson implementation Dag to verify correctness" << std::endl;
std::cout<<GridLogMessage << "Called DwDag"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "norm dag result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm dag ref "<< norm2(ref)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert(norm2(err)<1.0e-4);
std::cout<<GridLogMessage << "norm dag diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){
std::cout<< "DAG RESULT\n " <<ref << std::endl;
std::cout<< "DAG sRESULT\n " <<result << std::endl;
std::cout<< "DAG ERR \n " << err <<std::endl;
}
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
@ -350,13 +385,18 @@ int main (int argc, char ** argv)
LatticeFermion r_eo (FGrid);
std::cout<<GridLogMessage << "Calling Deo and Doe and assert Deo+Doe == Dunprec"<<std::endl;
std::cout<<GridLogMessage << "Calling Deo and Doe and //assert Deo+Doe == Dunprec"<<std::endl;
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
std::cout<<GridLogMessage << "src_e"<<norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "src_o"<<norm2(src_o)<<std::endl;
// S-direction is INNERMOST and takes no part in the parity.
static int Opt; // these are a temporary hack
static int Comms; // these are a temporary hack
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermionR::DhopEO "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplex::Nsimd()<<std::endl;
@ -369,6 +409,7 @@ int main (int argc, char ** argv)
{
Dw.ZeroCounters();
FGrid->Barrier();
Dw.DhopEO(src_o,r_e,DaggerNo);
double t0=usecond();
for(int i=0;i<ncall;i++){
Dw.DhopEO(src_o,r_e,DaggerNo);
@ -396,14 +437,19 @@ int main (int argc, char ** argv)
err = r_eo-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert(norm2(err)<1.0e-4);
if((norm2(err)>1.0e-4)){
std::cout<< "Deo RESULT\n " <<r_eo << std::endl;
std::cout<< "Deo REF\n " <<result << std::endl;
std::cout<< "Deo ERR \n " << err <<std::endl;
}
pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err);
std::cout<<GridLogMessage << "norm diff even "<< norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "norm diff odd "<< norm2(src_o)<<std::endl;
assert(norm2(src_e)<1.0e-4);
assert(norm2(src_o)<1.0e-4);
//assert(norm2(src_e)<1.0e-4);
//assert(norm2(src_o)<1.0e-4);
Grid_finalize();
}

View File

@ -66,7 +66,8 @@ int main (int argc, char ** argv)
Vec tsum; tsum = zero;
GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(std::vector<int>({56,17,89,101}));
std::vector<double> stop(threads);
Vector<Vec> sum(threads);
@ -77,8 +78,7 @@ int main (int argc, char ** argv)
}
double start=usecond();
PARALLEL_FOR_LOOP
for(int t=0;t<threads;t++){
parallel_for(int t=0;t<threads;t++){
sum[t] = x[t]._odata[0];
for(int i=0;i<Nloop;i++){

View File

@ -65,7 +65,7 @@ int main (int argc, char ** argv)
uint64_t Nloop=NLOOP;
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
@ -100,7 +100,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
@ -138,7 +138,7 @@ int main (int argc, char ** argv)
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
@ -173,7 +173,7 @@ int main (int argc, char ** argv)
uint64_t Nloop=NLOOP;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);

View File

@ -0,0 +1,134 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_staggered.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REALF"<< sizeof(RealF)<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REALD"<< sizeof(RealD)<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REAL"<< sizeof(Real)<<std::endl;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typename ImprovedStaggeredFermionR::ImplParams params;
FermionField src (&Grid); random(pRNG,src);
FermionField result(&Grid); result=zero;
FermionField ref(&Grid); ref=zero;
FermionField tmp(&Grid); tmp=zero;
FermionField err(&Grid); tmp=zero;
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
// Only one non-zero (y)
#if 0
Umu=zero;
Complex cone(1.0,0.0);
for(int nn=0;nn<Nd;nn++){
random(pRNG,U[nn]);
if(1) {
if (nn!=2) { U[nn]=zero; std::cout<<GridLogMessage << "zeroing gauge field in dir "<<nn<<std::endl; }
// else { U[nn]= cone;std::cout<<GridLogMessage << "unit gauge field in dir "<<nn<<std::endl; }
else { std::cout<<GridLogMessage << "random gauge field in dir "<<nn<<std::endl; }
}
PokeIndex<LorentzIndex>(Umu,U[nn],nn);
}
#endif
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
ref = zero;
/*
{ // Naive wilson implementation
ref = zero;
for(int mu=0;mu<Nd;mu++){
// ref = src + Gamma(Gamma::GammaX)* src ; // 1-gamma_x
tmp = U[mu]*Cshift(src,mu,1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] - Gamma(Gmu[mu])*tmp._odata[i]; ;
}
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu,-1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
}
}
}
ref = -0.5*ref;
*/
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0,params);
std::cout<<GridLogMessage << "Calling Ds"<<std::endl;
int ncall=1000;
double t0=usecond();
for(int i=0;i<ncall;i++){
Ds.Dhop(src,result,0);
}
double t1=usecond();
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "Called Ds"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
Grid_finalize();
}

View File

@ -55,7 +55,7 @@ int main (int argc, char ** argv)
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
@ -88,7 +88,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
@ -119,7 +119,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
@ -150,7 +150,7 @@ int main (int argc, char ** argv)
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedRandomDevice();
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);

View File

@ -69,7 +69,7 @@ int main (int argc, char ** argv)
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedRandomDevice();
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeFermion src (&Grid); random(pRNG,src);
LatticeFermion result(&Grid); result=zero;

View File

@ -6,7 +6,7 @@ AC_CANONICAL_TARGET
AM_INIT_AUTOMAKE(subdir-objects)
AC_CONFIG_MACRO_DIR([m4])
AC_CONFIG_SRCDIR([lib/Grid.h])
AC_CONFIG_HEADERS([lib/Config.h])
AC_CONFIG_HEADERS([lib/Config.h],[sed -i 's|PACKAGE_|GRID_|' lib/Config.h])
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
############### Checks for programs
@ -321,7 +321,7 @@ AM_CONDITIONAL(BUILD_COMMS_NONE, [ test "${comms_type}X" == "noneX" ])
############### RNG selection
AC_ARG_ENABLE([rng],[AC_HELP_STRING([--enable-rng=ranlux48|mt19937|sitmo],\
[Select Random Number Generator to be used])],\
[ac_RNG=${enable_rng}],[ac_RNG=ranlux48])
[ac_RNG=${enable_rng}],[ac_RNG=sitmo])
case ${ac_RNG} in
ranlux48)
@ -401,6 +401,7 @@ AC_CONFIG_FILES(tests/hadrons/Makefile)
AC_CONFIG_FILES(tests/hmc/Makefile)
AC_CONFIG_FILES(tests/solver/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(tests/testu01/Makefile)
AC_CONFIG_FILES(benchmarks/Makefile)
AC_CONFIG_FILES(extras/Makefile)
AC_CONFIG_FILES(extras/Hadrons/Makefile)

View File

@ -2,15 +2,20 @@
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/Quark.hpp>

View File

@ -112,7 +112,7 @@ void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl;
XmlWriter writer(par().output);
CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
PropagatorField3 &q3 = *env().template getObject<PropagatorField3>(par().q2);

View File

@ -6,8 +6,10 @@ Source file: extras/Hadrons/Modules/MContraction/Meson.hpp
Copyright (C) 2015
Copyright (C) 2016
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -36,20 +38,39 @@ See the full license in the file "LICENSE" in the top level distribution directo
BEGIN_HADRONS_NAMESPACE
/*
Meson contractions
-----------------------------
* options:
- q1: input propagator 1 (string)
- q2: input propagator 2 (string)
- gammas: gamma products to insert at sink & source, pairs of gamma matrices
(space-separated strings) in angled brackets (i.e. <g_sink g_src>),
in a sequence (e.g. "<Gamma5 Gamma5><Gamma5 GammaT>").
Special values: "all" - perform all possible contractions.
- mom: momentum insertion, space-separated float sequence (e.g ".1 .2 1. 0."),
given as multiples of (2*pi) / L.
*/
/******************************************************************************
* TMeson *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class MesonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonPar,
std::string, q1,
std::string, q2,
std::string, output,
Gamma::Algebra, gammaSource,
Gamma::Algebra, gammaSink);
std::string, q1,
std::string, q2,
std::string, gammas,
std::string, mom,
std::string, output);
};
template <typename FImpl1, typename FImpl2>
@ -61,7 +82,10 @@ public:
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result, std::vector<Complex>, corr);
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma_snk,
Gamma::Algebra, gamma_src,
std::vector<Complex>, corr);
};
public:
// constructor
@ -71,6 +95,7 @@ public:
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
// execution
virtual void execute(void);
};
@ -103,6 +128,32 @@ std::vector<std::string> TMeson<FImpl1, FImpl2>::getOutput(void)
return output;
}
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::parseGammaString(std::vector<GammaPair> &gammaList)
{
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
unsigned int n_gam = Ns * Ns;
gammaList.resize(n_gam*n_gam);
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
for (unsigned int j = 1; j < Gamma::nGamma; j += 2)
{
gammaList.push_back(std::make_pair((Gamma::Algebra)i,
(Gamma::Algebra)j));
}
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::execute(void)
@ -111,21 +162,44 @@ void TMeson<FImpl1, FImpl2>::execute(void)
<< " quarks '" << par().q1 << "' and '" << par().q2 << "'"
<< std::endl;
XmlWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
Gamma gSrc(par().gammaSource), gSnk(par().gammaSink);
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<TComplex> buf;
Result result;
c = trace(gSnk*q1*adj(gSrc)*g5*adj(q2)*g5);
sliceSum(c, buf, Tp);
result.corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
std::vector<TComplex> buf;
std::vector<Result> result;
std::vector<Real> p;
p = strToVec<Real>(par().mom);
LatticeComplex ph(env().getGrid()), coor(env().getGrid());
Complex i(0.0,1.0);
ph = zero;
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
result.corr[t] = TensorRemove(buf[t]);
LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
}
ph = exp((Real)(2*M_PI)*i*ph);
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
c = trace((g5*gSnk)*q1*(adj(gSrc)*g5)*adj(q2))*ph;
sliceSum(c, buf, Tp);
result[i].gamma_snk = gammaList[i].first;
result[i].gamma_src = gammaList[i].second;
result[i].corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
}
write(writer, "meson", result);
}

View File

@ -0,0 +1,86 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonian.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonian_hpp_
#define Hadrons_WeakHamiltonian_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonian *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
/*******************************************************************************
* Utilities for contractions involving the Weak Hamiltonian.
******************************************************************************/
//// Sum and store correlator.
#define MAKE_DIAG(exp, buf, res, n)\
sliceSum(exp, buf, Tp);\
res.name = (n);\
res.corr.resize(buf.size());\
for (unsigned int t = 0; t < buf.size(); ++t)\
{\
res.corr[t] = TensorRemove(buf[t]);\
}
//// Contraction of mu index: use 'mu' variable in exp.
#define SUM_MU(buf,exp)\
buf = zero;\
for (unsigned int mu = 0; mu < ndim; ++mu)\
{\
buf += exp;\
}
enum
{
i_V = 0,
i_A = 1,
n_i = 2
};
class WeakHamiltonianPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WeakHamiltonianPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, q4,
std::string, output);
};
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonian_hpp_

View File

@ -0,0 +1,137 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianEye.cc
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematics: q4 |
* /-<-¬ |
* / \ | q2 q3
* \ / | /----<------*------<----¬
* q2 \ / q3 | / /-*-¬ \
* /-----<-----* *-----<----¬ | / / \ \
* i * H_W * f | i * \ / q4 * f
* \ / | \ \->-/ /
* \ / | \ /
* \---------->---------/ | \----------->----------/
* q1 | q1
* |
* Saucer (S) | Eye (E)
*
* S: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1]*q4*gL[mu][p_2])
* E: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1])*trace(q4*gL[mu][p_2])
*/
/******************************************************************************
* TWeakHamiltonianEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianEye::TWeakHamiltonianEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianEye::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_eye_diag);
unsigned int ndim = env().getNd();
PropagatorField tmp1(env().getGrid());
LatticeComplex tmp2(env().getGrid());
std::vector<PropagatorField> S_body(ndim, tmp1);
std::vector<PropagatorField> S_loop(ndim, tmp1);
std::vector<LatticeComplex> E_body(ndim, tmp2);
std::vector<LatticeComplex> E_loop(ndim, tmp2);
// Setup for S-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
S_body[mu] = MAKE_SE_BODY(q1, q2, q3, GammaL(Gamma::gmu[mu]));
S_loop[mu] = MAKE_SE_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
// Perform S-type contractions.
SUM_MU(expbuf, trace(S_body[mu]*S_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[S_diag], "HW_S")
// Recycle sub-expressions for E-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
E_body[mu] = trace(S_body[mu]);
E_loop[mu] = trace(S_loop[mu]);
}
// Perform E-type contractions.
SUM_MU(expbuf, E_body[mu]*E_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[E_diag], "HW_E")
write(writer, "HW_Eye", result);
}

View File

@ -0,0 +1,83 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonianEye_hpp_
#define Hadrons_WeakHamiltonianEye_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonianEye *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
S_diag = 0,
E_diag = 1,
n_eye_diag = 2
};
// Saucer and Eye subdiagram contractions.
#define MAKE_SE_BODY(Q_1, Q_2, Q_3, gamma) (Q_3*g5*Q_1*adj(Q_2)*g5*gamma)
#define MAKE_SE_LOOP(Q_loop, gamma) (Q_loop*gamma)
class TWeakHamiltonianEye: public Module<WeakHamiltonianPar>
{
public:
TYPE_ALIASES(FIMPL,)
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::string, name,
std::vector<Complex>, corr);
};
public:
// constructor
TWeakHamiltonianEye(const std::string name);
// destructor
virtual ~TWeakHamiltonianEye(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(WeakHamiltonianEye, TWeakHamiltonianEye, MContraction);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonianEye_hpp_

View File

@ -0,0 +1,139 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.cc
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Non-Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematic:
* q2 q3 | q2 q3
* /--<--¬ /--<--¬ | /--<--¬ /--<--¬
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* i * * H_W * f | i * * * H_W * f
* \ * | | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \-->--/ \-->--/
* \-->--/ \-->--/ | q1 q4
* q1 q4 |
* Connected (C) | Wing (W)
*
* C: trace(q1*adj(q2)*g5*gL[mu]*q3*adj(q4)*g5*gL[mu])
* W: trace(q1*adj(q2)*g5*gL[mu])*trace(q3*adj(q4)*g5*gL[mu])
*
*/
/******************************************************************************
* TWeakHamiltonianNonEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianNonEye::TWeakHamiltonianNonEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianNonEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianNonEye::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Non-Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_noneye_diag);
unsigned int ndim = env().getNd();
PropagatorField tmp1(env().getGrid());
LatticeComplex tmp2(env().getGrid());
std::vector<PropagatorField> C_i_side_loop(ndim, tmp1);
std::vector<PropagatorField> C_f_side_loop(ndim, tmp1);
std::vector<LatticeComplex> W_i_side_loop(ndim, tmp2);
std::vector<LatticeComplex> W_f_side_loop(ndim, tmp2);
// Setup for C-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
C_i_side_loop[mu] = MAKE_CW_SUBDIAG(q1, q2, GammaL(Gamma::gmu[mu]));
C_f_side_loop[mu] = MAKE_CW_SUBDIAG(q3, q4, GammaL(Gamma::gmu[mu]));
}
// Perform C-type contractions.
SUM_MU(expbuf, trace(C_i_side_loop[mu]*C_f_side_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[C_diag], "HW_C")
// Recycle sub-expressions for W-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
W_i_side_loop[mu] = trace(C_i_side_loop[mu]);
W_f_side_loop[mu] = trace(C_f_side_loop[mu]);
}
// Perform W-type contractions.
SUM_MU(expbuf, W_i_side_loop[mu]*W_f_side_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[W_diag], "HW_W")
write(writer, "HW_NonEye", result);
}

View File

@ -0,0 +1,82 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonianNonEye_hpp_
#define Hadrons_WeakHamiltonianNonEye_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonianNonEye *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
W_diag = 0,
C_diag = 1,
n_noneye_diag = 2
};
// Wing and Connected subdiagram contractions
#define MAKE_CW_SUBDIAG(Q_1, Q_2, gamma) (Q_1*adj(Q_2)*g5*gamma)
class TWeakHamiltonianNonEye: public Module<WeakHamiltonianPar>
{
public:
TYPE_ALIASES(FIMPL,)
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::string, name,
std::vector<Complex>, corr);
};
public:
// constructor
TWeakHamiltonianNonEye(const std::string name);
// destructor
virtual ~TWeakHamiltonianNonEye(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(WeakHamiltonianNonEye, TWeakHamiltonianNonEye, MContraction);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonianNonEye_hpp_

View File

@ -0,0 +1,132 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MLoop/NoiseLoop.hpp
Copyright (C) 2016
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_NoiseLoop_hpp_
#define Hadrons_NoiseLoop_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Noise loop propagator
-----------------------------
* loop_x = q_x * adj(eta_x)
* options:
- q = Result of inversion on noise source.
- eta = noise source.
*/
/******************************************************************************
* NoiseLoop *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MLoop)
class NoiseLoopPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(NoiseLoopPar,
std::string, q,
std::string, eta);
};
template <typename FImpl>
class TNoiseLoop: public Module<NoiseLoopPar>
{
public:
TYPE_ALIASES(FImpl,);
public:
// constructor
TNoiseLoop(const std::string name);
// destructor
virtual ~TNoiseLoop(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(NoiseLoop, TNoiseLoop<FIMPL>, MLoop);
/******************************************************************************
* TNoiseLoop implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TNoiseLoop<FImpl>::TNoiseLoop(const std::string name)
: Module<NoiseLoopPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TNoiseLoop<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().eta};
return in;
}
template <typename FImpl>
std::vector<std::string> TNoiseLoop<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TNoiseLoop<FImpl>::setup(void)
{
env().template registerLattice<PropagatorField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TNoiseLoop<FImpl>::execute(void)
{
PropagatorField &loop = *env().template createLattice<PropagatorField>(getName());
PropagatorField &q = *env().template getObject<PropagatorField>(par().q);
PropagatorField &eta = *env().template getObject<PropagatorField>(par().eta);
loop = q*adj(eta);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_NoiseLoop_hpp_

View File

@ -6,6 +6,7 @@ Source file: extras/Hadrons/Modules/MSource/SeqGamma.hpp
Copyright (C) 2015
Copyright (C) 2016
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
@ -149,9 +150,9 @@ void TSeqGamma<FImpl>::execute(void)
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor;
ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
}
ph = exp(i*ph);
ph = exp((Real)(2*M_PI)*i*ph);
LatticeCoordinate(t, Tp);
src = where((t >= par().tA) and (t <= par().tB), ph*(g*q), 0.*q);
}

View File

@ -0,0 +1,147 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MSource/Wall.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WallSource_hpp_
#define Hadrons_WallSource_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Wall source
-----------------------------
* src_x = delta(x_3 - tW) * exp(i x.mom)
* options:
- tW: source timeslice (integer)
- mom: momentum insertion, space-separated float sequence (e.g ".1 .2 1. 0.")
*/
/******************************************************************************
* Wall *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSource)
class WallPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WallPar,
unsigned int, tW,
std::string, mom);
};
template <typename FImpl>
class TWall: public Module<WallPar>
{
public:
TYPE_ALIASES(FImpl,);
public:
// constructor
TWall(const std::string name);
// destructor
virtual ~TWall(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(Wall, TWall<FIMPL>, MSource);
/******************************************************************************
* TWall implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWall<FImpl>::TWall(const std::string name)
: Module<WallPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWall<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TWall<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWall<FImpl>::setup(void)
{
env().template registerLattice<PropagatorField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWall<FImpl>::execute(void)
{
LOG(Message) << "Generating wall source at t = " << par().tW
<< " with momentum " << par().mom << std::endl;
PropagatorField &src = *env().template createLattice<PropagatorField>(getName());
Lattice<iScalar<vInteger>> t(env().getGrid());
LatticeComplex ph(env().getGrid()), coor(env().getGrid());
std::vector<Real> p;
Complex i(0.0,1.0);
p = strToVec<Real>(par().mom);
ph = zero;
for(unsigned int mu = 0; mu < Nd; mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
}
ph = exp((Real)(2*M_PI)*i*ph);
LatticeCoordinate(t, Tp);
src = 1.;
src = where((t == par().tW), src*ph, 0.*src);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WallSource_hpp_

View File

@ -1,4 +1,6 @@
modules_cc =\
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MGauge/Load.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/StochEm.cc \
@ -11,16 +13,21 @@ modules_hpp =\
Modules/MAction/Wilson.hpp \
Modules/MContraction/Baryon.hpp \
Modules/MContraction/Meson.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MGauge/Load.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/Unit.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MScalar/FreeProp.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MSource/Point.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/Z2.hpp \
Modules/Quark.hpp

View File

@ -38,52 +38,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_H
#define GRID_H
///////////////////
// Std C++ dependencies
///////////////////
#include <cassert>
#include <complex>
#include <vector>
#include <iostream>
#include <iomanip>
#include <random>
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>
#include <sys/time.h>
#include <chrono>
///////////////////
// Grid headers
///////////////////
#include "Config.h"
#include <Grid/Timer.h>
#include <Grid/PerfCount.h>
#include <Grid/Log.h>
#include <Grid/AlignedAllocator.h>
#include <Grid/Simd.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/Threads.h>
#include <Grid/Lexicographic.h>
#include <Grid/Init.h>
#include <Grid/Communicator.h>
#include <Grid/Cartesian.h>
#include <Grid/Tensors.h>
#include <Grid/Lattice.h>
#include <Grid/Cshift.h>
#include <Grid/Stencil.h>
#include <Grid/Algorithms.h>
#include <Grid/parallelIO/BinaryIO.h>
#include <Grid/FFT.h>
#include <Grid/qcd/QCD.h>
#include <Grid/parallelIO/NerscIO.h>
#include <Grid/qcd/hmc/NerscCheckpointer.h>
#include <Grid/qcd/hmc/HmcRunner.h>
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/Action.h>
#include <Grid/qcd/smearing/Smearing.h>
#include <Grid/qcd/hmc/HMC_aggregate.h>
#endif

81
lib/GridCore.h Normal file
View File

@ -0,0 +1,81 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Grid.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: azusayamaguchi <ayamaguc@YAMAKAZE.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//
// Grid.h
// simd
//
// Created by Peter Boyle on 09/05/2014.
// Copyright (c) 2014 University of Edinburgh. All rights reserved.
//
#ifndef GRID_BASE_H
#define GRID_BASE_H
///////////////////
// Std C++ dependencies
///////////////////
#include <cassert>
#include <complex>
#include <vector>
#include <iostream>
#include <iomanip>
#include <random>
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>
#include <sys/time.h>
#include <chrono>
///////////////////
// Grid headers
///////////////////
#include "Config.h"
#include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/log/Log.h>
#include <Grid/allocator/AlignedAllocator.h>
#include <Grid/simd/Simd.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/threads/Threads.h>
#include <Grid/util/Util.h>
#include <Grid/communicator/Communicator.h>
#include <Grid/cartesian/Cartesian.h>
#include <Grid/tensors/Tensors.h>
#include <Grid/lattice/Lattice.h>
#include <Grid/cshift/Cshift.h>
#include <Grid/stencil/Stencil.h>
#include <Grid/parallelIO/BinaryIO.h>
#include <Grid/algorithms/Algorithms.h>
#endif

View File

@ -2,12 +2,12 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/HMC.cc
Source file: ./lib/Grid.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: azusayamaguchi <ayamaguc@YAMAKAZE.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
@ -27,10 +27,16 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifndef GRID_QCD_CORE_H
#define GRID_QCD_CORE_H
namespace Grid{
namespace QCD{
/////////////////////////
// Core Grid QCD headers
/////////////////////////
#include <Grid/GridCore.h>
#include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
}
}
#endif

Binary file not shown.

View File

@ -1,154 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Old/Tensor_peek.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATH_PEEK_H
#define GRID_MATH_PEEK_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////
// Peek on a specific index; returns a scalar in that index, tensor inherits rest
//////////////////////////////////////////////////////////////////////////////
// If we hit the right index, return scalar with no further recursion
//template<int Level> inline ComplexF peekIndex(const ComplexF arg) { return arg;}
//template<int Level> inline ComplexD peekIndex(const ComplexD arg) { return arg;}
//template<int Level> inline RealF peekIndex(const RealF arg) { return arg;}
//template<int Level> inline RealD peekIndex(const RealD arg) { return arg;}
#if 0
// Scalar peek, no indices
template<int Level,class vtype,typename std::enable_if< iScalar<vtype>::TensorLevel == Level >::type * =nullptr> inline
auto peekIndex(const iScalar<vtype> &arg) -> iScalar<vtype>
{
return arg;
}
// Vector peek, one index
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel == Level >::type * =nullptr> inline
auto peekIndex(const iVector<vtype,N> &arg,int i) -> iScalar<vtype> // Index matches
{
iScalar<vtype> ret; // return scalar
ret._internal = arg._internal[i];
return ret;
}
// Matrix peek, two indices
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel == Level >::type * =nullptr> inline
auto peekIndex(const iMatrix<vtype,N> &arg,int i,int j) -> iScalar<vtype>
{
iScalar<vtype> ret; // return scalar
ret._internal = arg._internal[i][j];
return ret;
}
/////////////
// No match peek for scalar,vector,matrix must forward on either 0,1,2 args. Must have 9 routines with notvalue
/////////////
// scalar
template<int Level,class vtype,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iScalar<vtype> &arg) -> iScalar<decltype(peekIndex<Level>(arg._internal))>
{
iScalar<decltype(peekIndex<Level>(arg._internal))> ret;
ret._internal= peekIndex<Level>(arg._internal);
return ret;
}
template<int Level,class vtype, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iScalar<vtype> &arg,int i) -> iScalar<decltype(peekIndex<Level>(arg._internal,i))>
{
iScalar<decltype(peekIndex<Level>(arg._internal,i))> ret;
ret._internal=peekIndex<Level>(arg._internal,i);
return ret;
}
template<int Level,class vtype, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iScalar<vtype> &arg,int i,int j) -> iScalar<decltype(peekIndex<Level>(arg._internal,i,j))>
{
iScalar<decltype(peekIndex<Level>(arg._internal,i,j))> ret;
ret._internal=peekIndex<Level>(arg._internal,i,j);
return ret;
}
// vector
template<int Level,class vtype,int N, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iVector<vtype,N> &arg) -> iVector<decltype(peekIndex<Level>(arg._internal[0])),N>
{
iVector<decltype(peekIndex<Level>(arg._internal[0])),N> ret;
for(int ii=0;ii<N;ii++){
ret._internal[ii]=peekIndex<Level>(arg._internal[ii]);
}
return ret;
}
template<int Level,class vtype,int N, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iVector<vtype,N> &arg,int i) -> iVector<decltype(peekIndex<Level>(arg._internal[0],i)),N>
{
iVector<decltype(peekIndex<Level>(arg._internal[0],i)),N> ret;
for(int ii=0;ii<N;ii++){
ret._internal[ii]=peekIndex<Level>(arg._internal[ii],i);
}
return ret;
}
template<int Level,class vtype,int N, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iVector<vtype,N> &arg,int i,int j) -> iVector<decltype(peekIndex<Level>(arg._internal[0],i,j)),N>
{
iVector<decltype(peekIndex<Level>(arg._internal[0],i,j)),N> ret;
for(int ii=0;ii<N;ii++){
ret._internal[ii]=peekIndex<Level>(arg._internal[ii],i,j);
}
return ret;
}
// matrix
template<int Level,class vtype,int N, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iMatrix<vtype,N> &arg) -> iMatrix<decltype(peekIndex<Level>(arg._internal[0][0])),N>
{
iMatrix<decltype(peekIndex<Level>(arg._internal[0][0])),N> ret;
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){
ret._internal[ii][jj]=peekIndex<Level>(arg._internal[ii][jj]);// Could avoid this because peeking a scalar is dumb
}}
return ret;
}
template<int Level,class vtype,int N, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iMatrix<vtype,N> &arg,int i) -> iMatrix<decltype(peekIndex<Level>(arg._internal[0][0],i)),N>
{
iMatrix<decltype(peekIndex<Level>(arg._internal[0][0],i)),N> ret;
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){
ret._internal[ii][jj]=peekIndex<Level>(arg._internal[ii][jj],i);
}}
return ret;
}
template<int Level,class vtype,int N, typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
auto peekIndex(const iMatrix<vtype,N> &arg,int i,int j) -> iMatrix<decltype(peekIndex<Level>(arg._internal[0][0],i,j)),N>
{
iMatrix<decltype(peekIndex<Level>(arg._internal[0][0],i,j)),N> ret;
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){
ret._internal[ii][jj]=peekIndex<Level>(arg._internal[ii][jj],i,j);
}}
return ret;
}
#endif
}
#endif

View File

@ -1,127 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Old/Tensor_poke.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATH_POKE_H
#define GRID_MATH_POKE_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////
// Poke a specific index;
//////////////////////////////////////////////////////////////////////////////
#if 0
// Scalar poke
template<int Level,class vtype,typename std::enable_if< iScalar<vtype>::TensorLevel == Level >::type * =nullptr> inline
void pokeIndex(iScalar<vtype> &ret, const iScalar<vtype> &arg)
{
ret._internal = arg._internal;
}
// Vector poke, one index
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel == Level >::type * =nullptr> inline
void pokeIndex(iVector<vtype,N> &ret, const iScalar<vtype> &arg,int i)
{
ret._internal[i] = arg._internal;
}
//Matrix poke, two indices
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel == Level >::type * =nullptr> inline
void pokeIndex(iMatrix<vtype,N> &ret, const iScalar<vtype> &arg,int i,int j)
{
ret._internal[i][j] = arg._internal;
}
/////////////
// No match poke for scalar,vector,matrix must forward on either 0,1,2 args. Must have 9 routines with notvalue
/////////////
// scalar
template<int Level,class vtype,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iScalar<vtype> &ret, const iScalar<decltype(peekIndex<Level>(ret._internal))> &arg)
{
pokeIndex<Level>(ret._internal,arg._internal);
}
template<int Level,class vtype,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iScalar<vtype> &ret, const iScalar<decltype(peekIndex<Level>(ret._internal,0))> &arg, int i)
{
pokeIndex<Level>(ret._internal,arg._internal,i);
}
template<int Level,class vtype,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iScalar<vtype> &ret, const iScalar<decltype(peekIndex<Level>(ret._internal,0,0))> &arg,int i,int j)
{
pokeIndex<Level>(ret._internal,arg._internal,i,j);
}
// Vector
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iVector<vtype,N> &ret, iVector<decltype(peekIndex<Level>(ret._internal)),N> &arg)
{
for(int ii=0;ii<N;ii++){
pokeIndex<Level>(ret._internal[ii],arg._internal[ii]);
}
}
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(peekIndex<Level>(ret._internal,0)),N> &arg,int i)
{
for(int ii=0;ii<N;ii++){
pokeIndex<Level>(ret._internal[ii],arg._internal[ii],i);
}
}
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(peekIndex<Level>(ret._internal,0,0)),N> &arg,int i,int j)
{
for(int ii=0;ii<N;ii++){
pokeIndex<Level>(ret._internal[ii],arg._internal[ii],i,j);
}
}
// Matrix
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(peekIndex<Level>(ret._internal)),N> &arg)
{
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){
pokeIndex<Level>(ret._internal[ii][jj],arg._internal[ii][jj]);
}}
}
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(peekIndex<Level>(ret._internal,0)),N> &arg,int i)
{
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){
pokeIndex<Level>(ret._internal[ii][jj],arg._internal[ii][jj],i);
}}
}
template<int Level,class vtype,int N,typename std::enable_if< iScalar<vtype>::TensorLevel != Level >::type * =nullptr> inline
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(peekIndex<Level>(ret._internal,0,0)),N> &arg, int i,int j)
{
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){
pokeIndex<Level>(ret._internal[ii][jj],arg._internal[ii][jj],i,j);
}}
}
#endif
}
#endif

View File

@ -42,15 +42,14 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <Grid/algorithms/iterative/NormalEquations.h>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
// Lanczos support
#include <Grid/algorithms/iterative/MatrixUtils.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h>
// Eigen/lanczos
// EigCg

View File

@ -267,8 +267,7 @@ namespace Grid {
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
PARALLEL_FOR_LOOP
for(int ss=0;ss<Grid()->oSites();ss++){
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
siteVector nbr;
int ptype;
@ -380,8 +379,7 @@ PARALLEL_FOR_LOOP
Subspace.ProjectToSubspace(oProj,oblock);
// blockProject(iProj,iblock,Subspace.subspace);
// blockProject(oProj,oblock,Subspace.subspace);
PARALLEL_FOR_LOOP
for(int ss=0;ss<Grid()->oSites();ss++){
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
for(int j=0;j<nbasis;j++){
if( disp!= 0 ) {
A[p]._odata[ss](j,i) = oProj._odata[ss](j);
@ -427,7 +425,7 @@ PARALLEL_FOR_LOOP
A[p]=zero;
}
GridParallelRNG RNG(Grid()); RNG.SeedRandomDevice();
GridParallelRNG RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34}));
Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val);
Complex one(1.0);

View File

@ -25,7 +25,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
namespace Grid {
double MultiShiftFunction::approx(double x)

View File

@ -45,6 +45,8 @@ class ConjugateGradient : public OperatorFunction<Field> {
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
@ -155,13 +157,14 @@ class ConjugateGradient : public OperatorFunction<Field> {
std::cout << std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "ConjugateGradient did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
}

View File

@ -35,6 +35,7 @@ namespace Grid {
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; //Grid for single-precision fields
@ -42,12 +43,16 @@ namespace Grid {
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionConjugateGradient(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ };
void useGuesser(LinearFunction<FieldF> &g){
@ -55,6 +60,8 @@ namespace Grid {
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
@ -74,7 +81,7 @@ namespace Grid {
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = Tolerance;
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.checkerboard = cb;
@ -89,7 +96,9 @@ namespace Grid {
GridStopWatch PrecChangeTimer;
for(Integer outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
@ -117,6 +126,7 @@ namespace Grid {
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
@ -131,9 +141,11 @@ namespace Grid {
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};

View File

@ -1,7 +1,7 @@
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
namespace Grid {
@ -13,9 +13,10 @@ void *PointerCache::Insert(void *ptr,size_t bytes) {
if (bytes < 4096 ) return NULL;
#ifdef _OPENMP
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;

View File

@ -52,7 +52,7 @@ public:
// Physics Grid information.
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
std::vector<int> _fdimensions;// Global dimensions of array prior to cb removal
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
@ -77,7 +77,7 @@ public:
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(std::vector<int> &site)=0;
virtual int CheckerBoard(const std::vector<int> &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
@ -121,7 +121,6 @@ public:
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
}
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
@ -178,9 +177,11 @@ public:
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
@ -207,16 +208,16 @@ public:
std::vector<int> lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
/*
std::vector<int> cblcoor(lcoor);
for(int d=0;d<cblcoor.size();d++){
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
}
}
i_idx= iIndex(cblcoor);// this does not imply divide by 2 on checker dim
o_idx= oIndex(lcoor); // this implies divide by 2 on checkerdim
*/
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)

View File

@ -49,7 +49,7 @@ public:
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(std::vector<int> &site){
virtual int CheckerBoard(const std::vector<int> &site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift,int dim){

View File

@ -49,7 +49,7 @@ public:
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(std::vector<int> &site){
virtual int CheckerBoard(const std::vector<int> &site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){

View File

@ -25,7 +25,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
namespace Grid {
///////////////////////////////////////////////////////////////
@ -33,6 +34,7 @@ namespace Grid {
///////////////////////////////////////////////////////////////
void * CartesianCommunicator::ShmCommBuf;
uint64_t CartesianCommunicator::MAX_MPI_SHM_BYTES = 128*1024*1024;
CartesianCommunicator::CommunicatorPolicy_t CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
/////////////////////////////////
// Alloc, free shmem region
@ -88,7 +90,9 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
#if !defined( GRID_COMMS_MPI3) && !defined (GRID_COMMS_MPI3L)
void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
int CartesianCommunicator::NodeCount(void) { return ProcessorCount();};
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
@ -96,6 +100,7 @@ void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_
int bytes)
{
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall)
{

View File

@ -116,6 +116,12 @@ class CartesianCommunicator {
// Implemented in Communicator_base.C
/////////////////////////////////
static void * ShmCommBuf;
// Isend/Irecv/Wait, or Sendrecv blocking
enum CommunicatorPolicy_t { CommunicatorPolicyConcurrent, CommunicatorPolicySequential };
static CommunicatorPolicy_t CommunicatorPolicy;
static void SetCommunicatorPolicy(CommunicatorPolicy_t policy ) { CommunicatorPolicy = policy; }
size_t heap_top;
size_t heap_bytes;
@ -148,6 +154,7 @@ class CartesianCommunicator {
const std::vector<int> & ThisProcessorCoor(void) ;
const std::vector<int> & ProcessorGrid(void) ;
int ProcessorCount(void) ;
int NodeCount(void) ;
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
@ -200,7 +207,7 @@ class CartesianCommunicator {
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
void StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,

View File

@ -25,7 +25,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/ActionCore.h>
#include <mpi.h>
namespace Grid {
@ -39,9 +41,13 @@ MPI_Comm CartesianCommunicator::communicator_world;
// Should error check all MPI calls.
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
int provided;
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init(argc,argv);
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
if ( provided != MPI_THREAD_MULTIPLE ) {
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute;
}
}
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
ShmInitGeneric();
@ -152,24 +158,34 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
int from,
int bytes)
{
MPI_Request xrq;
MPI_Request rrq;
int rank = _processor;
int myrank = _processor;
int ierr;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
ierr|=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
list.push_back(xrq);
list.push_back(rrq);
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
}
void CartesianCommunicator::Barrier(void)

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -25,9 +25,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
#include <mpi.h>
#include <semaphore.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
//#include <zlib.h>
#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -50,6 +64,10 @@ std::vector<int> CartesianCommunicator::GroupRanks;
std::vector<int> CartesianCommunicator::MyGroup;
std::vector<void *> CartesianCommunicator::ShmCommBufs;
int CartesianCommunicator::NodeCount(void) { return GroupSize;};
#undef FORCE_COMMS
void *CartesianCommunicator::ShmBufferSelf(void)
{
return ShmCommBufs[ShmRank];
@ -57,6 +75,9 @@ void *CartesianCommunicator::ShmBufferSelf(void)
void *CartesianCommunicator::ShmBuffer(int rank)
{
int gpeer = GroupRanks[rank];
#ifdef FORCE_COMMS
return NULL;
#endif
if (gpeer == MPI_UNDEFINED){
return NULL;
} else {
@ -65,7 +86,13 @@ void *CartesianCommunicator::ShmBuffer(int rank)
}
void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p)
{
static int count =0;
int gpeer = GroupRanks[rank];
assert(gpeer!=ShmRank); // never send to self
assert(rank!=WorldRank);// never send to self
#ifdef FORCE_COMMS
return NULL;
#endif
if (gpeer == MPI_UNDEFINED){
return NULL;
} else {
@ -76,16 +103,27 @@ void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p)
}
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
int provided;
// mtrace();
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init(argc,argv);
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
assert (provided == MPI_THREAD_MULTIPLE);
}
Grid_quiesce_nodes();
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
MPI_Comm_rank(communicator_world,&WorldRank);
MPI_Comm_size(communicator_world,&WorldSize);
if ( WorldRank == 0 ) {
std::cout << GridLogMessage<< "Initialising MPI "<< WorldRank <<"/"<<WorldSize <<std::endl;
}
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
@ -131,7 +169,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
///////////////////////////////////////////////////////////////////
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,communicator_world);
assert(ierr==0);
///////////////////////////////////////////////////////////////////
// find the group leaders world rank
///////////////////////////////////////////////////////////////////
@ -141,7 +178,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
leaders_group[group++] = l;
}
}
///////////////////////////////////////////////////////////////////
// Identify the rank of the group in which I (and my leader) live
///////////////////////////////////////////////////////////////////
@ -152,39 +188,114 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
}
}
assert(GroupRank!=-1);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the shared window for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(ShmComm);
ShmCommBuf = 0;
ierr = MPI_Win_allocate_shared(MAX_MPI_SHM_BYTES,1,MPI_INFO_NULL,ShmComm,&ShmCommBuf,&ShmWindow);
assert(ierr==0);
// KNL hack -- force to numa-domain 1 in flat
#if 0
//#include <numaif.h>
for(uint64_t page=0;page<MAX_MPI_SHM_BYTES;page+=4096){
void *pages = (void *) ( page + ShmCommBuf );
int status;
int flags=MPOL_MF_MOVE_ALL;
int nodes=1; // numa domain == MCDRAM
unsigned long count=1;
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
if (ierr && (page==0)) perror("numa relocate command failed");
}
#endif
MPI_Win_lock_all (MPI_MODE_NOCHECK, ShmWindow);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Plan: allocate a fixed SHM region. Scratch that is just used via some scheme during stencil comms, with no allocate free.
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBufs.resize(ShmSize);
for(int r=0;r<ShmSize;r++){
MPI_Aint sz;
int dsp_unit;
MPI_Win_shared_query (ShmWindow, r, &sz, &dsp_unit, &ShmCommBufs[r]);
#if 1
char shm_name [NAME_MAX];
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",GroupRank,r);
shm_unlink(shm_name);
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
if ( fd < 0 ) { perror("failed shm_open"); assert(0); }
ftruncate(fd, size);
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
assert(((uint64_t)ptr&0x3F)==0);
ShmCommBufs[r] =ptr;
}
}
MPI_Barrier(ShmComm);
if ( ShmRank != 0 ) {
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES ;
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",GroupRank,r);
int fd=shm_open(shm_name,O_RDWR,0666);
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
assert(((uint64_t)ptr&0x3F)==0);
ShmCommBufs[r] =ptr;
}
}
#else
std::vector<int> shmids(ShmSize);
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
key_t key = 0x4545 + r;
if ((shmids[r]= shmget(key,size, SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
int errsv = errno;
printf("Errno %d\n",errsv);
perror("shmget");
exit(1);
}
printf("shmid: 0x%x\n", shmids[r]);
}
}
MPI_Barrier(ShmComm);
MPI_Bcast(&shmids[0],ShmSize*sizeof(int),MPI_BYTE,0,ShmComm);
MPI_Barrier(ShmComm);
for(int r=0;r<ShmSize;r++){
ShmCommBufs[r] = (uint64_t *)shmat(shmids[r], NULL,0);
if (ShmCommBufs[r] == (uint64_t *)-1) {
perror("Shared memory attach failure");
shmctl(shmids[r], IPC_RMID, NULL);
exit(2);
}
printf("shmaddr: %p\n", ShmCommBufs[r]);
}
MPI_Barrier(ShmComm);
// Mark for clean up
for(int r=0;r<ShmSize;r++){
shmctl(shmids[r], IPC_RMID,(struct shmid_ds *)NULL);
}
MPI_Barrier(ShmComm);
#endif
ShmCommBuf = ShmCommBufs[ShmRank];
MPI_Barrier(ShmComm);
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
uint64_t * check = (uint64_t *) ShmCommBufs[r];
check[0] = GroupRank;
check[1] = r;
check[2] = 0x5A5A5A;
}
}
MPI_Barrier(ShmComm);
for(int r=0;r<ShmSize;r++){
uint64_t * check = (uint64_t *) ShmCommBufs[r];
assert(check[0]==GroupRank);
assert(check[1]==r);
assert(check[2]==0x5A5A5A);
}
MPI_Barrier(ShmComm);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// Verbose for now
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -192,7 +303,7 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
std::cout<<GridLogMessage<< "Grid MPI-3 configuration: detected ";
std::cout<< WorldSize << " Ranks " ;
std::cout<< GroupSize << " Nodes " ;
std::cout<< ShmSize << " with ranks-per-node "<<std::endl;
std::cout<< " with "<< ShmSize << " ranks-per-node "<<std::endl;
std::cout<<GridLogMessage <<"Grid MPI-3 configuration: allocated shared memory region of size ";
std::cout<<std::hex << MAX_MPI_SHM_BYTES <<" ShmCommBuf address = "<<ShmCommBuf << std::dec<<std::endl;
@ -207,7 +318,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
if(g!=ShmSize-1) std::cout<<",";
else std::cout<<"}"<<std::endl;
}
}
for(int g=0;g<GroupSize;g++){
@ -216,23 +326,21 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
if ( (ShmRank == 0) && (GroupRank==g) ) {
std::cout<<MyGroup[r];
if(r<ShmSize-1) std::cout<<",";
else std::cout<<"}"<<std::endl;
else std::cout<<"}"<<std::endl<<std::flush;
}
MPI_Barrier(communicator_world);
}
}
assert(ShmSetup==0); ShmSetup=1;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Want to implement some magic ... Group sub-cubes into those on same node
////////////////////////////////////////////////////////////////////////////////////////////////////////////
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &dest,int &source)
{
std::vector<int> coor = _processor_coor;
std::vector<int> coor = _processor_coor; // my coord
assert(std::abs(shift) <_processors[dim]);
coor[dim] = (_processor_coor[dim] + shift + _processors[dim])%_processors[dim];
@ -242,28 +350,32 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
coor[dim] = (_processor_coor[dim] - shift + _processors[dim])%_processors[dim];
Lexicographic::IndexFromCoor(coor,dest,_processors);
dest = LexicographicToWorldRank[dest];
}
}// rank is world rank.
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
Lexicographic::IndexFromCoor(coor,rank,_processors);
rank = LexicographicToWorldRank[rank];
return rank;
}
}// rank is world rank
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
Lexicographic::CoorFromIndex(coor,rank,_processors);
rank = LexicographicToWorldRank[rank];
int lr=-1;
for(int r=0;r<WorldSize;r++){// map world Rank to lexico and then to coor
if( LexicographicToWorldRank[r]==rank) lr = r;
}
assert(lr!=-1);
Lexicographic::CoorFromIndex(coor,lr,_processors);
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
int ierr;
communicator=communicator_world;
_ndimension = processors.size();
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
////////////////////////////////////////////////////////////////
@ -275,24 +387,22 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
}
}
assert(log2size != -1);
////////////////////////////////////////////////////////////////
// Identify subblock of ranks on node spreading across dims
// in a maximally symmetrical way
////////////////////////////////////////////////////////////////
int dim = 0;
std::vector<int> WorldDims = processors;
ShmDims.resize(_ndimension,1);
ShmDims.resize (_ndimension,1);
GroupDims.resize(_ndimension);
ShmCoor.resize(_ndimension);
ShmCoor.resize (_ndimension);
GroupCoor.resize(_ndimension);
WorldCoor.resize(_ndimension);
int dim = 0;
for(int l2=0;l2<log2size;l2++){
while ( WorldDims[dim] / ShmDims[dim] <= 1 ) dim=(dim+1)%_ndimension;
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%_ndimension;
ShmDims[dim]*=2;
dim=(dim+1)%_ndimension;
}
@ -304,6 +414,29 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
GroupDims[d] = WorldDims[d]/ShmDims[d];
}
////////////////////////////////////////////////////////////////
// Verbose
////////////////////////////////////////////////////////////////
#if 0
std::cout<< GridLogMessage << "MPI-3 usage "<<std::endl;
std::cout<< GridLogMessage << "SHM ";
for(int d=0;d<_ndimension;d++){
std::cout<< ShmDims[d] <<" ";
}
std::cout<< std::endl;
std::cout<< GridLogMessage << "Group ";
for(int d=0;d<_ndimension;d++){
std::cout<< GroupDims[d] <<" ";
}
std::cout<< std::endl;
std::cout<< GridLogMessage<<"World ";
for(int d=0;d<_ndimension;d++){
std::cout<< WorldDims[d] <<" ";
}
std::cout<< std::endl;
#endif
////////////////////////////////////////////////////////////////
// Check processor counts match
////////////////////////////////////////////////////////////////
@ -317,29 +450,57 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
////////////////////////////////////////////////////////////////
// Establish mapping between lexico physics coord and WorldRank
//
////////////////////////////////////////////////////////////////
LexicographicToWorldRank.resize(WorldSize,0);
Lexicographic::CoorFromIndex(GroupCoor,GroupRank,GroupDims);
Lexicographic::CoorFromIndex(ShmCoor,ShmRank,ShmDims);
for(int d=0;d<_ndimension;d++){
WorldCoor[d] = GroupCoor[d]*ShmDims[d]+ShmCoor[d];
}
_processor_coor = WorldCoor;
int lexico;
Lexicographic::IndexFromCoor(WorldCoor,lexico,WorldDims);
LexicographicToWorldRank[lexico]=WorldRank;
_processor = lexico;
_processor = WorldRank;
///////////////////////////////////////////////////////////////////
// global sum Lexico to World mapping
///////////////////////////////////////////////////////////////////
int lexico;
LexicographicToWorldRank.resize(WorldSize,0);
Lexicographic::IndexFromCoor(WorldCoor,lexico,WorldDims);
LexicographicToWorldRank[lexico] = WorldRank;
ierr=MPI_Allreduce(MPI_IN_PLACE,&LexicographicToWorldRank[0],WorldSize,MPI_INT,MPI_SUM,communicator);
assert(ierr==0);
};
for(int i=0;i<WorldSize;i++){
int wr = LexicographicToWorldRank[i];
// int wr = i;
std::vector<int> coor(_ndimension);
ProcessorCoorFromRank(wr,coor); // from world rank
int ck = RankFromProcessorCoor(coor);
assert(ck==wr);
if ( wr == WorldRank ) {
for(int j=0;j<coor.size();j++) {
assert(coor[j] == _processor_coor[j]);
}
}
/*
std::cout << GridLogMessage<< " Lexicographic "<<i;
std::cout << " MPI rank "<<wr;
std::cout << " Coor ";
for(int j=0;j<coor.size();j++) std::cout << coor[j];
std::cout<< std::endl;
*/
/////////////////////////////////////////////////////
// Check everyone agrees on everyone elses coords
/////////////////////////////////////////////////////
std::vector<int> mcoor = coor;
this->Broadcast(0,(void *)&mcoor[0],mcoor.size()*sizeof(int));
for(int d = 0 ; d< _ndimension; d++) {
assert(coor[d] == mcoor[d]);
}
}
};
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
@ -367,8 +528,6 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
@ -377,10 +536,14 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
@ -397,7 +560,6 @@ void CartesianCommunicator::SendRecvPacket(void *xmit,
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
@ -406,95 +568,29 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
int from,
int bytes)
{
#if 0
this->StencilBarrier();
MPI_Request xrq;
MPI_Request rrq;
static int sequence;
int myrank = _processor;
int ierr;
int tag;
int check;
assert(dest != _processor);
assert(from != _processor);
int gdest = GroupRanks[dest];
int gfrom = GroupRanks[from];
int gme = GroupRanks[_processor];
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
sequence++;
char *from_ptr = (char *)ShmCommBufs[ShmRank];
int small = (bytes<MAX_MPI_SHM_BYTES);
typedef uint64_t T;
int words = bytes/sizeof(T);
assert(((size_t)bytes &(sizeof(T)-1))==0);
assert(gme == ShmRank);
if ( small && (gdest !=MPI_UNDEFINED) ) {
char *to_ptr = (char *)ShmCommBufs[gdest];
assert(gme != gdest);
T *ip = (T *)xmit;
T *op = (T *)to_ptr;
PARALLEL_FOR_LOOP
for(int w=0;w<words;w++) {
op[w]=ip[w];
}
bcopy(&_processor,&to_ptr[bytes],sizeof(_processor));
bcopy(& sequence,&to_ptr[bytes+4],sizeof(sequence));
} else {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
this->StencilBarrier();
if (small && (gfrom !=MPI_UNDEFINED) ) {
T *ip = (T *)from_ptr;
T *op = (T *)recv;
PARALLEL_FOR_LOOP
for(int w=0;w<words;w++) {
op[w]=ip[w];
}
bcopy(&from_ptr[bytes] ,&tag ,sizeof(tag));
bcopy(&from_ptr[bytes+4],&check,sizeof(check));
assert(check==sequence);
assert(tag==from);
} else {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
this->StencilBarrier();
#else
MPI_Request xrq;
MPI_Request rrq;
int rank = _processor;
int ierr;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
ierr|=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
#endif
}
void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
@ -505,57 +601,63 @@ void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_
MPI_Request rrq;
int ierr;
assert(dest != _processor);
assert(from != _processor);
int gdest = GroupRanks[dest];
int gfrom = GroupRanks[from];
int gme = GroupRanks[_processor];
assert(gme == ShmRank);
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
#ifdef FORCE_COMMS
gdest = MPI_UNDEFINED;
gfrom = MPI_UNDEFINED;
#endif
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list);
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall)
{
SendToRecvFromComplete(list);
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Win_sync (ShmWindow);
MPI_Barrier (ShmComm);
MPI_Win_sync (ShmWindow);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
int ierr=MPI_Bcast(data,
@ -565,7 +667,11 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
communicator);
assert(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,

View File

@ -27,6 +27,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include "Grid.h"
#include <mpi.h>
//#include <numaif.h>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Workarounds:
@ -42,19 +43,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
typedef sem_t *Grid_semaphore;
#error /*THis is deprecated*/
#if 0
#define SEM_INIT(S) S = sem_open(sem_name,0,0600,0); assert ( S != SEM_FAILED );
#define SEM_INIT_EXCL(S) sem_unlink(sem_name); S = sem_open(sem_name,O_CREAT|O_EXCL,0600,0); assert ( S != SEM_FAILED );
#define SEM_POST(S) assert ( sem_post(S) == 0 );
#define SEM_WAIT(S) assert ( sem_wait(S) == 0 );
#else
#define SEM_INIT(S) ;
#define SEM_INIT_EXCL(S) ;
#define SEM_POST(S) ;
#define SEM_WAIT(S) ;
#endif
#include <sys/mman.h>
namespace Grid {
enum { COMMAND_ISEND, COMMAND_IRECV, COMMAND_WAITALL };
enum { COMMAND_ISEND, COMMAND_IRECV, COMMAND_WAITALL, COMMAND_SENDRECV };
struct Descriptor {
uint64_t buf;
@ -62,6 +71,12 @@ struct Descriptor {
int rank;
int tag;
int command;
uint64_t xbuf;
uint64_t rbuf;
int xtag;
int rtag;
int src;
int dest;
MPI_Request request;
};
@ -94,18 +109,14 @@ public:
void SemInit(void) {
sprintf(sem_name,"/Grid_mpi3_sem_head_%d",universe_rank);
// printf("SEM_NAME: %s \n",sem_name);
SEM_INIT(sem_head);
sprintf(sem_name,"/Grid_mpi3_sem_tail_%d",universe_rank);
// printf("SEM_NAME: %s \n",sem_name);
SEM_INIT(sem_tail);
}
void SemInitExcl(void) {
sprintf(sem_name,"/Grid_mpi3_sem_head_%d",universe_rank);
// printf("SEM_INIT_EXCL: %s \n",sem_name);
SEM_INIT_EXCL(sem_head);
sprintf(sem_name,"/Grid_mpi3_sem_tail_%d",universe_rank);
// printf("SEM_INIT_EXCL: %s \n",sem_name);
SEM_INIT_EXCL(sem_tail);
}
void WakeUpDMA(void) {
@ -125,6 +136,13 @@ public:
while(1){
WaitForCommand();
// std::cout << "Getting command "<<std::endl;
#if 0
_mm_monitor((void *)&state->head,0,0);
int s=state->start;
if ( s != state->head ) {
_mm_mwait(0,0);
}
#endif
Event();
}
}
@ -132,6 +150,7 @@ public:
int Event (void) ;
uint64_t QueueCommand(int command,void *buf, int bytes, int hashtag, MPI_Comm comm,int u_rank) ;
void QueueSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src) ;
void WaitAll() {
// std::cout << "Queueing WAIT command "<<std::endl;
@ -141,7 +160,7 @@ public:
// std::cout << "Waiting from semaphore "<<std::endl;
WaitForComplete();
// std::cout << "Checking FIFO is empty "<<std::endl;
assert ( state->tail == state->head );
while ( state->tail != state->head );
}
};
@ -196,6 +215,12 @@ public:
// std::cout << "Waking up DMA "<< slave<<std::endl;
};
static void QueueSendRecv(int slave,void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src)
{
Slaves[slave].QueueSendRecv(xbuf,rbuf,bytes,xtag,rtag,comm,dest,src);
Slaves[slave].WakeUpDMA();
}
static void QueueRecv(int slave, void *buf, int bytes, int tag, MPI_Comm comm,int rank) {
// std::cout<< " Queueing recv "<< bytes<< " slave "<< slave << " from comm "<<rank <<std::endl;
Slaves[slave].QueueCommand(COMMAND_IRECV,buf,bytes,tag,comm,rank);
@ -226,6 +251,28 @@ public:
return;
};
static void QueueRoundRobinSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src) {
uint8_t * cxbuf = (uint8_t *) xbuf;
uint8_t * crbuf = (uint8_t *) rbuf;
static int rrp=0;
int procs = VerticalSize-1;
int myoff=0;
int mywork=bytes;
QueueSendRecv(rrp+1,&cxbuf[myoff],&crbuf[myoff],mywork,xtag,rtag,comm,dest,src);
rrp = rrp+1;
if ( rrp == (VerticalSize-1) ) rrp = 0;
}
static void QueueMultiplexedSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src) {
uint8_t * cxbuf = (uint8_t *) xbuf;
uint8_t * crbuf = (uint8_t *) rbuf;
int mywork, myoff, procs;
procs = VerticalSize-1;
for(int s=0;s<procs;s++) {
GetWork(bytes,s,mywork,myoff,procs);
QueueSendRecv(s+1,&cxbuf[myoff],&crbuf[myoff],mywork,xtag,rtag,comm,dest,src);
}
};
static void QueueMultiplexedSend(void *buf, int bytes, int tag, MPI_Comm comm,int rank) {
uint8_t * cbuf = (uint8_t *) buf;
int mywork, myoff, procs;
@ -275,6 +322,7 @@ std::vector<void *> MPIoffloadEngine::VerticalShmBufs;
std::vector<std::vector<int> > MPIoffloadEngine::UniverseRanks;
std::vector<int> MPIoffloadEngine::UserCommunicatorToWorldRanks;
int CartesianCommunicator::NodeCount(void) { return HorizontalSize;};
int MPIoffloadEngine::ShmSetup = 0;
void MPIoffloadEngine::CommunicatorInit (MPI_Comm &communicator_world,
@ -370,12 +418,22 @@ void MPIoffloadEngine::CommunicatorInit (MPI_Comm &communicator_world,
ftruncate(fd, size);
VerticalShmBufs[r] = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ( VerticalShmBufs[r] == MAP_FAILED ) {
perror("failed mmap");
assert(0);
}
/*
for(uint64_t page=0;page<size;page+=4096){
void *pages = (void *) ( page + (uint64_t)VerticalShmBufs[r] );
int status;
int flags=MPOL_MF_MOVE_ALL;
int nodes=1; // numa domain == MCDRAM
unsigned long count=1;
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
if (ierr && (page==0)) perror("numa relocate command failed");
}
*/
uint64_t * check = (uint64_t *) VerticalShmBufs[r];
check[0] = WorldRank;
check[1] = r;
@ -404,7 +462,7 @@ void MPIoffloadEngine::CommunicatorInit (MPI_Comm &communicator_world,
uint64_t * check = (uint64_t *) VerticalShmBufs[r];
assert(check[0]== WorldRank);
assert(check[1]== r);
std::cerr<<"SHM "<<r<<" " <<VerticalShmBufs[r]<<std::endl;
// std::cerr<<"SHM "<<r<<" " <<VerticalShmBufs[r]<<std::endl;
}
}
#endif
@ -542,6 +600,8 @@ int Slave::Event (void) {
static int head_last;
static int start_last;
int ierr;
MPI_Status stat;
static int i=0;
////////////////////////////////////////////////////
// Try to advance the start pointers
@ -550,11 +610,6 @@ int Slave::Event (void) {
if ( s != state->head ) {
switch ( state->Descrs[s].command ) {
case COMMAND_ISEND:
/*
std::cout<< " Send "<<s << " ptr "<< state<<" "<< state->Descrs[s].buf<< "["<<state->Descrs[s].bytes<<"]"
<< " to " << state->Descrs[s].rank<< " tag" << state->Descrs[s].tag
<< " Comm " << MPIoffloadEngine::communicator_universe<< " me " <<universe_rank<< std::endl;
*/
ierr = MPI_Isend((void *)(state->Descrs[s].buf+base),
state->Descrs[s].bytes,
MPI_CHAR,
@ -568,11 +623,6 @@ int Slave::Event (void) {
break;
case COMMAND_IRECV:
/*
std::cout<< " Recv "<<s << " ptr "<< state<<" "<< state->Descrs[s].buf<< "["<<state->Descrs[s].bytes<<"]"
<< " from " << state->Descrs[s].rank<< " tag" << state->Descrs[s].tag
<< " Comm " << MPIoffloadEngine::communicator_universe<< " me "<< universe_rank<< std::endl;
*/
ierr=MPI_Irecv((void *)(state->Descrs[s].buf+base),
state->Descrs[s].bytes,
MPI_CHAR,
@ -588,10 +638,32 @@ int Slave::Event (void) {
return 1;
break;
case COMMAND_SENDRECV:
// fprintf(stderr,"Sendrecv ->%d %d : <-%d %d \n",state->Descrs[s].dest, state->Descrs[s].xtag+i*10,state->Descrs[s].src, state->Descrs[s].rtag+i*10);
ierr=MPI_Sendrecv((void *)(state->Descrs[s].xbuf+base), state->Descrs[s].bytes, MPI_CHAR, state->Descrs[s].dest, state->Descrs[s].xtag+i*10,
(void *)(state->Descrs[s].rbuf+base), state->Descrs[s].bytes, MPI_CHAR, state->Descrs[s].src , state->Descrs[s].rtag+i*10,
MPIoffloadEngine::communicator_universe,MPI_STATUS_IGNORE);
assert(ierr==0);
// fprintf(stderr,"Sendrecv done %d %d\n",ierr,i);
// MPI_Barrier(MPIoffloadEngine::HorizontalComm);
// fprintf(stderr,"Barrier\n");
i++;
state->start = PERI_PLUS(s);
return 1;
break;
case COMMAND_WAITALL:
for(int t=state->tail;t!=s; t=PERI_PLUS(t) ){
MPI_Wait((MPI_Request *)&state->Descrs[t].request,MPI_STATUS_IGNORE);
if ( state->Descrs[t].command != COMMAND_SENDRECV ) {
MPI_Wait((MPI_Request *)&state->Descrs[t].request,MPI_STATUS_IGNORE);
}
};
s=PERI_PLUS(s);
state->start = s;
@ -613,6 +685,45 @@ int Slave::Event (void) {
// External interaction with the queue
//////////////////////////////////////////////////////////////////////////////
void Slave::QueueSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src)
{
int head =state->head;
int next = PERI_PLUS(head);
// Set up descriptor
int worldrank;
int hashtag;
MPI_Comm communicator;
MPI_Request request;
uint64_t relative;
relative = (uint64_t)xbuf - base;
state->Descrs[head].xbuf = relative;
relative= (uint64_t)rbuf - base;
state->Descrs[head].rbuf = relative;
state->Descrs[head].bytes = bytes;
MPIoffloadEngine::MapCommRankToWorldRank(hashtag,worldrank,xtag,comm,dest);
state->Descrs[head].dest = MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank];
state->Descrs[head].xtag = hashtag;
MPIoffloadEngine::MapCommRankToWorldRank(hashtag,worldrank,rtag,comm,src);
state->Descrs[head].src = MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank];
state->Descrs[head].rtag = hashtag;
state->Descrs[head].command= COMMAND_SENDRECV;
// Block until FIFO has space
while( state->tail==next );
// Msync on weak order architectures
// Advance pointer
state->head = next;
};
uint64_t Slave::QueueCommand(int command,void *buf, int bytes, int tag, MPI_Comm comm,int commrank)
{
/////////////////////////////////////////
@ -812,19 +923,22 @@ void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_
assert( (recv_i >= shm) && (recv_i+bytes <= shm+MAX_MPI_SHM_BYTES) );
assert(from!=_processor);
assert(dest!=_processor);
MPIoffloadEngine::QueueMultiplexedSend(xmit,bytes,_processor,communicator,dest);
MPIoffloadEngine::QueueMultiplexedRecv(recv,bytes,from,communicator,from);
}
MPIoffloadEngine::QueueMultiplexedSendRecv(xmit,recv,bytes,_processor,from,communicator,dest,from);
//MPIoffloadEngine::QueueRoundRobinSendRecv(xmit,recv,bytes,_processor,from,communicator,dest,from);
//MPIoffloadEngine::QueueMultiplexedSend(xmit,bytes,_processor,communicator,dest);
//MPIoffloadEngine::QueueMultiplexedRecv(recv,bytes,from,communicator,from);
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
MPIoffloadEngine::WaitAll();
//this->Barrier();
}
void CartesianCommunicator::StencilBarrier(void)
{
}
void CartesianCommunicator::StencilBarrier(void) { }
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{

View File

@ -25,7 +25,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -87,6 +88,7 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
@ -97,7 +99,7 @@ void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ coor = _processor_coor ;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ coor = _processor_coor; }
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
source =0;

View File

@ -27,6 +27,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
#include <mpp/shmem.h>
#include <array>
namespace Grid {
@ -51,7 +52,7 @@ typedef struct HandShake_t {
} HandShake;
std::array<long,_SHMEM_REDUCE_SYNC_SIZE> make_psync_init(void) {
array<long,_SHMEM_REDUCE_SYNC_SIZE> ret;
std::array<long,_SHMEM_REDUCE_SYNC_SIZE> ret;
ret.fill(SHMEM_SYNC_VALUE);
return ret;
}
@ -109,7 +110,7 @@ void CartesianCommunicator::GlobalSum(uint32_t &u){
source = u;
dest = 0;
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all(); // necessary?
u = dest;
}
@ -125,7 +126,7 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){
source = u;
dest = 0;
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all(); // necessary?
u = dest;
}
@ -137,7 +138,8 @@ void CartesianCommunicator::GlobalSum(float &f){
source = f;
dest =0.0;
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all();
f = dest;
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
@ -148,14 +150,16 @@ void CartesianCommunicator::GlobalSumVector(float *f,int N)
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
if ( shmem_addr_accessible(f,_processor) ){
shmem_float_sum_to_all(f,f,N,0,0,_Nprocessors,llwrk,psync);
shmem_float_sum_to_all(f,f,N,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all();
return;
}
for(int i=0;i<N;i++){
dest =0.0;
source = f[i];
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all();
f[i] = dest;
}
}
@ -168,7 +172,8 @@ void CartesianCommunicator::GlobalSum(double &d)
source = d;
dest = 0;
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all();
d = dest;
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
@ -180,14 +185,16 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
if ( shmem_addr_accessible(d,_processor) ){
shmem_double_sum_to_all(d,d,N,0,0,_Nprocessors,llwrk,psync);
shmem_double_sum_to_all(d,d,N,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all();
return;
}
for(int i=0;i<N;i++){
source = d[i];
dest =0.0;
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
shmem_barrier_all();
d[i] = dest;
}
}
@ -282,11 +289,13 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
SHMEM_VET(recv);
// shmem_putmem_nb(recv,xmit,bytes,dest,NULL);
shmem_putmem(recv,xmit,bytes,dest);
if ( CommunicatorPolicy == CommunicatorPolicySequential ) shmem_barrier_all();
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
// shmem_quiet(); // I'm done
shmem_barrier_all();// He's done too
if( CommunicatorPolicy == CommunicatorPolicyConcurrent ) shmem_barrier_all();// He's done too
}
void CartesianCommunicator::Barrier(void)
{
@ -301,13 +310,13 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
int words = bytes/4;
if ( shmem_addr_accessible(data,_processor) ){
shmem_broadcast32(data,data,words,root,0,0,shmem_n_pes(),psync);
shmem_broadcast32(data,data,words,root,0,0,shmem_n_pes(),psync.data());
return;
}
for(int w=0;w<words;w++){
word = array[w];
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync);
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync.data());
if ( shmem_my_pe() != root ) {
array[w] = word;
}
@ -325,13 +334,17 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
for(int w=0;w<words;w++){
word = array[w];
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync);
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync.data());
if ( shmem_my_pe() != root ) {
array[w]= word;
}
shmem_barrier_all();
}
}
int CartesianCommunicator::RankWorld(void){
return shmem_my_pe();
}
}

View File

@ -1,5 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -53,15 +52,13 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimen
cbmask = 0x3;
}
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int so=plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
if ( cbmask == 0x3 ) {
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
@ -74,14 +71,13 @@ PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs._grid->CheckerBoardFromOindexTable(o+b);
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
if ( ocb &cbmask ) {
table.push_back(std::pair<int,int> (bo++,o+b));
}
}
}
PARALLEL_FOR_LOOP
for(int i=0;i<table.size();i++){
parallel_for(int i=0;i<table.size();i++){
buffer[off+table[i].first]=compress(rhs._odata[so+table[i].second]);
}
}
@ -105,29 +101,30 @@ Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int n1=rhs._grid->_slice_stride[dimension];
int n2=rhs._grid->_slice_block[dimension];
if ( cbmask ==0x3){
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*n1;
int offset = b+n*n2;
int offset = b+n*e2;
cobj temp =compress(rhs._odata[so+o+b]);
extract<cobj>(temp,pointers,offset);
}
}
} else {
assert(0); //Fixme think this is buggy
for(int n=0;n<e1;n++){
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << " Dense packed buffer WARNING " <<std::endl;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o=n*rhs._grid->_slice_stride[dimension];
int o=n*n1;
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
int offset = b+n*rhs._grid->_slice_block[dimension];
int offset = b+n*e2;
if ( ocb & cbmask ) {
cobj temp =compress(rhs._odata[so+o+b]);
@ -171,10 +168,10 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
if ( cbmask ==0x3 ) {
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs._grid->_slice_stride[dimension];
int bo =n*rhs._grid->_slice_block[dimension];
@ -182,17 +179,21 @@ PARALLEL_NESTED_LOOP2
}
}
} else {
std::vector<std::pair<int,int> > table;
int bo=0;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs._grid->_slice_stride[dimension];
int bo =n*rhs._grid->_slice_block[dimension];
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
rhs._odata[so+o+b]=buffer[bo++];
table.push_back(std::pair<int,int> (so+o+b,bo++));
}
}
}
parallel_for(int i=0;i<table.size();i++){
// std::cout << "Rcv"<< table[i].first << " " << table[i].second << " " <<buffer[table[i].second]<<std::endl;
rhs._odata[table[i].first]=buffer[table[i].second];
}
}
}
@ -213,8 +214,7 @@ PARALLEL_NESTED_LOOP2
int e2=rhs._grid->_slice_block[dimension];
if(cbmask ==0x3 ) {
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs._grid->_slice_stride[dimension];
int offset = b+n*rhs._grid->_slice_block[dimension];
@ -222,7 +222,11 @@ PARALLEL_NESTED_LOOP2
}
}
} else {
assert(0); // think this is buggy FIXME
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs._grid->_slice_stride[dimension];
@ -254,8 +258,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
int e2=rhs._grid->_slice_block[dimension];
int stride = rhs._grid->_slice_stride[dimension];
if(cbmask == 0x3 ){
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
@ -264,8 +267,7 @@ PARALLEL_NESTED_LOOP2
}
}
} else {
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
@ -295,8 +297,8 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block [dimension];
int stride = rhs._grid->_slice_stride[dimension];
PARALLEL_NESTED_LOOP2
for(int n=0;n<e1;n++){
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
@ -338,8 +340,8 @@ template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,const Lattice
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
// the permute type
ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
int permute_dim =grid->PermuteDim(dimension);
int permute_type=grid->PermuteType(dimension);
int permute_type_dist;
@ -348,7 +350,6 @@ template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,const Lattice
int o = 0;
int bo = x * grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
@ -361,9 +362,23 @@ template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,const Lattice
// wrap is whether sshift > rd.
// num is sshift mod rd.
//
// shift 7
//
// XoXo YcYc
// oXoX cYcY
// XoXo YcYc
// oXoX cYcY
//
// sshift --
//
// XX YY ; 3
// XX YY ; 0
// XX YY ; 3
// XX YY ; 0
//
int permute_slice=0;
if(permute_dim){
int wrap = sshift/rd;
int wrap = sshift/rd; wrap=wrap % ly;
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
@ -375,7 +390,6 @@ template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,const Lattice
} else {
permute_type_dist = permute_type;
}
}
if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type_dist);

View File

@ -74,7 +74,6 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x3);
@ -154,10 +153,14 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
(void *)&recv_buf[0],
recv_from_rank,
bytes);
// for(int i=0;i<words;i++){
// std::cout << "SendRecv ["<<i<<"] snd "<<send_buf[i]<<" rcv " << recv_buf[i] << " 0x" << cbmask<<std::endl;
// }
grid->Barrier();
/*
for(int i=0;i<send_buf.size();i++){
assert(recv_buf.size()==buffer_size);
assert(send_buf.size()==buffer_size);
std::cout << "SendRecv_Cshift_comms ["<<i<<" "<< dimension<<"] snd "<<send_buf[i]<<" rcv " << recv_buf[i] << " 0x" << cbmask<<std::endl;
}
*/
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
}
}
@ -243,7 +246,14 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
(void *)&recv_buf_extract[i][0],
recv_from_rank,
bytes);
/*
for(int w=0;w<recv_buf_extract[i].size();w++){
assert(recv_buf_extract[i].size()==buffer_size);
assert(send_buf_extract[i].size()==buffer_size);
std::cout << "SendRecv_Cshift_comms ["<<w<<" "<< dimension<<"] recv "<<recv_buf_extract[i][w]<<" send " << send_buf_extract[nbr_lane][w] << cbmask<<std::endl;
}
*/
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];

View File

@ -39,8 +39,7 @@ namespace Grid {
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
@ -56,8 +55,7 @@ PARALLEL_FOR_LOOP
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
@ -73,8 +71,7 @@ PARALLEL_FOR_LOOP
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
@ -89,8 +86,7 @@ PARALLEL_FOR_LOOP
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
@ -108,8 +104,7 @@ PARALLEL_FOR_LOOP
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(lhs,ret);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
@ -120,8 +115,7 @@ PARALLEL_FOR_LOOP
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,lhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
@ -132,8 +126,7 @@ PARALLEL_FOR_LOOP
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,lhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs);
@ -147,8 +140,7 @@ PARALLEL_FOR_LOOP
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(lhs,ret);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs);
@ -166,8 +158,7 @@ PARALLEL_FOR_LOOP
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs,&rhs._odata[ss]);
@ -182,8 +173,7 @@ PARALLEL_FOR_LOOP
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs,&rhs._odata[ss]);
@ -198,8 +188,7 @@ PARALLEL_FOR_LOOP
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs,&rhs._odata[ss]);
@ -213,8 +202,7 @@ PARALLEL_FOR_LOOP
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs,&rhs._odata[ss]);
@ -230,8 +218,7 @@ PARALLEL_FOR_LOOP
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
PARALLEL_FOR_LOOP
for(int ss=0;ss<x._grid->oSites();ss++){
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+y._odata[ss];
vstream(ret._odata[ss],tmp);
@ -245,8 +232,7 @@ PARALLEL_FOR_LOOP
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
PARALLEL_FOR_LOOP
for(int ss=0;ss<x._grid->oSites();ss++){
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vstream(ret._odata[ss],tmp);

View File

@ -121,8 +121,7 @@ public:
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
@ -144,8 +143,7 @@ PARALLEL_FOR_LOOP
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
@ -167,8 +165,7 @@ PARALLEL_FOR_LOOP
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
//vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,eval(ss,expr));
@ -191,8 +188,7 @@ PARALLEL_FOR_LOOP
checkerboard=cb;
_odata.resize(_grid->oSites());
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
@ -213,8 +209,7 @@ PARALLEL_FOR_LOOP
checkerboard=cb;
_odata.resize(_grid->oSites());
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
@ -235,8 +230,7 @@ PARALLEL_FOR_LOOP
checkerboard=cb;
_odata.resize(_grid->oSites());
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
vstream(_odata[ss] ,eval(ss,expr));
}
};
@ -258,8 +252,7 @@ PARALLEL_FOR_LOOP
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
}
@ -269,8 +262,7 @@ PARALLEL_FOR_LOOP
virtual ~Lattice(void) = default;
template<class sobj> strong_inline Lattice<vobj> & operator = (const sobj & r){
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r;
}
return *this;
@ -279,8 +271,7 @@ PARALLEL_FOR_LOOP
this->checkerboard = r.checkerboard;
conformable(*this,r);
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r._odata[ss];
}
return *this;

View File

@ -45,90 +45,87 @@ namespace Grid {
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vInteger> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
{
Lattice<vInteger> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
// Less than
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than equal
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
@ -136,38 +133,37 @@ PARALLEL_FOR_LOOP
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// not equal
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
}
#endif

View File

@ -34,47 +34,42 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
// localNorm2,
template<class vobj>
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
// localNorm2,
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]);
}
return ret;
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
// localInnerProduct
template<class vobj>
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))>
{
Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
{
Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
}
#endif

View File

@ -37,8 +37,7 @@ namespace Grid {
inline Lattice<vobj> operator -(const Lattice<vobj> &r)
{
Lattice<vobj> ret(r._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<r._grid->oSites();ss++){
parallel_for(int ss=0;ss<r._grid->oSites();ss++){
vstream(ret._odata[ss], -r._odata[ss]);
}
return ret;
@ -74,8 +73,7 @@ PARALLEL_FOR_LOOP
inline auto operator * (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs*rhs._odata[0])>
{
Lattice<decltype(lhs*rhs._odata[0])> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs*rhs._odata[0]) tmp=lhs*rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs*rhs._odata[ss];
@ -86,8 +84,7 @@ PARALLEL_FOR_LOOP
inline auto operator + (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs+rhs._odata[0])>
{
Lattice<decltype(lhs+rhs._odata[0])> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs+rhs._odata[0]) tmp =lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs+rhs._odata[ss];
@ -98,11 +95,9 @@ PARALLEL_FOR_LOOP
inline auto operator - (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs-rhs._odata[0])>
{
Lattice<decltype(lhs-rhs._odata[0])> ret(rhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs-rhs._odata[0]) tmp=lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs-rhs._odata[ss];
}
return ret;
}
@ -110,8 +105,7 @@ PARALLEL_FOR_LOOP
inline auto operator * (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]*rhs)>
{
Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
decltype(lhs._odata[0]*rhs) tmp =lhs._odata[ss]*rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]*rhs;
@ -122,8 +116,7 @@ PARALLEL_FOR_LOOP
inline auto operator + (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]+rhs)>
{
Lattice<decltype(lhs._odata[0]+rhs)> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]+rhs) tmp=lhs._odata[ss]+rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]+rhs;
@ -134,15 +127,12 @@ PARALLEL_FOR_LOOP
inline auto operator - (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]-rhs)>
{
Lattice<decltype(lhs._odata[0]-rhs)> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites(); ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]-rhs) tmp=lhs._odata[ss]-rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]-rhs;
}
return ret;
}
}
#endif

View File

@ -44,22 +44,20 @@ namespace Grid {
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i);
}
return ret;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i);
}
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i,j);
}
return ret;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i,j);
}
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -68,25 +66,23 @@ PARALLEL_FOR_LOOP
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0))> & rhs,int i)
{
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i);
}
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i);
}
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0,0))> & rhs,int i,int j)
{
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i,j);
}
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i,j);
}
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,std::vector<int> &site){
void pokeSite(const sobj &s,Lattice<vobj> &l,const std::vector<int> &site){
GridBase *grid=l._grid;
@ -120,7 +116,7 @@ PARALLEL_FOR_LOOP
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,std::vector<int> &site){
void peekSite(sobj &s,const Lattice<vobj> &l,const std::vector<int> &site){
GridBase *grid=l._grid;
@ -131,9 +127,6 @@ PARALLEL_FOR_LOOP
assert( l.checkerboard == l._grid->CheckerBoard(site));
// FIXME
// assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);

View File

@ -40,8 +40,7 @@ namespace Grid {
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = adj(lhs._odata[ss]);
}
return ret;
@ -49,13 +48,10 @@ PARALLEL_FOR_LOOP
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = conjugate(lhs._odata[ss]);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = conjugate(lhs._odata[ss]);
}
return ret;
};
}
#endif

View File

@ -57,8 +57,7 @@ namespace Grid {
sumarray[i]=zero;
}
PARALLEL_FOR_LOOP
for(int thr=0;thr<grid->SumArraySize();thr++){
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
@ -68,7 +67,7 @@ PARALLEL_FOR_LOOP
}
sumarray[thr]=TensorRemove(vnrm) ;
}
vector_type vvnrm; vvnrm=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vvnrm = vvnrm+sumarray[i];
@ -114,18 +113,17 @@ PARALLEL_FOR_LOOP
sumarray[i]=zero;
}
PARALLEL_FOR_LOOP
for(int thr=0;thr<grid->SumArraySize();thr++){
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];

View File

@ -30,11 +30,19 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define GRID_LATTICE_RNG_H
#include <random>
#ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
#endif
#if defined(RNG_SITMO)
#define RNG_FAST_DISCARD
#else
#undef RNG_FAST_DISCARD
#endif
namespace Grid {
//////////////////////////////////////////////////////////////
// Allow the RNG state to be less dense than the fine grid
//////////////////////////////////////////////////////////////
@ -64,115 +72,139 @@ namespace Grid {
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
return multiplicity;
}
// Wrap seed_seq to give common interface with random_device
class fixedSeed {
public:
typedef std::seed_seq::result_type result_type;
std::seed_seq src;
fixedSeed(const std::vector<int> &seeds) : src(seeds.begin(),seeds.end()) {};
result_type operator () (void){
std::vector<result_type> list(1);
src.generate(list.begin(),list.end());
return list[0];
}
};
// real scalars are one component
template<class scalar,class distribution,class generator> void fillScalar(scalar &s,distribution &dist,generator & gen)
template<class scalar,class distribution,class generator>
void fillScalar(scalar &s,distribution &dist,generator & gen)
{
s=dist(gen);
}
template<class distribution,class generator> void fillScalar(ComplexF &s,distribution &dist, generator &gen)
template<class distribution,class generator>
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
{
s=ComplexF(dist(gen),dist(gen));
}
template<class distribution,class generator> void fillScalar(ComplexD &s,distribution &dist,generator &gen)
template<class distribution,class generator>
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
{
s=ComplexD(dist(gen),dist(gen));
}
class GridRNGbase {
public:
int _seeded;
// One generator per site.
// Uniform and Gaussian distributions from these generators.
#ifdef RNG_RANLUX
typedef uint64_t RngStateType;
typedef std::ranlux48 RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 15;
#elif RNG_MT19937
#endif
#ifdef RNG_MT19937
typedef std::mt19937 RngEngine;
typedef uint32_t RngStateType;
static const int RngStateCount = std::mt19937::state_size;
#elif RNG_SITMO
#endif
#ifdef RNG_SITMO
typedef sitmo::prng_engine RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 4;
#endif
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD>> _uniform;
std::vector<std::normal_distribution<RealD>> _gaussian;
std::vector<std::discrete_distribution<int32_t>> _bernoulli;
void GetState(std::vector<RngStateType> & saved,int gen) {
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
// support for parallel init
///////////////////////
#ifdef RNG_FAST_DISCARD
static void Skip(RngEngine &eng)
{
/////////////////////////////////////////////////////////////////////////////////////
// Skip by 2^40 elements between successive lattice sites
// This goes by 10^12.
// Consider quenched updating; likely never exceeding rate of 1000 sweeps
// per second on any machine. This gives us of order 10^9 seconds, or 100 years
// skip ahead.
// For HMC unlikely to go at faster than a solve per second, and
// tens of seconds per trajectory so this is clean in all reasonable cases,
// and margin of safety is orders of magnitude.
// We could hack Sitmo to skip in the higher order words of state if necessary
/////////////////////////////////////////////////////////////////////////////////////
uint64_t skip = 0x1; skip = skip<<40;
eng.discard(skip);
}
#endif
static RngEngine Reseed(RngEngine &eng)
{
std::vector<uint32_t> newseed;
std::uniform_int_distribution<uint32_t> uid;
return Reseed(eng,newseed,uid);
}
static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed,
std::uniform_int_distribution<uint32_t> &uid)
{
const int reseeds=4;
newseed.resize(reseeds);
for(int i=0;i<reseeds;i++){
newseed[i] = uid(eng);
}
std::seed_seq sseq(newseed.begin(),newseed.end());
return RngEngine(sseq);
}
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
saved.resize(RngStateCount);
std::stringstream ss;
ss<<_generators[gen];
ss<<eng;
ss.seekg(0,ss.beg);
for(int i=0;i<RngStateCount;i++){
ss>>saved[i];
}
}
void SetState(std::vector<RngStateType> & saved,int gen){
void GetState(std::vector<RngStateType> & saved,int gen) {
GetState(saved,_generators[gen]);
}
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
assert(saved.size()==RngStateCount);
std::stringstream ss;
for(int i=0;i<RngStateCount;i++){
ss<< saved[i]<<" ";
}
ss.seekg(0,ss.beg);
ss>>_generators[gen];
ss>>eng;
}
void SetState(std::vector<RngStateType> & saved,int gen){
SetState(saved,_generators[gen]);
}
void SetEngine(RngEngine &Eng, int gen){
_generators[gen]=Eng;
}
void GetEngine(RngEngine &Eng, int gen){
Eng=_generators[gen];
}
template<class source> void Seed(source &src, int gen)
{
_generators[gen] = RngEngine(src);
}
};
class GridSerialRNG : public GridRNGbase {
public:
// FIXME ... do we require lockstep draws of randoms
// from all nodes keeping seeds consistent.
// place a barrier/broadcast in the fill routine
template<class source> void Seed(source &src)
{
typename source::result_type init = src();
CartesianCommunicator::BroadcastWorld(0,(void *)&init,sizeof(init));
_generators[0] = RngEngine(init);
_seeded=1;
}
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_seeded=0;
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
typedef typename sobj::scalar_type scalar_type;
@ -185,7 +217,7 @@ namespace Grid {
for(int idx=0;idx<words;idx++){
fillScalar(buf[idx],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
};
@ -244,23 +276,18 @@ namespace Grid {
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
void SeedRandomDevice(void){
std::random_device rd;
Seed(rd);
}
void SeedFixedIntegers(const std::vector<int> &seeds){
fixedSeed src(seeds);
Seed(src);
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
std::seed_seq src(seeds.begin(),seeds.end());
Seed(src,0);
}
};
class GridParallelRNG : public GridRNGbase {
public:
GridBase *_grid;
int _vol;
public:
int generator_idx(int os,int is){
return is*_grid->oSites()+os;
@ -274,55 +301,9 @@ namespace Grid {
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_seeded=0;
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
// This loop could be made faster to avoid the Ahmdahl by
// i) seed generators on each timeslice, for x=y=z=0;
// ii) seed generators on each z for x=y=0
// iii)seed generators on each y,z for x=0
// iv) seed generators on each y,z,x
// made possible by physical indexing.
template<class source> void Seed(source &src)
{
std::vector<int> gcoor;
int gsites = _grid->_gsites;
typename source::result_type init = src();
RngEngine pseeder(init);
std::uniform_int_distribution<uint64_t> ui;
for(int gidx=0;gidx<gsites;gidx++){
int rank,o_idx,i_idx;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
int l_idx=generator_idx(o_idx,i_idx);
const int num_rand_seed=16;
std::vector<int> site_seeds(num_rand_seed);
for(int i=0;i<site_seeds.size();i++){
site_seeds[i]= ui(pseeder);
}
_grid->Broadcast(0,(void *)&site_seeds[0],sizeof(int)*site_seeds.size());
if( rank == _grid->ThisRank() ){
fixedSeed ssrc(site_seeds);
typename source::result_type sinit = ssrc();
_generators[l_idx] = RngEngine(sinit);
}
}
_seeded=1;
}
//FIXME implement generic IO and create state save/restore
//void SaveState(const std::string<char> &file);
//void LoadState(const std::string<char> &file);
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
typedef typename vobj::scalar_object scalar_object;
@ -335,9 +316,7 @@ namespace Grid {
int osites=_grid->oSites();
int words=sizeof(scalar_object)/sizeof(scalar_type);
PARALLEL_FOR_LOOP
for(int ss=0;ss<osites;ss++){
parallel_for(int ss=0;ss<osites;ss++){
std::vector<scalar_object> buf(Nsimd);
for(int m=0;m<multiplicity;m++) {// Draw from same generator multiplicity times
@ -359,40 +338,114 @@ PARALLEL_FOR_LOOP
}
};
void SeedRandomDevice(void){
std::random_device rd;
Seed(rd);
}
void SeedFixedIntegers(const std::vector<int> &seeds){
fixedSeed src(seeds);
Seed(src);
// Everyone generates the same seed_seq based on input seeds
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
std::seed_seq source(seeds.begin(),seeds.end());
RngEngine master_engine(source);
#ifdef RNG_FAST_DISCARD
////////////////////////////////////////////////
// Skip ahead through a single stream.
// Applicable to SITMO and other has based/crypto RNGs
// Should be applicable to Mersenne Twister, but the C++11
// MT implementation does not implement fast discard even though
// in principle this is possible
////////////////////////////////////////////////
std::vector<int> gcoor;
int rank,o_idx,i_idx;
// Everybody loops over global volume.
for(int gidx=0;gidx<_grid->_gsites;gidx++){
Skip(master_engine); // Skip to next RNG sequence
// Where is it?
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// If this is one of mine we take it
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
}
}
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient
// and maximally parallel; but NOT reproducible from machine to machine.
// Not ideal, but fastest way to reseed all nodes.
////////////////////////////////////////////////////////////////
{
// Obtain one Reseed per processor
int Nproc = _grid->ProcessorCount();
std::vector<RngEngine> seeders(Nproc);
int me= _grid->ThisRank();
for(int p=0;p<Nproc;p++){
seeders[p] = Reseed(master_engine);
}
master_engine = seeders[me];
}
{
// Obtain one reseeded generator per thread
int Nthread = GridThread::GetThreads();
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);
}
parallel_for(int t=0;t<Nthread;t++) {
// set up one per local site in threaded fashion
std::vector<uint32_t> newseeds;
std::uniform_int_distribution<uint32_t> uid;
for(int l=0;l<_grid->lSites();l++) {
if ( (l%Nthread)==t ) {
_generators[l] = Reseed(seeders[t],newseeds,uid);
}
}
}
}
#endif
}
////////////////////////////////////////////////////////////////////////
// Support for rigorous test of RNG's
// Return uniform random uint32_t from requested site generator
////////////////////////////////////////////////////////////////////////
uint32_t GlobalU01(int gsite){
uint32_t the_number;
// who
std::vector<int> gcoor;
int rank,o_idx,i_idx;
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// draw
int l_idx=generator_idx(o_idx,i_idx);
if( rank == _grid->ThisRank() ){
the_number = _uid[l_idx](_generators[l_idx]);
}
// share & return
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
return the_number;
}
};
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._uniform);
}
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._gaussian);
}
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._bernoulli);
}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._uniform);
}
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._gaussian);
}
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._bernoulli);
}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
}
#endif

View File

@ -42,8 +42,7 @@ namespace Grid {
-> Lattice<decltype(trace(lhs._odata[0]))>
{
Lattice<decltype(trace(lhs._odata[0]))> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = trace(lhs._odata[ss]);
}
return ret;
@ -56,8 +55,7 @@ PARALLEL_FOR_LOOP
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(lhs._odata[0]))>
{
Lattice<decltype(traceIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = traceIndex<Index>(lhs._odata[ss]);
}
return ret;

View File

@ -51,7 +51,7 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full){
half.checkerboard = cb;
int ssh=0;
//PARALLEL_FOR_LOOP
//parallel_for
for(int ss=0;ss<full._grid->oSites();ss++){
std::vector<int> coor;
int cbos;
@ -68,7 +68,7 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
int cb = half.checkerboard;
int ssh=0;
//PARALLEL_FOR_LOOP
//parallel_for
for(int ss=0;ss<full._grid->oSites();ss++){
std::vector<int> coor;
int cbos;
@ -153,8 +153,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
PARALLEL_FOR_LOOP
for(int sf=0;sf<fine->oSites();sf++){
parallel_for(int sf=0;sf<fine->oSites();sf++){
int sc;
std::vector<int> coor_c(_ndimension);
@ -186,8 +185,7 @@ template<class vobj,class CComplex>
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
PARALLEL_FOR_LOOP
for(int ss=0;ss<coarse->oSites();ss++){
parallel_for(int ss=0;ss<coarse->oSites();ss++){
CoarseInner._odata[ss] = coarse_inner._odata[ss];
}
}
@ -333,9 +331,6 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
typedef typename vobj::scalar_object sobj;
typedef typename vvobj::scalar_object ssobj;
sobj s;
ssobj ss;
GridBase *ig = in._grid;
GridBase *og = out._grid;
@ -347,10 +342,13 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
for(int d=0;d<no;d++){
assert(ig->_processors[d] == og->_processors[d]);
assert(ig->_ldimensions[d] == og->_ldimensions[d]);
assert(ig->lSites() == og->lSites());
}
//PARALLEL_FOR_LOOP
for(int idx=0;idx<ig->lSites();idx++){
parallel_for(int idx=0;idx<ig->lSites();idx++){
sobj s;
ssobj ss;
std::vector<int> lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(s,in,lcoor);
@ -364,7 +362,6 @@ template<class vobj>
void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
sobj s;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
@ -386,17 +383,16 @@ void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int
}
// the above should guarantee that the operations are local
// Guido: check the threading here
//PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
parallel_for(int idx=0;idx<lg->lSites();idx++){
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
dl=0;
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[dl++];
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,lowDim,lcoor);
@ -408,7 +404,6 @@ template<class vobj>
void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
sobj s;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
@ -429,16 +424,16 @@ void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, in
}
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
parallel_for(int idx=0;idx<lg->lSites();idx++){
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
dl=0;
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[dl++];
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,higherDim,hcoor);
@ -452,7 +447,6 @@ template<class vobj>
void InsertSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
sobj s;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
@ -469,8 +463,8 @@ void InsertSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
parallel_for(int idx=0;idx<lg->lSites();idx++){
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
@ -488,7 +482,6 @@ template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
sobj s;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
@ -505,8 +498,8 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slic
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
parallel_for(int idx=0;idx<lg->lSites();idx++){
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
@ -574,8 +567,7 @@ typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>
in_grid->iCoorFromIindex(in_icoor[lane], lane);
}
PARALLEL_FOR_LOOP
for(int in_oidx = 0; in_oidx < in_grid->oSites(); in_oidx++){ //loop over outer index
parallel_for(int in_oidx = 0; in_oidx < in_grid->oSites(); in_oidx++){ //loop over outer index
//Assemble vector of pointers to output elements
std::vector<sobj*> out_ptrs(in_nsimd);
@ -623,8 +615,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
PARALLEL_FOR_LOOP
for(int out_oidx=0;out_oidx<out_grid->oSites();out_oidx++){
parallel_for(int out_oidx=0;out_oidx<out_grid->oSites();out_oidx++){
std::vector<int> out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
@ -642,10 +633,6 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
merge(out._odata[out_oidx], ptrs, 0);
}
}
}
#endif

View File

@ -40,27 +40,24 @@ namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transpose(lhs._odata[ss]);
}
return ret;
};
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transpose(lhs._odata[ss]);
}
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
////////////////////////////////////////////////////////////////////////////////////////////////////
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
{
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transposeIndex<Index>(lhs._odata[ss]);
}
return ret;
};
{
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transposeIndex<Index>(lhs._odata[ss]);
}
return ret;
};
}
#endif

View File

@ -37,8 +37,7 @@ namespace Grid {
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=pow(rhs._odata[ss],y);
}
return ret;
@ -47,8 +46,7 @@ PARALLEL_FOR_LOOP
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=mod(rhs._odata[ss],y);
}
return ret;
@ -58,8 +56,7 @@ PARALLEL_FOR_LOOP
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=div(rhs._odata[ss],y);
}
return ret;
@ -69,8 +66,7 @@ PARALLEL_FOR_LOOP
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=Exponentiate(rhs._odata[ss],alpha, Nexp);
}
return ret;

View File

@ -56,8 +56,7 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<
std::vector<scalar_object> truevals (Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
PARALLEL_FOR_LOOP
for(int ss=0;ss<iftrue._grid->oSites(); ss++){
parallel_for(int ss=0;ss<iftrue._grid->oSites(); ss++){
extract(iftrue._odata[ss] ,truevals);
extract(iffalse._odata[ss] ,falsevals);

View File

@ -29,9 +29,10 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/GridCore.h>
#include <cxxabi.h>
#include <memory>
namespace Grid {

View File

@ -35,37 +35,27 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#endif
#include <arpa/inet.h>
#include <algorithm>
// 64bit endian swap is a portability pain
#ifndef __has_builtin // Optional of course.
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
#endif
#if HAVE_DECL_BE64TOH
#undef Grid_ntohll
#define Grid_ntohll be64toh
#endif
#if HAVE_DECL_NTOHLL
#undef Grid_ntohll
#define Grid_ntohll ntohll
#endif
#ifndef Grid_ntohll
inline uint32_t byte_reverse32(uint32_t f) {
f = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
return f;
}
inline uint64_t byte_reverse64(uint64_t f) {
uint64_t g;
g = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
g = g << 32;
f = f >> 32;
g|= ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
return g;
}
#if BYTE_ORDER == BIG_ENDIAN
#define Grid_ntohll(A) (A)
#else
#if __has_builtin(__builtin_bswap64)
#define Grid_ntohll(A) __builtin_bswap64(A)
inline uint64_t Grid_ntohll(uint64_t A) { return A; }
#else
#error
#endif
#endif
inline uint64_t Grid_ntohll(uint64_t A) {
return byte_reverse64(A);
}
#endif
namespace Grid {
@ -195,7 +185,7 @@ class BinaryIO {
std::vector<int> site({x,y,z,t});
if (grid->IsBoss()) {
fin.read((char *)&file_object, sizeof(file_object));
fin.read((char *)&file_object, sizeof(file_object));assert( fin.fail()==0);
bytes += sizeof(file_object);
if (ieee32big) be32toh_v((void *)&file_object, sizeof(file_object));
if (ieee32) le32toh_v((void *)&file_object, sizeof(file_object));
@ -211,11 +201,13 @@ class BinaryIO {
std::cout<<GridLogPerformance<<"readObjectSerial: read "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/ (double)timer.useconds() <<" MB/s " <<std::endl;
grid->Broadcast(0,(void *)&csum,sizeof(csum));
return csum;
}
template<class vobj,class fobj,class munger>
static inline uint32_t writeObjectSerial(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string & format)
static inline uint32_t writeObjectSerial(Lattice<vobj> &Umu,std::string file,munger munge,int offset,
const std::string & format)
{
typedef typename vobj::scalar_object sobj;
@ -231,7 +223,7 @@ class BinaryIO {
//////////////////////////////////////////////////
std::cout<< GridLogMessage<< "Serial write I/O "<< file<<std::endl;
GridStopWatch timer; timer.Start();
std::ofstream fout;
if ( grid->IsBoss() ) {
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
@ -255,23 +247,24 @@ class BinaryIO {
if ( grid->IsBoss() ) {
if(ieee32big) htobe32_v((void *)&file_object,sizeof(file_object));
if(ieee32) htole32_v((void *)&file_object,sizeof(file_object));
if(ieee64big) htobe64_v((void *)&file_object,sizeof(file_object));
if(ieee64) htole64_v((void *)&file_object,sizeof(file_object));
if(ieee32big) htobe32_v((void *)&file_object,sizeof(file_object));
if(ieee32) htole32_v((void *)&file_object,sizeof(file_object));
if(ieee64big) htobe64_v((void *)&file_object,sizeof(file_object));
if(ieee64) htole64_v((void *)&file_object,sizeof(file_object));
// NB could gather an xstrip as an optimisation.
fout.write((char *)&file_object,sizeof(file_object));
bytes+=sizeof(file_object);
// NB could gather an xstrip as an optimisation.
fout.write((char *)&file_object,sizeof(file_object));assert( fout.fail()==0);
bytes+=sizeof(file_object);
}
}}}}
timer.Stop();
std::cout<<GridLogPerformance<<"writeObjectSerial: wrote "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
grid->Broadcast(0,(void *)&csum,sizeof(csum));
return csum;
}
static inline uint32_t writeRNGSerial(GridSerialRNG &serial,GridParallelRNG &parallel,std::string file,int offset)
{
typedef typename GridSerialRNG::RngStateType RngStateType;
@ -305,23 +298,23 @@ class BinaryIO {
int l_idx=parallel.generator_idx(o_idx,i_idx);
if( rank == grid->ThisRank() ){
// std::cout << "rank" << rank<<" Getting state for index "<<l_idx<<std::endl;
parallel.GetState(saved,l_idx);
// std::cout << "rank" << rank<<" Getting state for index "<<l_idx<<std::endl;
parallel.GetState(saved,l_idx);
}
grid->Broadcast(rank,(void *)&saved[0],bytes);
if ( grid->IsBoss() ) {
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
fout.write((char *)&saved[0],bytes);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
fout.write((char *)&saved[0],bytes);assert( fout.fail()==0);
}
}
if ( grid->IsBoss() ) {
serial.GetState(saved,0);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
fout.write((char *)&saved[0],bytes);
fout.write((char *)&saved[0],bytes);assert( fout.fail()==0);
}
grid->Broadcast(0,(void *)&csum,sizeof(csum));
return csum;
@ -355,20 +348,20 @@ class BinaryIO {
int l_idx=parallel.generator_idx(o_idx,i_idx);
if ( grid->IsBoss() ) {
fin.read((char *)&saved[0],bytes);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
fin.read((char *)&saved[0],bytes);assert( fin.fail()==0);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
}
grid->Broadcast(0,(void *)&saved[0],bytes);
if( rank == grid->ThisRank() ){
parallel.SetState(saved,l_idx);
parallel.SetState(saved,l_idx);
}
}
if ( grid->IsBoss() ) {
fin.read((char *)&saved[0],bytes);
fin.read((char *)&saved[0],bytes);assert( fin.fail()==0);
serial.SetState(saved,0);
Uint32Checksum((uint32_t *)&saved[0],bytes,csum);
}
@ -380,7 +373,8 @@ class BinaryIO {
template<class vobj,class fobj,class munger>
static inline uint32_t readObjectParallel(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string &format)
static inline uint32_t readObjectParallel(Lattice<vobj> &Umu,std::string file,munger munge,int offset,
const std::string &format)
{
typedef typename vobj::scalar_object sobj;
@ -415,15 +409,15 @@ class BinaryIO {
if ( d == 0 ) parallel[d] = 0;
if (parallel[d]) {
range[d] = grid->_ldimensions[d];
start[d] = grid->_processor_coor[d]*range[d];
ioproc[d]= grid->_processor_coor[d];
range[d] = grid->_ldimensions[d];
start[d] = grid->_processor_coor[d]*range[d];
ioproc[d]= grid->_processor_coor[d];
} else {
range[d] = grid->_gdimensions[d];
start[d] = 0;
ioproc[d]= 0;
if ( grid->_processor_coor[d] != 0 ) IOnode = 0;
range[d] = grid->_gdimensions[d];
start[d] = 0;
ioproc[d]= 0;
if ( grid->_processor_coor[d] != 0 ) IOnode = 0;
}
slice_vol = slice_vol * range[d];
}
@ -434,9 +428,9 @@ class BinaryIO {
std::cout<< std::dec ;
std::cout<< GridLogMessage<< "Parallel read I/O to "<< file << " with " <<tmp<< " IOnodes for subslice ";
for(int d=0;d<grid->_ndimension;d++){
std::cout<< range[d];
if( d< grid->_ndimension-1 )
std::cout<< " x ";
std::cout<< range[d];
if( d< grid->_ndimension-1 )
std::cout<< " x ";
}
std::cout << std::endl;
}
@ -472,8 +466,8 @@ class BinaryIO {
Lexicographic::CoorFromIndex(tsite,tlex,range);
for(int d=0;d<nd;d++){
lsite[d] = tsite[d]%grid->_ldimensions[d]; // local site
gsite[d] = tsite[d]+start[d]; // global site
lsite[d] = tsite[d]%grid->_ldimensions[d]; // local site
gsite[d] = tsite[d]+start[d]; // global site
}
/////////////////////////
@ -488,28 +482,28 @@ class BinaryIO {
////////////////////////////////
if (myrank == iorank) {
fin.seekg(offset+g_idx*sizeof(fileObj));
fin.read((char *)&fileObj,sizeof(fileObj));
bytes+=sizeof(fileObj);
fin.seekg(offset+g_idx*sizeof(fileObj));
fin.read((char *)&fileObj,sizeof(fileObj));assert( fin.fail()==0);
bytes+=sizeof(fileObj);
if(ieee32big) be32toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee32) le32toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee64big) be64toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee64) le64toh_v((void *)&fileObj,sizeof(fileObj));
munge(fileObj,siteObj,csum);
if(ieee32big) be32toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee32) le32toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee64big) be64toh_v((void *)&fileObj,sizeof(fileObj));
if(ieee64) le64toh_v((void *)&fileObj,sizeof(fileObj));
munge(fileObj,siteObj,csum);
}
// Possibly do transport through pt2pt
if ( rank != iorank ) {
if ( (myrank == rank) || (myrank==iorank) ) {
grid->SendRecvPacket((void *)&siteObj,(void *)&siteObj,iorank,rank,sizeof(siteObj));
}
if ( (myrank == rank) || (myrank==iorank) ) {
grid->SendRecvPacket((void *)&siteObj,(void *)&siteObj,iorank,rank,sizeof(siteObj));
}
}
// Poke at destination
if ( myrank == rank ) {
pokeLocalSite(siteObj,Umu,lsite);
pokeLocalSite(siteObj,Umu,lsite);
}
grid->Barrier(); // necessary?
}
@ -520,7 +514,7 @@ class BinaryIO {
timer.Stop();
std::cout<<GridLogPerformance<<"readObjectParallel: read "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
return csum;
}
@ -529,7 +523,8 @@ class BinaryIO {
// Parallel writer
//////////////////////////////////////////////////////////
template<class vobj,class fobj,class munger>
static inline uint32_t writeObjectParallel(Lattice<vobj> &Umu,std::string file,munger munge,int offset,const std::string & format)
static inline uint32_t writeObjectParallel(Lattice<vobj> &Umu,std::string file,munger munge,int offset,
const std::string & format)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Umu._grid;
@ -558,15 +553,15 @@ class BinaryIO {
if ( d!= grid->_ndimension-1 ) parallel[d] = 0;
if (parallel[d]) {
range[d] = grid->_ldimensions[d];
start[d] = grid->_processor_coor[d]*range[d];
ioproc[d]= grid->_processor_coor[d];
range[d] = grid->_ldimensions[d];
start[d] = grid->_processor_coor[d]*range[d];
ioproc[d]= grid->_processor_coor[d];
} else {
range[d] = grid->_gdimensions[d];
start[d] = 0;
ioproc[d]= 0;
range[d] = grid->_gdimensions[d];
start[d] = 0;
ioproc[d]= 0;
if ( grid->_processor_coor[d] != 0 ) IOnode = 0;
if ( grid->_processor_coor[d] != 0 ) IOnode = 0;
}
slice_vol = slice_vol * range[d];
@ -577,13 +572,13 @@ class BinaryIO {
grid->GlobalSum(tmp);
std::cout<< GridLogMessage<< "Parallel write I/O from "<< file << " with " <<tmp<< " IOnodes for subslice ";
for(int d=0;d<grid->_ndimension;d++){
std::cout<< range[d];
if( d< grid->_ndimension-1 )
std::cout<< " x ";
std::cout<< range[d];
if( d< grid->_ndimension-1 )
std::cout<< " x ";
}
std::cout << std::endl;
}
GridStopWatch timer; timer.Start();
uint64_t bytes=0;
@ -619,8 +614,8 @@ class BinaryIO {
Lexicographic::CoorFromIndex(tsite,tlex,range);
for(int d=0;d<nd;d++){
lsite[d] = tsite[d]%grid->_ldimensions[d]; // local site
gsite[d] = tsite[d]+start[d]; // global site
lsite[d] = tsite[d]%grid->_ldimensions[d]; // local site
gsite[d] = tsite[d]+start[d]; // global site
}
@ -640,36 +635,36 @@ class BinaryIO {
// Pair of nodes may need to do pt2pt send
if ( rank != iorank ) { // comms is necessary
if ( (myrank == rank) || (myrank==iorank) ) { // and we have to do it
// Send to IOrank
grid->SendRecvPacket((void *)&siteObj,(void *)&siteObj,rank,iorank,sizeof(siteObj));
}
if ( (myrank == rank) || (myrank==iorank) ) { // and we have to do it
// Send to IOrank
grid->SendRecvPacket((void *)&siteObj,(void *)&siteObj,rank,iorank,sizeof(siteObj));
}
}
grid->Barrier(); // necessary?
if (myrank == iorank) {
munge(siteObj,fileObj,csum);
if(ieee32big) htobe32_v((void *)&fileObj,sizeof(fileObj));
if(ieee32) htole32_v((void *)&fileObj,sizeof(fileObj));
if(ieee64big) htobe64_v((void *)&fileObj,sizeof(fileObj));
if(ieee64) htole64_v((void *)&fileObj,sizeof(fileObj));
fout.seekp(offset+g_idx*sizeof(fileObj));
fout.write((char *)&fileObj,sizeof(fileObj));
bytes+=sizeof(fileObj);
munge(siteObj,fileObj,csum);
if(ieee32big) htobe32_v((void *)&fileObj,sizeof(fileObj));
if(ieee32) htole32_v((void *)&fileObj,sizeof(fileObj));
if(ieee64big) htobe64_v((void *)&fileObj,sizeof(fileObj));
if(ieee64) htole64_v((void *)&fileObj,sizeof(fileObj));
fout.seekp(offset+g_idx*sizeof(fileObj));
fout.write((char *)&fileObj,sizeof(fileObj));assert( fout.fail()==0);
bytes+=sizeof(fileObj);
}
}
grid->GlobalSum(csum);
grid->GlobalSum(bytes);
timer.Stop();
std::cout<<GridLogPerformance<<"writeObjectParallel: wrote "<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
<< (double)bytes/timer.useconds() <<" MB/s " <<std::endl;
return csum;
}

View File

@ -242,7 +242,6 @@ class NerscIO : public BinaryIO {
static inline unsigned int writeHeader(NerscField &field,std::string file)
{
std::ofstream fout(file,std::ios::out|std::ios::in);
fout.seekp(0,std::ios::beg);
dump_nersc_header(field, fout);
field.data_start = fout.tellp();
@ -264,10 +263,13 @@ static inline int readHeader(std::string file,GridBase *grid, NerscField &field
getline(fin,line); // read one line and insist is
removeWhitespace(line);
std::cout << GridLogMessage << "* " << line << std::endl;
assert(line==std::string("BEGIN_HEADER"));
do {
getline(fin,line); // read one line
std::cout << GridLogMessage << "* "<<line<< std::endl;
int eq = line.find("=");
if(eq >0) {
std::string key=line.substr(0,eq);
@ -322,6 +324,8 @@ static inline int readHeader(std::string file,GridBase *grid, NerscField &field
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define PARALLEL_READ
#define PARALLEL_WRITE
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,NerscField& header,std::string file)
@ -345,25 +349,41 @@ static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
// csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Nersc3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Nersc3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format);
#endif
}
if ( ieee64 || ieee64big ) {
//csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Nersc3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Nersc3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format);
#endif
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
//csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format);
#endif
}
if ( ieee64 || ieee64big ) {
// csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format);
#endif
}
} else {
assert(0);
@ -371,12 +391,17 @@ static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
NerscStatistics<GaugeField>(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<< csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette
<<" header "<<header.plaquette<<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace
<<" header "<<header.link_trace<<std::endl;
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(csum == header.checksum );
std::cout<<GridLogMessage <<"Read NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
template<class vsimd>
@ -416,19 +441,11 @@ static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu
Nersc3x2unmunger<fobj2D,sobj> munge;
BinaryIO::Uint32Checksum<vobj,fobj2D>(Umu, munge,header.checksum);
offset = writeHeader(header,file);
#ifdef PARALLEL_WRITE
csum=BinaryIO::writeObjectParallel<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point);
#else
csum=BinaryIO::writeObjectSerial<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point);
std::string file1 = file+"para";
int offset1 = writeHeader(header,file1);
int csum1=BinaryIO::writeObjectParallel<vobj,fobj2D>(Umu,file1,munge,offset,header.floating_point);
//int csum1=BinaryIO::writeObjectSerial<vobj,fobj2D>(Umu,file1,munge,offset,header.floating_point);
std::cout << GridLogMessage << " TESTING PARALLEL WRITE offsets " << offset1 << " "<< offset << std::endl;
std::cout << GridLogMessage << " TESTING PARALLEL WRITE csums " << csum1 << " "<<std::hex<< csum << std::dec<< std::endl;
assert(offset1==offset);
assert(csum1==csum);
#endif
} else {
header.floating_point = std::string("IEEE64BIG");
@ -436,8 +453,11 @@ static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu
NerscSimpleUnmunger<fobj3D,sobj> munge;
BinaryIO::Uint32Checksum<vobj,fobj3D>(Umu, munge,header.checksum);
offset = writeHeader(header,file);
// csum=BinaryIO::writeObjectSerial<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point);
#ifdef PARALLEL_WRITE
csum=BinaryIO::writeObjectParallel<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point);
#else
csum=BinaryIO::writeObjectSerial<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point);
#endif
}
std::cout<<GridLogMessage <<"Written NERSC Configuration "<<file<< " checksum "<<std::hex<<csum<< std::dec<<" plaq "<< header.plaquette <<std::endl;
@ -471,10 +491,15 @@ static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG &parallel
#ifdef RNG_RANLUX
header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48");
#else
#endif
#ifdef RNG_MT19937
header.floating_point = std::string("UINT32");
header.data_type = std::string("MT19937");
#endif
#ifdef RNG_SITMO
header.floating_point = std::string("UINT64");
header.data_type = std::string("SITMO");
#endif
truncate(file);
offset = writeHeader(header,file);
@ -502,17 +527,20 @@ static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel
#ifdef RNG_RANLUX
assert(format == std::string("UINT64"));
assert(data_type == std::string("RANLUX48"));
#else
#endif
#ifdef RNG_MT19937
assert(format == std::string("UINT32"));
assert(data_type == std::string("MT19937"));
#endif
#ifdef RNG_SITMO
assert(format == std::string("UINT64"));
assert(data_type == std::string("SITMO"));
#endif
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
uint32_t csum=BinaryIO::readRNGSerial(serial,parallel,file,offset);
std::cerr<<" Csum "<< csum << " "<< header.checksum <<std::endl;
assert(csum == header.checksum );
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;

View File

@ -26,8 +26,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/PerfCount.h>
#include <Grid/GridCore.h>
#include <Grid/perfmon/PerfCount.h>
namespace Grid {

View File

@ -172,7 +172,7 @@ public:
const char * name = PerformanceCounterConfigs[PCT].name;
fd = perf_event_open(&pe, 0, -1, -1, 0); // pid 0, cpu -1 current process any cpu. group -1
if (fd == -1) {
fprintf(stderr, "Error opening leader %llx for event %s\n", pe.config,name);
fprintf(stderr, "Error opening leader %llx for event %s\n",(long long) pe.config,name);
perror("Error is");
}
int norm = PerformanceCounterConfigs[PCT].normalisation;
@ -181,7 +181,7 @@ public:
name = PerformanceCounterConfigs[norm].name;
cyclefd = perf_event_open(&pe, 0, -1, -1, 0); // pid 0, cpu -1 current process any cpu. group -1
if (cyclefd == -1) {
fprintf(stderr, "Error opening leader %llx for event %s\n", pe.config,name);
fprintf(stderr, "Error opening leader %llx for event %s\n",(long long) pe.config,name);
perror("Error is");
}
#endif

View File

@ -1,11 +1,9 @@
#include <Grid/Grid.h>
#include <Grid/PerfCount.h>
#include <Grid/Stat.h>
#include <Grid/GridCore.h>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/perfmon/Stat.h>
namespace Grid {
bool PmuStat::pmu_initialized=false;

View File

@ -29,8 +29,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_H
#define GRID_QCD_H
#ifndef GRID_QCD_BASE_H
#define GRID_QCD_BASE_H
namespace Grid{
namespace QCD {
@ -62,7 +62,6 @@ namespace QCD {
#define SpinIndex 1
#define LorentzIndex 0
// Also should make these a named enum type
static const int DaggerNo=0;
static const int DaggerYes=1;
@ -494,26 +493,5 @@ namespace QCD {
} // Grid
#include <Grid/qcd/utils/SpaceTimeGrid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/spin/TwoSpinor.h>
#include <Grid/qcd/utils/LinalgUtils.h>
#include <Grid/qcd/utils/CovariantCshift.h>
// Include representations
#include <Grid/qcd/utils/SUn.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/representations/hmc_types.h>
#include <Grid/qcd/action/Actions.h>
#include <Grid/qcd/smearing/Smearing.h>
#include <Grid/qcd/hmc/integrators/Integrator.h>
#include <Grid/qcd/hmc/integrators/Integrator_algorithm.h>
#include <Grid/qcd/hmc/HMC.h>
#endif

50
lib/qcd/action/Action.h Normal file
View File

@ -0,0 +1,50 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/Actions.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_ACTION_H
#define GRID_QCD_ACTION_H
////////////////////////////////////////////
// Abstract base interface
////////////////////////////////////////////
#include <Grid/qcd/action/ActionCore.h>
////////////////////////////////////////////////////////////////////////
// Fermion actions; prevent coupling fermion.cc files to other headers
////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/Fermion.h>
////////////////////////////////////////
// Pseudo fermion combinations for HMC
////////////////////////////////////////
#include <Grid/qcd/action/pseudofermion/PseudoFermion.h>
#endif

View File

@ -150,4 +150,5 @@ using ActionSet = std::vector<ActionLevel<GaugeField, R> >;
}
}
#endif

View File

@ -0,0 +1,45 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/ActionCore.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_ACTION_CORE
#define QCD_ACTION_CORE
#include <Grid/qcd/action/ActionBase.h>
#include <Grid/qcd/action/ActionParams.h>
////////////////////////////////////////////
// Gauge Actions
////////////////////////////////////////////
#include <Grid/qcd/action/gauge/Gauge.h>
////////////////////////////////////////////
// Fermion prereqs
////////////////////////////////////////////
#include <Grid/qcd/action/fermion/FermionCore.h>
#endif

View File

@ -45,6 +45,10 @@ namespace QCD {
WilsonImplParams() : overlapCommsCompute(false) {};
};
struct StaggeredImplParams {
StaggeredImplParams() {};
};
struct OneFlavourRationalParams {
RealD lo;
RealD hi;

View File

@ -30,8 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Eigen/Dense>
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
namespace QCD {
@ -57,10 +57,23 @@ void CayleyFermion5D<Impl>::Dminus(const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
this->DW(psi,this->tmp(),DaggerNo);
FermionField tmp_f(this->FermionGrid());
this->DW(psi,tmp_f,DaggerNo);
for(int s=0;s<Ls;s++){
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],this->tmp(),s,s);// chi = (1-c[s] D_W) psi
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],tmp_f,s,s);// chi = (1-c[s] D_W) psi
}
}
template<class Impl>
void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
FermionField tmp_f(this->FermionGrid());
this->DW(psi,tmp_f,DaggerYes);
for(int s=0;s<Ls;s++){
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],tmp_f,s,s);// chi = (1-c[s] D_W) psi
}
}
@ -107,17 +120,6 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
}
template<class Impl>
void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
this->DW(psi,this->tmp(),DaggerYes);
for(int s=0;s<Ls;s++){
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],this->tmp(),s,s);// chi = (1-c[s] D_W) psi
}
}
template<class Impl>
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{
@ -168,7 +170,6 @@ void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &
lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper);
}
template<class Impl>
void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
{
@ -190,7 +191,12 @@ void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &
lower[s]=-cee[s-1];
}
}
// Conjugate the terms
for (int s=0;s<Ls;s++){
diag[s] =conjugate(diag[s]);
upper[s]=conjugate(upper[s]);
lower[s]=conjugate(lower[s]);
}
M5Ddag(psi,psi,chi,lower,diag,upper);
}
@ -212,9 +218,23 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
int Ls=this->Ls;
std::vector<Coeff_t> diag =bs;
std::vector<Coeff_t> upper=cs;
std::vector<Coeff_t> lower=cs;
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
std::vector<Coeff_t> lower=cs;
for (int s=0;s<Ls;s++){
if ( s== 0 ) {
upper[s] = cs[s+1];
lower[s] =-mass*cs[Ls-1];
} else if ( s==(Ls-1) ) {
upper[s] =-mass*cs[0];
lower[s] = cs[s-1];
} else {
upper[s] = cs[s+1];
lower[s] = cs[s-1];
}
upper[s] = conjugate(upper[s]);
lower[s] = conjugate(lower[s]);
diag[s] = conjugate(diag[s]);
}
M5Ddag(psi,psi,Din,lower,diag,upper);
}
@ -300,7 +320,7 @@ void CayleyFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const
this->DhopDeriv(mat,U,Din,dag);
} else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
Meooe5D(U,Din);
MeooeDag5D(U,Din);
this->DhopDeriv(mat,Din,V,dag);
}
};
@ -315,7 +335,7 @@ void CayleyFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const
this->DhopDerivOE(mat,U,Din,dag);
} else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
Meooe5D(U,Din);
MeooeDag5D(U,Din);
this->DhopDerivOE(mat,Din,V,dag);
}
};
@ -330,7 +350,7 @@ void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const
this->DhopDerivEO(mat,U,Din,dag);
} else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
Meooe5D(U,Din);
MeooeDag5D(U,Din);
this->DhopDerivEO(mat,Din,V,dag);
}
};

View File

@ -29,6 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_QCD_CAYLEY_FERMION_H
#define GRID_QCD_CAYLEY_FERMION_H
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
namespace Grid {
namespace QCD {
@ -192,7 +194,9 @@ template void CayleyFermion5D< A >::M5Ddag(const FermionField &psi,const Fermion
template void CayleyFermion5D< A >::MooeeInv (const FermionField &psi, FermionField &chi); \
template void CayleyFermion5D< A >::MooeeInvDag (const FermionField &psi, FermionField &chi);
#define CAYLEY_DPERP_CACHE
#undef CAYLEY_DPERP_DENSE
#define CAYLEY_DPERP_CACHE
#undef CAYLEY_DPERP_LINALG
#define CAYLEY_DPERP_VEC
#endif

View File

@ -29,7 +29,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
@ -54,8 +55,8 @@ void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
// Flops = 6.0*(Nc*Ns) *Ls*vol
M5Dcalls++;
M5Dtime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
parallel_for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
for(int s=0;s<Ls;s++){
auto tmp = psi._odata[0];
if ( s==0 ) {
@ -98,8 +99,8 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
// Flops = 6.0*(Nc*Ns) *Ls*vol
M5Dcalls++;
M5Dtime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
parallel_for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
auto tmp = psi._odata[0];
for(int s=0;s<Ls;s++){
if ( s==0 ) {
@ -137,8 +138,7 @@ void CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi, FermionField &
MooeeInvCalls++;
MooeeInvTime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
parallel_for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
auto tmp = psi._odata[0];
// flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls = 12*Ls * (9) = 108*Ls flops
@ -181,11 +181,22 @@ void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &
assert(psi.checkerboard == psi.checkerboard);
chi.checkerboard=psi.checkerboard;
std::vector<Coeff_t> ueec(Ls);
std::vector<Coeff_t> deec(Ls);
std::vector<Coeff_t> leec(Ls);
std::vector<Coeff_t> ueemc(Ls);
std::vector<Coeff_t> leemc(Ls);
for(int s=0;s<ueec.size();s++){
ueec[s] = conjugate(uee[s]);
deec[s] = conjugate(dee[s]);
leec[s] = conjugate(lee[s]);
ueemc[s]= conjugate(ueem[s]);
leemc[s]= conjugate(leem[s]);
}
MooeeInvCalls++;
MooeeInvTime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
parallel_for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
auto tmp = psi._odata[0];
@ -193,25 +204,25 @@ PARALLEL_FOR_LOOP
chi[ss]=psi[ss];
for (int s=1;s<Ls;s++){
spProj5m(tmp,chi[ss+s-1]);
chi[ss+s] = psi[ss+s]-uee[s-1]*tmp;
chi[ss+s] = psi[ss+s]-ueec[s-1]*tmp;
}
// U_m^{-\dagger}
for (int s=0;s<Ls-1;s++){
spProj5p(tmp,chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - ueem[s]*tmp;
chi[ss+Ls-1] = chi[ss+Ls-1] - ueemc[s]*tmp;
}
// L_m^{-\dagger} D^{-dagger}
for (int s=0;s<Ls-1;s++){
spProj5m(tmp,chi[ss+Ls-1]);
chi[ss+s] = (1.0/dee[s])*chi[ss+s]-(leem[s]/dee[Ls-1])*tmp;
chi[ss+s] = (1.0/deec[s])*chi[ss+s]-(leemc[s]/deec[Ls-1])*tmp;
}
chi[ss+Ls-1]= (1.0/dee[Ls-1])*chi[ss+Ls-1];
chi[ss+Ls-1]= (1.0/deec[Ls-1])*chi[ss+Ls-1];
// Apply L^{-dagger}
for (int s=Ls-2;s>=0;s--){
spProj5p(tmp,chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - lee[s]*tmp;
chi[ss+s] = chi[ss+s] - leec[s]*tmp;
}
}

View File

@ -30,7 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Eigen/Dense>
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
@ -38,20 +39,17 @@ namespace QCD {
/*
* Dense matrix versions of routines
*/
/*
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
{
this->MooeeInternal(psi,chi,DaggerYes,InverseYes);
}
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
{
this->MooeeInternal(psi,chi,DaggerNo,InverseYes);
}
*/
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv)
{
@ -125,9 +123,20 @@ void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField
}
}
#ifdef CAYLEY_DPERP_DENSE
INSTANTIATE_DPERP(GparityWilsonImplF);
INSTANTIATE_DPERP(GparityWilsonImplD);
INSTANTIATE_DPERP(WilsonImplF);
INSTANTIATE_DPERP(WilsonImplD);
INSTANTIATE_DPERP(ZWilsonImplF);
INSTANTIATE_DPERP(ZWilsonImplD);
template void CayleyFermion5D<GparityWilsonImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<GparityWilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<WilsonImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<WilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
#endif
}}

View File

@ -29,7 +29,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
@ -47,17 +48,18 @@ void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper)
{
Coeff_t one(1.0);
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pminus(chi,diag[s],phi,upper[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,lower[s],psi,s,Ls-1);
axpby_ssp_pplus (chi,one,chi,lower[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,diag[s],phi,upper[s],psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,lower[s],psi,s,s-1);
axpby_ssp_pplus (chi,one,chi,lower[s],psi,s,s-1);
} else {
axpby_ssp_pminus(chi,diag[s],phi,upper[s],psi,s,s+1);
axpby_ssp_pplus(chi,1.0,chi,lower[s],psi,s,s-1);
axpby_ssp_pplus(chi,one,chi,lower[s],psi,s,s-1);
}
}
}
@ -69,17 +71,18 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper)
{
Coeff_t one(1.0);
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pplus (chi,diag[s],phi,upper[s],psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,lower[s],psi,s,Ls-1);
axpby_ssp_pminus(chi,one,chi,lower[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,diag[s],phi,upper[s],psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,lower[s],psi,s,s-1);
axpby_ssp_pminus(chi,one,chi,lower[s],psi,s,s-1);
} else {
axpby_ssp_pplus (chi,diag[s],phi,upper[s],psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,lower[s],psi,s,s-1);
axpby_ssp_pminus(chi,one,chi,lower[s],psi,s,s-1);
}
}
}
@ -87,62 +90,68 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi, FermionField &chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard=psi.checkerboard;
int Ls=this->Ls;
// Apply (L^{\prime})^{-1}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
axpby_ssp (chi,one,psi, czero,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pplus(chi,1.0,psi,-lee[s-1],chi,s,s-1);// recursion Psi[s] -lee P_+ chi[s-1]
axpby_ssp_pplus(chi,one,psi,-lee[s-1],chi,s,s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for (int s=0;s<Ls-1;s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi,1.0,chi,-leem[s],chi,Ls-1,s);
axpby_ssp_pminus(chi,one,chi,-leem[s],chi,Ls-1,s);
}
// U_m^{-1} D^{-1}
for (int s=0;s<Ls-1;s++){
// Chi[s] + 1/d chi[s]
axpby_ssp_pplus(chi,1.0/dee[s],chi,-ueem[s]/dee[Ls-1],chi,s,Ls-1);
axpby_ssp_pplus(chi,one/dee[s],chi,-ueem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
axpby_ssp(chi,one/dee[Ls-1],chi,czero,chi,Ls-1,Ls-1); // Modest avoidable
// Apply U^{-1}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pminus (chi,1.0,chi,-uee[s],chi,s,s+1); // chi[Ls]
axpby_ssp_pminus (chi,one,chi,-uee[s],chi,s,s+1); // chi[Ls]
}
}
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard=psi.checkerboard;
int Ls=this->Ls;
// Apply (U^{\prime})^{-dagger}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
axpby_ssp (chi,one,psi, czero,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,psi,-uee[s-1],chi,s,s-1);
axpby_ssp_pminus(chi,one,psi,-conjugate(uee[s-1]),chi,s,s-1);
}
// U_m^{-\dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pplus(chi,1.0,chi,-ueem[s],chi,Ls-1,s);
axpby_ssp_pplus(chi,one,chi,-conjugate(ueem[s]),chi,Ls-1,s);
}
// L_m^{-\dagger} D^{-dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pminus(chi,1.0/dee[s],chi,-leem[s]/dee[Ls-1],chi,s,Ls-1);
axpby_ssp_pminus(chi,one/conjugate(dee[s]),chi,-conjugate(leem[s]/dee[Ls-1]),chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
axpby_ssp(chi,one/conjugate(dee[Ls-1]),chi,czero,chi,Ls-1,Ls-1); // Modest avoidable
// Apply L^{-dagger}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pplus (chi,1.0,chi,-lee[s],chi,s,s+1); // chi[Ls]
axpby_ssp_pplus (chi,one,chi,-conjugate(lee[s]),chi,s,s+1); // chi[Ls]
}
}
#ifdef CAYLEY_DPERP_LINALG
INSTANTIATE(WilsonImplF);
INSTANTIATE(WilsonImplD);
INSTANTIATE(GparityWilsonImplF);
INSTANTIATE(GparityWilsonImplD);
INSTANTIATE_DPERP(WilsonImplF);
INSTANTIATE_DPERP(WilsonImplD);
INSTANTIATE_DPERP(GparityWilsonImplF);
INSTANTIATE_DPERP(GparityWilsonImplD);
INSTANTIATE_DPERP(ZWilsonImplF);
INSTANTIATE_DPERP(ZWilsonImplD);
#endif
}

View File

@ -30,11 +30,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
namespace QCD { /*
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
@ -91,8 +93,7 @@ void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
assert(Nc==3);
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
parallel_for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
@ -232,8 +233,7 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
M5Dcalls++;
M5Dtime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
parallel_for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
@ -792,13 +792,11 @@ void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField
MooeeInvTime-=usecond();
if ( switcheroo<Coeff_t>::iscomplex() ) {
PARALLEL_FOR_LOOP
for(auto site=0;site<vol;site++){
parallel_for(auto site=0;site<vol;site++){
MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
}
} else {
PARALLEL_FOR_LOOP
for(auto site=0;site<vol;site++){
parallel_for(auto site=0;site<vol;site++){
MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
}
}

View File

@ -26,7 +26,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/ContinuedFractionFermion5D.h>
namespace Grid {
namespace QCD {

View File

@ -29,6 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_QCD_CONTINUED_FRACTION_H
#define GRID_QCD_CONTINUED_FRACTION_H
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
namespace Grid {
namespace QCD {

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_QCD_DOMAIN_WALL_FERMION_H
#define GRID_QCD_DOMAIN_WALL_FERMION_H
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
namespace Grid {

View File

@ -2,16 +2,11 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/Actions.h
Source file: ./lib/qcd/action/fermion/Fermion_base_aggregate.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,68 +25,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_ACTIONS_H
#define GRID_QCD_ACTIONS_H
// * Linear operators (Hermitian and non-hermitian) .. my LinearOperator
// * System solvers (Hermitian and non-hermitian) .. my OperatorFunction
// * MultiShift System solvers (Hermitian and non-hermitian) .. my OperatorFunction
////////////////////////////////////////////
// Abstract base interface
////////////////////////////////////////////
#include <Grid/qcd/action/ActionBase.h>
#include <Grid/qcd/action/ActionParams.h>
////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////
#include <Grid/qcd/action/gauge/GaugeImpl.h>
#include <Grid/qcd/utils/WilsonLoops.h>
#include <Grid/qcd/action/fermion/WilsonCompressor.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/FermionOperatorImpl.h>
#include <Grid/qcd/action/fermion/FermionOperator.h>
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
////////////////////////////////////////////
// Gauge Actions
////////////////////////////////////////////
#include <Grid/qcd/action/gauge/Photon.h>
#include <Grid/qcd/action/gauge/WilsonGaugeAction.h>
#include <Grid/qcd/action/gauge/PlaqPlusRectangleAction.h>
namespace Grid {
namespace QCD {
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;
typedef IwasakiGaugeAction<PeriodicGimplR> IwasakiGaugeActionR;
typedef IwasakiGaugeAction<PeriodicGimplF> IwasakiGaugeActionF;
typedef IwasakiGaugeAction<PeriodicGimplD> IwasakiGaugeActionD;
typedef SymanzikGaugeAction<PeriodicGimplR> SymanzikGaugeActionR;
typedef SymanzikGaugeAction<PeriodicGimplF> SymanzikGaugeActionF;
typedef SymanzikGaugeAction<PeriodicGimplD> SymanzikGaugeActionD;
typedef WilsonGaugeAction<ConjugateGimplR> ConjugateWilsonGaugeActionR;
typedef WilsonGaugeAction<ConjugateGimplF> ConjugateWilsonGaugeActionF;
typedef WilsonGaugeAction<ConjugateGimplD> ConjugateWilsonGaugeActionD;
typedef PlaqPlusRectangleAction<ConjugateGimplR> ConjugatePlaqPlusRectangleActionR;
typedef PlaqPlusRectangleAction<ConjugateGimplF> ConjugatePlaqPlusRectangleActionF;
typedef PlaqPlusRectangleAction<ConjugateGimplD> ConjugatePlaqPlusRectangleActionD;
typedef IwasakiGaugeAction<ConjugateGimplR> ConjugateIwasakiGaugeActionR;
typedef IwasakiGaugeAction<ConjugateGimplF> ConjugateIwasakiGaugeActionF;
typedef IwasakiGaugeAction<ConjugateGimplD> ConjugateIwasakiGaugeActionD;
typedef SymanzikGaugeAction<ConjugateGimplR> ConjugateSymanzikGaugeActionR;
typedef SymanzikGaugeAction<ConjugateGimplF> ConjugateSymanzikGaugeActionF;
typedef SymanzikGaugeAction<ConjugateGimplD> ConjugateSymanzikGaugeActionD;
}}
#ifndef GRID_QCD_FERMION_H
#define GRID_QCD_FERMION_H
////////////////////////////////////////////////////////////////////////////////////////////////////
// Explicit explicit template instantiation is still required in the .cc files
@ -108,36 +43,6 @@ typedef SymanzikGaugeAction<ConjugateGimplD> ConjugateSymanzikGaugeAction
// for EVERY .cc file. This define centralises the list and restores global push of impl cases
////////////////////////////////////////////////////////////////////////////////////////////////////
#define FermOp4dVecTemplateInstantiate(A) \
template class A<WilsonImplF>; \
template class A<WilsonImplD>; \
template class A<ZWilsonImplF>; \
template class A<ZWilsonImplD>; \
template class A<GparityWilsonImplF>; \
template class A<GparityWilsonImplD>;
#define AdjointFermOpTemplateInstantiate(A) \
template class A<WilsonAdjImplF>; \
template class A<WilsonAdjImplD>;
#define TwoIndexFermOpTemplateInstantiate(A) \
template class A<WilsonTwoIndexSymmetricImplF>; \
template class A<WilsonTwoIndexSymmetricImplD>;
#define FermOp5dVecTemplateInstantiate(A) \
template class A<DomainWallVec5dImplF>; \
template class A<DomainWallVec5dImplD>; \
template class A<ZDomainWallVec5dImplF>; \
template class A<ZDomainWallVec5dImplD>;
#define FermOpTemplateInstantiate(A) \
FermOp4dVecTemplateInstantiate(A) \
FermOp5dVecTemplateInstantiate(A)
#define GparityFermOpTemplateInstantiate(A)
////////////////////////////////////////////
// Fermion operators / actions
////////////////////////////////////////////
@ -145,27 +50,30 @@ typedef SymanzikGaugeAction<ConjugateGimplD> ConjugateSymanzikGaugeAction
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
//#include <Grid/qcd/action/fermion/CloverFermion.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h> // Cayley types
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ContinuedFractionFermion5D.h> // Continued fraction
#include <Grid/qcd/action/fermion/OverlapWilsonContfracTanhFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h>
#include <Grid/qcd/action/fermion/PartialFractionFermion5D.h> // Partial fraction
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
///////////////////////////////////////////////////////////////////////////////
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
///////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/g5HermitianLinop.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
// More maintainable to maintain the following typedef list centrally, as more "impl" targets
@ -269,32 +177,26 @@ typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplR> ImprovedStaggeredFermionVec5dR;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplF> ImprovedStaggeredFermionVec5dF;
typedef ImprovedStaggeredFermion5D<StaggeredVec5dImplD> ImprovedStaggeredFermionVec5dD;
}}
///////////////////////////////////////////////////////////////////////////////
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
///////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/g5HermitianLinop.h>
////////////////////////////////////////
// Pseudo fermion combinations for HMC
////////////////////////////////////////
#include <Grid/qcd/action/pseudofermion/EvenOddSchurDifferentiable.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavour.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourEvenOdd.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
////////////////////
// Scalar actions
// Scalar QED actions
// TODO: this needs to move to another header after rename to Fermion.h
////////////////////
#include <Grid/qcd/action/scalar/Scalar.h>
#include <Grid/qcd/action/gauge/Photon.h>
#endif

View File

@ -0,0 +1,80 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/Fermion_base_aggregate.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_FERMION_CORE_H
#define GRID_QCD_FERMION_CORE_H
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/ActionCore.h>
////////////////////////////////////////////
// Fermion prereqs
////////////////////////////////////////////
#include <Grid/qcd/action/fermion/WilsonCompressor.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/FermionOperatorImpl.h>
#include <Grid/qcd/action/fermion/FermionOperator.h>
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/StaggeredKernels.h> //used by all wilson type fermions
#define FermOpStaggeredTemplateInstantiate(A) \
template class A<StaggeredImplF>; \
template class A<StaggeredImplD>;
#define FermOpStaggeredVec5dTemplateInstantiate(A) \
template class A<StaggeredVec5dImplF>; \
template class A<StaggeredVec5dImplD>;
#define FermOp4dVecTemplateInstantiate(A) \
template class A<WilsonImplF>; \
template class A<WilsonImplD>; \
template class A<ZWilsonImplF>; \
template class A<ZWilsonImplD>; \
template class A<GparityWilsonImplF>; \
template class A<GparityWilsonImplD>;
#define AdjointFermOpTemplateInstantiate(A) \
template class A<WilsonAdjImplF>; \
template class A<WilsonAdjImplD>;
#define TwoIndexFermOpTemplateInstantiate(A) \
template class A<WilsonTwoIndexSymmetricImplF>; \
template class A<WilsonTwoIndexSymmetricImplD>;
#define FermOp5dVecTemplateInstantiate(A) \
template class A<DomainWallVec5dImplF>; \
template class A<DomainWallVec5dImplD>; \
template class A<ZDomainWallVec5dImplF>; \
template class A<ZDomainWallVec5dImplD>;
#define FermOpTemplateInstantiate(A) \
FermOp4dVecTemplateInstantiate(A) \
FermOp5dVecTemplateInstantiate(A)
#define GparityFermOpTemplateInstantiate(A)
#endif

View File

@ -194,8 +194,7 @@ namespace QCD {
GaugeLinkField tmp(mat._grid);
tmp = zero;
PARALLEL_FOR_LOOP
for(int sss=0;sss<tmp._grid->oSites();sss++){
parallel_for(int sss=0;sss<tmp._grid->oSites();sss++){
int sU=sss;
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
@ -235,11 +234,13 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
/////////////////////////////////////////////////
// Make the doubled gauge field a *scalar*
/////////////////////////////////////////////////
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
@ -271,11 +272,11 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,const GaugeField &Umu)
{
SiteScalarGaugeField ScalarUmu;
SiteScalarGaugeField ScalarUmu;
SiteDoubledGaugeField ScalarUds;
GaugeLinkField U(Umu._grid);
GaugeField Uadj(Umu._grid);
GaugeField Uadj(Umu._grid);
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(Umu, mu);
U = adj(Cshift(U, mu, -1));
@ -333,7 +334,7 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
@ -356,7 +357,7 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
StencilImpl &St) {
typedef SiteHalfSpinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
vobj vtmp;
sobj stmp;
@ -445,8 +446,7 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
Uconj = where(coor==neglink,-Uconj,Uconj);
}
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
parallel_for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](0)(mu) = U[ss]();
Uds[ss](1)(mu) = Uconj[ss]();
}
@ -459,8 +459,7 @@ PARALLEL_FOR_LOOP
Utmp = where(coor==0,Uconj,Utmp);
}
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
parallel_for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](0)(mu+4) = Utmp[ss]();
}
@ -469,8 +468,7 @@ PARALLEL_FOR_LOOP
Utmp = where(coor==0,U,Utmp);
}
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
parallel_for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](1)(mu+4) = Utmp[ss]();
}
@ -484,8 +482,7 @@ PARALLEL_FOR_LOOP
GaugeLinkField link(mat._grid);
// use lorentz for flavour as hack.
auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
PARALLEL_FOR_LOOP
for (auto ss = tmp.begin(); ss < tmp.end(); ss++) {
parallel_for(auto ss = tmp.begin(); ss < tmp.end(); ss++) {
link[ss]() = tmp[ss](0, 0) - conjugate(tmp[ss](1, 1));
}
PokeIndex<LorentzIndex>(mat, link, mu);
@ -498,8 +495,7 @@ PARALLEL_FOR_LOOP
GaugeLinkField tmp(mat._grid);
tmp = zero;
PARALLEL_FOR_LOOP
for (int ss = 0; ss < tmp._grid->oSites(); ss++) {
parallel_for(int ss = 0; ss < tmp._grid->oSites(); ss++) {
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde[sF], Atilde[sF]));
@ -512,6 +508,323 @@ PARALLEL_FOR_LOOP
};
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation >
class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iImplScalar<Simd> SiteComplex;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef iImplPropagator<Simd> SitePropagator;
typedef Lattice<SiteComplex> ComplexField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SitePropagator> PropagatorField;
typedef SimpleCompressor<SiteSpinor> Compressor;
typedef StaggeredImplParams ImplParams;
typedef CartesianStencil<SiteSpinor, SiteSpinor> StencilImpl;
ImplParams Params;
StaggeredImpl(const ImplParams &p = ImplParams()) : Params(p){};
inline void multLink(SiteSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteSpinor &chi,
int mu){
mult(&phi(), &U(mu), &chi());
}
inline void multLinkAdd(SiteSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteSpinor &chi,
int mu){
mac(&phi(), &U(mu), &chi());
}
template <class ref>
inline void loadLinkElement(Simd &reg, ref &memory) {
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term
DoubledGaugeField &Uds,
const GaugeField &Uthin,
const GaugeField &Ufat) {
conformable(Uds._grid, GaugeGrid);
conformable(Uthin._grid, GaugeGrid);
conformable(Ufat._grid, GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField UU(GaugeGrid);
GaugeLinkField UUU(GaugeGrid);
GaugeLinkField Udag(GaugeGrid);
GaugeLinkField UUUdag(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) {
// Staggered Phase.
Lattice<iScalar<vInteger> > coor(GaugeGrid);
Lattice<iScalar<vInteger> > x(GaugeGrid); LatticeCoordinate(x,0);
Lattice<iScalar<vInteger> > y(GaugeGrid); LatticeCoordinate(y,1);
Lattice<iScalar<vInteger> > z(GaugeGrid); LatticeCoordinate(z,2);
Lattice<iScalar<vInteger> > t(GaugeGrid); LatticeCoordinate(t,3);
Lattice<iScalar<vInteger> > lin_z(GaugeGrid); lin_z=x+y;
Lattice<iScalar<vInteger> > lin_t(GaugeGrid); lin_t=x+y+z;
ComplexField phases(GaugeGrid); phases=1.0;
if ( mu == 1 ) phases = where( mod(x ,2)==(Integer)0, phases,-phases);
if ( mu == 2 ) phases = where( mod(lin_z,2)==(Integer)0, phases,-phases);
if ( mu == 3 ) phases = where( mod(lin_t,2)==(Integer)0, phases,-phases);
// 1 hop based on fat links
U = PeekIndex<LorentzIndex>(Ufat, mu);
Udag = adj( Cshift(U, mu, -1));
U = U *phases;
Udag = Udag *phases;
PokeIndex<LorentzIndex>(Uds, U, mu);
PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
UU = Gimpl::CovShiftForward(U,mu,U);
UUU= Gimpl::CovShiftForward(U,mu,UU);
UUUdag = adj( Cshift(UUU, mu, -3));
UUU = UUU *phases;
UUUdag = UUUdag *phases;
PokeIndex<LorentzIndex>(UUUds, UUU, mu);
PokeIndex<LorentzIndex>(UUUds, UUUdag, mu+4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
GaugeLinkField link(mat._grid);
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,link,mu);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
assert (0);
// Must never hit
}
};
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation >
class StaggeredVec5dImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=true;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
// Make the doubled gauge field a *scalar*
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef iImplPropagator<Simd> SitePropagator;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SitePropagator> PropagatorField;
typedef iImplScalar<Simd> SiteComplex;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef Lattice<SiteComplex> ComplexField;
typedef Lattice<SiteSpinor> FermionField;
typedef SimpleCompressor<SiteSpinor> Compressor;
typedef StaggeredImplParams ImplParams;
typedef CartesianStencil<SiteSpinor, SiteSpinor> StencilImpl;
ImplParams Params;
StaggeredVec5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
template <class ref>
inline void loadLinkElement(Simd &reg, ref &memory) {
vsplat(reg, memory);
}
inline void multLink(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi, int mu) {
SiteGaugeLink UU;
for (int i = 0; i < Dimension; i++) {
for (int j = 0; j < Dimension; j++) {
vsplat(UU()()(i, j), U(mu)()(i, j));
}
}
mult(&phi(), &UU(), &chi());
}
inline void multLinkAdd(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi, int mu) {
SiteGaugeLink UU;
for (int i = 0; i < Dimension; i++) {
for (int j = 0; j < Dimension; j++) {
vsplat(UU()()(i, j), U(mu)()(i, j));
}
}
mac(&phi(), &UU(), &chi());
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term
DoubledGaugeField &Uds,
const GaugeField &Uthin,
const GaugeField &Ufat)
{
GridBase * InputGrid = Uthin._grid;
conformable(InputGrid,Ufat._grid);
GaugeLinkField U(InputGrid);
GaugeLinkField UU(InputGrid);
GaugeLinkField UUU(InputGrid);
GaugeLinkField Udag(InputGrid);
GaugeLinkField UUUdag(InputGrid);
for (int mu = 0; mu < Nd; mu++) {
// Staggered Phase.
Lattice<iScalar<vInteger> > coor(InputGrid);
Lattice<iScalar<vInteger> > x(InputGrid); LatticeCoordinate(x,0);
Lattice<iScalar<vInteger> > y(InputGrid); LatticeCoordinate(y,1);
Lattice<iScalar<vInteger> > z(InputGrid); LatticeCoordinate(z,2);
Lattice<iScalar<vInteger> > t(InputGrid); LatticeCoordinate(t,3);
Lattice<iScalar<vInteger> > lin_z(InputGrid); lin_z=x+y;
Lattice<iScalar<vInteger> > lin_t(InputGrid); lin_t=x+y+z;
ComplexField phases(InputGrid); phases=1.0;
if ( mu == 1 ) phases = where( mod(x ,2)==(Integer)0, phases,-phases);
if ( mu == 2 ) phases = where( mod(lin_z,2)==(Integer)0, phases,-phases);
if ( mu == 3 ) phases = where( mod(lin_t,2)==(Integer)0, phases,-phases);
// 1 hop based on fat links
U = PeekIndex<LorentzIndex>(Ufat, mu);
Udag = adj( Cshift(U, mu, -1));
U = U *phases;
Udag = Udag *phases;
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
std::vector<int> lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, Uds, lcoor);
peekLocalSite(ScalarU, U, lcoor);
ScalarUds(mu) = ScalarU();
peekLocalSite(ScalarU, Udag, lcoor);
ScalarUds(mu + 4) = ScalarU();
pokeLocalSite(ScalarUds, Uds, lcoor);
}
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
UU = Gimpl::CovShiftForward(U,mu,U);
UUU= Gimpl::CovShiftForward(U,mu,UU);
UUUdag = adj( Cshift(UUU, mu, -3));
UUU = UUU *phases;
UUUdag = UUUdag *phases;
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
std::vector<int> lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, UUUds, lcoor);
peekLocalSite(ScalarU, UUU, lcoor);
ScalarUds(mu) = ScalarU();
peekLocalSite(ScalarU, UUUdag, lcoor);
ScalarUds(mu + 4) = ScalarU();
pokeLocalSite(ScalarUds, UUUds, lcoor);
}
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
assert (0);
}
};
typedef WilsonImpl<vComplex, FundamentalRepresentation > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation > WilsonImplD; // Double
@ -540,6 +853,14 @@ PARALLEL_FOR_LOOP
typedef GparityWilsonImpl<vComplexF, Nc> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc> GparityWilsonImplD; // Double
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double
typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec
typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float
typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double
}}
#endif

View File

@ -0,0 +1,403 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion.cc
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid.h>
namespace Grid {
namespace QCD {
const std::vector<int>
ImprovedStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int>
ImprovedStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
/////////////////////////////////
// Constructor and gauge import
/////////////////////////////////
template <class Impl>
ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid,
RealD _mass,
const ImplParams &p)
: Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil(&Fgrid, npoint, Even, directions, displacements),
StencilEven(&Hgrid, npoint, Even, directions, displacements), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd(&Hgrid),
UUUmu(&Fgrid),
UUUmuEven(&Hgrid),
UUUmuOdd(&Hgrid) ,
_tmp(&Hgrid)
{
}
template <class Impl>
ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GaugeField &_Uthin, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _c2,RealD _u0,
const ImplParams &p)
: ImprovedStaggeredFermion(Fgrid,Hgrid,_mass,p)
{
c1=_c1;
c2=_c2;
u0=_u0;
ImportGauge(_Uthin,_Ufat);
}
template <class Impl>
ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GaugeField &_Uthin,GaugeField &_Utriple, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p)
: ImprovedStaggeredFermion(Fgrid,Hgrid,_mass,p)
{
ImportGaugeSimple(_Utriple,_Ufat);
}
////////////////////////////////////////////////////////////
// Momentum space propagator should be
// https://arxiv.org/pdf/hep-lat/9712010.pdf
//
// mom space action.
// gamma_mu i ( c1 sin pmu + c2 sin 3 pmu ) + m
//
// must track through staggered flavour/spin reduction in literature to
// turn to free propagator for the one component chi field, a la page 4/5
// of above link to implmement fourier based solver.
////////////////////////////////////////////////////////////
template <class Impl>
void ImprovedStaggeredFermion<Impl>::ImportGauge(const GaugeField &_Uthin)
{
ImportGauge(_Uthin,_Uthin);
};
template <class Impl>
void ImprovedStaggeredFermion<Impl>::ImportGaugeSimple(const GaugeField &_Utriple,const GaugeField &_Ufat)
{
/////////////////////////////////////////////////////////////////
// Trivial import; phases and fattening and such like preapplied
/////////////////////////////////////////////////////////////////
GaugeLinkField U(GaugeGrid());
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(_Utriple, mu);
PokeIndex<LorentzIndex>(UUUmu, U, mu );
U = adj( Cshift(U, mu, -3));
PokeIndex<LorentzIndex>(UUUmu, -U, mu+4 );
U = PeekIndex<LorentzIndex>(_Ufat, mu);
PokeIndex<LorentzIndex>(Umu, U, mu);
U = adj( Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Umu, -U, mu+4);
}
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven,UUUmu);
pickCheckerboard(Odd, UUUmuOdd, UUUmu);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat)
{
GaugeLinkField U(GaugeGrid());
////////////////////////////////////////////////////////
// Double Store should take two fields for Naik and one hop separately.
////////////////////////////////////////////////////////
Impl::DoubleStore(GaugeGrid(), UUUmu, Umu, _Uthin, _Ufat );
////////////////////////////////////////////////////////
// Apply scale factors to get the right fermion Kinetic term
// Could pass coeffs into the double store to save work.
// 0.5 ( U p(x+mu) - Udag(x-mu) p(x-mu) )
////////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Umu, U*( 0.5*c1/u0), mu );
U = PeekIndex<LorentzIndex>(Umu, mu+4);
PokeIndex<LorentzIndex>(Umu, U*(-0.5*c1/u0), mu+4);
U = PeekIndex<LorentzIndex>(UUUmu, mu);
PokeIndex<LorentzIndex>(UUUmu, U*( 0.5*c2/u0/u0/u0), mu );
U = PeekIndex<LorentzIndex>(UUUmu, mu+4);
PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4);
}
std::cout << " Umu " << Umu._odata[0]<<std::endl;
std::cout << " UUUmu " << UUUmu._odata[0]<<std::endl;
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven, UUUmu);
pickCheckerboard(Odd, UUUmuOdd, UUUmu);
}
/////////////////////////////
// Implement the interface
/////////////////////////////
template <class Impl>
RealD ImprovedStaggeredFermion<Impl>::M(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Dhop(in, out, DaggerNo);
return axpy_norm(out, mass, in, out);
}
template <class Impl>
RealD ImprovedStaggeredFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Dhop(in, out, DaggerYes);
return axpy_norm(out, mass, in, out);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Meooe(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Mooee(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
typename FermionField::scalar_type scal(mass);
out = scal * in;
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Mooee(in, out);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
out = (1.0 / (mass)) * in;
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::MooeeInvDag(const FermionField &in,
FermionField &out) {
out.checkerboard = in.checkerboard;
MooeeInv(in, out);
}
///////////////////////////////////
// Internal
///////////////////////////////////
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U, DoubledGaugeField &UUU,
GaugeField & mat,
const FermionField &A, const FermionField &B, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor;
FermionField Btilde(B._grid);
FermionField Atilde(B._grid);
Atilde = A;
st.HaloExchange(B, compressor);
for (int mu = 0; mu < Nd; mu++) {
////////////////////////
// Call the single hop
////////////////////////
PARALLEL_FOR_LOOP
for (int sss = 0; sss < B._grid->oSites(); sss++) {
Kernels::DhopDir(st, U, UUU, st.CommBuf(), sss, sss, B, Btilde, mu,1);
}
// Force in three link terms
//
// Impl::InsertForce4D(mat, Btilde, Atilde, mu);
//
// dU_ac(x)/dt = i p_ab U_bc(x)
//
// => dS_f/dt = dS_f/dU_ac(x) . dU_ac(x)/dt = i p_ab U_bc(x) dS_f/dU_ac(x)
//
// One link: form fragments S_f = A U B
//
// write Btilde = U(x) B(x+mu)
//
// mat+= TraceIndex<SpinIndex>(outerProduct(Btilde,A));
//
// Three link: form fragments S_f = A UUU B
//
// mat+= outer ( A, UUUB) <-- Best take DhopDeriv with one linke or identity matrix
// mat+= outer ( AU, UUB) <-- and then use covariant cshift?
// mat+= outer ( AUU, UB) <-- Returned from call to DhopDir
assert(0);// need to figure out the force interface with a blasted three link term.
}
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
conformable(U._grid, _grid);
conformable(U._grid, V._grid);
conformable(U._grid, mat._grid);
mat.checkerboard = U.checkerboard;
DerivInternal(Stencil, Umu, UUUmu, mat, U, V, dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
conformable(U._grid, _cbgrid);
conformable(U._grid, V._grid);
conformable(U._grid, mat._grid);
assert(V.checkerboard == Even);
assert(U.checkerboard == Odd);
mat.checkerboard = Odd;
DerivInternal(StencilEven, UmuOdd, UUUmuOdd, mat, U, V, dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) {
conformable(U._grid, _cbgrid);
conformable(U._grid, V._grid);
conformable(U._grid, mat._grid);
assert(V.checkerboard == Odd);
assert(U.checkerboard == Even);
mat.checkerboard = Even;
DerivInternal(StencilOdd, UmuEven, UUUmuEven, mat, U, V, dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) {
conformable(in._grid, _grid); // verifies full grid
conformable(in._grid, out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil, Lebesgue, Umu, UUUmu, in, out, dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) {
conformable(in._grid, _cbgrid); // verifies half grid
conformable(in._grid, out._grid); // drops the cb check
assert(in.checkerboard == Even);
out.checkerboard = Odd;
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, UUUmuOdd, in, out, dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag) {
conformable(in._grid, _cbgrid); // verifies half grid
conformable(in._grid, out._grid); // drops the cb check
assert(in.checkerboard == Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, UUUmuEven, in, out, dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp) {
Compressor compressor;
Stencil.HaloExchange(in, compressor);
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopDir(Stencil, Umu, UUUmu, Stencil.CommBuf(), sss, sss, in, out, dir, disp);
}
};
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor;
st.HaloExchange(in, compressor);
if (dag == DaggerYes) {
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSiteDag(st, lo, U, UUU, st.CommBuf(), 1, sss, in, out);
}
} else {
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSite(st, lo, U, UUU, st.CommBuf(), 1, sss, in, out);
}
}
};
FermOpStaggeredTemplateInstantiate(ImprovedStaggeredFermion);
//AdjointFermOpTemplateInstantiate(ImprovedStaggeredFermion);
//TwoIndexFermOpTemplateInstantiate(ImprovedStaggeredFermion);
}}

View File

@ -0,0 +1,167 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggered.h
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_IMPR_STAG_FERMION_H
#define GRID_QCD_IMPR_STAG_FERMION_H
namespace Grid {
namespace QCD {
class ImprovedStaggeredFermionStatic {
public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 16;
};
template <class Impl>
class ImprovedStaggeredFermion : public StaggeredKernels<Impl>, public ImprovedStaggeredFermionStatic {
public:
INHERIT_IMPL_TYPES(Impl);
typedef StaggeredKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid; }
GridBase *GaugeRedBlackGrid(void) { return _cbgrid; }
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
RealD M(const FermionField &in, FermionField &out);
RealD Mdag(const FermionField &in, FermionField &out);
/////////////////////////////////////////////////////////
// half checkerboard operations
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out);
void MeooeDag(const FermionField &in, FermionField &out);
void Mooee(const FermionField &in, FermionField &out);
void MooeeDag(const FermionField &in, FermionField &out);
void MooeeInv(const FermionField &in, FermionField &out);
void MooeeInvDag(const FermionField &in, FermionField &out);
////////////////////////
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv (GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
///////////////////////////////////////////////////////////////
void Dhop (const FermionField &in, FermionField &out, int dag);
void DhopOE(const FermionField &in, FermionField &out, int dag);
void DhopEO(const FermionField &in, FermionField &out, int dag);
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl &st,
DoubledGaugeField &U,DoubledGaugeField &UUU,
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
// Constructor
ImprovedStaggeredFermion(GaugeField &_Uthin, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1=9.0/8.0, RealD _c2=-1.0/24.0,RealD _u0=1.0,
const ImplParams &p = ImplParams());
ImprovedStaggeredFermion(GaugeField &_Uthin, GaugeField &_Utriple, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p = ImplParams());
ImprovedStaggeredFermion(GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p = ImplParams());
// DoubleStore impl dependent
void ImportGaugeSimple(const GaugeField &_Utriple, const GaugeField &_Ufat);
void ImportGauge(const GaugeField &_Uthin, const GaugeField &_Ufat);
void ImportGauge(const GaugeField &_Uthin);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
// protected:
public:
// any other parameters of action ???
RealD mass;
RealD u0;
RealD c1;
RealD c2;
GridBase *_grid;
GridBase *_cbgrid;
// Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
DoubledGaugeField UUUmu;
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
};
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
}
}
#endif

View File

@ -0,0 +1,355 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion5D.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
#include <Grid/perfmon/PerfCount.h>
namespace Grid {
namespace QCD {
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int>
ImprovedStaggeredFermion5DStatic::directions({1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4});
const std::vector<int>
ImprovedStaggeredFermion5DStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
// 5d lattice for DWF.
template<class Impl>
ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GaugeField &_Uthin,GaugeField &_Ufat,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,
RealD _c1,RealD _c2, RealD _u0,
const ImplParams &p) :
Kernels(p),
_FiveDimGrid (&FiveDimGrid),
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid (&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
Stencil (&FiveDimGrid,npoint,Even,directions,displacements),
StencilEven(&FiveDimRedBlackGrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (&FiveDimRedBlackGrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
c1(_c1),
c2(_c2),
u0(_u0),
Umu(&FourDimGrid),
UmuEven(&FourDimRedBlackGrid),
UmuOdd (&FourDimRedBlackGrid),
UUUmu(&FourDimGrid),
UUUmuEven(&FourDimRedBlackGrid),
UUUmuOdd(&FourDimRedBlackGrid),
Lebesgue(&FourDimGrid),
LebesgueEvenOdd(&FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
assert(FourDimRedBlackGrid._ndimension==4);
assert(FiveDimRedBlackGrid._ndimension==5);
assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
// extent of fifth dim and not spread out
Ls=FiveDimGrid._fdimensions[0];
assert(FiveDimRedBlackGrid._fdimensions[0]==Ls);
assert(FiveDimGrid._processors[0] ==1);
assert(FiveDimRedBlackGrid._processors[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<4;d++){
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]);
assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]);
assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]);
assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]);
assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]);
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
}
if (Impl::LsVectorised) {
int nsimd = Simd::Nsimd();
// Dimension zero of the five-d is the Ls direction
assert(FiveDimGrid._simd_layout[0] ==nsimd);
assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd);
for(int d=0;d<4;d++){
assert(FourDimGrid._simd_layout[d]=1);
assert(FourDimRedBlackGrid._simd_layout[d]=1);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==1);
}
} else {
// Dimension zero of the five-d is the Ls direction
assert(FiveDimRedBlackGrid._simd_layout[0]==1);
assert(FiveDimGrid._simd_layout[0] ==1);
}
// Allocate the required comms buffer
ImportGauge(_Uthin,_Ufat);
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::ImportGauge(const GaugeField &_Uthin)
{
ImportGauge(_Uthin,_Uthin);
};
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat)
{
////////////////////////////////////////////////////////
// Double Store should take two fields for Naik and one hop separately.
////////////////////////////////////////////////////////
Impl::DoubleStore(GaugeGrid(), UUUmu, Umu, _Uthin, _Ufat );
////////////////////////////////////////////////////////
// Apply scale factors to get the right fermion Kinetic term
// Could pass coeffs into the double store to save work.
// 0.5 ( U p(x+mu) - Udag(x-mu) p(x-mu) )
////////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
auto U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Umu, U*( 0.5*c1/u0), mu );
U = PeekIndex<LorentzIndex>(Umu, mu+4);
PokeIndex<LorentzIndex>(Umu, U*(-0.5*c1/u0), mu+4);
U = PeekIndex<LorentzIndex>(UUUmu, mu);
PokeIndex<LorentzIndex>(UUUmu, U*( 0.5*c2/u0/u0/u0), mu );
U = PeekIndex<LorentzIndex>(UUUmu, mu+4);
PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4);
}
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven, UUUmu);
pickCheckerboard(Odd, UUUmuOdd, UUUmu);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
{
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
// we drop off the innermost fifth dimension
Compressor compressor;
Stencil.HaloExchange(in,compressor);
parallel_for(int ss=0;ss<Umu._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
Kernels::DhopDir(Stencil, Umu, UUUmu, Stencil.CommBuf(), sF, sU, in, out, dir, disp);
}
}
};
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
DoubledGaugeField & UUU,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
// No force terms in multi-rhs solver staggered
assert(0);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopDeriv(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
assert(0);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopDerivEO(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
assert(0);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
assert(0);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
Compressor compressor;
int LLs = in._grid->_rdimensions[0];
st.HaloExchange(in,compressor);
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
if (dag == DaggerYes) {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU=ss;
Kernels::DhopSiteDag(st, lo, U, UUU, st.CommBuf(), LLs, sU,in, out);
}
} else {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU=ss;
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out);
}
}
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,UUUmuOdd,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,UUUmuEven,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
}
/////////////////////////////////////////////////////////////////////////
// Implement the general interface. Here we use SAME mass on all slices
/////////////////////////////////////////////////////////////////////////
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template <class Impl>
RealD ImprovedStaggeredFermion5D<Impl>::M(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Dhop(in, out, DaggerNo);
return axpy_norm(out, mass, in, out);
}
template <class Impl>
RealD ImprovedStaggeredFermion5D<Impl>::Mdag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Dhop(in, out, DaggerYes);
return axpy_norm(out, mass, in, out);
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::Meooe(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::MeooeDag(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::Mooee(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
typename FermionField::scalar_type scal(mass);
out = scal * in;
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Mooee(in, out);
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
out = (1.0 / (mass)) * in;
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::MooeeInvDag(const FermionField &in,
FermionField &out) {
out.checkerboard = in.checkerboard;
MooeeInv(in, out);
}
FermOpStaggeredTemplateInstantiate(ImprovedStaggeredFermion5D);
FermOpStaggeredVec5dTemplateInstantiate(ImprovedStaggeredFermion5D);
}}

View File

@ -0,0 +1,167 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion5D.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: AzusaYamaguchi <ayamaguc@staffmail.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_IMPROVED_STAGGERED_FERMION_5D_H
#define GRID_QCD_IMPROVED_STAGGERED_FERMION_5D_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////
// This is the 4d red black case appropriate to support
////////////////////////////////////////////////////////////////////////////////
class ImprovedStaggeredFermion5DStatic {
public:
// S-direction is INNERMOST and takes no part in the parity.
static const std::vector<int> directions;
static const std::vector<int> displacements;
const int npoint = 16;
};
template<class Impl>
class ImprovedStaggeredFermion5D : public StaggeredKernels<Impl>, public ImprovedStaggeredFermion5DStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef StaggeredKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FiveDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
RealD M (const FermionField &in, FermionField &out);
RealD Mdag (const FermionField &in, FermionField &out);
// half checkerboard operations
void Meooe (const FermionField &in, FermionField &out);
void Mooee (const FermionField &in, FermionField &out);
void MooeeInv (const FermionField &in, FermionField &out);
void MeooeDag (const FermionField &in, FermionField &out);
void MooeeDag (const FermionField &in, FermionField &out);
void MooeeInvDag (const FermionField &in, FermionField &out);
void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
// These can be overridden by fancy 5d chiral action
void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// Implement hopping term non-hermitian hopping term; half cb or both
void Dhop (const FermionField &in, FermionField &out,int dag);
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
DoubledGaugeField & UUU,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
ImprovedStaggeredFermion5D(GaugeField &_Uthin,
GaugeField &_Ufat,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _mass,
RealD _c1=9.0/8.0, RealD _c2=-1.0/24.0,RealD _u0=1.0,
const ImplParams &p= ImplParams());
// DoubleStore
void ImportGauge(const GaugeField &_U);
void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
GridBase *_FiveDimGrid;
GridBase *_FiveDimRedBlackGrid;
RealD mass;
RealD c1;
RealD c2;
RealD u0;
int Ls;
//Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
DoubledGaugeField UUUmu;
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};
}}
#endif

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_QCD_MOBIUS_FERMION_H
#define GRID_QCD_MOBIUS_FERMION_H
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
namespace Grid {

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#define GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
namespace Grid {

Some files were not shown because too many files have changed in this diff Show More