1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-21 09:12:03 +01:00

Compare commits

..

1 Commits

Author SHA1 Message Date
bbec7f9fa9 Debug code 2023-04-20 14:54:36 -04:00
172 changed files with 2318 additions and 14559 deletions

View File

@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
if BUILD_SP
extra_sources+=$(SP_FERMION_FILES)
extra_sources+=$(SP_TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a

View File

@ -69,8 +69,7 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/PowerMethod.h>
NAMESPACE_CHECK(PowerMethod);
#include <Grid/algorithms/multigrid/MultiGrid.h>
#include <Grid/algorithms/CoarsenedMatrix.h>
NAMESPACE_CHECK(CoarsendMatrix);
#include <Grid/algorithms/FFT.h>

View File

@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
blockSum(CoarseInner,fine_inner_msk);
}
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>

View File

@ -145,44 +145,6 @@ public:
}
};
////////////////////////////////////////////////////////////////////
// Create a shifted HermOp
////////////////////////////////////////////////////////////////////
template<class Field>
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
LinearOperatorBase<Field> &_Mat;
RealD _shift;
public:
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
assert(0);
}
void AdjOp (const Field &in, Field &out){
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.HermOp(in,out);
out = out + _shift*in;
}
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////

View File

@ -90,8 +90,9 @@ public:
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order,0.0);
Coeffs[order-1] = 1.0;
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.

View File

@ -40,7 +40,7 @@ public:
RealD norm;
RealD lo,hi;
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
RealD approx(RealD x);
void csv(std::ostream &out);
void gnuplot(std::ostream &out);

View File

@ -33,110 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Deflation methods considered
* -- Solve P A x = P b [ like Luscher ]
* DEF-1 M P A x = M P b [i.e. left precon]
* DEF-2 P^T M A x = P^T M b
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
* ADEF-2 Preconditioner = P^T M + Q
* BNN Preconditioner = P^T M P + Q
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
* Vout = x
*/
NAMESPACE_BEGIN(Grid);
template<class Field>
class TwoLevelCG : public LinearFunction<Field>
// abstract base
template<class Field, class CoarseField>
class TwoLevelFlexiblePcg : public LinearFunction<Field>
{
public:
int verbose;
RealD Tolerance;
Integer MaxIterations;
const int mmax = 5;
GridBase *grid;
GridBase *coarsegrid;
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
LinearOperatorBase<Field> *_Linop
OperatorFunction<Field> *_Smoother,
LinearFunction<CoarseField> *_CoarseSolver;
// Need somthing that knows how to get from Coarse to fine and back again
// more most opertor functions
TwoLevelCG(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
TwoLevelFlexiblePcg(RealD tol,
Integer maxit,
LinearOperatorBase<Field> *Linop,
LinearOperatorBase<Field> *SmootherLinop,
OperatorFunction<Field> *Smoother,
OperatorFunction<CoarseField> CoarseLinop
) :
Tolerance(tol),
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
_Linop(Linop),
_PreconditionerLinop(PrecLinop),
_Preconditioner(Preconditioner)
{
grid = fine;
verbose=0;
};
virtual void operator() (const Field &src, Field &x)
{
std::cout << GridLogMessage<<"HDCG: fPcg starting"<<std::endl;
// The Pcg routine is common to all, but the various matrices differ from derived
// implementation to derived implmentation
void operator() (const Field &src, Field &psi){
void operator() (const Field &src, Field &psi){
psi.Checkerboard() = src.Checkerboard();
grid = src.Grid();
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
RealD tn;
RealD guess = norm2(psi);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 5;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
std::vector<Field> p(mmax,grid);
std::vector<Field> p (mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field z(grid);
Field x (grid); x = psi;
Field z (grid);
Field tmp(grid);
Field mp (grid);
Field r (grid);
Field mu (grid);
Field r (grid);
Field mu (grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
//Initial residual computation & set up
RealD guess = norm2(x);
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
RealD src_nrm = norm2(src);
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
if ( src_nrm == 0.0 ) {
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
x=Zero();
}
RealD tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
x=src;
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp[0]);
HermOp(x,mmp); // Shouldn't this be something else?
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
{
double n1 = norm2(x);
double n2 = norm2(mmp[0]);
double n3 = norm2(r);
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
PcgM1(r,z);
M1(r,z,tmp,mp,SmootherMirs);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Solve for Mss mu = P A z and set p = z-mu
// Def2 p = 1 - Q Az = Pright z
// Def2: p = 1 - Q Az = Pright z
// Other algos M2 is trivial
///////////////////////////////////////
PcgM2(z,p[0]);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
Field pp(grid);
M2(z,p[0]);
for (int k=0;k<=MaxIterations;k++){
@ -144,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= PcgM3(p[peri_k],mmp[peri_k]);
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
a = rtz/d;
// Memorise this
@ -154,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
// Compute z = M x
PcgM1(r,z);
M1(r,z,tmp,mp);
{
RealD n1,n2;
n1=norm2(r);
n2=norm2(z);
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
}
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
// PcgM2(z,p[0]);
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
p[peri_kp]=mu;
p[peri_kp]=p[peri_k];
// Standard search direction p -> z + b p
// Standard search direction p -> z + b p ; b =
b = (rtzp)/rtz;
int northog;
// k=zero <=> peri_kp=1; northog = 1
// k=1 <=> peri_kp=2; northog = 2
// ... ... ...
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
// k=mmax-1<=> peri_kp=0; northog = 1
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
@ -192,315 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
}
RealD rrn=sqrt(rn/ssq);
RealD rtn=sqrt(rtz/ssq);
RealD rtnp=sqrt(rtzp/ssq);
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
// Stopping condition
if ( rn <= rsq ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp[0]);
HermOp(x,mmp); // Shouldn't this be something else?
axpy(tmp,-1.0,src,mmp[0]);
RealD mmpnorm = sqrt(norm2(mmp[0]));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
RealD psinorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
return k;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
// Non-convergence
assert(0);
}
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 2;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
src[0].Grid()->Barrier();
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){
Vstart(x[rhs],src[rhs]);
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
a[rhs] = rtz[rhs]/d[rhs];
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
}
// Compute z = M x (for *all* RHS)
PcgM1(r,z);
RealD max_rn=0.0;
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
{
std::cout << "PcgM1 default (cheat) mrhs versoin"<<std::endl;
for(int rhs=0;rhs<in.size();rhs++){
this->PcgM1(in[rhs],out[rhs]);
}
}
virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(Field & x,const Field & src)=0;
virtual void M(Field & in,Field & out,Field & tmp) {
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
virtual void M1(Field & in, Field & out) {// the smoother
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout.
/////////////////////////////////////////////////////////////////////
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2 : public TwoLevelCG<Field>
{
public:
///////////////////////////////////////////////////////////////////////////////////
// Need something that knows how to get from Coarse to fine and back again
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
///////////////////////////////////////////////////////////////////////////////////
GridBase *coarsegrid;
Aggregation &_Aggregates;
LinearFunction<CoarseField> &_CoarseSolver;
LinearFunction<CoarseField> &_CoarseSolverPrecise;
///////////////////////////////////////////////////////////////////////////////////
// more most opertor functions
TwoLevelADEF2(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
Aggregation &Aggregates
) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
_CoarseSolver(CoarseSolver),
_CoarseSolverPrecise(CoarseSolverPrecise),
_Aggregates(Aggregates)
{
coarsegrid = Aggregates.CoarseGrid;
};
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("MultiGridPreconditioner ");
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(grid);
Field Min(grid);
Field tmp(this->grid);
Field Min(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
PcgM(in,Min); // Smoother call
GridStopWatch SmootherTimer;
GridStopWatch MatrixTimer;
SmootherTimer.Start();
this->_Smoother(in,Min);
SmootherTimer.Stop();
MatrixTimer.Start();
this->_FineLinop.HermOp(Min,out);
MatrixTimer.Stop();
HermOp(Min,out);
axpy(tmp,-1.0,out,in); // tmp = in - A Min
GridStopWatch ProjTimer;
GridStopWatch CoarseTimer;
GridStopWatch PromTimer;
ProjTimer.Start();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
ProjTimer.Stop();
CoarseTimer.Start();
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
CoarseTimer.Stop();
PromTimer.Start();
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
PromTimer.Stop();
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
ProjectToSubspace(tmp,PleftProj);
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
axpy(out,1.0,Min,tmp); // Min+tmp
}
virtual void Vstart(Field & x,const Field & src)
{
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
virtual void M2(const Field & in, Field & out) {
out=in;
// Must override for Def2 only
// case PcgDef2:
// Pright(in,out);
// break;
}
virtual RealD M3(const Field & p, Field & mmp){
double d,dd;
HermOpAndNorm(p,mmp,d,dd);
return dd;
// Must override for Def1 only
// case PcgDef1:
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
// Pleft(mp,mmp);
// d=real(linop_d->inner(p,mmp));
}
virtual void VstartDef2(Field & xconst Field & src){
//case PcgDef2:
//case PcgAdef2:
//case PcgAdef2f:
//case PcgV11f:
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
@ -512,157 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
Field r(this->grid);
Field mmp(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
Field r(grid);
Field mmp(grid);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
this->_Aggregates.ProjectToSubspace(PleftProj,src);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
HermOp(x,mmp);
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
ProjectToSubspace(r,PleftProj);
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
PromoteFromSubspace(PleftMss_proj,mmp);
x=x+mmp;
}
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2mrhs : public TwoLevelADEF2<Field,CoarseField,Aggregation>
{
public:
GridBase *coarsegridmrhs;
LinearFunction<CoarseField> &_CoarseSolverMrhs;
LinearFunction<CoarseField> &_CoarseGuesser;
TwoLevelADEF2mrhs(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
LinearFunction<CoarseField> &CoarseSolverMrhs,
LinearFunction<CoarseField> &CoarseGuesser,
GridBase *rhsgrid,
Aggregation &Aggregates) :
TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolver,CoarseSolverPrecise,Aggregates),
_CoarseSolverMrhs(CoarseSolverMrhs),
_CoarseGuesser(CoarseGuesser)
{
coarsegridmrhs = rhsgrid;
};
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
int nrhs=in.size();
std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl;
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(this->grid);
std::vector<Field> Min(nrhs,this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
this->grid->Barrier();
std::cout << " Calling smoother for "<<rhs<<std::endl;
this->grid->Barrier();
this->_Smoother(in[rhs],Min[rhs]);
this->grid->Barrier();
std::cout << " smoother done "<<rhs<<std::endl;
this->grid->Barrier();
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
this->grid->Barrier();
std::cout << " Hermop for "<<rhs<<std::endl;
this->grid->Barrier();
axpy(tmp,-1.0,out[rhs],in[rhs]); // tmp = in - A Min
this->grid->Barrier();
std::cout << " axpy "<<rhs<<std::endl;
this->grid->Barrier();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp); // can optimise later
this->grid->Barrier();
std::cout << " project "<<rhs<<std::endl;
this->grid->Barrier();
InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
this->grid->Barrier();
std::cout << " insert rhs "<<rhs<<std::endl;
this->grid->Barrier();
this->_CoarseGuesser(PleftProj,PleftMss_proj);
this->grid->Barrier();
std::cout << " insert guess "<<rhs<<std::endl;
this->grid->Barrier();
InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
}
std::cout << " Coarse solve "<<std::endl;
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp
}
std::cout << " Extracted "<<std::endl;
virtual void Vstart(Field & x,const Field & src){
return;
}
};
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout. Override in Def1
/////////////////////////////////////////////////////////////////////
virtual void Vout (Field & in, Field & out,Field & src){
out = in;
//case PcgDef1:
// //Qb + PT x
// ProjectToSubspace(src,PleftProj);
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
// PromoteFromSubspace(PleftMss_proj,tmp);
//
// Pright(in,out);
//
// linop_d->axpy(out,tmp,out,1.0);
// break;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Pright and Pleft are common to all implementations
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void Pright(Field & in,Field & out){
// P_R = [ 1 0 ]
// [ -Mss^-1 Msb 0 ]
Field in_sbar(grid);
ProjectToSubspace(in,PleftProj);
PromoteFromSubspace(PleftProj,out);
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
HermOp(in_sbar,out);
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
PromoteFromSubspace(PleftMss_proj,out); //
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
}
virtual void Pleft (Field & in,Field & out){
// P_L = [ 1 -Mbs Mss^-1]
// [ 0 0 ]
Field in_sbar(grid);
Field tmp2(grid);
Field Mtmp(grid);
ProjectToSubspace(in,PleftProj);
PromoteFromSubspace(PleftProj,out);
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
PromoteFromSubspace(PleftMss_proj,out);
HermOp(out,Mtmp);
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
PromoteFromSubspace(PleftProj,tmp2);
axpy(out,-1.0,tmp2,Mtmp);
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
}
}
template<class Field>
class TwoLevelADEF1defl : public TwoLevelCG<Field>
{
public:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp){
TwoLevelADEF1defl(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
std::vector<Field> &_evec,
std::vector<RealD> &_eval) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
evec(_evec),
eval(_eval)
{};
// Can just inherit existing M2
// Can just inherit existing M3
// Simple vstart - do nothing
virtual void Vstart(Field & x,const Field & src){
x=src; // Could apply Q
};
// Override PcgM1
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("EvecPreconditioner ");
int N=evec.size();
Field Pin(this->grid);
Field Qin(this->grid);
//MP + Q = M(1-AQ) + Q = M
// // If we are eigenvector deflating in coarse space
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
// // A Q = Sum_i |phi_i> <phi_i|
// // M(1-AQ) = M(1-proj) + Q
Qin.Checkerboard()=in.Checkerboard();
Qin = Zero();
Pin = in;
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
auto ip = TensorRemove(innerProduct(tmp,in));
axpy(Qin, ip / eval[i],tmp,Qin);
axpy(Pin, -ip ,tmp,Pin);
}
this->_Smoother(Pin,out);
out = out + Qin;
}
};
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
NAMESPACE_END(Grid);
}
virtual void M2(Field & in, Field & out){
}
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
}
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
}
}
/*
template<class Field>
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
}
template<class Field>
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
}
template<class Field>
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
}
template<class Field>
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
public:
virtual void M(Field & in,Field & out,Field & tmp);
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
virtual void M2(Field & in, Field & out);
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
}
*/
#endif

View File

@ -183,13 +183,13 @@ public:
<< "\tTrue residual " << true_residual
<< "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
@ -207,8 +207,7 @@ public:
TrueResidual = sqrt(norm2(p)/ssq);
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
<<" residual "<< TrueResidual<< std::endl;
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;

View File

@ -144,7 +144,7 @@ public:
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
<<" target resid^2 "<<rsq[s]<<std::endl;
<<" target resid "<<rsq[s]<<std::endl;
ps[s] = src;
}
// r and p for primary

View File

@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<" target " << eresid*eresid << " conv " <<conv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
};
@ -421,15 +419,14 @@ until convergence
}
}
if ( Nconv < Nstop ) {
if ( Nconv < Nstop )
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
}
eval=eval2;
//Keep only converged
eval.resize(Nstop);// was Nconv
evec.resize(Nstop,grid);// was Nconv
eval.resize(Nconv);// Nstop?
evec.resize(Nconv,grid);// Nstop?
basisSortInPlace(evec,eval,reverse);
}
@ -459,7 +456,7 @@ until convergence
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
const RealD tiny = 1.0e-20;
assert( k< Nm );
@ -467,7 +464,7 @@ until convergence
Field& evec_k = evec[k];
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
if(k>0) w -= lme[k-1] * evec[k-1];
@ -482,18 +479,18 @@ until convergence
lme[k] = beta;
if ( (k>0) && ( (k % orth_period) == 0 )) {
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,

View File

@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations : public LinearFunction<Field>{
template<class Field> class NormalEquations {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
@ -60,7 +60,7 @@ public:
}
};
template<class Field> class HPDSolver : public LinearFunction<Field> {
template<class Field> class HPDSolver {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
@ -78,13 +78,13 @@ public:
void operator() (const Field &in, Field &out){
_Guess(in,out);
_HermitianSolver(_Matrix,in,out); //M out = in
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
template<class Field> class MdagMSolver : public LinearFunction<Field> {
template<class Field> class MdagMSolver {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;

View File

@ -20,7 +20,7 @@ template<class Field> class PowerMethod
RealD evalMaxApprox = 0.0;
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_EST_ = 100;
const int _MAX_ITER_EST_ = 50;
for (int i=0;i<_MAX_ITER_EST_;i++) {

View File

@ -1,381 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/Aggregates.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x)
{
// return std::pow(x,-4);
// return std::pow(x,-3);
return std::pow(x,-5);
}
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
int nn=nbasis;
RealD scale;
FineField noise(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
subspace[b] = noise;
}
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
{
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
<<ordermin<<" step "<<orderstep
<<" lo"<<filterlo<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
// Refine
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
noise = Mn;
PowerLaw(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
// normalise
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
int orderfilter
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
double Lo,double tol,int maxit)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
// Filter
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
//
// 1/(x+Lo) - 1/(x+2 Lo)
double epsilon = Lo/3;
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
std::vector<RealD> tols({tol,tol,tol,tol});
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
MultiShiftFunction msf(4,0.0,95.0);
std::cout << "msf constructed "<<std::endl;
msf.poles=shifts;
msf.residues=alpha;
msf.tolerances=tols;
msf.norm=0.0;
msf.order=alpha.size();
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
MSCG(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
double Lo,double tol,int maxit)
{
FineField tmp(FineGrid);
for(int b =0;b<nbasis;b++)
{
RealD MirsShift = Lo;
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,MirsShift);
CGsloppy(hermop,subspace[b],tmp);
subspace[b]=tmp;
}
}
};
NAMESPACE_END(Grid);

View File

@ -1,537 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifdef GRID_HIP
#include <hipblas/hipblas.h>
#endif
#ifdef GRID_CUDA
#include <hipblas/hipblas.h>
#endif
#ifdef GRID_SYCL
#error // need oneMKL version
#endif
///////////////////////////////////////////////////////////////////////
// Need to rearrange lattice data to be in the right format for a
// batched multiply. Might as well make these static, dense packed
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
typedef hipblasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_CUDA
typedef cudablasHandle_t gridblasHandle_t;
#endif
#ifdef GRID_SYCL
typedef int32_t gridblasHandle_t;
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
typedef int32_t gridblasHandle_t;
#endif
class GridBLAS {
public:
static gridblasHandle_t gridblasHandle;
static int gridblasInit;
static void Init(void)
{
if ( ! gridblasInit ) {
#ifdef GRID_CUDA
std::cout << "cublasCreate"<<std::endl;
cublasCreate(&gridblasHandle);
#endif
#ifdef GRID_HIP
std::cout << "hipblasCreate"<<std::endl;
hipblasCreate(&gridblasHandle);
#endif
#ifdef GRID_SYCL
#endif
}
}
// Force construct once
GridBLAS() { Init(); };
~GridBLAS() { };
/////////////////////////////////////////////////////////////////////////////////////
// BLAS GEMM conventions:
/////////////////////////////////////////////////////////////////////////////////////
// - C = alpha A * B + beta C
// Dimensions:
// - C_m.n
// - A_m.k
// - B_k.n
// - Flops = 8 M N K
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
// M=60, N=12
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
/////////////////////////////////////////////////////////////////////////////////////
void synchronise(void)
{
#ifdef GRID_HIP
auto err = hipDeviceSynchronize();
assert(err==hipSuccess);
#endif
#ifdef GRID_CUDA
auto err = cudaDeviceSynchronize();
assert(err==cudaSuccess);
#endif
#ifdef GRID_SYCL
accelerator_barrier();
#endif
}
void benchmark(int nbasis, int nrhs, int coarseVol, int nstencil)
{
int32_t N_A = nbasis*nbasis*coarseVol*nstencil;
int32_t N_B = nbasis*nrhs*coarseVol*nstencil; // One leg of stencil at a time
int32_t N_C = nbasis*nrhs*coarseVol*nstencil;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
for(int i=0;i<10;i++){
RealD t0 = usecond();
for(int s=0;s<nstencil;s++){
gemmStridedBatched(nbasis,nrhs,nbasis,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
coarseVol);
}
synchronise();
RealD t1 = usecond();
RealD flops = 8.0*nbasis*nbasis*nrhs*coarseVol*nstencil;
RealD bytes = 1.0*sizeof(ComplexD)*(nbasis*nbasis+nbasis*nrhs*3)*coarseVol*nstencil;
std::cout << " batched Blas call "<<i<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
std::cout << " batched Blas call "<<i<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
}
void gemmBatched(int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
deviceVector<ComplexD*> &Bkn,
ComplexD beta,
deviceVector<ComplexD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasZgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex **)&Amk[0], lda,
(hipblasDoubleComplex **)&Bkn[0], ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasZgemmBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex **)&Amk[0], lda,
(cuDoubleComplex **)&Bkn[0], ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k, ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
void gemmBatched(int m,int n, int k,
ComplexF alpha,
deviceVector<ComplexF*> &Amk, // pointer list to matrices
deviceVector<ComplexF*> &Bkn,
ComplexF beta,
deviceVector<ComplexF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasCgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasComplex *) &alpha_p[0],
(hipblasComplex **)&Amk[0], lda,
(hipblasComplex **)&Bkn[0], ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex **)&Cmn[0], ldc,
batchCount);
// std::cout << " hipblas return code " <<(int)err<<std::endl;
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasCgemmBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex **)&Amk[0], lda,
(cuComplex **)&Bkn[0], ldb,
(cuComplex *) &beta_p[0],
(cuComplex **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k, ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasSgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasSgemmBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k, ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
auto err = cublasDgemmBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
/*
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t batchCount64=batchCount;
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
onemkl::transpose::N,
onemkl::transpose::N,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
1,&batchCount64);
*/
//MKLs cblas_<T>gemm_batch & OneAPI
#warning "oneMKL implementation not built "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k, ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Strided case used by benchmark, but generally unused in Grid
// Keep a code example in double complex, but don't generate the single and real variants for now
////////////////////////////////////////////////////////////////////////////////////////////////
void gemmStridedBatched(int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // pointer list to matrices
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn,
int batchCount)
{
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
int sda = m*k;
int sdb = k*n;
int sdc = m*n;
deviceVector<ComplexD> alpha_p(1);
deviceVector<ComplexD> beta_p(1);
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
#ifdef GRID_HIP
auto err = hipblasZgemmStridedBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda, sda,
(hipblasDoubleComplex *) Bkn, ldb, sdb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc, sdc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasZgemmStridedBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda, sda,
(cuDoubleComplex *) Bkn, ldb, sdb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc, sdc,
batchCount);
#endif
#ifdef GRID_SYCL
#warning "oneMKL implementation not made "
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k, ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
}
};
NAMESPACE_END(Grid);

View File

@ -1,467 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
int hermitian;
GridBase * _FineGrid;
GridCartesian * _CoarseGrid;
NonLocalStencilGeometry &geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
std::vector<CoarseMatrix> _A;
std::vector<CoarseMatrix> _Adag;
std::vector<CoarseVector> MultTemporaries;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
void ShiftMatrix(RealD shift)
{
int Nd=_FineGrid->Nd();
Coordinate zero_shift(Nd,0);
for(int p=0;p<geom.npoint;p++){
if ( zero_shift==geom.shifts[p] ) {
_A[p] = _A[p]+shift;
_Adag[p] = _Adag[p]+shift;
}
}
}
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
{
int nfound=0;
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
for(int p=0;p<geom.npoint;p++){
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
// Search for the same relative shift
// Avoids brutal handling of Grid pointers
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
nfound++;
}
}
}
assert(nfound==geom.npoint);
ExchangeCoarseLinks();
}
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
_CoarseGrid(CoarseGrid),
hermitian(1),
Cell(_geom.Depth(),_CoarseGrid),
Stencil(Cell.grids.back(),geom.shifts)
{
{
int npoint = _geom.npoint;
}
_A.resize(geom.npoint,CoarseGrid);
_Adag.resize(geom.npoint,CoarseGrid);
}
void M (const CoarseVector &in, CoarseVector &out)
{
Mult(_A,in,out);
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if ( hermitian ) M(in,out);
else Mult(_Adag,in,out);
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
RealD tmult2=0;
ttot=-usecond();
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
texch-=usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin);
texch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t osites=pin.Grid()->oSites();
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
+ 2.0*osites*sizeof(siteVector)*npoint;
{
tviews-=usecond();
autoView( in_v , pin, AcceleratorRead);
autoView( out_v , pout, AcceleratorWriteDiscard);
autoView( Stencil_v , Stencil, AcceleratorRead);
tviews+=usecond();
// Static and prereserve to keep UVM region live and not resized across multiple calls
ttemps-=usecond();
MultTemporaries.resize(npoint,pin.Grid());
ttemps+=usecond();
std::vector<Aview> AcceleratorViewContainer_h;
std::vector<Vview> AcceleratorVecViewContainer_h;
tviews-=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
}
tviews+=usecond();
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
auto Aview_p = &AcceleratorViewContainer[0];
auto Vview_p = &AcceleratorVecViewContainer[0];
tcopy-=usecond();
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
tcopy+=usecond();
tmult-=usecond();
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int32_t ss = spb/(nbasis*npoint);
int32_t bp = spb%(nbasis*npoint);
int32_t point= bp/nbasis;
int32_t b = bp%nbasis;
auto SE = Stencil_v.GetEntry(point,ss);
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
for(int bb=1;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
}
coalescedWrite(Vview_p[point][ss](b),res);
});
tmult2-=usecond();
accelerator_for(sb, osites*nbasis, Nsimd, {
int ss = sb/nbasis;
int b = sb%nbasis;
auto res = coalescedRead(Vview_p[0][ss](b));
for(int point=1;point<npoint;point++){
res = res + coalescedRead(Vview_p[point][ss](b));
}
coalescedWrite(out_v[ss](b),res);
});
tmult2+=usecond();
tmult+=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h[p].ViewClose();
AcceleratorVecViewContainer_h[p].ViewClose();
}
}
text-=usecond();
out = Cell.Extract(pout);
text+=usecond();
ttot+=usecond();
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
// std::cout << GridLogPerformance<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
void PopulateAdag(void)
{
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
Coordinate bcoor;
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
for(int p=0;p<geom.npoint;p++){
Coordinate scoor = bcoor;
for(int mu=0;mu<bcoor.size();mu++){
int L = CoarseGrid()->GlobalDimensions()[mu];
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
}
// Flip to poke/peekLocalSite and not too bad
auto link = peekSite(_A[p],scoor);
int pp = geom.Reverse(p);
pokeSite(adj(link),_Adag[pp],bcoor);
}
}
}
/////////////////////////////////////////////////////////////
//
// A) Only reduced flops option is to use a padded cell of depth 4
// and apply MpcDagMpc in the padded cell.
//
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
// Cost is 81x more, same as stencil size.
//
// But: can eliminate comms and do as local dirichlet.
//
// Local exchange gauge field once.
// Apply to all vectors, local only computation.
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
//
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
// pad by 2, apply Doe
// pad by 3, apply Deo
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
//
// => almost factor of 10 in setup cost, excluding data rearrangement
//
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
/////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// BFM HDCG style approach: Solve a system of equations to get Aij
//////////////////////////////////////////////////////////
/*
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
*
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
* = \sum_ball e^{iqk.delta} A_ji
*
* Must invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*/
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
CoarseVector coarseInner(CoarseGrid());
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
tphase=-usecond();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid());
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
tproj-=usecond();
blockProjectFast(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
PopulateAdag();
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
void ExchangeCoarseLinks(void){
for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.ExchangePeriodic(_A[p]);
_Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -1,402 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/algorithms/multigrid/BatchedBlas.h>
NAMESPACE_BEGIN(Grid);
// Move this to accelerator.h
// Also give a copy device.
// Rename acceleratorPut
// Rename acceleratorGet
template<class T> void deviceSet(T& dev,T&host)
{
acceleratorCopyToDevice(&host,&dev,sizeof(T));
}
template<class T> T deviceGet(T& dev)
{
T host;
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
return host;
}
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef typename CComplex::scalar_object SComplex;
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef iVector<SComplex,nbasis > calcVector;
typedef iMatrix<SComplex,nbasis > calcMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
GridCartesian * _CoarseGridMulti;
GridCartesian * _CoarseGrid;
GeneralCoarseOp & _Op;
NonLocalStencilGeometry geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
deviceVector<calcVector> BLAS_B;
deviceVector<calcVector> BLAS_C;
std::vector<deviceVector<calcMatrix> > BLAS_A;
std::vector<deviceVector<ComplexD *> > BLAS_AP;
std::vector<deviceVector<ComplexD *> > BLAS_BP;
deviceVector<ComplexD *> BLAS_CP;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
MultiGeneralCoarsenedMatrix(GeneralCoarseOp & Op,GridCartesian *CoarseGridMulti) :
_Op(Op),
_CoarseGrid(Op.CoarseGrid()),
_CoarseGridMulti(CoarseGridMulti),
geom(_CoarseGridMulti,Op.geom.hops,Op.geom.skip+1),
Cell(Op.geom.Depth(),_CoarseGridMulti),
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
{
int32_t padded_sites = _Op._A[0].Grid()->lSites();
int32_t unpadded_sites = _CoarseGrid->lSites();
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
int32_t orhs = nrhs/CComplex::Nsimd();
/////////////////////////////////////////////////
// Device data vector storage
/////////////////////////////////////////////////
BLAS_A.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
}
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
BLAS_AP.resize(geom.npoint);
BLAS_BP.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_AP[p].resize(unpadded_sites);
BLAS_BP[p].resize(unpadded_sites);
}
BLAS_CP.resize(unpadded_sites);
/////////////////////////////////////////////////
// Pointers to data
/////////////////////////////////////////////////
// Site identity mapping for A, C
for(int p=0;p<geom.npoint;p++){
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
//ComplexD *ptr = (ComplexD *)&BLAS_A[p][0]; std::cout << " A ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_A[p].size()<<std::endl;
deviceSet(BLAS_AP[p][ss],ptr);
}
}
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
//ComplexD *ptr = (ComplexD *)&BLAS_C[0]; std::cout << " C ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_C.size()<<std::endl;
deviceSet(BLAS_CP[ss],ptr);
}
/////////////////////////////////////////////////
// Neighbour table is more complicated
/////////////////////////////////////////////////
int32_t j=0; // Interior point counter (unpadded)
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
int ghost_zone=0;
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
}
}
// GeneralStencilEntryReordered tmp;
if( ghost_zone==0) {
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
// std::cout << " B ptr "<< nbr<<"/"<<BLAS_B.size()<<std::endl;
assert(nbr<BLAS_B.size());
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
// ComplexD * ptr = (ComplexD *)&BLAS_B[0];
// std::cout << " B ptr unpadded "<<std::hex<<ptr<<std::dec<<" "<<s<<"/"<<padded_sites<<std::endl;
// std::cout << " B ptr padded "<<std::hex<<ptr<<std::dec<<" "<<j<<"/"<<unpadded_sites<<std::endl;
deviceSet(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
// auto tmp = deviceGet(*BLAS_BP[point][j]); // debug trigger SEGV if bad ptr
}
j++;
}
}
assert(j==unpadded_sites);
CopyMatrix();
}
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
{
#if 0
std::vector<typename vobj::scalar_object> tmp;
unvectorizeToLexOrdArray(tmp,from);
assert(tmp.size()==from.Grid()->lSites());
assert(tmp.size()==to.size());
to.resize(tmp.size());
acceleratorCopyToDevice(&tmp[0],&to[0],sizeof(typename vobj::scalar_object)*tmp.size());
#else
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Fg = from.Grid();
assert(!Fg->_isCheckerBoarded);
int nd = Fg->_ndimension;
to.resize(Fg->lSites());
Coordinate LocalLatt = Fg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
autoView(from_v,from,AcceleratorRead);
auto to_v = &to[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate from_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
from_coor[i] = base[i];
}
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
scalar_type* to = (scalar_type *)&to_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
to[w] = stmp;
}
});
#endif
}
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
{
#if 0
std::vector<typename vobj::scalar_object> tmp;
tmp.resize(in.size());
// std::cout << "BLAStoGrid volume " <<tmp.size()<<" "<< grid.Grid()->lSites()<<std::endl;
assert(in.size()==grid.Grid()->lSites());
acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
vectorizeFromLexOrdArray(tmp,grid);
#else
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Tg = grid.Grid();
assert(!Tg->_isCheckerBoarded);
int nd = Tg->_ndimension;
assert(in.size()==Tg->lSites());
Coordinate LocalLatt = Tg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
autoView(to_v,grid,AcceleratorWrite);
auto from_v = &in[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate to_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
to_coor[i] = base[i];
}
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type* from = (scalar_type *)&from_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp=from[w];
putlane(to[w], stmp, to_lane);
}
});
#endif
}
void CopyMatrix (void)
{
// Clone "A" to be lexicographic in the physics coords
// Use unvectorisetolexordarray
// Copy to device
for(int p=0;p<geom.npoint;p++){
//Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]);
// Coordinate coor({0,0,0,0,0});
// auto sval = peekSite(Aup,coor);
// std::cout << "CopyMatrix: p "<<p<<" Aup[0] :"<<sval<<std::endl;
// sval = peekSite(_Op._A[p],coor);
// std::cout << "CopyMatrix: p "<<p<<" _Op._Ap[0] :"<<sval<<std::endl;
GridtoBLAS(Aup,BLAS_A[p]);
// std::cout << "Copy Matrix p "<<p<<" "<< deviceGet(BLAS_A[p][0])<<std::endl;
}
}
void Mdag(const CoarseVector &in, CoarseVector &out)
{
this->M(in,out);
}
void M (const CoarseVector &in, CoarseVector &out)
{
std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
RealD t_tot;
RealD t_exch;
RealD t_GtoB;
RealD t_BtoG;
RealD t_mult;
t_tot=-usecond();
CoarseVector tin=in;
t_exch=-usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
t_exch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef calcMatrix* Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
RealD flops,bytes;
int64_t osites=in.Grid()->oSites(); // unpadded
int64_t unpadded_vol = _CoarseGrid->lSites();
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
+ 2.0*osites*sizeof(siteVector)*npoint;
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
std::cout << GridLogMessage << "New Mrhs GridtoBLAS in sizes "<<in.Grid()->lSites()<<" "<<pin.Grid()->lSites()<<std::endl;
t_GtoB=-usecond();
GridtoBLAS(pin,BLAS_B);
// out = Zero();
// GridtoBLAS(out,BLAS_C);
t_GtoB+=usecond();
GridBLAS BLAS;
t_mult=-usecond();
for(int p=0;p<geom.npoint;p++){
RealD c = 1.0;
if (p==0) c = 0.0;
ComplexD beta(c);
// std::cout << GridLogMessage << "New Mrhs coarse gemmBatched "<<p<<std::endl;
BLAS.gemmBatched(nbasis,nrhs,nbasis,
ComplexD(1.0),
BLAS_AP[p],
BLAS_BP[p],
ComplexD(c),
BLAS_CP);
}
BLAS.synchronise();
t_mult+=usecond();
// std::cout << GridLogMessage << "New Mrhs coarse BLAStoGrid "<<std::endl;
t_BtoG=-usecond();
BLAStoGrid(out,BLAS_C);
t_BtoG+=usecond();
t_tot+=usecond();
// auto check =deviceGet(BLAS_C[0]);
// std::cout << "C[0] "<<check<<std::endl;
// Coordinate coor({0,0,0,0,0,0});
// peekLocalSite(check,out,coor);
// std::cout << "C[0] "<< check<<std::endl;
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
std::cout << GridLogMessage<<std::endl;
std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -1,238 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////
// Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
/////////////////////////////////////////////////////////////////
// Less local equivalent of Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class NonLocalStencilGeometry {
public:
// int depth;
int skip;
int hops;
int npoint;
std::vector<Coordinate> shifts;
Coordinate stencil_size;
Coordinate stencil_lo;
Coordinate stencil_hi;
GridCartesian *grid;
GridCartesian *Grid() {return grid;};
int Depth(void){return 1;}; // Ghost zone depth
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
int DimSkip(void){return skip;};
virtual ~NonLocalStencilGeometry() {};
int Reverse(int point)
{
int Nd = Grid()->Nd();
Coordinate shft = shifts[point];
Coordinate rev(Nd);
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
for(int p=0;p<npoint;p++){
if(rev==shifts[p]){
return p;
}
}
assert(0);
return -1;
}
void BuildShifts(void)
{
this->shifts.resize(0);
int Nd = this->grid->Nd();
int dd = this->DimSkip();
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
Coordinate sft(Nd,0);
sft[dd+0] = s0;
sft[dd+1] = s1;
sft[dd+2] = s2;
sft[dd+3] = s3;
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
if(nhops<=this->hops) this->shifts.push_back(sft);
}}}}
this->npoint = this->shifts.size();
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
}
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
{
Coordinate latt = grid->GlobalDimensions();
stencil_size.resize(grid->Nd());
stencil_lo.resize(grid->Nd());
stencil_hi.resize(grid->Nd());
for(int d=0;d<grid->Nd();d++){
if ( latt[d] == 1 ) {
stencil_lo[d] = 0;
stencil_hi[d] = 0;
stencil_size[d]= 1;
} else if ( latt[d] == 2 ) {
stencil_lo[d] = -1;
stencil_hi[d] = 0;
stencil_size[d]= 2;
} else if ( latt[d] > 2 ) {
stencil_lo[d] = -1;
stencil_hi[d] = 1;
stencil_size[d]= 3;
}
}
this->BuildShifts();
};
};
// Need to worry about red-black now
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
public:
virtual int DerivedDimSkip(void) { return 0;};
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
virtual ~NonLocalStencilGeometry4D() {};
};
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
public:
virtual int DerivedDimSkip(void) { return 1; };
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
virtual ~NonLocalStencilGeometry5D() {};
};
/*
* Bunch of different options classes
*/
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
{
};
};
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
{
};
};
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
{
};
};
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
{
};
};
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
{
};
};
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
{
};
};
NAMESPACE_END(Grid);

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid/algorithms/multigrid/MultiGrid.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/algorithms/multigrid/Aggregates.h>
#include <Grid/algorithms/multigrid/Geometry.h>
#include <Grid/algorithms/multigrid/BatchedBlas.h>
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>

View File

@ -175,56 +175,8 @@ template<class T> using cshiftAllocator = std::allocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
/*
template<class T> class vecView
{
protected:
T * data;
uint64_t size;
ViewMode mode;
void * cpu_ptr;
public:
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
{
cpu_ptr = &refer_to_me[0];
size = refer_to_me.size();
mode = _mode;
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
size*sizeof(T),
mode,
AdviseDefault);
}
void ViewClose(void)
{ // Inform the manager
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
{
vecView<T> ret(vec,_mode); // does the open
return ret; // must be closed
}
// Little autoscope assister
template<class View>
class VectorViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
VectorViewCloser(View &_v) : v(_v) {};
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
};
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid);

View File

@ -209,9 +209,9 @@ private:
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
static void NotifyDeletion(void * CpuPtr);
public:
static void NotifyDeletion(void * CpuPtr);
static void Print(void);
static void PrintAll(void);
static void PrintState( void* CpuPtr);

View File

@ -8,7 +8,7 @@ NAMESPACE_BEGIN(Grid);
static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
//#define dprintf(...)
@ -111,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -141,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
@ -155,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
// uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++;
@ -169,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -184,7 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;

View File

@ -70,8 +70,8 @@ public:
Coordinate _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int64_t _fsites; // _isites*_osites = product(dimensions).
int64_t _gsites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
Coordinate _slice_block;// subslice information
Coordinate _slice_stride;
Coordinate _slice_nblock;
@ -183,7 +183,7 @@ public:
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const Coordinate LocalStarts(void) { return _lstart; };
@ -214,7 +214,7 @@ public:
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
@ -222,7 +222,7 @@ public:
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {

View File

@ -138,14 +138,6 @@ public:
////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way
////////////////////////////////////////////////////////////
void CommsComplete(std::vector<CommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir);
void SendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,

View File

@ -306,44 +306,6 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
MPI_Request xrq;
MPI_Request rrq;
assert(dest != _processor);
assert(from != _processor);
int tag;
tag= dir+from*32;
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,

View File

@ -91,17 +91,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);

View File

@ -27,7 +27,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
*************************************************************************************/
/* END LEGAL */
#define Mheader "SharedMemoryMpi: "
#define header "SharedMemoryMpi: "
#include <Grid/GridCore.h>
#include <pwd.h>
@ -174,8 +174,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
if ( WorldRank == 0) {
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl;
std::cout << header " World communicator of size " <<WorldSize << std::endl;
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
}
// WorldShmComm, WorldShmSize, WorldShmRank
@ -452,7 +452,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
#ifdef GRID_MPI3_SHMGET
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
@ -537,7 +537,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
exit(EXIT_FAILURE);
}
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
SharedMemoryZero(ShmCommBuf,bytes);
@ -580,7 +580,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
@ -604,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle;
clone_mem_t handle;
@ -744,7 +744,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHMMMAP
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -781,7 +781,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -791,7 +791,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHM_NONE
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -838,7 +838,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
MPI_Barrier(WorldShmComm);

View File

@ -47,4 +47,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>
#include <Grid/lattice/PaddedCell.h>

View File

@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnarySpTa, SpTa(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(SpTa, UnarySpTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the

View File

@ -360,7 +360,7 @@ public:
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int64_t g=0;g<o.Grid()->_gsites;g++){
for(int g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;

View File

@ -203,27 +203,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
return real(nrm);
}
template<class Op,class T1>
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr) ->RealD
{
return norm2(closure(expr));
}
template<class Op,class T1,class T2>
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr) ->RealD
{
return norm2(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) ->RealD
{
return norm2(closure(expr));
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{

View File

@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
cudaGetDevice(&device);
#endif
#ifdef GRID_HIP
auto discard=hipGetDevice(&device);
hipGetDevice(&device);
#endif
Iterator warpSize = gpu_props[device].warpSize;

View File

@ -361,14 +361,9 @@ public:
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
{
if ( l.Grid()->_isCheckerBoarded ) {
Lattice<vobj> tmp(_grid);
fill(tmp,dist);
pickCheckerboard(l.Checkerboard(),l,tmp);
return;
}
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@ -432,7 +427,7 @@ public:
#if 1
thread_for( lidx, _grid->lSites(), {
int64_t gidx;
int gidx;
int o_idx;
int i_idx;
int rank;

View File

@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
return ret;
};
template<int N, class Vec>
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
typedef typename Vec::scalar_type scalar;
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<scalar, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
scalar tmp= Us()()(i,j);
ComplexD ztmp(real(tmp),imag(tmp));
EigenU(i,j)=ztmp;
}}
ComplexD detD = EigenU.determinant();
typename Vec::scalar_type det(detD.real(),detD.imag());
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -265,8 +265,8 @@ inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const VLattice &Basis)
const Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
@ -276,65 +276,18 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
RealD t_IP=0;
RealD t_co=0;
RealD t_za=0;
for(int v=0;v<nbasis;v++) {
t_IP-=usecond();
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
t_IP+=usecond();
t_co-=usecond();
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
t_co+=usecond();
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
ip=-ip;
t_za-=usecond();
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
t_za+=usecond();
}
// std::cout << GridLogPerformance << " blockProject : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl;
}
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
RealD t_IP=0;
RealD t_co=0;
for(int v=0;v<nbasis;v++) {
t_IP-=usecond();
blockInnerProductD(ip,Basis[v],fineData); // ip = <basis|fine>
t_IP+=usecond();
t_co-=usecond();
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
t_co+=usecond();
}
// std::cout << GridLogPerformance << " blockProjectFast : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
// std::cout << GridLogPerformance << " blockProjectFast : conv : "<<t_co<<" us"<<std::endl;
}
// This only minimises data motion from CPU to GPU
// there is chance of better implementation that does a vxk loop of inner products to data share
// at the GPU thread level
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
const std::vector<Lattice<vobj>> &fineData,
@ -440,15 +393,8 @@ template<class vobj,class CComplex>
Lattice<dotp> coarse_inner(coarse);
// Precision promotion
RealD t;
t=-usecond();
fine_inner = localInnerProductD<vobj>(fineX,fineY);
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
t=-usecond();
blockSum(coarse_inner,fine_inner);
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
t=-usecond();
{
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
@ -456,7 +402,6 @@ template<class vobj,class CComplex>
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
}
@ -499,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
const int maxsubsec=256;
typedef iVector<vobj,maxsubsec> vSubsec;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
@ -521,40 +463,24 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead);
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
vobj zz = Zero();
// Somewhat lazy calculation
// Find the biggest power of two subsection divisor less than or equal to maxsubsec
int subsec=maxsubsec;
int subvol;
subvol=blockVol/subsec;
while(subvol*subsec!=blockVol){
subsec = subsec/2;
subvol=blockVol/subsec;
};
Lattice<vSubsec> coarseTmp(coarse);
autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
auto coarseTmp_p= &coarseTmp_[0];
// Sum within subsecs in a first kernel
accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
int sc=sce/subsec;
int e=sce%subsec;
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
auto cd = coalescedRead(zz);
for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
vobj cd = zz;
for(int sb=0;sb<blockVol;sb++){
int sf;
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
@ -562,21 +488,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
cd=cd+coalescedRead(fineData_p[sf]);
cd=cd+fineData_p[sf];
}
coalescedWrite(coarseTmp_[sc](e),cd);
coarseData_p[sc] = cd;
});
// Sum across subsecs in a second kernel
accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
auto cd = coalescedRead(coarseTmp_p[sc](0));
for(int e=1;e<subsec;e++){
cd=cd+coalescedRead(coarseTmp_p[sc](e));
}
coalescedWrite(coarseData_p[sc],cd);
});
return;
}
@ -633,7 +550,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
blockOrthonormalize(ip,Basis);
}
#ifdef GRID_ACCELERATED
#if 0
// TODO: CPU optimized version here
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
@ -659,37 +576,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
autoView( fineData_ , fineData, AcceleratorWrite);
autoView( coarseData_ , coarseData, AcceleratorRead);
typedef LatticeView<vobj> Vview;
std::vector<Vview> AcceleratorVecViewContainer_h;
for(int v=0;v<nbasis;v++) {
AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
}
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
auto Basis_p = &AcceleratorVecViewContainer[0];
// Loop with a cache friendly loop ordering
Coordinate frdimensions=fine->_rdimensions;
Coordinate crdimensions=coarse->_rdimensions;
accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
accelerator_for(sf,fine->oSites(),1,{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
coalescedWrite(fineData_[sf],sum);
for(int i=0;i<nbasis;i++) {
/* auto basis_ = Basis[i], );*/
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
}
});
for(int v=0;v<nbasis;v++) {
AcceleratorVecViewContainer_h[v].ViewClose();
}
return;
}
#else
// CPU version
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
@ -776,9 +682,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
////////////////////////////////////////////////////////////////////////////////////////////////
// the checks should guarantee that the operations are local
////////////////////////////////////////////////////////////////////////////////////////////////
static const int words=sizeof(vobj)/sizeof(vector_type);
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
@ -792,48 +697,42 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]);
}
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
// the above should guarantee that the operations are local
Coordinate ldf = Fg->_ldimensions;
Coordinate rdf = Fg->_rdimensions;
Coordinate isf = Fg->_istride;
Coordinate osf = Fg->_ostride;
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(from_v,From,AcceleratorRead);
autoView(to_v,To,AcceleratorWrite);
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate from_coor, to_coor, base;
Lexicographic::CoorFromIndex(base,idx,RegionSize);
for(int i=0;i<nd;i++){
from_coor[i] = base[i] + FromLowerLeft[i];
to_coor[i] = base[i] + ToLowerLeft[i];
autoView( t_v , To, AcceleratorWrite);
autoView( f_v , From, AcceleratorRead);
accelerator_for(idx,Fg->lSites(),1,{
sobj s;
Coordinate Fcoor(nd);
Coordinate Tcoor(nd);
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
int in_region=1;
for(int d=0;d<nd;d++){
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
in_region=0;
}
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type stmp;
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
}
if (in_region) {
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
vector_type * fp = (vector_type *)&f_v[odx_f];
vector_type * tp = (vector_type *)&t_v[odx_t];
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
}
});
}
});
}
@ -925,9 +824,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
//FIXME: make this run entirely on GPU
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
@ -944,70 +841,11 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
#if 1
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
size_t tbytes = 4*nsite*sizeof(int);
int *table = (int*)malloc(tbytes);
thread_for(idx,nsite,{
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lcoor[orthog] = slice_lo;
hcoor[orthog] = slice_hi;
size_t rem = idx;
for(int mu=0;mu<nl;mu++){
if(mu != orthog){
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
lcoor[mu] = hcoor[mu] = xmu;
}
}
int loidx = lg->oIndex(lcoor);
int liidx = lg->iIndex(lcoor);
int hoidx = hg->oIndex(hcoor);
int hiidx = hg->iIndex(hcoor);
int* tt = table + 4*idx;
tt[0] = loidx;
tt[1] = liidx;
tt[2] = hoidx;
tt[3] = hiidx;
});
int* table_d = (int*)acceleratorAllocDevice(tbytes);
acceleratorCopyToDevice(table,table_d,tbytes);
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
autoView(lowDim_v,lowDim,AcceleratorRead);
autoView(higherDim_v,higherDim,AcceleratorWrite);
accelerator_for(idx,nsite,1,{
static const int words=sizeof(vobj)/sizeof(vector_type);
int* tt = table_d + 4*idx;
int from_oidx = *tt++;
int from_lane = *tt++;
int to_oidx = *tt++;
int to_lane = *tt;
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
putlane(to[w], stmp, to_lane);
}
});
acceleratorFreeDevice(table_d);
free(table);
#else
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
@ -1023,7 +861,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
pokeLocalSite(s,higherDimv,hcoor);
}
});
#endif
}
@ -1088,7 +925,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
Coordinate fcoor(nd);
Coordinate ccoor(nd);
for(int64_t g=0;g<fg->gSites();g++){
for(int g=0;g<fg->gSites();g++){
fg->GlobalIndexToGlobalCoor(g,fcoor);
for(int d=0;d<nd;d++){
@ -1774,32 +1611,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
}
}
//////////////////////////////////////////////////////
// MultiRHS interface support for coarse space
// -- Simplest possible implementation to begin with
//////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProjectMany(Lattice<iVector<CComplex,nbasis > > &coarseIP,
Lattice<iVector<CComplex,nbasis > > &coarseTMP,
const VLattice &fineData, // Basis and fineData necessarily same type
const VLattice &Basis)
{
for(int r=0;r<fineData.size();r++){
blockProject(coarseTMP,fineData[r],Basis);
InsertSliceLocal(coarseTMP, coarseIP,r,r,0);
}
}
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockPromoteMany(Lattice<iVector<CComplex,nbasis > > &coarseIP,
Lattice<iVector<CComplex,nbasis > > &coarseTMP,
const VLattice &fineData, // Basis and fineData necessarily same type
const VLattice &Basis)
{
for(int r=0;r<fineData.size();r++){
ExtractSliceLocal(coarseTMP, coarseIP,r,r,0);
blockPromote(coarseTMP,fineData[r],Basis);
}
}
NAMESPACE_END(Grid);

View File

@ -1,571 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/PaddedCell.h
Copyright (C) 2019
Author: Peter Boyle pboyle@bnl.gov
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include<Grid/cshift/Cshift.h>
NAMESPACE_BEGIN(Grid);
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
template<typename vobj>
struct CshiftImplBase{
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
virtual ~CshiftImplBase(){}
};
template<typename vobj>
struct CshiftImplDefault: public CshiftImplBase<vobj>{
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
};
template<typename Gimpl>
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
};
/*
*
* TODO:
* -- address elementsof vobj via thread block in Scatter/Gather
* -- overlap comms with motion in Face_exchange
*
*/
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
Lattice<vobj> &lat,
int x,
int dim,
int offset=0)
{
const int Nsimd=vobj::Nsimd();
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *grid = lat.Grid();
Coordinate simd = grid->_simd_layout;
int Nd = grid->Nd();
int block = grid->_slice_block[dim];
int stride = grid->_slice_stride[dim];
int nblock = grid->_slice_nblock[dim];
int rd = grid->_rdimensions[dim];
int ox = x%rd;
int ix = x/rd;
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
int rNsimda= Nsimd/simd[dim]; // should be equal
assert(rNsimda==rNsimd);
int face_ovol=block*nblock;
// assert(buf.size()==face_ovol*rNsimd);
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
//Let's make it work on GPU and then make a special accelerator_for that
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
//for cross platform
// FIXME -- can put internal indices into thread loop
auto buf_p = & buf[0];
autoView(lat_v, lat, AcceleratorWrite);
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
// scalar layout won't coalesce
#ifdef GRID_SIMT
{
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int blane=0;blane<Nsimd;blane++) {
#endif
int olane=blane%rNsimd; // reduced lattice lane
int obit =blane/rNsimd;
///////////////////////////////////////////////////////////////
// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
///////////////////////////////////////////////////////////////
int ssp = ss*simd[dim]+obit;
int b = ssp%block;
int n = ssp/block;
int osite= b+n*stride + ox*block;
////////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate icoor;
int lane;
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
icoor[dim]=ix;
Lexicographic::IndexFromCoor(icoor,lane,simd);
///////////////////////////////////////////
// Transfer into lattice - will coalesce
///////////////////////////////////////////
// sobj obj = extractLane(blane,buf_p[ss+offset]);
// insertLane(lane,lat_v[osite],obj);
const int words=sizeof(vobj)/sizeof(vector_type);
vector_type * from = (vector_type *)&buf_p[ss+offset];
vector_type * to = (vector_type *)&lat_v[osite];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], blane);
putlane(to[w], stmp, lane);
}
}
});
}
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
const Lattice<vobj> &lat,
int x,
int dim,
int offset=0)
{
const int Nsimd=vobj::Nsimd();
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
autoView(lat_v, lat, AcceleratorRead);
GridBase *grid = lat.Grid();
Coordinate simd = grid->_simd_layout;
int Nd = grid->Nd();
int block = grid->_slice_block[dim];
int stride = grid->_slice_stride[dim];
int nblock = grid->_slice_nblock[dim];
int rd = grid->_rdimensions[dim];
int ox = x%rd;
int ix = x/rd;
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
int face_ovol=block*nblock;
// assert(buf.size()==face_ovol*rNsimd);
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
//Let's make it work on GPU and then make a special accelerator_for that
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
//for cross platform
//For CPU perhaps just run a loop over Nsimd
auto buf_p = & buf[0];
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
// scalar layout won't coalesce
#ifdef GRID_SIMT
{
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int blane=0;blane<Nsimd;blane++) {
#endif
int olane=blane%rNsimd; // reduced lattice lane
int obit =blane/rNsimd;
////////////////////////////////////////////
// osite
////////////////////////////////////////////
int ssp = ss*simd[dim]+obit;
int b = ssp%block;
int n = ssp/block;
int osite= b+n*stride + ox*block;
////////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate icoor;
int lane;
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
icoor[dim]=ix;
Lexicographic::IndexFromCoor(icoor,lane,simd);
///////////////////////////////////////////
// Take out of lattice
///////////////////////////////////////////
// sobj obj = extractLane(lane,lat_v[osite]);
// insertLane(blane,buf_p[ss+offset],obj);
const int words=sizeof(vobj)/sizeof(vector_type);
vector_type * to = (vector_type *)&buf_p[ss+offset];
vector_type * from = (vector_type *)&lat_v[osite];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], lane);
putlane(to[w], stmp, blane);
}
}
});
}
class PaddedCell {
public:
GridCartesian * unpadded_grid;
int dims;
int depth;
std::vector<GridCartesian *> grids;
~PaddedCell()
{
DeleteGrids();
}
PaddedCell(int _depth,GridCartesian *_grid)
{
unpadded_grid = _grid;
depth=_depth;
dims=_grid->Nd();
AllocateGrids();
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate procs =unpadded_grid->ProcessorGrid();
for(int d=0;d<dims;d++){
if ( procs[d] > 1 ) assert(local[d]>=depth);
}
}
void DeleteGrids(void)
{
Coordinate processors=unpadded_grid->_processors;
for(int d=0;d<grids.size();d++){
if ( processors[d] > 1 ) {
delete grids[d];
}
}
grids.resize(0);
};
void AllocateGrids(void)
{
Coordinate local =unpadded_grid->LocalDimensions();
Coordinate simd =unpadded_grid->_simd_layout;
Coordinate processors=unpadded_grid->_processors;
Coordinate plocal =unpadded_grid->LocalDimensions();
Coordinate global(dims);
GridCartesian *old_grid = unpadded_grid;
// expand up one dim at a time
for(int d=0;d<dims;d++){
if ( processors[d] > 1 ) {
plocal[d] += 2*depth;
for(int d=0;d<dims;d++){
global[d] = plocal[d]*processors[d];
}
old_grid = new GridCartesian(global,simd,processors);
}
grids.push_back(old_grid);
}
};
template<class vobj>
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
{
Coordinate processors=unpadded_grid->_processors;
Lattice<vobj> out(unpadded_grid);
Coordinate local =unpadded_grid->LocalDimensions();
// depends on the MPI spread
Coordinate fll(dims,depth);
Coordinate tll(dims,0); // depends on the MPI spread
for(int d=0;d<dims;d++){
if( processors[d]==1 ) fll[d]=0;
}
localCopyRegion(in,out,fll,tll,local);
return out;
}
template<class vobj>
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
GridBase *old_grid = in.Grid();
int dims = old_grid->Nd();
Lattice<vobj> tmp = in;
for(int d=0;d<dims;d++){
tmp = Expand(d,tmp,cshift); // rvalue && assignment
}
return tmp;
}
template<class vobj>
inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
{
GridBase *old_grid = in.Grid();
int dims = old_grid->Nd();
Lattice<vobj> tmp = in;
for(int d=0;d<dims;d++){
tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
}
return tmp;
}
// expand up one dim at a time
template<class vobj>
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
{
Coordinate processors=unpadded_grid->_processors;
GridBase *old_grid = in.Grid();
GridCartesian *new_grid = grids[dim];//These are new grids
Lattice<vobj> padded(new_grid);
Lattice<vobj> shifted(old_grid);
Coordinate local =old_grid->LocalDimensions();
Coordinate plocal =new_grid->LocalDimensions();
if(dim==0) conformable(old_grid,unpadded_grid);
else conformable(old_grid,grids[dim-1]);
double tins=0, tshift=0;
int islocal = 0 ;
if ( processors[dim] == 1 ) islocal = 1;
if ( islocal ) {
// replace with a copy and maybe grid swizzle
// return in;??
double t = usecond();
padded = in;
tins += usecond() - t;
} else {
//////////////////////////////////////////////
// Replace sequence with
// ---------------------
// (i) Gather high face(s); start comms
// (ii) Gather low face(s); start comms
// (iii) Copy middle bit with localCopyRegion
// (iv) Complete high face(s), insert slice(s)
// (iv) Complete low face(s), insert slice(s)
//////////////////////////////////////////////
// Middle bit
double t = usecond();
for(int x=0;x<local[dim];x++){
InsertSliceLocal(in,padded,x,depth+x,dim);
}
tins += usecond() - t;
// High bit
t = usecond();
shifted = cshift.Cshift(in,dim,depth);
tshift += usecond() - t;
t=usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
}
tins += usecond() - t;
// Low bit
t = usecond();
shifted = cshift.Cshift(in,dim,-depth);
tshift += usecond() - t;
t = usecond();
for(int x=0;x<depth;x++){
InsertSliceLocal(shifted,padded,x,x,dim);
}
tins += usecond() - t;
}
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
return padded;
}
template<class vobj>
inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
{
Coordinate processors=unpadded_grid->_processors;
GridBase *old_grid = in.Grid();
GridCartesian *new_grid = grids[dim];//These are new grids
Lattice<vobj> padded(new_grid);
// Lattice<vobj> shifted(old_grid);
Coordinate local =old_grid->LocalDimensions();
Coordinate plocal =new_grid->LocalDimensions();
if(dim==0) conformable(old_grid,unpadded_grid);
else conformable(old_grid,grids[dim-1]);
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
double tins=0, tshift=0;
int islocal = 0 ;
if ( processors[dim] == 1 ) islocal = 1;
if ( islocal ) {
padded=in; // slightly different interface could avoid a copy operation
} else {
Face_exchange(in,padded,dim,depth);
return padded;
}
return padded;
}
template<class vobj>
void Face_exchange(const Lattice<vobj> &from,
Lattice<vobj> &to,
int dimension,int depth) const
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::scalar_object sobj;
RealD t_gather=0.0;
RealD t_scatter=0.0;
RealD t_comms=0.0;
RealD t_copy=0.0;
// std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
// DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
GridBase *grid=from.Grid();
GridBase *new_grid=to.Grid();
Coordinate lds = from.Grid()->_ldimensions;
Coordinate nlds= to.Grid()->_ldimensions;
Coordinate simd= from.Grid()->_simd_layout;
int ld = lds[dimension];
int nld = to.Grid()->_ldimensions[dimension];
const int Nsimd = vobj::Nsimd();
assert(depth<=lds[dimension]); // A must be on neighbouring node
assert(depth>0); // A caller bug if zero
assert(ld+2*depth==nld);
////////////////////////////////////////////////////////////////////////////
// Face size and byte calculations
////////////////////////////////////////////////////////////////////////////
int buffer_size = 1;
for(int d=0;d<lds.size();d++){
if ( d!= dimension) buffer_size=buffer_size*lds[d];
}
buffer_size = buffer_size / Nsimd;
int rNsimd = Nsimd / simd[dimension];
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
static cshiftVector<vobj> send_buf;
static cshiftVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth);
std::vector<CommsRequest_t> fwd_req;
std::vector<CommsRequest_t> bwd_req;
int words = buffer_size;
int bytes = words * sizeof(vobj);
////////////////////////////////////////////////////////////////////////////
// Communication coords
////////////////////////////////////////////////////////////////////////////
int comm_proc = 1;
int xmit_to_rank;
int recv_from_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
////////////////////////////////////////////////////////////////////////////
// Gather all surface terms up to depth "d"
////////////////////////////////////////////////////////////////////////////
RealD t;
RealD t_tot=-usecond();
int plane=0;
for ( int d=0;d < depth ; d ++ ) {
int tag = d*1024 + dimension*2+0;
t=usecond();
GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
t_gather+=usecond()-t;
t=usecond();
grid->SendToRecvFromBegin(fwd_req,
(void *)&send_buf[d*buffer_size], xmit_to_rank,
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
t_comms+=usecond()-t;
}
for ( int d=0;d < depth ; d ++ ) {
int tag = d*1024 + dimension*2+1;
t=usecond();
GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
t_gather+= usecond() - t;
t=usecond();
grid->SendToRecvFromBegin(bwd_req,
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
t_comms+=usecond()-t;
}
////////////////////////////////////////////////////////////////////////////
// Copy interior -- overlap this with comms
////////////////////////////////////////////////////////////////////////////
int Nd = new_grid->Nd();
Coordinate LL(Nd,0);
Coordinate sz = grid->_ldimensions;
Coordinate toLL(Nd,0);
toLL[dimension]=depth;
t=usecond();
localCopyRegion(from,to,LL,toLL,sz);
t_copy= usecond() - t;
////////////////////////////////////////////////////////////////////////////
// Scatter all faces
////////////////////////////////////////////////////////////////////////////
plane=0;
t=usecond();
grid->CommsComplete(fwd_req);
t_comms+= usecond() - t;
t=usecond();
for ( int d=0;d < depth ; d ++ ) {
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
}
t_scatter= usecond() - t;
t=usecond();
grid->CommsComplete(bwd_req);
t_comms+= usecond() - t;
t=usecond();
for ( int d=0;d < depth ; d ++ ) {
ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
}
t_scatter+= usecond() - t;
t_tot+=usecond();
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy :" << t_copy/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << t_comms/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total :" << t_tot/1000 << "ms"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << (RealD)4.0*bytes/t_comms << "MB/s"<<std::endl;
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes :" << depth*bytes/1e6 << "MB"<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -165,7 +165,7 @@ class BinaryIO {
* FIXME -- 128^3 x 256 x 16 will overflow.
*/
int64_t global_site;
int global_site;
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
@ -175,8 +175,8 @@ class BinaryIO {
Lexicographic::IndexFromCoor(coor,global_site,global_vol);
uint64_t gsite29 = global_site%29;
uint64_t gsite31 = global_site%31;
uint32_t gsite29 = global_site%29;
uint32_t gsite31 = global_site%31;
site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
// std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
@ -545,9 +545,7 @@ class BinaryIO {
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb,
int control=BINARYIO_LEXICOGRAPHIC
)
uint32_t &scidac_csumb)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
@ -558,7 +556,7 @@ class BinaryIO {
std::vector<sobj> scalardata(lsites);
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
nersc_csum,scidac_csuma,scidac_csumb);
GridStopWatch timer;
@ -584,8 +582,7 @@ class BinaryIO {
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb,
int control=BINARYIO_LEXICOGRAPHIC)
uint32_t &scidac_csumb)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
@ -610,7 +607,7 @@ class BinaryIO {
while (attemptsLeft >= 0)
{
grid->Barrier();
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
nersc_csum,scidac_csuma,scidac_csumb);
if (checkWrite)
{
@ -620,7 +617,7 @@ class BinaryIO {
std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
grid->Barrier();
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
cknersc_csum,ckscidac_csuma,ckscidac_csumb);
if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
{

View File

@ -206,7 +206,7 @@ class GridLimeReader : public BinaryIO {
// Read a generic lattice field and verify checksum
////////////////////////////////////////////
template<class vobj>
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
typedef typename vobj::scalar_object sobj;
scidacChecksum scidacChecksum_;
@ -238,7 +238,7 @@ class GridLimeReader : public BinaryIO {
uint64_t offset= ftello(File);
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
/////////////////////////////////////////////
@ -408,7 +408,7 @@ class GridLimeWriter : public BinaryIO
// in communicator used by the field.Grid()
////////////////////////////////////////////////////
template<class vobj>
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
@ -459,7 +459,7 @@ class GridLimeWriter : public BinaryIO
///////////////////////////////////////////
std::string format = getFormatString<vobj>();
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
///////////////////////////////////////////
// Wind forward and close the record
@ -512,8 +512,7 @@ class ScidacWriter : public GridLimeWriter {
////////////////////////////////////////////////
template <class vobj, class userRecord>
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
const unsigned int recordScientificPrec = 0,
int control=BINARYIO_LEXICOGRAPHIC)
const unsigned int recordScientificPrec = 0)
{
GridBase * grid = field.Grid();
@ -535,7 +534,7 @@ class ScidacWriter : public GridLimeWriter {
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
}
// Collective call
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); // Closes message with checksum
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
}
};
@ -554,8 +553,7 @@ class ScidacReader : public GridLimeReader {
// Write generic lattice field in scidac format
////////////////////////////////////////////////
template <class vobj, class userRecord>
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
int control=BINARYIO_LEXICOGRAPHIC)
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
{
typedef typename vobj::scalar_object sobj;
GridBase * grid = field.Grid();
@ -573,7 +571,7 @@ class ScidacReader : public GridLimeReader {
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
}
void skipPastBinaryRecord(void) {
std::string rec_name(ILDG_BINARY_DATA);

View File

@ -104,7 +104,6 @@ template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iSca
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iLorentzComplex = iVector<iScalar<iScalar<vtype> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
@ -179,15 +178,6 @@ typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
// LorentzComplex
typedef iLorentzComplex<Complex > LorentzComplex;
typedef iLorentzComplex<ComplexF > LorentzComplexF;
typedef iLorentzComplex<ComplexD > LorentzComplexD;
typedef iLorentzComplex<vComplex > vLorentzComplex;
typedef iLorentzComplex<vComplexF> vLorentzComplexF;
typedef iLorentzComplex<vComplexD> vLorentzComplexD;
// DoubleStored gauge field
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
@ -317,10 +307,6 @@ typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
typedef Lattice<vLorentzComplex> LatticeLorentzComplex;
typedef Lattice<vLorentzComplexF> LatticeLorentzComplexF;
typedef Lattice<vLorentzComplexD> LatticeLorentzComplexD;
// DoubleStored gauge field
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;

View File

@ -34,24 +34,10 @@ directory
NAMESPACE_BEGIN(Grid);
///////////////////////////////////
// Smart configuration base class
///////////////////////////////////
template< class Field >
class ConfigurationBase
{
public:
ConfigurationBase() {}
virtual ~ConfigurationBase() {}
virtual void set_Field(Field& U) =0;
virtual void smeared_force(Field&) = 0;
virtual Field& get_SmearedU() =0;
virtual Field &get_U(bool smeared = false) = 0;
};
template <class GaugeField >
class Action
{
public:
bool is_smeared = false;
RealD deriv_norm_sum;
@ -91,39 +77,11 @@ public:
void refresh_timer_stop(void) { refresh_us+=usecond(); }
void S_timer_start(void) { S_us-=usecond(); }
void S_timer_stop(void) { S_us+=usecond(); }
/////////////////////////////
// Heatbath?
/////////////////////////////
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
/////////////////////////////////////////////////////////////
// virtual smeared interface through configuration container
/////////////////////////////////////////////////////////////
virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
{
refresh(U.get_U(is_smeared),sRNG,pRNG);
}
virtual RealD S(ConfigurationBase<GaugeField>& U)
{
return S(U.get_U(is_smeared));
}
virtual RealD Sinitial(ConfigurationBase<GaugeField>& U)
{
return Sinitial(U.get_U(is_smeared));
}
virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU)
{
deriv(U.get_U(is_smeared),dSdU);
if ( is_smeared ) {
U.smeared_force(dSdU);
}
}
///////////////////////////////
// Logging
///////////////////////////////
virtual std::string action_name() = 0; // return the action name
virtual std::string LogParameters() = 0; // prints action parameters
virtual ~Action(){}

View File

@ -30,8 +30,6 @@ directory
#ifndef QCD_ACTION_CORE
#define QCD_ACTION_CORE
#include <Grid/qcd/action/gauge/GaugeImplementations.h>
#include <Grid/qcd/action/ActionBase.h>
NAMESPACE_CHECK(ActionBase);
#include <Grid/qcd/action/ActionSet.h>

View File

@ -126,16 +126,6 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
// Sp(2n)
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
// Twisted mass fermion
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;

View File

@ -261,22 +261,6 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
//sp 2n
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
NAMESPACE_END(Grid);

View File

@ -196,7 +196,6 @@ void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,in
uint64_t Nsite = Umu.Grid()->oSites();
Kernels::DhopDirKernel(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out,dirdisp,gamma);
};
template<class Impl>
void WilsonFermion5D<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
@ -247,10 +246,14 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
std::cout << " InsertForce Btilde "<< norm2(Btilde)<<std::endl;
////////////////////////////
// spin trace outer product
////////////////////////////
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
std::cout << " InsertForce "<< norm2(mat)<<std::endl;
}
}

View File

@ -423,6 +423,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define KERNEL_CALL_EXT(A) \
const uint64_t NN = Nsite*Ls; \
const uint64_t sz = st.surface_list.size(); \
auto ptr = &st.surface_list[0]; \
accelerator_forNB( ss, sz, Simd::Nsimd(), { \

View File

@ -1 +0,0 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
#define IMPLEMENTATION SpWilsonImplD

View File

@ -1 +0,0 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -1 +0,0 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
#define IMPLEMENTATION SpWilsonImplF

View File

@ -1 +0,0 @@
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD

View File

@ -1 +0,0 @@
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF

View File

@ -1 +0,0 @@
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD

View File

@ -1 +0,0 @@
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF

View File

@ -10,18 +10,12 @@ WILSON_IMPL_LIST=" \
WilsonImplF \
WilsonImplD \
WilsonImplD2 \
SpWilsonImplF \
SpWilsonImplD \
WilsonAdjImplF \
WilsonAdjImplD \
WilsonTwoIndexSymmetricImplF \
WilsonTwoIndexSymmetricImplD \
WilsonTwoIndexAntiSymmetricImplF \
WilsonTwoIndexAntiSymmetricImplD \
SpWilsonTwoIndexAntiSymmetricImplF \
SpWilsonTwoIndexAntiSymmetricImplD \
SpWilsonTwoIndexSymmetricImplF \
SpWilsonTwoIndexSymmetricImplD \
GparityWilsonImplF \
GparityWilsonImplD "

View File

@ -39,9 +39,6 @@ NAMESPACE_BEGIN(Grid);
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
typedef WilsonGaugeAction<SpPeriodicGimplR> SpWilsonGaugeActionR;
typedef WilsonGaugeAction<SpPeriodicGimplF> SpWilsonGaugeActionF;
typedef WilsonGaugeAction<SpPeriodicGimplD> SpWilsonGaugeActionD;
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;

View File

@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
typedef typename Impl::Field Field;
// hardcodes the exponential approximation in the template
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
@ -78,6 +78,8 @@ public:
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef SU<Nrepresentation> Group;
// Guido: we can probably separate the types from the HMC functions
// this will create 2 kind of implementations
// probably confusing the users
@ -117,7 +119,6 @@ public:
//
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
@ -126,11 +127,7 @@ public:
}
}
static inline Field projectForce(Field &P) {
Field ret(P.Grid());
Group::taProj(P, ret);
return ret;
}
static inline Field projectForce(Field &P) { return Ta(P); }
static inline void update_field(Field& P, Field& U, double ep){
//static std::chrono::duration<double> diff;
@ -140,8 +137,7 @@ public:
autoView(P_v,P,AcceleratorRead);
accelerator_for(ss, P.Grid()->oSites(),1,{
for (int mu = 0; mu < Nd; mu++) {
U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
}
});
//auto end = std::chrono::high_resolution_clock::now();
@ -161,7 +157,7 @@ public:
}
static inline void Project(Field &U) {
Group::ProjectOnSpecialGroup(U);
ProjectSUn(U);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
@ -175,7 +171,6 @@ public:
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::ColdConfiguration(pRNG, U);
}
};
@ -183,17 +178,10 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
NAMESPACE_END(Grid);
#endif // GRID_GAUGE_IMPL_TYPES_H

View File

@ -176,7 +176,7 @@ public:
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline void setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }
};
@ -193,11 +193,6 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
NAMESPACE_END(Grid);
#endif

View File

@ -43,7 +43,7 @@ public:
private:
RealD c_plaq;
RealD c_rect;
typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
public:
PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
@ -79,18 +79,27 @@ public:
GridBase *grid = Umu.Grid();
std::vector<GaugeLinkField> U (Nd,grid);
std::vector<GaugeLinkField> U2(Nd,grid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
}
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
GaugeLinkField dSdU_mu(grid);
GaugeLinkField staple(grid);
for (int mu=0; mu < Nd; mu++){
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
// Staple in direction mu
WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
dSdU_mu = Ta(U[mu]*staple)*factor_p;
WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}

View File

@ -119,13 +119,19 @@ public:
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
this->_Mat.MeooeDag (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
std::cout << " tmp 1" << norm2(tmp1)<<std::endl;
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
std::cout << " tmp 1" << norm2(tmp2)<<std::endl;
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerYes);
std::cout << " ForceO " << norm2(ForceO)<<std::endl;
// Accumulate X^dag M_oe MeeInv Der_eo Y
this->_Mat.Meooe (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
std::cout << " tmp 1" << norm2(tmp1)<<std::endl;
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
std::cout << " tmp 2" << norm2(tmp2)<<std::endl;
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerYes);
std::cout << " ForceE " << norm2(ForceE)<<std::endl;
assert(ForceE.Checkerboard()==Even);
assert(ForceO.Checkerboard()==Odd);

View File

@ -225,18 +225,6 @@ template <class RepresentationsPolicy,
using GenericHMCRunnerHirep =
HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
// sp2n
template <template <typename, typename, typename> class Integrator>
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
template <class RepresentationsPolicy,
template <typename, typename, typename> class Integrator>
using GenericSpHMCRunnerHirep =
HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
template <class Implementation, class RepresentationsPolicy,
template <typename, typename, typename> class Integrator>
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;

View File

@ -284,12 +284,11 @@ public:
TheIntegrator.print_timer();
TheIntegrator.Smearer.set_Field(Ucur);
for (int obs = 0; obs < Observables.size(); obs++) {
std::cout << GridLogDebug << "Observables # " << obs << std::endl;
std::cout << GridLogDebug << "Observables total " << Observables.size() << std::endl;
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
Observables[obs]->TrajectoryComplete(traj + 1, TheIntegrator.Smearer, sRNG, pRNG);
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
}
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
}

View File

@ -35,16 +35,13 @@ class CheckpointerParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(CheckpointerParameters,
std::string, config_prefix,
std::string, smeared_prefix,
std::string, rng_prefix,
int, saveInterval,
bool, saveSmeared,
std::string, format, );
CheckpointerParameters(std::string cf = "cfg", std::string sf="cfg_smr" , std::string rn = "rng",
CheckpointerParameters(std::string cf = "cfg", std::string rn = "rng",
int savemodulo = 1, const std::string &f = "IEEE64BIG")
: config_prefix(cf),
smeared_prefix(sf),
rng_prefix(rn),
saveInterval(savemodulo),
format(f){};
@ -64,21 +61,13 @@ template <class Impl>
class BaseHmcCheckpointer : public HmcObservable<typename Impl::Field> {
public:
void build_filenames(int traj, CheckpointerParameters &Params,
std::string &conf_file,
std::string &smear_file,
std::string &rng_file) {
std::string &conf_file, std::string &rng_file) {
{
std::ostringstream os;
os << Params.rng_prefix << "." << traj;
rng_file = os.str();
}
{
std::ostringstream os;
os << Params.smeared_prefix << "." << traj;
smear_file = os.str();
}
{
std::ostringstream os;
os << Params.config_prefix << "." << traj;
@ -95,11 +84,6 @@ public:
}
virtual void initialize(const CheckpointerParameters &Params) = 0;
virtual void TrajectoryComplete(int traj,
typename Impl::Field &U,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG) { assert(0); } ; // HMC should pass the smart config with smeared and unsmeared
virtual void CheckpointRestore(int traj, typename Impl::Field &U,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG) = 0;

View File

@ -61,14 +61,11 @@ public:
fout.close();
}
void TrajectoryComplete(int traj,
ConfigurationBase<Field> &SmartConfig,
GridSerialRNG &sRNG, GridParallelRNG &pRNG)
{
void TrajectoryComplete(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
uint32_t nersc_csum;
uint32_t scidac_csuma;
@ -77,15 +74,9 @@ public:
BinarySimpleUnmunger<sobj_double, sobj> munge;
truncate(rng);
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Written Binary RNG " << rng
<< " checksum " << std::hex
<< nersc_csum <<"/"
<< scidac_csuma <<"/"
<< scidac_csumb
<< std::dec << std::endl;
truncate(config);
BinaryIO::writeLatticeObject<vobj, sobj_double>(SmartConfig.get_U(false), config, munge, 0, Params.format,
BinaryIO::writeLatticeObject<vobj, sobj_double>(U, config, munge, 0, Params.format,
nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Written Binary Configuration " << config
@ -94,18 +85,6 @@ public:
<< scidac_csuma <<"/"
<< scidac_csumb
<< std::dec << std::endl;
if ( Params.saveSmeared ) {
truncate(smr);
BinaryIO::writeLatticeObject<vobj, sobj_double>(SmartConfig.get_U(true), smr, munge, 0, Params.format,
nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Written Binary Smeared Configuration " << smr
<< " checksum " << std::hex
<< nersc_csum <<"/"
<< scidac_csuma <<"/"
<< scidac_csumb
<< std::dec << std::endl;
}
}
};

View File

@ -69,27 +69,17 @@ public:
}
}
void TrajectoryComplete(int traj,
ConfigurationBase<GaugeField> &SmartConfig,
GridSerialRNG &sRNG,
void TrajectoryComplete(int traj, GaugeField &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng, smr;
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
GridBase *grid = SmartConfig.get_U(false).Grid();
GridBase *grid = U.Grid();
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Written BINARY RNG " << rng
<< " checksum " << std::hex
<< nersc_csum<<"/"
<< scidac_csuma<<"/"
<< scidac_csumb
<< std::dec << std::endl;
IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(config);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(false), traj, config, config);
_IldgWriter.writeConfiguration<GaugeStats>(U, traj, config, config);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << config
@ -98,21 +88,6 @@ public:
<< scidac_csuma<<"/"
<< scidac_csumb
<< std::dec << std::endl;
if ( Params.saveSmeared ) {
IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(smr);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, config, config);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << smr
<< " checksum " << std::hex
<< nersc_csum<<"/"
<< scidac_csuma<<"/"
<< scidac_csumb
<< std::dec << std::endl;
}
}
};

View File

@ -52,29 +52,23 @@ public:
Params.format = "IEEE64BIG"; // fixed, overwrite any other choice
}
virtual void TrajectoryComplete(int traj,
ConfigurationBase<GaugeField> &SmartConfig,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG)
{
void TrajectoryComplete(int traj, GaugeField &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
int precision32 = 1;
int tworow = 0;
NerscIO::writeRNGState(sRNG, pRNG, rng);
NerscIO::writeConfiguration<GaugeStats>(SmartConfig.get_U(false), config, tworow, precision32);
if ( Params.saveSmeared ) {
NerscIO::writeConfiguration<GaugeStats>(SmartConfig.get_U(true), smr, tworow, precision32);
}
NerscIO::writeConfiguration<GaugeStats>(U, config, tworow, precision32);
}
};
void CheckpointRestore(int traj, GaugeField &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng );
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@ -70,37 +70,19 @@ class ScidacHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
}
}
void TrajectoryComplete(int traj,
ConfigurationBase<Field> &SmartConfig,
GridSerialRNG &sRNG,
void TrajectoryComplete(int traj, Field &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng,smr;
this->build_filenames(traj, Params, config, smr, rng);
GridBase *grid = SmartConfig.get_U(false).Grid();
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
GridBase *grid = U.Grid();
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Written Binary RNG " << rng
<< " checksum " << std::hex
<< nersc_csum <<"/"
<< scidac_csuma <<"/"
<< scidac_csumb
<< std::dec << std::endl;
ScidacWriter _ScidacWriter(grid->IsBoss());
_ScidacWriter.open(config);
_ScidacWriter.writeScidacFieldRecord(U, MData);
_ScidacWriter.close();
{
ScidacWriter _ScidacWriter(grid->IsBoss());
_ScidacWriter.open(config);
_ScidacWriter.writeScidacFieldRecord(SmartConfig.get_U(false), MData);
_ScidacWriter.close();
}
if ( Params.saveSmeared ) {
ScidacWriter _ScidacWriter(grid->IsBoss());
_ScidacWriter.open(smr);
_ScidacWriter.writeScidacFieldRecord(SmartConfig.get_U(true), MData);
_ScidacWriter.close();
}
std::cout << GridLogMessage << "Written Scidac Configuration on " << config << std::endl;
}
};

View File

@ -66,7 +66,6 @@ public:
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
public:
typedef FieldImplementation_ FieldImplementation;
typedef typename FieldImplementation::Field MomentaField; //for readability
typedef typename FieldImplementation::Field Field;
@ -97,6 +96,7 @@ public:
{
t_P[level] += ep;
update_P(P, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
@ -130,20 +130,28 @@ public:
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] before"<<std::endl;
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Smearer, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] after"<<std::endl;
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
// DumpSliceNorm("force ",force,Nd-1);
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<< std::endl;
DumpSliceNorm("force filtered ",force,Nd-1);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
@ -369,9 +377,14 @@ public:
auto name = as[level].actions.at(actionID)->action_name();
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] before"<<std::endl;
as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Smearer, sRNG, pRNG);
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop();
std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] after"<<std::endl;
}
@ -412,9 +425,10 @@ public:
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Smearer);
Hterm = as[level].actions.at(actionID)->S(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
@ -455,11 +469,12 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Smearer);
as[level].actions.at(actionID)->S_timer_stop();
Hterm = as[level].actions.at(actionID)->Sinitial(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;

View File

@ -34,13 +34,6 @@ NAMESPACE_BEGIN(Grid);
template <class Field>
class HmcObservable {
public:
virtual void TrajectoryComplete(int traj,
ConfigurationBase<Field> &SmartConfig,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG)
{
TrajectoryComplete(traj,SmartConfig.get_U(false),sRNG,pRNG); // Unsmeared observable
};
virtual void TrajectoryComplete(int traj,
Field &U,
GridSerialRNG &sRNG,

View File

@ -42,18 +42,6 @@ public:
// necessary for HmcObservable compatibility
typedef typename Impl::Field Field;
virtual void TrajectoryComplete(int traj,
ConfigurationBase<Field> &SmartConfig,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG)
{
std::cout << GridLogMessage << "+++++++++++++++++++"<<std::endl;
std::cout << GridLogMessage << "Unsmeared plaquette"<<std::endl;
TrajectoryComplete(traj,SmartConfig.get_U(false),sRNG,pRNG); // Unsmeared observable
std::cout << GridLogMessage << "Smeared plaquette"<<std::endl;
TrajectoryComplete(traj,SmartConfig.get_U(true),sRNG,pRNG); // Unsmeared observable
std::cout << GridLogMessage << "+++++++++++++++++++"<<std::endl;
};
void TrajectoryComplete(int traj,
Field &U,
GridSerialRNG &sRNG,

View File

@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
* Empty since HMC updates already the fundamental representation
*/
template <int ncolour, class group_name>
template <int ncolour>
class FundamentalRep {
public:
static const int Dimension = ncolour;
@ -21,7 +21,7 @@ public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
typedef LatticeGaugeField LatticeField;
explicit FundamentalRep(GridBase* grid) {} //do nothing
@ -45,8 +45,7 @@ public:
typedef FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
typedef FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
typedef FundamentalRep<Nc> FundamentalRepresentation;
NAMESPACE_END(Grid);

View File

@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
* in the SUnTwoIndex.h file
*/
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
template <int ncolour, TwoIndexSymmetry S>
class TwoIndexRep {
public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
static const int Dimension = ncolour * (ncolour + S) / 2;
static const bool isFundamental = false;
LatticeField U;
@ -43,10 +43,10 @@ public:
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++)
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
SU_TwoIndex<ncolour, S>::base(a, eij[a]);
for (int mu = 0; mu < Nd; mu++) {
auto Uin_mu = peekLorentz(Uin, mu);
@ -71,7 +71,7 @@ public:
out_mu = Zero();
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
pokeLorentz(out, out_mu, mu);
@ -80,23 +80,20 @@ public:
}
private:
void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) const {
GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
}
void FundamentalLieAlgebraMatrix(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
typename SU<ncolour>::LatticeAlgebraVector &h,
typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
}
};
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
NAMESPACE_END(Grid);

View File

@ -7,27 +7,26 @@
NAMESPACE_BEGIN(Grid);
//trivial class for no smearing
template< class Impl >
class NoSmearing : public ConfigurationBase<typename Impl::Field>
class NoSmearing
{
public:
INHERIT_FIELD_TYPES(Impl);
Field* ThinLinks;
Field* ThinField;
NoSmearing(): ThinLinks(NULL) {}
NoSmearing(): ThinField(NULL) {}
virtual void set_Field(Field& U) { ThinLinks = &U; }
void set_Field(Field& U) { ThinField = &U; }
virtual void smeared_force(Field&) {}
void smeared_force(Field&) const {}
virtual Field& get_SmearedU() { return *ThinLinks; }
Field& get_SmearedU() { return *ThinField; }
virtual Field &get_U(bool smeared = false)
Field &get_U(bool smeared = false)
{
return *ThinLinks;
return *ThinField;
}
};
@ -43,24 +42,19 @@ public:
It stores a list of smeared configurations.
*/
template <class Gimpl>
class SmearedConfiguration : public ConfigurationBase<typename Gimpl::Field>
class SmearedConfiguration
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
protected:
private:
const unsigned int smearingLevels;
Smear_Stout<Gimpl> *StoutSmearing;
std::vector<GaugeField> SmearedSet;
public:
GaugeField* ThinLinks; /* Pointer to the thin links configuration */ // move to base???
protected:
// Member functions
//====================================================================
// Overridden in masked version
virtual void fill_smearedSet(GaugeField &U)
void fill_smearedSet(GaugeField &U)
{
ThinLinks = &U; // attach the smearing routine to the field U
@ -88,10 +82,9 @@ protected:
}
}
}
//overridden in masked verson
virtual GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK) const
//====================================================================
GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK) const
{
GridBase* grid = GaugeK.Grid();
GaugeField C(grid), SigmaK(grid), iLambda(grid);
@ -220,6 +213,8 @@ protected:
//====================================================================
public:
GaugeField*
ThinLinks; /* Pointer to the thin links configuration */
/* Standard constructor */
SmearedConfiguration(GridCartesian* UGrid, unsigned int Nsmear,
@ -235,7 +230,7 @@ public:
: smearingLevels(0), StoutSmearing(nullptr), SmearedSet(), ThinLinks(NULL) {}
// attach the smeared routines to the thin links U and fill the smeared set
virtual void set_Field(GaugeField &U)
void set_Field(GaugeField &U)
{
double start = usecond();
fill_smearedSet(U);
@ -245,7 +240,7 @@ public:
}
//====================================================================
virtual void smeared_force(GaugeField &SigmaTilde)
void smeared_force(GaugeField &SigmaTilde) const
{
if (smearingLevels > 0)
{
@ -272,16 +267,14 @@ public:
}
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << " GaugeConfiguration: Smeared Force chain rule took " << time << " ms" << std::endl;
std::cout << GridLogMessage << "Smearing force in " << time << " ms" << std::endl;
} // if smearingLevels = 0 do nothing
SigmaTilde=Gimpl::projectForce(SigmaTilde); // Ta
}
//====================================================================
virtual GaugeField& get_SmearedU() { return SmearedSet[smearingLevels - 1]; }
GaugeField& get_SmearedU() { return SmearedSet[smearingLevels - 1]; }
virtual GaugeField &get_U(bool smeared = false)
GaugeField &get_U(bool smeared = false)
{
// get the config, thin links by default
if (smeared)

View File

@ -1,813 +0,0 @@
/*!
@file GaugeConfiguration.h
@brief Declares the GaugeConfiguration class
*/
#pragma once
NAMESPACE_BEGIN(Grid);
/*!
@brief Smeared configuration masked container
Modified for a multi-subset smearing (aka Luscher Flowed HMC)
*/
template <class Gimpl>
class SmearedConfigurationMasked : public SmearedConfiguration<Gimpl>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
private:
// These live in base class
// const unsigned int smearingLevels;
// Smear_Stout<Gimpl> *StoutSmearing;
// std::vector<GaugeField> SmearedSet;
std::vector<LatticeLorentzComplex> masks;
typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
typedef typename SU3Adjoint::LatticeAdjVector AdjVectorField;
// Adjoint vector to GaugeField force
void InsertForce(GaugeField &Fdet,AdjVectorField &Fdet_nu,int nu)
{
Complex ci(0,1);
GaugeLinkField Fdet_pol(Fdet.Grid());
Fdet_pol=Zero();
for(int e=0;e<8;e++){
ColourMatrix te;
SU3::generator(e, te);
auto tmp=peekColour(Fdet_nu,e);
Fdet_pol=Fdet_pol + ci*tmp*te; // but norm of te is different.. why?
}
pokeLorentz(Fdet, Fdet_pol, nu);
}
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
{
GaugeLinkField UtaU(PlaqL.Grid());
GaugeLinkField D(PlaqL.Grid());
AdjMatrixField Dbc(PlaqL.Grid());
LatticeComplex tmp(PlaqL.Grid());
const int Ngen = SU3Adjoint::Dimension;
Complex ci(0,1);
ColourMatrix ta,tb,tc;
for(int a=0;a<Ngen;a++) {
SU3::generator(a, ta);
// Qlat Tb = 2i Tb^Grid
UtaU= 2.0*ci*adj(PlaqL)*ta*PlaqR;
for(int c=0;c<Ngen;c++) {
SU3::generator(c, tc);
D = Ta( (2.0)*ci*tc *UtaU);
for(int b=0;b<Ngen;b++){
SU3::generator(b, tb);
tmp =-trace(ci*tb*D);
PokeIndex<ColourIndex>(Dbc,tmp,b,c); // Adjoint rep
}
}
tmp = trace(MpInvJx * Dbc);
PokeIndex<ColourIndex>(Fdet2,tmp,a);
}
}
void ComputeNxy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR,AdjMatrixField &NxAd)
{
GaugeLinkField Nx(PlaqL.Grid());
const int Ngen = SU3Adjoint::Dimension;
Complex ci(0,1);
ColourMatrix tb;
ColourMatrix tc;
for(int b=0;b<Ngen;b++) {
SU3::generator(b, tb);
Nx = (2.0)*Ta( adj(PlaqL)*ci*tb * PlaqR );
for(int c=0;c<Ngen;c++) {
SU3::generator(c, tc);
auto tmp =closure( -trace(ci*tc*Nx));
PokeIndex<ColourIndex>(NxAd,tmp,c,b);
}
}
}
void ApplyMask(GaugeField &U,int smr)
{
LatticeComplex tmp(U.Grid());
GaugeLinkField Umu(U.Grid());
for(int mu=0;mu<Nd;mu++){
Umu=PeekIndex<LorentzIndex>(U,mu);
tmp=PeekIndex<LorentzIndex>(masks[smr],mu);
Umu=Umu*tmp;
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
public:
void logDetJacobianForceLevel(const GaugeField &U, GaugeField &force ,int smr)
{
GridBase* grid = U.Grid();
ColourMatrix tb;
ColourMatrix tc;
ColourMatrix ta;
GaugeField C(grid);
GaugeField Umsk(grid);
std::vector<GaugeLinkField> Umu(Nd,grid);
GaugeLinkField Cmu(grid); // U and staple; C contains factor of epsilon
GaugeLinkField Zx(grid); // U times Staple, contains factor of epsilon
GaugeLinkField Nxx(grid); // Nxx fundamental space
GaugeLinkField Utmp(grid);
GaugeLinkField PlaqL(grid);
GaugeLinkField PlaqR(grid);
const int Ngen = SU3Adjoint::Dimension;
AdjMatrix TRb;
ColourMatrix Ident;
LatticeComplex cplx(grid);
AdjVectorField dJdXe_nMpInv(grid);
AdjVectorField dJdXe_nMpInv_y(grid);
AdjMatrixField MpAd(grid); // Mprime luchang's notes
AdjMatrixField MpAdInv(grid); // Mprime inverse
AdjMatrixField NxxAd(grid); // Nxx in adjoint space
AdjMatrixField JxAd(grid);
AdjMatrixField ZxAd(grid);
AdjMatrixField mZxAd(grid);
AdjMatrixField X(grid);
Complex ci(0,1);
RealD t0 = usecond();
Ident = ComplexD(1.0);
for(int d=0;d<Nd;d++){
Umu[d] = peekLorentz(U, d);
}
int mu= (smr/2) %Nd;
////////////////////////////////////////////////////////////////////////////////
// Mask the gauge field
////////////////////////////////////////////////////////////////////////////////
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
Umsk = U;
ApplyMask(Umsk,smr);
Utmp = peekLorentz(Umsk,mu);
////////////////////////////////////////////////////////////////////////////////
// Retrieve the eps/rho parameter(s) -- could allow all different but not so far
////////////////////////////////////////////////////////////////////////////////
double rho=this->StoutSmearing->SmearRho[1];
int idx=0;
for(int mu=0;mu<4;mu++){
for(int nu=0;nu<4;nu++){
if ( mu!=nu) assert(this->StoutSmearing->SmearRho[idx]==rho);
else assert(this->StoutSmearing->SmearRho[idx]==0.0);
idx++;
}}
//////////////////////////////////////////////////////////////////
// Assemble the N matrix
//////////////////////////////////////////////////////////////////
// Computes ALL the staples -- could compute one only and do it here
RealD time;
time=-usecond();
this->StoutSmearing->BaseSmear(C, U);
Cmu = peekLorentz(C, mu);
//////////////////////////////////////////////////////////////////
// Assemble Luscher exp diff map J matrix
//////////////////////////////////////////////////////////////////
// Ta so Z lives in Lie algabra
Zx = Ta(Cmu * adj(Umu[mu]));
time+=usecond();
std::cout << GridLogMessage << "Z took "<<time<< " us"<<std::endl;
time=-usecond();
// Move Z to the Adjoint Rep == make_adjoint_representation
ZxAd = Zero();
for(int b=0;b<8;b++) {
// Adj group sets traceless antihermitian T's -- Guido, really????
SU3::generator(b, tb); // Fund group sets traceless hermitian T's
SU3Adjoint::generator(b,TRb);
TRb=-TRb;
cplx = 2.0*trace(ci*tb*Zx); // my convention 1/2 delta ba
ZxAd = ZxAd + cplx * TRb; // is this right? YES - Guido used Anti herm Ta's and with bloody wrong sign.
}
time+=usecond();
std::cout << GridLogMessage << "ZxAd took "<<time<< " us"<<std::endl;
//////////////////////////////////////
// J(x) = 1 + Sum_k=1..N (-Zac)^k/(k+1)!
//////////////////////////////////////
time=-usecond();
X=1.0;
JxAd = X;
mZxAd = (-1.0)*ZxAd;
RealD kpfac = 1;
for(int k=1;k<12;k++){
X=X*mZxAd;
kpfac = kpfac /(k+1);
JxAd = JxAd + X * kpfac;
}
time+=usecond();
std::cout << GridLogMessage << "Jx took "<<time<< " us"<<std::endl;
//////////////////////////////////////
// dJ(x)/dxe
//////////////////////////////////////
time=-usecond();
std::vector<AdjMatrixField> dJdX; dJdX.resize(8,grid);
AdjMatrixField tbXn(grid);
AdjMatrixField sumXtbX(grid);
AdjMatrixField t2(grid);
AdjMatrixField dt2(grid);
AdjMatrixField t3(grid);
AdjMatrixField dt3(grid);
AdjMatrixField aunit(grid);
for(int b=0;b<8;b++){
aunit = ComplexD(1.0);
SU3Adjoint::generator(b, TRb); //dt2
X = (-1.0)*ZxAd;
t2 = X;
dt2 = TRb;
for (int j = 20; j > 1; --j) {
t3 = t2*(1.0 / (j + 1)) + aunit;
dt3 = dt2*(1.0 / (j + 1));
t2 = X * t3;
dt2 = TRb * t3 + X * dt3;
}
dJdX[b] = -dt2;
}
time+=usecond();
std::cout << GridLogMessage << "dJx took "<<time<< " us"<<std::endl;
/////////////////////////////////////////////////////////////////
// Mask Umu for this link
/////////////////////////////////////////////////////////////////
time=-usecond();
PlaqL = Ident;
PlaqR = Utmp*adj(Cmu);
ComputeNxy(PlaqL,PlaqR,NxxAd);
time+=usecond();
std::cout << GridLogMessage << "ComputeNxy took "<<time<< " us"<<std::endl;
////////////////////////////
// Mab
////////////////////////////
MpAd = Complex(1.0,0.0);
MpAd = MpAd - JxAd * NxxAd;
/////////////////////////
// invert the 8x8
/////////////////////////
time=-usecond();
MpAdInv = Inverse(MpAd);
time+=usecond();
std::cout << GridLogMessage << "MpAdInv took "<<time<< " us"<<std::endl;
RealD t3a = usecond();
/////////////////////////////////////////////////////////////////
// Nxx Mp^-1
/////////////////////////////////////////////////////////////////
AdjVectorField FdetV(grid);
AdjVectorField Fdet1_nu(grid);
AdjVectorField Fdet2_nu(grid);
AdjVectorField Fdet2_mu(grid);
AdjVectorField Fdet1_mu(grid);
AdjMatrixField nMpInv(grid);
nMpInv= NxxAd *MpAdInv;
AdjMatrixField MpInvJx(grid);
AdjMatrixField MpInvJx_nu(grid);
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_mu=FdetV;
Fdet1_mu=Zero();
for(int e =0 ; e<8 ; e++){
LatticeComplexD tr(grid);
ColourMatrix te;
SU3::generator(e, te);
tr = trace(dJdX[e] * nMpInv);
pokeColour(dJdXe_nMpInv,tr,e);
}
///////////////////////////////
// Mask it off
///////////////////////////////
auto tmp=PeekIndex<LorentzIndex>(masks[smr],mu);
dJdXe_nMpInv = dJdXe_nMpInv*tmp;
// dJdXe_nMpInv needs to multiply:
// Nxx_mu (site local) (1)
// Nxy_mu one site forward in each nu direction (3)
// Nxy_mu one site backward in each nu direction (3)
// Nxy_nu 0,0 ; +mu,0; 0,-nu; +mu-nu [ 3x4 = 12]
// 19 terms.
AdjMatrixField Nxy(grid);
GaugeField Fdet1(grid);
GaugeField Fdet2(grid);
GaugeLinkField Fdet_pol(grid); // one polarisation
RealD t4 = usecond();
for(int nu=0;nu<Nd;nu++){
if (nu!=mu) {
///////////////// +ve nu /////////////////
// __
// | |
// x== // nu polarisation -- clockwise
time=-usecond();
PlaqL=Ident;
PlaqR=(-rho)*Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftBackward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu))));
time+=usecond();
std::cout << GridLogMessage << "PlaqLR took "<<time<< " us"<<std::endl;
time=-usecond();
dJdXe_nMpInv_y = dJdXe_nMpInv;
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_nu = transpose(Nxy)*dJdXe_nMpInv_y;
time+=usecond();
std::cout << GridLogMessage << "ComputeNxy (occurs 6x) took "<<time<< " us"<<std::endl;
time=-usecond();
PlaqR=(-1.0)*PlaqR;
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_nu = FdetV;
time+=usecond();
std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl;
// x==
// | |
// .__| // nu polarisation -- anticlockwise
PlaqR=(rho)*Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftBackward(Umu[mu], mu,
Gimpl::CovShiftIdentityBackward(Umu[nu], nu)));
PlaqL=Gimpl::CovShiftIdentityBackward(Utmp, mu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,mu,-1);
ComputeNxy(PlaqL, PlaqR,Nxy);
Fdet1_nu = Fdet1_nu+transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
///////////////// -ve nu /////////////////
// __
// | |
// x== // nu polarisation -- clockwise
PlaqL=(rho)* Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu)));
PlaqR = Gimpl::CovShiftIdentityForward(Umu[nu], nu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,nu,1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
// x==
// | |
// |__| // nu polarisation
PlaqL=(-rho)*Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu));
PlaqR=Gimpl::CovShiftBackward(Umu[mu], mu,
Gimpl::CovShiftIdentityForward(Umu[nu], nu));
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,mu,-1);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv_y,nu,1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
/////////////////////////////////////////////////////////////////////
// Set up the determinant force contribution in 3x3 algebra basis
/////////////////////////////////////////////////////////////////////
InsertForce(Fdet1,Fdet1_nu,nu);
InsertForce(Fdet2,Fdet2_nu,nu);
//////////////////////////////////////////////////
// Parallel direction terms
//////////////////////////////////////////////////
// __
// | "
// |__"x // mu polarisation
PlaqL=(-rho)*Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftBackward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu)));
PlaqR=Gimpl::CovShiftIdentityBackward(Umu[nu], nu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,nu,-1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_mu = Fdet1_mu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
// __
// " |
// x__| // mu polarisation
PlaqL=(-rho)*Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu)));
PlaqR=Gimpl::CovShiftIdentityForward(Umu[nu], nu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,nu,1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_mu = Fdet1_mu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
}
}
RealD t5 = usecond();
Fdet1_mu = Fdet1_mu + transpose(NxxAd)*dJdXe_nMpInv;
InsertForce(Fdet1,Fdet1_mu,mu);
InsertForce(Fdet2,Fdet2_mu,mu);
force= (-0.5)*( Fdet1 + Fdet2);
RealD t1 = usecond();
std::cout << GridLogMessage << " logDetJacobianForce level took "<<t1-t0<<" us "<<std::endl;
std::cout << GridLogMessage << " logDetJacobianForce t3-t0 "<<t3a-t0<<" us "<<std::endl;
std::cout << GridLogMessage << " logDetJacobianForce t4-t3 dJdXe_nMpInv "<<t4-t3a<<" us "<<std::endl;
std::cout << GridLogMessage << " logDetJacobianForce t5-t4 mu nu loop "<<t5-t4<<" us "<<std::endl;
std::cout << GridLogMessage << " logDetJacobianForce t1-t5 "<<t1-t5<<" us "<<std::endl;
std::cout << GridLogMessage << " logDetJacobianForce level took "<<t1-t0<<" us "<<std::endl;
}
RealD logDetJacobianLevel(const GaugeField &U,int smr)
{
GridBase* grid = U.Grid();
GaugeField C(grid);
GaugeLinkField Nb(grid);
GaugeLinkField Z(grid);
GaugeLinkField Umu(grid), Cmu(grid);
ColourMatrix Tb;
ColourMatrix Tc;
typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
typedef typename SU3Adjoint::LatticeAdjVector AdjVectorField;
const int Ngen = SU3Adjoint::Dimension;
AdjMatrix TRb;
LatticeComplex cplx(grid);
AdjVectorField AlgV(grid);
AdjMatrixField Mab(grid);
AdjMatrixField Ncb(grid);
AdjMatrixField Jac(grid);
AdjMatrixField Zac(grid);
AdjMatrixField mZac(grid);
AdjMatrixField X(grid);
int mu= (smr/2) %Nd;
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
//////////////////////////////////////////////////////////////////
// Assemble the N matrix
//////////////////////////////////////////////////////////////////
// Computes ALL the staples -- could compute one only here
this->StoutSmearing->BaseSmear(C, U);
Cmu = peekLorentz(C, mu);
Umu = peekLorentz(U, mu);
Complex ci(0,1);
for(int b=0;b<Ngen;b++) {
SU3::generator(b, Tb);
// Qlat Tb = 2i Tb^Grid
Nb = (2.0)*Ta( ci*Tb * Umu * adj(Cmu));
for(int c=0;c<Ngen;c++) {
SU3::generator(c, Tc);
auto tmp = -trace(ci*Tc*Nb); // Luchang's norm: (2Tc) (2Td) N^db = -2 delta cd N^db // - was important
PokeIndex<ColourIndex>(Ncb,tmp,c,b);
}
}
//////////////////////////////////////////////////////////////////
// Assemble Luscher exp diff map J matrix
//////////////////////////////////////////////////////////////////
// Ta so Z lives in Lie algabra
Z = Ta(Cmu * adj(Umu));
// Move Z to the Adjoint Rep == make_adjoint_representation
Zac = Zero();
for(int b=0;b<8;b++) {
// Adj group sets traceless antihermitian T's -- Guido, really????
// Is the mapping of these the same? Same structure constants
// Might never have been checked.
SU3::generator(b, Tb); // Fund group sets traceless hermitian T's
SU3Adjoint::generator(b,TRb);
TRb=-TRb;
cplx = 2.0*trace(ci*Tb*Z); // my convention 1/2 delta ba
Zac = Zac + cplx * TRb; // is this right? YES - Guido used Anti herm Ta's and with bloody wrong sign.
}
//////////////////////////////////////
// J(x) = 1 + Sum_k=1..N (-Zac)^k/(k+1)!
//////////////////////////////////////
X=1.0;
Jac = X;
mZac = (-1.0)*Zac;
RealD kpfac = 1;
for(int k=1;k<12;k++){
X=X*mZac;
kpfac = kpfac /(k+1);
Jac = Jac + X * kpfac;
}
////////////////////////////
// Mab
////////////////////////////
Mab = Complex(1.0,0.0);
Mab = Mab - Jac * Ncb;
////////////////////////////
// det
////////////////////////////
LatticeComplex det(grid);
det = Determinant(Mab);
////////////////////////////
// ln det
////////////////////////////
LatticeComplex ln_det(grid);
ln_det = log(det);
////////////////////////////
// Masked sum
////////////////////////////
ln_det = ln_det * mask;
Complex result = sum(ln_det);
return result.real();
}
public:
RealD logDetJacobian(void)
{
RealD ln_det = 0;
if (this->smearingLevels > 0)
{
double start = usecond();
for (int ismr = this->smearingLevels - 1; ismr > 0; --ismr) {
ln_det+= logDetJacobianLevel(this->get_smeared_conf(ismr-1),ismr);
}
ln_det +=logDetJacobianLevel(*(this->ThinLinks),0);
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "GaugeConfigurationMasked: logDetJacobian took " << time << " ms" << std::endl;
}
return ln_det;
}
void logDetJacobianForce(GaugeField &force)
{
force =Zero();
GaugeField force_det(force.Grid());
if (this->smearingLevels > 0)
{
double start = usecond();
GaugeLinkField tmp_mu(force.Grid());
for (int ismr = this->smearingLevels - 1; ismr > 0; --ismr) {
// remove U in UdSdU...
for (int mu = 0; mu < Nd; mu++) {
tmp_mu = adj(peekLorentz(this->get_smeared_conf(ismr), mu)) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
// Propagate existing force
force = this->AnalyticSmearedForce(force, this->get_smeared_conf(ismr - 1), ismr);
// Add back U in UdSdU...
for (int mu = 0; mu < Nd; mu++) {
tmp_mu = peekLorentz(this->get_smeared_conf(ismr - 1), mu) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
// Get this levels determinant force
force_det = Zero();
logDetJacobianForceLevel(this->get_smeared_conf(ismr-1),force_det,ismr);
// Sum the contributions
force = force + force_det;
}
// remove U in UdSdU...
for (int mu = 0; mu < Nd; mu++) {
tmp_mu = adj(peekLorentz(this->get_smeared_conf(0), mu)) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
force = this->AnalyticSmearedForce(force, *this->ThinLinks,0);
for (int mu = 0; mu < Nd; mu++) {
tmp_mu = peekLorentz(*this->ThinLinks, mu) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
force_det = Zero();
logDetJacobianForceLevel(*this->ThinLinks,force_det,0);
force = force + force_det;
force=Ta(force); // Ta
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "GaugeConfigurationMasked: lnDetJacobianForce took " << time << " ms" << std::endl;
} // if smearingLevels = 0 do nothing
}
private:
//====================================================================
// Override base clas here to mask it
virtual void fill_smearedSet(GaugeField &U)
{
this->ThinLinks = &U; // attach the smearing routine to the field U
// check the pointer is not null
if (this->ThinLinks == NULL)
std::cout << GridLogError << "[SmearedConfigurationMasked] Error in ThinLinks pointer\n";
if (this->smearingLevels > 0)
{
std::cout << GridLogMessage << "[SmearedConfigurationMasked] Filling SmearedSet\n";
GaugeField previous_u(this->ThinLinks->Grid());
GaugeField smeared_A(this->ThinLinks->Grid());
GaugeField smeared_B(this->ThinLinks->Grid());
previous_u = *this->ThinLinks;
double start = usecond();
for (int smearLvl = 0; smearLvl < this->smearingLevels; ++smearLvl)
{
this->StoutSmearing->smear(smeared_A, previous_u);
ApplyMask(smeared_A,smearLvl);
smeared_B = previous_u;
ApplyMask(smeared_B,smearLvl);
// Replace only the masked portion
this->SmearedSet[smearLvl] = previous_u-smeared_B + smeared_A;
previous_u = this->SmearedSet[smearLvl];
// For debug purposes
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(previous_u);
std::cout << GridLogMessage << "[SmearedConfigurationMasked] smeared Plaq: " << impl_plaq << std::endl;
}
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "GaugeConfigurationMasked: Link smearing took " << time << " ms" << std::endl;
}
}
//====================================================================
// Override base to add masking
virtual GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK,int level)
{
GridBase* grid = GaugeK.Grid();
GaugeField C(grid), SigmaK(grid), iLambda(grid);
GaugeField SigmaKPrimeA(grid);
GaugeField SigmaKPrimeB(grid);
GaugeLinkField iLambda_mu(grid);
GaugeLinkField iQ(grid), e_iQ(grid);
GaugeLinkField SigmaKPrime_mu(grid);
GaugeLinkField GaugeKmu(grid), Cmu(grid);
this->StoutSmearing->BaseSmear(C, GaugeK);
SigmaK = Zero();
iLambda = Zero();
SigmaKPrimeA = SigmaKPrime;
ApplyMask(SigmaKPrimeA,level);
SigmaKPrimeB = SigmaKPrime - SigmaKPrimeA;
// Could get away with computing only one polarisation here
// int mu= (smr/2) %Nd;
// SigmaKprime_A has only one component
for (int mu = 0; mu < Nd; mu++)
{
Cmu = peekLorentz(C, mu);
GaugeKmu = peekLorentz(GaugeK, mu);
SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
iQ = Ta(Cmu * adj(GaugeKmu));
this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
pokeLorentz(iLambda, iLambda_mu, mu);
}
this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK); // derivative of SmearBase
////////////////////////////////////////////////////////////////////////////////////
// propagate the rest of the force as identity map, just add back
////////////////////////////////////////////////////////////////////////////////////
SigmaK = SigmaK+SigmaKPrimeB;
return SigmaK;
}
public:
/* Standard constructor */
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout)
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
{
assert(Nsmear%(2*Nd)==0); // Or multiply by 8??
// was resized in base class
assert(this->SmearedSet.size()==Nsmear);
GridRedBlackCartesian * UrbGrid;
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
LatticeComplex tmp(_UGrid);
for (unsigned int i = 0; i < this->smearingLevels; ++i) {
masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
int mu= (i/2) %Nd;
int cb= (i%2);
LatticeComplex tmpcb(UrbGrid);
masks[i]=Zero();
////////////////////
// Setup the mask
////////////////////
tmp = Zero();
pickCheckerboard(cb,tmpcb,one);
setCheckerboard(tmp,tmpcb);
PokeIndex<LorentzIndex>(masks[i],tmp, mu);
}
delete UrbGrid;
}
virtual void smeared_force(GaugeField &SigmaTilde)
{
if (this->smearingLevels > 0)
{
double start = usecond();
GaugeField force = SigmaTilde; // actually = U*SigmaTilde
GaugeLinkField tmp_mu(SigmaTilde.Grid());
// Remove U from UdSdU
for (int mu = 0; mu < Nd; mu++)
{
// to get just SigmaTilde
tmp_mu = adj(peekLorentz(this->SmearedSet[this->smearingLevels - 1], mu)) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
for (int ismr = this->smearingLevels - 1; ismr > 0; --ismr) {
force = this->AnalyticSmearedForce(force, this->get_smeared_conf(ismr - 1),ismr);
}
force = this->AnalyticSmearedForce(force, *this->ThinLinks,0);
// Add U to UdSdU
for (int mu = 0; mu < Nd; mu++)
{
tmp_mu = peekLorentz(*this->ThinLinks, mu) * peekLorentz(force, mu);
pokeLorentz(SigmaTilde, tmp_mu, mu);
}
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << " GaugeConfigurationMasked: Smeared Force chain rule took " << time << " ms" << std::endl;
} // if smearingLevels = 0 do nothing
SigmaTilde=Gimpl::projectForce(SigmaTilde); // Ta
}
};
NAMESPACE_END(Grid);

View File

@ -1,87 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/JacobianAction.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////
// Jacobian Action ..
////////////////////////////////////////////////////////////////////////
template <class Gimpl>
class JacobianAction : public Action<typename Gimpl::GaugeField> {
public:
INHERIT_GIMPL_TYPES(Gimpl);
SmearedConfigurationMasked<Gimpl> * smearer;
/////////////////////////// constructors
explicit JacobianAction(SmearedConfigurationMasked<Gimpl> * _smearer ) { smearer=_smearer;};
virtual std::string action_name() {return "JacobianAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "[JacobianAction] " << std::endl;
return sstream.str();
}
//////////////////////////////////
// Usual cases are not used
//////////////////////////////////
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG){ assert(0);};
virtual RealD S(const GaugeField &U) { assert(0); }
virtual void deriv(const GaugeField &U, GaugeField &dSdU) { assert(0); }
//////////////////////////////////
// Functions of smart configs only
//////////////////////////////////
virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
{
return;
}
virtual RealD S(ConfigurationBase<GaugeField>& U)
{
// det M = e^{ - ( - logDetM) }
assert( &U == smearer );
return -smearer->logDetJacobian();
}
virtual RealD Sinitial(ConfigurationBase<GaugeField>& U)
{
return S(U);
}
virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU)
{
assert( &U == smearer );
smearer->logDetJacobianForce(dSdU);
}
private:
};
NAMESPACE_END(Grid);

View File

@ -40,9 +40,7 @@ template <class Gimpl>
class Smear_Stout : public Smear<Gimpl> {
private:
int OrthogDim = -1;
public:
const std::vector<double> SmearRho;
private:
// Smear<Gimpl>* ownership semantics:
// Smear<Gimpl>* passed in to constructor are owned by caller, so we don't delete them here
// Smear<Gimpl>* created within constructor need to be deleted as part of the destructor

View File

@ -37,14 +37,13 @@ NAMESPACE_BEGIN(Grid);
// Make these members of an Impl class for BC's.
namespace PeriodicBC {
//Out(x) = Link(x)*field(x+mu)
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
{
return Link*Cshift(field,mu,1);// moves towards negative mu
}
//Out(x) = Link^dag(x-mu)*field(x-mu)
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
@ -53,19 +52,19 @@ namespace PeriodicBC {
tmp = adj(Link)*field;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
//Out(x) = Link^dag(x-mu)
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
{
return Cshift(adj(Link), mu, -1);
}
//Out(x) = Link(x)
template<class gauge> Lattice<gauge>
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
{
return Link;
}
//Link(x) = Link(x+mu)
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{

View File

@ -1,470 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/GaugeGroup.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTIL_GAUGEGROUP_H
#define QCD_UTIL_GAUGEGROUP_H
// Important detail: nvcc requires all template parameters to have names.
// This is the only reason why the second template parameter has a name.
#define ONLY_IF_SU \
typename dummy_name = group_name, \
typename named_dummy = std::enable_if_t < \
std::is_same<dummy_name, group_name>::value && \
is_su<dummy_name>::value >
#define ONLY_IF_Sp \
typename dummy_name = group_name, \
typename named_dummy = std::enable_if_t < \
std::is_same<dummy_name, group_name>::value && \
is_sp<dummy_name>::value >
NAMESPACE_BEGIN(Grid);
namespace GroupName {
class SU {};
class Sp {};
} // namespace GroupName
template <typename group_name>
struct is_su {
static const bool value = false;
};
template <>
struct is_su<GroupName::SU> {
static const bool value = true;
};
template <typename group_name>
struct is_sp {
static const bool value = false;
};
template <>
struct is_sp<GroupName::Sp> {
static const bool value = true;
};
template <typename group_name>
constexpr int compute_adjoint_dimension(int ncolour);
template <>
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
return ncolour * ncolour - 1;
}
template <>
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
return ncolour / 2 * (ncolour + 1);
}
template <int ncolour, class group_name>
class GaugeGroup {
public:
static const int Dimension = ncolour;
static const int AdjointDimension =
compute_adjoint_dimension<group_name>(ncolour);
static const int AlgebraDimension =
compute_adjoint_dimension<group_name>(ncolour);
template <typename vtype>
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
static int su2subgroups(void) { return su2subgroups(group_name()); }
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
// SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
typedef iGroupMatrix<vComplex> vMatrix;
typedef iGroupMatrix<vComplexF> vMatrixF;
typedef iGroupMatrix<vComplexD> vMatrixD;
// For the projectors to the algebra
// these should be real...
// keeping complex for consistency with the SIMD vector types
typedef iAlgebraVector<Complex> AlgebraVector;
typedef iAlgebraVector<ComplexF> AlgebraVectorF;
typedef iAlgebraVector<ComplexD> AlgebraVectorD;
typedef iAlgebraVector<vComplex> vAlgebraVector;
typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
// Private implementation details are specified in the following files:
// Grid/qcd/utils/SUn.impl
// Grid/qcd/utils/SUn.impl
// The public part of the interface follows below and refers to these
// private member functions.
#include <Grid/qcd/utils/SUn.impl.h>
#include <Grid/qcd/utils/Sp2n.impl.h>
public:
template <class cplx>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
return generator(lieIndex, ta, group_name());
}
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
return su2SubGroupIndex(i1, i2, su2_index, group_name());
}
static void testGenerators(void) { testGenerators(group_name()); }
static void printGenerators(void) {
for (int gen = 0; gen < AlgebraDimension; gen++) {
Matrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
template <typename LatticeMatrixType>
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
double scale = 1.0) {
GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type;
typedef iSinglet<vector_type> vTComplexType;
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
LatticeMatrixType la(grid);
ComplexD ci(0.0, scale);
MatrixType ta;
lie = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
random(pRNG, ca);
ca = (ca + conjugate(ca)) * 0.5;
ca = ca - 0.5;
generator(a, ta);
la = ci * ca * ta;
lie = lie + la; // e^{i la ta}
}
taExp(lie, out);
}
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) {
GridBase *grid = out.Grid();
LatticeReal ca(grid);
LatticeMatrix la(grid);
Complex ci(0.0, scale);
Matrix ta;
out = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
la = toComplex(ca) * ta;
out += la;
}
out *= ci;
}
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
LatticeMatrix &out,
Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeMatrix la(grid);
Matrix ta;
out = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
out += la;
}
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
// ) inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, Ta);
pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
return ProjectOnGeneralGroup(r, group_name());
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
return ProjectOnGeneralGroup(r, group_name());
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
return ProjectOnGeneralGroup(arg, group_name());
}
template <int N,class vComplex_t> // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = ProjectOnGeneralGroup(Umu);
}
}
template <int N,class vComplex_t>
static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
return ProjectOnGeneralGroup(Umu, group_name());
}
template <int N,class vComplex_t> // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
Umu = ProjectOnGeneralGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for (int i = 0; i < N; i++) {
auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
element = element * det;
PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
}
}
template <int N,class vComplex_t> // reunitarise, resimplectify... previously ProjectSUn
static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
// Reunitarise
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
ProjectOnSpecialGroup(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
LatticeMatrixType tmp(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
// LieRandomize(pRNG, Umu, 1.0);
// PokeIndex<LorentzIndex>(out, Umu, mu);
gaussian(pRNG,Umu);
tmp = Ta(Umu);
taExp(tmp,Umu);
ProjectOnSpecialGroup(Umu);
// ProjectSUn(Umu);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
LieRandomize(pRNG, Umu, 0.01);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void ColdConfiguration(GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
Umu = 1.0;
for (int mu = 0; mu < Nd; mu++) {
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
ColdConfiguration(out);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
taProj(in, out, group_name());
}
template <typename LatticeMatrixType>
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
typedef typename LatticeMatrixType::scalar_type ComplexType;
LatticeMatrixType xn(x.Grid());
RealD nfac = 1.0;
xn = x;
ex = xn + ComplexType(1.0); // 1+x
// Do a 12th order exponentiation
for (int i = 2; i <= 12; ++i) {
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
xn = xn * x; // x2, x3,x4....
ex = ex + xn * nfac; // x2/2!, x3/3!....
}
}
};
template <int ncolour>
using SU = GaugeGroup<ncolour, GroupName::SU>;
template <int ncolour>
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
typedef Sp<2> Sp2;
typedef Sp<4> Sp4;
typedef Sp<6> Sp6;
typedef Sp<8> Sp8;
template <int N,class vComplex_t>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
{
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
}
template <int N,class vComplex_t>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
{
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
}
template <int N,class vComplex_t>
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
{
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
}
template <int N,class vComplex_t>
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
{
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
}
// Explicit specialisation for SU(3).
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid = Umu.Grid();
const int x = 0;
const int y = 1;
const int z = 2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v, Umu, CpuWrite);
thread_for(ss, grid->oSites(), {
auto cm = Umu_v[ss];
cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
cm()()(0, z) * cm()()(1, y)); // x= yz-zy
cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
cm()()(0, x) * cm()()(1, z)); // y= zx-xz
cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
cm()()(0, y) * cm()()(1, x)); // z= xy-yx
Umu_v[ss] = cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
{
GridBase *grid = U.Grid();
// Reunitarise
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,371 +0,0 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
namespace detail {
template <class cplx, int nc, TwoIndexSymmetry S>
struct baseOffDiagonalSpHelper;
template <class cplx, int nc>
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
static const int ngroup = nc / 2;
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
eij = Zero();
RealD tmp;
if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
for (int k = 0; k < j+1; k++) {
if (k < j) {
tmp = 1 / sqrt(j * (j + 1));
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
if (k == j) {
tmp = -j / sqrt(j * (j + 1));
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
}
}
else if (i != ngroup + j) {
for (int k = 0; k < nc; k++)
for (int l = 0; l < nc; l++) {
eij()()(l, k) =
delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
}
}
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
};
template <class cplx, int nc>
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
eij = Zero();
for (int k = 0; k < nc; k++)
for (int l = 0; l < nc; l++)
eij()()(l, k) =
delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
};
} // closing detail namespace
template <int ncolour, TwoIndexSymmetry S, class group_name>
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
public:
// The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
// in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
static_assert(std::is_same<group_name, GroupName::SU>::value or
std::is_same<group_name, GroupName::Sp>::value,
"ngroup is only implemented for SU and Sp currently.");
static const int ngroup =
std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
static const int Dimension =
(ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
static const int DimensionAS =
(ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
static const int DimensionS =
ncolour * (ncolour + 1) / 2;
static const int NumGenerators =
GaugeGroup<ncolour, group_name>::AlgebraDimension;
template <typename vtype>
using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
private:
template <class cplx>
static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) =
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
}
public:
template <class cplx>
static void base(int Index, iGroupMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < Dimension);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
if (std::is_same<group_name, GroupName::Sp>::value)
{
if (j==0 && i==ngroup+j && S==-1) {
//std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
j = j+1;
}
}
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour*ncolour - DimensionS)
{
baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
} else {
baseDiagonal(Index, eij);
}
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
Vector<iGroupMatrix<cplx> > ta(NumGenerators);
Vector<iGroupMatrix<cplx> > eij(Dimension);
iGroupMatrix<cplx> tmp;
for (int a = 0; a < NumGenerators; a++)
GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < NumGenerators; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
for (int b = 0; b < NumGenerators; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
if (a == b) {
assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
} else {
assert(real(Tr) < 1e-8);
}
assert(imag(Tr) < 1e-8);
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(NumGenerators);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
template <int ncolour, TwoIndexSymmetry S>
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
template <int ncolour, TwoIndexSymmetry S>
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

Some files were not shown because too many files have changed in this diff Show More