mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 04:37:05 +01:00
Compare commits
25 Commits
41d8adca95
...
feature/ft
Author | SHA1 | Date | |
---|---|---|---|
bffd30abec | |||
da919949f9 | |||
b12b4fdaff | |||
557fa483ff | |||
fc15d55df6 | |||
53573d7d94 | |||
bb3c177000 | |||
a3322b470f | |||
f8f408e7a9 | |||
baac1127d0 | |||
6f1328160c | |||
04cf902791 | |||
7a5b1c1a19 | |||
18d2d7da4a | |||
b461184797 | |||
4563b39305 | |||
c9d5674d5b | |||
486412635a | |||
8b23a1546a | |||
a901e4e369 | |||
804d9367d4 | |||
6ae52da571 | |||
4ee9c68053 | |||
a15b4378a3 | |||
12b8be7cb9 |
1052
BLAS_benchmark/BatchBlasBench.cc
Normal file
1052
BLAS_benchmark/BatchBlasBench.cc
Normal file
File diff suppressed because it is too large
Load Diff
2
BLAS_benchmark/compile-command
Normal file
2
BLAS_benchmark/compile-command
Normal file
@ -0,0 +1,2 @@
|
||||
|
||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench
|
@ -208,6 +208,9 @@ public:
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
assert(OpB!=GridBLAS_OP_T);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -267,7 +270,6 @@ public:
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
std::cerr << " Calling SYCL batched ZGEMM "<<std::endl;
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
@ -275,10 +277,20 @@ public:
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
¬ransp,
|
||||
¬ransp,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(ComplexD *) &alpha_p[0],
|
||||
(const ComplexD **)&Amk[0], (const int64_t *)&lda64,
|
||||
@ -287,42 +299,100 @@ public:
|
||||
(ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
std::cerr << " Called SYCL batched ZGEMM "<<std::endl;
|
||||
#if 0
|
||||
// This code was used to check the mat mul on Sunspot/OneMKL
|
||||
std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
|
||||
std::vector<ComplexD> A(m*k); // pointer list to matrices
|
||||
std::vector<ComplexD> B(k*n);
|
||||
std::vector<ComplexD> C(m*n);
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// int sda = lda*k;
|
||||
// int sdb = ldb*k;
|
||||
// int sdc = ldc*n;
|
||||
std::cerr << " Checking the GEMM results "<<std::endl;
|
||||
for (int p = 0; p < 1; ++p) {
|
||||
acceleratorCopyFromDevice((void *)&Amk[p][0],(void *)&A[0],m*k*sizeof(ComplexD));
|
||||
acceleratorCopyFromDevice((void *)&Bkn[p][0],(void *)&B[0],k*n*sizeof(ComplexD));
|
||||
acceleratorCopyFromDevice((void *)&Cmn[p][0],(void *)&C[0],m*n*sizeof(ComplexD));
|
||||
ComplexD * Amk_p; // pointer list to matrices
|
||||
ComplexD * Bkn_p; // pointer list to matrices
|
||||
ComplexD * Cmn_p; // pointer list to matrices
|
||||
acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
|
||||
acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
|
||||
acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
|
||||
std::cerr << " p " << p << " copied pointers "<<std::endl;
|
||||
acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
|
||||
acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
|
||||
acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
|
||||
std::cerr << " p " << p << " copied matrices "<<std::endl;
|
||||
std::cerr << " C[0] "<<C[0]<<std::endl;
|
||||
std::cerr << " A[0] "<<A[0]<<std::endl;
|
||||
std::cerr << " B[0] "<<B[0]<<std::endl;
|
||||
std::cerr << " m "<<m<<std::endl;
|
||||
std::cerr << " n "<<n<<std::endl;
|
||||
std::cerr << " k "<<k<<std::endl;
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += A[mm + kk*lda ] * B[kk + nn*ldb];
|
||||
std::cout << " beta "<<beta<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
|
||||
for (int kk = 0; kk < k; ++kk) {
|
||||
int idx_a, idx_b;
|
||||
// int lda = m; // m x k column major
|
||||
// int ldb = k; // k x n column major
|
||||
// int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N) {
|
||||
idx_a =kk + mm*lda;
|
||||
} else {
|
||||
idx_a =mm + kk*lda;
|
||||
}
|
||||
if(OpB!=GridBLAS_OP_N) {
|
||||
idx_b =nn + kk*ldb;
|
||||
} else {
|
||||
idx_b =kk + nn*ldb;
|
||||
}
|
||||
// std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
|
||||
|
||||
ComplexD Ac = A[idx_a];
|
||||
ComplexD Bc = B[idx_b];
|
||||
if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
|
||||
if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
|
||||
|
||||
c_mn += Ac*Bc;
|
||||
}
|
||||
std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
@ -344,6 +414,9 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
assert(OpB!=GridBLAS_OP_T);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -411,10 +484,20 @@ public:
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
¬ransp,
|
||||
¬ransp,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(ComplexF *) &alpha_p[0],
|
||||
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
|
||||
@ -425,22 +508,38 @@ public:
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
@ -463,6 +562,9 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
|
||||
assert(OpB!=GridBLAS_OP_C);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -529,10 +631,20 @@ public:
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
¬ransp,
|
||||
¬ransp,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(float *) &alpha_p[0],
|
||||
(const float **)&Amk[0], (const int64_t *)&lda64,
|
||||
@ -540,23 +652,41 @@ public:
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
@ -567,7 +697,6 @@ public:
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
@ -580,6 +709,9 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
|
||||
assert(OpB!=GridBLAS_OP_C);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -647,10 +779,20 @@ public:
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
¬ransp,
|
||||
¬ransp,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(const double **)&Amk[0], (const int64_t *)&lda64,
|
||||
@ -658,144 +800,96 @@ public:
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
});
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
oneapi::mkl::transpose::N,
|
||||
oneapi::mkl::transpose::N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
(const ComplexD *)Amk,lda,sda,
|
||||
(const ComplexD *)Bkn,ldb,sdb,
|
||||
beta,
|
||||
(ComplexD *)Cmn,ldc,sdc,
|
||||
batchCount);
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class CComplex>
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
|
||||
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
|
||||
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
|
||||
CComplex alpha(1.0);
|
||||
CComplex beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
int ncall=10;
|
||||
int ncall=1000;
|
||||
deviceVector<CComplex *> As(BATCH);
|
||||
deviceVector<CComplex *> Bs(BATCH);
|
||||
deviceVector<CComplex *> Cs(BATCH);
|
||||
for(int b = 0 ; b < BATCH;b++) {
|
||||
CComplex *ptr;
|
||||
ptr = &A[b*M*K]; acceleratorPut(As[b],ptr);
|
||||
ptr = &B[b*K*N]; acceleratorPut(Bs[b],ptr);
|
||||
ptr = &C[b*M*N]; acceleratorPut(Cs[b],ptr);
|
||||
}
|
||||
|
||||
// Warm up call
|
||||
gemmBatched(M,N,K,
|
||||
alpha,
|
||||
As, // m x k
|
||||
Bs, // k x n
|
||||
beta,
|
||||
Cs);
|
||||
synchronise();
|
||||
|
||||
RealD t0 = usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
gemmBatched(M,N,K,
|
||||
alpha,
|
||||
As, // m x k
|
||||
Bs, // k x n
|
||||
beta,
|
||||
Cs);
|
||||
synchronise();
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = 8.0*M*N*K*BATCH*ncall;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
return flops; // Returns gigaflops
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -279,11 +279,11 @@ public:
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
|
||||
_sort.push(eval2,Nm);
|
||||
// Glog << "#Ritz value before shift: "<< std::endl;
|
||||
Glog << "#Ritz value before shift: "<< std::endl;
|
||||
for(int i=0; i<Nm; ++i){
|
||||
// std::cout.precision(13);
|
||||
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------
|
||||
@ -297,7 +297,8 @@ public:
|
||||
|
||||
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
for(int ip=Nk; ip<Nm; ++ip){
|
||||
for(int ip=Nk; ip<Nm; ++ip){
|
||||
Glog << " ip "<<ip<<" / "<<Nm<<std::endl;
|
||||
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
|
||||
}
|
||||
|
||||
@ -325,7 +326,7 @@ public:
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
|
||||
_sort.push(eval2,Nk);
|
||||
// Glog << "#Ritz value after shift: "<< std::endl;
|
||||
Glog << "#Ritz value after shift: "<< std::endl;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
// std::cout.precision(13);
|
||||
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
@ -467,10 +468,10 @@ public:
|
||||
|
||||
// set initial vector
|
||||
for (int i=0; i<Nu; ++i) {
|
||||
// Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||||
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||||
evec[i] = src[i];
|
||||
orthogonalize(evec[i],evec,i);
|
||||
// Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||||
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||||
}
|
||||
// exit(-43);
|
||||
|
||||
@ -506,11 +507,11 @@ public:
|
||||
Qt = Eigen::MatrixXcd::Identity(Nr,Nr);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nr,Nr,Qt,grid);
|
||||
_sort.push(eval2,Nr);
|
||||
// Glog << "#Ritz value: "<< std::endl;
|
||||
Glog << "#Ritz value: "<< std::endl;
|
||||
for(int i=0; i<Nr; ++i){
|
||||
// std::cout.precision(13);
|
||||
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
}
|
||||
|
||||
// Convergence test
|
||||
@ -570,6 +571,7 @@ public:
|
||||
Glog << fname + " NOT converged ; Summary :\n";
|
||||
} else {
|
||||
Glog << fname + " CONVERGED ; Summary :\n";
|
||||
Nstop = Nconv_guess; // Just take them all
|
||||
// Sort convered eigenpairs.
|
||||
std::vector<Field> Btmp(Nstop,grid); // waste of space replicating
|
||||
|
||||
@ -642,7 +644,7 @@ private:
|
||||
// for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl;
|
||||
k_start +=mrhs;
|
||||
}
|
||||
// Glog << "LinAlg "<< std::endl;
|
||||
Glog << "LinAlg "<< std::endl;
|
||||
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
@ -676,7 +678,7 @@ private:
|
||||
}
|
||||
w_copy[u] = w[u];
|
||||
}
|
||||
// Glog << "LinAlg done"<< std::endl;
|
||||
Glog << "LinAlg done"<< std::endl;
|
||||
|
||||
// In block version, the steps 6 and 7 in Lanczos construction is
|
||||
// replaced by the QR decomposition of new basis block.
|
||||
@ -689,15 +691,15 @@ private:
|
||||
}
|
||||
|
||||
// re-orthogonalization for numerical stability
|
||||
// Glog << "Gram Schmidt"<< std::endl;
|
||||
Glog << "Gram Schmidt"<< std::endl;
|
||||
orthogonalize(w,Nu,evec,R);
|
||||
// QR part
|
||||
for (int u=1; u<Nu; ++u) {
|
||||
orthogonalize(w[u],w,u);
|
||||
}
|
||||
// Glog << "Gram Schmidt done "<< std::endl;
|
||||
Glog << "Gram Schmidt done "<< std::endl;
|
||||
|
||||
// Glog << "LinAlg "<< std::endl;
|
||||
Glog << "LinAlg "<< std::endl;
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
//for (int v=0; v<Nu; ++v) {
|
||||
for (int v=u; v<Nu; ++v) {
|
||||
@ -714,7 +716,7 @@ private:
|
||||
// Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
|
||||
}
|
||||
}
|
||||
// Glog << "LinAlg done "<< std::endl;
|
||||
Glog << "LinAlg done "<< std::endl;
|
||||
|
||||
if (b < Nm/Nu-1) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
@ -779,7 +781,7 @@ private:
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
// Glog << "lmd "<<u<<" "<<k<<" "<<lmd[u][k] -conjugate(lmd[u][k])<<std::endl;
|
||||
// Glog << "lmd "<<u<<" "<<k<<" "<<lmd[u][k] -conjugate(lmd[u][k])<<std::endl;
|
||||
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
@ -933,7 +935,7 @@ if (1){
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||
Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
@ -951,7 +953,7 @@ if (1){
|
||||
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//Glog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
|
||||
Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
@ -961,7 +963,7 @@ if (1){
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||
Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
|
||||
@ -977,7 +979,7 @@ if (1){
|
||||
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
|
||||
}
|
||||
}
|
||||
//Glog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
|
||||
Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;
|
||||
}
|
||||
|
||||
|
||||
@ -986,7 +988,7 @@ if (1){
|
||||
RealD Dsh,
|
||||
Eigen::MatrixXcd& Qprod)
|
||||
{
|
||||
//Glog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
Glog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
@ -1002,6 +1004,7 @@ if (1){
|
||||
// lower triangular part used to represent series
|
||||
// of Q sequence.
|
||||
|
||||
Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';
|
||||
// equivalent operation of Qprod *= Q
|
||||
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
@ -1022,6 +1025,7 @@ if (1){
|
||||
|
||||
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
for (int j=0; j<Nm-(Nu+1); ++j) {
|
||||
for (int k=0; k<Nu+1+j; ++k) {
|
||||
@ -1029,6 +1033,7 @@ if (1){
|
||||
}
|
||||
}
|
||||
}
|
||||
Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
for (int j=Nm-(Nu+1); j<Nm; ++j) {
|
||||
for (int k=0; k<Nm; ++k) {
|
||||
@ -1036,6 +1041,7 @@ if (1){
|
||||
}
|
||||
}
|
||||
}
|
||||
Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';
|
||||
|
||||
//static int ntimes = 2;
|
||||
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
|
||||
@ -1061,11 +1067,13 @@ if (1){
|
||||
Mtmp(j,i) = conj(Mtmp(i,j));
|
||||
}
|
||||
}
|
||||
Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';
|
||||
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
|
||||
}
|
||||
|
||||
Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';
|
||||
M = Mtmp;
|
||||
|
||||
//M = Q.adjoint()*(M*Q);
|
||||
@ -1077,7 +1085,7 @@ if (1){
|
||||
// }
|
||||
//}
|
||||
|
||||
//Glog << "shiftedQRDecompEigen() end" << endl;
|
||||
Glog << "shiftedQRDecompEigen() end" <<std::endl;
|
||||
}
|
||||
|
||||
void exampleQRDecompEigen(void)
|
||||
|
@ -35,7 +35,7 @@ uint64_t total_host;;
|
||||
void MemoryManager::DisplayMallinfo(void)
|
||||
{
|
||||
#ifdef __linux__
|
||||
struct mallinfo mi;
|
||||
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
|
||||
|
||||
mi = mallinfo();
|
||||
|
||||
|
@ -91,6 +91,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////
|
||||
virtual int CheckerBoarded(int dim)=0;
|
||||
virtual int CheckerBoard(const Coordinate &site)=0;
|
||||
virtual int CheckerDim(void){ return 0; };
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
||||
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
|
||||
|
@ -60,6 +60,7 @@ public:
|
||||
int _checker_dim;
|
||||
std::vector<int> _checker_board;
|
||||
|
||||
virtual int CheckerDim(void){ return _checker_dim; };
|
||||
virtual int CheckerBoarded(int dim){
|
||||
if( dim==_checker_dim) return 1;
|
||||
else return 0;
|
||||
|
@ -264,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
// Might make all code paths go this way.
|
||||
#if 0
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
// This code could read coalesce
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#else
|
||||
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
deviceVector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
{
|
||||
@ -295,7 +279,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
// This is in single precision and fails some tests
|
||||
auto anrm = sumD(inner_tmp_v,sites);
|
||||
nrm = anrm;
|
||||
|
@ -42,50 +42,21 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
|
||||
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// remove and insert a half checkerboard
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
|
||||
{
|
||||
half.Checkerboard() = cb;
|
||||
|
||||
autoView( half_v, half, CpuWrite);
|
||||
autoView( full_v, full, CpuRead);
|
||||
thread_for(ss, full.Grid()->oSites(),{
|
||||
int cbos;
|
||||
Coordinate coor;
|
||||
full.Grid()->oCoorFromOindex(coor,ss);
|
||||
cbos=half.Grid()->CheckerBoard(coor);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=half.Grid()->oIndex(coor);
|
||||
half_v[ssh] = full_v[ss];
|
||||
}
|
||||
});
|
||||
acceleratorPickCheckerboard(cb,half,full);
|
||||
}
|
||||
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
|
||||
{
|
||||
int cb = half.Checkerboard();
|
||||
autoView( half_v , half, CpuRead);
|
||||
autoView( full_v , full, CpuWrite);
|
||||
thread_for(ss,full.Grid()->oSites(),{
|
||||
|
||||
Coordinate coor;
|
||||
int cbos;
|
||||
|
||||
full.Grid()->oCoorFromOindex(coor,ss);
|
||||
cbos=half.Grid()->CheckerBoard(coor);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=half.Grid()->oIndex(coor);
|
||||
full_v[ss]=half_v[ssh];
|
||||
}
|
||||
});
|
||||
acceleratorSetCheckerboard(full,half);
|
||||
}
|
||||
|
||||
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
|
||||
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int dummy=0)
|
||||
{
|
||||
half.Checkerboard() = cb;
|
||||
autoView(half_v, half, AcceleratorWrite);
|
||||
@ -95,6 +66,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
|
||||
unsigned long ndim_half = half.Grid()->_ndimension;
|
||||
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
|
||||
Coordinate ostride_half = half.Grid()->_ostride;
|
||||
int checker_dim_half = half.Grid()->CheckerDim();
|
||||
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
|
||||
|
||||
Coordinate coor;
|
||||
@ -119,7 +91,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
|
||||
}
|
||||
});
|
||||
}
|
||||
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
|
||||
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int dummy=0)
|
||||
{
|
||||
int cb = half.Checkerboard();
|
||||
autoView(half_v , half, AcceleratorRead);
|
||||
@ -129,6 +101,7 @@ template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,
|
||||
unsigned long ndim_half = half.Grid()->_ndimension;
|
||||
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
|
||||
Coordinate ostride_half = half.Grid()->_ostride;
|
||||
int checker_dim_half = half.Grid()->CheckerDim();
|
||||
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
|
||||
|
||||
Coordinate coor;
|
||||
|
@ -32,7 +32,9 @@ private:
|
||||
// Smear_Stout<Gimpl> *StoutSmearing;
|
||||
// std::vector<GaugeField> SmearedSet;
|
||||
|
||||
GridRedBlackCartesian * UrbGrid; // keep a copy of the redblack grid for life of object
|
||||
std::vector<LatticeLorentzComplex> masks;
|
||||
std::vector<int> cbs;
|
||||
|
||||
typedef typename SU3Adjoint::AMatrix AdjMatrix;
|
||||
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
|
||||
@ -147,6 +149,25 @@ private:
|
||||
}
|
||||
pokeLorentz(Fdet, Fdet_pol, nu);
|
||||
}
|
||||
|
||||
void Compute_MpInvJx_dNxxdSy(int cb,
|
||||
const GaugeLinkField &PlaqL,
|
||||
const GaugeLinkField &PlaqR,
|
||||
AdjMatrixField MpInvJx,
|
||||
AdjVectorField &Fdet2 )
|
||||
{
|
||||
GaugeLinkField PlaqLeo(UrbGrid);
|
||||
GaugeLinkField PlaqReo(UrbGrid);
|
||||
AdjMatrixField MpInvJxeo(UrbGrid);
|
||||
AdjVectorField Fdet2eo(UrbGrid);
|
||||
pickCheckerboard(cb,PlaqLeo,PlaqL);
|
||||
pickCheckerboard(cb,PlaqReo,PlaqR);
|
||||
pickCheckerboard(cb,MpInvJxeo,MpInvJx);
|
||||
Fdet2eo.Checkerboard()=cb;
|
||||
Compute_MpInvJx_dNxxdSy(PlaqLeo,PlaqReo,MpInvJxeo,Fdet2eo);
|
||||
setCheckerboard(Fdet2,Fdet2eo);
|
||||
}
|
||||
|
||||
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
|
||||
{
|
||||
GaugeLinkField UtaU(PlaqL.Grid());
|
||||
@ -278,8 +299,9 @@ public:
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Mask the gauge field
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
int cb = cbs[smr];
|
||||
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
|
||||
|
||||
|
||||
Umsk = U;
|
||||
ApplyMask(Umsk,smr);
|
||||
Utmp = peekLorentz(Umsk,mu);
|
||||
@ -442,7 +464,7 @@ public:
|
||||
AdjMatrixField MpInvJx_nu(grid);
|
||||
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
|
||||
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Fdet2_mu=FdetV;
|
||||
Fdet1_mu=Zero();
|
||||
|
||||
@ -499,7 +521,7 @@ public:
|
||||
|
||||
time=-usecond();
|
||||
PlaqR=(-1.0)*PlaqR;
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Fdet2_nu = FdetV;
|
||||
time+=usecond();
|
||||
std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl;
|
||||
@ -520,7 +542,7 @@ public:
|
||||
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_nu = Fdet2_nu+FdetV;
|
||||
|
||||
///////////////// -ve nu /////////////////
|
||||
@ -539,7 +561,7 @@ public:
|
||||
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,nu,1);
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_nu = Fdet2_nu+FdetV;
|
||||
|
||||
// x==
|
||||
@ -560,7 +582,7 @@ public:
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
|
||||
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_nu = Fdet2_nu+FdetV;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@ -589,7 +611,7 @@ public:
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,nu,-1);
|
||||
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_mu = Fdet2_mu+FdetV;
|
||||
|
||||
// __
|
||||
@ -609,7 +631,7 @@ public:
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,nu,1);
|
||||
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_mu = Fdet2_mu+FdetV;
|
||||
|
||||
}
|
||||
@ -931,6 +953,10 @@ private:
|
||||
public:
|
||||
|
||||
/* Standard constructor */
|
||||
virtual ~SmearedConfigurationMasked()
|
||||
{
|
||||
delete UrbGrid;
|
||||
}
|
||||
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout)
|
||||
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
|
||||
{
|
||||
@ -939,7 +965,6 @@ public:
|
||||
// was resized in base class
|
||||
assert(this->SmearedSet.size()==Nsmear);
|
||||
|
||||
GridRedBlackCartesian * UrbGrid;
|
||||
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
|
||||
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
|
||||
LatticeComplex tmp(_UGrid);
|
||||
@ -947,10 +972,11 @@ public:
|
||||
for (unsigned int i = 0; i < this->smearingLevels; ++i) {
|
||||
|
||||
masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
|
||||
|
||||
int mu= (i/2) %Nd;
|
||||
int cb= (i%2);
|
||||
LatticeComplex tmpcb(UrbGrid);
|
||||
|
||||
cbs.push_back(cb);
|
||||
|
||||
masks[i]=Zero();
|
||||
////////////////////
|
||||
@ -962,7 +988,6 @@ public:
|
||||
PokeIndex<LorentzIndex>(masks[i],tmp, mu);
|
||||
|
||||
}
|
||||
delete UrbGrid;
|
||||
}
|
||||
|
||||
virtual void smeared_force(GaugeField &SigmaTilde)
|
||||
|
@ -418,32 +418,32 @@ static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in,
|
||||
int hNNm1= NNm1/2;
|
||||
RealD sqrt_2 = sqrt(2.0);
|
||||
Complex ci(0.0,1.0);
|
||||
for(int su2Index=0;su2Index<hNNm1;su2Index++){
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
int ax = su2Index*2;
|
||||
int ay = su2Index*2+1;
|
||||
accelerator_for(ss,grid->oSites(),1,{
|
||||
|
||||
const int nsimd= Matrix::Nsimd();
|
||||
accelerator_for(ss,grid->oSites(),nsimd,{
|
||||
for(int su2Index=0;su2Index<hNNm1;su2Index++){
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
int ax = su2Index*2;
|
||||
int ay = su2Index*2+1;
|
||||
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
|
||||
// trace( Ta x Ci in)
|
||||
// Bet I need to move to real part with mult by -i
|
||||
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
|
||||
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
|
||||
});
|
||||
}
|
||||
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
int a = NNm1+diagIndex;
|
||||
RealD scale = 1.0/sqrt(2.0*k*(k+1));
|
||||
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
|
||||
auto tmp = in_v[ss]()()(0,0);
|
||||
coalescedWrite(out_v[ss]()()(ax,b),0.5*(real(in_v(ss)()()(i2,i1)) - real(in_v(ss)()()(i1,i2))));
|
||||
coalescedWrite(out_v[ss]()()(ay,b),0.5*(imag(in_v(ss)()()(i1,i2)) + imag(in_v(ss)()()(i2,i1))));
|
||||
}
|
||||
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
int a = NNm1+diagIndex;
|
||||
RealD scale = 1.0/sqrt(2.0*k*(k+1));
|
||||
auto tmp = in_v(ss)()()(0,0);
|
||||
for(int i=1;i<k;i++){
|
||||
tmp=tmp+in_v[ss]()()(i,i);
|
||||
tmp=tmp+in_v(ss)()()(i,i);
|
||||
}
|
||||
tmp = tmp - in_v[ss]()()(k,k)*k;
|
||||
out_v[ss]()()(a,b) =imag(tmp) * scale;
|
||||
});
|
||||
}
|
||||
tmp = tmp - in_v(ss)()()(k,k)*k;
|
||||
coalescedWrite(out_v[ss]()()(a,b),imag(tmp) * scale);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
|
@ -118,7 +118,7 @@ static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
|
||||
static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
|
@ -460,3 +460,9 @@ void vprefetch(const iMatrix<v, N> &vv) {
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
template<class vec> struct sycl::is_device_copyable<Grid::iScalar<vec> > : public std::true_type {};
|
||||
template<class vec,int N> struct sycl::is_device_copyable<Grid::iVector<vec,N> > : public std::true_type {};
|
||||
template<class vec,int N> struct sycl::is_device_copyable<Grid::iMatrix<vec,N> > : public std::true_type {};
|
||||
#endif
|
||||
|
@ -261,23 +261,25 @@ public:
|
||||
fprintf(FP,"\n\n");
|
||||
};
|
||||
|
||||
|
||||
template<class CComplex>
|
||||
static void BLAS(void)
|
||||
{
|
||||
//int nbasis, int nrhs, int coarseVol
|
||||
int basis[] = { 16,32,64 };
|
||||
int rhs[] = { 8,16,32 };
|
||||
int vol = 4*4*4*4;
|
||||
int rhs[] = { 8,12,16 };
|
||||
int vol = 8*8*8*8;
|
||||
int blk = 4*4*4*4;
|
||||
|
||||
GridBLAS blas;
|
||||
|
||||
|
||||
int fpbits = sizeof(CComplex)*4;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
|
||||
std::cout<<GridLogMessage << "= batched GEMM fp"<<fpbits<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
|
||||
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank fp%d\n",fpbits);
|
||||
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
@ -285,7 +287,7 @@ public:
|
||||
int N=rhs[r];
|
||||
int K=basis[b];
|
||||
int BATCH=vol;
|
||||
double p=blas.benchmark(M,N,K,BATCH);
|
||||
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
|
||||
@ -299,9 +301,9 @@ public:
|
||||
for(int r=0;r<3;r++){
|
||||
int M=basis[b];
|
||||
int N=rhs[r];
|
||||
int K=vol;
|
||||
int K=blk;
|
||||
int BATCH=vol;
|
||||
double p=blas.benchmark(M,N,K,BATCH);
|
||||
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
@ -313,10 +315,10 @@ public:
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
int M=rhs[r];
|
||||
int N=vol;
|
||||
int N=blk;
|
||||
int K=basis[b];
|
||||
int BATCH=vol;
|
||||
double p=blas.benchmark(M,N,K,BATCH);
|
||||
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
@ -867,6 +869,7 @@ int main (int argc, char ** argv)
|
||||
int do_memory=1;
|
||||
int do_comms =1;
|
||||
int do_blas =1;
|
||||
int do_dslash=1;
|
||||
|
||||
int sel=4;
|
||||
std::vector<int> L_list({8,12,16,24,32});
|
||||
@ -877,6 +880,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<double> staggered;
|
||||
|
||||
int Ls=1;
|
||||
if (do_dslash){
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Clover dslash 4D vectorised (temporarily Wilson)" <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
@ -901,6 +905,7 @@ int main (int argc, char ** argv)
|
||||
staggered.push_back(result);
|
||||
}
|
||||
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
@ -909,8 +914,33 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
}
|
||||
|
||||
int NN=NN_global;
|
||||
if(do_dslash){
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
|
||||
fprintf(FP,"Per node summary table\n");
|
||||
fprintf(FP,"\n");
|
||||
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
|
||||
fprintf(FP,"\n");
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
|
||||
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
|
||||
}
|
||||
fprintf(FP,"\n");
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
|
||||
std::cout<<std::setprecision(3);
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
if ( do_memory ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
|
||||
@ -918,15 +948,6 @@ int main (int argc, char ** argv)
|
||||
Benchmark::Memory();
|
||||
}
|
||||
|
||||
if ( do_blas ) {
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
Benchmark::BLAS();
|
||||
#endif
|
||||
}
|
||||
|
||||
if ( do_su4 ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
|
||||
@ -941,28 +962,14 @@ int main (int argc, char ** argv)
|
||||
Benchmark::Comms();
|
||||
}
|
||||
|
||||
if ( do_blas ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
|
||||
fprintf(FP,"Per node summary table\n");
|
||||
fprintf(FP,"\n");
|
||||
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
|
||||
fprintf(FP,"\n");
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
|
||||
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
|
||||
}
|
||||
fprintf(FP,"\n");
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
|
||||
std::cout<<std::setprecision(3);
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
Benchmark::BLAS<ComplexD>();
|
||||
Benchmark::BLAS<ComplexF>();
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
fclose(FP);
|
||||
}
|
||||
|
23
systems/Aurora/config-command-leak
Normal file
23
systems/Aurora/config-command-leak
Normal file
@ -0,0 +1,23 @@
|
||||
source ~/spack/share/spack/setup-env.sh
|
||||
spack load c-lime
|
||||
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
|
||||
export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
|
||||
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
|
||||
../../configure \
|
||||
--enable-debug \
|
||||
--enable-simd=GPU \
|
||||
--enable-gen-simd-width=64 \
|
||||
--enable-comms=mpi-auto \
|
||||
--disable-gparity \
|
||||
--disable-fermion-reps \
|
||||
--with-lime=$CLIME \
|
||||
--enable-shm=nvlink \
|
||||
--enable-accelerator=sycl \
|
||||
--enable-accelerator-aware-mpi=yes\
|
||||
--enable-unified=no \
|
||||
MPICXX=mpicxx \
|
||||
CXX=icpx \
|
||||
LDFLAGS="-fiopenmp -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -Xarch_host -fsanitize=leak -fsycl-device-code-split=per_kernel" \
|
||||
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -Xarch_host -fsycl -fsanitize=leak "
|
||||
|
@ -1,13 +1,25 @@
|
||||
source ~/spack/share/spack/setup-env.sh
|
||||
spack load c-lime
|
||||
|
||||
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
|
||||
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
|
||||
#spack load libefence
|
||||
#export EFENCE=`spack find --paths libefence | grep ^libefence | awk '{print $2}' `
|
||||
#export LD_LIBRARY_PATH=${EFENCE}/lib:$LD_LIBRARY_PATH
|
||||
#spack load gperftools
|
||||
export TCMALLOC=/home/paboyle/gperftools/install
|
||||
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
export INTELGT_AUTO_ATTACH_DISABLE=1
|
||||
|
||||
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
|
||||
#module load oneapi/release/2023.12.15.001
|
||||
#module use /soft/modulefiles
|
||||
#module load intel_compute_runtime/release/agama-devel-682.22
|
||||
|
||||
#export FI_CXI_DEFAULT_CQ_SIZE=131072
|
||||
#export FI_CXI_CQ_FILL_PERCENT=20
|
||||
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
|
||||
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
|
||||
|
||||
#
|
||||
# -ftarget-register-alloc-mode=pvc:default
|
||||
# -ftarget-register-alloc-mode=pvc:small
|
||||
# -ftarget-register-alloc-mode=pvc:large
|
||||
@ -20,4 +32,9 @@ export http_proxy=http://proxy.alcf.anl.gov:3128
|
||||
export https_proxy=http://proxy.alcf.anl.gov:3128
|
||||
git config --global http.proxy http://proxy.alcf.anl.gov:3128
|
||||
|
||||
#source ~/spack/share/spack/setup-env.sh
|
||||
#spack load gperftools
|
||||
#export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
|
||||
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
|
||||
|
@ -3,7 +3,7 @@ spack load c-lime
|
||||
module load emacs
|
||||
module load PrgEnv-gnu
|
||||
module load rocm
|
||||
module load cray-mpich/8.1.23
|
||||
module load cray-mpich
|
||||
module load gmp
|
||||
module load cray-fftw
|
||||
module load craype-accel-amd-gfx90a
|
||||
|
118
tests/debug/Test_8888.cc
Normal file
118
tests/debug/Test_8888.cc
Normal file
@ -0,0 +1,118 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=8;
|
||||
const int nbasis = 40;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.0;
|
||||
RealD c=0.0;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_EODWF_lat.125");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
MdagMLinearOperator<MobiusFermionD, LatticeFermion> HermOp(Ddwf);
|
||||
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Fine Power method "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
LatticeFermionD pm_src(FGrid);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<LatticeFermionD> fPM;
|
||||
fPM(HermOp,pm_src);
|
||||
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Fine Lanczos (poly, low) "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
int Nk=80;
|
||||
int Nm=Nk*3;
|
||||
int Nstop=8;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
// Chebyshev<LatticeFermionD> IRLChebyLo(0.2,64.0,201); // 1 iter
|
||||
Chebyshev<LatticeFermionD> IRLChebyLo(0.0,55.0,101); // 1 iter
|
||||
FunctionHermOp<LatticeFermionD> PolyOp(IRLChebyLo,HermOp);
|
||||
PlainHermOp<LatticeFermionD> Op(HermOp);
|
||||
|
||||
ImplicitlyRestartedLanczos IRL(PolyOp,
|
||||
Op,
|
||||
Nk, // sought vecs
|
||||
Nk, // sought vecs
|
||||
Nm, // spare vecs
|
||||
1.0e-8,
|
||||
10 // Max iterations
|
||||
);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<LatticeFermionD> evec(Nm,FGrid);
|
||||
LatticeFermionD irl_src(FGrid);
|
||||
|
||||
IRL.calc(eval,evec,irl_src,Nconv);
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
@ -244,7 +244,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
|
||||
|
||||
|
||||
#if 0
|
||||
MultiGeneralCoarsenedMatrix mrhs(LittleDiracOp,CoarseMrhs);
|
||||
typedef decltype(mrhs) MultiGeneralCoarsenedMatrix_t;
|
||||
|
||||
@ -307,7 +307,8 @@ int main (int argc, char ** argv)
|
||||
rh_res= Zero();
|
||||
mrhsCG(MrhsCoarseOp,rh_src,rh_res);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
|
@ -145,7 +145,7 @@ int main (int argc, char ** argv)
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 60;
|
||||
const int nbasis = 62;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
@ -160,7 +160,7 @@ int main (int argc, char ** argv)
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate Block({4,4,4,4});
|
||||
Coordinate Block({4,4,6,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
|
@ -160,7 +160,8 @@ int main (int argc, char ** argv)
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate Block({4,4,6,6});
|
||||
// Coordinate Block({4,4,6,4});
|
||||
Coordinate Block({4,4,4,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
@ -217,7 +218,7 @@ int main (int argc, char ** argv)
|
||||
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
|
||||
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
|
||||
bool load_agg=true;
|
||||
bool load_refine=false;
|
||||
bool load_refine=true;
|
||||
bool load_mat=false;
|
||||
bool load_evec=false;
|
||||
|
||||
@ -276,17 +277,25 @@ int main (int argc, char ** argv)
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
|
||||
Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,301); // 1 iter
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,301); // 4.4.6.4
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,501); // for 4.4.4.4 blocking 350 evs
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0014,42.0,501); // for 4.4.4.4 blocking 700 evs
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.002,42.0,501); // for 4.4.4.4 blocking 1226 evs
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0025,42.0,501); // for 4.4.4.4 blocking 1059 evs
|
||||
// 3e-4,2);
|
||||
Chebyshev<CoarseVector> IRLCheby(0.0018,42.0,301); // for 4.4.4.4 blocking // 790 evs
|
||||
|
||||
MrhsHermMatrix MrhsCoarseOp (mrhs);
|
||||
|
||||
CoarseVector pm_src(CoarseMrhs);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
|
||||
|
||||
int Nk=nrhs*30;
|
||||
// int Nk=nrhs*30; // 4.4.6.4
|
||||
// int Nk=nrhs*80;
|
||||
int Nm=Nk*4;
|
||||
int Nstop=Nk;
|
||||
int Nk=nrhs*60; // 720
|
||||
int Nm=Nk*4; // 2880 ; generally finishes at 1440
|
||||
int Nstop=512;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
|
||||
@ -299,7 +308,7 @@ int main (int argc, char ** argv)
|
||||
nrhs,
|
||||
Nk,
|
||||
Nm,
|
||||
1e-4,20);
|
||||
3e-4,2);
|
||||
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
@ -331,7 +340,7 @@ int main (int argc, char ** argv)
|
||||
// Extra HDCG parameters
|
||||
//////////////////////////
|
||||
int maxit=3000;
|
||||
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
|
||||
ConjugateGradient<CoarseVector> CG(7.5e-2,maxit,false);
|
||||
RealD lo=2.0;
|
||||
int ord = 7;
|
||||
|
||||
|
Reference in New Issue
Block a user