1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 04:37:05 +01:00

Compare commits

...

25 Commits

Author SHA1 Message Date
bffd30abec Optimise lie algebra project 2024-09-19 15:48:09 -04:00
da919949f9 Clean up the accelerator pick/set checkerboard 2024-08-23 12:34:41 -04:00
b12b4fdaff Attempt at operating on half checkerboard 2024-08-23 11:05:09 -04:00
557fa483ff Blas benchmark committed stand alone 2024-08-20 16:18:43 +00:00
fc15d55df6 Mallinfo 2024-08-20 14:33:09 +00:00
53573d7d94 Better benchmark 2024-08-20 14:31:57 +00:00
bb3c177000 Better benchmarking 2024-08-20 14:31:41 +00:00
a3322b470f Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-08-20 14:30:52 +00:00
f8f408e7a9 BLAS everywhere 2024-07-25 18:09:02 +00:00
baac1127d0 Later intel compiler happiness 2024-07-25 18:06:05 +00:00
6f1328160c Remove SVM use 2024-07-25 18:05:40 +00:00
04cf902791 Mallinfo and ASAN hooks 2024-07-25 18:04:56 +00:00
7a5b1c1a19 Try Catch convenience macro 2024-07-25 18:03:41 +00:00
18d2d7da4a Eigen implementation and SYCL implementation 2024-07-25 18:02:56 +00:00
b461184797 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-07-23 09:53:58 -04:00
4563b39305 New Frontier config 2024-07-23 09:53:08 -04:00
c9d5674d5b FInal for paper 2024-07-22 15:26:45 -04:00
486412635a 8^4 test for PETSc 2024-07-22 15:25:17 -04:00
8b23a1546a Force compile temporarily 2024-07-22 15:24:56 -04:00
a901e4e369 Regressed performance for paper 2024-07-22 15:24:04 -04:00
804d9367d4 Regressed performance 2024-07-22 15:23:25 -04:00
6ae52da571 LLVM leak sanitizer 2024-07-08 15:59:18 +00:00
4ee9c68053 Updated compile environment 2024-07-08 15:57:57 +00:00
a15b4378a3 Sanitizer preservation of options 2024-07-08 15:57:45 +00:00
12b8be7cb9 Best so far on 96^3 350 Evecs converged on 4^4 block 2024-06-18 16:31:37 -04:00
21 changed files with 1667 additions and 347 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,2 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench

View File

@ -208,6 +208,9 @@ public:
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -267,7 +270,6 @@ public:
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
std::cerr << " Calling SYCL batched ZGEMM "<<std::endl;
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
@ -275,10 +277,20 @@ public:
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&notransp,
&notransp,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(ComplexD *) &alpha_p[0],
(const ComplexD **)&Amk[0], (const int64_t *)&lda64,
@ -287,42 +299,100 @@ public:
(ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
std::cerr << " Called SYCL batched ZGEMM "<<std::endl;
#if 0
// This code was used to check the mat mul on Sunspot/OneMKL
std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
std::vector<ComplexD> A(m*k); // pointer list to matrices
std::vector<ComplexD> B(k*n);
std::vector<ComplexD> C(m*n);
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// int sda = lda*k;
// int sdb = ldb*k;
// int sdc = ldc*n;
std::cerr << " Checking the GEMM results "<<std::endl;
for (int p = 0; p < 1; ++p) {
acceleratorCopyFromDevice((void *)&Amk[p][0],(void *)&A[0],m*k*sizeof(ComplexD));
acceleratorCopyFromDevice((void *)&Bkn[p][0],(void *)&B[0],k*n*sizeof(ComplexD));
acceleratorCopyFromDevice((void *)&Cmn[p][0],(void *)&C[0],m*n*sizeof(ComplexD));
ComplexD * Amk_p; // pointer list to matrices
ComplexD * Bkn_p; // pointer list to matrices
ComplexD * Cmn_p; // pointer list to matrices
acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
std::cerr << " p " << p << " copied pointers "<<std::endl;
acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
std::cerr << " p " << p << " copied matrices "<<std::endl;
std::cerr << " C[0] "<<C[0]<<std::endl;
std::cerr << " A[0] "<<A[0]<<std::endl;
std::cerr << " B[0] "<<B[0]<<std::endl;
std::cerr << " m "<<m<<std::endl;
std::cerr << " n "<<n<<std::endl;
std::cerr << " k "<<k<<std::endl;
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += A[mm + kk*lda ] * B[kk + nn*ldb];
std::cout << " beta "<<beta<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
for (int kk = 0; kk < k; ++kk) {
int idx_a, idx_b;
// int lda = m; // m x k column major
// int ldb = k; // k x n column major
// int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N) {
idx_a =kk + mm*lda;
} else {
idx_a =mm + kk*lda;
}
if(OpB!=GridBLAS_OP_N) {
idx_b =nn + kk*ldb;
} else {
idx_b =kk + nn*ldb;
}
// std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
ComplexD Ac = A[idx_a];
ComplexD Bc = B[idx_b];
if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
c_mn += Ac*Bc;
}
std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
}
}
}
#endif
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
@ -344,6 +414,9 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -411,10 +484,20 @@ public:
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&notransp,
&notransp,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(ComplexF *) &alpha_p[0],
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
@ -425,22 +508,38 @@ public:
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
ComplexF alphaf(real(alpha),imag(alpha));
ComplexF betaf(real(beta),imag(beta));
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexF c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k*batchCount;
@ -463,6 +562,9 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -529,10 +631,20 @@ public:
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&notransp,
&notransp,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(float *) &alpha_p[0],
(const float **)&Amk[0], (const int64_t *)&lda64,
@ -540,23 +652,41 @@ public:
(float *) &beta_p[0],
(float **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
@ -567,7 +697,6 @@ public:
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
@ -580,6 +709,9 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
@ -647,10 +779,20 @@ public:
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&notransp,
&notransp,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(const double **)&Amk[0], (const int64_t *)&lda64,
@ -658,144 +800,96 @@ public:
(double *) &beta_p[0],
(double **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
int sda = lda*k;
int sdb = ldb*k;
int sdc = ldc*n;
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
RealD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
}
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
////////////////////////////////////////////////////////////////////////////////////////////////
// Strided case used by benchmark, but generally unused in Grid
// Keep a code example in double complex, but don't generate the single and real variants for now
////////////////////////////////////////////////////////////////////////////////////////////////
void gemmStridedBatched(int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // pointer list to matrices
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn,
int batchCount)
{
// Use C-row major storage, so transpose calls
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
int sda = m*k;
int sdb = k*n;
int sdc = m*n;
deviceVector<ComplexD> alpha_p(1);
deviceVector<ComplexD> beta_p(1);
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
#ifdef GRID_HIP
auto err = hipblasZgemmStridedBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda, sda,
(hipblasDoubleComplex *) Bkn, ldb, sdb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc, sdc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasZgemmStridedBatched(gridblasHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda, sda,
(cuDoubleComplex *) Bkn, ldb, sdb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc, sdc,
batchCount);
#endif
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
oneapi::mkl::transpose::N,
oneapi::mkl::transpose::N,
m,n,k,
alpha,
(const ComplexD *)Amk,lda,sda,
(const ComplexD *)Bkn,ldb,sdb,
beta,
(ComplexD *)Cmn,ldc,sdc,
batchCount);
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
// Need a default/reference implementation
for (int p = 0; p < batchCount; ++p) {
for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {
ComplexD c_mn(0.0);
for (int kk = 0; kk < k; ++kk)
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
}
}
}
#endif
}
template<class CComplex>
double benchmark(int M, int N, int K, int BATCH)
{
int32_t N_A = M*K*BATCH;
int32_t N_B = K*N*BATCH;
int32_t N_C = M*N*BATCH;
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
ComplexD alpha(1.0);
ComplexD beta (1.0);
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
CComplex alpha(1.0);
CComplex beta (1.0);
RealD flops = 8.0*M*N*K*BATCH;
int ncall=10;
int ncall=1000;
deviceVector<CComplex *> As(BATCH);
deviceVector<CComplex *> Bs(BATCH);
deviceVector<CComplex *> Cs(BATCH);
for(int b = 0 ; b < BATCH;b++) {
CComplex *ptr;
ptr = &A[b*M*K]; acceleratorPut(As[b],ptr);
ptr = &B[b*K*N]; acceleratorPut(Bs[b],ptr);
ptr = &C[b*M*N]; acceleratorPut(Cs[b],ptr);
}
// Warm up call
gemmBatched(M,N,K,
alpha,
As, // m x k
Bs, // k x n
beta,
Cs);
synchronise();
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemmStridedBatched(M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0], // m x n
BATCH);
gemmBatched(M,N,K,
alpha,
As, // m x k
Bs, // k x n
beta,
Cs);
synchronise();
}
synchronise();
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
flops = 8.0*M*N*K*BATCH*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
};
NAMESPACE_END(Grid);

View File

@ -279,11 +279,11 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
_sort.push(eval2,Nm);
// Glog << "#Ritz value before shift: "<< std::endl;
Glog << "#Ritz value before shift: "<< std::endl;
for(int i=0; i<Nm; ++i){
// std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
//----------------------------------------------------------------------
@ -297,7 +297,8 @@ public:
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
for(int ip=Nk; ip<Nm; ++ip){
for(int ip=Nk; ip<Nm; ++ip){
Glog << " ip "<<ip<<" / "<<Nm<<std::endl;
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
}
@ -325,7 +326,7 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
_sort.push(eval2,Nk);
// Glog << "#Ritz value after shift: "<< std::endl;
Glog << "#Ritz value after shift: "<< std::endl;
for(int i=0; i<Nk; ++i){
// std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
@ -467,10 +468,10 @@ public:
// set initial vector
for (int i=0; i<Nu; ++i) {
// Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
evec[i] = src[i];
orthogonalize(evec[i],evec,i);
// Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
}
// exit(-43);
@ -506,11 +507,11 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nr,Nr);
diagonalize(eval2,lmd2,lme2,Nu,Nr,Nr,Qt,grid);
_sort.push(eval2,Nr);
// Glog << "#Ritz value: "<< std::endl;
Glog << "#Ritz value: "<< std::endl;
for(int i=0; i<Nr; ++i){
// std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
// Convergence test
@ -570,6 +571,7 @@ public:
Glog << fname + " NOT converged ; Summary :\n";
} else {
Glog << fname + " CONVERGED ; Summary :\n";
Nstop = Nconv_guess; // Just take them all
// Sort convered eigenpairs.
std::vector<Field> Btmp(Nstop,grid); // waste of space replicating
@ -642,7 +644,7 @@ private:
// for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl;
k_start +=mrhs;
}
// Glog << "LinAlg "<< std::endl;
Glog << "LinAlg "<< std::endl;
if (b>0) {
for (int u=0; u<Nu; ++u) {
@ -676,7 +678,7 @@ private:
}
w_copy[u] = w[u];
}
// Glog << "LinAlg done"<< std::endl;
Glog << "LinAlg done"<< std::endl;
// In block version, the steps 6 and 7 in Lanczos construction is
// replaced by the QR decomposition of new basis block.
@ -689,15 +691,15 @@ private:
}
// re-orthogonalization for numerical stability
// Glog << "Gram Schmidt"<< std::endl;
Glog << "Gram Schmidt"<< std::endl;
orthogonalize(w,Nu,evec,R);
// QR part
for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u);
}
// Glog << "Gram Schmidt done "<< std::endl;
Glog << "Gram Schmidt done "<< std::endl;
// Glog << "LinAlg "<< std::endl;
Glog << "LinAlg "<< std::endl;
for (int u=0; u<Nu; ++u) {
//for (int v=0; v<Nu; ++v) {
for (int v=u; v<Nu; ++v) {
@ -714,7 +716,7 @@ private:
// Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
}
}
// Glog << "LinAlg done "<< std::endl;
Glog << "LinAlg done "<< std::endl;
if (b < Nm/Nu-1) {
for (int u=0; u<Nu; ++u) {
@ -779,7 +781,7 @@ private:
for ( int u=0; u<Nu; ++u ) {
for (int k=0; k<Nk; ++k ) {
// Glog << "lmd "<<u<<" "<<k<<" "<<lmd[u][k] -conjugate(lmd[u][k])<<std::endl;
// Glog << "lmd "<<u<<" "<<k<<" "<<lmd[u][k] -conjugate(lmd[u][k])<<std::endl;
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
}
}
@ -933,7 +935,7 @@ if (1){
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
@ -951,7 +953,7 @@ if (1){
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
//Glog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;
}
@ -961,7 +963,7 @@ if (1){
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
@ -977,7 +979,7 @@ if (1){
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
}
}
//Glog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;
}
@ -986,7 +988,7 @@ if (1){
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
//Glog << "shiftedQRDecompEigen() begin" << '\n';
Glog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
@ -1002,6 +1004,7 @@ if (1){
// lower triangular part used to represent series
// of Q sequence.
Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';
// equivalent operation of Qprod *= Q
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
@ -1022,6 +1025,7 @@ if (1){
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';
for (int i=0; i<Nm; ++i) {
for (int j=0; j<Nm-(Nu+1); ++j) {
for (int k=0; k<Nu+1+j; ++k) {
@ -1029,6 +1033,7 @@ if (1){
}
}
}
Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';
for (int i=0; i<Nm; ++i) {
for (int j=Nm-(Nu+1); j<Nm; ++j) {
for (int k=0; k<Nm; ++k) {
@ -1036,6 +1041,7 @@ if (1){
}
}
}
Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';
//static int ntimes = 2;
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
@ -1061,11 +1067,13 @@ if (1){
Mtmp(j,i) = conj(Mtmp(i,j));
}
}
Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';
for (int i=0; i<Nm; ++i) {
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
}
Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';
M = Mtmp;
//M = Q.adjoint()*(M*Q);
@ -1077,7 +1085,7 @@ if (1){
// }
//}
//Glog << "shiftedQRDecompEigen() end" << endl;
Glog << "shiftedQRDecompEigen() end" <<std::endl;
}
void exampleQRDecompEigen(void)

View File

@ -35,7 +35,7 @@ uint64_t total_host;;
void MemoryManager::DisplayMallinfo(void)
{
#ifdef __linux__
struct mallinfo mi;
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
mi = mallinfo();

View File

@ -91,6 +91,7 @@ public:
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerDim(void){ return 0; };
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;

View File

@ -60,6 +60,7 @@ public:
int _checker_dim;
std::vector<int> _checker_board;
virtual int CheckerDim(void){ return _checker_dim; };
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;

View File

@ -264,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
const uint64_t sites = grid->oSites();
// Might make all code paths go this way.
#if 0
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// This code could read coalesce
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
});
}
#else
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
deviceVector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
@ -295,7 +279,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
});
}
#endif
// This is in single precision and fails some tests
auto anrm = sumD(inner_tmp_v,sites);
nrm = anrm;

View File

@ -42,50 +42,21 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
{
half.Checkerboard() = cb;
autoView( half_v, half, CpuWrite);
autoView( full_v, full, CpuRead);
thread_for(ss, full.Grid()->oSites(),{
int cbos;
Coordinate coor;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
half_v[ssh] = full_v[ss];
}
});
acceleratorPickCheckerboard(cb,half,full);
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
{
int cb = half.Checkerboard();
autoView( half_v , half, CpuRead);
autoView( full_v , full, CpuWrite);
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
int cbos;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
full_v[ss]=half_v[ssh];
}
});
acceleratorSetCheckerboard(full,half);
}
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int dummy=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
@ -95,6 +66,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
int checker_dim_half = half.Grid()->CheckerDim();
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
@ -119,7 +91,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int dummy=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
@ -129,6 +101,7 @@ template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
int checker_dim_half = half.Grid()->CheckerDim();
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;

View File

@ -32,7 +32,9 @@ private:
// Smear_Stout<Gimpl> *StoutSmearing;
// std::vector<GaugeField> SmearedSet;
GridRedBlackCartesian * UrbGrid; // keep a copy of the redblack grid for life of object
std::vector<LatticeLorentzComplex> masks;
std::vector<int> cbs;
typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
@ -147,6 +149,25 @@ private:
}
pokeLorentz(Fdet, Fdet_pol, nu);
}
void Compute_MpInvJx_dNxxdSy(int cb,
const GaugeLinkField &PlaqL,
const GaugeLinkField &PlaqR,
AdjMatrixField MpInvJx,
AdjVectorField &Fdet2 )
{
GaugeLinkField PlaqLeo(UrbGrid);
GaugeLinkField PlaqReo(UrbGrid);
AdjMatrixField MpInvJxeo(UrbGrid);
AdjVectorField Fdet2eo(UrbGrid);
pickCheckerboard(cb,PlaqLeo,PlaqL);
pickCheckerboard(cb,PlaqReo,PlaqR);
pickCheckerboard(cb,MpInvJxeo,MpInvJx);
Fdet2eo.Checkerboard()=cb;
Compute_MpInvJx_dNxxdSy(PlaqLeo,PlaqReo,MpInvJxeo,Fdet2eo);
setCheckerboard(Fdet2,Fdet2eo);
}
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
{
GaugeLinkField UtaU(PlaqL.Grid());
@ -278,8 +299,9 @@ public:
////////////////////////////////////////////////////////////////////////////////
// Mask the gauge field
////////////////////////////////////////////////////////////////////////////////
int cb = cbs[smr];
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
Umsk = U;
ApplyMask(Umsk,smr);
Utmp = peekLorentz(Umsk,mu);
@ -442,7 +464,7 @@ public:
AdjMatrixField MpInvJx_nu(grid);
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_mu=FdetV;
Fdet1_mu=Zero();
@ -499,7 +521,7 @@ public:
time=-usecond();
PlaqR=(-1.0)*PlaqR;
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_nu = FdetV;
time+=usecond();
std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl;
@ -520,7 +542,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
///////////////// -ve nu /////////////////
@ -539,7 +561,7 @@ public:
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
// x==
@ -560,7 +582,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
/////////////////////////////////////////////////////////////////////
@ -589,7 +611,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,nu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
// __
@ -609,7 +631,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
}
@ -931,6 +953,10 @@ private:
public:
/* Standard constructor */
virtual ~SmearedConfigurationMasked()
{
delete UrbGrid;
}
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout)
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
{
@ -939,7 +965,6 @@ public:
// was resized in base class
assert(this->SmearedSet.size()==Nsmear);
GridRedBlackCartesian * UrbGrid;
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
LatticeComplex tmp(_UGrid);
@ -947,10 +972,11 @@ public:
for (unsigned int i = 0; i < this->smearingLevels; ++i) {
masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
int mu= (i/2) %Nd;
int cb= (i%2);
LatticeComplex tmpcb(UrbGrid);
cbs.push_back(cb);
masks[i]=Zero();
////////////////////
@ -962,7 +988,6 @@ public:
PokeIndex<LorentzIndex>(masks[i],tmp, mu);
}
delete UrbGrid;
}
virtual void smeared_force(GaugeField &SigmaTilde)

View File

@ -418,32 +418,32 @@ static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in,
int hNNm1= NNm1/2;
RealD sqrt_2 = sqrt(2.0);
Complex ci(0.0,1.0);
for(int su2Index=0;su2Index<hNNm1;su2Index++){
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
int ax = su2Index*2;
int ay = su2Index*2+1;
accelerator_for(ss,grid->oSites(),1,{
const int nsimd= Matrix::Nsimd();
accelerator_for(ss,grid->oSites(),nsimd,{
for(int su2Index=0;su2Index<hNNm1;su2Index++){
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
int ax = su2Index*2;
int ay = su2Index*2+1;
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
// trace( Ta x Ci in)
// Bet I need to move to real part with mult by -i
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
});
}
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
int k = diagIndex + 1; // diagIndex starts from 0
int a = NNm1+diagIndex;
RealD scale = 1.0/sqrt(2.0*k*(k+1));
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
auto tmp = in_v[ss]()()(0,0);
coalescedWrite(out_v[ss]()()(ax,b),0.5*(real(in_v(ss)()()(i2,i1)) - real(in_v(ss)()()(i1,i2))));
coalescedWrite(out_v[ss]()()(ay,b),0.5*(imag(in_v(ss)()()(i1,i2)) + imag(in_v(ss)()()(i2,i1))));
}
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
int k = diagIndex + 1; // diagIndex starts from 0
int a = NNm1+diagIndex;
RealD scale = 1.0/sqrt(2.0*k*(k+1));
auto tmp = in_v(ss)()()(0,0);
for(int i=1;i<k;i++){
tmp=tmp+in_v[ss]()()(i,i);
tmp=tmp+in_v(ss)()()(i,i);
}
tmp = tmp - in_v[ss]()()(k,k)*k;
out_v[ss]()()(a,b) =imag(tmp) * scale;
});
}
tmp = tmp - in_v(ss)()()(k,k)*k;
coalescedWrite(out_v[ss]()()(a,b),imag(tmp) * scale);
}
});
}

View File

@ -118,7 +118,7 @@ static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;

View File

@ -460,3 +460,9 @@ void vprefetch(const iMatrix<v, N> &vv) {
NAMESPACE_END(Grid);
#ifdef GRID_SYCL
template<class vec> struct sycl::is_device_copyable<Grid::iScalar<vec> > : public std::true_type {};
template<class vec,int N> struct sycl::is_device_copyable<Grid::iVector<vec,N> > : public std::true_type {};
template<class vec,int N> struct sycl::is_device_copyable<Grid::iMatrix<vec,N> > : public std::true_type {};
#endif

View File

@ -261,23 +261,25 @@ public:
fprintf(FP,"\n\n");
};
template<class CComplex>
static void BLAS(void)
{
//int nbasis, int nrhs, int coarseVol
int basis[] = { 16,32,64 };
int rhs[] = { 8,16,32 };
int vol = 4*4*4*4;
int rhs[] = { 8,12,16 };
int vol = 8*8*8*8;
int blk = 4*4*4*4;
GridBLAS blas;
int fpbits = sizeof(CComplex)*4;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
std::cout<<GridLogMessage << "= batched GEMM fp"<<fpbits<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank fp%d\n",fpbits);
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
@ -285,7 +287,7 @@ public:
int N=rhs[r];
int K=basis[b];
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
@ -299,9 +301,9 @@ public:
for(int r=0;r<3;r++){
int M=basis[b];
int N=rhs[r];
int K=vol;
int K=blk;
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
@ -313,10 +315,10 @@ public:
for(int b=0;b<3;b++){
for(int r=0;r<3;r++){
int M=rhs[r];
int N=vol;
int N=blk;
int K=basis[b];
int BATCH=vol;
double p=blas.benchmark(M,N,K,BATCH);
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
std::cout<<GridLogMessage<<std::setprecision(3)
@ -867,6 +869,7 @@ int main (int argc, char ** argv)
int do_memory=1;
int do_comms =1;
int do_blas =1;
int do_dslash=1;
int sel=4;
std::vector<int> L_list({8,12,16,24,32});
@ -877,6 +880,7 @@ int main (int argc, char ** argv)
std::vector<double> staggered;
int Ls=1;
if (do_dslash){
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Clover dslash 4D vectorised (temporarily Wilson)" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -901,6 +905,7 @@ int main (int argc, char ** argv)
staggered.push_back(result);
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -909,8 +914,33 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
int NN=NN_global;
if(do_dslash){
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
fprintf(FP,"Per node summary table\n");
fprintf(FP,"\n");
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
fprintf(FP,"\n");
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
}
fprintf(FP,"\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
@ -918,15 +948,6 @@ int main (int argc, char ** argv)
Benchmark::Memory();
}
if ( do_blas ) {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::BLAS();
#endif
}
if ( do_su4 ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
@ -941,28 +962,14 @@ int main (int argc, char ** argv)
Benchmark::Comms();
}
if ( do_blas ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
fprintf(FP,"Per node summary table\n");
fprintf(FP,"\n");
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
fprintf(FP,"\n");
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
}
fprintf(FP,"\n");
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::BLAS<ComplexD>();
Benchmark::BLAS<ComplexF>();
}
Grid_finalize();
fclose(FP);
}

View File

@ -0,0 +1,23 @@
source ~/spack/share/spack/setup-env.sh
spack load c-lime
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
../../configure \
--enable-debug \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$CLIME \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-accelerator-aware-mpi=yes\
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \
LDFLAGS="-fiopenmp -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -Xarch_host -fsanitize=leak -fsycl-device-code-split=per_kernel" \
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -Xarch_host -fsycl -fsanitize=leak "

View File

@ -1,13 +1,25 @@
source ~/spack/share/spack/setup-env.sh
spack load c-lime
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
#spack load libefence
#export EFENCE=`spack find --paths libefence | grep ^libefence | awk '{print $2}' `
#export LD_LIBRARY_PATH=${EFENCE}/lib:$LD_LIBRARY_PATH
#spack load gperftools
export TCMALLOC=/home/paboyle/gperftools/install
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
export INTELGT_AUTO_ATTACH_DISABLE=1
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
#module load oneapi/release/2023.12.15.001
#module use /soft/modulefiles
#module load intel_compute_runtime/release/agama-devel-682.22
#export FI_CXI_DEFAULT_CQ_SIZE=131072
#export FI_CXI_CQ_FILL_PERCENT=20
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
#
# -ftarget-register-alloc-mode=pvc:default
# -ftarget-register-alloc-mode=pvc:small
# -ftarget-register-alloc-mode=pvc:large
@ -20,4 +32,9 @@ export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
git config --global http.proxy http://proxy.alcf.anl.gov:3128
#source ~/spack/share/spack/setup-env.sh
#spack load gperftools
#export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -3,7 +3,7 @@ spack load c-lime
module load emacs
module load PrgEnv-gnu
module load rocm
module load cray-mpich/8.1.23
module load cray-mpich
module load gmp
module load cray-fftw
module load craype-accel-amd-gfx90a

118
tests/debug/Test_8888.cc Normal file
View File

@ -0,0 +1,118 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
using namespace std;
using namespace Grid;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=8;
const int nbasis = 40;
const int cb = 0 ;
RealD mass=0.01;
RealD M5=1.8;
RealD b=1.0;
RealD c=0.0;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_EODWF_lat.125");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
MdagMLinearOperator<MobiusFermionD, LatticeFermion> HermOp(Ddwf);
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Power method "<<std::endl;
std::cout << "**************************************"<<std::endl;
LatticeFermionD pm_src(FGrid);
pm_src = ComplexD(1.0);
PowerMethod<LatticeFermionD> fPM;
fPM(HermOp,pm_src);
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Lanczos (poly, low) "<<std::endl;
std::cout << "**************************************"<<std::endl;
int Nk=80;
int Nm=Nk*3;
int Nstop=8;
int Nconv_test_interval=1;
// Chebyshev<LatticeFermionD> IRLChebyLo(0.2,64.0,201); // 1 iter
Chebyshev<LatticeFermionD> IRLChebyLo(0.0,55.0,101); // 1 iter
FunctionHermOp<LatticeFermionD> PolyOp(IRLChebyLo,HermOp);
PlainHermOp<LatticeFermionD> Op(HermOp);
ImplicitlyRestartedLanczos IRL(PolyOp,
Op,
Nk, // sought vecs
Nk, // sought vecs
Nm, // spare vecs
1.0e-8,
10 // Max iterations
);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<LatticeFermionD> evec(Nm,FGrid);
LatticeFermionD irl_src(FGrid);
IRL.calc(eval,evec,irl_src,Nconv);
Grid_finalize();
return 0;
}

View File

@ -244,7 +244,7 @@ int main (int argc, char ** argv)
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
#if 0
MultiGeneralCoarsenedMatrix mrhs(LittleDiracOp,CoarseMrhs);
typedef decltype(mrhs) MultiGeneralCoarsenedMatrix_t;
@ -307,7 +307,8 @@ int main (int argc, char ** argv)
rh_res= Zero();
mrhsCG(MrhsCoarseOp,rh_src,rh_res);
}
#endif
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;

View File

@ -145,7 +145,7 @@ int main (int argc, char ** argv)
Grid_init(&argc,&argv);
const int Ls=24;
const int nbasis = 60;
const int nbasis = 62;
const int cb = 0 ;
RealD mass=0.00078;
RealD M5=1.8;
@ -160,7 +160,7 @@ int main (int argc, char ** argv)
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,4,4});
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];

View File

@ -160,7 +160,8 @@ int main (int argc, char ** argv)
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,6,6});
// Coordinate Block({4,4,6,4});
Coordinate Block({4,4,4,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
@ -217,7 +218,7 @@ int main (int argc, char ** argv)
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true;
bool load_refine=false;
bool load_refine=true;
bool load_mat=false;
bool load_evec=false;
@ -276,17 +277,25 @@ int main (int argc, char ** argv)
std::cout << "**************************************"<<std::endl;
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,301); // 1 iter
// Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,301); // 4.4.6.4
// Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,501); // for 4.4.4.4 blocking 350 evs
// Chebyshev<CoarseVector> IRLCheby(0.0014,42.0,501); // for 4.4.4.4 blocking 700 evs
// Chebyshev<CoarseVector> IRLCheby(0.002,42.0,501); // for 4.4.4.4 blocking 1226 evs
// Chebyshev<CoarseVector> IRLCheby(0.0025,42.0,501); // for 4.4.4.4 blocking 1059 evs
// 3e-4,2);
Chebyshev<CoarseVector> IRLCheby(0.0018,42.0,301); // for 4.4.4.4 blocking // 790 evs
MrhsHermMatrix MrhsCoarseOp (mrhs);
CoarseVector pm_src(CoarseMrhs);
pm_src = ComplexD(1.0);
PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
int Nk=nrhs*30;
// int Nk=nrhs*30; // 4.4.6.4
// int Nk=nrhs*80;
int Nm=Nk*4;
int Nstop=Nk;
int Nk=nrhs*60; // 720
int Nm=Nk*4; // 2880 ; generally finishes at 1440
int Nstop=512;
int Nconv_test_interval=1;
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
@ -299,7 +308,7 @@ int main (int argc, char ** argv)
nrhs,
Nk,
Nm,
1e-4,20);
3e-4,2);
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
@ -331,7 +340,7 @@ int main (int argc, char ** argv)
// Extra HDCG parameters
//////////////////////////
int maxit=3000;
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
ConjugateGradient<CoarseVector> CG(7.5e-2,maxit,false);
RealD lo=2.0;
int ord = 7;