1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-23 02:02:02 +01:00

Compare commits

..

84 Commits

Author SHA1 Message Date
4fefae1745 Test_evec_compression changes:
Added ability to choose one of a variety of preselected basis sizes from the command line
	Fine lanczos now checks enough evecs are generated and resizes the output to Nstop and not the actual amount that converged (which can be larger)
2022-04-06 06:33:26 -07:00
758e2edcad Test_evec_compression enhancements:
In testing the compressed evecs, a Cheybshev smoothing is now applied first to remove high mode noise
	Added a second test where the uncompressed evecs are compared directly to the original evecs
	Generalized the test to allow for either DWF or Mobius with or without GPBC, switched by command line options
2022-03-29 06:16:15 -07:00
1538b15f3b 48ID evo main program now uses reliable update CG 2022-03-14 06:45:28 -07:00
deac621c2c Merge branch 'develop' into gparity_HMC_merge_develop 2022-02-22 14:25:27 -05:00
ba974960e6 Added an HMC checkpoint start option that loads the fields and then reseeds the RNGs, suitable for creating new evolution streams
Added option to choose RNG seeds in 40ID main binary
2022-02-14 08:09:01 -08:00
6755dc57f8 Added methods to compute spatial plaquette and timeslice spatial plaquette to WilsonLoops 2022-01-24 13:57:39 -05:00
aa620ca52c Fixed compilation error in observables resulting from changes in Wilson flow code
Modified light quark mass on 40ID HMC binary
2022-01-24 09:56:24 -08:00
2c46c942cc Reworked WilsonFlow:
Both smear and smear_adaptive now maintain the Wilson flow time as a function variable rather than a class member variable. smear_adaptive does likewise for the current time step. This allows the evolve and smear functions to be const
	Fixed smear_adaptive setting initial time to epsilon rather than 0
	Added ability to assign generic measurement actions at user specified frequencies during the smearing and reimplemented current energy density / topq output in this framework
	Reimplemented the "flowMeasure" methods using the above framework
Fixed const correctness for WilsonLoops::TopologicalCharge
2022-01-24 12:06:05 -05:00
adeba8059a Added calculation of timeslice topological charge 2022-01-20 14:29:07 -05:00
c4ac528126 Added cloverleaf energy density calculation to WilsonFlow 2021-12-27 10:33:33 -05:00
551b93ba8e To HMC/Mobius2p1fIDSDRGparityEOFA_40ID, added input param to change trajectory length and increased integrator steps for DSDR 2021-12-10 09:06:06 -08:00
ddf7540510 Added calculation of 5Li topological charge
WilsonFlow code now calls topological charge calculation with correct gauge implementation rather than assuming periodic
Added version of WilsonFlow::flowMeasureEnergyDensityPlaquette that outputs the smeared gauge field at the end
2021-12-06 17:56:42 -05:00
de68d12c3d 1x1 topological charge calculation now respects gauge boundary conditions 2021-12-06 13:42:09 -05:00
6d26a2a1ad Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into gparity_HMC 2021-11-16 07:32:47 -08:00
a1211cdcce Gparity 48ID tuning and exposure of trajectory length as input variable 2021-11-16 07:31:41 -08:00
e78acf77ff To LocalCoherenceLanczos, added a method to reconstruct the fine eigenvector and added some comments to aid the user
Added a test code for local coherence Lanczos with G-parity BCs
Added a test code for block eigenvector compression
2021-11-08 07:26:35 -08:00
f7e9621492 40ID ensemble tuning: now use 5 Hasenbusch steps, parameters now separately tunable in param file 2021-10-18 08:17:36 -07:00
f14be15f8b Updates to Gparity HMC main programs 2021-10-15 08:10:17 -07:00
6a3aaa52ef Test_dwf_lanczos can now run either G-parity Mobius or non-Gparity DWF according to cmdline switch
Fixed copyStream intialization
2021-10-12 12:59:54 -07:00
9ba47b4696 Merge branch 'develop' into gparity_HMC 2021-09-29 20:07:55 -07:00
e85af80c39 Added return value checks on all cuda api calls
Test_dwf_lanczos can now run with either regular DWF or Mobius+Gparity based on cmdline arg
2021-09-29 19:57:43 -07:00
0b91e90dd4 Merge branch 'develop' into feature/gparity_HMC 2021-09-27 07:16:26 -07:00
d184b8c921 Merge branch 'develop' into gparity_HMC 2021-09-08 06:14:08 -07:00
c92e390b08 Added initial main binary code for 40ID and 48ID Gparity HMC 2021-09-08 09:00:13 -04:00
5b36a8af54 Added a CshiftLink function to the GaugeImplementations and boundary condition classes that offers a boundary aware C-shift
Modified gauge fixing code to use CshiftLink internally such that the steepest descent algorithm is universal
Modified gauge transformation code to use CshiftLink for a universal definition
Improved comprehensibility of Test_fft_gfix and generalized to use either periodic or charge conjugation BCs based on cmdline option
Added cmdline options to Test_fft_gfix to tune alpha and optionally disable the Fourier acceleration tests
2021-07-12 17:13:40 -04:00
75a1f85162 Added method to compute and return the Wilson flow energy density over some number of steps 2021-06-30 17:24:00 -04:00
ac4f2d9798 Fixed EOFA approx test square rooting the result inappropriately thus failing when it shouldn't
To MDWF+ID GPBC evol main program, added routine to compute the lower bound of the EOFA using the power method with a command line toggle
2021-06-09 09:08:37 -04:00
c3b99de33f In EOFA pseudofermion action, implemented M^{-1} (this costs the same as M for EOFA!)
Added tests/solver/Test_eofa_inv.cc to test the above
In MDWF+ID GPBC binary, tests of RHMC approx for the action / MD approxs can be performed separately using a cmdline toggle
2021-06-03 11:11:14 -04:00
e1a02bb80a Added main program to reproduce 32ID ensemble with 240MeV pions and GPBC
Allowed EOFA to accept different solvers for the L and R operations in the heatbath step
Fixed EOFA Meofa operating on member Phi rather than input field
Added derived EOFA pseudofermion variant that allows for mixed prec CG to be used in the heatbath
Added forces/Test_mobius_gparity_eofa_mixed testing the above reproduces the regular EOFA
To Test_gamma, added checks for the various properties of the charge conjugation matrix C=-gamma2*gamma4 in Grid basis
2021-06-01 11:44:34 -04:00
86f08c6b9a Added a check that the initial EOFA action agrees with |eta|^2, thus checking the quality of the rational approximation in the heatbath 2021-05-18 13:57:44 -04:00
9f0271039f Completed implementation of Meofa method of ExactOneFlavourRatio pseudofermion action
Added tests to tests/forces/Test_mobius_force_eofa.cc testing that the EOFA heatbath results in Phi = M^{-1/2} eta
2021-05-18 12:27:51 -04:00
24df770f74 Added tests/IO/Test_field_array_io.cc testing/demonstrating parallel IO of an array of 5D fermion fields 2021-05-13 12:32:45 -04:00
45b6c7effc Added a test code forces/Test_gpdwf_force_1f_2f that compares the action and force for DWF, EOFA and DSDR actions between the 1f and 2f implementations of G-parity BCs
Broke up ExactOneFlavourRatio refresh into a virtual routine that generates eta and one that uses it as with the ratio and RHMC actions
Added accessors to the pseudofermion field to TwoFlavourEvenOddRatio and ExactOneFlavourRatio
2021-05-12 16:34:07 -04:00
1c70d8c4d9 Warning remove 2021-05-05 19:56:04 -04:00
f0e9a5299f Happy on GCC I hope 2021-05-05 19:55:34 -04:00
f1b8ba45e7 Warning on GCC suppress unrelated to my code so why doesn't it shut up about its ABI fix 2021-05-05 19:54:21 -04:00
fe998ab578 Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into feature/gparity_HMC 2021-05-05 17:36:51 -04:00
c2ee2b5fd1 Random chhanges 2021-05-05 17:36:38 -04:00
3b734ee397 two point function example 2021-05-05 17:36:19 -04:00
8637a9512a Freeze Gaussian implementation 2021-05-05 17:34:54 -04:00
7f6e2ee03e Drop normal_distribution, standardise 2021-05-05 17:34:17 -04:00
7b02acb2bd Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into feature/gparity_HMC 2021-05-04 13:45:11 -04:00
86948c6ea0 CRC for finger print fields - aids debug / version diff 2021-05-04 13:44:38 -04:00
53d226924a CRC added 2021-05-04 13:44:07 -04:00
80176b1b39 RHMC now outputs some initial norms to the logs
Fixed DWF+I Gparity binaries not correctly assigning twist directions (thanks Peter!)
2021-05-04 13:12:23 -04:00
29ddafd0fc Added variant of G-parity DWF+I ensemble gen code using double prec RHMC 2021-04-30 13:12:24 -04:00
0f08364e4f Mom filter refresh sRNG 2021-04-26 23:18:11 +02:00
a198d59381 Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into feature/gparity_HMC 2021-04-26 21:05:52 +02:00
3a4f5f2324 Merge develop, strengthen force tests 2021-04-22 18:54:00 -04:00
824d84473f Merge branch 'develop' into feature/gparity_HMC 2021-04-22 16:32:41 -04:00
38964a4076 Switch twist direction 2021-04-22 15:57:37 -04:00
0d9aa87228 Reduce momentum to the GP plane 2021-04-22 15:56:59 -04:00
0e959d9b94 Update plaquette analysis 2021-04-22 15:55:47 -04:00
752f70cd48 Merge branch 'develop' into feature/gparity_HMC 2021-04-22 01:58:11 +02:00
e0e42873c1 Const correctness for Lattice::Replicate
Adapted GeneralEvenOddRationalRatio and Test_rhmc_EOWilsonRatio_doubleVsMixedPrec to recent changes that require passing in serial RNG

For GeneralEvenOddRationalRatio and TwoFlavourEvenOddRatio, broke refresh into two stages, the first of which generates the random field and the second that computes the pseudofermion field.
This allows derived classes to override the generation of the random field, for example in testing.

Test_dwf_gpforce now uses Gparity in x-direction and APBC in time as opposed to G-parity in time

Added Test_action_dwf_gparity2fvs1f that compares the DWF fermion action with the 2f and the 1f (doubled-lattice) implementations of Gparity
2021-04-14 16:41:27 -04:00
0ff3bf6dc5 Merge branch 'develop' into feature/gparity_HMC 2021-03-22 15:33:13 -04:00
351eab02ae Comment fix 2021-03-22 14:39:17 -04:00
feee5ccde2 Added Gparity flavour Pauli matrix algebra and associated tensor types mirroring strategy used for Gamma matrices
Added test program for the above
2021-03-03 15:39:41 -05:00
e0f6a146d8 To DWF+I G-parity evolution code, added ability to specify number of MD steps in params and an optional usage mode that reads the config and checks the plaq/checksum agree then exits 2021-02-16 10:41:52 -05:00
daa095c519 Fixed an obscure but reproducible hang in the RHMC caused by the bounds check being activated by a random number that wasn't synchronized over the nodes
HMC now also reports the "L-infinity norm" of the impulse, aka the largest site norm
2021-02-09 12:55:46 -05:00
c2676853ca Merge branch 'bugfix/maxnorm2' into feature/gparity_HMC 2021-02-08 12:17:33 -05:00
6a824033f8 Merge branch 'develop' into feature/gparity_HMC 2021-02-08 09:31:49 -05:00
cee6a37639 Added a logging tag for HMC
As the integrator logger is active by default the cmdline option to activate had no effect. Changed option to *de*activate on request ("NoIntegrator")
Cleaned up generating rational approxs in the general RHMC code
As the tolerance of the rational approx is not related to the CG tolerance, regenerating approxs for MD and MC if they differ only by the CG tolerance is not necessary; this has been fixed
In DWF+I Gparity evolution code, added cmdline options to check the rational approximations and compute the lowest/highest eigenvalues of M^dagM for RHMC tuning
In the above, changed the integrator layout to a much simpler one that completes much faster; may need additional tuning
2021-02-08 09:30:35 -05:00
6cc3ad110c Improved logging output for RHMC bounds checks
In GenericHMCRunner, exposed functionality for initializing gauge fields and RNG for external use
2021-01-29 12:35:00 -05:00
e6c6f82c52 Gparity DWF+I HMC main program now has option to specify parameter file 2021-01-27 11:18:41 -05:00
d10d0c4e7f Merge branch 'develop' into feature/gparity_HMC 2021-01-25 15:13:29 -05:00
9c106d625a Added HMC main program designed to reproduce the 16^3x32x16 DWF+I ensembles with beta=2.13 and Gparity BCs 2021-01-25 15:07:44 -05:00
6795bbca31 Generalized GeneralEvenOddRatioRationalPseudoFermionAction such that the multi-shift CG algorithm can be overridden by derived classes
Added a mixed-precision variant of GeneralEvenOddRatioRationalPseudoFermionAction and a verification test against double prec class
Fixed non-const reference used in passing RHMC approx to multishift classes
2021-01-25 14:22:31 -05:00
d161c2dc35 Improved formating of timing output in mixed-prec multishift
In test of mixed-prec multishift, added comparison against full double precision multishift both for timing and to cross-check the results
2021-01-20 15:42:06 -05:00
7a06826cf1 Added option to NerscIO to disable exit on failing plaquette check allowing for circumvention of factor of 2 error in CPS-generated G-parity config headers
Adapted mixed-prec multi-shift test to new way to pass gauge BC directions and added cmdline option to perform the G-parity plaquette comparison with the corrected plaquette when loading config
2021-01-20 13:31:50 -05:00
c3712b8e06 Merge branch 'develop' into feature/gparity_HMC 2021-01-20 11:48:52 -05:00
901ee77b84 Mixed precision multishift test can now be performed with/without G-parity using cmdline check and can load a pregenerated configuration 2021-01-20 11:45:44 -05:00
1b84f59273 Added a mixed precision multishift algorithm for which the matrix multiplies are performed in single precision but the search directions are accumulated in double precision.
A reliable update step is performed at a tunable frequency to correct the residual. A final mixed-prec single-shift solve is performed on each pole to perform cleanup if necessary.
A test is provided to demonstrate the algorithm.
2021-01-06 12:24:44 -05:00
1fb41a4300 Added copyLane function to Tensor_extract_merge.h which copies one lane of data from an input tensor object to a different lane of an output tensor object of potentially different precision
precisionChange lattice function now uses copyLane to remove need for temporary scalar objects, reducing register footprint and significantly improving performance
2021-01-06 11:50:56 -05:00
287bac946f ConjugateGradientMixedPrec now stores final true residual and uses the precisionChange workspaces for improved efficiency 2021-01-06 09:50:41 -05:00
80c14be65e Added core test to check precision change 2021-01-06 09:34:44 -05:00
d7a2a4852d Reimplemented precisionChange to run on GPUs. A workspace containing the mapping table can be optionally precomputed and reused for improved performance. 2021-01-06 09:30:49 -05:00
d185f2eaa7 OneFlavourEvenOddRatioRationalPseudoFermionAction now derives from GeneralEvenOddRatioRationalPseudoFermionAction, simply performs transcription of parameters 2020-12-23 16:26:10 -05:00
813d4cd900 Added test program that ensures the generic checkerboarded RHMC (with parameters set appropriately) gives the same answer as the existing 1f code 2020-12-23 16:01:42 -05:00
75c6c6b173 General RHMC pseudofermion action now allows for different rational approximations to be used in the MD and action evaluation 2020-12-23 11:19:26 -05:00
220ad5e3ee Added more verbose log output to GeneralEvenOddRatioRationalPseudoFermionAction
In GeneralEvenOddRatioRationalPseudoFermionAction, setting the bounds check frequency to 0 now disables the check
2020-12-22 11:08:22 -05:00
ba5dc670a5 Reimplemented GparityWilsonImpl::InsertForce5D to run efficiently on GPUs
Swapped order of templated tensor code and c-number specializations in Tensor_outer.h to fix compile issue with type deduction on Summit
2020-12-22 10:10:07 -05:00
a0ca362690 Added an RHMC pseudofermion action, GeneralEvenOddRatioRationalPseudoFermionAction, that works for an arbitrary fractional power, not just a square root
Added a test evolution for the above, Test_rhmc_EOWilsonRatioPowQuarter, demonstrating conservation of Hamiltonian
Fixed HMC ignoring the MetropolisTest parameter of HMCparameters
2020-12-17 16:21:58 -05:00
249b6e61ec For G-parity BCs the Nd-1 direction is now assumed to be the time direction and setting a twist in this direction will apply antiperiodic BCs
Added option to run Test_gparity with antiperiodic time BCs
2020-12-17 14:09:00 -05:00
149 changed files with 21612 additions and 17020 deletions

View File

@ -34,6 +34,9 @@ directory
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#if defined __GNUC__
#pragma GCC diagnostic ignored "-Wpsabi"
#endif
//disables and intel compiler specific warning (in json.hpp)
@ -44,22 +47,14 @@ directory
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register"
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
//disables nvcc specific warning in json.hpp
#pragma nv_diag_suppress unsigned_compare_with_zero
#pragma nv_diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
#pragma nv_diag_suppress extra_semicolon
#else
//disables nvcc specific warning in json.hpp
#pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon
#endif
//Eigen only
#endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC

View File

@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);

View File

@ -16,7 +16,6 @@
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>

View File

@ -14,11 +14,7 @@
/* NVCC save and restore compile environment*/
#ifdef __NVCC__
#pragma push
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
#pragma nv_diag_suppress code_is_unreachable
#else
#pragma diag_suppress code_is_unreachable
#endif
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")

View File

@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>

View File

@ -262,7 +262,7 @@ public:
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});

View File

@ -264,7 +264,7 @@ public:
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd();
accelerator_for(ss, in.Grid()->oSites(), Nsimd, {
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
@ -292,6 +292,7 @@ public:
template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD alpha;

View File

@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
RealD TrueResidual;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
@ -80,6 +82,11 @@ NAMESPACE_BEGIN(Grid);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
//Generate precision change workspaces
precisionChangeWorkspace wk_dp_from_sp(DoublePrecGrid, SinglePrecGrid);
precisionChangeWorkspace wk_sp_from_dp(SinglePrecGrid, DoublePrecGrid);
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
@ -97,6 +104,7 @@ NAMESPACE_BEGIN(Grid);
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
@ -120,7 +128,7 @@ NAMESPACE_BEGIN(Grid);
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
precisionChange(src_f, src_d, wk_sp_from_dp);
PrecChangeTimer.Stop();
sol_f = Zero();
@ -130,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
(*guesser)(src_f, sol_f);
//Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
@ -138,7 +147,7 @@ NAMESPACE_BEGIN(Grid);
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
precisionChange(tmp_d, sol_f, wk_dp_from_sp);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
@ -150,6 +159,7 @@ NAMESPACE_BEGIN(Grid);
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TrueResidual = CG_d.TrueResidual;
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;

View File

@ -52,7 +52,7 @@ public:
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
@ -182,6 +182,9 @@ public:
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
///////////////////////////////////////
// Timers

View File

@ -0,0 +1,411 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//Linop to add shift to input linop, used in cleanup CG
namespace ConjugateGradientMultiShiftMixedPrecSupport{
template<typename Field>
class ShiftedLinop: public LinearOperatorBase<Field>{
public:
LinearOperatorBase<Field> &linop_base;
RealD shift;
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
axpy(out, shift, in, out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
};
};
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq
) :
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GridBase *DoublePrecGrid = src_d.Grid();
precisionChangeWorkspace wk_f_from_d(SinglePrecGrid, DoublePrecGrid);
precisionChangeWorkspace wk_d_from_f(DoublePrecGrid, SinglePrecGrid);
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF r_f(SinglePrecGrid);
FieldF p_f(SinglePrecGrid);
FieldF tmp_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
FieldF src_f(SinglePrecGrid);
precisionChange(src_f, src_d, wk_f_from_d);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d;
}
// r and p for primary
r_f=src_f; //residual maintained in single
p_f=src_f;
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
//MdagM+m[0]
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
axpy(mmp_f,mass[0],p_f,mmp_f);
RealD rn = norm2(p_f);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_f,b,mmp_f,r_f);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
a = c /cp;
//Update double precision search direction by residual
PrecChangeTimer.Start();
precisionChange(r_d, r_f, wk_d_from_f);
PrecChangeTimer.Stop();
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_d[s],a,ps_d[s],r_d);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
}
}
}
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(p_f, p_d, wk_f_from_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
cp=c;
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
d=real(innerProduct(p_f,mmp_f));
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_f,mass[0],p_f,mmp_f);
AXPYTimer.Stop();
RealD rn = norm2(p_f);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update double precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
}
}
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
AXPYTimer.Stop();
c = c_f;
if(k % ReliableUpdateFreq == 0){
//Replace r with true residual
MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
PrecChangeTimer.Start();
precisionChange(r_f, r_d, wk_f_from_d);
PrecChangeTimer.Stop();
c = c_d;
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -113,43 +113,7 @@ public:
blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard();
};
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
int Nevec = (int)evec_coarse.size();
int Nsrc = (int)src.size();
// make temp variables
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
//Preporcessing
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
guess_coarse[j] = Zero();
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockProject(src_coarse[j],src[j],subspace);
}
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
for (int i=0;i<Nevec;i++)
{
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
const CoarseField & tmp = evec_coarse[i];
for (int j=0;j<Nsrc;j++)
{
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
}
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};
};
};

View File

@ -44,6 +44,7 @@ public:
int, MinRes); // Must restart
};
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
@ -155,6 +156,7 @@ public:
_coarse_relax_tol(coarse_relax_tol)
{ };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
@ -181,8 +183,16 @@ public:
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
@ -201,13 +211,13 @@ public:
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
@ -285,6 +295,10 @@ public:
evals_coarse.resize(0);
};
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
@ -328,6 +342,8 @@ public:
}
}
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
@ -376,25 +392,31 @@ public:
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
@ -405,6 +427,14 @@ public:
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
};
NAMESPACE_END(Grid);

View File

@ -29,6 +29,8 @@ template<class Field> class PowerMethod
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;

View File

@ -392,9 +392,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
}
// if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
// this->StencilSendToRecvFromComplete(list,dir);
// }
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
}
return off_node_bytes;
}

File diff suppressed because it is too large Load Diff

View File

@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>

View File

@ -0,0 +1,42 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -28,9 +28,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
#if defined(GRID_CUDA)||defined(GRID_HIP)
#include <Grid/lattice/Lattice_reduction_gpu.h>
#endif
#if defined(GRID_SYCL)
#include <Grid/lattice/Lattice_reduction_sycl.h>
#endif
NAMESPACE_BEGIN(Grid);
@ -130,7 +127,7 @@ inline Double max(const Double *arg, Integer osites)
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sum_gpu(arg,osites);
#else
return sum_cpu(arg,osites);
@ -139,54 +136,29 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
Integer osites = arg.Grid()->oSites();
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
typename vobj::scalar_object ssum;
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
ssum= sum_gpu(&arg_v[0],osites);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -238,10 +210,11 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// This code could read coalesce
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, 1,{
auto x_l = left_v[ss];

View File

@ -23,7 +23,7 @@ unsigned int nextPow2(Iterator x) {
}
template <class Iterator>
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
#ifdef GRID_CUDA
@ -37,13 +37,13 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
/*
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
*/
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
@ -53,12 +53,12 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
return 0;
exit(EXIT_FAILURE);
}
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
return 1;
}
template <class sobj, class Iterator>
@ -198,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator;
@ -207,9 +207,7 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks);
@ -220,54 +218,6 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
auto result = buffer_v[0];
return result;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
scalarD *ret_p = (scalarD *)&ret;
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
ret_p[w] = sumD_gpu_small(tbuf,osites);
}
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
if ( ok ) {
ret = sumD_gpu_small(lat,osites);
} else {
ret = sumD_gpu_large(lat,osites);
}
return ret;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -280,13 +230,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
return result;
}
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid);

View File

@ -1,125 +0,0 @@
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD;
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
sobj identity; zeroit(identity);
sobj ret ;
Integer nsimd= vobj::Nsimd();
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
theGridAccelerator->wait();
ret = mysum[0];
free(mysum,*theGridAccelerator);
sobjD dret; convertType(dret,ret);
return dret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
return sumD_gpu_tensor(lat,osites);
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
{
return sumD_gpu_large(lat,osites);
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
return sumD_gpu_large(lat,osites);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu(lat,osites);
return result;
}
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid);
/*
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
{
Double sumResult; zeroit(sumResult);
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
Double identity; zeroit(identity);
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum +=vec[index];
});
});
theGridAccelerator->wait();
Double ret = d_sum[0];
free(d_sum,*theGridAccelerator);
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -32,8 +32,9 @@
#include <random>
#ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
#include <Grid/random/sitmo_prng_engine.hpp>
#endif
#include <Grid/random/gaussian.h>
#if defined(RNG_SITMO)
#define RNG_FAST_DISCARD
@ -142,8 +143,8 @@ public:
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
// std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
@ -243,8 +244,8 @@ public:
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
// _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
@ -357,8 +358,8 @@ public:
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
// _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
@ -515,11 +516,11 @@ public:
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
NAMESPACE_END(Grid);
#endif

View File

@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
template<class vobj>
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
{
typedef typename vobj::scalar_object sobj;
@ -1080,54 +1080,96 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
});
}
//Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
assert(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
}
out.Checkerboard() = in.Checkerboard();
GridBase *in_grid=in.Grid();
GridBase *out_grid = out.Grid();
typedef typename VobjOut::scalar_object SobjOut;
typedef typename VobjIn::scalar_object SobjIn;
int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){
out_icoor[lane].resize(ndim);
out_grid->iCoorFromIindex(out_icoor[lane], lane);
}
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
autoView( out_v , out, CpuWrite);
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
Coordinate lcoor(out_grid->Nd());
for(int lane=0; lane < out_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
ptrs[lane] = &in_slex_conv[llex];
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
class precisionChangeWorkspace{
std::pair<Integer,Integer>* fmap_device; //device pointer
public:
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid){
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
assert(out_grid->Nd() == in_grid->Nd());
for(int d=0;d<out_grid->Nd();d++){
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
}
merge(out_v[out_oidx], ptrs, 0);
});
int Nsimd_out = out_grid->Nsimd();
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
for(int lane=0; lane < out_grid->Nsimd(); lane++)
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocorr;
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
int in_oidx = 0, in_lane = 0;
for(int d=0;d<in_grid->_ndimension;d++){
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
}
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
}
});
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
}
//Prevent moving or copying
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
~precisionChangeWorkspace(){
acceleratorFreeDevice(fmap_device);
}
};
//Convert a lattice of one precision to another. The input workspace contains the mapping data.
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
static_assert( std::is_same<typename VobjOut::DoublePrecision, typename VobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
out.Checkerboard() = in.Checkerboard();
constexpr int Nsimd_out = VobjOut::Nsimd();
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
//Do the copy/precision change
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
int in_oidx = fmap_osite[out_lane].first;
int in_lane = fmap_osite[out_lane].second;
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
}
});
}
//Convert a Lattice from one precision to another
//Generate the workspace in place; if multiple calls with the same mapping are performed, consider pregenerating the workspace and reusing
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
precisionChange(out, in, workspace);
}
////////////////////////////////////////////////////////////////////////////////
// Communicate between grids
////////////////////////////////////////////////////////////////////////////////

View File

@ -69,6 +69,7 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(0);
@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogPerformance.Active(0);
GridLogIntegrator.Active(1);
GridLogColours.Active(0);
GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
}
}

View File

@ -182,6 +182,7 @@ extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance;
extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;
extern Colours GridLogColours;
std::string demangle(const char* name) ;

View File

@ -31,7 +31,6 @@ directory
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <map>
#include <pwd.h>
@ -655,8 +654,7 @@ class IldgWriter : public ScidacWriter {
// Fill ILDG header data struct
//////////////////////////////////////////////////////
ildgFormat ildgfmt ;
const std::string stNC = std::to_string( Nc ) ;
ildgfmt.field = std::string("su"+stNC+"gauge");
ildgfmt.field = std::string("su3gauge");
if ( format == std::string("IEEE32BIG") ) {
ildgfmt.precision = 32;
@ -873,8 +871,7 @@ class IldgReader : public GridLimeReader {
} else {
assert(found_ildgFormat);
const std::string stNC = std::to_string( Nc ) ;
assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
assert ( ildgFormat_.field == std::string("su3gauge") );
///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can
@ -882,7 +879,7 @@ class IldgReader : public GridLimeReader {
std::ostringstream vers; vers << ildgFormat_.version;
FieldMetaData_.hdr_version = vers.str();
FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC);
FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
FieldMetaData_.nd=4;
FieldMetaData_.dimension.resize(4);

View File

@ -6,8 +6,8 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -182,8 +182,8 @@ class GaugeStatistics
public:
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
header.link_trace = WilsonLoops<Impl>::linkTrace(data);
header.plaquette = WilsonLoops<Impl>::avgPlaquette(data);
header.link_trace=WilsonLoops<Impl>::linkTrace(data);
header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
}
};
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
@ -203,24 +203,20 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
//////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm)
{
assert( Nc < 4 && Nc > 1 ) ;
const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<Nd;mu++){
#if Nc == 2
cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ;
cm(mu)()(1,1) = adj(cm(mu)()(0,x)) ;
#else
const int x=0 , y=1 , z=2 ; // a little disinenuous labelling
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
#endif
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
}
}
////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage
////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >;
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
@ -282,6 +278,7 @@ struct GaugeSimpleMunger{
template <class fobj, class sobj>
struct GaugeSimpleUnmunger {
void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
@ -320,8 +317,8 @@ template<class fobj,class sobj>
struct Gauge3x2munger{
void operator() (fobj &in,sobj &out){
for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){
for(int j=0;j<Nc;j++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j);
}}
}
@ -333,8 +330,8 @@ template<class fobj,class sobj>
struct Gauge3x2unmunger{
void operator() (sobj &in,fobj &out){
for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){
for(int j=0;j<Nc;j++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j);
}}
}

View File

@ -9,7 +9,6 @@
Author: Matt Spraggs <matthew.spraggs@gmail.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -31,8 +30,6 @@
#ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H
#include <string>
NAMESPACE_BEGIN(Grid);
using namespace Grid;
@ -42,9 +39,11 @@ using namespace Grid;
////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO {
public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
@ -148,17 +147,15 @@ public:
std::string format(header.floating_point);
const int ieee32big = (format == std::string("IEEE32BIG"));
const int ieee32 = (format == std::string("IEEE32"));
const int ieee64big = (format == std::string("IEEE64BIG"));
const int ieee64 = (format == std::string("IEEE64") || \
format == std::string("IEEE64LITTLE"));
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
const std::string stNC = std::to_string( Nc ) ;
if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) {
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
@ -169,7 +166,7 @@ public:
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) {
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
@ -203,7 +200,7 @@ public:
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum );
@ -214,29 +211,27 @@ public:
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file,
std::string ens_label = std::string("DWF"),
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
std::string ens_label = std::string("DWF"))
{
writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number);
writeConfiguration(Umu,file,0,1,ens_label);
}
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file,
int two_row,
int bits32,
std::string ens_label = std::string("DWF"),
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
std::string ens_label = std::string("DWF"))
{
typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
header.sequence_number = sequence_number;
header.ensemble_id = ens_id;
///////////////////////////////////////////
// Following should become arguments
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = std::string("UKQCD");
header.ensemble_label = ens_label;
header.hdr_version = "1.0" ;
typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D;
@ -250,14 +245,10 @@ public:
uint64_t offset;
// Sod it -- always write NcxNc double
header.floating_point = std::string("IEEE64BIG");
const std::string stNC = std::to_string( Nc ) ;
if( two_row ) {
header.data_type = std::string("4D_SU" + stNC + "_GAUGE" );
} else {
header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC );
}
// Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
@ -265,15 +256,8 @@ public:
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
if( two_row ) {
Gauge3x2unmunger<fobj2D,sobj> munge;
BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
} else {
GaugeSimpleUnmunger<fobj3D,sobj> munge;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
}
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
writeHeader(header,file);
@ -305,7 +289,8 @@ public:
header.plaquette=0.0;
MachineCharacteristics(header);
uint64_t offset;
uint64_t offset;
#ifdef RNG_RANLUX
header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48");
@ -345,7 +330,7 @@ public:
GridBase *grid = parallel.Grid();
uint64_t offset = readHeader(file,grid,header);
uint64_t offset = readHeader(file,grid,header);
FieldMetaData clone(header);

View File

@ -16,12 +16,8 @@
#ifdef __NVCC__
#pragma push
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5)
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#else
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#endif
#endif
#include "pugixml.h"

View File

@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
#define ColourIndex (2)
#define SpinIndex (1)
#define LorentzIndex (0)
#define GparityFlavourIndex (0)
// Also should make these a named enum type
static constexpr int DaggerNo=0;
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
// Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix;
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
//G-parity flavour matrix
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
// Spin vector
typedef iSpinVector<Complex > SpinVector;
typedef iSpinVector<ComplexF> SpinVectorF;
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
//G-parity flavour vector
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
// singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.

View File

@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams {
Coordinate twists;
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
GparityWilsonImplParams() : twists(Nd, 0) {};
};
@ -65,7 +66,8 @@ struct StaggeredImplParams {
RealD, tolerance,
int, degree,
int, precision,
int, BoundsCheckFreq);
int, BoundsCheckFreq,
RealD, BoundsCheckTol);
// MaxIter and tolerance, vectors??
@ -76,15 +78,61 @@ struct StaggeredImplParams {
RealD tol = 1.0e-8,
int _degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
int _BoundsCheckFreq=20,
double _BoundsCheckTol=1e-6)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
BoundsCheckFreq(_BoundsCheckFreq),
BoundsCheckTol(_BoundsCheckTol){};
};
/*Action parameters for the generalized rational action
The approximation is for (M^dag M)^{1/inv_pow}
where inv_pow is the denominator of the fractional power.
Default inv_pow=2 for square root, making this equivalent to
the OneFlavourRational action
*/
struct RationalActionParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
int, inv_pow,
RealD, lo, //low eigenvalue bound of rational approx
RealD, hi, //high eigenvalue bound of rational approx
int, MaxIter, //maximum iterations in msCG
RealD, action_tolerance, //msCG tolerance in action evaluation
int, action_degree, //rational approx tolerance in action evaluation
RealD, md_tolerance, //msCG tolerance in MD integration
int, md_degree, //rational approx tolerance in MD integration
int, precision, //precision of floating point arithmetic
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
// constructor
RationalActionParams(int _inv_pow = 2,
RealD _lo = 0.0,
RealD _hi = 1.0,
int _maxit = 1000,
RealD _action_tolerance = 1.0e-8,
int _action_degree = 10,
RealD _md_tolerance = 1.0e-8,
int _md_degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
: inv_pow(_inv_pow),
lo(_lo),
hi(_hi),
MaxIter(_maxit),
action_tolerance(_action_tolerance),
action_degree(_action_degree),
md_tolerance(_md_tolerance),
md_degree(_md_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
};
NAMESPACE_END(Grid);

View File

@ -68,16 +68,9 @@ public:
///////////////////////////////////////////////////////////////
// Support for MADWF tricks
///////////////////////////////////////////////////////////////
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; };
RealD MassPlus(void) { return mass_plus; };
RealD MassMinus(void) { return mass_minus; };
RealD Mass(void) { return mass; };
void SetMass(RealD _mass) {
mass_plus=mass_minus=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void SetMass(RealD _mass_plus, RealD _mass_minus) {
mass_plus=_mass_plus;
mass_minus=_mass_minus;
mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void P(const FermionField &psi, FermionField &chi);
@ -115,7 +108,7 @@ public:
void MeooeDag5D (const FermionField &in, FermionField &out);
// protected:
RealD mass_plus, mass_minus;
RealD mass;
// Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma;

View File

@ -1,333 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
////////////////////////////////////////////
// Standard Clover
// (4+m0) + csw * clover_term
// Exp Clover
// (4+m0) * exp(csw/(4+m0) clover_term)
// = (4+m0) + csw * clover_term + ...
////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
//////////////////////////////////
// Generic Standard Clover
//////////////////////////////////
template<class Impl>
class CloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
static void Instantiate(CloverField& CloverTerm, CloverField& CloverTermInv, RealD csw_t, RealD diag_mass) {
GridBase *grid = CloverTerm.Grid();
CloverTerm += diag_mass;
int lvol = grid->lSites();
int DimRep = Impl::Dimension;
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
EigenInvCloverOp = EigenCloverOp.inverse();
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Generic Exp Clover
//////////////////////////////////
template<class Impl>
class ExpCloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef WilsonCloverHelpers<Impl> Helpers;
// Can this be avoided?
static void IdentityTimesC(const CloverField& in, RealD c) {
int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void Instantiate(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
Clover *= (1.0/diag_mass);
// Taylor expansion, slow but generic
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
// qN = cN
// qn = cn + qn+1 X
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
return lambda;
}
};
//////////////////////////////////
// Compact Standard Clover
//////////////////////////////////
template<class Impl>
class CompactCloverHelpers: public CompactWilsonCloverHelpers<Impl>,
public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
Clover += diag_mass;
}
static void InvertClover(CloverField& InvClover,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv,
bool fixedBoundaries) {
CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
}
// TODO: implement Cmunu for better performances with compact layout, but don't do it
// here, but rather in WilsonCloverHelpers.h -> CompactWilsonCloverHelpers
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Compact Exp Clover
//////////////////////////////////
template<class Impl>
class CompactExpCloverHelpers: public CompactWilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
// Can this be avoided?
static void IdentityTimesC(const CloverField& in, RealD c) {
int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
Clover *= (1.0/diag_mass);
// Taylor expansion, slow but generic
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
// qN = cN
// qn = cn + qn+1 X
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
}
static void InvertClover(CloverField& InvClover,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv,
bool fixedBoundaries) {
if (fixedBoundaries)
{
CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
}
else
{
CompactHelpers::ConvertLayout(InvClover, diagonalInv, triangleInv);
}
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
return lambda;
}
};
NAMESPACE_END(Grid);

View File

@ -31,7 +31,6 @@
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
@ -86,7 +85,7 @@ NAMESPACE_BEGIN(Grid);
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl, class CloverHelpers>
template<class Impl>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
@ -225,7 +224,7 @@ public:
RealD csw_t;
RealD cF;
bool fixedBoundaries;
bool open_boundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;

View File

@ -138,52 +138,38 @@ typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
// Clover fermions
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
typedef WilsonCloverFermion<WilsonImplR> WilsonCloverFermionR;
typedef WilsonCloverFermion<WilsonImplF> WilsonCloverFermionF;
typedef WilsonCloverFermion<WilsonImplD> WilsonCloverFermionD;
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR;
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
typedef WilsonCloverFermion<WilsonAdjImplR> WilsonCloverAdjFermionR;
typedef WilsonCloverFermion<WilsonAdjImplF> WilsonCloverAdjFermionF;
typedef WilsonCloverFermion<WilsonAdjImplD> WilsonCloverAdjFermionD;
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR;
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR;
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;

View File

@ -30,6 +30,18 @@ directory
NAMESPACE_BEGIN(Grid);
/*
Policy implementation for G-parity boundary conditions
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
*/
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
public:
@ -113,7 +125,7 @@ public:
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
//Apply the links
int f_upper = permute_lane ? 1 : 0;
@ -139,10 +151,10 @@ public:
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
assert((sl == 1) || (sl == 2));
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
//If this site is an global boundary site, perform the G-parity flavor twist
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
if ( sl == 2 ) {
//Only do the twist for lanes on the edge of the physical node
ExtractBuffer<sobj> vals(Nsimd);
extract(chi,vals);
@ -197,6 +209,19 @@ public:
reg = memory;
}
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
autoView(poke_f0_v, poke_f0, CpuRead);
autoView(poke_f1_v, poke_f1, CpuRead);
autoView(Uds_v, Uds, CpuWrite);
thread_foreach(ss,poke_f0_v,{
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
});
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds.Grid(),GaugeGrid);
@ -207,14 +232,19 @@ public:
GaugeLinkField Uconj(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
for(int mu=0;mu<Nd-1;mu++){
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
U = PeekIndex<LorentzIndex>(Umu,mu);
Uconj = conjugate(U);
// Implement the isospin rotation sign on the boundary between f=1 and f=0
// This phase could come from a simple bc 1,1,-1,1 ..
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
if ( Params.twists[mu] ) {
@ -229,7 +259,7 @@ public:
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
});
}
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
@ -260,6 +290,38 @@ public:
});
}
}
{ //periodic / antiperiodic temporal BCs
int mu = Nd-1;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
GaugeLinkField *Upoke = &U;
if(Params.twists[mu]){ //antiperiodic
Utmp = where(coor == Lmu, -U, U);
Upoke = &Utmp;
}
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
//Get the barrel-shifted field
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
Upoke = &Utmp;
if(Params.twists[mu]){
U = where(coor == 0, -Utmp, Utmp); //boundary phase
Upoke = &U;
}
Uconj = conjugate(*Upoke);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
@ -298,28 +360,48 @@ public:
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
int Ls = Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
int Ls=Btilde.Grid()->_fdimensions[0];
{
autoView( tmp_v , tmp, CpuWrite);
autoView( Atilde_v , Atilde, CpuRead);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
GridBase *GaugeGrid = mat.Grid();
Lattice<iScalar<vInteger> > coor(GaugeGrid);
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
autoView( mat_v , mat, AcceleratorWrite);
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
//Flavor 0
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
sum = sum + outerProduct(bb,aa);
//Flavor 1
bb = coalescedRead(Btilde_v[sF](1)(spn) );
aa = coalescedRead(Atilde_v[sF](1)(spn) );
sum = sum + conjugate(outerProduct(bb,aa));
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
};

View File

@ -32,7 +32,6 @@
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
@ -52,7 +51,7 @@ NAMESPACE_BEGIN(Grid);
// csw_r = csw_t to recover the isotropic version
//////////////////////////////////////////////////////////////////
template<class Impl, class CloverHelpers>
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>
{

View File

@ -209,8 +209,6 @@ public:
};
////////////////////////////////////////////////////////
template<class Impl> class CompactWilsonCloverHelpers {
public:

View File

@ -47,6 +47,8 @@ class CompactWilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6

View File

@ -117,19 +117,19 @@ public:
typedef decltype(coalescedRead(*in)) sobj;
typedef decltype(coalescedRead(*out0)) hsobj;
constexpr unsigned int Nsimd = vobj::Nsimd();
unsigned int Nsimd = vobj::Nsimd();
unsigned int mask = Nsimd >> (type + 1);
int lane = acceleratorSIMTlane(Nsimd);
int j0 = lane &(~mask); // inner coor zero
int j1 = lane |(mask) ; // inner coor one
const vobj *vp0 = &in[k]; // out0[j] = merge low bit of type from in[k] and in[m]
const vobj *vp1 = &in[m]; // out1[j] = merge hi bit of type from in[k] and in[m]
const vobj *vp = (lane&mask) ? vp1:vp0;// if my lane has high bit take vp1, low bit take vp0
auto sa = coalescedRead(*vp,j0); // lane to read for out 0, NB 50% read coalescing
auto sb = coalescedRead(*vp,j1); // lane to read for out 1
const vobj *vp0 = &in[k];
const vobj *vp1 = &in[m];
const vobj *vp = (lane&mask) ? vp1:vp0;
auto sa = coalescedRead(*vp,j0);
auto sb = coalescedRead(*vp,j1);
hsobj psa, psb;
projector::Proj(psa,sa,mu,dag); // spin project the result0
projector::Proj(psb,sb,mu,dag); // spin project the result1
projector::Proj(psa,sa,mu,dag);
projector::Proj(psb,sb,mu,dag);
coalescedWrite(out0[j],psa);
coalescedWrite(out1[j],psb);
#else

View File

@ -47,7 +47,7 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_M5,p),
mass_plus(_mass), mass_minus(_mass)
mass(_mass)
{
}
@ -209,8 +209,8 @@ void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
Vector<Coeff_t> diag (Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus;
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass;
M5D(psi,chi,chi,lower,diag,upper);
}
template<class Impl>
@ -220,8 +220,8 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
Vector<Coeff_t> diag = bs;
Vector<Coeff_t> upper= cs;
Vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass_minus*upper[Ls-1];
lower[0] =-mass_plus*lower[0];
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
M5D(psi,psi,Din,lower,diag,upper);
}
// FIXME Redunant with the above routine; check this and eliminate
@ -235,8 +235,8 @@ template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &
upper[i]=-ceo[i];
lower[i]=-ceo[i];
}
upper[Ls-1]=-mass_minus*upper[Ls-1];
lower[0] =-mass_plus*lower[0];
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper);
}
template<class Impl>
@ -250,8 +250,8 @@ void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &
upper[i]=-cee[i];
lower[i]=-cee[i];
}
upper[Ls-1]=-mass_minus*upper[Ls-1];
lower[0] =-mass_plus*lower[0];
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper);
}
template<class Impl>
@ -266,9 +266,9 @@ void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &
// Assemble the 5d matrix
if ( s==0 ) {
upper[s] = -cee[s+1] ;
lower[s] = mass_minus*cee[Ls-1];
lower[s] = mass*cee[Ls-1];
} else if ( s==(Ls-1)) {
upper[s] = mass_plus*cee[0];
upper[s] = mass*cee[0];
lower[s] = -cee[s-1];
} else {
upper[s]=-cee[s+1];
@ -291,8 +291,8 @@ void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0);
Vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass_plus*upper[Ls-1];
lower[0] =-mass_minus*lower[0];
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper);
}
@ -307,9 +307,9 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
for (int s=0;s<Ls;s++){
if ( s== 0 ) {
upper[s] = cs[s+1];
lower[s] =-mass_minus*cs[Ls-1];
lower[s] =-mass*cs[Ls-1];
} else if ( s==(Ls-1) ) {
upper[s] =-mass_plus*cs[0];
upper[s] =-mass*cs[0];
lower[s] = cs[s-1];
} else {
upper[s] = cs[s+1];
@ -552,7 +552,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass_minus*cee[Ls-1]/bee[0];
leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) {
assert(bee[j+1]!=Coeff_t(0.0));
leem[i]*= aee[j]/bee[j+1];
@ -560,7 +560,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
ueem[i]=mass_plus;
ueem[i]=mass;
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
ueem[i]*= aee[0]/bee[0];
@ -573,7 +573,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
}
{
Coeff_t delta_d=mass_minus*cee[Ls-1];
Coeff_t delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) {
assert(bee[j] != Coeff_t(0.0));
delta_d *= cee[j]/bee[j];
@ -642,10 +642,6 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type,
unsigned int mu)
{
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
@ -781,8 +777,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
assert(mu>=0);
assert(mu<Nd);
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if 0
int tshift = (mu == Nd-1) ? 1 : 0;

View File

@ -32,23 +32,22 @@
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
template<class Impl>
CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&Fgrid), Triangle(&Fgrid)
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
@ -59,85 +58,80 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
, BoundaryMask(&Fgrid)
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
{
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
csw_r *= 0.5;
csw_t *= 0.5;
if (clover_anisotropy.isAnisotropic)
csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (fixedBoundaries) {
this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd;
if (open_boundaries)
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->fixedBoundaries) ApplyBoundaryMask(out);
if(this->open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->fixedBoundaries) {
if(this->open_boundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
@ -147,16 +141,16 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField&
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
@ -166,27 +160,27 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionFiel
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!fixedBoundaries); // TODO check for changes required for open bc
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
@ -257,7 +251,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force,
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
@ -267,18 +261,18 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force,
force += clover_force;
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
@ -291,8 +285,8 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const Fermio
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
template<class Impl>
void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
@ -305,7 +299,6 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
CloverField TmpInverse(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
@ -325,30 +318,22 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Instantiate the clover term
// - In case of the standard clover the mass term is added
// - In case of the exponential clover the clover term is exponentiated
double t4 = usecond();
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, this->diag_mass);
TmpOriginal += this->diag_mass;
// Convert the data layout of the clover term
double t5 = usecond();
double t4 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Modify the clover term at the temporal boundaries in case of open boundary conditions
double t6 = usecond();
if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Possible modify the boundary values
double t5 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the Clover term
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
// TODO: For now this inversion is explictly done on the CPU
double t7 = usecond();
CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
// Invert the clover term in the improved layout
double t6 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
// Fill the remaining clover fields
double t8 = usecond();
double t7 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
@ -359,19 +344,20 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t9 = usecond();
std::cout << GridLogDebug << "CompactWilsonCloverFermion::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
double t8 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", convert = " << (t5 - t4) / 1e6
<< ", boundaries = " << (t6 - t5) / 1e6
<< ", inversions = " << (t7 - t6) / 1e6
<< ", pick cbs = " << (t8 - t7) / 1e6
<< ", total = " << (t8 - t0) / 1e6
<< std::endl;
#endif
}
NAMESPACE_END(Grid);

View File

@ -34,8 +34,8 @@
NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField& _Umu,
template<class Impl>
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
@ -74,8 +74,8 @@ WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField&
}
// *NOT* EO
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
{
FermionField temp(out.Grid());
@ -89,8 +89,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, Fermion
out += temp;
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{
FermionField temp(out.Grid());
@ -104,8 +104,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, Ferm
out += temp;
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Umu)
template <class Impl>
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
double t0 = usecond();
WilsonFermion<Impl>::ImportGauge(_Umu);
@ -131,11 +131,47 @@ void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Um
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
double t4 = usecond();
CloverHelpers::Instantiate(CloverTerm, CloverTermInv, csw_t, this->diag_mass);
int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
double t5 = usecond();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
EigenInvCloverOp = EigenCloverOp.inverse();
//std::cout << EigenInvCloverOp << std::endl;
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
double t6 = usecond();
// Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
@ -148,44 +184,48 @@ void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Um
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
double t6 = usecond();
double t7 = usecond();
std::cout << GridLogDebug << "WilsonCloverFermion::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "instantiation = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t6 - t0) / 1e6 << std::endl;
#if 0
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", misc = " << (t5 - t4) / 1e6
<< ", inversions = " << (t6 - t5) / 1e6
<< ", pick cbs = " << (t7 - t6) / 1e6
<< ", total = " << (t7 - t0) / 1e6
<< std::endl;
#endif
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerNo, InverseNo);
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerYes, InverseNo);
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerNo, InverseYes);
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerYes, InverseYes);
}
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{
out.Checkerboard() = in.Checkerboard();
CloverField *Clover;
@ -238,8 +278,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField
} // MooeeInternal
// Derivative parts unpreconditioned pseudofermions
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
template <class Impl>
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
@ -309,7 +349,7 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
@ -320,15 +360,15 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
}
// Derivative parts
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
template <class Impl>
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
{
assert(0);
}
// Derivative parts
template<class Impl, class CloverHelpers>
void WilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
template <class Impl>
void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
assert(0); // not implemented yet
}

View File

@ -4,13 +4,12 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonFermion.cc
Copyright (C) 2022
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -600,47 +599,11 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
Current curr_type,
unsigned int mu)
{
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
Gamma g5(Gamma::Algebra::Gamma5);
conformable(_grid, q_in_1.Grid());
conformable(_grid, q_in_2.Grid());
conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid();
PropagatorField tmp_shifted(UGrid);
PropagatorField g5Lg5(UGrid);
PropagatorField R(UGrid);
PropagatorField gmuR(UGrid);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
g5Lg5=g5*q_in_1*g5;
tmp_shifted=Cshift(q_in_2,mu,1);
Impl::multLinkField(R,this->Umu,tmp_shifted,mu);
gmuR=gmu*R;
q_out=adj(g5Lg5)*R;
q_out-=adj(g5Lg5)*gmuR;
tmp_shifted=Cshift(q_in_1,mu,1);
Impl::multLinkField(g5Lg5,this->Umu,tmp_shifted,mu);
g5Lg5=g5*g5Lg5*g5;
R=q_in_2;
gmuR=gmu*R;
q_out-=adj(g5Lg5)*R;
q_out-=adj(g5Lg5)*gmuR;
assert(0);
}
@ -654,51 +617,9 @@ void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
unsigned int tmax,
ComplexField &lattice_cmplx)
{
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
conformable(_grid, q_in.Grid());
conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid();
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
PropagatorField L(UGrid);
PropagatorField zz (UGrid);
zz=Zero();
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
tmp = Cshift(q_in,mu,1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu);
tmp = ( Utmp*lattice_cmplx - gmu*Utmp*lattice_cmplx ); // Forward hop
tmp = where((lcoor>=tmin),tmp,zz); // Mask the time
q_out = where((lcoor<=tmax),tmp,zz); // Position of current complicated
tmp = q_in *lattice_cmplx;
tmp = Cshift(tmp,mu,-1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
tmp = -( Utmp + gmu*Utmp );
// Mask the time
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
unsigned int t0 = 0;
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
} else {
tmp = where((lcoor>=tmin+tshift),tmp,zz);
}
q_out+= where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
assert(0);
}
NAMESPACE_END(Grid);

View File

@ -498,7 +498,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;}
#endif
acceleratorFenceComputeStream();
} else if( interior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;}
@ -506,13 +505,11 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
#endif
} else if( exterior ) {
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
#ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
#endif
acceleratorFenceComputeStream();
}
assert(0 && " Kernel optimisation case not covered ");
}

View File

@ -9,7 +9,6 @@
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,12 +32,10 @@
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
template class CompactWilsonCloverFermion<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -8,8 +8,7 @@
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
@ -32,12 +31,10 @@
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonCloverFermion<IMPLEMENTATION, CloverHelpers<IMPLEMENTATION>>;
template class WilsonCloverFermion<IMPLEMENTATION, ExpCloverHelpers<IMPLEMENTATION>>;
template class WilsonCloverFermion<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -18,10 +18,6 @@ WILSON_IMPL_LIST=" \
GparityWilsonImplF \
GparityWilsonImplD "
COMPACT_WILSON_IMPL_LIST=" \
WilsonImplF \
WilsonImplD "
DWF_IMPL_LIST=" \
WilsonImplF \
WilsonImplD \
@ -44,23 +40,13 @@ EOF
done
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
for impl in $WILSON_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done
CC_LIST="CompactWilsonCloverFermionInstantiation"
for impl in $COMPACT_WILSON_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done
@ -77,14 +63,14 @@ for impl in $DWF_IMPL_LIST $GDWF_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done
# overwrite the .cc file in Gparity directories
for impl in $GDWF_IMPL_LIST
do
ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc
ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc
done
@ -98,7 +84,7 @@ for impl in $STAG_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done

View File

@ -69,6 +69,11 @@ public:
return PeriodicBC::ShiftStaple(Link,mu);
}
//Same as Cshift for periodic BCs
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline bool isPeriodicGaugeField(void) { return true; }
};
@ -110,6 +115,11 @@ public:
return PeriodicBC::CovShiftBackward(Link, mu, field);
}
//If mu is a conjugate BC direction
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
//else
//Out(x) = U^dag_\mu(x-mu mod L)
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
{
@ -129,6 +139,13 @@ public:
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
//If mu is a conjugate BC direction
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
// = S*_\mu(x+mu) | x_\mu == L-1
//else
//Out(x) = S_\mu(x+mu mod L)
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
@ -138,6 +155,27 @@ public:
return PeriodicBC::ShiftStaple(Link,mu);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//For conjugate BC direction
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
//else
//shift = 1
//Out(x) = U_\mu(x+\hat\mu mod L)
//shift = -1
//Out(x) = U_\mu(x-\hat\mu mod L)
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CshiftLink(Link,mu,shift);
else
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }

View File

@ -49,7 +49,7 @@ NAMESPACE_BEGIN(Grid);
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef LinkField ComplexField;
typedef Field ComplexField;
};
typedef QedGImpl<vComplex> QedGImplR;

View File

@ -40,13 +40,66 @@ NAMESPACE_BEGIN(Grid);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " noise = "<<Nx<<std::endl;
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
std::cout << " | noise |^2 = "<<Nx<<std::endl;
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
}
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
for noise X (aka GaussNoise).
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
*/
template<class Field> void InversePowerBoundsCheck(int inv_pow,
int MaxIter,double tol,
LinearOperatorBase<Field> &HermOp,
Field &GaussNoise,
MultiShiftFunction &ApproxNegPow)
{
GridBase *FermionGrid = GaussNoise.Grid();
Field X(FermionGrid);
Field Y(FermionGrid);
Field Z(FermionGrid);
Field tmp1(FermionGrid), tmp2(FermionGrid);
X=GaussNoise;
RealD Nx = norm2(X);
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
tmp1 = X;
Field* in = &tmp1;
Field* out = &tmp2;
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
msCG(HermOp, *in, *out); //backwards conventions!
if(i!=inv_pow-1) std::swap(in, out);
}
Z = *out;
RealD Nz = norm2(Z);
HermOp.HermOp(Z,Y);
RealD Ny = norm2(Y);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " | noise |^2 = "<<Nx<<std::endl;
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
}
NAMESPACE_END(Grid);

View File

@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
//Note: using mixed prec CG for the heatbath solver in this action class will not work
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
// You will find that the heatbath solver simply won't converge.
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
public:
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
op.RefreshShiftCoefficients(to);
}
//Use the same solver for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& CG,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
//Use the same solver for L,R in the heatbath but different solvers elsewhere
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
//Use different solvers for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
Lop(_Lop),
Rop(_Rop),
SolverHB(HeatbathCG,false,true),
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()),
param(p),
use_heatbath_forecasting(use_fc)
use_heatbath_forecasting(use_fc),
initial_action(false)
{
AlgRemez remez(param.lo, param.hi, param.precision);
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
PowerNegHalf.Init(remez, param.tolerance, true);
};
const FermionField &getPhi() const{ return Phi; }
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (Lop.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
//
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
//
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
{
void refresh(const GaugeField &U, const FermionField &eta) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
@ -160,15 +195,16 @@ NAMESPACE_BEGIN(Grid);
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
heatbathRefreshShiftCoefficients(0, -gamma_l);
//Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHB(Lop, CG_src, CG_soln);
SolverHBL(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero(); // Just use zero as the initial guess
SolverHB(Lop, CG_src, CG_soln);
SolverHBL(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
@ -187,15 +223,16 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
//Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHB(Rop, CG_src, CG_soln);
SolverHBR(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero();
SolverHB(Rop, CG_src, CG_soln);
SolverHBR(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
@ -205,49 +242,119 @@ NAMESPACE_BEGIN(Grid);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
//Lop.RefreshShiftCoefficients(0.0);
//Rop.RefreshShiftCoefficients(-1.0);
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
//Mark that the next call to S is the first after refresh
initial_action = true;
// Bounds check
RealD EtaDagEta = norm2(eta);
norm2_eta = EtaDagEta;
// RealD PhiDagMPhi= norm2(eta);
};
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
{
#if 0
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
FermionField mPhi(Lop.FermionGrid());
FermionField spProj_in(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
mPhi = phi;
out = in;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
spProj(in, spProj_in, -1, Lop.Ls);
Lop.Omega(spProj_in, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out - Lop.k * tmp[1];
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(in, spProj_in, 1, Rop.Ls);
Rop.Omega(spProj_in, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
#endif
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + Rop.k * tmp[1];
}
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
// = 1 * \eta
out = in;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
spProj(in, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = Lop.k * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(in, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = - Rop.k * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + tmp[1];
// Reset shift coefficients for energy and force evals
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
@ -271,7 +378,7 @@ NAMESPACE_BEGIN(Grid);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
@ -281,6 +388,26 @@ NAMESPACE_BEGIN(Grid);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
if(initial_action){
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
RealD diff = action - norm2_eta;
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
//If approximate solution
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
initial_action = false;
}
return action;
};
@ -329,6 +456,40 @@ NAMESPACE_BEGIN(Grid);
};
};
template<class ImplD, class ImplF>
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
public:
INHERIT_IMPL_TYPES(ImplD);
typedef OneFlavourRationalParams Params;
private:
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
public:
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
op.RefreshShiftCoefficients(to);
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
}
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
AbstractEOFAFermion<ImplF>& _RopF,
AbstractEOFAFermion<ImplD>& _LopD,
AbstractEOFAFermion<ImplD>& _RopD,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,372 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators
/////////////////////////////////////////////////////////
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
BIG WARNING:
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
Thus for DWF the numerator operator is the Pauli-Villars operator
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
*/
template<class Impl>
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef RationalActionParams Params;
Params param;
//For action evaluation
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
//For the MD integration
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
double error = remez.generateApprox(approx_degree,1,inv_pow);
if(error > CG_tolerance)
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
approx.Init(remez, CG_tolerance,false);
approx_inv.Init(remez, CG_tolerance,true);
}
protected:
static constexpr bool Numerator = true;
static constexpr bool Denominator = false;
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const GaugeField &U){
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
}
public:
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
const Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
AlgRemez remez(param.lo,param.hi,param.precision);
//Generate approximations for action eval
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
//Generate approximations for MD
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
}else{
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
ApproxPowerMD = ApproxPowerAction;
ApproxNegPowerMD = ApproxNegPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
ApproxHalfPowerMD = ApproxHalfPowerAction;
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
}
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
};
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField eta(NumOp.FermionGrid());
// P(eta) \propto e^{- eta^dag eta}
//
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
refresh(U,eta);
}
//Allow for manual specification of random field for testing
void refresh(const GaugeField &U, const FermionField &eta) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
//
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
ImportGauge(U);
// MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
// Randomly apply rational bounds checks.
int rcheck = rand();
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
SchurDifferentiableOperator<Impl> MdagM(DenOp);
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
HighBoundCheck(MdagM,gauss,param.hi);
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
}
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
RealD action = norm2(Y);
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
const int n_f = ApproxNegPowerMD.poles.size();
const int n_pv = ApproxHalfPowerMD.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
ImportGauge(U);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
for(int k=0;k<n_f;k++){
ak = ApproxNegPowerMD.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
for(int k=0;k<n_pv;k++){
ak = ApproxHalfPowerMD.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,93 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
// cf. GeneralEvenOddRational.h for details
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class ImplD, class ImplF>
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
private:
typedef typename ImplD::FermionField FermionFieldD;
typedef typename ImplF::FermionField FermionFieldF;
FermionOperator<ImplD> & NumOpD;
FermionOperator<ImplD> & DenOpD;
FermionOperator<ImplF> & NumOpF;
FermionOperator<ImplF> & DenOpF;
Integer ReliableUpdateFreq;
protected:
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
msCG(schurOpD, in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
msCG(schurOpD, in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
precisionChange(Uf, Ud);
NumOpD.ImportGauge(Ud);
DenOpD.ImportGauge(Ud);
NumOpF.ImportGauge(Uf);
DenOpF.ImportGauge(Uf);
}
public:
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
const RationalActionParams & p, Integer _ReliableUpdateFreq
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
};
NAMESPACE_END(Grid);
#endif

View File

@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
static RationalActionParams transcribe(const Params &in){
RationalActionParams out;
out.inv_pow = 2;
out.lo = in.lo;
out.hi = in.hi;
out.MaxIter = in.MaxIter;
out.action_tolerance = out.md_tolerance = in.tolerance;
out.action_degree = out.md_degree = in.degree;
out.precision = in.precision;
out.BoundsCheckFreq = in.BoundsCheckFreq;
return out;
}
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
FermionOperator<Impl> &_DenOp,
const Params & p
) :
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Randomly apply rational bounds checks.
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( (r%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
};
NAMESPACE_END(Grid);

View File

@ -40,6 +40,8 @@ directory
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>

View File

@ -83,16 +83,10 @@ NAMESPACE_BEGIN(Grid);
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
@ -100,12 +94,22 @@ NAMESPACE_BEGIN(Grid);
RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
void refresh(const GaugeField &U, const FermionField &eta) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
@ -125,8 +129,8 @@ NAMESPACE_BEGIN(Grid);
DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
//PhiOdd =PhiOdd*scale;
//PhiEven=PhiEven*scale;
};

View File

@ -0,0 +1,6 @@
#ifndef GRID_GPARITY_H_
#define GRID_GPARITY_H_
#include<Grid/qcd/gparity/GparityFlavour.h>
#endif

View File

@ -0,0 +1,34 @@
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
}};
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
GparityFlavour(GparityFlavour::Algebra::Identity),
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
}};
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
"SigmaX",
"MinusSigmaX",
"SigmaY",
"MinusSigmaY",
"SigmaZ",
"MinusSigmaZ",
"Identity",
"MinusIdentity",
"ProjPlus",
"MinusProjPlus",
"ProjMinus",
"MinusProjMinus"}};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,475 @@
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
#define GRID_QCD_GPARITY_FLAVOUR_H
//Support for flavour-matrix operations acting on the G-parity flavour index
#include <array>
NAMESPACE_BEGIN(Grid);
class GparityFlavour {
public:
GRID_SERIALIZABLE_ENUM(Algebra, undef,
SigmaX, 0,
MinusSigmaX, 1,
SigmaY, 2,
MinusSigmaY, 3,
SigmaZ, 4,
MinusSigmaZ, 5,
Identity, 6,
MinusIdentity, 7,
ProjPlus, 8,
MinusProjPlus, 9,
ProjMinus, 10,
MinusProjMinus, 11
);
static constexpr unsigned int nSigma = 12;
static const std::array<const char *, nSigma> name;
static const std::array<const GparityFlavour, 3> sigma_mu;
static const std::array<const GparityFlavour, 6> sigma_all;
Algebra g;
public:
accelerator GparityFlavour(Algebra initg): g(initg) {}
};
// 0 1 x vector
// 1 0
template<class vtype>
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(1);
ret(1) = rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(1,0);
ret(0,1) = rhs(1,1);
ret(1,0) = rhs(0,0);
ret(1,1) = rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,1);
ret(0,1) = rhs(0,0);
ret(1,0) = rhs(1,1);
ret(1,1) = rhs(1,0);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(1);
ret(1) = -rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(1,0);
ret(0,1) = -rhs(1,1);
ret(1,0) = -rhs(0,0);
ret(1,1) = -rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,1);
ret(0,1) = -rhs(0,0);
ret(1,0) = -rhs(1,1);
ret(1,1) = -rhs(1,0);
};
// 0 -i x vector
// i 0
template<class vtype>
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesMinusI(rhs(1));
ret(1) = timesI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(1,0));
ret(0,1) = timesMinusI(rhs(1,1));
ret(1,0) = timesI(rhs(0,0));
ret(1,1) = timesI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(0,1));
ret(0,1) = timesMinusI(rhs(0,0));
ret(1,0) = timesI(rhs(1,1));
ret(1,1) = timesMinusI(rhs(1,0));
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesI(rhs(1));
ret(1) = timesMinusI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(1,0));
ret(0,1) = timesI(rhs(1,1));
ret(1,0) = timesMinusI(rhs(0,0));
ret(1,1) = timesMinusI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(0,1));
ret(0,1) = timesI(rhs(0,0));
ret(1,0) = timesMinusI(rhs(1,1));
ret(1,1) = timesI(rhs(1,0));
};
// 1 0 x vector
// 0 -1
template<class vtype>
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
//G-parity flavour projection 1/2(1+\sigma_2)
//1 -i
//i 1
template<class vtype>
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
};
//G-parity flavour projection 1/2(1-\sigma_2)
//1 i
//-i 1
template<class vtype>
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
{
iVector<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
multFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
multFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
multFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
multFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
multFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
multFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
multFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
multFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
multFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
multFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
multFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
multFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
lmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
lmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
lmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
lmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
lmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
lmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
lmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
lmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
lmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
lmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
lmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
lmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
rmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
rmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
rmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
rmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
rmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
rmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
rmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
rmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
rmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
rmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
rmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
rmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
NAMESPACE_END(Grid);
#endif // include guard

View File

@ -129,18 +129,10 @@ public:
Runner(S);
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Resources.AddRNGs();
Field U(UGrid);
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
void initializeGaugeFieldAndRNGs(Field &U){
if(!Resources.haveRNGs()) Resources.AddRNGs();
if (Parameters.StartingType == "HotStart") {
// Hot start
@ -159,14 +151,40 @@ private:
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
} else if (Parameters.StartingType == "CheckpointStartReseed") {
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
// Useful for creating new evolution streams from an existing stream
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
// an existing RNG checkpoint first; make sure one is available and named correctly
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
Resources.SeedFixedIntegers();
} else {
// others
std::cout << GridLogError << "Unrecognized StartingType\n";
std::cout
<< GridLogError
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
exit(1);
}
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
Smearing.set_Field(U);

View File

@ -115,21 +115,21 @@ private:
random(sRNG, rn_test);
std::cout << GridLogMessage
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
std::cout << GridLogMessage << "exp(-dH) = " << prob
std::cout << GridLogHMC << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n";
std::cout << GridLogMessage
std::cout << GridLogHMC
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogMessage
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
return true;
} else { // rejected
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
std::cout << GridLogMessage
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
return false;
}
@ -145,7 +145,7 @@ private:
std::streamsize current_precision = std::cout.precision();
std::cout.precision(15);
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
TheIntegrator.integrate(U);
@ -165,7 +165,7 @@ private:
std::cout.precision(15);
std::cout << GridLogMessage << "Total H after trajectory = " << H1
std::cout << GridLogHMC << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout.precision(current_precision);
@ -196,9 +196,9 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}
double t0=usecond();
@ -207,10 +207,10 @@ public:
DeltaH = evolve_hmc_step(Ucopy);
// Metropolis-Hastings test
bool accept = true;
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
accept = metropolis_test(DeltaH);
} else {
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
}
if (accept)
@ -219,7 +219,7 @@ public:
double t1=usecond();
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
for (int obs = 0; obs < Observables.size(); obs++) {
@ -228,7 +228,7 @@ public:
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
}
}

View File

@ -80,7 +80,9 @@ public:
std::cout << GridLogError << "Seeds not initialized" << std::endl;
exit(1);
}
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
sRNG_.SeedFixedIntegers(SerialSeeds);
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
pRNG_->SeedFixedIntegers(ParallelSeeds);
}
};

View File

@ -226,6 +226,9 @@ public:
//////////////////////////////////////////////////////
// Random number generators
//////////////////////////////////////////////////////
//Return true if the RNG objects have been instantiated
bool haveRNGs() const{ return have_RNG; }
void AddRNGs(std::string s = "") {
// Couple the RNGs to the GridModule tagged by s

View File

@ -136,8 +136,14 @@ protected:
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
@ -249,15 +255,19 @@ public:
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh\n";
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
// of the Metropolis
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
Smearer.set_Field(U);
// Set the (eventual) representations gauge fields
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
Representations.update(U);
// The Smearer is attached to a pointer of the gauge field
@ -267,6 +277,7 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
}

View File

@ -99,7 +99,7 @@ public:
// using wilson flow by default here
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
Real T0 = WF.energyDensityPlaquette(Usmear);
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
}

View File

@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class WilsonFlow: public Smear<Gimpl>{
public:
//Store generic measurements to take during smearing process using std::function
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
private:
unsigned int Nstep;
unsigned int measure_interval;
mutable RealD epsilon, taus;
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
mutable WilsonGaugeAction<Gimpl> SG;
void evolve_step(typename Gimpl::GaugeField&) const;
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
//Evolve the gauge field by 1 step and update tau
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
//Evolve the gauge field by 1 step and update tau and the current time step eps
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
public:
INHERIT_GIMPL_TYPES(Gimpl)
void resetActions(){ functions.clear(); }
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
//Set the class to perform the default measurements:
//the plaquette energy density every step
//the plaquette topological charge every 'topq_meas_interval' steps
//and output to stdout
void setDefaultMeasurements(int topq_meas_interval = 1);
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
Nstep(Nstep),
epsilon(epsilon),
measure_interval(interval),
SG(WilsonGaugeAction<Gimpl>(3.0)) {
// WilsonGaugeAction with beta 3.0
assert(epsilon > 0.0);
LogMessage();
setDefaultMeasurements(interval);
}
void LogMessage() {
@ -73,9 +90,29 @@ public:
// undefined for WilsonFlow
}
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
RealD energyDensityPlaquette(const GaugeField& U) const;
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
//Compute t^2 <E(t)> for time t from the plaquette
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
//t is the Wilson flow time
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
};
@ -83,7 +120,7 @@ public:
// Implementations
////////////////////////////////////////////////////////////////////////////////
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
GaugeField Z(U.Grid());
GaugeField tmp(U.Grid());
SG.deriv(U, Z);
@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
tau += epsilon;
}
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
if (maxTau - tau < eps){
eps = maxTau-tau;
}
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U.Grid());
@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
SG.deriv(U, Z);
Zprime = -Z;
Z *= 0.25; // Z0 = 1/4 * F(U)
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
Z *= -17.0/8.0;
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
Zprime += 2.0*tmp;
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
Z *= -4.0/3.0;
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
// Ramos
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
// Compute distance as norm^2 of the difference
GaugeField diffU = U - Uprime;
RealD diff = norm2(diffU);
// adjust integration step
taus += epsilon;
tau += eps;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
RealD td = tau(step);
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
static WilsonGaugeAction<Gimpl> SG(3.0);
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
}
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
assert(Nd == 4);
//E = 1/2 tr( F_munu F_munu )
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
//F_01 F_02 F_03 F_12 F_13 F_23
GaugeMat F(U.Grid());
LatticeComplexD R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
}
ComplexD out = sum(R);
out = t*t*out / RealD(U.Grid()->gSites());
return -real(out); //minus sign necessary for +ve energy
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
out.push_back( energyDensityPlaquette(t,U) );
});
smear(V,U);
return out;
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
out.push_back( energyDensityCloverleaf(t,U) );
});
smear(V,U);
return out;
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
}
//#define WF_TIMING
template <class Gimpl>
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
out = in;
for (unsigned int step = 1; step <= Nstep; step++) {
RealD taus = 0.;
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
auto start = std::chrono::high_resolution_clock::now();
evolve_step(out);
evolve_step(out, taus);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
#ifdef WF_TIMING
std::cout << "Time to evolve " << diff.count() << " s\n";
#endif
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << tau(step) << " "
<< energyDensityPlaquette(step,out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
//Perform measurements
for(auto const &meas : functions)
if( step % meas.first == 0 ) meas.second(step,taus,out);
}
}
template <class Gimpl>
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
out = in;
taus = epsilon;
RealD taus = 0.;
RealD eps = epsilon;
unsigned int step = 0;
do{
step++;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << taus << " "
<< energyDensityPlaquette(out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
evolve_step_adaptive(out, taus, eps, maxTau);
//Perform measurements
for(auto const &meas : functions)
if( step % meas.first == 0 ) meas.second(step,taus,out);
} while (taus < maxTau);
}
template <class Gimpl>
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
});
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
});
}
NAMESPACE_END(Grid);

View File

@ -88,6 +88,12 @@ namespace PeriodicBC {
return CovShiftBackward(Link,mu,arg);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
return Cshift(Link, mu, shift);
}
}
@ -158,6 +164,9 @@ namespace ConjugateBC {
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
GridBase *grid = Link.Grid();
@ -176,6 +185,9 @@ namespace ConjugateBC {
return Link;
}
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
// = S*_\mu(0) | x_\mu == L-1
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
@ -208,6 +220,35 @@ namespace ConjugateBC {
return CovShiftBackward(Link,mu,arg);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
if(shift == 1){
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
}else if(shift == -1){
tmp = Link;
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1);
}else assert(0 && "Invalid shift value");
return tmp; //shuts up the compiler fussing about the return type
}
}

View File

@ -40,27 +40,46 @@ public:
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
Complex cmi(0.0,-1.0);
A = Ta(U) * cmi;
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
//The derivative of the Lie algebra field
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
GridBase* grid = U[0].Grid();
GaugeMat Ax(grid);
GaugeMat Axm1(grid);
GaugeMat Utmp(grid);
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
if ( mu != orthog ) {
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
//Ax = A_\mu(x)
GaugeLinkToLieAlgebraField(U[mu], Ax);
//Axm1 = A_\mu(x_\mu-1)
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
GaugeLinkToLieAlgebraField(Utmp, Axm1);
//Derivative
dmuAmu = dmuAmu + Ax - Axm1;
}
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
//Fix the gauge field Umu
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
@ -122,29 +141,24 @@ public:
}
}
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
if (err_on_no_converge) assert(0);
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform(U,g);
SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
@ -159,11 +173,7 @@ public:
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu,orthog);
DmuAmu(U,dmuAmu,orthog);
std::vector<int> mask(Nd,1);
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
@ -207,16 +217,16 @@ public:
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform(U,g);
SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu,orthog);
DmuAmu(U,dmuAmu,orthog);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}

View File

@ -694,32 +694,32 @@ public:
* Adjoint rep gauge xform
*/
template<typename GaugeField,typename GaugeMat>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
GaugeMat U(grid);
GaugeMat ag(grid); ag = adj(g);
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Cshift(ag, mu, 1);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename GaugeMat>
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid();
GaugeMat ag(grid); ag = adj(g);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
}
}
template<typename GaugeField,typename GaugeMat>
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform(Umu,g);
GaugeTransform<Gimpl>(Umu,g);
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )

View File

@ -125,6 +125,57 @@ public:
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// sum over all spatial planes of plaquette
//////////////////////////////////////////////////
static void siteSpatialPlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd-1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
////////////////////////////////////
// sum over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
siteSpatialPlaquette(Plaq, U);
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(Plaq, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
//////////////////////////////////////////////////
// average over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
assert(sumplaq.size() == Lt);
double vol = Umu.Grid()->gSites() / Lt;
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
for(int t=0;t<Lt;t++)
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
return sumplaq;
}
//////////////////////////////////////////////////
// average over all x,y,z the temporal loop
//////////////////////////////////////////////////
@ -164,7 +215,7 @@ public:
double vol = Umu.Grid()->gSites();
return p.real() / vol / (4.0 * Nc ) ;
return p.real() / vol / 4.0 / 3.0;
};
//////////////////////////////////////////////////
@ -362,11 +413,11 @@ public:
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
GaugeMat vu = v*u;
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
FS = (u*v + Cshift(vu, mu, -1));
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
FS = 0.125*(FS - adj(FS));
}
static Real TopologicalCharge(GaugeLorentz &U){
static Real TopologicalCharge(const GaugeLorentz &U){
// 4d topological charge
assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
@ -389,6 +440,203 @@ public:
}
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
//Clockwise ordering
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
//Upper right loop
GaugeMat tmp = BmuI;
for(int i=1;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
FS = tmp;
//Upper left loop
tmp = BnuI;
for(int j=1;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
FS = FS + tmp;
//Lower right loop
tmp = FnuI;
for(int j=1;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
FS = FS + tmp;
//Lower left loop
tmp = FmuI;
for(int i=1;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
FS = FS + tmp;
#undef Fmu
#undef Bmu
#undef Fnu
#undef Bnu
#undef FmuI
#undef BmuI
#undef FnuI
#undef BnuI
}
//Field strength from MxN Wilson loop
//Note F_numu = - F_munu
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
if(M == N){
GaugeMat F(Umu.Grid());
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
FS = 0.125 * ( F - adj(F) );
}else{
//Average over both orientations
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
}
}
//Topological charge contribution from MxN Wilson loops
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
//output is the charge by timeslice: sum over timeslices to obtain the total
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
assert(Nd == 4);
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
//Note F_numu = - F_munu
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
//Use nu > mu
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1; nu<Nd; nu++){
F[mu][nu] = new GaugeMat(U.Grid());
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
}
}
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
ComplexField fsum(U.Grid());
fsum = Zero();
for(int c=0;c<3;c++){
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
int eps = signs[c];
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
}
for(int mu=0;mu<Nd-1;mu++)
for(int nu=mu+1; nu<Nd; nu++)
delete F[mu][nu];
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(fsum, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
Real out(0);
for(int t=0;t<Tq.size();t++) out += Tq[t];
return out;
}
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
//Use coefficients from hep-lat/9701012
//1x1 : c1=(19.-55.*c5)/9.
//2x2 : c2=(1-64.*c5)/9.
//1x2 : c3=(-64.+640.*c5)/45.
//1x3 : c4=1./5.-2.*c5
//3x3 : c5=1./20.
//Output array outer index contains the loops in the above order
//Inner index is the time coordinate
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<std::vector<Real> > out(5);
for(int i=0;i<5;i++){
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
}
return out;
}
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<Real> out(5);
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
for(int i=0;i<5;i++){
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
}
return out;
}
//Compute the 5Li topological charge
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
double c5=1./20.;
double c4=1./5.-2.*c5;
double c3=(-64.+640.*c5)/45.;
double c2=(1-64.*c5)/9.;
double c1=(19.-55.*c5)/9.;
int Lt = loops[0].size();
std::vector<Real> out(Lt,0.);
for(int t=0;t<Lt;t++)
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
return out;
}
static Real TopologicalCharge5Li(const GaugeLorentz &U){
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
Real Q = 0.;
for(int t=0;t<Qt.size();t++) Q += Qt[t];
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
return Q;
}
//////////////////////////////////////////////////////
// Similar to above for rectangle is required
//////////////////////////////////////////////////////

200
Grid/random/gaussian.h Normal file
View File

@ -0,0 +1,200 @@
// -*- C++ -*-
//===--------------------------- random -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Peter Boyle: Taken from libc++ in Clang/LLVM.
// Reason is that libstdc++ and clang differ in their return order in the normal_distribution / box mueller type step.
// standardise on one and call it "gaussian_distribution".
#pragma once
#include <cstddef>
#include <cstdint>
#include <cmath>
#include <type_traits>
#include <initializer_list>
#include <limits>
#include <algorithm>
#include <numeric>
#include <vector>
#include <string>
#include <istream>
#include <ostream>
#include <random>
// normal_distribution -> gaussian distribution
namespace Grid {
template<class _RealType = double>
class gaussian_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __mean_;
result_type __stddev_;
public:
typedef gaussian_distribution distribution_type;
strong_inline
explicit param_type(result_type __mean = 0, result_type __stddev = 1)
: __mean_(__mean), __stddev_(__stddev) {}
strong_inline
result_type mean() const {return __mean_;}
strong_inline
result_type stddev() const {return __stddev_;}
friend strong_inline
bool operator==(const param_type& __x, const param_type& __y)
{return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
friend strong_inline
bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
result_type _V_;
bool _V_hot_;
public:
// constructors and reset functions
strong_inline
explicit gaussian_distribution(result_type __mean = 0, result_type __stddev = 1)
: __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
strong_inline
explicit gaussian_distribution(const param_type& __p)
: __p_(__p), _V_hot_(false) {}
strong_inline
void reset() {_V_hot_ = false;}
// generating functions
template<class _URNG>
strong_inline
result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
strong_inline
result_type mean() const {return __p_.mean();}
strong_inline
result_type stddev() const {return __p_.stddev();}
strong_inline
param_type param() const {return __p_;}
strong_inline
void param(const param_type& __p) {__p_ = __p;}
strong_inline
result_type min() const {return -std::numeric_limits<result_type>::infinity();}
strong_inline
result_type max() const {return std::numeric_limits<result_type>::infinity();}
friend strong_inline
bool operator==(const gaussian_distribution& __x,
const gaussian_distribution& __y)
{return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
(!__x._V_hot_ || __x._V_ == __y._V_);}
friend strong_inline
bool operator!=(const gaussian_distribution& __x,
const gaussian_distribution& __y)
{return !(__x == __y);}
template <class _CharT, class _Traits, class _RT>
friend
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gaussian_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gaussian_distribution<_RT>& __x);
};
template <class _RealType>
template<class _URNG>
_RealType
gaussian_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
result_type _Up;
if (_V_hot_)
{
_V_hot_ = false;
_Up = _V_;
}
else
{
std::uniform_real_distribution<result_type> _Uni(-1, 1);
result_type __u;
result_type __v;
result_type __s;
do
{
__u = _Uni(__g);
__v = _Uni(__g);
__s = __u * __u + __v * __v;
} while (__s > 1 || __s == 0);
result_type _Fp = std::sqrt(-2 * std::log(__s) / __s);
_V_ = __v * _Fp;
_V_hot_ = true;
_Up = __u * _Fp;
}
return _Up * __p.stddev() + __p.mean();
}
template <class _CharT, class _Traits, class _RT>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gaussian_distribution<_RT>& __x)
{
auto __save_flags = __os.flags();
__os.flags(std::ios_base::dec | std::ios_base::left | std::ios_base::fixed |
std::ios_base::scientific);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
if (__x._V_hot_)
__os << __sp << __x._V_;
__os.flags(__save_flags);
return __os;
}
template <class _CharT, class _Traits, class _RT>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gaussian_distribution<_RT>& __x)
{
typedef gaussian_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
auto __save_flags = __is.flags();
__is.flags(std::ios_base::dec | std::ios_base::skipws);
result_type __mean;
result_type __stddev;
result_type _Vp = 0;
bool _V_hot = false;
__is >> __mean >> __stddev >> _V_hot;
if (_V_hot)
__is >> _Vp;
if (!__is.fail())
{
__x.param(param_type(__mean, __stddev));
__x._V_hot_ = _V_hot;
__x._V_ = _Vp;
}
__is.flags(__save_flags);
return __is;
}
}

View File

@ -26,7 +26,7 @@
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifndef GRID_HIP
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
NAMESPACE_BEGIN(Grid);
@ -82,7 +82,7 @@ void JSONWriter::writeDefault(const std::string &s, const std::string &x)
if (s.size())
ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
else
ss_ << "\""<< os.str() << "\" ," ;
ss_ << os.str() << " ," ;
}
// Reader implementation ///////////////////////////////////////////////////////

View File

@ -54,7 +54,7 @@ namespace Grid
void pop(void);
template <typename U>
void writeDefault(const std::string &s, const U &x);
#if defined(GRID_CUDA) || defined(GRID_HIP)
#ifdef __NVCC__
void writeDefault(const std::string &s, const Grid::ComplexD &x)
{
std::complex<double> z(real(x),imag(x));
@ -101,7 +101,7 @@ namespace Grid
void readDefault(const std::string &s, std::vector<U> &output);
template <typename U, typename P>
void readDefault(const std::string &s, std::pair<U,P> &output);
#if defined(GRID_CUDA) || defined(GRID_HIP)
#ifdef __NVCC__
void readDefault(const std::string &s, ComplexD &output)
{
std::complex<double> z;

View File

@ -36,7 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include "BinaryIO.h"
#include "TextIO.h"
#include "XmlIO.h"
#ifndef GRID_HIP
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
#include "JSON_IO.h"
#endif

View File

@ -80,14 +80,11 @@ void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lat
///////////////////////////////////////////////////////////////////
template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(const Lattice<vobj> &rhs,
commVector<cobj *> pointers,
int dimension,int plane,
int cbmask,compressor &compress,int type) __attribute__((noinline));
commVector<cobj *> pointers,int dimension,int plane,int cbmask,compressor &compress,int type) __attribute__((noinline));
template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
std::vector<cobj *> &pointers,int dimension,int plane,int cbmask,
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
Vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type)
{
assert( (table.size()&0x1)==0);
@ -95,15 +92,14 @@ void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead);
auto rhs_p = &rhs_v[0];
auto p0=&pointers[0][0];
auto p1=&pointers[1][0];
auto tp=&table[0];
accelerator_forNB(j, num, vobj::Nsimd(), {
compress.CompressExchange(p0,p1, rhs_p, j,
so+tp[2*j ].second,
so+tp[2*j+1].second,
type);
compress.CompressExchange(p0,p1, &rhs_v[0], j,
so+tp[2*j ].second,
so+tp[2*j+1].second,
type);
});
rhs_v.ViewClose();
}
@ -234,8 +230,8 @@ public:
};
struct Merge {
cobj * mpointer;
// std::vector<scalar_object *> rpointers;
std::vector<cobj *> vpointers;
Vector<scalar_object *> rpointers;
Vector<cobj *> vpointers;
Integer buffer_size;
Integer type;
};
@ -410,7 +406,6 @@ public:
comms_bytes+=bytes;
shm_bytes +=2*Packets[i].bytes-bytes;
}
_grid->StencilBarrier();// Synch shared memory on a single nodes
}
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
@ -425,7 +420,7 @@ public:
////////////////////////////////////////////////////////////////////////
void Communicate(void)
{
if ( 0 ){
if ( CartesianCommunicator::CommunicatorPolicy == CartesianCommunicator::CommunicatorPolicySequential ){
thread_region {
// must be called in parallel region
int mythread = thread_num();
@ -574,7 +569,7 @@ public:
d.buffer_size = buffer_size;
dv.push_back(d);
}
void AddMerge(cobj *merge_p,std::vector<cobj *> &rpointers,Integer buffer_size,Integer type,std::vector<Merge> &mv) {
void AddMerge(cobj *merge_p,Vector<cobj *> &rpointers,Integer buffer_size,Integer type,std::vector<Merge> &mv) {
Merge m;
m.type = type;
m.mpointer = merge_p;
@ -587,7 +582,6 @@ public:
}
template<class decompressor> void CommsMergeSHM(decompressor decompress) {
mpi3synctime-=usecond();
accelerator_barrier();
_grid->StencilBarrier();// Synch shared memory on a single nodes
mpi3synctime+=usecond();
shmmergetime-=usecond();
@ -1120,8 +1114,8 @@ public:
int bytes = (reduced_buffer_size*datum_bytes)/simd_layout;
assert(bytes*simd_layout == reduced_buffer_size*datum_bytes);
std::vector<cobj *> rpointers(maxl);
std::vector<cobj *> spointers(maxl);
Vector<cobj *> rpointers(maxl);
Vector<cobj *> spointers(maxl);
///////////////////////////////////////////
// Work out what to send where

View File

@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
}
//////////////////////////////////////////////////////////////////////////////////
//Copy a single lane of a SIMD tensor type from one object to another
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
///////////////////////////////////////////////////////////////////////////////////
template<class vobjOut, class vobjIn>
accelerator_inline
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
{
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
typedef typename vobjOut::vector_type ovector_type;
typedef typename vobjIn::vector_type ivector_type;
constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
typedef typename vobjOut::scalar_type oscalar_type;
typedef typename vobjIn::scalar_type iscalar_type;
typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
typedef oextract_type * opointer;
typedef iextract_type * ipointer;
constexpr int oNsimd=ovector_type::Nsimd();
constexpr int iNsimd=ivector_type::Nsimd();
iscalar_type itmp;
oscalar_type otmp;
opointer __restrict__ op = (opointer)&vecOut;
ipointer __restrict__ ip = (ipointer)&vecIn;
for(int w=0;w<owords;w++){
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
otmp = itmp; //potential precision change
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
}
}
NAMESPACE_END(Grid);

View File

@ -195,15 +195,12 @@ void acceleratorInit(void)
#ifdef GRID_SYCL
cl::sycl::queue *theGridAccelerator;
cl::sycl::queue *theCopyAccelerator;
void acceleratorInit(void)
{
int nDevices = 1;
cl::sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector };
theGridAccelerator = new sycl::queue (selectedDevice);
// theCopyAccelerator = new sycl::queue (selectedDevice);
theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
zeInit(0);

View File

@ -206,7 +206,8 @@ inline void *acceleratorAllocShared(size_t bytes)
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
return ptr;
};
@ -216,15 +217,47 @@ inline void *acceleratorAllocDevice(size_t bytes)
auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
return ptr;
};
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline void acceleratorFreeShared(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorFreeDevice(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) {
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
auto err = cudaMemset(base,value,bytes);
if( err != cudaSuccess ) {
printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
@ -247,6 +280,7 @@ inline int acceleratorIsCommunicable(void *ptr)
//////////////////////////////////////////////
// SyCL acceleration
//////////////////////////////////////////////
#ifdef GRID_SYCL
NAMESPACE_END(Grid);
#include <CL/sycl.hpp>
@ -261,7 +295,6 @@ NAMESPACE_END(Grid);
NAMESPACE_BEGIN(Grid);
extern cl::sycl::queue *theGridAccelerator;
extern cl::sycl::queue *theCopyAccelerator;
#ifdef __SYCL_DEVICE_ONLY__
#define GRID_SIMT
@ -289,7 +322,7 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
cgh.parallel_for( \
cl::sycl::nd_range<3>(global,local), \
[=] (cl::sycl::nd_item<3> item) /*mutable*/ \
[[intel::reqd_sub_group_size(16)]] \
[[intel::reqd_sub_group_size(8)]] \
{ \
auto iter1 = item.get_global_id(0); \
auto iter2 = item.get_global_id(1); \
@ -298,19 +331,19 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
}); \
});
#define accelerator_barrier(dummy) { theGridAccelerator->wait(); }
#define accelerator_barrier(dummy) theGridAccelerator->wait();
inline void *acceleratorAllocShared(size_t bytes){ return malloc_shared(bytes,*theGridAccelerator);};
inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theGridAccelerator);};
inline void acceleratorFreeShared(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopySynchronise(void) { theCopyAccelerator->wait(); }
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theCopyAccelerator->memset(base,value,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) {
theGridAccelerator->memcpy(to,from,bytes);
}
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); std::cout<<"acceleratorCopySynchronise() wait "<<std::endl; }
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theGridAccelerator->memset(base,value,bytes); theGridAccelerator->wait();}
inline int acceleratorIsCommunicable(void *ptr)
{
#if 0
@ -481,10 +514,9 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
#define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ... ) thread_for2d(iter1,num1,iter2,num2,{ __VA_ARGS__ });
accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); }
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ thread_bcopy(from,to,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ memcpy(to,from,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopySynchronise(void) {};
inline int acceleratorIsCommunicable(void *ptr){ return 1; }
@ -511,16 +543,7 @@ inline void *acceleratorAllocCpu(size_t bytes){return memalign(GRID_ALLOC_ALIGN,
inline void acceleratorFreeCpu (void *ptr){free(ptr);};
#endif
//////////////////////////////////////////////
// Fencing needed ONLY for SYCL
//////////////////////////////////////////////
#ifdef GRID_SYCL
inline void acceleratorFenceComputeStream(void){ accelerator_barrier();};
#else
// Ordering within a stream guaranteed on Nvidia & AMD
inline void acceleratorFenceComputeStream(void){ };
#endif
///////////////////////////////////////////////////
// Synchronise across local threads for divergence resynch

Some files were not shown because too many files have changed in this diff Show More