mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Compare commits
	
		
			279 Commits
		
	
	
		
			41d8adca95
			...
			hotfix/unw
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 6e40e22004 | |||
| 
						 | 
					6165931afa | ||
| 23581333e6 | |||
| e5fa3d887f | |||
| 583fa7bb0a | |||
| 
						 | 
					fe0db53842 | ||
| 
						 | 
					76c0ada1e1 | ||
| 
						 | 
					92f49e9194 | ||
| 
						 | 
					44c8057b5f | ||
| 
						 | 
					0ad837f595 | ||
| 
						 | 
					bd2103c746 | ||
| 
						 | 
					9c18d2ddb0 | ||
| 
						 | 
					1245a8c151 | ||
| 
						 | 
					07113dc8ba | ||
| a3420e6fa9 | |||
| 732836d9f8 | |||
| 87658f7b53 | |||
| e7f51e5fb1 | |||
| 
						 | 
					1ce5f70dd1 | ||
| 
						 | 
					473635f401 | ||
| 5adf2657dd | |||
| 82cfff2990 | |||
| 4397b1c442 | |||
| 9e6a4a4737 | |||
| 41f344bbd3 | |||
| a77cd50b2f | |||
| 73af020f98 | |||
| bffb83c46e | |||
| 7031f37350 | |||
| 829dd74cb2 | |||
| 66e671985d | |||
| 5afcbcf0f3 | |||
| 9730579312 | |||
| bfae14d035 | |||
| b78fc73d19 | |||
| 
						 | 
					709f8ae76c | ||
| 
						 | 
					7aa06329d0 | ||
| 
						 | 
					9d6a38c44c | ||
| 
						 | 
					6ec5cee368 | ||
| 
						 | 
					f2e9a68825 | ||
| 
						 | 
					d88750e6b6 | ||
| 
						 | 
					821358eda7 | ||
| 
						 | 
					fce6e1f135 | ||
| 
						 | 
					8f0bb3e676 | ||
| 
						 | 
					262c70d967 | ||
| 
						 | 
					da43ef7c2d | ||
| 
						 | 
					7b60ab5df1 | ||
| 
						 | 
					f6b961a64e | ||
| 
						 | 
					f1ed988aa3 | ||
| 
						 | 
					eea51bb604 | ||
| 
						 | 
					9203126aa5 | ||
| 
						 | 
					f90ba4712a | ||
| 
						 | 
					3737a24096 | ||
| d418f78352 | |||
| 25163998a0 | |||
| 
						 | 
					dc546aaa4b | ||
| 
						 | 
					5364d580c9 | ||
| 
						 | 
					2a9a6347e3 | ||
| 
						 | 
					cfdb56f314 | ||
| 
						 | 
					b517e88db3 | ||
| bb317aba8d | |||
| 644cc6647e | |||
| 72397ce23b | |||
| 
						 | 
					d60a80c098 | ||
| 
						 | 
					bb8b6d9d73 | ||
| 
						 | 
					677b4cc5b0 | ||
| 
						 | 
					be565ffab6 | ||
| 
						 | 
					df6120e5f6 | ||
| 
						 | 
					21de6f7da8 | ||
| 
						 | 
					dbe39f9ce0 | ||
| 
						 | 
					ab3de50d5e | ||
| 
						 | 
					c545bd2139 | ||
| 
						 | 
					6a1c64fbdd | ||
| 
						 | 
					b75809ed61 | ||
| 
						 | 
					ecaf228e5c | ||
| 
						 | 
					6d015ae8fc | ||
| 
						 | 
					233150d93f | ||
| 
						 | 
					7af8c77a52 | ||
| 
						 | 
					a957e7bfa1 | ||
| 
						 | 
					cee4c8ce8c | ||
| 
						 | 
					96bf814d8c | ||
| 
						 | 
					7ddc422788 | ||
| 
						 | 
					e652fc2825 | ||
| 
						 | 
					a49fa3f8d0 | ||
| 
						 | 
					cd452a2f91 | ||
| 
						 | 
					4f89f603ae | ||
| 
						 | 
					11dc2c5e1d | ||
| 
						 | 
					6fec3c15ca | ||
| 
						 | 
					938c47480f | ||
| 
						 | 
					3811d19298 | ||
| 
						 | 
					83a3ab6b6f | ||
| 
						 | 
					d66a9af6a3 | ||
| 
						 | 
					adc90d3a86 | ||
| 
						 | 
					ebbd015c5c | ||
| 
						 | 
					4ab73b36b2 | ||
| 
						 | 
					130e07a422 | ||
| 
						 | 
					8f47bb367e | ||
| 
						 | 
					0c3cb60135 | ||
| 
						 | 
					9eae8fca5d | ||
| 
						 | 
					882a217074 | ||
| 
						 | 
					e465fce201 | ||
| 
						 | 
					d41542c64b | ||
| 
						 | 
					199818bd6c | ||
| 
						 | 
					fe66c7ca30 | ||
| 
						 | 
					e9177e4af3 | ||
| 
						 | 
					d15a6c5933 | ||
| 25ab9325e7 | |||
| 19f9378b98 | |||
| 
						 | 
					785bc7a14f | ||
| 
						 | 
					1a1fe85428 | ||
| 
						 | 
					0000d2e558 | ||
| 
						 | 
					9ffd1ed4ce | ||
| 
						 | 
					3d014864e2 | ||
| 1d22841811 | |||
| 
						 | 
					a1cdda833f | ||
| 
						 | 
					ad6db92690 | ||
| 
						 | 
					e8ff9d8e50 | ||
| 
						 | 
					795769c636 | ||
| 
						 | 
					267a39d943 | ||
| 
						 | 
					3624bd3d22 | ||
| 
						 | 
					bc12dbbb38 | ||
| 
						 | 
					eb8a008a8f | ||
| c4d9aa1a21 | |||
| 6ae809ed40 | |||
| 
						 | 
					311e2aab3f | ||
| 438dfbdb83 | |||
| b2ce760cf4 | |||
| 
						 | 
					b1ba209696 | ||
| 
						 | 
					cb3e529b1e | ||
| 
						 | 
					717f647418 | ||
| 
						 | 
					98e7418187 | ||
| 
						 | 
					fe05bf48b1 | ||
| 
						 | 
					d2dd8f54e2 | ||
| 
						 | 
					7726ee4b16 | ||
| ba9bbe0221 | |||
| 4c3dd82d84 | |||
| 44e911b5b7 | |||
| a7a16df9d0 | |||
| 382e0abefd | |||
| 6fdefe5b90 | |||
| 4788dd8e2e | |||
| 1cc5f221f3 | |||
| 93251bfba0 | |||
| 18b79508b8 | |||
| 4de5ed1613 | |||
| 0baaddbe98 | |||
| 8729c46169 | |||
| 09f81fe7c3 | |||
| 1876e5b7c0 | |||
| 
						 | 
					355ec76257 | ||
| b50fb34e71 | |||
| de84d730ff | |||
| 
						 | 
					c74d11e3d7 | ||
| 
						 | 
					84cab5e6e7 | ||
| c4fc972fec | |||
| 8cf809e231 | |||
| 94019a922e | |||
| 
						 | 
					4f17c8d081 | ||
| 
						 | 
					aaab753982 | ||
| d6b2727f86 | |||
| 74a4f43946 | |||
| 1caf8b0f86 | |||
| 
						 | 
					570b72a47b | ||
| 
						 | 
					a5798a89ed | ||
| 
						 | 
					3f3661a86f | ||
| 
						 | 
					f7e2f9a401 | ||
| 
						 | 
					2848a9b558 | ||
| 
						 | 
					d4868991af | ||
| 
						 | 
					e99d42404e | ||
| 
						 | 
					3ba019c747 | ||
| 
						 | 
					47429218bb | ||
| 8fe429346f | |||
| 
						 | 
					5a4f9bf2e3 | ||
| 
						 | 
					b91fc1b6b4 | ||
| 
						 | 
					eafc150034 | ||
| 
						 | 
					2877f1a268 | ||
| 
						 | 
					1e893af775 | ||
| 
						 | 
					d9f430a575 | ||
| 
						 | 
					63abe87f36 | ||
| 
						 | 
					368d649c8a | ||
| 
						 | 
					5603464f39 | ||
| 
						 | 
					655c79f39e | ||
| 
						 | 
					565b231c03 | ||
| 
						 | 
					62a9f180fa | ||
| 
						 | 
					5ae77876a8 | ||
| 
						 | 
					4ed2c2c74f | ||
| 
						 | 
					955da582b6 | ||
| 
						 | 
					11b07b950d | ||
| 
						 | 
					8f70cfeda9 | ||
| 
						 | 
					ce64271048 | ||
| 5cc4f3241d | |||
| 
						 | 
					6815e138b4 | ||
| a78a61d76f | |||
| 2eff3f34ed | |||
| 03687c1d62 | |||
| febfe4e77f | |||
| 4d1aa134b5 | |||
| 5ec879860a | |||
| 
						 | 
					f617468e04 | ||
| b728af903c | |||
| 54f1999030 | |||
| fd58f0b669 | |||
| c5c67b706e | |||
| be7a543e2c | |||
| 68f112d576 | |||
| ec1395a304 | |||
| beb0e474ee | |||
| 2b5fdcbbc5 | |||
| 295127d456 | |||
| 7dcfb13694 | |||
| 
						 | 
					ee4046fe92 | ||
| 
						 | 
					2a9cfeb9ea | ||
| 
						 | 
					1147b8ea40 | ||
| 
						 | 
					3f9119b39d | ||
| 
						 | 
					35e8225abd | ||
| 
						 | 
					bdbfbb7a14 | ||
| 
						 | 
					f7d4be8d96 | ||
| 9fa8bd6438 | |||
| 02c8178f16 | |||
| e637fbacae | |||
| 066544281f | |||
| 11be10d2c0 | |||
| 160969a758 | |||
| 622f78ebea | |||
| 
						 | 
					aa67a5b095 | ||
| 
						 | 
					af9ea0864c | ||
| 
						 | 
					4e2a6d87c4 | ||
| 
						 | 
					a465ecece9 | ||
| 
						 | 
					575eb72182 | ||
| 
						 | 
					3a973914d6 | ||
| 
						 | 
					f568c07bbd | ||
| 
						 | 
					2c9878fc3a | ||
| 
						 | 
					27b1b1b005 | ||
| 
						 | 
					130d7ab077 | ||
| 
						 | 
					29f6b8a74a | ||
| 
						 | 
					9779aaea33 | ||
| 
						 | 
					ec25604a67 | ||
| 
						 | 
					3668e81c5e | ||
| 
						 | 
					d66b2423cb | ||
| 
						 | 
					15cc78f0b6 | ||
| 
						 | 
					06db4ddea2 | ||
| 
						 | 
					6cfb90e99f | ||
| 
						 | 
					d8be95a2a3 | ||
| 
						 | 
					f82702872d | ||
| 
						 | 
					3752c49ef0 | ||
| 
						 | 
					fe65fa4988 | ||
| 
						 | 
					1fe4c205a3 | ||
| 
						 | 
					d4dc5e0f43 | ||
| 
						 | 
					77944437ce | ||
| 
						 | 
					c164bff758 | ||
| 
						 | 
					aa2e3d954a | ||
| 
						 | 
					de62b04728 | ||
| 
						 | 
					d0bdb50f24 | ||
| 
						 | 
					a8fecbc609 | ||
| 
						 | 
					557fa483ff | ||
| 
						 | 
					fc15d55df6 | ||
| 
						 | 
					53573d7d94 | ||
| 
						 | 
					bb3c177000 | ||
| 
						 | 
					a3322b470f | ||
| 
						 | 
					f8f408e7a9 | ||
| 
						 | 
					baac1127d0 | ||
| 
						 | 
					6f1328160c | ||
| 
						 | 
					04cf902791 | ||
| 
						 | 
					7a5b1c1a19 | ||
| 
						 | 
					18d2d7da4a | ||
| 
						 | 
					b461184797 | ||
| 
						 | 
					4563b39305 | ||
| 
						 | 
					c9d5674d5b | ||
| 
						 | 
					486412635a | ||
| 
						 | 
					8b23a1546a | ||
| 
						 | 
					a901e4e369 | ||
| 
						 | 
					804d9367d4 | ||
| 
						 | 
					6ae52da571 | ||
| 
						 | 
					4ee9c68053 | ||
| 
						 | 
					a15b4378a3 | ||
| 
						 | 
					12b8be7cb9 | ||
| 8d305df0db | |||
| 
						 | 
					e29b97b3ea | ||
| 
						 | 
					ad2b699d2b | 
							
								
								
									
										1125
									
								
								BLAS_benchmark/BatchBlasBench.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1125
									
								
								BLAS_benchmark/BatchBlasBench.cc
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										2
									
								
								BLAS_benchmark/compile-command
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								BLAS_benchmark/compile-command
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,2 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
							
								
								
									
										5
									
								
								BLAS_benchmark/compile-command-frontier
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								BLAS_benchmark/compile-command-frontier
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,5 @@
 | 
			
		||||
CXX=hipcc
 | 
			
		||||
MPICXX=mpicxx 
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
			
		||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
			
		||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
			
		||||
							
								
								
									
										2
									
								
								BLAS_benchmark/compile-command-sunspot
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								BLAS_benchmark/compile-command-sunspot
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,2 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
@@ -51,11 +51,13 @@ directory
 | 
			
		||||
#pragma nv_diag_suppress cast_to_qualified_type
 | 
			
		||||
 //disables nvcc specific warning in many files
 | 
			
		||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
 | 
			
		||||
#pragma nv_diag_suppress declared_but_not_referenced
 | 
			
		||||
#pragma nv_diag_suppress extra_semicolon
 | 
			
		||||
#else
 | 
			
		||||
 //disables nvcc specific warning in json.hpp
 | 
			
		||||
#pragma diag_suppress unsigned_compare_with_zero
 | 
			
		||||
#pragma diag_suppress cast_to_qualified_type
 | 
			
		||||
#pragma diag_suppress declared_but_not_referenced
 | 
			
		||||
 //disables nvcc specific warning in many files
 | 
			
		||||
#pragma diag_suppress esa_on_defaulted_function_ignored
 | 
			
		||||
#pragma diag_suppress extra_semicolon
 | 
			
		||||
 
 | 
			
		||||
@@ -1,9 +1,17 @@
 | 
			
		||||
#ifndef GRID_STD_H
 | 
			
		||||
#define GRID_STD_H
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Grid config
 | 
			
		||||
///////////////////
 | 
			
		||||
#include "Config.h"
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Std C++ dependencies
 | 
			
		||||
///////////////////
 | 
			
		||||
#define _NBACKTRACE (256)
 | 
			
		||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
			
		||||
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <complex>
 | 
			
		||||
#include <memory>
 | 
			
		||||
@@ -15,7 +23,9 @@
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <functional>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
#include <strings.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <signal.h>
 | 
			
		||||
@@ -23,11 +33,36 @@
 | 
			
		||||
#include <sys/time.h>
 | 
			
		||||
#include <chrono>
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
#ifdef HAVE_EXECINFO_H
 | 
			
		||||
#include <execinfo.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void GridAbort(void);
 | 
			
		||||
 | 
			
		||||
#define ASSLOG(A) ::write(STDERR_FILENO,A,::strlen(A));
 | 
			
		||||
#ifdef HAVE_EXECINFO_H
 | 
			
		||||
#define GRID_ASSERT(b) if(!(b)) {					\
 | 
			
		||||
    fflush(stdout); \
 | 
			
		||||
    ASSLOG(" GRID_ASSERT failure: ");					\
 | 
			
		||||
    ASSLOG(__FILE__);							\
 | 
			
		||||
    ASSLOG(" : ");							\
 | 
			
		||||
    ASSLOG(#b);								\
 | 
			
		||||
    ASSLOG(" : ");							\
 | 
			
		||||
    int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);		\
 | 
			
		||||
    backtrace_symbols_fd(Grid_backtrace_buffer,symbols,STDERR_FILENO);	\
 | 
			
		||||
    GridAbort();							\
 | 
			
		||||
  };
 | 
			
		||||
#else
 | 
			
		||||
#define GRID_ASSERT(b) if(!(b)) {					\
 | 
			
		||||
    ASSLOG(" GRID_ASSERT failure: ");					\
 | 
			
		||||
    ASSLOG(__FILE__);							\
 | 
			
		||||
    ASSLOG(" : ");							\
 | 
			
		||||
    ASSLOG(#b);								\
 | 
			
		||||
    ASSLOG(" : ");							\
 | 
			
		||||
    GridAbort();							\
 | 
			
		||||
  };
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
///////////////////
 | 
			
		||||
// Grid config
 | 
			
		||||
///////////////////
 | 
			
		||||
#include "Config.h"
 | 
			
		||||
 | 
			
		||||
#ifdef TOFU
 | 
			
		||||
#undef GRID_COMMS_THREADS
 | 
			
		||||
 
 | 
			
		||||
@@ -68,8 +68,10 @@ if BUILD_FERMION_REPS
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_SP
 | 
			
		||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
			
		||||
if BUILD_FERMION_REPS
 | 
			
		||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -29,8 +29,8 @@ directory
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <exception>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
			
		||||
#define NAMESPACE_END(A)   }
 | 
			
		||||
 
 | 
			
		||||
@@ -50,6 +50,9 @@ NAMESPACE_CHECK(approx);
 | 
			
		||||
#include <Grid/algorithms/deflation/Deflation.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
 | 
			
		||||
// Not really deflation, but useful
 | 
			
		||||
#include <Grid/algorithms/blas/MomentumProject.h>
 | 
			
		||||
NAMESPACE_CHECK(deflation);
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
			
		||||
NAMESPACE_CHECK(ConjGrad);
 | 
			
		||||
 
 | 
			
		||||
@@ -28,6 +28,15 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#ifndef _GRID_FFT_H_
 | 
			
		||||
#define _GRID_FFT_H_
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
#include <cufft.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#include <hipfft/hipfft.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
#ifdef HAVE_FFTW
 | 
			
		||||
#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
			
		||||
#include <fftw/fftw3.h>
 | 
			
		||||
@@ -35,88 +44,190 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <fftw3.h>
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class scalar> struct FFTW { };
 | 
			
		||||
#ifndef FFTW_FORWARD
 | 
			
		||||
#define FFTW_FORWARD (-1)
 | 
			
		||||
#define FFTW_BACKWARD (+1)
 | 
			
		||||
#define FFTW_ESTIMATE (0)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_FFTW	
 | 
			
		||||
template<class scalar> struct FFTW {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
template<> struct FFTW<ComplexD> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
  static const int backward=FFTW_BACKWARD;
 | 
			
		||||
  typedef hipfftDoubleComplex FFTW_scalar;
 | 
			
		||||
  typedef hipfftHandle        FFTW_plan;
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_Z2Z,howmany);
 | 
			
		||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
			
		||||
    return p;
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
			
		||||
    hipfftResult rv;
 | 
			
		||||
    if ( sign == forward ) rv =hipfftExecZ2Z(p,in,out,HIPFFT_FORWARD);
 | 
			
		||||
    else                   rv =hipfftExecZ2Z(p,in,out,HIPFFT_BACKWARD);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    hipfftDestroy(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<> struct FFTW<ComplexF> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
  static const int backward=FFTW_BACKWARD;
 | 
			
		||||
  typedef hipfftComplex      FFTW_scalar;
 | 
			
		||||
  typedef hipfftHandle        FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_C2C,howmany);
 | 
			
		||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
			
		||||
    return p;
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
			
		||||
    hipfftResult rv;
 | 
			
		||||
    if ( sign == forward ) rv =hipfftExecC2C(p,in,out,HIPFFT_FORWARD);
 | 
			
		||||
    else                   rv =hipfftExecC2C(p,in,out,HIPFFT_BACKWARD);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
    GRID_ASSERT(rv==HIPFFT_SUCCESS);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    hipfftDestroy(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
template<> struct FFTW<ComplexD> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
  static const int backward=FFTW_BACKWARD;
 | 
			
		||||
  typedef cufftDoubleComplex FFTW_scalar;
 | 
			
		||||
  typedef cufftHandle        FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_Z2Z,howmany);
 | 
			
		||||
    return p;
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
			
		||||
    if ( sign == forward ) cufftExecZ2Z(p,in,out,CUFFT_FORWARD);
 | 
			
		||||
    else                   cufftExecZ2Z(p,in,out,CUFFT_INVERSE);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    cufftDestroy(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<> struct FFTW<ComplexF> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
  static const int backward=FFTW_BACKWARD;
 | 
			
		||||
  typedef cufftComplex FFTW_scalar;
 | 
			
		||||
  typedef cufftHandle        FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_C2C,howmany);
 | 
			
		||||
    return p;
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
			
		||||
    if ( sign == forward ) cufftExecC2C(p,in,out,CUFFT_FORWARD);
 | 
			
		||||
    else                   cufftExecC2C(p,in,out,CUFFT_INVERSE);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    cufftDestroy(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
#ifdef HAVE_FFTW
 | 
			
		||||
template<> struct FFTW<ComplexD> {
 | 
			
		||||
public:
 | 
			
		||||
  typedef fftw_complex FFTW_scalar;
 | 
			
		||||
  typedef fftw_plan    FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, const int *inembed,		
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, const int *onembed,		
 | 
			
		||||
				      FFTW_scalar *out, int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
			
		||||
    ::fftw_flops(p,add,mul,fmas);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
			
		||||
    ::fftw_execute_dft(p,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    ::fftw_destroy_plan(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<> struct FFTW<ComplexF> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef fftwf_complex FFTW_scalar;
 | 
			
		||||
  typedef fftwf_plan    FFTW_plan;
 | 
			
		||||
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, const int *inembed,		
 | 
			
		||||
  static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
 | 
			
		||||
				      FFTW_scalar *in, int *inembed,		
 | 
			
		||||
				      int istride, int idist,		
 | 
			
		||||
				      FFTW_scalar *out, const int *onembed,		
 | 
			
		||||
				      FFTW_scalar *out, int *onembed,		
 | 
			
		||||
				      int ostride, int odist,		
 | 
			
		||||
				      int sign, unsigned flags) {
 | 
			
		||||
    return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
 | 
			
		||||
  }	  
 | 
			
		||||
    
 | 
			
		||||
  static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
 | 
			
		||||
    ::fftwf_flops(p,add,mul,fmas);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
 | 
			
		||||
  inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
 | 
			
		||||
    ::fftwf_execute_dft(p,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  inline static void fftw_destroy_plan(const FFTW_plan p) {
 | 
			
		||||
    ::fftwf_destroy_plan(p);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef FFTW_FORWARD
 | 
			
		||||
#define FFTW_FORWARD (-1)
 | 
			
		||||
#define FFTW_BACKWARD (+1)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class FFT {
 | 
			
		||||
private:
 | 
			
		||||
    
 | 
			
		||||
  GridCartesian *vgrid;
 | 
			
		||||
  GridCartesian *sgrid;
 | 
			
		||||
    
 | 
			
		||||
  int Nd;
 | 
			
		||||
  double flops;
 | 
			
		||||
  double flops_call;
 | 
			
		||||
  uint64_t usec;
 | 
			
		||||
    
 | 
			
		||||
  Coordinate dimensions;
 | 
			
		||||
  Coordinate processors;
 | 
			
		||||
  Coordinate processor_coor;
 | 
			
		||||
    
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  static const int forward=FFTW_FORWARD;
 | 
			
		||||
@@ -126,31 +237,25 @@ public:
 | 
			
		||||
  double MFlops(void) {return flops/usec;}
 | 
			
		||||
  double USec(void)   {return (double)usec;}    
 | 
			
		||||
 | 
			
		||||
  FFT ( GridCartesian * grid ) :
 | 
			
		||||
    vgrid(grid),
 | 
			
		||||
    Nd(grid->_ndimension),
 | 
			
		||||
    dimensions(grid->_fdimensions),
 | 
			
		||||
    processors(grid->_processors),
 | 
			
		||||
    processor_coor(grid->_processor_coor)
 | 
			
		||||
  FFT ( GridCartesian * grid ) 
 | 
			
		||||
  {
 | 
			
		||||
    flops=0;
 | 
			
		||||
    usec =0;
 | 
			
		||||
    Coordinate layout(Nd,1);
 | 
			
		||||
    sgrid = new GridCartesian(dimensions,layout,processors,*grid);
 | 
			
		||||
  };
 | 
			
		||||
    
 | 
			
		||||
  ~FFT ( void)  {
 | 
			
		||||
    delete sgrid;
 | 
			
		||||
    //    delete sgrid;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
 | 
			
		||||
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
    conformable(source.Grid(),vgrid);
 | 
			
		||||
    Lattice<vobj> tmp(vgrid);
 | 
			
		||||
    tmp = source;
 | 
			
		||||
    for(int d=0;d<Nd;d++){
 | 
			
		||||
    //    vgrid=result.Grid();
 | 
			
		||||
    //    conformable(result.Grid(),vgrid);
 | 
			
		||||
    //    conformable(source.Grid(),vgrid);
 | 
			
		||||
    const int Ndim = source.Grid()->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = source;
 | 
			
		||||
    for(int d=0;d<Ndim;d++){
 | 
			
		||||
      if( mask[d] ) {
 | 
			
		||||
	FFT_dim(result,tmp,d,sign);
 | 
			
		||||
	tmp=result;
 | 
			
		||||
@@ -160,59 +265,70 @@ public:
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
 | 
			
		||||
    Coordinate mask(Nd,1);
 | 
			
		||||
    const int Ndim = source.Grid()->Nd();
 | 
			
		||||
    Coordinate mask(Ndim,1);
 | 
			
		||||
    FFT_dim_mask(result,source,mask,sign);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
			
		||||
#ifndef HAVE_FFTW
 | 
			
		||||
    assert(0);
 | 
			
		||||
#else
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
    conformable(source.Grid(),vgrid);
 | 
			
		||||
    const int Ndim = source.Grid()->Nd();
 | 
			
		||||
    GridBase *grid = source.Grid();
 | 
			
		||||
    conformable(result.Grid(),source.Grid());
 | 
			
		||||
 | 
			
		||||
    int L = vgrid->_ldimensions[dim];
 | 
			
		||||
    int G = vgrid->_fdimensions[dim];
 | 
			
		||||
      
 | 
			
		||||
    Coordinate layout(Nd,1);
 | 
			
		||||
    Coordinate pencil_gd(vgrid->_fdimensions);
 | 
			
		||||
      
 | 
			
		||||
    pencil_gd[dim] = G*processors[dim];
 | 
			
		||||
      
 | 
			
		||||
    // Pencil global vol LxLxGxLxL per node
 | 
			
		||||
    GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
 | 
			
		||||
    int L = grid->_ldimensions[dim];
 | 
			
		||||
    int G = grid->_fdimensions[dim];
 | 
			
		||||
      
 | 
			
		||||
    Coordinate layout(Ndim,1);
 | 
			
		||||
    
 | 
			
		||||
    // Construct pencils
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename sobj::scalar_type   scalar;
 | 
			
		||||
    typedef typename vobj::scalar_type   scalar;
 | 
			
		||||
    typedef typename vobj::scalar_type   scalar_type;
 | 
			
		||||
    typedef typename vobj::vector_type   vector_type;
 | 
			
		||||
      
 | 
			
		||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
			
		||||
    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
			
		||||
 | 
			
		||||
    //std::cout << "CPU view" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
			
		||||
      
 | 
			
		||||
    int Ncomp = sizeof(sobj)/sizeof(scalar);
 | 
			
		||||
    int Nlow  = 1;
 | 
			
		||||
    int64_t Nlow  = 1;
 | 
			
		||||
    int64_t Nhigh = 1;
 | 
			
		||||
 | 
			
		||||
    for(int d=0;d<dim;d++){
 | 
			
		||||
      Nlow*=vgrid->_ldimensions[d];
 | 
			
		||||
      Nlow*=grid->_ldimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    for(int d=dim+1;d<Ndim;d++){
 | 
			
		||||
      Nhigh*=grid->_ldimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    int64_t Nperp=Nlow*Nhigh;
 | 
			
		||||
    
 | 
			
		||||
    deviceVector<scalar> pgbuf; // Layout is [perp][component][dim]
 | 
			
		||||
    pgbuf.resize(Nperp*Ncomp*G);
 | 
			
		||||
    scalar *pgbuf_v = &pgbuf[0];
 | 
			
		||||
      
 | 
			
		||||
    int rank = 1;  /* 1d transforms */
 | 
			
		||||
    int n[] = {G}; /* 1d transforms of length G */
 | 
			
		||||
    int howmany = Ncomp;
 | 
			
		||||
    int howmany = Ncomp * Nperp;
 | 
			
		||||
    int odist,idist,istride,ostride;
 | 
			
		||||
    idist   = odist   = 1;          /* Distance between consecutive FT's */
 | 
			
		||||
    istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
 | 
			
		||||
    idist   = odist   = G;            /* Distance between consecutive FT's */
 | 
			
		||||
    istride = ostride = 1;            /* Distance between two elements in the same FT */
 | 
			
		||||
    int *inembed = n, *onembed = n;
 | 
			
		||||
      
 | 
			
		||||
    scalar div;
 | 
			
		||||
    if ( sign == backward ) div = 1.0/G;
 | 
			
		||||
    else if ( sign == forward ) div = 1.0;
 | 
			
		||||
    else assert(0);
 | 
			
		||||
      
 | 
			
		||||
    else GRID_ASSERT(0);
 | 
			
		||||
 | 
			
		||||
    double t_pencil=0;
 | 
			
		||||
    double t_fft   =0;
 | 
			
		||||
    double t_total =-usecond();
 | 
			
		||||
    //    std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
			
		||||
    /*
 | 
			
		||||
     *
 | 
			
		||||
     */
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    {
 | 
			
		||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
@@ -226,68 +342,154 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // Barrel shift and collect global pencil
 | 
			
		||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
			
		||||
    //    std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
			
		||||
    Coordinate lcoor(Ndim), gcoor(Ndim);
 | 
			
		||||
    double t_copy=0;
 | 
			
		||||
    double t_shift=0;
 | 
			
		||||
    t_pencil = -usecond();
 | 
			
		||||
    result = source;
 | 
			
		||||
    int pc = processor_coor[dim];
 | 
			
		||||
    int pc = grid->_processor_coor[dim];
 | 
			
		||||
 | 
			
		||||
    const Coordinate ldims = grid->_ldimensions;
 | 
			
		||||
    const Coordinate rdims = grid->_rdimensions;
 | 
			
		||||
    const Coordinate sdims = grid->_simd_layout;
 | 
			
		||||
 | 
			
		||||
    Coordinate processors = grid->_processors;
 | 
			
		||||
    Coordinate pgdims(Ndim);
 | 
			
		||||
    pgdims[0] = G;
 | 
			
		||||
    for(int d=0, dd=1;d<Ndim;d++){
 | 
			
		||||
      if ( d!=dim ) pgdims[dd++] = ldims[d];
 | 
			
		||||
    }
 | 
			
		||||
    int64_t pgvol=1;
 | 
			
		||||
    for(int d=0;d<Ndim;d++) pgvol*=pgdims[d];
 | 
			
		||||
    
 | 
			
		||||
    const int Nsimd = vobj::Nsimd();
 | 
			
		||||
    for(int p=0;p<processors[dim];p++) {
 | 
			
		||||
      t_copy-=usecond();
 | 
			
		||||
      autoView(r_v,result,AcceleratorRead);
 | 
			
		||||
      accelerator_for(idx, grid->oSites(), vobj::Nsimd(), {
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      {
 | 
			
		||||
	autoView(r_v,result,CpuRead);
 | 
			
		||||
	autoView(p_v,pgbuf,CpuWrite);
 | 
			
		||||
	thread_for(idx, sgrid->lSites(),{
 | 
			
		||||
          Coordinate cbuf(Nd);
 | 
			
		||||
          sobj s;
 | 
			
		||||
	  sgrid->LocalIndexToLocalCoor(idx,cbuf);
 | 
			
		||||
	  peekLocalSite(s,r_v,cbuf);
 | 
			
		||||
	  cbuf[dim]+=((pc+p) % processors[dim])*L;
 | 
			
		||||
	  pokeLocalSite(s,p_v,cbuf);
 | 
			
		||||
        });
 | 
			
		||||
	int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
      for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	Coordinate icoor;
 | 
			
		||||
	Coordinate ocoor;
 | 
			
		||||
	Coordinate pgcoor;
 | 
			
		||||
 | 
			
		||||
	Lexicographic::CoorFromIndex(icoor,lane,sdims);
 | 
			
		||||
	Lexicographic::CoorFromIndex(ocoor,idx,rdims);
 | 
			
		||||
 | 
			
		||||
	pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + ((pc+p)%processors[dim])*L;
 | 
			
		||||
	for(int d=0,dd=1;d<Ndim;d++){
 | 
			
		||||
	  if ( d!=dim ) {
 | 
			
		||||
	    pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
 | 
			
		||||
	    dd++;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Map coordinates in lattice layout to FFTW index
 | 
			
		||||
	int64_t pgidx;
 | 
			
		||||
	Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
 | 
			
		||||
 | 
			
		||||
	vector_type *from = (vector_type *)&r_v[idx];
 | 
			
		||||
	scalar_type stmp;
 | 
			
		||||
	for(int w=0;w<Ncomp;w++){
 | 
			
		||||
	  int64_t pg_idx = pgidx + w*pgvol;
 | 
			
		||||
	  stmp = getlane(from[w], lane);
 | 
			
		||||
	  pgbuf_v[pg_idx] = stmp;
 | 
			
		||||
	}
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
      t_copy+=usecond();
 | 
			
		||||
      if (p != processors[dim] - 1) {
 | 
			
		||||
	result = Cshift(result,dim,L);
 | 
			
		||||
	Lattice<vobj> temp(grid);
 | 
			
		||||
	t_shift-=usecond();
 | 
			
		||||
	temp = Cshift(result,dim,L); result = temp;
 | 
			
		||||
	t_shift+=usecond();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    t_pencil += usecond();
 | 
			
		||||
      
 | 
			
		||||
    // Loop over orthog coords
 | 
			
		||||
    int NN=pencil_g.lSites();
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
    timer.Start();
 | 
			
		||||
    thread_for( idx,NN,{
 | 
			
		||||
        Coordinate cbuf(Nd);
 | 
			
		||||
	pencil_g.LocalIndexToLocalCoor(idx, cbuf);
 | 
			
		||||
	if ( cbuf[dim] == 0 ) {  // restricts loop to plane at lcoor[dim]==0
 | 
			
		||||
	  FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
 | 
			
		||||
	  FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
 | 
			
		||||
	  FFTW<scalar>::fftw_execute_dft(p,in,out);
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
    timer.Stop();
 | 
			
		||||
      
 | 
			
		||||
    FFTW_scalar *in = (FFTW_scalar *)pgbuf_v;
 | 
			
		||||
    FFTW_scalar *out= (FFTW_scalar *)pgbuf_v;
 | 
			
		||||
    t_fft = -usecond();
 | 
			
		||||
    FFTW<scalar>::fftw_execute_dft(p,in,out,sign);
 | 
			
		||||
    t_fft += usecond();
 | 
			
		||||
    
 | 
			
		||||
    // performance counting
 | 
			
		||||
    double add,mul,fma;
 | 
			
		||||
    FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
 | 
			
		||||
    flops_call = add+mul+2.0*fma;
 | 
			
		||||
    usec += timer.useconds();
 | 
			
		||||
    flops+= flops_call*NN;
 | 
			
		||||
      
 | 
			
		||||
    // writing out result
 | 
			
		||||
    flops_call = 5.0*howmany*G*log2(G);
 | 
			
		||||
    usec = t_fft;
 | 
			
		||||
    flops= flops_call;
 | 
			
		||||
 | 
			
		||||
    result = Zero();
 | 
			
		||||
    
 | 
			
		||||
    double t_insert = -usecond();
 | 
			
		||||
    {
 | 
			
		||||
      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
			
		||||
      autoView(result_v,result,CpuWrite);
 | 
			
		||||
      thread_for(idx,sgrid->lSites(),{
 | 
			
		||||
	Coordinate clbuf(Nd), cgbuf(Nd);
 | 
			
		||||
	sobj s;
 | 
			
		||||
	sgrid->LocalIndexToLocalCoor(idx,clbuf);
 | 
			
		||||
	cgbuf = clbuf;
 | 
			
		||||
	cgbuf[dim] = clbuf[dim]+L*pc;
 | 
			
		||||
	peekLocalSite(s,pgbuf_v,cgbuf);
 | 
			
		||||
	pokeLocalSite(s,result_v,clbuf);
 | 
			
		||||
      autoView(r_v,result,AcceleratorWrite);
 | 
			
		||||
      accelerator_for(idx,grid->oSites(),Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      {
 | 
			
		||||
	int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
      for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	Coordinate icoor(Ndim);
 | 
			
		||||
	Coordinate ocoor(Ndim);
 | 
			
		||||
	Coordinate pgcoor(Ndim);
 | 
			
		||||
 | 
			
		||||
	Lexicographic::CoorFromIndex(icoor,lane,sdims);
 | 
			
		||||
	Lexicographic::CoorFromIndex(ocoor,idx,rdims);
 | 
			
		||||
 | 
			
		||||
	pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + pc*L;
 | 
			
		||||
	for(int d=0,dd=1;d<Ndim;d++){
 | 
			
		||||
	  if ( d!=dim ) {
 | 
			
		||||
	    pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
 | 
			
		||||
	    dd++;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	// Map coordinates in lattice layout to FFTW index
 | 
			
		||||
	int64_t pgidx;
 | 
			
		||||
	Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
 | 
			
		||||
 | 
			
		||||
	vector_type *to = (vector_type *)&r_v[idx];
 | 
			
		||||
	scalar_type stmp;
 | 
			
		||||
	for(int w=0;w<Ncomp;w++){
 | 
			
		||||
	  int64_t pg_idx = pgidx + w*pgvol;
 | 
			
		||||
	  stmp = pgbuf_v[pg_idx];
 | 
			
		||||
	  putlane(to[w], stmp, lane);
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    result = result*div;
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
    t_insert +=usecond();
 | 
			
		||||
    
 | 
			
		||||
    // destroying plan
 | 
			
		||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    t_total +=usecond();
 | 
			
		||||
 | 
			
		||||
    std::cout <<GridLogPerformance<< " FFT took   "<<t_total/1.0e6 <<" s" << std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< " FFT pencil "<<t_pencil/1.0e6 <<" s" << std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "  of which copy "<<t_copy/1.0e6 <<" s" << std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "  of which shift"<<t_shift/1.0e6 <<" s" << std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< " FFT kernels "<<t_fft/1.0e6 <<" s" << std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< " FFT insert  "<<t_insert/1.0e6 <<" s" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -64,7 +64,7 @@ public:
 | 
			
		||||
//
 | 
			
		||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
 | 
			
		||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
 | 
			
		||||
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
 | 
			
		||||
// with an GRID_ASSERT trap in the non-herm. This isn't right; there must be a better C++ way to
 | 
			
		||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
@@ -103,6 +103,38 @@ public:
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op and shift it for mgrid smoother
 | 
			
		||||
@@ -116,22 +148,22 @@ public:
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
@@ -156,13 +188,13 @@ public:
 | 
			
		||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
@@ -239,10 +271,42 @@ public:
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
    out = out + shift*in;
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    out = out + shift * in;
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
    out = out + shift * in;
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -281,13 +345,13 @@ class SchurOperatorBase :  public LinearOperatorBase<Field> {
 | 
			
		||||
  }
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    assert(0); // must coarsen the unpreconditioned system
 | 
			
		||||
    GRID_ASSERT(0); // must coarsen the unpreconditioned system
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
@@ -383,10 +447,10 @@ class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>
 | 
			
		||||
    MpcDag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOp(const Field& in, Field& out) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Op(const Field& in, Field& out) {
 | 
			
		||||
    Mpc(in, out);
 | 
			
		||||
@@ -396,13 +460,13 @@ class NonHermitianSchurOperatorBase :  public LinearOperatorBase<Field>
 | 
			
		||||
  }
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag(const Field& in, Field& out) {
 | 
			
		||||
    assert(0); // must coarsen the unpreconditioned system
 | 
			
		||||
    GRID_ASSERT(0); // must coarsen the unpreconditioned system
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir(const Field& in, Field& out, int dir, int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll(const Field& in, std::vector<Field>& out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -516,7 +580,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid()) 
 | 
			
		||||
  { 
 | 
			
		||||
    assert( _Mat.isTrivialEE() );
 | 
			
		||||
    GRID_ASSERT( _Mat.isTrivialEE() );
 | 
			
		||||
    mass = _Mat.Mass();
 | 
			
		||||
  }
 | 
			
		||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
@@ -547,7 +611,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    Mpc(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void MpcDagMpc(const Field &in, Field &out) {
 | 
			
		||||
    assert(0);// Never need with staggered
 | 
			
		||||
    GRID_ASSERT(0);// Never need with staggered
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
			
		||||
@@ -559,7 +623,7 @@ template<class Field> class OperatorFunction {
 | 
			
		||||
public:
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
 | 
			
		||||
  virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    GRID_ASSERT(in.size()==out.size());
 | 
			
		||||
    for(int k=0;k<in.size();k++){
 | 
			
		||||
      (*this)(Linop,in[k],out[k]);
 | 
			
		||||
    }
 | 
			
		||||
@@ -573,7 +637,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
 | 
			
		||||
  {
 | 
			
		||||
    assert(in.size() == out.size());
 | 
			
		||||
    GRID_ASSERT(in.size() == out.size());
 | 
			
		||||
 | 
			
		||||
    for (unsigned int i = 0; i < in.size(); ++i)
 | 
			
		||||
    {
 | 
			
		||||
 
 | 
			
		||||
@@ -45,6 +45,11 @@ public:
 | 
			
		||||
    M(in,tmp);
 | 
			
		||||
    Mdag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
			
		||||
    Field tmp (in.Grid());
 | 
			
		||||
    Mdag(in,tmp);
 | 
			
		||||
    M(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
			
		||||
 
 | 
			
		||||
@@ -59,7 +59,7 @@ public:
 | 
			
		||||
    RealD diff = hi-lo;
 | 
			
		||||
    RealD delta = diff*1.0e-9;
 | 
			
		||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
      delta*=1.1;
 | 
			
		||||
      delta*=1.02;
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
@@ -131,6 +131,26 @@ public:
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class functor>
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  void JacksonSmooth(void){
 | 
			
		||||
@@ -249,7 +269,9 @@ public:
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
    axpby(T1,xscale,mscale,y,in);
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
			
		||||
 
 | 
			
		||||
@@ -121,7 +121,7 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
 | 
			
		||||
  // Reallocate arrays, since degree has changed
 | 
			
		||||
  if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
 | 
			
		||||
 | 
			
		||||
  assert(a_len<=SUM_MAX);
 | 
			
		||||
  GRID_ASSERT(a_len<=SUM_MAX);
 | 
			
		||||
 | 
			
		||||
  step = new bigfloat[num_degree+den_degree+2];
 | 
			
		||||
 | 
			
		||||
@@ -151,9 +151,9 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
 | 
			
		||||
    equations();
 | 
			
		||||
    if (delta < tolerance) {
 | 
			
		||||
      std::cout<<"Delta too small, try increasing precision\n";
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    };    
 | 
			
		||||
    assert( delta>= tolerance);
 | 
			
		||||
    GRID_ASSERT( delta>= tolerance);
 | 
			
		||||
 | 
			
		||||
    search(step);
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -134,7 +134,7 @@ class AlgRemez
 | 
			
		||||
  virtual ~AlgRemez();
 | 
			
		||||
 | 
			
		||||
  int getDegree(void){ 
 | 
			
		||||
    assert(n==d);
 | 
			
		||||
    GRID_ASSERT(n==d);
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  // Reset the bounds of the approximation
 | 
			
		||||
 
 | 
			
		||||
@@ -28,11 +28,11 @@ void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyTy
 | 
			
		||||
  pow_n = num_degree;
 | 
			
		||||
  pow_d = den_degree;
 | 
			
		||||
 | 
			
		||||
  if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
 | 
			
		||||
  if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
 | 
			
		||||
  if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) GRID_ASSERT(0);
 | 
			
		||||
  if(pow_n % 2 == 1 && num_type_in == PolyType::Even) GRID_ASSERT(0);
 | 
			
		||||
 | 
			
		||||
  if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
 | 
			
		||||
  if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
 | 
			
		||||
  if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) GRID_ASSERT(0);
 | 
			
		||||
  if(pow_d % 2 == 1 && den_type_in == PolyType::Even) GRID_ASSERT(0);
 | 
			
		||||
 | 
			
		||||
  num_type = num_type_in;
 | 
			
		||||
  den_type = den_type_in;
 | 
			
		||||
@@ -112,9 +112,9 @@ double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degre
 | 
			
		||||
    equations();
 | 
			
		||||
    if (delta < tolerance) {
 | 
			
		||||
      std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    };    
 | 
			
		||||
    assert( delta>= tolerance );
 | 
			
		||||
    GRID_ASSERT( delta>= tolerance );
 | 
			
		||||
 | 
			
		||||
    search();
 | 
			
		||||
  }
 | 
			
		||||
@@ -278,7 +278,7 @@ void AlgRemezGeneral::equations(){
 | 
			
		||||
      if(num_pows[j] != -1){ *aa++ = z; t++; }
 | 
			
		||||
      z *= x;
 | 
			
		||||
    }
 | 
			
		||||
    assert(t == n+1);
 | 
			
		||||
    GRID_ASSERT(t == n+1);
 | 
			
		||||
 | 
			
		||||
    z = (bigfloat)1l;
 | 
			
		||||
    t = 0;
 | 
			
		||||
@@ -286,7 +286,7 @@ void AlgRemezGeneral::equations(){
 | 
			
		||||
      if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
 | 
			
		||||
      z *= x;
 | 
			
		||||
    }
 | 
			
		||||
    assert(t == d);
 | 
			
		||||
    GRID_ASSERT(t == d);
 | 
			
		||||
 | 
			
		||||
    B[i] = y * z;		// Right hand side vector
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -106,7 +106,7 @@ class AlgRemezGeneral{
 | 
			
		||||
		  bigfloat (*f)(bigfloat x, void *data), void *data);
 | 
			
		||||
 | 
			
		||||
  inline int getDegree(void) const{ 
 | 
			
		||||
    assert(n==d);
 | 
			
		||||
    GRID_ASSERT(n==d);
 | 
			
		||||
    return n;
 | 
			
		||||
  }
 | 
			
		||||
  // Reset the bounds of the approximation
 | 
			
		||||
 
 | 
			
		||||
@@ -74,7 +74,7 @@ bigfloat epsilonMobius(bigfloat x, void* data){
 | 
			
		||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
 | 
			
		||||
			 const std::vector<RealD> &omega_in, const int Ls_in,
 | 
			
		||||
			 const RealD lambda_bound){
 | 
			
		||||
  assert(omega_in.size() == Ls_in);
 | 
			
		||||
  GRID_ASSERT(omega_in.size() == Ls_in);
 | 
			
		||||
  omega_out.resize(Ls_out);
 | 
			
		||||
 | 
			
		||||
  //Use the Remez algorithm to generate the appropriate rational polynomial
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										300
									
								
								Grid/algorithms/blas/MomentumProject.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										300
									
								
								Grid/algorithms/blas/MomentumProject.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,300 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MomentumProject.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2025
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
/* 
 | 
			
		||||
   MultiMomProject
 | 
			
		||||
 | 
			
		||||
   Import vectors -> nxyz x (ncomponent x nt)
 | 
			
		||||
   Import complex phases -> nmom x nxy
 | 
			
		||||
 | 
			
		||||
   apply = via (possibly batched) GEMM
 | 
			
		||||
*/
 | 
			
		||||
template<class Field, class ComplexField>
 | 
			
		||||
class MomentumProject
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  uint64_t nmom;
 | 
			
		||||
  uint64_t nxyz;
 | 
			
		||||
  uint64_t nt;
 | 
			
		||||
  uint64_t nbtw;
 | 
			
		||||
  uint64_t words;
 | 
			
		||||
 | 
			
		||||
  deviceVector<scalar> BLAS_V;      // 
 | 
			
		||||
  deviceVector<scalar> BLAS_M;      // 
 | 
			
		||||
  deviceVector<scalar> BLAS_P;      // 
 | 
			
		||||
  
 | 
			
		||||
  MomentumProject(){};
 | 
			
		||||
 ~MomentumProject(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    grid=nullptr;
 | 
			
		||||
    nmom=0;
 | 
			
		||||
    nxyz=0;
 | 
			
		||||
    nt=0;
 | 
			
		||||
    nbtw=0;
 | 
			
		||||
    words=0;
 | 
			
		||||
    BLAS_V.resize(0);
 | 
			
		||||
    BLAS_M.resize(0);
 | 
			
		||||
    BLAS_P.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void Allocate(int _nmom,GridBase *_grid)
 | 
			
		||||
  {
 | 
			
		||||
    grid=_grid;
 | 
			
		||||
    Coordinate ldims = grid->LocalDimensions();
 | 
			
		||||
 | 
			
		||||
    nmom=_nmom;
 | 
			
		||||
    nt   = ldims[grid->Nd()-1];
 | 
			
		||||
    nxyz = grid->lSites()/nt;
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    nbtw = nt * words;
 | 
			
		||||
 | 
			
		||||
    BLAS_V.resize (nxyz * nt * words );
 | 
			
		||||
    BLAS_M.resize (nmom * nxyz       );
 | 
			
		||||
    BLAS_P.resize (nmom * nt * words );
 | 
			
		||||
  }
 | 
			
		||||
  void ImportMomenta(const std::vector <ComplexField> &momenta)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_ASSERT(momenta.size()==nmom);
 | 
			
		||||
    //    might as well just make the momenta here
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
 | 
			
		||||
    int nd = grid->_ndimension;
 | 
			
		||||
 | 
			
		||||
    uint64_t sz = BLAS_M.size();
 | 
			
		||||
 | 
			
		||||
    GRID_ASSERT(momenta.size()==nmom)
 | 
			
		||||
    GRID_ASSERT(momenta[0].Grid()==grid);
 | 
			
		||||
    GRID_ASSERT(sz = nxyz * nmom);
 | 
			
		||||
    
 | 
			
		||||
    Coordinate rdimensions = grid->_rdimensions;
 | 
			
		||||
    Coordinate ldims       = grid->LocalDimensions();
 | 
			
		||||
    int64_t osites         = grid->oSites();
 | 
			
		||||
    Coordinate simd        = grid->_simd_layout;
 | 
			
		||||
    const int Nsimd        = vobj::Nsimd();
 | 
			
		||||
    uint64_t lwords        = words; // local variable for copy in to GPU
 | 
			
		||||
    int64_t Nxyz = nxyz;
 | 
			
		||||
    auto blasData_p  = &BLAS_M[0];
 | 
			
		||||
    for(int m=0;m<momenta.size();m++){
 | 
			
		||||
 | 
			
		||||
      autoView( Data   , momenta[m], AcceleratorRead);
 | 
			
		||||
      auto Data_p  = &Data[0];
 | 
			
		||||
 | 
			
		||||
      accelerator_for(xyz,nxyz,1,{
 | 
			
		||||
	  //////////////////////////////////////////
 | 
			
		||||
	  // isite -- map lane within buffer to lane within lattice
 | 
			
		||||
	  ////////////////////////////////////////////
 | 
			
		||||
	    Coordinate lcoor(nd,0);
 | 
			
		||||
	    Lexicographic::CoorFromIndex(lcoor,xyz,ldims);
 | 
			
		||||
	    
 | 
			
		||||
	    Coordinate icoor(nd);
 | 
			
		||||
	    Coordinate ocoor(nd);
 | 
			
		||||
	    for (int d = 0; d < nd; d++) {
 | 
			
		||||
	      icoor[d] = lcoor[d]/rdimensions[d];
 | 
			
		||||
	      ocoor[d] = lcoor[d]%rdimensions[d];
 | 
			
		||||
	    }
 | 
			
		||||
	    int64_t osite;
 | 
			
		||||
	    int64_t isite;
 | 
			
		||||
	    Lexicographic::IndexFromCoor(ocoor,osite,rdimensions);
 | 
			
		||||
	    Lexicographic::IndexFromCoor(icoor,isite,simd);
 | 
			
		||||
	    
 | 
			
		||||
	    // BLAS_M[nmom][slice_vol]
 | 
			
		||||
	    // Fortran Column major BLAS layout is M_xyz,mom
 | 
			
		||||
	    scalar data = extractLane(isite,Data[osite]);
 | 
			
		||||
	    uint64_t idx = xyz+m*Nxyz;
 | 
			
		||||
	    blasData_p[idx] = data;
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ImportVector(Field &vec)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
 | 
			
		||||
    int nd = grid->_ndimension;
 | 
			
		||||
 | 
			
		||||
    uint64_t sz = BLAS_V.size();
 | 
			
		||||
 | 
			
		||||
    GRID_ASSERT(sz = nxyz * words * nt);
 | 
			
		||||
    
 | 
			
		||||
    Coordinate rdimensions = grid->_rdimensions;
 | 
			
		||||
    Coordinate ldims= grid->LocalDimensions();
 | 
			
		||||
    int64_t osites = grid->oSites();
 | 
			
		||||
    Coordinate simd = grid->_simd_layout;
 | 
			
		||||
    const int Nsimd = vobj::Nsimd();
 | 
			
		||||
    uint64_t lwords= words; // local variable for copy in to GPU
 | 
			
		||||
 | 
			
		||||
    auto blasData_p  = &BLAS_V[0];
 | 
			
		||||
    autoView( Data   , vec, AcceleratorRead);
 | 
			
		||||
    auto Data_p  = &Data[0];
 | 
			
		||||
 | 
			
		||||
    int64_t nwords = words;// for capture
 | 
			
		||||
    int64_t Nt     = nt;// for capture
 | 
			
		||||
    
 | 
			
		||||
    accelerator_for(sf,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
        {
 | 
			
		||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	  //////////////////////////////////////////
 | 
			
		||||
	  // isite -- map lane within buffer to lane within lattice
 | 
			
		||||
	  ////////////////////////////////////////////
 | 
			
		||||
	    Coordinate lcoor(nd,0);
 | 
			
		||||
	    Coordinate icoor(nd);
 | 
			
		||||
	    Coordinate ocoor(nd);
 | 
			
		||||
	    
 | 
			
		||||
	    Lexicographic::CoorFromIndex(icoor,lane,simd);
 | 
			
		||||
	    Lexicographic::CoorFromIndex(ocoor,sf,rdimensions);
 | 
			
		||||
 | 
			
		||||
	  
 | 
			
		||||
	    int64_t l_xyz = 0;
 | 
			
		||||
	    for (int d = 0; d < nd; d++) {
 | 
			
		||||
	      lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d];
 | 
			
		||||
	    }
 | 
			
		||||
	    uint64_t l_t   = lcoor[nd-1];
 | 
			
		||||
 | 
			
		||||
	    Coordinate xyz_coor = lcoor;
 | 
			
		||||
	    xyz_coor[nd-1] =0;
 | 
			
		||||
	    Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims);
 | 
			
		||||
 | 
			
		||||
	    
 | 
			
		||||
	    scalar_object data = extractLane(lane,Data[sf]);
 | 
			
		||||
	    scalar *data_words = (scalar *) &data;
 | 
			
		||||
	    for(int w = 0 ; w < nwords; w++) {
 | 
			
		||||
	      // BLAS_V[slice_vol][nt][words]
 | 
			
		||||
	      // Fortran Column major BLAS layout is V_(t,w)_xyz
 | 
			
		||||
	      uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt;
 | 
			
		||||
	      blasData_p[idx] = data_words[w];
 | 
			
		||||
	    }
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
	}
 | 
			
		||||
#else
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
	});
 | 
			
		||||
  }
 | 
			
		||||
  void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection)
 | 
			
		||||
  {
 | 
			
		||||
    projection.resize(nmom*nt);
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar));
 | 
			
		||||
    // Could decide on a layout late?
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Row major layout "C" order:
 | 
			
		||||
  // BLAS_V[slice_vol][nt][words]
 | 
			
		||||
  // BLAS_M[nmom][slice_vol]
 | 
			
		||||
  // BLAS_P[nmom][nt][words]
 | 
			
		||||
  //
 | 
			
		||||
  // Fortran Column major BLAS layout is V_(w,t)_xyz
 | 
			
		||||
  // Fortran Column major BLAS layout is M_xyz,mom
 | 
			
		||||
  // Fortran Column major BLAS layout is P_(w,t),mom
 | 
			
		||||
  //
 | 
			
		||||
  // Projected
 | 
			
		||||
  //
 | 
			
		||||
  // P = (V * M)_(w,t),mom
 | 
			
		||||
  //
 | 
			
		||||
  void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata)
 | 
			
		||||
  {
 | 
			
		||||
    double t_import=0;
 | 
			
		||||
    double t_export=0;
 | 
			
		||||
    double t_gemm  =0;
 | 
			
		||||
    double t_allreduce=0;
 | 
			
		||||
    t_import-=usecond();
 | 
			
		||||
    this->ImportVector(data);
 | 
			
		||||
 | 
			
		||||
    std::vector< typename Field::scalar_object > projected_planes;
 | 
			
		||||
 | 
			
		||||
    deviceVector<scalar *> Vd(1);
 | 
			
		||||
    deviceVector<scalar *> Md(1);
 | 
			
		||||
    deviceVector<scalar *> Pd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Vh = & BLAS_V[0];
 | 
			
		||||
    scalar * Mh = & BLAS_M[0];
 | 
			
		||||
    scalar * Ph = & BLAS_P[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Vd[0],Vh);
 | 
			
		||||
    acceleratorPut(Md[0],Mh);
 | 
			
		||||
    acceleratorPut(Pd[0],Ph);
 | 
			
		||||
    t_import+=usecond();
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // P_im = VMmx . Vxi
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    t_gemm-=usecond();
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     words*nt,nmom,nxyz,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Md,
 | 
			
		||||
		     scalar(0.0),  // wipe out result
 | 
			
		||||
		     Pd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    t_gemm+=usecond();
 | 
			
		||||
 | 
			
		||||
    t_export-=usecond();
 | 
			
		||||
    ExportMomentumProjection(projected_planes); // resizes
 | 
			
		||||
    t_export+=usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////
 | 
			
		||||
    // Reduce across MPI ranks
 | 
			
		||||
    /////////////////////////////////
 | 
			
		||||
    int nd = grid->Nd();
 | 
			
		||||
    int gt = grid->GlobalDimensions()[nd-1];
 | 
			
		||||
    int lt = grid->LocalDimensions()[nd-1];
 | 
			
		||||
    projected_gdata.resize(gt*nmom);
 | 
			
		||||
    for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node
 | 
			
		||||
      projected_gdata[t]=Zero();
 | 
			
		||||
    }
 | 
			
		||||
    for(int t=0;t<lt;t++){
 | 
			
		||||
    for(int m=0;m<nmom;m++){
 | 
			
		||||
      int st = grid->LocalStarts()[nd-1];
 | 
			
		||||
      projected_gdata[t+st + gt*m] = projected_planes[t+lt*m];
 | 
			
		||||
    }}
 | 
			
		||||
    t_allreduce-=usecond();
 | 
			
		||||
    grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words);
 | 
			
		||||
    t_allreduce+=usecond();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance<<" MomentumProject t_import  "<<t_import<<"us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<" MomentumProject t_export  "<<t_export<<"us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<" MomentumProject t_gemm    "<<t_gemm<<"us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<" MomentumProject t_reduce  "<<t_allreduce<<"us"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -69,8 +69,8 @@ public:
 | 
			
		||||
  DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
 | 
			
		||||
  : evec(_evec), eval(_eval), N(_N)
 | 
			
		||||
  {
 | 
			
		||||
    assert(evec.size()==eval.size());
 | 
			
		||||
    assert(N <= evec.size());
 | 
			
		||||
    GRID_ASSERT(evec.size()==eval.size());
 | 
			
		||||
    GRID_ASSERT(N <= evec.size());
 | 
			
		||||
  } 
 | 
			
		||||
 | 
			
		||||
  virtual void operator()(const Field &src,Field &guess) {
 | 
			
		||||
@@ -141,11 +141,10 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    //postprocessing
 | 
			
		||||
    std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
 | 
			
		||||
    for (int j=0;j<Nsrc;j++)
 | 
			
		||||
    {
 | 
			
		||||
    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
			
		||||
    blockPromote(guess_coarse[j],guess[j],subspace);
 | 
			
		||||
    guess[j].Checkerboard() = src[j].Checkerboard();
 | 
			
		||||
    for (int j=0;j<Nsrc;j++) {
 | 
			
		||||
      std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
			
		||||
      blockPromote(guess_coarse[j],guess[j],subspace);
 | 
			
		||||
      guess[j].Checkerboard() = src[j].Checkerboard();
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										376
									
								
								Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										376
									
								
								Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,376 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2024
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSBlockCGLinalg
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
  typedef typename Field::vector_object vector_object;
 | 
			
		||||
 | 
			
		||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
			
		||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
			
		||||
  deviceVector<scalar *> Xdip;
 | 
			
		||||
  deviceVector<scalar *> Ydip;
 | 
			
		||||
  deviceVector<scalar *> Cdip;
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSBlockCGLinalg() {};
 | 
			
		||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    Xdip.resize(0);
 | 
			
		||||
    Ydip.resize(0);
 | 
			
		||||
    Cdip.resize(0);
 | 
			
		||||
    BLAS_Cred.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
    BLAS_X.resize(0);
 | 
			
		||||
    BLAS_Y.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      Y_copy[r] = Y[r];
 | 
			
		||||
    }
 | 
			
		||||
    MulMatrix(AP,m,X);
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::scalar_type scomplex;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    int nrhs = Y.size();
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Assumes Eigen storage contiguous
 | 
			
		||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   * Y = X . C
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Y = X*C (transpose?)
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nrhs,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     scalar(0.0),  // wipe out Y
 | 
			
		||||
		     Yd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
 | 
			
		||||
    // Copy back Y = m X 
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
			
		||||
    }    
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
    std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
			
		||||
  {
 | 
			
		||||
#if 0    
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    GRID_ASSERT(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Yd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    for(int rr=0;rr<nrhs;rr++){
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	int off = r+nrhs*rr;
 | 
			
		||||
	m(r,rr)=HOST_C[off];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    GRID_ASSERT(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
			
		||||
    vol   = grid->oSites()/rd0;
 | 
			
		||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
    GRID_ASSERT(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
			
		||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
			
		||||
      scalar *BX = &BLAS_X[0];
 | 
			
		||||
      scalar *BY = &BLAS_Y[0];
 | 
			
		||||
      accelerator_for(ssw,vw,1,{
 | 
			
		||||
	  uint64_t ss=ssw/words;
 | 
			
		||||
	  uint64_t  w=ssw%words;
 | 
			
		||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
			
		||||
	  BX[offset] = from_x[ssw];
 | 
			
		||||
	  BY[offset] = from_y[ssw];
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    Xdip.resize(vol);
 | 
			
		||||
    Ydip.resize(vol);
 | 
			
		||||
    Cdip.resize(vol);
 | 
			
		||||
    std::vector<scalar *> Xh(vol);
 | 
			
		||||
    std::vector<scalar *> Yh(vol);
 | 
			
		||||
    std::vector<scalar *> Ch(vol);
 | 
			
		||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
			
		||||
 | 
			
		||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
			
		||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
			
		||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,words,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xdip,
 | 
			
		||||
		     Ydip,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cdip);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    for(int ss=0;ss<vol;ss++){
 | 
			
		||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
			
		||||
      m = m + eC;
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6l = usecond();
 | 
			
		||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -131,12 +131,12 @@ public:
 | 
			
		||||
    typedef typename Field::vector_object vobj;
 | 
			
		||||
    //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==fine_grid);
 | 
			
		||||
    GRID_ASSERT(vecs[0].Grid()==fine_grid);
 | 
			
		||||
 | 
			
		||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    
 | 
			
		||||
    Coordinate  block_r      (_ndimension);
 | 
			
		||||
    for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
@@ -164,7 +164,7 @@ public:
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      //      std::cout << "sz "<<sz<<std::endl;
 | 
			
		||||
      //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
 | 
			
		||||
      assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
			
		||||
      GRID_ASSERT(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
			
		||||
      uint64_t lwords= words; // local variable for copy in to GPU
 | 
			
		||||
      accelerator_for(sf,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
@@ -198,7 +198,7 @@ public:
 | 
			
		||||
   	               + v*bv
 | 
			
		||||
	               + sb;
 | 
			
		||||
 | 
			
		||||
	  //	  assert(site*lwords<sz);
 | 
			
		||||
	  //	  GRID_ASSERT(site*lwords<sz);
 | 
			
		||||
 | 
			
		||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
			
		||||
 | 
			
		||||
@@ -219,12 +219,12 @@ public:
 | 
			
		||||
 | 
			
		||||
    int nvec = vecs.size();
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==fine_grid);
 | 
			
		||||
    GRID_ASSERT(vecs[0].Grid()==fine_grid);
 | 
			
		||||
 | 
			
		||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
			
		||||
    
 | 
			
		||||
    Coordinate  block_r      (_ndimension);
 | 
			
		||||
    for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
@@ -299,7 +299,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
    GRID_ASSERT(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
 | 
			
		||||
@@ -320,7 +320,7 @@ public:
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
      assert(cwords==nbasis);
 | 
			
		||||
      GRID_ASSERT(cwords==nbasis);
 | 
			
		||||
      
 | 
			
		||||
      accelerator_for(sc,osites,Nsimd,{
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
@@ -353,7 +353,7 @@ public:
 | 
			
		||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
			
		||||
    //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
    GRID_ASSERT(vecs[0].Grid()==coarse_grid);
 | 
			
		||||
 | 
			
		||||
    int _ndimension = coarse_grid->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
@@ -375,7 +375,7 @@ public:
 | 
			
		||||
      // loop over fine sites
 | 
			
		||||
      const int Nsimd = vobj::Nsimd();
 | 
			
		||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
      assert(cwords==nbasis);
 | 
			
		||||
      GRID_ASSERT(cwords==nbasis);
 | 
			
		||||
      
 | 
			
		||||
      accelerator_for(sc,osites,Nsimd,{
 | 
			
		||||
	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
 | 
			
		||||
@@ -409,7 +409,7 @@ public:
 | 
			
		||||
    int nrhs=fine.size();
 | 
			
		||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
    //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
 | 
			
		||||
    assert(nbasis==_nbasis);
 | 
			
		||||
    GRID_ASSERT(nbasis==_nbasis);
 | 
			
		||||
    
 | 
			
		||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
			
		||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
			
		||||
@@ -447,10 +447,10 @@ public:
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nbasis,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Fd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
			
		||||
@@ -464,7 +464,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs=fine.size();
 | 
			
		||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
			
		||||
    assert(nbasis==_nbasis);
 | 
			
		||||
    GRID_ASSERT(nbasis==_nbasis);
 | 
			
		||||
    
 | 
			
		||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
			
		||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
			
		||||
@@ -497,10 +497,10 @@ public:
 | 
			
		||||
    int64_t vw = block_vol * words;
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nbasis,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Fd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << " blas call done"<<std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -98,7 +98,7 @@ public:
 | 
			
		||||
  void ImportEigenVector(Field &evec,RealD &_eval, int ev)
 | 
			
		||||
  {
 | 
			
		||||
    //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
 | 
			
		||||
    assert(ev<eval.size());
 | 
			
		||||
    GRID_ASSERT(ev<eval.size());
 | 
			
		||||
    eval[ev] = _eval;
 | 
			
		||||
 | 
			
		||||
    int64_t offset = ev*vol*words;
 | 
			
		||||
@@ -113,7 +113,7 @@ public:
 | 
			
		||||
  // Could use to import a batch of eigenvectors
 | 
			
		||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
 | 
			
		||||
  {
 | 
			
		||||
    assert(_ev0+_nev<=evec.size());
 | 
			
		||||
    GRID_ASSERT(_ev0+_nev<=evec.size());
 | 
			
		||||
 | 
			
		||||
    Allocate(_nev,evec[0].Grid());
 | 
			
		||||
    
 | 
			
		||||
@@ -126,8 +126,8 @@ public:
 | 
			
		||||
  void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
 | 
			
		||||
  {
 | 
			
		||||
    int nrhs = source.size();
 | 
			
		||||
    assert(source.size()==guess.size());
 | 
			
		||||
    assert(grid == guess[0].Grid());
 | 
			
		||||
    GRID_ASSERT(source.size()==guess.size());
 | 
			
		||||
    GRID_ASSERT(grid == guess[0].Grid());
 | 
			
		||||
    conformable(guess[0],source[0]);
 | 
			
		||||
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
@@ -182,14 +182,14 @@ public:
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nev,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed,
 | 
			
		||||
		     Rd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
    assert(BLAS_C.size()==nev*nrhs);
 | 
			
		||||
    GRID_ASSERT(BLAS_C.size()==nev*nrhs);
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
@@ -210,10 +210,10 @@ public:
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
		     vw,nrhs,nev,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed, // x . nev
 | 
			
		||||
		     Cd, // nev . nrhs
 | 
			
		||||
		     ComplexD(0.0),
 | 
			
		||||
		     scalar(0.0),
 | 
			
		||||
		     Gd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -270,7 +270,7 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
      GRID_ASSERT(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -53,6 +53,7 @@ class TwoLevelCGmrhs
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
			
		||||
 | 
			
		||||
  GridStopWatch ProjectTimer;
 | 
			
		||||
  GridStopWatch PromoteTimer;
 | 
			
		||||
@@ -62,7 +63,12 @@ class TwoLevelCGmrhs
 | 
			
		||||
  GridStopWatch SmoothTimer;
 | 
			
		||||
  GridStopWatch InsertTimer;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  /*
 | 
			
		||||
    Field rrr;
 | 
			
		||||
  Field sss;
 | 
			
		||||
  Field qqq;
 | 
			
		||||
  Field zzz;
 | 
			
		||||
  */  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCGmrhs(RealD tol,
 | 
			
		||||
		 Integer maxit,
 | 
			
		||||
@@ -73,12 +79,313 @@ class TwoLevelCGmrhs
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    _FineLinop(FineLinop),
 | 
			
		||||
    _Smoother(Smoother)
 | 
			
		||||
    /*
 | 
			
		||||
    rrr(fine),
 | 
			
		||||
    sss(fine),
 | 
			
		||||
    qqq(fine),
 | 
			
		||||
    zzz(fine)
 | 
			
		||||
*/
 | 
			
		||||
  {
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // Vector case
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    //    SolveSingleSystem(src,x);
 | 
			
		||||
    SolvePrecBlockCG(src,x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Thin QR factorisation (google it)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //Dimensions
 | 
			
		||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
			
		||||
  //
 | 
			
		||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
			
		||||
  //
 | 
			
		||||
  //   Q  C = R => Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
			
		||||
  //
 | 
			
		||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
			
		||||
  //
 | 
			
		||||
  // Checks:
 | 
			
		||||
  // Cdag C = Rdag R ; passes.
 | 
			
		||||
  // QdagQ  = 1      ; passes
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
			
		||||
		   Eigen::MatrixXcd &C,
 | 
			
		||||
		   Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		   std::vector<Field> &  Q,
 | 
			
		||||
		   std::vector<Field> & MQ,
 | 
			
		||||
		   const std::vector<Field> & Z,
 | 
			
		||||
		   const std::vector<Field> & MZ)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
			
		||||
    RealD t1=usecond();
 | 
			
		||||
 | 
			
		||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
			
		||||
    
 | 
			
		||||
    C    = L.adjoint();
 | 
			
		||||
    Cinv = C.inverse();
 | 
			
		||||
    
 | 
			
		||||
    RealD t3=usecond();
 | 
			
		||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
			
		||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
			
		||||
    RealD t4=usecond();
 | 
			
		||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    //    std::vector<RealD> f(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    //    std::vector<RealD> a(nrhs);
 | 
			
		||||
    //    std::vector<RealD> d(nrhs);
 | 
			
		||||
    //    std::vector<RealD> b(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]); GRID_ASSERT(ssq[rhs]!=0.0);
 | 
			
		||||
    }      
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field> tmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
			
		||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
			
		||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
			
		||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
			
		||||
    std::vector<Field>   D(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  AD(nrhs,grid);
 | 
			
		||||
    
 | 
			
		||||
    /************************************************************************
 | 
			
		||||
     * Preconditioned Block conjugate gradient rQ
 | 
			
		||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
			
		||||
     * Introduce preconditioning following Saad Ch9
 | 
			
		||||
     ************************************************************************
 | 
			
		||||
     * Dimensions:
 | 
			
		||||
     *
 | 
			
		||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
			
		||||
     *  Matrix A==(Nferm x Nferm)
 | 
			
		||||
     *  
 | 
			
		||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
     * QC => Thin QR factorisation (google it)
 | 
			
		||||
     *
 | 
			
		||||
     * R = B-AX
 | 
			
		||||
     * Z = Mi R
 | 
			
		||||
     * QC = Z
 | 
			
		||||
     * D = Q 
 | 
			
		||||
     * for k: 
 | 
			
		||||
     *   R  = AD
 | 
			
		||||
     *   Z  = Mi R
 | 
			
		||||
     *   M  = [D^dag R]^{-1}
 | 
			
		||||
     *   X  = X + D M C
 | 
			
		||||
     *   QS = Q - Z.M
 | 
			
		||||
     *   D  = Q + D S^dag
 | 
			
		||||
     *   C  = S C
 | 
			
		||||
     */
 | 
			
		||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(X,src);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // R = B-AX
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
			
		||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(Z,MZ);  
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // QC = Z
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // D=MQ
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
    ProjectTimer.Reset();
 | 
			
		||||
    PromoteTimer.Reset();
 | 
			
		||||
    DeflateTimer.Reset();
 | 
			
		||||
    CoarseTimer.Reset();
 | 
			
		||||
    SmoothTimer.Reset();
 | 
			
		||||
    FineTimer.Reset();
 | 
			
		||||
    InsertTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch M1Timer;
 | 
			
		||||
    GridStopWatch M2Timer;
 | 
			
		||||
    GridStopWatch M3Timer;
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerProdTimer;
 | 
			
		||||
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // Z  = AD
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M3Timer.Start();
 | 
			
		||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
			
		||||
      M3Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M1Timer.Start();
 | 
			
		||||
      PcgM1(Z,MZ);
 | 
			
		||||
      M1Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      FineTimer.Start();
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      InnerProdTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
			
		||||
      InnerProdTimer.Stop();
 | 
			
		||||
      m_M       = m_DZ.inverse();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // X  = X + D MC
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      m_tmp     = m_M * m_C;
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // QS = Q - M Z
 | 
			
		||||
      // (MQ) S = MQ - M (M1Z)
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
			
		||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // D  = MQ + D S^dag
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_tmp = m_S.adjoint();
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // C  = S C
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_C = m_S*m_C;
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // convergence monitor
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
      
 | 
			
		||||
      FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      RealD max_resid=0;
 | 
			
		||||
      RealD rrsum=0;
 | 
			
		||||
      RealD sssum=0;
 | 
			
		||||
      RealD rr;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<nrhs;b++) {
 | 
			
		||||
	rrsum+=real(m_rr(b,b));
 | 
			
		||||
	sssum+=ssq[b];
 | 
			
		||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
	if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage <<
 | 
			
		||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
			
		||||
 | 
			
		||||
	  Field mytmp(grid);
 | 
			
		||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
@@ -108,7 +415,7 @@ class TwoLevelCGmrhs
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
      GRID_ASSERT(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
@@ -361,15 +668,26 @@ public:
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
    //    this->rrr=in[0];
 | 
			
		||||
 | 
			
		||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
#if SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
    this->SmoothTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    this->SmoothTimer.Stop();
 | 
			
		||||
#else
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      this->SmoothTimer.Start();
 | 
			
		||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
			
		||||
      this->SmoothTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    //    this->sss=Min[0];
 | 
			
		||||
    
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      
 | 
			
		||||
      this->FineTimer.Start();
 | 
			
		||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
			
		||||
 | 
			
		||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
			
		||||
      this->FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
@@ -401,13 +719,15 @@ public:
 | 
			
		||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
			
		||||
    this->PromoteTimer.Stop();
 | 
			
		||||
    this->FineTimer.Start();
 | 
			
		||||
    //    this->qqq=tmp[0];
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
			
		||||
    }
 | 
			
		||||
    //    this->zzz=out[0];
 | 
			
		||||
    this->FineTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -47,7 +47,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
			
		||||
  public:
 | 
			
		||||
    using OperatorFunction<Field>::operator();
 | 
			
		||||
    
 | 
			
		||||
    bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
    bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
			
		||||
                             // Defaults true.
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
@@ -77,7 +77,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
			
		||||
 | 
			
		||||
      // Initial residual computation & set up
 | 
			
		||||
      RealD guess = norm2(psi);
 | 
			
		||||
      assert(std::isnan(guess) == 0);
 | 
			
		||||
      GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
      Linop.Op(psi, v);
 | 
			
		||||
      b = norm2(v);
 | 
			
		||||
@@ -214,7 +214,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
			
		||||
          std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() << std::endl;
 | 
			
		||||
          std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
          if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
 | 
			
		||||
          if(ErrorOnNoConverge){ GRID_ASSERT(true_residual / Tolerance < 10000.0); }
 | 
			
		||||
 | 
			
		||||
          IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
@@ -224,7 +224,7 @@ class BiCGSTAB : public OperatorFunction<Field>
 | 
			
		||||
      
 | 
			
		||||
      std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
      if(ErrorOnNoConverge){ assert(0); }
 | 
			
		||||
      if(ErrorOnNoConverge){ GRID_ASSERT(0); }
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -31,6 +31,58 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = X.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  //
 | 
			
		||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
			
		||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  int Nblock = P.size();
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -46,7 +98,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
  int Nblock;
 | 
			
		||||
 | 
			
		||||
  BlockCGtype CGtype;
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
@@ -87,10 +139,19 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  // Force manifest hermitian to avoid rounding related
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
//  ComplexD det = L.determinant();
 | 
			
		||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -110,11 +171,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 const std::vector<Field> & R)
 | 
			
		||||
{
 | 
			
		||||
  InnerProductMatrix(m_rr,R,R);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
  //  ComplexD det = L.determinant();
 | 
			
		||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
 | 
			
		||||
@@ -131,7 +201,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
 | 
			
		||||
  } else if (CGtype == CGmultiRHS ) {
 | 
			
		||||
    CGmultiRHSsolve(Linop,Src,Psi);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi) 
 | 
			
		||||
@@ -139,7 +209,7 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
 | 
			
		||||
  if ( CGtype == BlockCGrQVec ) {
 | 
			
		||||
    BlockCGrQsolveVec(Linop,Src,Psi);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -186,12 +256,13 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  sliceNorm(ssq,B,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,B,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,X,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
			
		||||
@@ -221,6 +292,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  Linop.HermOp(X, AD);
 | 
			
		||||
  tmp = B - AD;  
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,tmp,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
  D=Q;
 | 
			
		||||
 | 
			
		||||
@@ -236,6 +310,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  RealD max_resid=0;
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
@@ -280,7 +356,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
@@ -322,9 +398,11 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
			
		||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -360,10 +438,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Src,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Psi,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  // Initial search dir is guess
 | 
			
		||||
  Linop.HermOp(Psi, AP);
 | 
			
		||||
@@ -462,47 +540,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQvec implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
@@ -513,7 +554,7 @@ double normv(const std::vector<Field> &P){
 | 
			
		||||
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X) 
 | 
			
		||||
{
 | 
			
		||||
  Nblock = B.size();
 | 
			
		||||
  assert(Nblock == X.size());
 | 
			
		||||
  GRID_ASSERT(Nblock == X.size());
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
@@ -549,13 +590,14 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
 | 
			
		||||
@@ -585,6 +627,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
    tmp[b] = B[b] - AD[b];  
 | 
			
		||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
@@ -688,7 +731,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when CAGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
@@ -82,7 +82,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
@@ -137,7 +137,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
			
		||||
    std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
@@ -185,7 +185,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    GRID_ASSERT(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -38,13 +38,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
  
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
@@ -57,10 +58,22 @@ public:
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
			
		||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogBegin(void){
 | 
			
		||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
      this->LogBegin();
 | 
			
		||||
 | 
			
		||||
      GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    GridStopWatch PreambleTimer;
 | 
			
		||||
    GridStopWatch ConstructTimer;
 | 
			
		||||
    GridStopWatch NormTimer;
 | 
			
		||||
    GridStopWatch AssignTimer;
 | 
			
		||||
    PreambleTimer.Start();
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
@@ -70,14 +83,19 @@ public:
 | 
			
		||||
    //RealD b_pred;
 | 
			
		||||
 | 
			
		||||
    // Was doing copies
 | 
			
		||||
    Field p(src.Grid());
 | 
			
		||||
    ConstructTimer.Start();
 | 
			
		||||
    Field p  (src.Grid());
 | 
			
		||||
    Field mmp(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
    Field r  (src.Grid());
 | 
			
		||||
    ConstructTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    NormTimer.Start();
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    NormTimer.Stop();
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
    AssignTimer.Start();
 | 
			
		||||
    if ( guess == 0.0 ) {
 | 
			
		||||
      r = src;
 | 
			
		||||
      p = r;
 | 
			
		||||
@@ -89,6 +107,7 @@ public:
 | 
			
		||||
      a = norm2(p);
 | 
			
		||||
    }
 | 
			
		||||
    cp = a;
 | 
			
		||||
    AssignTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src
 | 
			
		||||
    if (ssq == 0.){
 | 
			
		||||
@@ -164,6 +183,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
      LogIteration(k,a,b);
 | 
			
		||||
 | 
			
		||||
      IterationTimer.Stop();
 | 
			
		||||
      if ( (k % 500) == 0 ) {
 | 
			
		||||
@@ -202,7 +222,7 @@ public:
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
        if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
	TrueResidual = true_residual;
 | 
			
		||||
@@ -220,6 +240,9 @@ public:
 | 
			
		||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
			
		||||
    SolverTimer.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
@@ -228,10 +251,123 @@ public:
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  // Optionally record the CG polynomial
 | 
			
		||||
  std::vector<double> ak;
 | 
			
		||||
  std::vector<double> bk;
 | 
			
		||||
  std::vector<double> poly_p;
 | 
			
		||||
  std::vector<double> poly_r;
 | 
			
		||||
  std::vector<double> poly_Ap;
 | 
			
		||||
  std::vector<double> polynomial;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
			
		||||
  { };
 | 
			
		||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    Field tmp(src.Grid());
 | 
			
		||||
    Field AtoN(src.Grid());
 | 
			
		||||
    AtoN = src;
 | 
			
		||||
    psi=AtoN*polynomial[0];
 | 
			
		||||
    for(int n=1;n<polynomial.size();n++){
 | 
			
		||||
      tmp = AtoN;
 | 
			
		||||
      Linop.HermOp(tmp,AtoN);
 | 
			
		||||
      psi = psi + polynomial[n]*AtoN;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    Field Ap(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
    Field p(src.Grid());
 | 
			
		||||
    p=src;
 | 
			
		||||
    r=src;
 | 
			
		||||
    x=Zero();
 | 
			
		||||
    x.Checkerboard()=src.Checkerboard();
 | 
			
		||||
    for(int k=0;k<ak.size();k++){
 | 
			
		||||
      x = x + ak[k]*p;
 | 
			
		||||
      Linop.HermOp(p,Ap);
 | 
			
		||||
      r = r - ak[k] * Ap;
 | 
			
		||||
      p = r + bk[k] * p;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    this->operator ()(Linop,src,psi);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void LogBegin(void)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
			
		||||
    ak.resize(0);
 | 
			
		||||
    bk.resize(0);
 | 
			
		||||
    polynomial.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_p.resize(1);
 | 
			
		||||
    poly_r.resize(1);
 | 
			
		||||
    poly_p[0]=1.0;
 | 
			
		||||
    poly_r[0]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
			
		||||
  {
 | 
			
		||||
    // With zero guess,
 | 
			
		||||
    // p = r = src
 | 
			
		||||
    //
 | 
			
		||||
    // iterate:
 | 
			
		||||
    //   x =  x + a p
 | 
			
		||||
    //   r =  r - a A p
 | 
			
		||||
    //   p =  r + b p
 | 
			
		||||
    //
 | 
			
		||||
    // [0]
 | 
			
		||||
    // r = x
 | 
			
		||||
    // p = x
 | 
			
		||||
    // Ap=0
 | 
			
		||||
    //
 | 
			
		||||
    // [1]
 | 
			
		||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
			
		||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
			
		||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
			
		||||
    // p  = r + b p  ==> add polynomials term by term
 | 
			
		||||
    //
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
			
		||||
    ak.push_back(a);
 | 
			
		||||
    bk.push_back(b);
 | 
			
		||||
    //  Ap= right_shift(p)
 | 
			
		||||
    poly_Ap.resize(k+1);
 | 
			
		||||
    poly_Ap[0]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      poly_Ap[i+1]=poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //  x = x + a p
 | 
			
		||||
    polynomial.resize(k);
 | 
			
		||||
    polynomial[k-1]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //  r = r - a Ap
 | 
			
		||||
    //  p = r + b p
 | 
			
		||||
    poly_r.resize(k+1);
 | 
			
		||||
    poly_p.resize(k+1);
 | 
			
		||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
			
		||||
    for(int i=0;i<k+1;i++){
 | 
			
		||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
			
		||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
			
		||||
      
 | 
			
		||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(norm < OuterLoopNormMult * stop){
 | 
			
		||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
			
		||||
 
 | 
			
		||||
@@ -77,7 +77,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
 | 
			
		||||
    assert(src_d_in.size() == sol_d.size());
 | 
			
		||||
    GRID_ASSERT(src_d_in.size() == sol_d.size());
 | 
			
		||||
    int NBatch = src_d_in.size();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -98,15 +98,15 @@ public:
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
    std::vector<Field>   ps(nshift,grid);// Search directions
 | 
			
		||||
 | 
			
		||||
    assert(psi.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(psi.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(mass.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
@@ -122,7 +122,7 @@ public:
 | 
			
		||||
  
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      GRID_ASSERT( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
@@ -338,7 +338,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    // ugly hack
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    //  assert(0);
 | 
			
		||||
    //  GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -118,16 +118,16 @@ public:
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(psi_d.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(mass.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
@@ -141,7 +141,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      GRID_ASSERT( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
@@ -179,7 +179,7 @@ public:
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
			
		||||
    //    GRID_ASSERT(norm2(tmp_d)< 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
@@ -365,7 +365,7 @@ public:
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -48,12 +48,12 @@ public:
 | 
			
		||||
 | 
			
		||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ GRID_ASSERT(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ GRID_ASSERT(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ GRID_ASSERT(0); }
 | 
			
		||||
  
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void Op     (const Field &in, Field &out){ GRID_ASSERT(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ GRID_ASSERT(0); }
 | 
			
		||||
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    linop_base.HermOp(in, out);
 | 
			
		||||
@@ -151,16 +151,16 @@ public:
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(psi_d.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(mass.size()==nshift);
 | 
			
		||||
    GRID_ASSERT(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
@@ -174,7 +174,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      GRID_ASSERT( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
@@ -211,7 +211,7 @@ public:
 | 
			
		||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    tmp_d = tmp_d - mmp_d;
 | 
			
		||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
			
		||||
    assert(norm2(tmp_d)< 1.0);
 | 
			
		||||
    GRID_ASSERT(norm2(tmp_d)< 1.0);
 | 
			
		||||
 | 
			
		||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
			
		||||
    RealD rn = norm2(p_d);
 | 
			
		||||
@@ -408,7 +408,7 @@ public:
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,7 @@ template<class FieldD,class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
 | 
			
		||||
public:
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an GRID_ASSERT when the CG fails to converge.
 | 
			
		||||
  // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
@@ -66,7 +66,7 @@ public:
 | 
			
		||||
      DoFinalCleanup(true),
 | 
			
		||||
      Linop_fallback(NULL)
 | 
			
		||||
  {
 | 
			
		||||
    assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
			
		||||
    GRID_ASSERT(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
			
		||||
@@ -90,7 +90,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
    Linop_d.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
    
 | 
			
		||||
@@ -217,7 +217,7 @@ public:
 | 
			
		||||
	  CG(Linop_d,src,psi);
 | 
			
		||||
	  IterationsToCleanup = CG.IterationsToComplete;
 | 
			
		||||
	}
 | 
			
		||||
	else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
	else if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
 | 
			
		||||
	return;
 | 
			
		||||
@@ -263,7 +263,7 @@ public:
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
 | 
			
		||||
	      << std::endl;
 | 
			
		||||
      
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    if (ErrorOnNoConverge) GRID_ASSERT(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
    ReliableUpdatesPerformed = l;      
 | 
			
		||||
  }    
 | 
			
		||||
 
 | 
			
		||||
@@ -106,7 +106,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FCAGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
@@ -87,7 +87,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
@@ -144,7 +144,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
			
		||||
    std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
@@ -191,7 +191,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    GRID_ASSERT(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
@@ -85,7 +85,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
@@ -142,7 +142,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
    std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
@@ -189,7 +189,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    GRID_ASSERT(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when GMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
@@ -80,7 +80,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
@@ -135,7 +135,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
    std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
 | 
			
		||||
@@ -181,7 +181,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    GRID_ASSERT(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -175,7 +175,7 @@ public:
 | 
			
		||||
      eresid(_eresid),  MaxIter(_MaxIter),
 | 
			
		||||
      diagonalisation(_diagonalisation),split_test(0),
 | 
			
		||||
      Nevec_acc(_Nu)
 | 
			
		||||
  { assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
 | 
			
		||||
  { GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
@@ -206,7 +206,7 @@ public:
 | 
			
		||||
          Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(normalize(w,if_print) != 0);
 | 
			
		||||
    GRID_ASSERT(normalize(w,if_print) != 0);
 | 
			
		||||
  }
 | 
			
		||||
  void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
 | 
			
		||||
  {
 | 
			
		||||
@@ -225,7 +225,7 @@ public:
 | 
			
		||||
      w[i] = w[i] - ip * evec[j];
 | 
			
		||||
    }}
 | 
			
		||||
    for(int i=0; i<_Nu; ++i)
 | 
			
		||||
    assert(normalize(w[i],if_print) !=0);
 | 
			
		||||
    GRID_ASSERT(normalize(w[i],if_print) !=0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -244,7 +244,7 @@ public:
 | 
			
		||||
    const uint64_t sites = grid->lSites();
 | 
			
		||||
 | 
			
		||||
    int Nbatch = R/Nevec_acc;
 | 
			
		||||
    assert( R%Nevec_acc == 0 );
 | 
			
		||||
    GRID_ASSERT( R%Nevec_acc == 0 );
 | 
			
		||||
//    Glog << "nBatch, Nevec_acc, R, Nu = " 
 | 
			
		||||
//         << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
 | 
			
		||||
    
 | 
			
		||||
@@ -302,7 +302,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for (int i=0; i<Nu; ++i) {
 | 
			
		||||
      assert(normalize(w[i],do_print)!=0);
 | 
			
		||||
      GRID_ASSERT(normalize(w[i],do_print)!=0);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    Glog << "cuBLAS Zgemm done"<< std::endl;
 | 
			
		||||
@@ -374,8 +374,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
			
		||||
  {
 | 
			
		||||
    std::string fname = std::string(cname+"::calc_irbl()"); 
 | 
			
		||||
    GridBase *grid = evec[0].Grid();
 | 
			
		||||
    assert(grid == src[0].Grid());
 | 
			
		||||
    assert( Nu = src.size() );
 | 
			
		||||
    GRID_ASSERT(grid == src[0].Grid());
 | 
			
		||||
    GRID_ASSERT( Nu = src.size() );
 | 
			
		||||
    
 | 
			
		||||
    Glog << std::string(74,'*') << std::endl;
 | 
			
		||||
    Glog << fname + " starting iteration 0 /  "<< MaxIter<< std::endl;
 | 
			
		||||
@@ -396,7 +396,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
			
		||||
    }
 | 
			
		||||
    Glog << std::string(74,'*') << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    assert(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
    GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
@@ -579,8 +579,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
			
		||||
  {
 | 
			
		||||
    std::string fname = std::string(cname+"::calc_rbl()"); 
 | 
			
		||||
    GridBase *grid = evec[0].Grid();
 | 
			
		||||
    assert(grid == src[0].Grid());
 | 
			
		||||
    assert( Nu = src.size() );
 | 
			
		||||
    GRID_ASSERT(grid == src[0].Grid());
 | 
			
		||||
    GRID_ASSERT( Nu = src.size() );
 | 
			
		||||
 | 
			
		||||
    int Np = (Nm-Nk);
 | 
			
		||||
    if (Np > 0 && MaxIter > 1) Np /= MaxIter;
 | 
			
		||||
@@ -607,7 +607,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
			
		||||
    }
 | 
			
		||||
    Glog << std::string(74,'*') << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    assert(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
    GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
	
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
@@ -785,7 +785,7 @@ private:
 | 
			
		||||
    
 | 
			
		||||
    int Nu = w.size();
 | 
			
		||||
    int Nm = evec.size();
 | 
			
		||||
    assert( b < Nm/Nu );
 | 
			
		||||
    GRID_ASSERT( b < Nm/Nu );
 | 
			
		||||
//    GridCartesian *grid = evec[0]._grid;
 | 
			
		||||
    
 | 
			
		||||
    // converts block index to full indicies for an interval [L,R)
 | 
			
		||||
@@ -796,7 +796,7 @@ private:
 | 
			
		||||
 | 
			
		||||
    Glog << "Using split grid"<< std::endl;
 | 
			
		||||
//   LatticeGaugeField s_Umu(SGrid);
 | 
			
		||||
   assert((Nu%mrhs)==0);
 | 
			
		||||
   GRID_ASSERT((Nu%mrhs)==0);
 | 
			
		||||
   std::vector<Field>   in(mrhs,f_grid);
 | 
			
		||||
     
 | 
			
		||||
    Field s_in(sf_grid);
 | 
			
		||||
@@ -906,7 +906,7 @@ if(split_test){
 | 
			
		||||
    
 | 
			
		||||
    for (int u=0; u<Nu; ++u) {
 | 
			
		||||
//      Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
 | 
			
		||||
      assert (!isnan(norm2(w[u])));
 | 
			
		||||
      GRID_ASSERT (!isnan(norm2(w[u])));
 | 
			
		||||
      for (int k=L+u; k<R; ++k) {
 | 
			
		||||
        Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
@@ -929,8 +929,8 @@ if(split_test){
 | 
			
		||||
			 Eigen::MatrixXcd & Qt, // Nm x Nm
 | 
			
		||||
			 GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
    
 | 
			
		||||
    for ( int u=0; u<Nu; ++u ) {
 | 
			
		||||
@@ -970,8 +970,8 @@ if(split_test){
 | 
			
		||||
			 GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
    
 | 
			
		||||
    for ( int u=0; u<Nu; ++u ) {
 | 
			
		||||
@@ -1119,7 +1119,7 @@ if (1){
 | 
			
		||||
      diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
 | 
			
		||||
#endif
 | 
			
		||||
    } else { 
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
@@ -1131,8 +1131,8 @@ if (1){
 | 
			
		||||
         Eigen::MatrixXcd& M)
 | 
			
		||||
  {
 | 
			
		||||
    //Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    M = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
    
 | 
			
		||||
    // rearrange 
 | 
			
		||||
@@ -1159,8 +1159,8 @@ if (1){
 | 
			
		||||
         Eigen::MatrixXcd& M)
 | 
			
		||||
  {
 | 
			
		||||
    //Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    
 | 
			
		||||
    // rearrange 
 | 
			
		||||
    for ( int u=0; u<Nu; ++u ) {
 | 
			
		||||
 
 | 
			
		||||
@@ -121,7 +121,7 @@ public:
 | 
			
		||||
      eresid(_eresid),  MaxIter(_MaxIter),
 | 
			
		||||
      diagonalisation(_diagonalisation),
 | 
			
		||||
      Nevec_acc(_Nu)
 | 
			
		||||
  { assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
 | 
			
		||||
  { GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
@@ -143,7 +143,7 @@ public:
 | 
			
		||||
      ip = innerProduct(evec[j],w); 
 | 
			
		||||
      if(if_print) 
 | 
			
		||||
      if( norm(ip)/norm2(w) > 1e-14)
 | 
			
		||||
      Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
			
		||||
	Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
			
		||||
      w = w - ip * evec[j];
 | 
			
		||||
      if(if_print) {
 | 
			
		||||
        ip = innerProduct(evec[j],w); 
 | 
			
		||||
@@ -151,7 +151,7 @@ public:
 | 
			
		||||
          Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(normalize(w,if_print) != 0);
 | 
			
		||||
    GRID_ASSERT(normalize(w,if_print) != 0);
 | 
			
		||||
  }
 | 
			
		||||
  void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
 | 
			
		||||
  {
 | 
			
		||||
@@ -169,7 +169,7 @@ public:
 | 
			
		||||
      w[i] = w[i] - ip * evec[j];
 | 
			
		||||
    }}
 | 
			
		||||
    for(int i=0; i<_Nu; ++i)
 | 
			
		||||
    assert(normalize(w[i],if_print) !=0);
 | 
			
		||||
    GRID_ASSERT(normalize(w[i],if_print) !=0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
 | 
			
		||||
@@ -205,8 +205,8 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    std::string fname = std::string(cname+"::calc_irbl()"); 
 | 
			
		||||
    GridBase *grid = evec[0].Grid();
 | 
			
		||||
    assert(grid == src[0].Grid());
 | 
			
		||||
    assert( Nu = src.size() );
 | 
			
		||||
    GRID_ASSERT(grid == src[0].Grid());
 | 
			
		||||
    GRID_ASSERT( Nu = src.size() );
 | 
			
		||||
    
 | 
			
		||||
    Glog << std::string(74,'*') << std::endl;
 | 
			
		||||
    Glog << fname + " starting iteration 0 /  "<< MaxIter<< std::endl;
 | 
			
		||||
@@ -227,7 +227,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    Glog << std::string(74,'*') << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    assert(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
    GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
@@ -281,14 +281,14 @@ public:
 | 
			
		||||
      _sort.push(eval2,Nm);
 | 
			
		||||
      //      Glog << "#Ritz value before shift: "<< std::endl;
 | 
			
		||||
      for(int i=0; i<Nm; ++i){
 | 
			
		||||
	//        std::cout.precision(13);
 | 
			
		||||
	//        std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	//        std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
	//	std::cout.precision(13);
 | 
			
		||||
	//	std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	//	std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      //----------------------------------------------------------------------
 | 
			
		||||
      if ( Nm>Nk ) {
 | 
			
		||||
        Glog <<" #Apply shifted QR transformations "<<std::endl;
 | 
			
		||||
	//        Glog <<" #Apply shifted QR transformations "<<std::endl;
 | 
			
		||||
        //int k2 = Nk+Nu;
 | 
			
		||||
        int k2 = Nk;
 | 
			
		||||
      
 | 
			
		||||
@@ -297,7 +297,8 @@ public:
 | 
			
		||||
        
 | 
			
		||||
        unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
 | 
			
		||||
 | 
			
		||||
        for(int ip=Nk; ip<Nm; ++ip){ 
 | 
			
		||||
        for(int ip=Nk; ip<Nm; ++ip){
 | 
			
		||||
	  Glog << " ip "<<ip<<" / "<<Nm<<std::endl;
 | 
			
		||||
          shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
@@ -325,11 +326,11 @@ public:
 | 
			
		||||
        Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
 | 
			
		||||
        diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
 | 
			
		||||
        _sort.push(eval2,Nk);
 | 
			
		||||
	//        Glog << "#Ritz value after shift: "<< std::endl;
 | 
			
		||||
	//	Glog << "#Ritz value after shift: "<< std::endl;
 | 
			
		||||
        for(int i=0; i<Nk; ++i){
 | 
			
		||||
	  //          std::cout.precision(13);
 | 
			
		||||
	  //          std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	  //          std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
	  //	  std::cout.precision(13);
 | 
			
		||||
	  //	  std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	  //	  std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      //----------------------------------------------------------------------
 | 
			
		||||
@@ -412,8 +413,8 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    std::string fname = std::string(cname+"::calc_rbl()"); 
 | 
			
		||||
    GridBase *grid = evec[0].Grid();
 | 
			
		||||
    assert(grid == src[0].Grid());
 | 
			
		||||
    assert( Nu = src.size() );
 | 
			
		||||
    GRID_ASSERT(grid == src[0].Grid());
 | 
			
		||||
    GRID_ASSERT( Nu = src.size() );
 | 
			
		||||
 | 
			
		||||
    int Np = (Nm-Nk);
 | 
			
		||||
    if (Np > 0 && MaxIter > 1) Np /= MaxIter;
 | 
			
		||||
@@ -440,7 +441,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    Glog << std::string(74,'*') << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    assert(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
    GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
 | 
			
		||||
	
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
    std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));  
 | 
			
		||||
@@ -467,10 +468,10 @@ public:
 | 
			
		||||
  
 | 
			
		||||
    // set initial vector
 | 
			
		||||
    for (int i=0; i<Nu; ++i) {
 | 
			
		||||
      //      Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
 | 
			
		||||
      Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
 | 
			
		||||
      evec[i] = src[i];
 | 
			
		||||
      orthogonalize(evec[i],evec,i);
 | 
			
		||||
      //      Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
 | 
			
		||||
      Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
//    exit(-43);
 | 
			
		||||
    
 | 
			
		||||
@@ -506,11 +507,11 @@ public:
 | 
			
		||||
      Qt = Eigen::MatrixXcd::Identity(Nr,Nr);
 | 
			
		||||
      diagonalize(eval2,lmd2,lme2,Nu,Nr,Nr,Qt,grid);
 | 
			
		||||
      _sort.push(eval2,Nr);
 | 
			
		||||
      //      Glog << "#Ritz value: "<< std::endl;
 | 
			
		||||
      Glog << "#Ritz value: "<< std::endl;
 | 
			
		||||
      for(int i=0; i<Nr; ++i){
 | 
			
		||||
	//        std::cout.precision(13);
 | 
			
		||||
	//        std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	//        std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
	std::cout.precision(13);
 | 
			
		||||
	std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      // Convergence test
 | 
			
		||||
@@ -570,6 +571,7 @@ public:
 | 
			
		||||
      Glog << fname + " NOT converged ; Summary :\n";
 | 
			
		||||
    } else {
 | 
			
		||||
      Glog << fname + " CONVERGED ; Summary :\n";
 | 
			
		||||
      Nstop = Nconv_guess; // Just take them all
 | 
			
		||||
      // Sort convered eigenpairs.
 | 
			
		||||
      std::vector<Field>  Btmp(Nstop,grid); // waste of space replicating
 | 
			
		||||
 | 
			
		||||
@@ -620,7 +622,7 @@ private:
 | 
			
		||||
    
 | 
			
		||||
    int Nu = w.size();
 | 
			
		||||
    int Nm = evec.size();
 | 
			
		||||
    assert( b < Nm/Nu );
 | 
			
		||||
    GRID_ASSERT( b < Nm/Nu );
 | 
			
		||||
    
 | 
			
		||||
    // converts block index to full indicies for an interval [L,R)
 | 
			
		||||
    int L = Nu*b;
 | 
			
		||||
@@ -628,7 +630,7 @@ private:
 | 
			
		||||
 | 
			
		||||
    Real beta;
 | 
			
		||||
 | 
			
		||||
    assert((Nu%mrhs)==0);
 | 
			
		||||
    GRID_ASSERT((Nu%mrhs)==0);
 | 
			
		||||
    std::vector<Field>   in(mrhs,f_grid);
 | 
			
		||||
    std::vector<Field>   out(mrhs,f_grid);
 | 
			
		||||
 | 
			
		||||
@@ -709,7 +711,7 @@ private:
 | 
			
		||||
    
 | 
			
		||||
    for (int u=0; u<Nu; ++u) {
 | 
			
		||||
      //      Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
 | 
			
		||||
      assert (!isnan(norm2(w[u])));
 | 
			
		||||
      GRID_ASSERT (!isnan(norm2(w[u])));
 | 
			
		||||
      for (int k=L+u; k<R; ++k) {
 | 
			
		||||
	//        Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
@@ -732,8 +734,8 @@ private:
 | 
			
		||||
			 Eigen::MatrixXcd & Qt, // Nm x Nm
 | 
			
		||||
			 GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
    
 | 
			
		||||
    for ( int u=0; u<Nu; ++u ) {
 | 
			
		||||
@@ -773,13 +775,13 @@ private:
 | 
			
		||||
			 GridBase *grid)
 | 
			
		||||
  {
 | 
			
		||||
    Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
    
 | 
			
		||||
    for ( int u=0; u<Nu; ++u ) {
 | 
			
		||||
      for (int k=0; k<Nk; ++k ) {
 | 
			
		||||
//        Glog << "lmd "<<u<<" "<<k<<" "<<lmd[u][k] -conjugate(lmd[u][k])<<std::endl;
 | 
			
		||||
	//	Glog << "lmd "<<u<<" "<<k<<" "<<lmd[u][k] -conjugate(lmd[u][k])<<std::endl;
 | 
			
		||||
        BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
@@ -922,7 +924,7 @@ if (1){
 | 
			
		||||
      diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
 | 
			
		||||
#endif
 | 
			
		||||
    } else { 
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
@@ -933,9 +935,9 @@ if (1){
 | 
			
		||||
         int Nu, int Nb, int Nk, int Nm,
 | 
			
		||||
         Eigen::MatrixXcd& M)
 | 
			
		||||
  {
 | 
			
		||||
    //Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    //    Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    M = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
    
 | 
			
		||||
    // rearrange 
 | 
			
		||||
@@ -951,7 +953,7 @@ if (1){
 | 
			
		||||
        M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //Glog << "unpackHermitBlockTriDiagMatToEigen() end" << endl; 
 | 
			
		||||
    //    Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
@@ -961,9 +963,9 @@ if (1){
 | 
			
		||||
         int Nu, int Nb, int Nk, int Nm,
 | 
			
		||||
         Eigen::MatrixXcd& M)
 | 
			
		||||
  {
 | 
			
		||||
    //Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    //    Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
			
		||||
    GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    GRID_ASSERT( Nk <= Nm );
 | 
			
		||||
    
 | 
			
		||||
    // rearrange 
 | 
			
		||||
    for ( int u=0; u<Nu; ++u ) {
 | 
			
		||||
@@ -977,7 +979,7 @@ if (1){
 | 
			
		||||
        lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //Glog << "packHermitBlockTriDiagMatfromEigen() end" << endl; 
 | 
			
		||||
    //    Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -986,7 +988,7 @@ if (1){
 | 
			
		||||
		            RealD Dsh,
 | 
			
		||||
		            Eigen::MatrixXcd& Qprod)
 | 
			
		||||
  {
 | 
			
		||||
    //Glog << "shiftedQRDecompEigen() begin" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() begin" << '\n'; 
 | 
			
		||||
    Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
    Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
    Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
@@ -1002,6 +1004,7 @@ if (1){
 | 
			
		||||
                        // lower triangular part used to represent series
 | 
			
		||||
                        // of Q sequence.
 | 
			
		||||
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n'; 
 | 
			
		||||
    // equivalent operation of Qprod *= Q
 | 
			
		||||
    //M = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
    
 | 
			
		||||
@@ -1022,6 +1025,7 @@ if (1){
 | 
			
		||||
    
 | 
			
		||||
    Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp create" << '\n'; 
 | 
			
		||||
    for (int i=0; i<Nm; ++i) {
 | 
			
		||||
      for (int j=0; j<Nm-(Nu+1); ++j) {
 | 
			
		||||
        for (int k=0; k<Nu+1+j; ++k) {
 | 
			
		||||
@@ -1029,6 +1033,7 @@ if (1){
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n'; 
 | 
			
		||||
    for (int i=0; i<Nm; ++i) {
 | 
			
		||||
      for (int j=Nm-(Nu+1); j<Nm; ++j) {
 | 
			
		||||
        for (int k=0; k<Nm; ++k) {
 | 
			
		||||
@@ -1036,6 +1041,7 @@ if (1){
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n'; 
 | 
			
		||||
    
 | 
			
		||||
    //static int ntimes = 2;
 | 
			
		||||
    //for (int j=0; j<Nm-(ntimes*Nu); ++j) {
 | 
			
		||||
@@ -1061,11 +1067,13 @@ if (1){
 | 
			
		||||
        Mtmp(j,i) = conj(Mtmp(i,j));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n'; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<Nm; ++i) {
 | 
			
		||||
      Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n'; 
 | 
			
		||||
    M = Mtmp;
 | 
			
		||||
 | 
			
		||||
    //M = Q.adjoint()*(M*Q);
 | 
			
		||||
@@ -1077,7 +1085,7 @@ if (1){
 | 
			
		||||
    //  }
 | 
			
		||||
    //}
 | 
			
		||||
    
 | 
			
		||||
    //Glog << "shiftedQRDecompEigen() end" << endl; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() end" <<std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void exampleQRDecompEigen(void)
 | 
			
		||||
 
 | 
			
		||||
@@ -211,7 +211,7 @@ until convergence
 | 
			
		||||
  void calc(std::vector<RealD>& eval, std::vector<Field>& evec,  const Field& src, int& Nconv, bool reverse=false)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    assert(grid == evec[0].Grid());
 | 
			
		||||
    GRID_ASSERT(grid == evec[0].Grid());
 | 
			
		||||
    
 | 
			
		||||
    //    GridLogIRL.TimingMode(1);
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
@@ -231,7 +231,7 @@ until convergence
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
 | 
			
		||||
	
 | 
			
		||||
    assert(Nm <= evec.size() && Nm <= eval.size());
 | 
			
		||||
    GRID_ASSERT(Nm <= evec.size() && Nm <= eval.size());
 | 
			
		||||
    
 | 
			
		||||
    // quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
			
		||||
    RealD evalMaxApprox = 0.0;
 | 
			
		||||
@@ -245,9 +245,10 @@ until convergence
 | 
			
		||||
	_HermOp(src_n,tmp);
 | 
			
		||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
			
		||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
			
		||||
	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
//	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
 | 
			
		||||
	RealD vden = norm2(src_n);
 | 
			
		||||
	RealD na = vnum/vden;
 | 
			
		||||
	RealD na = std::sqrt(vnum/vden);
 | 
			
		||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
			
		||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	evalMaxApprox = na;
 | 
			
		||||
@@ -255,6 +256,7 @@ until convergence
 | 
			
		||||
	src_n = tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl;
 | 
			
		||||
	
 | 
			
		||||
    std::vector<RealD> lme(Nm);  
 | 
			
		||||
    std::vector<RealD> lme2(Nm);
 | 
			
		||||
@@ -335,7 +337,7 @@ until convergence
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(k2<Nm);      assert(k2<Nm);      assert(k1>0);
 | 
			
		||||
      GRID_ASSERT(k2<Nm);      GRID_ASSERT(k2<Nm);      GRID_ASSERT(k1>0);
 | 
			
		||||
 | 
			
		||||
      basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
 | 
			
		||||
      std::cout<<GridLogIRL <<"basisRotated  by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
 | 
			
		||||
@@ -461,7 +463,7 @@ until convergence
 | 
			
		||||
  {
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    const RealD tiny = 1.0e-20;
 | 
			
		||||
    assert( k< Nm );
 | 
			
		||||
    GRID_ASSERT( k< Nm );
 | 
			
		||||
 | 
			
		||||
    GridStopWatch gsw_op,gsw_o;
 | 
			
		||||
 | 
			
		||||
@@ -595,7 +597,7 @@ until convergence
 | 
			
		||||
    }  else if ( diagonalisation == IRLdiagonaliseWithEigen ) { 
 | 
			
		||||
      diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
 | 
			
		||||
    } else { 
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -685,7 +687,7 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#else 
 | 
			
		||||
  assert(0);
 | 
			
		||||
  GRID_ASSERT(0);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -80,7 +80,7 @@ public:
 | 
			
		||||
  ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) : 
 | 
			
		||||
    _Linop(linop), subspace(_subspace)
 | 
			
		||||
  {  
 | 
			
		||||
    assert(subspace.size() >0);
 | 
			
		||||
    GRID_ASSERT(subspace.size() >0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void operator()(const CoarseField& in, CoarseField& out) {
 | 
			
		||||
@@ -346,12 +346,12 @@ public:
 | 
			
		||||
 | 
			
		||||
  void testFine(RealD resid) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
    assert(subspace.size() == nbasis);
 | 
			
		||||
    GRID_ASSERT(evals_fine.size() == nbasis);
 | 
			
		||||
    GRID_ASSERT(subspace.size() == nbasis);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
    ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
 | 
			
		||||
    for(int k=0;k<nbasis;k++){
 | 
			
		||||
      assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
 | 
			
		||||
      GRID_ASSERT(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -359,8 +359,8 @@ public:
 | 
			
		||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
    assert(subspace.size() == nbasis);
 | 
			
		||||
    GRID_ASSERT(evals_fine.size() == nbasis);
 | 
			
		||||
    GRID_ASSERT(subspace.size() == nbasis);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -380,7 +380,7 @@ public:
 | 
			
		||||
  void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid, 
 | 
			
		||||
		RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    assert(nbasis<=Nm);
 | 
			
		||||
    GRID_ASSERT(nbasis<=Nm);
 | 
			
		||||
    Chebyshev<FineField>      Cheby(cheby_parms);
 | 
			
		||||
    FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
 | 
			
		||||
    PlainHermOp<FineField>    Op(_FineOp);
 | 
			
		||||
@@ -400,8 +400,8 @@ public:
 | 
			
		||||
    IRL.calc(evals_fine,subspace,src,Nconv,false);
 | 
			
		||||
    
 | 
			
		||||
    // Shrink down to number saved
 | 
			
		||||
    assert(Nstop>=nbasis);
 | 
			
		||||
    assert(Nconv>=nbasis);
 | 
			
		||||
    GRID_ASSERT(Nstop>=nbasis);
 | 
			
		||||
    GRID_ASSERT(Nconv>=nbasis);
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
@@ -433,7 +433,7 @@ public:
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
    assert(Nconv>=Nstop);
 | 
			
		||||
    GRID_ASSERT(Nconv>=Nstop);
 | 
			
		||||
    evals_coarse.resize(Nstop);
 | 
			
		||||
    evec_coarse.resize (Nstop,_CoarseGrid);
 | 
			
		||||
    for (int i=0;i<Nstop;i++){
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
 | 
			
		||||
  bool ErrorOnNoConverge; // throw an GRID_ASSERT when the MR fails to converge.
 | 
			
		||||
                          // Defaults true.
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
@@ -59,7 +59,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
@@ -136,7 +136,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
        std::cout << GridLogMessage << "MR Time elapsed: Linalg  " << LinalgTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge)
 | 
			
		||||
          assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
          GRID_ASSERT(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
        IterationsToComplete = k;
 | 
			
		||||
 | 
			
		||||
@@ -148,7 +148,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
              << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
 | 
			
		||||
  bool ErrorOnNoConverge; // Throw an GRID_ASSERT when MPFGMRES fails to converge,
 | 
			
		||||
                          // defaults to true
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
@@ -91,7 +91,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    GRID_ASSERT(std::isnan(guess) == 0);
 | 
			
		||||
 | 
			
		||||
    RealD cp;
 | 
			
		||||
    RealD ssq = norm2(src);
 | 
			
		||||
@@ -150,7 +150,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
			
		||||
    std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge)
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
 | 
			
		||||
@@ -197,7 +197,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(0); // Never reached
 | 
			
		||||
    GRID_ASSERT(0); // Never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -60,6 +60,32 @@ public:
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
		 LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    Field res(in.Grid());
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
			
		||||
    _Guess(in,res);
 | 
			
		||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
			
		||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
 
 | 
			
		||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 100; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 200; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
@@ -30,18 +30,17 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
 	return evalMaxApprox; 
 | 
			
		||||
      } 
 | 
			
		||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
	// 	evalMaxApprox = na; 
 | 
			
		||||
	// 	return evalMaxApprox; 
 | 
			
		||||
      //      } 
 | 
			
		||||
      evalMaxApprox = na; 
 | 
			
		||||
      src_n = tmp;
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return 0;
 | 
			
		||||
    std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
    return evalMaxApprox;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										76
									
								
								Grid/algorithms/iterative/PowerSpectrum.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								Grid/algorithms/iterative/PowerSpectrum.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,76 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
class Band
 | 
			
		||||
{
 | 
			
		||||
  RealD lo, hi;
 | 
			
		||||
public:
 | 
			
		||||
  Band(RealD _lo,RealD _hi)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
  }
 | 
			
		||||
  RealD operator() (RealD x){
 | 
			
		||||
    if ( x>lo && x<hi ){
 | 
			
		||||
      return 1.0;
 | 
			
		||||
    } else {
 | 
			
		||||
      return 0.0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class PowerSpectrum
 | 
			
		||||
{ 
 | 
			
		||||
 public: 
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> ranges;
 | 
			
		||||
  std::vector<int> order;
 | 
			
		||||
  
 | 
			
		||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *grid = src.Grid(); 
 | 
			
		||||
    int N=ranges.size();
 | 
			
		||||
    RealD hi = ranges[N-1];
 | 
			
		||||
 | 
			
		||||
    RealD lo_band = 0.0;
 | 
			
		||||
    RealD hi_band;
 | 
			
		||||
    RealD nn=norm2(src);
 | 
			
		||||
    RealD ss=0.0;
 | 
			
		||||
 | 
			
		||||
    Field tmp = src;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<N;b++){
 | 
			
		||||
      hi_band = ranges[b];
 | 
			
		||||
      Band Notch(lo_band,hi_band);
 | 
			
		||||
      
 | 
			
		||||
      Chebyshev<Field> polynomial;
 | 
			
		||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
			
		||||
      polynomial.JacksonSmooth();
 | 
			
		||||
 | 
			
		||||
      polynomial(HermOp,src,tmp) ;
 | 
			
		||||
 | 
			
		||||
      RealD p=norm2(tmp);
 | 
			
		||||
      ss=ss+p;
 | 
			
		||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      lo_band=hi_band;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
@@ -112,7 +112,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -118,7 +118,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
			
		||||
    //    assert(0);
 | 
			
		||||
    //    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
			
		||||
@@ -221,7 +221,7 @@ public:
 | 
			
		||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
			
		||||
      for(int back=0;back<northog;back++){
 | 
			
		||||
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  GRID_ASSERT((k-back)>=0);
 | 
			
		||||
 | 
			
		||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
			
		||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
			
		||||
@@ -231,7 +231,7 @@ public:
 | 
			
		||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    assert(0); // never reached
 | 
			
		||||
    GRID_ASSERT(0); // never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -74,7 +74,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    //    psi=Zero();
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
@@ -113,7 +113,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
 | 
			
		||||
    //    assert(0);
 | 
			
		||||
    //    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
			
		||||
@@ -224,7 +224,7 @@ public:
 | 
			
		||||
      int northog = ((kp)>(mmax-1))?(mmax-1):(kp);  // if more than mmax done, we orthog all mmax history.
 | 
			
		||||
      for(int back=0;back<northog;back++){
 | 
			
		||||
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  assert((k-back)>=0);
 | 
			
		||||
	int peri_back=(k-back)%mmax;   	  GRID_ASSERT((k-back)>=0);
 | 
			
		||||
 | 
			
		||||
	b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
 | 
			
		||||
	p[peri_kp]=p[peri_kp]+b*p[peri_back];
 | 
			
		||||
@@ -234,7 +234,7 @@ public:
 | 
			
		||||
      qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    assert(0); // never reached
 | 
			
		||||
    GRID_ASSERT(0); // never reached
 | 
			
		||||
    return cp;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -79,7 +79,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
 | 
			
		||||
    LinOp.Op(x,r); r = b - r;
 | 
			
		||||
 | 
			
		||||
    assert(normb> 0.0);
 | 
			
		||||
    GRID_ASSERT(normb> 0.0);
 | 
			
		||||
 | 
			
		||||
    resid = norm2(r)/normb;
 | 
			
		||||
    if (resid <= Tolerance) {
 | 
			
		||||
@@ -105,8 +105,8 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
    for (int i = 1; i <= MaxIterations; i++) {
 | 
			
		||||
 | 
			
		||||
      // Breakdown tests
 | 
			
		||||
      assert( rho != 0.0);
 | 
			
		||||
      assert( xi  != 0.0);
 | 
			
		||||
      GRID_ASSERT( rho != 0.0);
 | 
			
		||||
      GRID_ASSERT( xi  != 0.0);
 | 
			
		||||
 | 
			
		||||
      v = (1. / rho) * v_tld;
 | 
			
		||||
      y = (1. / rho) * y;
 | 
			
		||||
@@ -134,10 +134,10 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
      ep=Zep.real();
 | 
			
		||||
      std::cout << "Zep "<<Zep <<std::endl;
 | 
			
		||||
      // Complex Audit
 | 
			
		||||
      assert(abs(ep)>0);
 | 
			
		||||
      GRID_ASSERT(abs(ep)>0);
 | 
			
		||||
 | 
			
		||||
      beta = ep / delta;
 | 
			
		||||
      assert(abs(beta)>0);
 | 
			
		||||
      GRID_ASSERT(abs(beta)>0);
 | 
			
		||||
 | 
			
		||||
      v_tld = p_tld - beta * v;
 | 
			
		||||
      y = v_tld;
 | 
			
		||||
@@ -158,7 +158,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
      std::cout << "theta "<<theta<<std::endl;
 | 
			
		||||
      std::cout << "gamma "<<gamma<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(abs(gamma)> 0.0);
 | 
			
		||||
      GRID_ASSERT(abs(gamma)> 0.0);
 | 
			
		||||
 | 
			
		||||
      eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
 | 
			
		||||
 | 
			
		||||
@@ -178,7 +178,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
    return;                            // no convergence
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
 
 | 
			
		||||
@@ -327,9 +327,9 @@ namespace Grid {
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
 | 
			
		||||
    }
 | 
			
		||||
@@ -347,17 +347,17 @@ namespace Grid {
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               GRID_ASSERT(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
      setCheckerboard(sol,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); GRID_ASSERT(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  GRID_ASSERT(sol_o.Checkerboard()==Odd);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
@@ -396,13 +396,13 @@ namespace Grid {
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
@@ -416,17 +416,17 @@ namespace Grid {
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);          assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e_i = src_e-tmp;               assert(  src_e_i.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e_i,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);          GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      src_e_i = src_e-tmp;               GRID_ASSERT(  src_e_i.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e_i,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
      setCheckerboard(sol,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o); GRID_ASSERT(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    }
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
      SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.Checkerboard()==Odd);
 | 
			
		||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);  GRID_ASSERT(sol_o.Checkerboard()==Odd);
 | 
			
		||||
    };
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
			
		||||
    {
 | 
			
		||||
@@ -461,9 +461,9 @@ namespace Grid {
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );     
 | 
			
		||||
        src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );     
 | 
			
		||||
        _Matrix.MooeeInv(src_e, tmp);   GRID_ASSERT(   tmp.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe   (tmp, Mtmp);    GRID_ASSERT(  Mtmp.Checkerboard() == Odd  );     
 | 
			
		||||
        src_o -= Mtmp;                  GRID_ASSERT( src_o.Checkerboard() == Odd  );     
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
			
		||||
@@ -478,18 +478,18 @@ namespace Grid {
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.Meooe(sol_o, tmp);         assert(     tmp.Checkerboard() == Even );
 | 
			
		||||
        src_e_i = src_e - tmp;             assert( src_e_i.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.MooeeInv(src_e_i, sol_e);  assert(   sol_e.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe(sol_o, tmp);         GRID_ASSERT(     tmp.Checkerboard() == Even );
 | 
			
		||||
        src_e_i = src_e - tmp;             GRID_ASSERT( src_e_i.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.MooeeInv(src_e_i, sol_e);  GRID_ASSERT(   sol_e.Checkerboard() == Even );
 | 
			
		||||
       
 | 
			
		||||
        setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
 | 
			
		||||
        setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd  );
 | 
			
		||||
        setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
 | 
			
		||||
        setCheckerboard(sol, sol_o); GRID_ASSERT( sol_o.Checkerboard() == Odd  );
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
			
		||||
      {
 | 
			
		||||
        NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
 | 
			
		||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o);  assert(sol_o.Checkerboard() == Odd);
 | 
			
		||||
        this->_HermitianRBSolver(_OpEO, src_o, sol_o);  GRID_ASSERT(sol_o.Checkerboard() == Odd);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
 | 
			
		||||
@@ -539,13 +539,13 @@ namespace Grid {
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      Mtmp=src_o-Mtmp;                 
 | 
			
		||||
      _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      _Matrix.MooeeInv(Mtmp,tmp);      GRID_ASSERT( tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
@@ -560,12 +560,12 @@ namespace Grid {
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);    GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;             GRID_ASSERT(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
      setCheckerboard(sol,sol_e);  GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o);  GRID_ASSERT(  sol_o.Checkerboard() ==Odd );
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
@@ -612,12 +612,12 @@ namespace Grid {
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     GRID_ASSERT(  tmp.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      GRID_ASSERT( Mtmp.Checkerboard() ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  GRID_ASSERT(  tmp.Checkerboard() ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     GRID_ASSERT(src_o.Checkerboard() ==Odd);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
			
		||||
@@ -638,12 +638,12 @@ namespace Grid {
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o_i,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;               assert(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e);   assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.Meooe(sol_o_i,tmp);    GRID_ASSERT(  tmp.Checkerboard()   ==Even);
 | 
			
		||||
      tmp = src_e-tmp;               GRID_ASSERT(  src_e.Checkerboard() ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_e);   GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(sol,sol_e);    assert(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o_i);  assert(  sol_o_i.Checkerboard() ==Odd );
 | 
			
		||||
      setCheckerboard(sol,sol_e);    GRID_ASSERT(  sol_e.Checkerboard() ==Even);
 | 
			
		||||
      setCheckerboard(sol,sol_o_i);  GRID_ASSERT(  sol_o_i.Checkerboard() ==Odd );
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
			
		||||
@@ -684,9 +684,9 @@ namespace Grid {
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
        /////////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.MooeeInv(src_e, tmp);   assert(   tmp.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe   (tmp, Mtmp);    assert(  Mtmp.Checkerboard() == Odd  );     
 | 
			
		||||
        src_o -= Mtmp;                  assert( src_o.Checkerboard() == Odd  );     
 | 
			
		||||
        _Matrix.MooeeInv(src_e, tmp);   GRID_ASSERT(   tmp.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe   (tmp, Mtmp);    GRID_ASSERT(  Mtmp.Checkerboard() == Odd  );     
 | 
			
		||||
        src_o -= Mtmp;                  GRID_ASSERT( src_o.Checkerboard() == Odd  );     
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
 | 
			
		||||
@@ -707,12 +707,12 @@ namespace Grid {
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
        ///////////////////////////////////////////////////
 | 
			
		||||
        _Matrix.Meooe(sol_o_i, tmp);    assert(   tmp.Checkerboard() == Even );
 | 
			
		||||
        tmp = src_e - tmp;              assert( src_e.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.MooeeInv(tmp, sol_e);   assert( sol_e.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.Meooe(sol_o_i, tmp);    GRID_ASSERT(   tmp.Checkerboard() == Even );
 | 
			
		||||
        tmp = src_e - tmp;              GRID_ASSERT( src_e.Checkerboard() == Even );
 | 
			
		||||
        _Matrix.MooeeInv(tmp, sol_e);   GRID_ASSERT( sol_e.Checkerboard() == Even );
 | 
			
		||||
       
 | 
			
		||||
        setCheckerboard(sol, sol_e);    assert(   sol_e.Checkerboard() == Even );
 | 
			
		||||
        setCheckerboard(sol, sol_o_i);  assert( sol_o_i.Checkerboard() == Odd  );
 | 
			
		||||
        setCheckerboard(sol, sol_e);    GRID_ASSERT(   sol_e.Checkerboard() == Even );
 | 
			
		||||
        setCheckerboard(sol, sol_o_i);  GRID_ASSERT( sol_o_i.Checkerboard() == Odd  );
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
inline RealD AggregatePowerLaw(RealD x)
 | 
			
		||||
@@ -95,7 +97,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-3,400,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
@@ -108,7 +110,7 @@ public:
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
      for(int i=0;i<4;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
@@ -124,6 +126,53 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    TrivialPrecon<FineField> simple_fine;
 | 
			
		||||
    PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField src(FineGrid);
 | 
			
		||||
    FineField guess(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<2;i++){
 | 
			
		||||
	//  void operator() (const Field &src, Field &psi){
 | 
			
		||||
#if 1
 | 
			
		||||
	std::cout << GridLogMessage << " inverting on noise "<<std::endl;
 | 
			
		||||
	src = noise;
 | 
			
		||||
	guess=Zero();
 | 
			
		||||
	GCR(src,guess);
 | 
			
		||||
	subspace[b] = guess;
 | 
			
		||||
#else
 | 
			
		||||
	std::cout << GridLogMessage << " inverting on zero "<<std::endl;
 | 
			
		||||
	src=Zero();
 | 
			
		||||
	guess = noise;
 | 
			
		||||
	GCR(src,guess);
 | 
			
		||||
	subspace[b] = guess;
 | 
			
		||||
#endif
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
@@ -160,14 +209,21 @@ public:
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      ComplexD ip;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      hermop.Op(Mn,tmp);
 | 
			
		||||
      ip= innerProduct(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
 | 
			
		||||
      hermop.AdjOp(Mn,tmp); 
 | 
			
		||||
      ip = innerProduct(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -213,8 +269,18 @@ public:
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	  ComplexD ip;
 | 
			
		||||
 | 
			
		||||
	  hermop.Op(Mn,tmp);
 | 
			
		||||
	  ip= innerProduct(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
 | 
			
		||||
	  hermop.AdjOp(Mn,tmp); 
 | 
			
		||||
	  ip = innerProduct(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
@@ -226,8 +292,72 @@ public:
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
    GRID_ASSERT(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo1,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       double lo2,
 | 
			
		||||
				       int orderstep)
 | 
			
		||||
  {
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn);
 | 
			
		||||
    std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    for(int n=1;n<nn;n++){
 | 
			
		||||
      std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo2,hi,orderstep);
 | 
			
		||||
      Cheb(hermop,subspace[n-1],Mn);
 | 
			
		||||
 | 
			
		||||
      for(int m=0;m<n;m++){
 | 
			
		||||
	ComplexD c = innerProduct(subspace[m],Mn);
 | 
			
		||||
	Mn = Mn - c*subspace[m];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5);
 | 
			
		||||
      Mn=Mn*scale;
 | 
			
		||||
      
 | 
			
		||||
      subspace[n]=Mn;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
 
 | 
			
		||||
@@ -99,7 +99,7 @@ public:
 | 
			
		||||
  CoarseMatrix AselfInvEven;
 | 
			
		||||
  CoarseMatrix AselfInvOdd;
 | 
			
		||||
 | 
			
		||||
  Vector<RealD> dag_factor;
 | 
			
		||||
  deviceVector<RealD> dag_factor;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
@@ -124,9 +124,13 @@ public:
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -161,7 +165,7 @@ public:
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
@@ -190,9 +194,14 @@ public:
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -201,10 +210,10 @@ public:
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    Vector<int> points(geom.npoint, 0);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++)
 | 
			
		||||
      points[p] = geom.points_dagger[p];
 | 
			
		||||
 | 
			
		||||
    deviceVector<int> points(geom.npoint);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
			
		||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
			
		||||
    }
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
@@ -236,7 +245,7 @@ public:
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MdirComms(const CoarseVector &in)
 | 
			
		||||
@@ -251,8 +260,14 @@ public:
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
@@ -285,7 +300,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
    });
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
			
		||||
  {
 | 
			
		||||
@@ -294,7 +309,7 @@ public:
 | 
			
		||||
    if ((out.size()!=ndir)&&(out.size()!=ndir+1)) { 
 | 
			
		||||
      std::cout <<"MdirAll out size "<< out.size()<<std::endl;
 | 
			
		||||
      std::cout <<"MdirAll ndir "<< ndir<<std::endl;
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
    for(int p=0;p<ndir;p++){
 | 
			
		||||
      MdirCalc(in,out[p],p);
 | 
			
		||||
@@ -358,7 +373,7 @@ public:
 | 
			
		||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
    assert(in.Checkerboard() == Even);
 | 
			
		||||
    GRID_ASSERT(in.Checkerboard() == Even);
 | 
			
		||||
    out.Checkerboard() = Odd;
 | 
			
		||||
 | 
			
		||||
    DhopInternal(StencilEven, Aodd, in, out, dag);
 | 
			
		||||
@@ -368,7 +383,7 @@ public:
 | 
			
		||||
    conformable(in.Grid(), _cbgrid);    // verifies half grid
 | 
			
		||||
    conformable(in.Grid(), out.Grid()); // drops the cb check
 | 
			
		||||
 | 
			
		||||
    assert(in.Checkerboard() == Odd);
 | 
			
		||||
    GRID_ASSERT(in.Checkerboard() == Odd);
 | 
			
		||||
    out.Checkerboard() = Even;
 | 
			
		||||
 | 
			
		||||
    DhopInternal(StencilOdd, Aeven, in, out, dag);
 | 
			
		||||
@@ -376,7 +391,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
 | 
			
		||||
    GRID_ASSERT(in.Checkerboard() == Odd || in.Checkerboard() == Even);
 | 
			
		||||
 | 
			
		||||
    CoarseMatrix *Aself = nullptr;
 | 
			
		||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
			
		||||
@@ -391,7 +406,7 @@ public:
 | 
			
		||||
      Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
 | 
			
		||||
      DselfInternal(Stencil, *Aself, in, out, dag);
 | 
			
		||||
    }
 | 
			
		||||
    assert(Aself != nullptr);
 | 
			
		||||
    GRID_ASSERT(Aself != nullptr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
			
		||||
@@ -469,14 +484,20 @@ public:
 | 
			
		||||
 | 
			
		||||
    // determine in what order we need the points
 | 
			
		||||
    int npoint = geom.npoint-1;
 | 
			
		||||
    Vector<int> points(npoint, 0);
 | 
			
		||||
    for(int p=0; p<npoint; p++)
 | 
			
		||||
      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
 | 
			
		||||
    deviceVector<int> points(npoint);
 | 
			
		||||
    for(int p=0; p<npoint; p++) {
 | 
			
		||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
      acceleratorPut(points[p], val);
 | 
			
		||||
    }
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -539,7 +560,7 @@ public:
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
			
		||||
@@ -590,11 +611,13 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // GPU readable prefactor
 | 
			
		||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
			
		||||
    thread_for(i, nbasis*nbasis, {
 | 
			
		||||
      int j = i/nbasis;
 | 
			
		||||
      int k = i%nbasis;
 | 
			
		||||
      dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
    });
 | 
			
		||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
@@ -674,7 +697,7 @@ public:
 | 
			
		||||
    evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
 | 
			
		||||
    oddmask  = one-evenmask;
 | 
			
		||||
 | 
			
		||||
    assert(self_stencil!=-1);
 | 
			
		||||
    GRID_ASSERT(self_stencil!=-1);
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<nbasis;i++){
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -99,7 +99,7 @@ public:
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    GRID_ASSERT(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
@@ -124,7 +124,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    assert(hermitian);
 | 
			
		||||
    GRID_ASSERT(hermitian);
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
    //    if ( hermitian ) M(in,out);
 | 
			
		||||
    //    else Mult(_Adag,in,out);
 | 
			
		||||
@@ -441,8 +441,20 @@ public:
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Galerkin projection of matrix
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    CoarsenOperator(linop,Subspace,Subspace);
 | 
			
		||||
  }
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Petrov - Galerkin projection of matrix
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & U,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & V)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
@@ -458,11 +470,9 @@ public:
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
    blockOrthogonalise(InnerProd,V.subspace);
 | 
			
		||||
    blockOrthogonalise(InnerProd,U.subspace);
 | 
			
		||||
 | 
			
		||||
    //    for(int s=0;s<Subspace.subspace.size();s++){
 | 
			
		||||
      //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
 | 
			
		||||
    //    }
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
@@ -542,7 +552,7 @@ public:
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	tphaseBZ-=usecond();
 | 
			
		||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
			
		||||
	phaV = phaF[p]*V.subspace[i];
 | 
			
		||||
	tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -555,7 +565,7 @@ public:
 | 
			
		||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	blockProject(coarseInner,MphaV,U.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
@@ -609,7 +619,7 @@ public:
 | 
			
		||||
      //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ GRID_ASSERT(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -80,12 +80,12 @@ public:
 | 
			
		||||
  // Can be used to do I/O on the operator matrices externally
 | 
			
		||||
  void SetMatrix (int p,CoarseMatrix & A)
 | 
			
		||||
  {
 | 
			
		||||
    assert(A.size()==geom_srhs.npoint);
 | 
			
		||||
    GRID_ASSERT(A.size()==geom_srhs.npoint);
 | 
			
		||||
    GridtoBLAS(A[p],BLAS_A[p]);
 | 
			
		||||
  }
 | 
			
		||||
  void GetMatrix (int p,CoarseMatrix & A)
 | 
			
		||||
  {
 | 
			
		||||
    assert(A.size()==geom_srhs.npoint);
 | 
			
		||||
    GRID_ASSERT(A.size()==geom_srhs.npoint);
 | 
			
		||||
    BLAStoGrid(A[p],BLAS_A[p]);
 | 
			
		||||
  }
 | 
			
		||||
  void CopyMatrix (GeneralCoarseOp &_Op)
 | 
			
		||||
@@ -178,14 +178,14 @@ public:
 | 
			
		||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	  int i=s*orhs*geom.npoint+point;
 | 
			
		||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
			
		||||
	  assert(nbr<BLAS_B.size());
 | 
			
		||||
	  GRID_ASSERT(nbr<BLAS_B.size());
 | 
			
		||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
			
		||||
	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
			
		||||
	}
 | 
			
		||||
	j++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(j==unpadded_sites);
 | 
			
		||||
    GRID_ASSERT(j==unpadded_sites);
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
			
		||||
  {
 | 
			
		||||
@@ -194,7 +194,7 @@ public:
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = from.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Fg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  to.resize(Fg->lSites());
 | 
			
		||||
@@ -241,10 +241,10 @@ public:
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Tg = grid.Grid();
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Tg->_ndimension;
 | 
			
		||||
  
 | 
			
		||||
  assert(in.size()==Tg->lSites());
 | 
			
		||||
  GRID_ASSERT(in.size()==Tg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
@@ -669,7 +669,7 @@ Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
			
		||||
    assert(nrhs>=1);
 | 
			
		||||
    GRID_ASSERT(nrhs>=1);
 | 
			
		||||
 | 
			
		||||
    RealD flops,bytes;
 | 
			
		||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
			
		||||
@@ -721,7 +721,7 @@ Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ GRID_ASSERT(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -67,8 +67,8 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
    GRID_ASSERT(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    GRID_ASSERT(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
@@ -131,7 +131,7 @@ public:
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
 
 | 
			
		||||
@@ -57,7 +57,7 @@ public:
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -69,7 +69,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
@@ -106,7 +106,7 @@ public:
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -154,7 +154,7 @@ public:
 | 
			
		||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
			
		||||
      printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
			
		||||
    }
 | 
			
		||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -174,19 +174,10 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Template typedefs
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
// Cshift on device
 | 
			
		||||
template<class T> using cshiftAllocator = devAllocator<T>;
 | 
			
		||||
#else
 | 
			
		||||
// Cshift on host
 | 
			
		||||
template<class T> using cshiftAllocator = std::allocator<T>;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
			
		||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector    = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using cshiftVector  = std::vector<T,cshiftAllocator<T> >;
 | 
			
		||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
			
		||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate
 | 
			
		||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
			
		||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class T> class vecView
 | 
			
		||||
@@ -197,8 +188,9 @@ template<class T> class vecView
 | 
			
		||||
  ViewMode mode;
 | 
			
		||||
  void * cpu_ptr;
 | 
			
		||||
 public:
 | 
			
		||||
  // Rvalue accessor
 | 
			
		||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
			
		||||
  vecView(std::vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  {
 | 
			
		||||
    cpu_ptr = &refer_to_me[0];
 | 
			
		||||
    size = refer_to_me.size();
 | 
			
		||||
@@ -214,22 +206,12 @@ template<class T> class vecView
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
 | 
			
		||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
			
		||||
{
 | 
			
		||||
  vecView<T> ret(vec,_mode); // does the open
 | 
			
		||||
  return ret;                // must be closed
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Little autoscope assister
 | 
			
		||||
template<class View> 
 | 
			
		||||
class VectorViewCloser
 | 
			
		||||
{
 | 
			
		||||
  View v;  // Take a copy of view and call view close when I go out of scope automatically
 | 
			
		||||
 public:
 | 
			
		||||
  VectorViewCloser(View &_v) : v(_v) {};
 | 
			
		||||
  ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define autoVecView(v_v,v,mode)					\
 | 
			
		||||
  auto v_v = VectorView(v,mode);				\
 | 
			
		||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,7 @@ uint64_t total_host;;
 | 
			
		||||
void MemoryManager::DisplayMallinfo(void)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  struct mallinfo mi;
 | 
			
		||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
			
		||||
  
 | 
			
		||||
  mi = mallinfo();
 | 
			
		||||
 | 
			
		||||
@@ -292,7 +292,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
 | 
			
		||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) 
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
  GRID_ASSERT(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
  if (ncache == 0) return ptr;
 | 
			
		||||
@@ -345,7 +345,7 @@ void *MemoryManager::Lookup(size_t bytes,int type)
 | 
			
		||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) 
 | 
			
		||||
{
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
  assert(omp_in_parallel()==0);
 | 
			
		||||
  GRID_ASSERT(omp_in_parallel()==0);
 | 
			
		||||
#endif 
 | 
			
		||||
  for(int e=0;e<ncache;e++){
 | 
			
		||||
    if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
 | 
			
		||||
 
 | 
			
		||||
@@ -1,16 +1,15 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
 | 
			
		||||
#warning "Using explicit device memory copies"
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define MAXLINE 512
 | 
			
		||||
static char print_buffer [ MAXLINE ];
 | 
			
		||||
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
			
		||||
//#define dprintf(...) 
 | 
			
		||||
 | 
			
		||||
//#define mprintf(...) 
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
// For caching copies of data on device
 | 
			
		||||
@@ -51,12 +50,12 @@ int   MemoryManager::EntryPresent(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  if(AccViewTable.empty()) return 0;
 | 
			
		||||
 | 
			
		||||
  auto count = AccViewTable.count(CpuPtr);  assert((count==0)||(count==1));
 | 
			
		||||
  auto count = AccViewTable.count(CpuPtr);  GRID_ASSERT((count==0)||(count==1));
 | 
			
		||||
  return count;
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
			
		||||
{
 | 
			
		||||
  assert(!EntryPresent(CpuPtr));
 | 
			
		||||
  GRID_ASSERT(!EntryPresent(CpuPtr));
 | 
			
		||||
  AcceleratorViewEntry AccCache;
 | 
			
		||||
  AccCache.CpuPtr = CpuPtr;
 | 
			
		||||
  AccCache.AccPtr = (uint64_t)NULL;
 | 
			
		||||
@@ -70,9 +69,9 @@ void  MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,View
 | 
			
		||||
}
 | 
			
		||||
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
 | 
			
		||||
{
 | 
			
		||||
  assert(EntryPresent(CpuPtr));
 | 
			
		||||
  GRID_ASSERT(EntryPresent(CpuPtr));
 | 
			
		||||
  auto AccCacheIterator = AccViewTable.find(CpuPtr);
 | 
			
		||||
  assert(AccCacheIterator!=AccViewTable.end());
 | 
			
		||||
  GRID_ASSERT(AccCacheIterator!=AccViewTable.end());
 | 
			
		||||
  return AccCacheIterator;
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::EntryErase(uint64_t CpuPtr)
 | 
			
		||||
@@ -82,7 +81,7 @@ void MemoryManager::EntryErase(uint64_t CpuPtr)
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.LRU_valid==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.LRU_valid==0);
 | 
			
		||||
  if (AccCache.transient) { 
 | 
			
		||||
    LRU.push_back(AccCache.CpuPtr);
 | 
			
		||||
    AccCache.LRU_entry = --LRU.end();
 | 
			
		||||
@@ -95,7 +94,7 @@ void  MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.LRU_valid==1);
 | 
			
		||||
  GRID_ASSERT(AccCache.LRU_valid==1);
 | 
			
		||||
  LRU.erase(AccCache.LRU_entry);
 | 
			
		||||
  AccCache.LRU_valid = 0;
 | 
			
		||||
  DeviceLRUBytes-=AccCache.bytes;
 | 
			
		||||
@@ -109,19 +108,19 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  // Remove from Accelerator, remove entry, without flush
 | 
			
		||||
  // Cannot be locked. If allocated Must be in LRU pool.
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  GRID_ASSERT(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.AccPtr) {
 | 
			
		||||
    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
    DeviceDestroy++;
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  EntryErase(CpuPtr);
 | 
			
		||||
@@ -139,9 +138,9 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  //                          Take these OUT LRU queue when CPU locked?
 | 
			
		||||
  //                          Cannot take out the table as cpuLock data is important.
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  GRID_ASSERT(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
@@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
			
		||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  DeviceEvictions++;
 | 
			
		||||
@@ -163,28 +162,30 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.state==AccDirty);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  GRID_ASSERT(AccCache.state==AccDirty);
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.AccPtr!=(uint64_t)NULL);
 | 
			
		||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
			
		||||
  DeviceToHostXfer++;
 | 
			
		||||
  AccCache.state=Consistent;
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.state==CpuDirty);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  GRID_ASSERT(AccCache.state==CpuDirty);
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
  }
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx",
 | 
			
		||||
	  (uint64_t)AccCache.bytes,
 | 
			
		||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
			
		||||
  HostToDeviceXfer++;
 | 
			
		||||
@@ -193,10 +194,10 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
			
		||||
 | 
			
		||||
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
{
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  GRID_ASSERT(AccCache.state!=Empty);
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  if(AccCache.AccPtr==(uint64_t)NULL){
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
@@ -210,33 +211,36 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
			
		||||
{
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
 | 
			
		||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    CpuViewClose((uint64_t)Ptr);
 | 
			
		||||
  } else { 
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
 | 
			
		||||
{
 | 
			
		||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
 | 
			
		||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  } else { 
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
    return NULL;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  assert(bytes<DeviceMaxBytes);
 | 
			
		||||
  if(bytes>=DeviceMaxBytes) {
 | 
			
		||||
    printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
 | 
			
		||||
  }
 | 
			
		||||
  GRID_ASSERT(bytes<DeviceMaxBytes);
 | 
			
		||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
			
		||||
    if ( DeviceLRUBytes > 0){
 | 
			
		||||
      assert(LRU.size()>0);
 | 
			
		||||
      GRID_ASSERT(LRU.size()>0);
 | 
			
		||||
      uint64_t victim = LRU.back(); // From the LRU
 | 
			
		||||
      auto AccCacheIterator = EntryLookup(victim);
 | 
			
		||||
      auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
@@ -260,19 +264,19 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
  if (!AccCache.AccPtr) {
 | 
			
		||||
    EvictVictims(bytes); 
 | 
			
		||||
  } 
 | 
			
		||||
  assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
 | 
			
		||||
  GRID_ASSERT((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.cpuLock==0);  // Programming error
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock==0);  // Programming error
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state!=Empty) {
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
 | 
			
		||||
		    (uint64_t)AccCache.CpuPtr,
 | 
			
		||||
		    (uint64_t)CpuPtr,
 | 
			
		||||
		    (uint64_t)AccCache.bytes,
 | 
			
		||||
	            (uint64_t)bytes,
 | 
			
		||||
		    (uint64_t)AccCache.accLock);
 | 
			
		||||
    assert(AccCache.CpuPtr == CpuPtr);
 | 
			
		||||
    assert(AccCache.bytes  ==bytes);
 | 
			
		||||
    GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
 | 
			
		||||
    GRID_ASSERT(AccCache.bytes  ==bytes);
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 *  State transitions and actions
 | 
			
		||||
@@ -289,7 +293,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
 *  AccWrite AccDirty   AccDirty       -        - 
 | 
			
		||||
 */
 | 
			
		||||
  if(AccCache.state==Empty) {
 | 
			
		||||
    assert(AccCache.LRU_valid==0);
 | 
			
		||||
    GRID_ASSERT(AccCache.LRU_valid==0);
 | 
			
		||||
    AccCache.CpuPtr = CpuPtr;
 | 
			
		||||
    AccCache.AccPtr = (uint64_t)NULL;
 | 
			
		||||
    AccCache.bytes  = bytes;
 | 
			
		||||
@@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock= 1;
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==CpuDirty ){
 | 
			
		||||
    if(mode==AcceleratorWriteDiscard) {
 | 
			
		||||
      CpuDiscard(AccCache);
 | 
			
		||||
@@ -318,30 +322,30 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==Consistent) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==AccDirty) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.accLock>0);
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock>0);
 | 
			
		||||
  // If view is opened on device must remove from LRU
 | 
			
		||||
  if(AccCache.LRU_valid==1){
 | 
			
		||||
    // must possibly remove from LRU as now locked on GPU
 | 
			
		||||
    dprintf("AccCache entry removed from LRU \n");
 | 
			
		||||
    dprintf("AccCache entry removed from LRU ");
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -358,16 +362,16 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
			
		||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
  auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.accLock>0);
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock>0);
 | 
			
		||||
 | 
			
		||||
  AccCache.accLock--;
 | 
			
		||||
  // Move to LRU queue if not locked and close on device
 | 
			
		||||
  if(AccCache.accLock==0) {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    LRUinsert(AccCache);
 | 
			
		||||
  } else {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
			
		||||
@@ -375,8 +379,8 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
			
		||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
			
		||||
  auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
 | 
			
		||||
  assert(AccCache.cpuLock>0);
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  GRID_ASSERT(AccCache.cpuLock>0);
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock==0);
 | 
			
		||||
 | 
			
		||||
  AccCache.cpuLock--;
 | 
			
		||||
}
 | 
			
		||||
@@ -409,12 +413,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
 | 
			
		||||
  //    EvictVictims(bytes);
 | 
			
		||||
  //  }
 | 
			
		||||
 | 
			
		||||
  assert((mode==CpuRead)||(mode==CpuWrite));
 | 
			
		||||
  assert(AccCache.accLock==0);  // Programming error
 | 
			
		||||
  GRID_ASSERT((mode==CpuRead)||(mode==CpuWrite));
 | 
			
		||||
  GRID_ASSERT(AccCache.accLock==0);  // Programming error
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state!=Empty) {
 | 
			
		||||
    assert(AccCache.CpuPtr == CpuPtr);
 | 
			
		||||
    assert(AccCache.bytes==bytes);
 | 
			
		||||
    GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
 | 
			
		||||
    GRID_ASSERT(AccCache.bytes==bytes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state==Empty) {
 | 
			
		||||
@@ -429,20 +433,20 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
 | 
			
		||||
    AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
 | 
			
		||||
    AccCache.cpuLock++;
 | 
			
		||||
  } else if(AccCache.state==Consistent) {
 | 
			
		||||
    assert(AccCache.AccPtr != (uint64_t)NULL);
 | 
			
		||||
    GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
 | 
			
		||||
    if(mode==CpuWrite)
 | 
			
		||||
      AccCache.state = CpuDirty;   // Consistent +CpuWrite => CpuDirty
 | 
			
		||||
    else 
 | 
			
		||||
      AccCache.state = Consistent; // Consistent +CpuRead  => Consistent
 | 
			
		||||
    AccCache.cpuLock++;
 | 
			
		||||
  } else if(AccCache.state==AccDirty) {
 | 
			
		||||
    assert(AccCache.AccPtr != (uint64_t)NULL);
 | 
			
		||||
    GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
 | 
			
		||||
    Flush(AccCache);
 | 
			
		||||
    if(mode==CpuWrite) AccCache.state = CpuDirty;   // AccDirty +CpuWrite => CpuDirty, Flush
 | 
			
		||||
    else            AccCache.state = Consistent; // AccDirty +CpuRead  => Consistent, Flush
 | 
			
		||||
    AccCache.cpuLock++;
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0); // should be unreachable
 | 
			
		||||
    GRID_ASSERT(0); // should be unreachable
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  AccCache.transient= transient? EvictNext : 0;
 | 
			
		||||
@@ -524,12 +528,12 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
  std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
 | 
			
		||||
  for(auto it=LRU.begin();it!=LRU.end();it++){
 | 
			
		||||
    uint64_t cpuPtr = *it;
 | 
			
		||||
    assert(EntryPresent(cpuPtr));
 | 
			
		||||
    GRID_ASSERT(EntryPresent(cpuPtr));
 | 
			
		||||
    auto AccCacheIterator = EntryLookup(cpuPtr);
 | 
			
		||||
    auto & AccCache = AccCacheIterator->second;
 | 
			
		||||
    LruBytes2+=AccCache.bytes;
 | 
			
		||||
    assert(AccCache.LRU_valid==1);
 | 
			
		||||
    assert(AccCache.LRU_entry==it);
 | 
			
		||||
    GRID_ASSERT(AccCache.LRU_valid==1);
 | 
			
		||||
    GRID_ASSERT(AccCache.LRU_entry==it);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
			
		||||
 | 
			
		||||
@@ -548,7 +552,7 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
    if( AccCache.LRU_valid ) LruCnt++;
 | 
			
		||||
    
 | 
			
		||||
    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
			
		||||
      assert(AccCache.LRU_valid==0);
 | 
			
		||||
      GRID_ASSERT(AccCache.LRU_valid==0);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
			
		||||
		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
			
		||||
@@ -557,16 +561,16 @@ void MemoryManager::Audit(std::string s)
 | 
			
		||||
		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert( AccCache.cpuLock== 0 ) ;
 | 
			
		||||
    assert( AccCache.accLock== 0 ) ;
 | 
			
		||||
    GRID_ASSERT( AccCache.cpuLock== 0 ) ;
 | 
			
		||||
    GRID_ASSERT( AccCache.accLock== 0 ) ;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
 | 
			
		||||
  assert(LruBytes1==LruBytes2);
 | 
			
		||||
  assert(LruBytes1==DeviceLRUBytes);
 | 
			
		||||
  GRID_ASSERT(LruBytes1==LruBytes2);
 | 
			
		||||
  GRID_ASSERT(LruBytes1==DeviceLRUBytes);
 | 
			
		||||
  std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
 | 
			
		||||
  assert(AccBytes==DeviceBytes);
 | 
			
		||||
  GRID_ASSERT(AccBytes==DeviceBytes);
 | 
			
		||||
  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
			
		||||
  assert(LruCnt == LRU.size());
 | 
			
		||||
  GRID_ASSERT(LruCnt == LRU.size());
 | 
			
		||||
  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -10,16 +10,16 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  int fd = open("/proc/self/pagemap", O_RDONLY);
 | 
			
		||||
  assert(fd >= 0);
 | 
			
		||||
  GRID_ASSERT(fd >= 0);
 | 
			
		||||
  const int page_size = 4096;
 | 
			
		||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
			
		||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
			
		||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
			
		||||
  uint64_t pagedata[npages];
 | 
			
		||||
  std::vector<uint64_t> pagedata(npages);
 | 
			
		||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
			
		||||
  assert(ret == offset);
 | 
			
		||||
  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
			
		||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
			
		||||
  GRID_ASSERT(ret == offset);
 | 
			
		||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
			
		||||
  GRID_ASSERT(ret == sizeof(uint64_t) * npages);
 | 
			
		||||
  int nhugepages = npages / 512;
 | 
			
		||||
  int n4ktotal, nnothuge;
 | 
			
		||||
  n4ktotal = 0;
 | 
			
		||||
 
 | 
			
		||||
@@ -82,6 +82,7 @@ public:
 | 
			
		||||
  bool _isCheckerBoarded; 
 | 
			
		||||
  int        LocallyPeriodic;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
@@ -89,7 +90,7 @@ public:
 | 
			
		||||
  // Checkerboarding interface is virtual and overridden by 
 | 
			
		||||
  // GridCartesian / GridRedBlackCartesian
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual int CheckerBoarded(int dim)=0;
 | 
			
		||||
  virtual int CheckerBoarded(int dim) =0;
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
			
		||||
@@ -164,7 +165,7 @@ public:
 | 
			
		||||
    //
 | 
			
		||||
    if ( _simd_layout[dimension] > 2 ) { 
 | 
			
		||||
      for(int d=0;d<_ndimension;d++){
 | 
			
		||||
	if ( d != dimension ) assert ( (_simd_layout[d]==1)  );
 | 
			
		||||
	if ( d != dimension ) GRID_ASSERT ( (_simd_layout[d]==1)  );
 | 
			
		||||
      }
 | 
			
		||||
      permute_type = RotateBit; // How to specify distance; this is not just direction.
 | 
			
		||||
      return permute_type;
 | 
			
		||||
@@ -186,7 +187,7 @@ public:
 | 
			
		||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
  inline const Coordinate &LocalStarts(void)            { return _lstart;    };
 | 
			
		||||
  inline const Coordinate &FullDimensions(void)         { return _fdimensions;};
 | 
			
		||||
  inline const Coordinate &GlobalDimensions(void)       { return _gdimensions;};
 | 
			
		||||
  inline const Coordinate &LocalDimensions(void)        { return _ldimensions;};
 | 
			
		||||
@@ -215,11 +216,11 @@ public:
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    GRID_ASSERT(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    GRID_ASSERT(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -46,7 +46,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
  virtual int CheckerBoarded(int dim) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
@@ -106,6 +106,7 @@ public:
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _checker_dim_mask.resize(_ndimension);;
 | 
			
		||||
    _checker_dim = -1;
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
@@ -127,10 +128,10 @@ public:
 | 
			
		||||
        // Use a reduced simd grid
 | 
			
		||||
        _ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
 | 
			
		||||
        //std::cout << _ldimensions[d] << "  " << _gdimensions[d] << "  " << _processors[d] << std::endl;
 | 
			
		||||
        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
        GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
 | 
			
		||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
 | 
			
		||||
        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
        GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
 | 
			
		||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
			
		||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
			
		||||
 
 | 
			
		||||
@@ -57,16 +57,17 @@ class GridRedBlackCartesian : public GridBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
  //  int              _checker_dim;
 | 
			
		||||
  std::vector<int> _checker_board;
 | 
			
		||||
 | 
			
		||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    if( dim==_checker_dim) return 1;
 | 
			
		||||
    else return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
    int linear=0;
 | 
			
		||||
    assert(site.size()==_ndimension);
 | 
			
		||||
    GRID_ASSERT(site.size()==_ndimension);
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){ 
 | 
			
		||||
      if(_checker_dim_mask[d])
 | 
			
		||||
	linear=linear+site[d];
 | 
			
		||||
@@ -147,7 +148,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim)  ;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  virtual ~GridRedBlackCartesian() = default;
 | 
			
		||||
 | 
			
		||||
  void Init(const Coordinate &dimensions,
 | 
			
		||||
@@ -159,11 +160,11 @@ public:
 | 
			
		||||
 | 
			
		||||
      _isCheckerBoarded = true;
 | 
			
		||||
    _checker_dim = checker_dim;
 | 
			
		||||
    assert(checker_dim_mask[checker_dim] == 1);
 | 
			
		||||
    GRID_ASSERT(checker_dim_mask[checker_dim] == 1);
 | 
			
		||||
    _ndimension = dimensions.size();
 | 
			
		||||
    assert(checker_dim_mask.size() == _ndimension);
 | 
			
		||||
    assert(processor_grid.size() == _ndimension);
 | 
			
		||||
    assert(simd_layout.size() == _ndimension);
 | 
			
		||||
    GRID_ASSERT(checker_dim_mask.size() == _ndimension);
 | 
			
		||||
    GRID_ASSERT(processor_grid.size() == _ndimension);
 | 
			
		||||
    GRID_ASSERT(simd_layout.size() == _ndimension);
 | 
			
		||||
 | 
			
		||||
    _fdimensions.resize(_ndimension);
 | 
			
		||||
    _gdimensions.resize(_ndimension);
 | 
			
		||||
@@ -189,20 +190,20 @@ public:
 | 
			
		||||
 | 
			
		||||
        if (d == _checker_dim)
 | 
			
		||||
	  {
 | 
			
		||||
	    assert((_gdimensions[d] & 0x1) == 0);
 | 
			
		||||
	    GRID_ASSERT((_gdimensions[d] & 0x1) == 0);
 | 
			
		||||
	    _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
 | 
			
		||||
	    _gsites /= 2;
 | 
			
		||||
	  }
 | 
			
		||||
        _ldimensions[d] = _gdimensions[d] / _processors[d];
 | 
			
		||||
        assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
        GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
 | 
			
		||||
        _lstart[d] = _processor_coor[d] * _ldimensions[d];
 | 
			
		||||
        _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
 | 
			
		||||
 | 
			
		||||
        // Use a reduced simd grid
 | 
			
		||||
        _simd_layout[d] = simd_layout[d];
 | 
			
		||||
        _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
 | 
			
		||||
        assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
        assert(_rdimensions[d] > 0);
 | 
			
		||||
        GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
 | 
			
		||||
        GRID_ASSERT(_rdimensions[d] > 0);
 | 
			
		||||
 | 
			
		||||
        // all elements of a simd vector must have same checkerboard.
 | 
			
		||||
        // If Ls vectorised, this must still be the case; e.g. dwf rb5d
 | 
			
		||||
 
 | 
			
		||||
@@ -57,18 +57,29 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return
 | 
			
		||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)c,2*N);
 | 
			
		||||
 
 | 
			
		||||
@@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
#define NVLINK_GET
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern bool Stencil_force_mpi ;
 | 
			
		||||
@@ -106,7 +108,7 @@ public:
 | 
			
		||||
  // very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static int  RankWorld(void) ;
 | 
			
		||||
  static void BroadcastWorld(int root,void* data, int bytes);
 | 
			
		||||
  static void BroadcastWorld(int root,void* data, uint64_t bytes);
 | 
			
		||||
  static void BarrierWorld(void);
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -127,7 +129,36 @@ public:
 | 
			
		||||
  void GlobalSumVector(ComplexD *c,int N);
 | 
			
		||||
  void GlobalXOR(uint32_t &);
 | 
			
		||||
  void GlobalXOR(uint64_t &);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<obj> column;
 | 
			
		||||
    obj accum = o;
 | 
			
		||||
    int source,dest;
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){
 | 
			
		||||
      column.resize(_processors[d]);
 | 
			
		||||
      column[0] = accum;
 | 
			
		||||
      std::vector<MpiCommsRequest_t> list;
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	ShiftedRanks(d,p,source,dest);
 | 
			
		||||
	SendToRecvFromBegin(list,
 | 
			
		||||
			    &column[0],
 | 
			
		||||
			    dest,
 | 
			
		||||
			    &column[p],
 | 
			
		||||
			    source,
 | 
			
		||||
			    sizeof(obj),d*100+p);
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      if (!list.empty()) // avoid triggering GRID_ASSERT in comms == none
 | 
			
		||||
	CommsComplete(list);
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	accum = accum + column[p];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Broadcast(0,accum);
 | 
			
		||||
    o=accum;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class obj> void GlobalSum(obj &o){
 | 
			
		||||
    typedef typename obj::scalar_type scalar_type;
 | 
			
		||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
			
		||||
@@ -138,32 +169,44 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Face exchange, buffer swap in translational invariant way
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void CommsComplete(std::vector<CommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
			   void *xmit,
 | 
			
		||||
			   int dest,
 | 
			
		||||
			   void *recv,
 | 
			
		||||
			   int from,
 | 
			
		||||
			   int bytes,int dir);
 | 
			
		||||
			   uint64_t bytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  void SendToRecvFrom(void *xmit,
 | 
			
		||||
		      int xmit_to_rank,
 | 
			
		||||
		      void *recv,
 | 
			
		||||
		      int recv_from_rank,
 | 
			
		||||
		      int bytes);
 | 
			
		||||
		      uint64_t bytes);
 | 
			
		||||
  
 | 
			
		||||
  int IsOffNode(int rank);
 | 
			
		||||
  double StencilSendToRecvFrom(void *xmit,
 | 
			
		||||
			       int xmit_to_rank,int do_xmit,
 | 
			
		||||
			       void *recv,
 | 
			
		||||
			       int recv_from_rank,int do_recv,
 | 
			
		||||
			       int bytes,int dir);
 | 
			
		||||
			       uint64_t bytes,int dir);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				      void *xmit,
 | 
			
		||||
				      int xmit_to_rank,int do_xmit,
 | 
			
		||||
				      void *recv,
 | 
			
		||||
				      int recv_from_rank,int do_recv,
 | 
			
		||||
				      uint64_t xbytes,uint64_t rbytes,int dir);
 | 
			
		||||
 | 
			
		||||
  // Could do a PollHtoD and have a CommsMerge dependence
 | 
			
		||||
  void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
 | 
			
		||||
  void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				    void *xmit,
 | 
			
		||||
				    void *xmit,void *xmit_comp,
 | 
			
		||||
				    int xmit_to_rank,int do_xmit,
 | 
			
		||||
				    void *recv,
 | 
			
		||||
				    void *recv,void *recv_comp,
 | 
			
		||||
				    int recv_from_rank,int do_recv,
 | 
			
		||||
				    int xbytes,int rbytes,int dir);
 | 
			
		||||
				    uint64_t xbytes,uint64_t rbytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
			
		||||
@@ -177,20 +220,20 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Broadcast a buffer and composite larger
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void Broadcast(int root,void* data, int bytes);
 | 
			
		||||
  void Broadcast(int root,void* data, uint64_t bytes);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // All2All down one dimension
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
 | 
			
		||||
    assert(dim>=0);
 | 
			
		||||
    assert(dim<_ndimension);
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    GRID_ASSERT(dim>=0);
 | 
			
		||||
    GRID_ASSERT(dim<_ndimension);
 | 
			
		||||
    GRID_ASSERT(in.size()==out.size());
 | 
			
		||||
    int numnode = _processors[dim];
 | 
			
		||||
    uint64_t bytes=sizeof(T);
 | 
			
		||||
    uint64_t words=in.size()/numnode;
 | 
			
		||||
    assert(numnode * words == in.size());
 | 
			
		||||
    assert(words < (1ULL<<31));
 | 
			
		||||
    GRID_ASSERT(numnode * words == in.size());
 | 
			
		||||
    GRID_ASSERT(words < (1ULL<<31));
 | 
			
		||||
    AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
 | 
			
		||||
  }
 | 
			
		||||
  void AllToAll(int dim  ,void *in,void *out,uint64_t words,uint64_t bytes);
 | 
			
		||||
 
 | 
			
		||||
@@ -28,9 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
void GridAbort(void) { MPI_Abort(MPI_COMM_WORLD,SIGABRT); }
 | 
			
		||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
uint64_t checksum_index = 1;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// First initialise of comms system
 | 
			
		||||
@@ -55,11 +63,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
 | 
			
		||||
#endif
 | 
			
		||||
    //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
 | 
			
		||||
    if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -80,20 +88,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
 | 
			
		||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
 | 
			
		||||
{
 | 
			
		||||
  int rank;
 | 
			
		||||
  int ierr=MPI_Cart_rank  (communicator, &coor[0], &rank);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
  return rank;
 | 
			
		||||
}
 | 
			
		||||
void  CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
 | 
			
		||||
{
 | 
			
		||||
  coor.resize(_ndimension);
 | 
			
		||||
  int ierr=MPI_Cart_coords  (communicator, rank, _ndimension,&coor[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -120,8 +128,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
			
		||||
  _ndimension = processors.size();  GRID_ASSERT(_ndimension>=1);
 | 
			
		||||
  int parent_ndimension = parent._ndimension; GRID_ASSERT(_ndimension >= parent._ndimension);
 | 
			
		||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
			
		||||
  Coordinate parent_processors    (_ndimension,1);
 | 
			
		||||
  Coordinate shm_processors       (_ndimension,1);
 | 
			
		||||
@@ -145,7 +153,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
    childsize *= processors[d];
 | 
			
		||||
  }
 | 
			
		||||
  int Nchild = Nparent/childsize;
 | 
			
		||||
  assert (childsize * Nchild == Nparent);
 | 
			
		||||
  GRID_ASSERT (childsize * Nchild == Nparent);
 | 
			
		||||
 | 
			
		||||
  Coordinate ccoor(_ndimension); // coor within subcommunicator
 | 
			
		||||
  Coordinate scoor(_ndimension); // coor of split within parent
 | 
			
		||||
@@ -171,12 +179,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
    // Split the communicator
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    GRID_ASSERT(ierr==0);
 | 
			
		||||
 | 
			
		||||
  } else {
 | 
			
		||||
    srank = 0;
 | 
			
		||||
    int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    GRID_ASSERT(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -201,7 +209,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int d=0;d<processors.size();d++){
 | 
			
		||||
    assert(_processor_coor[d] == ccoor[d] );
 | 
			
		||||
    GRID_ASSERT(_processor_coor[d] == ccoor[d] );
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -243,7 +251,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors
 | 
			
		||||
  for(int i=0;i<_ndimension*2;i++){
 | 
			
		||||
    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
			
		||||
  }
 | 
			
		||||
  assert(Size==_Nprocessors);
 | 
			
		||||
  GRID_ASSERT(Size==_Nprocessors);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::~CartesianCommunicator()
 | 
			
		||||
@@ -257,82 +265,103 @@ CartesianCommunicator::~CartesianCommunicator()
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(float &f)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(double &d)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce float");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce double");
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce uint32_t");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce uint64_t");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduceVector");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("GlobalXOR");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(float &f)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalMax");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalMax(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalMax");
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumVector(float *)");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumVector(double *)");
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
						uint64_t bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
 | 
			
		||||
  GRID_ASSERT(dest != _processor);
 | 
			
		||||
  GRID_ASSERT(from != _processor);
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  tag= dir+from*32;
 | 
			
		||||
  int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  int ierr=MPI_Irecv(recv,(int)( bytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator,&rrq);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
  list.push_back(rrq);
 | 
			
		||||
  
 | 
			
		||||
  tag= dir+_processor*32;
 | 
			
		||||
  ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  ierr =MPI_Isend(xmit,(int)(bytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator,&xrq);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
  list.push_back(xrq);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
@@ -340,7 +369,7 @@ void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -349,50 +378,63 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
					   void *recv,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
					   uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> reqs(0);
 | 
			
		||||
  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
			
		||||
 | 
			
		||||
  int myrank = _processor;
 | 
			
		||||
  int ierr;
 | 
			
		||||
 | 
			
		||||
  // Enforce no UVM in comms, device or host OK
 | 
			
		||||
  assert(acceleratorIsCommunicable(xmit));
 | 
			
		||||
  assert(acceleratorIsCommunicable(recv));
 | 
			
		||||
  GRID_ASSERT(acceleratorIsCommunicable(xmit));
 | 
			
		||||
  GRID_ASSERT(acceleratorIsCommunicable(recv));
 | 
			
		||||
 | 
			
		||||
  // Give the CPU to MPI immediately; can use threads to overlap optionally
 | 
			
		||||
  //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
 | 
			
		||||
  ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
 | 
			
		||||
		    recv,bytes,MPI_CHAR,from, from,
 | 
			
		||||
  ierr=MPI_Sendrecv(xmit,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,dest,myrank,
 | 
			
		||||
		    recv,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,from, from,
 | 
			
		||||
		    communicator,MPI_STATUS_IGNORE);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
 | 
			
		||||
  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
			
		||||
  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int dest, int dox,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int from, int dor,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
						     uint64_t bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,xmit,dest,dox,recv,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::IsOffNode(int rank)
 | 
			
		||||
{
 | 
			
		||||
  int grank = ShmRanks[rank];
 | 
			
		||||
  if ( grank == MPI_UNDEFINED ) return true;
 | 
			
		||||
  else return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#undef NVLINK_GET // Define to use get instead of put DMA
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   uint64_t xbytes,uint64_t rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0; // Do nothing -- no preparation required
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 void *xmit,void *xmit_comp,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 void *recv,void *recv_comp,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
							 uint64_t xbytes,uint64_t rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
@@ -405,62 +447,431 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  GRID_ASSERT(dest != _processor);
 | 
			
		||||
  GRID_ASSERT(from != _processor);
 | 
			
		||||
  GRID_ASSERT(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      //      std::cout << " StencilSendToRecvFrom "<<dir<<" MPI_Irecv "<<std::hex<<recv<<std::dec<<std::endl;
 | 
			
		||||
      ierr=MPI_Irecv(recv_comp,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      GRID_ASSERT(ierr==0);
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
    else { 
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      GRID_ASSERT(shm!=NULL);
 | 
			
		||||
      //      std::cout << " StencilSendToRecvFrom "<<dir<<" CopyDeviceToDevice recv "<<std::hex<<recv<<" remote "<<shm <<std::dec<<std::endl;
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // This is a NVLINK PUT  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      ierr =MPI_Isend(xmit_comp,(int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      GRID_ASSERT(ierr==0);
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      GRID_ASSERT(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
  /*finishes Get/Put*/
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
  this->StencilBarrier(); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Pipeline mode through host memory
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
   * In prepare (phase 1):
 | 
			
		||||
   * PHASE 1: (prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 3: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers
 | 
			
		||||
   *
 | 
			
		||||
   *********************************
 | 
			
		||||
   * NB could split this further:
 | 
			
		||||
   *--------------------------------
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (BeginInterNode)
 | 
			
		||||
   * - complete all copies 
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * PHASE 3: (BeginIntraNode)
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 4: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers asynch
 | 
			
		||||
   * - (complete all copies) 
 | 
			
		||||
   */
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   uint64_t xbytes,uint64_t rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
/*
 | 
			
		||||
 * Bring sequence from Stencil.h down to lower level.
 | 
			
		||||
 * Assume using XeLink is ok
 | 
			
		||||
 */  
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  GRID_ASSERT(dest != _processor);
 | 
			
		||||
  GRID_ASSERT(from != _processor);
 | 
			
		||||
  GRID_ASSERT(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_recv = NULL;
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   */
 | 
			
		||||
  
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
  rbytes += 8;
 | 
			
		||||
  xbytes += 8;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
			
		||||
      ierr=MPI_Irecv(host_recv,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      GRID_ASSERT(ierr==0);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      srq.PacketType = InterNodeRecv;
 | 
			
		||||
      srq.bytes      = rbytes;
 | 
			
		||||
      srq.req        = rrq;
 | 
			
		||||
      srq.host_buf   = host_recv;
 | 
			
		||||
      srq.device_buf = recv;
 | 
			
		||||
      srq.tag        = tag;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
 | 
			
		||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
      uint64_t xbytes_data = xbytes - 8;
 | 
			
		||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes_data); // Make this Asynch
 | 
			
		||||
      GRID_ASSERT(xbytes % 8 == 0);
 | 
			
		||||
      // flip one bit so that a zero buffer is not consistent
 | 
			
		||||
      uint64_t xsum = checksum_gpu((uint64_t*)xmit, xbytes_data / 8) ^ (checksum_index + 1 + 1000 * tag); 
 | 
			
		||||
      *(uint64_t*)(((char*)host_xmit) + xbytes_data) = xsum;
 | 
			
		||||
#else
 | 
			
		||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
			
		||||
#endif
 | 
			
		||||
      
 | 
			
		||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      //      GRID_ASSERT(ierr==0);
 | 
			
		||||
      //      off_node_bytes+=xbytes;
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = InterNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = host_xmit;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = tag;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = commdir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 * In the interest of better pipelining, poll for completion on each DtoH and 
 | 
			
		||||
 * start MPI_ISend in the meantime
 | 
			
		||||
 */
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int pending = 0;
 | 
			
		||||
  do {
 | 
			
		||||
 | 
			
		||||
    pending = 0;
 | 
			
		||||
 | 
			
		||||
    for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
      if ( list[idx].PacketType==InterNodeRecv ) {
 | 
			
		||||
 | 
			
		||||
	int flag = 0;
 | 
			
		||||
	MPI_Status status;
 | 
			
		||||
	int ierr = MPI_Test(&list[idx].req,&flag,&status);
 | 
			
		||||
	assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
	if ( flag ) {
 | 
			
		||||
	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
 	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes - 8);
 | 
			
		||||
#else
 | 
			
		||||
	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
 | 
			
		||||
#endif
 | 
			
		||||
	  list[idx].PacketType=InterNodeReceiveHtoD;
 | 
			
		||||
	} else {
 | 
			
		||||
	  pending ++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
 | 
			
		||||
  } while ( pending );
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int pending = 0;
 | 
			
		||||
  do {
 | 
			
		||||
 | 
			
		||||
    pending = 0;
 | 
			
		||||
 | 
			
		||||
    for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
      if ( list[idx].PacketType==InterNodeXmit ) {
 | 
			
		||||
 | 
			
		||||
	if ( acceleratorEventIsComplete(list[idx].ev) ) {
 | 
			
		||||
 | 
			
		||||
	  void *host_xmit = list[idx].host_buf;
 | 
			
		||||
	  uint64_t xbytes = list[idx].bytes;
 | 
			
		||||
	  int dest        = list[idx].dest;
 | 
			
		||||
	  int tag         = list[idx].tag;
 | 
			
		||||
	  int commdir     = list[idx].commdir;
 | 
			
		||||
	  ///////////////////
 | 
			
		||||
	  // Send packet
 | 
			
		||||
	  ///////////////////
 | 
			
		||||
 | 
			
		||||
	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  MPI_Request xrq;
 | 
			
		||||
	  int ierr =MPI_Isend(host_xmit, (int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
	  GRID_ASSERT(ierr==0);
 | 
			
		||||
 | 
			
		||||
	  list[idx].req        = xrq; // Update the MPI request in the list
 | 
			
		||||
 | 
			
		||||
	  list[idx].PacketType=InterNodeXmitISend;
 | 
			
		||||
 | 
			
		||||
	} else {
 | 
			
		||||
	  // not done, so return to polling loop
 | 
			
		||||
	  pending++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } while (pending);
 | 
			
		||||
}  
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,void *xmit_comp,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,void *recv_comp,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 uint64_t xbytes,uint64_t rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  GRID_ASSERT(dest != _processor);
 | 
			
		||||
  GRID_ASSERT(from != _processor);
 | 
			
		||||
  GRID_ASSERT(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Receives already posted
 | 
			
		||||
  // Copies already started
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  /*  
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   */
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
 | 
			
		||||
    if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
			
		||||
      // Intranode
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      GRID_ASSERT(shm!=NULL);
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
 | 
			
		||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = IntraNodeRecv;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = NULL;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = -1;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = dir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
#else
 | 
			
		||||
  if (dox) {
 | 
			
		||||
 | 
			
		||||
    if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
			
		||||
      // Intranode
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      GRID_ASSERT(shm!=NULL);
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      
 | 
			
		||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = IntraNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = NULL;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = -1;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = dir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
 | 
			
		||||
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
  std::vector<MPI_Status> status;
 | 
			
		||||
  std::vector<MPI_Request> MpiRequests;
 | 
			
		||||
    
 | 
			
		||||
  for(int r=0;r<list.size();r++){
 | 
			
		||||
    // Must check each Send buf is clear to reuse
 | 
			
		||||
    if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
 | 
			
		||||
    //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
  int nreq=MpiRequests.size();
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
  if (nreq>0) {
 | 
			
		||||
    status.resize(MpiRequests.size());
 | 
			
		||||
    int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
 | 
			
		||||
    GRID_ASSERT(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //  for(int r=0;r<nreq;r++){
 | 
			
		||||
  //    if ( list[r].PacketType==InterNodeRecv ) {
 | 
			
		||||
  //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
			
		||||
  //    }
 | 
			
		||||
  //  }
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
  for(int r=0;r<list.size();r++){
 | 
			
		||||
    if ( list[r].PacketType == InterNodeReceiveHtoD ) {
 | 
			
		||||
      uint64_t rbytes_data = list[r].bytes - 8;
 | 
			
		||||
      uint64_t expected_cs = *(uint64_t*)(((char*)list[r].host_buf) + rbytes_data);
 | 
			
		||||
      uint64_t computed_cs = checksum_gpu((uint64_t*)list[r].device_buf, rbytes_data / 8) ^ (checksum_index + 1 + 1000 * list[r].tag); //
 | 
			
		||||
      if (expected_cs != computed_cs) {
 | 
			
		||||
	// TODO: error message, backtrace, quit
 | 
			
		||||
 | 
			
		||||
	fprintf(stderr, "GRID_CHECKSUM_COMMS error:\n");
 | 
			
		||||
	fprintf(stderr, " processor = %d\n", (int)_processor);
 | 
			
		||||
	for(int d=0;d<_processors.size();d++)
 | 
			
		||||
	  fprintf(stderr, " processor_coord[%d] = %d\n", d, _processor_coor[d]);
 | 
			
		||||
	fprintf(stderr, " hostname: %s\n", GridHostname());
 | 
			
		||||
	fprintf(stderr, " expected_cs: %ld\n", expected_cs);
 | 
			
		||||
	fprintf(stderr, " computed_cs: %ld\n", computed_cs);
 | 
			
		||||
	fprintf(stderr, " dest: %d\n", list[r].dest);
 | 
			
		||||
	fprintf(stderr, " tag: %d\n", list[r].tag);
 | 
			
		||||
	fprintf(stderr, " commdir: %d\n", list[r].commdir);
 | 
			
		||||
	fprintf(stderr, " bytes: %ld\n", (uint64_t)list[r].bytes);
 | 
			
		||||
 | 
			
		||||
	fflush(stderr);
 | 
			
		||||
 | 
			
		||||
	// backtrace
 | 
			
		||||
	int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);
 | 
			
		||||
	backtrace_symbols_fd(Grid_backtrace_buffer,symbols, 2);
 | 
			
		||||
 | 
			
		||||
	exit(1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  checksum_index += 1;
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  list.resize(0);               // Delete the list
 | 
			
		||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
  this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
 | 
			
		||||
#endif   
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("NodeBarrier");
 | 
			
		||||
  MPI_Barrier  (ShmComm);
 | 
			
		||||
}
 | 
			
		||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
@@ -468,17 +879,19 @@ void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
//}
 | 
			
		||||
void CartesianCommunicator::Barrier(void)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GridBarrier");
 | 
			
		||||
  int ierr = MPI_Barrier(communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("Broadcast");
 | 
			
		||||
  int ierr=MPI_Bcast(data,
 | 
			
		||||
		     bytes,
 | 
			
		||||
		     (int)bytes,
 | 
			
		||||
		     MPI_BYTE,
 | 
			
		||||
		     root,
 | 
			
		||||
		     communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
int CartesianCommunicator::RankWorld(void){
 | 
			
		||||
  int r;
 | 
			
		||||
@@ -486,23 +899,25 @@ int CartesianCommunicator::RankWorld(void){
 | 
			
		||||
  return r;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void){
 | 
			
		||||
  FlightRecorder::StepLog("BarrierWorld");
 | 
			
		||||
  int ierr = MPI_Barrier(communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("BroadcastWorld");
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
		      bytes,
 | 
			
		||||
		      (int)bytes,
 | 
			
		||||
		      MPI_BYTE,
 | 
			
		||||
		      root,
 | 
			
		||||
		      communicator_world);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  Coordinate row(_ndimension,1);
 | 
			
		||||
  assert(dim>=0 && dim<_ndimension);
 | 
			
		||||
  GRID_ASSERT(dim>=0 && dim<_ndimension);
 | 
			
		||||
 | 
			
		||||
  //  Split the communicator
 | 
			
		||||
  row[dim] = _processors[dim];
 | 
			
		||||
@@ -513,6 +928,7 @@ void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("AllToAll");
 | 
			
		||||
  // MPI is a pain and uses "int" arguments
 | 
			
		||||
  // 64*64*64*128*16 == 500Million elements of data.
 | 
			
		||||
  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
			
		||||
@@ -522,8 +938,8 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t
 | 
			
		||||
  int ibytes;
 | 
			
		||||
  iwords = words;
 | 
			
		||||
  ibytes = bytes;
 | 
			
		||||
  assert(words == iwords); // safe to cast to int ?
 | 
			
		||||
  assert(bytes == ibytes); // safe to cast to int ?
 | 
			
		||||
  GRID_ASSERT(words == iwords); // safe to cast to int ?
 | 
			
		||||
  GRID_ASSERT(bytes == ibytes); // safe to cast to int ?
 | 
			
		||||
  MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
 | 
			
		||||
  MPI_Type_commit(&object);
 | 
			
		||||
  MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
 | 
			
		||||
 
 | 
			
		||||
@@ -34,6 +34,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
 | 
			
		||||
void GridAbort(void) { abort(); }
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSharedMemory::Init(communicator_world);
 | 
			
		||||
@@ -54,14 +56,14 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
			
		||||
{
 | 
			
		||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
			
		||||
  _ndimension = processors.size();  GRID_ASSERT(_ndimension>=1);
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
  
 | 
			
		||||
  // Require 1^N processor grid for fake
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processor = 0;
 | 
			
		||||
  for(int d=0;d<_ndimension;d++) {
 | 
			
		||||
    assert(_processors[d]==1);
 | 
			
		||||
    GRID_ASSERT(_processors[d]==1);
 | 
			
		||||
    _processor_coor[d] = 0;
 | 
			
		||||
  }
 | 
			
		||||
  SetCommunicator(communicator_world);
 | 
			
		||||
@@ -87,19 +89,19 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
					   void *recv,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
					   uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
  GRID_ASSERT(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ GRID_ASSERT(list.size()==0);}
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
						uint64_t bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
  GRID_ASSERT(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
@@ -113,8 +115,8 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t
 | 
			
		||||
 | 
			
		||||
int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
			
		||||
void CartesianCommunicator::Barrier(void){}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, uint64_t bytes) {}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) { }
 | 
			
		||||
void CartesianCommunicator::BarrierWorld(void) { }
 | 
			
		||||
int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
			
		||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
			
		||||
@@ -124,20 +126,33 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
 | 
			
		||||
  dest=0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int CartesianCommunicator::IsOffNode(int rank) { return false; }
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int xmit_to_rank,int dox,
 | 
			
		||||
						     void *recv,
 | 
			
		||||
						     int recv_from_rank,int dor,
 | 
			
		||||
						     int bytes, int dir)
 | 
			
		||||
						     uint64_t bytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int xmit_to_rank,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int recv_from_rank,int dor,
 | 
			
		||||
							   uint64_t xbytes,uint64_t rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 void *xmit, void *xmit_comp,
 | 
			
		||||
							 int xmit_to_rank,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 void *recv, void *recv_comp,
 | 
			
		||||
							 int recv_from_rank,int dor,
 | 
			
		||||
							 int xbytes,int rbytes, int dir)
 | 
			
		||||
							 uint64_t xbytes,uint64_t rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return xbytes+rbytes;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -58,8 +58,8 @@ int                 GlobalSharedMemory::WorldNode;
 | 
			
		||||
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryFree(void)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmAlloc);
 | 
			
		||||
  assert(_ShmAllocBytes>0);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc);
 | 
			
		||||
  GRID_ASSERT(_ShmAllocBytes>0);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    munmap(WorldShmCommBufs[r],_ShmAllocBytes);
 | 
			
		||||
  }
 | 
			
		||||
@@ -80,7 +80,7 @@ void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
			
		||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    assert(host_heap_bytes<host_heap_size);
 | 
			
		||||
    GRID_ASSERT(host_heap_bytes<host_heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
@@ -100,7 +100,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
			
		||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current heap  is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    assert(heap_bytes<heap_size);
 | 
			
		||||
    GRID_ASSERT(heap_bytes<heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  //std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
 | 
			
		||||
  return ptr;
 | 
			
		||||
@@ -127,13 +127,13 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
 | 
			
		||||
  if ( str ) {
 | 
			
		||||
    std::vector<int> IntShmDims;
 | 
			
		||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
			
		||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    GRID_ASSERT(IntShmDims.size() == WorldDims.size());
 | 
			
		||||
    long ShmSize = 1;
 | 
			
		||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
			
		||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
			
		||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
      GRID_ASSERT(divides(ShmDims[dim],WorldDims[dim]));
 | 
			
		||||
    }
 | 
			
		||||
    assert(ShmSize == WorldShmSize);
 | 
			
		||||
    GRID_ASSERT(ShmSize == WorldShmSize);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
			
		||||
typedef MPI_Request MpiCommsRequest_t;
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
typedef MPI_Request CommsRequest_t;
 | 
			
		||||
#else
 | 
			
		||||
/*
 | 
			
		||||
 * Enable state transitions as each packet flows.
 | 
			
		||||
 */
 | 
			
		||||
enum PacketType_t {
 | 
			
		||||
  FaceGather,
 | 
			
		||||
  InterNodeXmit,
 | 
			
		||||
  InterNodeRecv,
 | 
			
		||||
  IntraNodeXmit,
 | 
			
		||||
  IntraNodeRecv,
 | 
			
		||||
  InterNodeXmitISend,
 | 
			
		||||
  InterNodeReceiveHtoD
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 *Package arguments needed for various actions along packet flow
 | 
			
		||||
 */
 | 
			
		||||
typedef struct {
 | 
			
		||||
  PacketType_t PacketType;
 | 
			
		||||
  void *host_buf;
 | 
			
		||||
  void *device_buf;
 | 
			
		||||
  int dest;
 | 
			
		||||
  int tag;
 | 
			
		||||
  int commdir;
 | 
			
		||||
  unsigned long bytes;
 | 
			
		||||
  acceleratorEvent_t ev;
 | 
			
		||||
  MpiCommsRequest_t req;
 | 
			
		||||
} CommsRequest_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
typedef int MpiCommsRequest_t;
 | 
			
		||||
typedef int CommsRequest_t;
 | 
			
		||||
typedef int Grid_MPI_Comm;
 | 
			
		||||
#endif
 | 
			
		||||
@@ -105,7 +137,7 @@ public:
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
			
		||||
  static void SharedMemoryFree(void);
 | 
			
		||||
  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -42,6 +42,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
#define SHM_SOCKETS
 | 
			
		||||
#else
 | 
			
		||||
#endif 
 | 
			
		||||
#include <syscall.h>
 | 
			
		||||
#endif
 | 
			
		||||
@@ -66,7 +67,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    int errnum;
 | 
			
		||||
 | 
			
		||||
    sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0);
 | 
			
		||||
    sock = socket(AF_UNIX, SOCK_DGRAM, 0);  GRID_ASSERT(sock>0);
 | 
			
		||||
 | 
			
		||||
    struct sockaddr_un sa_un = { 0 };
 | 
			
		||||
    sa_un.sun_family = AF_UNIX;
 | 
			
		||||
@@ -157,7 +158,7 @@ public:
 | 
			
		||||
/*Construct from an MPI communicator*/
 | 
			
		||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmSetup==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==0);
 | 
			
		||||
  WorldComm = comm;
 | 
			
		||||
  MPI_Comm_rank(WorldComm,&WorldRank);
 | 
			
		||||
  MPI_Comm_size(WorldComm,&WorldSize);
 | 
			
		||||
@@ -183,7 +184,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
 | 
			
		||||
  // WorldNodes
 | 
			
		||||
  WorldNodes = WorldSize/WorldShmSize;
 | 
			
		||||
  assert( (WorldNodes * WorldShmSize) == WorldSize );
 | 
			
		||||
  GRID_ASSERT( (WorldNodes * WorldShmSize) == WorldSize );
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // FIXME: Check all WorldShmSize are the same ?
 | 
			
		||||
@@ -208,7 +209,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
  MyGroup.resize(WorldShmSize);
 | 
			
		||||
  for(int rank=0;rank<WorldSize;rank++){
 | 
			
		||||
    if(WorldShmRanks[rank]!=MPI_UNDEFINED){
 | 
			
		||||
      assert(g<WorldShmSize);
 | 
			
		||||
      GRID_ASSERT(g<WorldShmSize);
 | 
			
		||||
      MyGroup[g++] = rank;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -224,7 +225,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
  // global sum leaders over comm world
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////
 | 
			
		||||
  // find the group leaders world rank
 | 
			
		||||
@@ -245,7 +246,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
      WorldNode=g;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  assert(WorldNode!=-1);
 | 
			
		||||
  GRID_ASSERT(WorldNode!=-1);
 | 
			
		||||
  _ShmSetup=1;
 | 
			
		||||
}
 | 
			
		||||
// Gray encode support 
 | 
			
		||||
@@ -287,7 +288,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  // Assert power of two shm_size.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
 | 
			
		||||
  assert(log2size != -1);
 | 
			
		||||
  GRID_ASSERT(log2size != -1);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Identify the hypercube coordinate of this node using hostname
 | 
			
		||||
@@ -308,7 +309,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  // Parse ICE-XA hostname to get hypercube location
 | 
			
		||||
  gethostname(name,namelen);
 | 
			
		||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
			
		||||
  assert(nscan==3);
 | 
			
		||||
  GRID_ASSERT(nscan==3);
 | 
			
		||||
 | 
			
		||||
  int nlo = N%9;
 | 
			
		||||
  int nhi = N/9;
 | 
			
		||||
@@ -332,8 +333,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm); 
 | 
			
		||||
  hypercoor=hypercoor-rootcoor;
 | 
			
		||||
  assert(hypercoor<WorldSize);
 | 
			
		||||
  assert(hypercoor>=0);
 | 
			
		||||
  GRID_ASSERT(hypercoor<WorldSize);
 | 
			
		||||
  GRID_ASSERT(hypercoor>=0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////
 | 
			
		||||
  // Printing
 | 
			
		||||
@@ -381,7 +382,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  for(int i=0;i<ndimension;i++){
 | 
			
		||||
    Nprocessors*=processors[i];
 | 
			
		||||
  }
 | 
			
		||||
  assert(WorldSize==Nprocessors);
 | 
			
		||||
  GRID_ASSERT(WorldSize==Nprocessors);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish mapping between lexico physics coord and WorldRank
 | 
			
		||||
@@ -400,7 +401,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
			
		||||
  // Build the new communicator
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
			
		||||
{
 | 
			
		||||
@@ -430,7 +431,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
			
		||||
  for(int i=0;i<ndimension;i++){
 | 
			
		||||
    Nprocessors*=processors[i];
 | 
			
		||||
  }
 | 
			
		||||
  assert(WorldSize==Nprocessors);
 | 
			
		||||
  //  std::cerr << " WorldSize "<<WorldSize << " Nprocessors "<<Nprocessors<<" "<<processors<<std::endl; 
 | 
			
		||||
  GRID_ASSERT(WorldSize==Nprocessors);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Establish mapping between lexico physics coord and WorldRank
 | 
			
		||||
@@ -446,7 +448,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
			
		||||
  // Build the new communicator
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  GRID_ASSERT(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SHMGET
 | 
			
		||||
@@ -455,8 +457,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the shared windows for our group
 | 
			
		||||
@@ -517,8 +519,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the pointer array for shared windows for our group
 | 
			
		||||
@@ -537,19 +539,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  HostCommBuf= malloc(bytes);
 | 
			
		||||
  // printf("Host buffer allocate for GPU non-aware MPI\n");
 | 
			
		||||
  HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
 | 
			
		||||
#endif  
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
    std::cerr << "SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
  if ( WorldRank == 0 ){
 | 
			
		||||
    std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
    std::cout << Mheader " acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
  std::cout<< "Setting up IPC"<<std::endl;
 | 
			
		||||
  if ( WorldRank == 0 ){
 | 
			
		||||
    std::cout<< Mheader "Setting up IPC"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Loop over ranks/gpu's on our node
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -569,8 +574,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
@@ -580,8 +585,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
      if ( err != ZE_RESULT_SUCCESS ) {
 | 
			
		||||
	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
			
		||||
	exit(EXIT_FAILURE);
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
 | 
			
		||||
      handle.pid = getpid();
 | 
			
		||||
@@ -626,7 +629,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
			 MPI_BYTE,
 | 
			
		||||
			 r,
 | 
			
		||||
			 WorldShmComm);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      GRID_ASSERT(ierr==0);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ///////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -640,12 +643,12 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef SHM_SOCKETS
 | 
			
		||||
      myfd=UnixSockets::RecvFileDescriptor();
 | 
			
		||||
#else
 | 
			
		||||
      std::cout<<"mapping seeking remote pid/fd "
 | 
			
		||||
	       <<handle.pid<<"/"
 | 
			
		||||
	       <<handle.fd<<std::endl;
 | 
			
		||||
      //      std::cout<<"mapping seeking remote pid/fd "
 | 
			
		||||
      //	       <<handle.pid<<"/"
 | 
			
		||||
      //	       <<handle.fd<<std::endl;
 | 
			
		||||
 | 
			
		||||
      int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
 | 
			
		||||
      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
 | 
			
		||||
      //      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
 | 
			
		||||
      //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
 | 
			
		||||
      myfd  = syscall(438,pidfd,handle.fd,0);
 | 
			
		||||
      int err_t = errno;
 | 
			
		||||
@@ -655,7 +658,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
 | 
			
		||||
      //      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
 | 
			
		||||
      memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
 | 
			
		||||
      memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
 | 
			
		||||
 | 
			
		||||
@@ -664,11 +667,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
			
		||||
	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
			
		||||
	exit(EXIT_FAILURE);
 | 
			
		||||
      } else {
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
 | 
			
		||||
	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(thisBuf!=nullptr);
 | 
			
		||||
      GRID_ASSERT(thisBuf!=nullptr);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
@@ -709,8 +709,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -740,13 +740,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
			
		||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
			
		||||
      printf("mmap %s failed\n",shm_name);
 | 
			
		||||
      perror("failed mmap");      assert(0);    
 | 
			
		||||
      perror("failed mmap");      GRID_ASSERT(0);    
 | 
			
		||||
    }
 | 
			
		||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    close(fd);
 | 
			
		||||
    WorldShmCommBufs[r] =ptr;
 | 
			
		||||
    //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout<< Mheader " Intra-node IPC setup is complete "<<std::endl;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
  _ShmAllocBytes  = bytes;
 | 
			
		||||
};
 | 
			
		||||
@@ -756,8 +757,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -768,7 +769,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  // Hugetlbf and others map filesystems as mappable huge pages
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  char shm_name [NAME_MAX];
 | 
			
		||||
  assert(WorldShmSize == 1);
 | 
			
		||||
  GRID_ASSERT(WorldShmSize == 1);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    
 | 
			
		||||
    int fd=-1;
 | 
			
		||||
@@ -782,9 +783,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
    void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
			
		||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
			
		||||
      printf("mmap %s failed\n",shm_name);
 | 
			
		||||
      perror("failed mmap");      assert(0);    
 | 
			
		||||
      perror("failed mmap");      GRID_ASSERT(0);    
 | 
			
		||||
    }
 | 
			
		||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    close(fd);
 | 
			
		||||
    WorldShmCommBufs[r] =ptr;
 | 
			
		||||
    //    std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
			
		||||
@@ -803,8 +804,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{ 
 | 
			
		||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0); 
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0); 
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
 | 
			
		||||
@@ -835,7 +836,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
	perror("failed mmap");     
 | 
			
		||||
	assert(0);    
 | 
			
		||||
      }
 | 
			
		||||
      assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
      GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
      
 | 
			
		||||
      WorldShmCommBufs[r] =ptr;
 | 
			
		||||
      close(fd);
 | 
			
		||||
@@ -856,8 +857,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
      if ( fd<0 ) {	perror("failed shm_open");	assert(0);      }
 | 
			
		||||
      
 | 
			
		||||
      void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
 | 
			
		||||
      if ( ptr == MAP_FAILED ) {       perror("failed mmap");      assert(0);    }
 | 
			
		||||
      assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
      if ( ptr == MAP_FAILED ) {       perror("failed mmap");      GRID_ASSERT(0);    }
 | 
			
		||||
      GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
      WorldShmCommBufs[r] =ptr;
 | 
			
		||||
 | 
			
		||||
      close(fd);
 | 
			
		||||
@@ -880,14 +881,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
  bzero(dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
#else   
 | 
			
		||||
  bcopy(src,dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
//{
 | 
			
		||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
//#else   
 | 
			
		||||
//  bcopy(src,dest,bytes);
 | 
			
		||||
//#endif
 | 
			
		||||
//}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
@@ -914,7 +915,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map ShmRank to WorldShmRank and use the right buffer
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert (GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  GRID_ASSERT (GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  heap_size = GlobalSharedMemory::ShmAllocBytes();
 | 
			
		||||
  for(int r=0;r<ShmSize;r++){
 | 
			
		||||
 | 
			
		||||
@@ -923,6 +924,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
			
		||||
 | 
			
		||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
			
		||||
    //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
 | 
			
		||||
@@ -953,7 +955,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  //SharedMemoryTest();
 | 
			
		||||
  //  SharedMemoryTest();
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
// On node barrier
 | 
			
		||||
@@ -975,19 +977,18 @@ void SharedMemory::SharedMemoryTest(void)
 | 
			
		||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
			
		||||
       check[1]=r;
 | 
			
		||||
       check[2]=magic;
 | 
			
		||||
       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
			
		||||
       acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
			
		||||
    assert(check[1]==r);
 | 
			
		||||
    assert(check[2]==magic);
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
 | 
			
		||||
    GRID_ASSERT(check[0]==GlobalSharedMemory::WorldNode);
 | 
			
		||||
    GRID_ASSERT(check[1]==r);
 | 
			
		||||
    GRID_ASSERT(check[2]==magic);
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
@@ -1002,12 +1003,14 @@ void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
 | 
			
		||||
{
 | 
			
		||||
  int gpeer = ShmRanks[rank];
 | 
			
		||||
  assert(gpeer!=ShmRank); // never send to self
 | 
			
		||||
  GRID_ASSERT(gpeer!=ShmRank); // never send to self
 | 
			
		||||
  //  std::cout << "ShmBufferTranslate for rank " << rank<<" peer "<<gpeer<<std::endl;
 | 
			
		||||
  if (gpeer == MPI_UNDEFINED){
 | 
			
		||||
    return NULL;
 | 
			
		||||
  } else { 
 | 
			
		||||
    uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
 | 
			
		||||
    uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
 | 
			
		||||
    //    std::cout << "ShmBufferTranslate : local,offset,remote "<<std::hex<<local_p<<" "<<offset<<" "<<remote<<std::dec<<std::endl;
 | 
			
		||||
    return (void *) remote;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -34,7 +34,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
/*Construct from an MPI communicator*/
 | 
			
		||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(_ShmSetup==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==0);
 | 
			
		||||
  WorldComm = 0;
 | 
			
		||||
  WorldRank = 0;
 | 
			
		||||
  WorldSize = 1;
 | 
			
		||||
@@ -62,8 +62,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
@@ -92,8 +92,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
  GRID_ASSERT(_ShmSetup==1);
 | 
			
		||||
  GRID_ASSERT(_ShmAlloc==0);
 | 
			
		||||
  int mmap_flag =0;
 | 
			
		||||
#ifdef MAP_ANONYMOUS
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
 | 
			
		||||
@@ -122,17 +122,17 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorMemSet(dest,0,bytes);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
}
 | 
			
		||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
//{
 | 
			
		||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
//}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
{
 | 
			
		||||
  assert(GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  GRID_ASSERT(GlobalSharedMemory::ShmAlloc()==1);
 | 
			
		||||
  ShmRanks.resize(1);
 | 
			
		||||
  ShmCommBufs.resize(1);
 | 
			
		||||
  ShmRanks[0] = 0;
 | 
			
		||||
 
 | 
			
		||||
@@ -51,7 +51,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
			
		||||
auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -30,12 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
extern commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
 | 
			
		||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
{
 | 
			
		||||
  // GPU version
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
  uint64_t sz=Cshift_table.size();
 | 
			
		||||
  if (Cshift_table_device.size()!=sz )    {
 | 
			
		||||
    Cshift_table_device.resize(sz);
 | 
			
		||||
@@ -45,16 +44,13 @@ inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
			  sizeof(Cshift_table[0])*sz);
 | 
			
		||||
 | 
			
		||||
  return &Cshift_table_device[0];
 | 
			
		||||
#else 
 | 
			
		||||
  return &Cshift_table[0];
 | 
			
		||||
#endif
 | 
			
		||||
  // CPU version use identify map
 | 
			
		||||
}
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
@@ -94,17 +90,10 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      buffer_p[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -129,7 +118,6 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( cbmask ==0x3){
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -140,21 +128,10 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
	int o      =   n*n1;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
	
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
			
		||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
			
		||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -175,33 +152,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
 | 
			
		||||
	Coordinate coor;
 | 
			
		||||
 | 
			
		||||
	int o=n*n1;
 | 
			
		||||
	int oindex = o+b;
 | 
			
		||||
 | 
			
		||||
       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
			
		||||
 | 
			
		||||
	int ocb=1<<cb;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there is no need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
@@ -245,17 +202,10 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v, rhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      rhs_v[table[i].first]=buffer_p[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -278,8 +228,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
  if(cbmask ==0x3 ) {
 | 
			
		||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
			
		||||
    autoView( rhs_v , rhs, AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
	int b = nn/e1;
 | 
			
		||||
@@ -287,21 +236,13 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v , rhs, CpuWrite);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
	int o      = n*_slice_stride;
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
 | 
			
		||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
			
		||||
    // Test_cshift_red_black code.
 | 
			
		||||
    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
 | 
			
		||||
    std::cout << "Scatter_plane merge GRID_ASSERT(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
 | 
			
		||||
    std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
 | 
			
		||||
    assert(0); // This will fail if hit on GPU
 | 
			
		||||
    GRID_ASSERT(0); // This will fail if hit on GPU
 | 
			
		||||
    autoView( rhs_v, rhs, CpuWrite);
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
@@ -360,19 +301,11 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWriteDiscard);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    autoView(lhs_v , lhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -412,19 +345,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,1,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
    autoView( lhs_v, lhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -29,9 +29,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#ifndef _GRID_CSHIFT_MPI_H_
 | 
			
		||||
#define _GRID_CSHIFT_MPI_H_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
extern uint64_t checksum_index;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
const int Cshift_verbose=0;
 | 
			
		||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -45,6 +49,20 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
  // Map to always positive shift modulo global full dimension.
 | 
			
		||||
  shift = (shift+fd)%fd;
 | 
			
		||||
 | 
			
		||||
  if( shift ==0 ) {
 | 
			
		||||
    ret = rhs;
 | 
			
		||||
    return ret;
 | 
			
		||||
  }
 | 
			
		||||
  //
 | 
			
		||||
  // Potential easy fast cases:
 | 
			
		||||
  // Shift is a multiple of the local lattice extent.
 | 
			
		||||
  // Then need only to shift whole subvolumes
 | 
			
		||||
  int L = rhs.Grid()->_ldimensions[dimension];
 | 
			
		||||
  if ( (shift%L )==0 && !rhs.Grid()->CheckerBoarded(dimension) ) {
 | 
			
		||||
    Cshift_simple(ret,rhs,dimension,shift);
 | 
			
		||||
    return ret;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
			
		||||
        
 | 
			
		||||
  // the permute type
 | 
			
		||||
@@ -55,20 +73,69 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
  RealD t1,t0;
 | 
			
		||||
  t0=usecond();
 | 
			
		||||
  if ( !comm_dim ) {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
			
		||||
  } else if ( splice_dim ) {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift);
 | 
			
		||||
  } else {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
			
		||||
  }
 | 
			
		||||
  t1=usecond();
 | 
			
		||||
  //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void Cshift_simple(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  int comm_proc, xmit_to_rank, recv_from_rank;
 | 
			
		||||
  
 | 
			
		||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
  int ld              = rhs.Grid()->_ldimensions[dimension];
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  comm_proc = ((shift)/ld)%pd;
 | 
			
		||||
 | 
			
		||||
  grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
  if(comm_dim) {
 | 
			
		||||
 | 
			
		||||
    int64_t bytes = sizeof(vobj) * grid->oSites();
 | 
			
		||||
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(ret_v , ret, AcceleratorWrite);
 | 
			
		||||
    void *send_buf  = (void *)&rhs_v[0];
 | 
			
		||||
    void *recv_buf  = (void *)&ret_v[0];
 | 
			
		||||
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    grid->SendToRecvFrom(send_buf,
 | 
			
		||||
			 xmit_to_rank,
 | 
			
		||||
			 recv_buf,
 | 
			
		||||
			 recv_from_rank,
 | 
			
		||||
			 bytes);
 | 
			
		||||
#else
 | 
			
		||||
    static hostVector<vobj> hrhs; hrhs.resize(grid->oSites());
 | 
			
		||||
    static hostVector<vobj> hret; hret.resize(grid->oSites());
 | 
			
		||||
 | 
			
		||||
    void *hsend_buf = (void *)&hrhs[0];
 | 
			
		||||
    void *hrecv_buf = (void *)&hret[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
			
		||||
 | 
			
		||||
    grid->SendToRecvFrom(hsend_buf,
 | 
			
		||||
			 xmit_to_rank,
 | 
			
		||||
			 hrecv_buf,
 | 
			
		||||
			 recv_from_rank,
 | 
			
		||||
			 bytes);
 | 
			
		||||
 | 
			
		||||
    acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  int sshift[2];
 | 
			
		||||
@@ -94,18 +161,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    //    std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    //std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    //    std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#define ACCELERATOR_CSHIFT_NO_COPY
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT_NO_COPY
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -119,15 +184,20 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  assert(simd_layout==1);
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  GRID_ASSERT(simd_layout==1);
 | 
			
		||||
  GRID_ASSERT(comm_dim==1);
 | 
			
		||||
  GRID_ASSERT(shift>=0);
 | 
			
		||||
  GRID_ASSERT(shift<fd);
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
    
 | 
			
		||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  int pad = (8 + sizeof(vobj) - 1) / sizeof(vobj);
 | 
			
		||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size+pad);
 | 
			
		||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size+pad);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
@@ -141,9 +211,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_Copy_plane");
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_Copy_plane_complete");
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
@@ -151,39 +223,84 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_Gather_plane");
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_Gather_plane_complete");
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
      
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_SendRecv");
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
#else
 | 
			
		||||
      // bouncy bouncy
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
      GRID_ASSERT(bytes % 8 == 0);
 | 
			
		||||
      checksum_index++;
 | 
			
		||||
      uint64_t xsum = checksum_gpu((uint64_t*)&send_buf[0], bytes / 8) ^ (1 + checksum_index);
 | 
			
		||||
      *(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
 | 
			
		||||
      bytes += 8;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&hrecv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
      bytes -= 8;
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
			
		||||
      uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
 | 
			
		||||
      uint64_t computed_cs = checksum_gpu((uint64_t*)&recv_buf[0], bytes / 8) ^ (1 + checksum_index);
 | 
			
		||||
      std::cout << GridLogComms<< " Cshift: "
 | 
			
		||||
		<<" dim"<<dimension
 | 
			
		||||
		<<" shift "<<shift
 | 
			
		||||
		<< " rank "<< grid->ThisRank()
 | 
			
		||||
		<<" Coor "<<grid->ThisProcessorCoor()
 | 
			
		||||
		<<" send "<<xsum<<" to   "<<xmit_to_rank
 | 
			
		||||
		<<" recv "<<computed_cs<<" from "<<recv_from_rank
 | 
			
		||||
		<<std::endl;
 | 
			
		||||
      GRID_ASSERT(expected_cs == computed_cs);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_SendRecv_complete");
 | 
			
		||||
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
      FlightRecorder::StepLog("Cshift_barrier_complete");
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
  if (Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -201,14 +318,14 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //	    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //	    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  GRID_ASSERT(comm_dim==1);
 | 
			
		||||
  GRID_ASSERT(simd_layout==2);
 | 
			
		||||
  GRID_ASSERT(shift>=0);
 | 
			
		||||
  GRID_ASSERT(shift<fd);
 | 
			
		||||
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
@@ -224,16 +341,28 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
  buffer_size += (8 + sizeof(vobj) - 1) / sizeof(vobj);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
 | 
			
		||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
  buffer_size -= (8 + sizeof(vobj) - 1) / sizeof(vobj);
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
@@ -275,272 +404,81 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
 | 
			
		||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
			
		||||
 | 
			
		||||
      assert (sx == nbr_ox);
 | 
			
		||||
      GRID_ASSERT (sx == nbr_ox);
 | 
			
		||||
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  Lattice<vobj> temp(rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  assert(simd_layout==1);
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
			
		||||
  vobj *send_buf;
 | 
			
		||||
  vobj *recv_buf;
 | 
			
		||||
  {
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    size_t bytes = buffer_size*sizeof(vobj);
 | 
			
		||||
    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
      if (cbmask != 0x3) words=words>>1;
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
			
		||||
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
   
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int pd = grid->_processors[dimension];
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Simd direction uses an extract/merge pair
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
  {
 | 
			
		||||
    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Work out what to send where
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  int cb    = (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  // loop over outer coord planes orthog to dim
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    // FIXME call local permute copy if none are offnode.
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
      int inner_bit = (Nsimd>>(permute_type+1));
 | 
			
		||||
      int ic= (i&inner_bit)? 1:0;
 | 
			
		||||
 | 
			
		||||
      int my_coor          = rd*ic + x;
 | 
			
		||||
      int nbr_coor         = my_coor+sshift;
 | 
			
		||||
      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
			
		||||
 | 
			
		||||
      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
			
		||||
      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
			
		||||
      int nbr_lane = (i&(~inner_bit));
 | 
			
		||||
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
			
		||||
 | 
			
		||||
      assert (sx == nbr_ox);
 | 
			
		||||
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
      // bouncy bouncy
 | 
			
		||||
	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
	assert(bytes % 8 == 0);
 | 
			
		||||
	checksum_index++;
 | 
			
		||||
	uint64_t xsum = checksum_gpu((uint64_t*)send_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
 | 
			
		||||
	*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
 | 
			
		||||
	bytes += 8;
 | 
			
		||||
#endif
 | 
			
		||||
	grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)&hrecv_buf[0],
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
#ifdef GRID_CHECKSUM_COMMS
 | 
			
		||||
	bytes -= 8;
 | 
			
		||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
			
		||||
	uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
 | 
			
		||||
	uint64_t computed_cs = checksum_gpu((uint64_t*)recv_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogComms<< " Cshift_comms_simd: "
 | 
			
		||||
		<<" dim"<<dimension
 | 
			
		||||
		<<" shift "<<shift
 | 
			
		||||
		<< " rank "<< grid->ThisRank()
 | 
			
		||||
		<<" Coor "<<grid->ThisProcessorCoor()
 | 
			
		||||
		<<" send "<<xsum<<" to   "<<xmit_to_rank
 | 
			
		||||
		<<" recv "<<computed_cs<<" from "<<recv_from_rank
 | 
			
		||||
		<<std::endl;
 | 
			
		||||
	assert(expected_cs == computed_cs);
 | 
			
		||||
#else
 | 
			
		||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  if(Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
#include <Grid/GridCore.h>       
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -245,7 +245,7 @@ template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * =
 | 
			
		||||
inline void CBFromExpression(int &cb, const T1 &lat)  // Lattice leaf
 | 
			
		||||
{
 | 
			
		||||
  if ((cb == Odd) || (cb == Even)) {
 | 
			
		||||
    assert(cb == lat.Checkerboard());
 | 
			
		||||
    GRID_ASSERT(cb == lat.Checkerboard());
 | 
			
		||||
  }
 | 
			
		||||
  cb = lat.Checkerboard();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define FAST_AXPY_NORM
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpy_norm");
 | 
			
		||||
    return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpby_norm");
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+b*y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Trace product
 | 
			
		||||
 
 | 
			
		||||
@@ -120,12 +120,12 @@ public:
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    GRID_ASSERT(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
    
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
@@ -144,12 +144,12 @@ public:
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    GRID_ASSERT(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
@@ -168,12 +168,12 @@ public:
 | 
			
		||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
			
		||||
    GridBase *egrid(nullptr);
 | 
			
		||||
    GridFromExpression(egrid,expr);
 | 
			
		||||
    assert(egrid!=nullptr);
 | 
			
		||||
    GRID_ASSERT(egrid!=nullptr);
 | 
			
		||||
    conformable(this->_grid,egrid);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
    auto exprCopy = expr;
 | 
			
		||||
    ExpressionViewOpen(exprCopy);
 | 
			
		||||
@@ -191,11 +191,11 @@ public:
 | 
			
		||||
  Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
    GRID_ASSERT(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
@@ -206,11 +206,11 @@ public:
 | 
			
		||||
  Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
    GRID_ASSERT(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
@@ -221,11 +221,11 @@ public:
 | 
			
		||||
  Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
 | 
			
		||||
    this->_grid = nullptr;
 | 
			
		||||
    GridFromExpression(this->_grid,expr);
 | 
			
		||||
    assert(this->_grid!=nullptr);
 | 
			
		||||
    GRID_ASSERT(this->_grid!=nullptr);
 | 
			
		||||
 | 
			
		||||
    int cb=-1;
 | 
			
		||||
    CBFromExpression(cb,expr);
 | 
			
		||||
    assert( (cb==Odd) || (cb==Even));
 | 
			
		||||
    GRID_ASSERT( (cb==Odd) || (cb==Even));
 | 
			
		||||
    this->checkerboard=cb;
 | 
			
		||||
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
@@ -237,16 +237,19 @@ public:
 | 
			
		||||
    vobj vtmp;
 | 
			
		||||
    vtmp = r;
 | 
			
		||||
#if 1
 | 
			
		||||
    deviceVector<vobj> vvtmp(1);
 | 
			
		||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
			
		||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
			
		||||
	coalescedWrite(me[ss],stmp);
 | 
			
		||||
    });
 | 
			
		||||
#else    
 | 
			
		||||
    auto me  = View(CpuWrite);
 | 
			
		||||
    thread_for(ss,me.size(),{
 | 
			
		||||
       me[ss]= r;
 | 
			
		||||
      });
 | 
			
		||||
#else    
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
	auto stmp=coalescedRead(vtmp);
 | 
			
		||||
	coalescedWrite(me[ss],stmp);
 | 
			
		||||
    });
 | 
			
		||||
#endif    
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    return *this;
 | 
			
		||||
@@ -261,7 +264,7 @@ public:
 | 
			
		||||
  Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) { 
 | 
			
		||||
    this->_grid = grid;
 | 
			
		||||
    resize(this->_grid->oSites());
 | 
			
		||||
    assert((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
			
		||||
    GRID_ASSERT((((uint64_t)&this->_odata[0])&0xF) ==0);
 | 
			
		||||
    this->checkerboard=0;
 | 
			
		||||
    SetViewMode(mode);
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -53,36 +53,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
  typedef decltype(basis[0]) Field;
 | 
			
		||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
			
		||||
 | 
			
		||||
  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
			
		||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
			
		||||
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
      
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
			
		||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
 | 
			
		||||
  int max_threads = thread_max();
 | 
			
		||||
  Vector < vobj > Bt(Nm * max_threads);
 | 
			
		||||
  thread_region
 | 
			
		||||
    {
 | 
			
		||||
      vobj* B = &Bt[Nm * thread_num()];
 | 
			
		||||
      thread_for_in_region(ss, grid->oSites(),{
 | 
			
		||||
	  for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
			
		||||
      
 | 
			
		||||
	  for(int j=j0; j<j1; ++j){
 | 
			
		||||
	    for(int k=k0; k<k1; ++k){
 | 
			
		||||
	      B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
			
		||||
	    }
 | 
			
		||||
	  }
 | 
			
		||||
	  for(int j=j0; j<j1; ++j){
 | 
			
		||||
	    basis_v[j][ss] = B[j];
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
  View *basis_vp = &basis_v[0];
 | 
			
		||||
  View *basis_vp = &d_basis_v[0];
 | 
			
		||||
 | 
			
		||||
  int nrot = j1-j0;
 | 
			
		||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
			
		||||
@@ -91,17 +74,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
  uint64_t oSites   =grid->oSites();
 | 
			
		||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
			
		||||
 | 
			
		||||
  Vector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  auto Bp=&Bt[0];
 | 
			
		||||
 | 
			
		||||
  // GPU readable copy of matrix
 | 
			
		||||
  Vector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
			
		||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
			
		||||
  thread_for(i,Nm*Nm,{
 | 
			
		||||
      int j = i/Nm;
 | 
			
		||||
      int k = i%Nm;
 | 
			
		||||
      Qt_p[i]=Qt(j,k);
 | 
			
		||||
      h_Qt_jv[i]=Qt(j,k);
 | 
			
		||||
  });
 | 
			
		||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
			
		||||
 | 
			
		||||
  // Block the loop to keep storage footprint down
 | 
			
		||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
			
		||||
@@ -137,9 +122,8 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Extract a single rotated vector
 | 
			
		||||
@@ -152,16 +136,19 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
			
		||||
 | 
			
		||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorRead));
 | 
			
		||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
  }
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  Vector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
			
		||||
 | 
			
		||||
  auto basis_vp=& basis_v[0];
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  deviceVector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
			
		||||
 | 
			
		||||
  auto basis_vp=& d_basis_v[0];
 | 
			
		||||
  autoView(result_v,result,AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
			
		||||
    vobj zzz=Zero();
 | 
			
		||||
@@ -171,7 +158,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
			
		||||
    }
 | 
			
		||||
    coalescedWrite(result_v[ss], B);
 | 
			
		||||
  });
 | 
			
		||||
  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
@@ -179,9 +166,9 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
 | 
			
		||||
{
 | 
			
		||||
  int vlen = idx.size();
 | 
			
		||||
 | 
			
		||||
  assert(vlen>=1);
 | 
			
		||||
  assert(vlen<=sort_vals.size());
 | 
			
		||||
  assert(vlen<=_v.size());
 | 
			
		||||
  GRID_ASSERT(vlen>=1);
 | 
			
		||||
  GRID_ASSERT(vlen<=sort_vals.size());
 | 
			
		||||
  GRID_ASSERT(vlen<=_v.size());
 | 
			
		||||
 | 
			
		||||
  for (size_t i=0;i<vlen;i++) {
 | 
			
		||||
 | 
			
		||||
@@ -199,7 +186,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
 | 
			
		||||
	if (idx[j]==i)
 | 
			
		||||
	  break;
 | 
			
		||||
 | 
			
		||||
      assert(idx[i] > i);     assert(j!=idx.size());      assert(idx[j]==i);
 | 
			
		||||
      GRID_ASSERT(idx[i] > i);     GRID_ASSERT(j!=idx.size());      GRID_ASSERT(idx[j]==i);
 | 
			
		||||
 | 
			
		||||
      swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
 | 
			
		||||
      std::swap(sort_vals[i],sort_vals[idx[i]]);
 | 
			
		||||
@@ -237,7 +224,7 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo
 | 
			
		||||
template<class Field>
 | 
			
		||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
			
		||||
  result = Zero();
 | 
			
		||||
  assert(_v.size()==eval.size());
 | 
			
		||||
  GRID_ASSERT(_v.size()==eval.size());
 | 
			
		||||
  int N = (int)_v.size();
 | 
			
		||||
  for (int i=0;i<N;i++) {
 | 
			
		||||
    Field& tmp = _v[i];
 | 
			
		||||
 
 | 
			
		||||
@@ -32,8 +32,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  assert(lhs.Grid() == rhs.Grid());
 | 
			
		||||
  assert(lhs.Checkerboard() == rhs.Checkerboard());
 | 
			
		||||
  GRID_ASSERT(lhs.Grid() == rhs.Grid());
 | 
			
		||||
  GRID_ASSERT(lhs.Checkerboard() == rhs.Checkerboard());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -42,7 +42,7 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
@@ -86,7 +86,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
@@ -140,7 +140,7 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj>
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 
 | 
			
		||||
@@ -98,8 +98,8 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
  GRID_ASSERT( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
			
		||||
  GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  int rank,odx,idx;
 | 
			
		||||
  // Optional to broadcast from node 0.
 | 
			
		||||
@@ -135,7 +135,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
			
		||||
  GRID_ASSERT( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
			
		||||
 | 
			
		||||
  int rank,odx,idx;
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
@@ -159,14 +159,14 @@ template<class vobj,class sobj>
 | 
			
		||||
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = l.getGrid();
 | 
			
		||||
  assert(l.mode==CpuRead);
 | 
			
		||||
  GRID_ASSERT(l.mode==CpuRead);
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
  //  GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  int odx,idx;
 | 
			
		||||
@@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    pt[w] = getlane(vp[w],idx);
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
@@ -195,15 +195,15 @@ template<class vobj,class sobj>
 | 
			
		||||
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=l.getGrid();
 | 
			
		||||
  assert(l.mode==CpuWrite);
 | 
			
		||||
  GRID_ASSERT(l.mode==CpuWrite);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
  //  GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  int odx,idx;
 | 
			
		||||
 
 | 
			
		||||
@@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
  //  const int Nsimd = vobj::Nsimd();
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  std::vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
@@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  std::vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
@@ -264,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
  // Might make all code paths go this way.
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  {
 | 
			
		||||
    autoView( left_v , left, AcceleratorRead);
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
    // This code could read coalesce
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
    
 | 
			
		||||
  {
 | 
			
		||||
@@ -295,7 +279,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  // This is in single precision and fails some tests
 | 
			
		||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
			
		||||
  nrm = anrm;
 | 
			
		||||
@@ -307,23 +290,45 @@ template<class vobj>
 | 
			
		||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
  bool ok;
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  uint64_t csum=0;
 | 
			
		||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  {
 | 
			
		||||
    // Hack
 | 
			
		||||
    // Fast integer xor checksum. Can also be used in comms now.
 | 
			
		||||
    autoView(l_v,left,AcceleratorRead);
 | 
			
		||||
    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
    uint64_t *base= (uint64_t *)&l_v[0];
 | 
			
		||||
    csum=svm_xor(base,words);
 | 
			
		||||
  }
 | 
			
		||||
  FlightRecorder::CsumLog(csum);
 | 
			
		||||
  //  uint64_t csum=0;
 | 
			
		||||
  //  uint64_t csum2=0;
 | 
			
		||||
  //  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  //  {
 | 
			
		||||
  // Hack
 | 
			
		||||
  // Fast integer xor checksum. Can also be used in comms now.
 | 
			
		||||
  //    autoView(l_v,left,AcceleratorRead);
 | 
			
		||||
  //    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
  //    uint64_t *base= (uint64_t *)&l_v[0];
 | 
			
		||||
  //    csum=svm_xor(base,words);
 | 
			
		||||
  //    ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
  //    if ( !ok ) {
 | 
			
		||||
  //      csum2=svm_xor(base,words);
 | 
			
		||||
  //      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
  //    } else {
 | 
			
		||||
  //      csum2=svm_xor(base,words);
 | 
			
		||||
  //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
  //    }
 | 
			
		||||
  //    GRID_ASSERT(ok);
 | 
			
		||||
  // }
 | 
			
		||||
#endif
 | 
			
		||||
  FlightRecorder::StepLog("rank inner product");
 | 
			
		||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
			
		||||
  //  ComplexD nrmck=nrm;
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
  FlightRecorder::NormLog(real(nrm)); 
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
			
		||||
  if ( !ok ) {
 | 
			
		||||
    ComplexD nrm2 = rankInnerProduct(left,right);
 | 
			
		||||
    RealD local2 = real(nrm2);
 | 
			
		||||
    std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
 | 
			
		||||
    GRID_ASSERT(ok);
 | 
			
		||||
  }
 | 
			
		||||
  FlightRecorder::StepLog("Start global sum");
 | 
			
		||||
  grid->GlobalSumP2P(nrm);
 | 
			
		||||
  //  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::StepLog("Finished global sum");
 | 
			
		||||
  //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
@@ -360,18 +365,6 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  autoView( x_v, x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v, y, AcceleratorRead);
 | 
			
		||||
  autoView( z_v, z, AcceleratorWrite);
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  deviceVector<inner_t> inner_tmp;
 | 
			
		||||
  inner_tmp.resize(sites);
 | 
			
		||||
@@ -382,9 +375,13 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  bool ok;
 | 
			
		||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
			
		||||
#endif
 | 
			
		||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
			
		||||
  GRID_ASSERT(ok);
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm));
 | 
			
		||||
  return nrm; 
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -394,7 +391,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
  conformable(left,right);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  Vector<ComplexD> tmp(2);
 | 
			
		||||
  std::vector<ComplexD> tmp(2);
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -404,8 +401,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
  // GPU
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  Vector<norm_t>  norm_tmp(sites);
 | 
			
		||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
			
		||||
  deviceVector<norm_t>  norm_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  auto norm_tmp_v = &norm_tmp[0];
 | 
			
		||||
  {
 | 
			
		||||
@@ -455,7 +452,9 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
			
		||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
			
		||||
					  std::vector<typename vobj::scalar_object> &result,
 | 
			
		||||
					  int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // FIXME precision promoted summation
 | 
			
		||||
@@ -465,20 +464,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_object::scalar_type scalar_type;
 | 
			
		||||
  GridBase  *grid = Data.Grid();
 | 
			
		||||
  assert(grid!=NULL);
 | 
			
		||||
  GRID_ASSERT(grid!=NULL);
 | 
			
		||||
 | 
			
		||||
  const int    Nd = grid->_ndimension;
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert(orthogdim >= 0);
 | 
			
		||||
  assert(orthogdim < Nd);
 | 
			
		||||
  GRID_ASSERT(orthogdim >= 0);
 | 
			
		||||
  GRID_ASSERT(orthogdim < Nd);
 | 
			
		||||
 | 
			
		||||
  int fd=grid->_fdimensions[orthogdim];
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  std::vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
			
		||||
@@ -526,6 +525,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
			
		||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
  grid->GlobalSumVector(ptr, words);
 | 
			
		||||
  //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> inline
 | 
			
		||||
std::vector<typename vobj::scalar_object> 
 | 
			
		||||
@@ -536,28 +537,41 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
Reimplement
 | 
			
		||||
 | 
			
		||||
1)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
 | 
			
		||||
2)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
 | 
			
		||||
3)
 | 
			
		||||
-- Make Slice Mul Matrix call sliceMaddMatrix
 | 
			
		||||
 */
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type   vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type   scalar_type;
 | 
			
		||||
  GridBase  *grid = lhs.Grid();
 | 
			
		||||
  assert(grid!=NULL);
 | 
			
		||||
  GRID_ASSERT(grid!=NULL);
 | 
			
		||||
  conformable(grid,rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  const int    Nd = grid->_ndimension;
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert(orthogdim >= 0);
 | 
			
		||||
  assert(orthogdim < Nd);
 | 
			
		||||
  GRID_ASSERT(orthogdim >= 0);
 | 
			
		||||
  GRID_ASSERT(orthogdim < Nd);
 | 
			
		||||
 | 
			
		||||
  int fd=grid->_fdimensions[orthogdim];
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  std::vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
			
		||||
@@ -687,203 +701,96 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
			
		||||
{
 | 
			
		||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
			
		||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> latt_phys(0);
 | 
			
		||||
  std::vector<int> simd_phys(0);
 | 
			
		||||
  std::vector<int>  mpi_phys(0);
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> latt_phys(NN-1);
 | 
			
		||||
  Coordinate simd_phys;
 | 
			
		||||
  std::vector<int>  mpi_phys(NN-1);
 | 
			
		||||
  Coordinate checker_dim_mask(NN-1);
 | 
			
		||||
  int checker_dim=-1;
 | 
			
		||||
 | 
			
		||||
  int dd;
 | 
			
		||||
  for(int d=0;d<NN;d++){
 | 
			
		||||
    if( d!=Orthog ) { 
 | 
			
		||||
      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
			
		||||
      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
			
		||||
      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
			
		||||
      latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
 | 
			
		||||
      mpi_phys[dd] =BlockSolverGrid->_processors[d];
 | 
			
		||||
      checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
 | 
			
		||||
      if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
 | 
			
		||||
      dd++;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
			
		||||
  simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
 | 
			
		||||
  GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys);
 | 
			
		||||
  if(BlockSolverGrid->_isCheckerBoarded) {
 | 
			
		||||
    GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
 | 
			
		||||
    delete tmp;
 | 
			
		||||
    return (GridBase *) ret;
 | 
			
		||||
  } else { 
 | 
			
		||||
    return (GridBase *) tmp;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  GridBase *FullGrid = X.Grid();
 | 
			
		||||
  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> Ys(SliceGrid);
 | 
			
		||||
  Lattice<vobj> Rs(SliceGrid);
 | 
			
		||||
  Lattice<vobj> Xs(SliceGrid);
 | 
			
		||||
  Lattice<vobj> RR(FullGrid);
 | 
			
		||||
 | 
			
		||||
  RR = R; // Copies checkerboard for insert
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  autoView( X_v, X, CpuRead);
 | 
			
		||||
  autoView( Y_v, Y, CpuRead);
 | 
			
		||||
  autoView( R_v, R, CpuWrite);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    Vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region(2, n,nblock, {
 | 
			
		||||
     for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = Y_v[o+i*ostride];
 | 
			
		||||
	for(int j=0;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  int Nslice = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  for(int i=0;i<Nslice;i++){
 | 
			
		||||
    ExtractSlice(Ys,Y,i,Orthog);
 | 
			
		||||
    ExtractSlice(Rs,R,i,Orthog);
 | 
			
		||||
    Rs=Ys;
 | 
			
		||||
    for(int j=0;j<Nslice;j++){
 | 
			
		||||
      ExtractSlice(Xs,X,j,Orthog);
 | 
			
		||||
      Rs = Rs + Xs*(scale*aa(j,i));
 | 
			
		||||
    }
 | 
			
		||||
    InsertSlice(Rs,RR,i,Orthog);
 | 
			
		||||
  }
 | 
			
		||||
  R=RR; // Copy back handles arguments aliasing case
 | 
			
		||||
  delete SliceGrid;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl=1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  // thread_for2d_in_region
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
  autoView( R_v, R, CpuWrite);
 | 
			
		||||
  autoView( X_v, X, CpuRead);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = s_x[0]*(scale*aa(0,i));
 | 
			
		||||
	for(int j=1;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
 | 
			
		||||
{
 | 
			
		||||
  R=Zero();
 | 
			
		||||
  sliceMaddMatrix(R,aa,X,R,Orthog,scale);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> ls(SliceGrid);
 | 
			
		||||
  Lattice<vobj> rs(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
			
		||||
  
 | 
			
		||||
  //  Lattice<vobj> Lslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_typeD;
 | 
			
		||||
 | 
			
		||||
  autoView( lhs_v, lhs, CpuRead);
 | 
			
		||||
  autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> Left(Nblock);
 | 
			
		||||
    std::vector<vobj> Right(Nblock);
 | 
			
		||||
    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2, n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	Left [i] = lhs_v[o+i*ostride];
 | 
			
		||||
	Right[i] = rhs_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
      for(int j=0;j<Nblock;j++){
 | 
			
		||||
	auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	auto red  =  Reduce(rtmp);
 | 
			
		||||
	mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
			
		||||
      }}
 | 
			
		||||
    }});
 | 
			
		||||
    thread_critical
 | 
			
		||||
    {
 | 
			
		||||
      mat += mat_thread;
 | 
			
		||||
    }  
 | 
			
		||||
  int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
 | 
			
		||||
  for(int s=0;s<Nslice;s++){
 | 
			
		||||
    ExtractSlice(ls,lhs,s,Orthog);
 | 
			
		||||
    for(int ss=0;ss<Nslice;ss++){
 | 
			
		||||
      ExtractSlice(rs,rhs,ss,Orthog);
 | 
			
		||||
      mat(s,ss) = innerProduct(ls,rs);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<Nblock;i++){
 | 
			
		||||
  for(int j=0;j<Nblock;j++){
 | 
			
		||||
    ComplexD sum = mat(i,j);
 | 
			
		||||
    FullGrid->GlobalSum(sum);
 | 
			
		||||
    mat(i,j)=sum;
 | 
			
		||||
  }}
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
  delete SliceGrid;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -208,28 +208,18 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
			
		||||
 | 
			
		||||
  Integer numThreads, numBlocks;
 | 
			
		||||
  int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
			
		||||
  assert(ok);
 | 
			
		||||
  GRID_ASSERT(ok);
 | 
			
		||||
 | 
			
		||||
  Integer smemSize = numThreads * sizeof(sobj);
 | 
			
		||||
  // Move out of UVM
 | 
			
		||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
			
		||||
  // as running this on the default stream fools the synchronise
 | 
			
		||||
#undef UVM_BLOCK_BUFFER  
 | 
			
		||||
#ifndef UVM_BLOCK_BUFFER  
 | 
			
		||||
  commVector<sobj> buffer(numBlocks);
 | 
			
		||||
  deviceVector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
			
		||||
#else
 | 
			
		||||
  Vector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  result = *buffer_v;
 | 
			
		||||
#endif
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -244,7 +234,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
			
		||||
  
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
 | 
			
		||||
  Vector<vector> buffer(osites);
 | 
			
		||||
  deviceVector<vector> buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)lat;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
			
		||||
 
 | 
			
		||||
@@ -4,33 +4,28 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Possibly promote to double and sum
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
			
		||||
  static Vector<sobj> mysum;
 | 
			
		||||
  mysum.resize(1);
 | 
			
		||||
  sobj *mysum_p = & mysum[0];
 | 
			
		||||
 | 
			
		||||
  sobj identity; zeroit(identity);
 | 
			
		||||
  mysum[0] = identity;
 | 
			
		||||
  sobj ret ; 
 | 
			
		||||
 | 
			
		||||
  sobj ret; zeroit(ret);
 | 
			
		||||
  Integer nsimd= vobj::Nsimd();
 | 
			
		||||
 | 
			
		||||
  const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
    auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList);
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{osites},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
      auto osite   = item[0];
 | 
			
		||||
      sum +=Reduce(lat[osite]);
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  ret = mysum[0];
 | 
			
		||||
  //  free(mysum,*theGridAccelerator);
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<sobj, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{osites},
 | 
			
		||||
                      Reduction,
 | 
			
		||||
                      [=] (sycl::id<1> item, auto &sum) {
 | 
			
		||||
                        auto osite   = item[0];
 | 
			
		||||
                        sum +=Reduce(lat[osite]);
 | 
			
		||||
                      });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  sobjD dret; convertType(dret,ret);
 | 
			
		||||
  return dret;
 | 
			
		||||
}
 | 
			
		||||
@@ -76,59 +71,41 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
 | 
			
		||||
 | 
			
		||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
			
		||||
{
 | 
			
		||||
  Word xorResult; xorResult = 0;
 | 
			
		||||
  static Vector<Word> d_sum;
 | 
			
		||||
  d_sum.resize(1);
 | 
			
		||||
  Word *d_sum_p=&d_sum[0];
 | 
			
		||||
  Word identity;  identity=0;
 | 
			
		||||
  d_sum[0] = identity;
 | 
			
		||||
  const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
    auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList);
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
			
		||||
	 sum^=vec[index];
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  Word ret = 0;
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
			
		||||
                      Reduction,
 | 
			
		||||
                      [=] (sycl::id<1> index, auto &sum) {
 | 
			
		||||
                        sum ^=vec[index];
 | 
			
		||||
                      });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class Word> Word checksum_gpu(Word *vec,uint64_t L)
 | 
			
		||||
{
 | 
			
		||||
  Word identity;  identity=0;
 | 
			
		||||
  Word ret = 0;
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
			
		||||
                       Reduction,
 | 
			
		||||
                       [=] (sycl::id<1> index, auto &sum) {
 | 
			
		||||
			 auto l = index % 61;
 | 
			
		||||
                         sum ^= vec[index]<<l | vec[index]>>(64-l);
 | 
			
		||||
                       });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  Word ret = d_sum[0];
 | 
			
		||||
  //  free(d_sum,*theGridAccelerator);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type  vector;
 | 
			
		||||
  typedef typename vobj::scalar_type  scalar;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_typeD scalarD;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
			
		||||
 | 
			
		||||
  sobjD ret;
 | 
			
		||||
  scalarD *ret_p = (scalarD *)&ret;
 | 
			
		||||
  
 | 
			
		||||
  const int nsimd = vobj::Nsimd();
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
 | 
			
		||||
  Vector<scalar> buffer(osites*nsimd);
 | 
			
		||||
  scalar *buf = &buffer[0];
 | 
			
		||||
  vector *dat = (vector *)lat;
 | 
			
		||||
 | 
			
		||||
  for(int w=0;w<words;w++) {
 | 
			
		||||
 | 
			
		||||
    accelerator_for(ss,osites,nsimd,{
 | 
			
		||||
	int lane = acceleratorSIMTlane(nsimd);
 | 
			
		||||
	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
 | 
			
		||||
    });
 | 
			
		||||
    //Precision change at this point is to late to gain precision
 | 
			
		||||
    ret_p[w] = svm_reduce(buf,nsimd*osites);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 
 | 
			
		||||
@@ -53,10 +53,10 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
			
		||||
  assert(lowerdims >= 0);
 | 
			
		||||
  GRID_ASSERT(lowerdims >= 0);
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    assert(fine->_simd_layout[d]==1);
 | 
			
		||||
    assert(fine->_processors[d]==1);
 | 
			
		||||
    GRID_ASSERT(fine->_simd_layout[d]==1);
 | 
			
		||||
    GRID_ASSERT(fine->_processors[d]==1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int multiplicity=1;
 | 
			
		||||
@@ -66,9 +66,9 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
  for(int d=0;d<rngdims;d++){
 | 
			
		||||
    int fd= d+lowerdims;
 | 
			
		||||
    assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
    assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
    assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
    GRID_ASSERT(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
    GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
    GRID_ASSERT(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
 | 
			
		||||
    multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
			
		||||
  }
 | 
			
		||||
@@ -83,18 +83,18 @@ inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;  assert(lowerdims >= 0);
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;  GRID_ASSERT(lowerdims >= 0);
 | 
			
		||||
  // assumes that the higher dimensions are not using more processors
 | 
			
		||||
  // all further divisions are local
 | 
			
		||||
  for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
 | 
			
		||||
  for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
 | 
			
		||||
  for(int d=0;d<lowerdims;d++) GRID_ASSERT(fine->_processors[d]==1);
 | 
			
		||||
  for(int d=0;d<rngdims;d++) GRID_ASSERT(coarse->_processors[d] == fine->_processors[d+lowerdims]);
 | 
			
		||||
 | 
			
		||||
  // then divide the number of local sites
 | 
			
		||||
  // check that the total number of sims agree, meanse the iSites are the same
 | 
			
		||||
  assert(fine->Nsimd() == coarse->Nsimd());
 | 
			
		||||
  GRID_ASSERT(fine->Nsimd() == coarse->Nsimd());
 | 
			
		||||
 | 
			
		||||
  // check that the two grids divide cleanly
 | 
			
		||||
  assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
 | 
			
		||||
  GRID_ASSERT( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
 | 
			
		||||
 | 
			
		||||
  return fine->lSites() / coarse->lSites();
 | 
			
		||||
}
 | 
			
		||||
@@ -177,7 +177,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    skip = skip<<shift;
 | 
			
		||||
 | 
			
		||||
    assert((skip >> shift)==site); // check for overflow
 | 
			
		||||
    GRID_ASSERT((skip >> shift)==site); // check for overflow
 | 
			
		||||
 | 
			
		||||
    eng.discard(skip);
 | 
			
		||||
#else
 | 
			
		||||
@@ -218,7 +218,7 @@ public:
 | 
			
		||||
    GetState(saved,_generators[gen]);
 | 
			
		||||
  }
 | 
			
		||||
  void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
 | 
			
		||||
    assert(saved.size()==RngStateCount);
 | 
			
		||||
    GRID_ASSERT(saved.size()==RngStateCount);
 | 
			
		||||
    std::stringstream ss;
 | 
			
		||||
    for(int i=0;i<RngStateCount;i++){
 | 
			
		||||
      ss<< saved[i]<<" ";
 | 
			
		||||
 
 | 
			
		||||
@@ -21,9 +21,18 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
			
		||||
					std::vector<vobj> &lvSum,
 | 
			
		||||
					const int rd,
 | 
			
		||||
					const int e1,
 | 
			
		||||
					const int e2,
 | 
			
		||||
					const int stride,
 | 
			
		||||
					const int ostride,
 | 
			
		||||
					const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
  vobj zero_init;
 | 
			
		||||
  zeroit(zero_init);
 | 
			
		||||
@@ -46,7 +55,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
 | 
			
		||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
			
		||||
  
 | 
			
		||||
  //copy offsets to device
 | 
			
		||||
  acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
@@ -79,7 +88,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  //sync after copy
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
@@ -94,7 +103,15 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
					 std::vector <vobj> &lvSum,
 | 
			
		||||
					 const int  &rd,
 | 
			
		||||
					 const int &e1,
 | 
			
		||||
					 const int &e2,
 | 
			
		||||
					 const int &stride,
 | 
			
		||||
					 const int &ostride,
 | 
			
		||||
					 const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
 | 
			
		||||
@@ -105,7 +122,7 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
    mysum[r] = vobj_zero; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
 | 
			
		||||
@@ -124,11 +141,11 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
      theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
 | 
			
		||||
          cgh.parallel_for(cl::sycl::range<1>{subvol_size},
 | 
			
		||||
      theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
 | 
			
		||||
          cgh.parallel_for(sycl::range<1>{subvol_size},
 | 
			
		||||
          Reduction,
 | 
			
		||||
          [=](cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
          [=](sycl::id<1> item, auto &sum) {
 | 
			
		||||
              auto s = item[0];
 | 
			
		||||
              sum += rb_p[r*subvol_size+s];
 | 
			
		||||
          });
 | 
			
		||||
@@ -144,14 +161,23 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_large(const vobj *Data,
 | 
			
		||||
				    std::vector<vobj> &lvSum,
 | 
			
		||||
				    const int rd,
 | 
			
		||||
				    const int e1,
 | 
			
		||||
				    const int e2,
 | 
			
		||||
				    const int stride,
 | 
			
		||||
				    const int ostride,
 | 
			
		||||
				    const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector;
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
  const int osites = rd*e1*e2;
 | 
			
		||||
  commVector<vector>buffer(osites);
 | 
			
		||||
  deviceVector<vector>buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)Data;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  Vector<vector> lvSum_small(rd);
 | 
			
		||||
  std::vector<vector> lvSum_small(rd);
 | 
			
		||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
			
		||||
 | 
			
		||||
  for (int w = 0; w < words; w++) {
 | 
			
		||||
@@ -168,13 +194,18 @@ template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vecto
 | 
			
		||||
    for (int r = 0; r < rd; r++) {
 | 
			
		||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
 | 
			
		||||
				  std::vector<vobj> &lvSum,
 | 
			
		||||
				  const int rd,
 | 
			
		||||
				  const int e1,
 | 
			
		||||
				  const int e2,
 | 
			
		||||
				  const int stride,
 | 
			
		||||
				  const int ostride,
 | 
			
		||||
				  const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
			
		||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
			
		||||
@@ -192,7 +223,15 @@ template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
			
		||||
				  std::vector<vobj> &lvSum,
 | 
			
		||||
				  const int &rd,
 | 
			
		||||
				  const int &e1,
 | 
			
		||||
				  const int &e2,
 | 
			
		||||
				  const int &stride,
 | 
			
		||||
				  const int &ostride,
 | 
			
		||||
				  const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
@@ -208,16 +247,20 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) 
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
 | 
			
		||||
						   std::vector<vobj> &lvSum,
 | 
			
		||||
						   const int &rd,
 | 
			
		||||
						   const int &e1,
 | 
			
		||||
						   const int &e2,
 | 
			
		||||
						   const int &stride,
 | 
			
		||||
						   const int &ostride,
 | 
			
		||||
						   const int &Nsimd) 
 | 
			
		||||
{
 | 
			
		||||
  #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #else
 | 
			
		||||
#else
 | 
			
		||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,15 +31,15 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
inline void subdivides(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
  assert(coarse->_ndimension == fine->_ndimension);
 | 
			
		||||
  GRID_ASSERT(coarse->_ndimension == fine->_ndimension);
 | 
			
		||||
 | 
			
		||||
  int _ndimension = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
  for(int d=0;d<_ndimension;d++){
 | 
			
		||||
    assert(coarse->_processors[d]  == fine->_processors[d]);
 | 
			
		||||
    assert(coarse->_simd_layout[d] == fine->_simd_layout[d]);
 | 
			
		||||
    assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]); 
 | 
			
		||||
    GRID_ASSERT(coarse->_processors[d]  == fine->_processors[d]);
 | 
			
		||||
    GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[d]);
 | 
			
		||||
    GRID_ASSERT((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]); 
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -309,7 +309,7 @@ inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &co
 | 
			
		||||
                               const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  int NBatch = fineData.size();
 | 
			
		||||
  assert(coarseData.size() == NBatch);
 | 
			
		||||
  GRID_ASSERT(coarseData.size() == NBatch);
 | 
			
		||||
 | 
			
		||||
  GridBase * fine  = fineData[0].Grid();
 | 
			
		||||
  GridBase * coarse= coarseData[0].Grid();
 | 
			
		||||
@@ -344,7 +344,7 @@ template<class vobj,class vobj2,class CComplex>
 | 
			
		||||
  GridBase * coarse= coarseA.Grid();
 | 
			
		||||
 | 
			
		||||
  fineZ.Checkerboard()=fineX.Checkerboard();
 | 
			
		||||
  assert(fineX.Checkerboard()==fineY.Checkerboard());
 | 
			
		||||
  GRID_ASSERT(fineX.Checkerboard()==fineY.Checkerboard());
 | 
			
		||||
  subdivides(coarse,fine); // require they map
 | 
			
		||||
  conformable(fineX,fineY);
 | 
			
		||||
  conformable(fineX,fineZ);
 | 
			
		||||
@@ -356,7 +356,7 @@ template<class vobj,class vobj2,class CComplex>
 | 
			
		||||
  // FIXME merge with subdivide checking routine as this is redundant
 | 
			
		||||
  for(int d=0 ; d<_ndimension;d++){
 | 
			
		||||
    block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
 | 
			
		||||
    assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
 | 
			
		||||
    GRID_ASSERT(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  autoView( fineZ_  , fineZ, AcceleratorWrite);
 | 
			
		||||
@@ -613,7 +613,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
  int  _ndimension = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
  // checks
 | 
			
		||||
  assert( nbasis == Basis.size() );
 | 
			
		||||
  GRID_ASSERT( nbasis == Basis.size() );
 | 
			
		||||
  subdivides(coarse,fine); 
 | 
			
		||||
  for(int i=0;i<nbasis;i++){
 | 
			
		||||
    conformable(Basis[i].Grid(),fine);
 | 
			
		||||
@@ -687,7 +687,7 @@ inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>
 | 
			
		||||
                               const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  int NBatch = coarseData.size();
 | 
			
		||||
  assert(fineData.size() == NBatch);
 | 
			
		||||
  GRID_ASSERT(fineData.size() == NBatch);
 | 
			
		||||
 | 
			
		||||
  GridBase * fine   = fineData[0].Grid();
 | 
			
		||||
  GridBase * coarse = coarseData[0].Grid();
 | 
			
		||||
@@ -715,12 +715,12 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
 | 
			
		||||
  int ni = ig->_ndimension;
 | 
			
		||||
  int no = og->_ndimension;
 | 
			
		||||
 | 
			
		||||
  assert(ni == no);
 | 
			
		||||
  GRID_ASSERT(ni == no);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<no;d++){
 | 
			
		||||
    assert(ig->_processors[d]  == og->_processors[d]);
 | 
			
		||||
    assert(ig->_ldimensions[d] == og->_ldimensions[d]);
 | 
			
		||||
    assert(ig->lSites() == og->lSites());
 | 
			
		||||
    GRID_ASSERT(ig->_processors[d]  == og->_processors[d]);
 | 
			
		||||
    GRID_ASSERT(ig->_ldimensions[d] == og->_ldimensions[d]);
 | 
			
		||||
    GRID_ASSERT(ig->lSites() == og->lSites());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  autoView(in_v,in,CpuRead);
 | 
			
		||||
@@ -752,16 +752,16 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int Nsimd = Fg->Nsimd();
 | 
			
		||||
  int nF = Fg->_ndimension;
 | 
			
		||||
  int nT = Tg->_ndimension;
 | 
			
		||||
  int nd = nF;
 | 
			
		||||
  assert(nF == nT);
 | 
			
		||||
  GRID_ASSERT(nF == nT);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
    GRID_ASSERT(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
@@ -821,12 +821,12 @@ void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int Nsimd = Fg->Nsimd();
 | 
			
		||||
  int nF = Fg->_ndimension;
 | 
			
		||||
  int nT = Tg->_ndimension;
 | 
			
		||||
  assert(nF+1 == nT);
 | 
			
		||||
  GRID_ASSERT(nF+1 == nT);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
@@ -890,12 +890,12 @@ void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, in
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Fg->_isCheckerBoarded);
 | 
			
		||||
  GRID_ASSERT(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int Nsimd = Fg->Nsimd();
 | 
			
		||||
  int nF = Fg->_ndimension;
 | 
			
		||||
  int nT = Tg->_ndimension;
 | 
			
		||||
  assert(nT+1 == nF);
 | 
			
		||||
  GRID_ASSERT(nT+1 == nF);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
@@ -955,16 +955,16 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
			
		||||
  int nl = lg->_ndimension;
 | 
			
		||||
  int nh = hg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  assert(nl+1 == nh);
 | 
			
		||||
  assert(orthog<nh);
 | 
			
		||||
  assert(orthog>=0);
 | 
			
		||||
  assert(hg->_processors[orthog]==1);
 | 
			
		||||
  GRID_ASSERT(nl+1 == nh);
 | 
			
		||||
  GRID_ASSERT(orthog<nh);
 | 
			
		||||
  GRID_ASSERT(orthog>=0);
 | 
			
		||||
  GRID_ASSERT(hg->_processors[orthog]==1);
 | 
			
		||||
 | 
			
		||||
  int dl; dl = 0;
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
    if ( d != orthog) {
 | 
			
		||||
      assert(lg->_processors[dl]  == hg->_processors[d]);
 | 
			
		||||
      assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
			
		||||
      GRID_ASSERT(lg->_processors[dl]  == hg->_processors[d]);
 | 
			
		||||
      GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
			
		||||
      dl++;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -981,8 +981,14 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    for(int d=0;d<nh;d++){
 | 
			
		||||
      if ( d!=orthog ) { 
 | 
			
		||||
	hcoor[d]=lcoor[ddl++];
 | 
			
		||||
	hcoor[d]=lcoor[ddl];
 | 
			
		||||
	if ( hg->_checker_dim == d ) {
 | 
			
		||||
	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	}
 | 
			
		||||
	ddl++;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    peekLocalSite(s,lowDimv,lcoor);
 | 
			
		||||
    pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
@@ -999,16 +1005,17 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
  int nl = lg->_ndimension;
 | 
			
		||||
  int nh = hg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  assert(nl+1 == nh);
 | 
			
		||||
  assert(orthog<nh);
 | 
			
		||||
  assert(orthog>=0);
 | 
			
		||||
  assert(hg->_processors[orthog]==1);
 | 
			
		||||
  GRID_ASSERT(nl+1 == nh);
 | 
			
		||||
  GRID_ASSERT(orthog<nh);
 | 
			
		||||
  GRID_ASSERT(orthog>=0);
 | 
			
		||||
  GRID_ASSERT(hg->_processors[orthog]==1);
 | 
			
		||||
  lowDim.Checkerboard() = higherDim.Checkerboard();
 | 
			
		||||
 | 
			
		||||
  int dl; dl = 0;
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
    if ( d != orthog) {
 | 
			
		||||
      assert(lg->_processors[dl]  == hg->_processors[d]);
 | 
			
		||||
      assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
			
		||||
      GRID_ASSERT(lg->_processors[dl]  == hg->_processors[d]);
 | 
			
		||||
      GRID_ASSERT(lg->_ldimensions[dl] == hg->_ldimensions[d]);
 | 
			
		||||
      dl++;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -1020,11 +1027,16 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    int ddl=0;
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    int ddl=0;
 | 
			
		||||
    for(int d=0;d<nh;d++){
 | 
			
		||||
      if ( d!=orthog ) { 
 | 
			
		||||
	hcoor[d]=lcoor[ddl++];
 | 
			
		||||
	hcoor[d]=lcoor[ddl];
 | 
			
		||||
	if ( hg->_checker_dim == d ) {
 | 
			
		||||
	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite
 | 
			
		||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	}
 | 
			
		||||
	ddl++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    peekLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
@@ -1044,14 +1056,14 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
  int nl = lg->_ndimension;
 | 
			
		||||
  int nh = hg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  assert(nl == nh);
 | 
			
		||||
  assert(orthog<nh);
 | 
			
		||||
  assert(orthog>=0);
 | 
			
		||||
  GRID_ASSERT(nl == nh);
 | 
			
		||||
  GRID_ASSERT(orthog<nh);
 | 
			
		||||
  GRID_ASSERT(orthog>=0);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
    if ( d!=orthog ) {
 | 
			
		||||
      assert(lg->_processors[d]  == hg->_processors[d]);
 | 
			
		||||
      assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
			
		||||
      GRID_ASSERT(lg->_processors[d]  == hg->_processors[d]);
 | 
			
		||||
      GRID_ASSERT(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  Coordinate sz = lg->_ldimensions;
 | 
			
		||||
@@ -1081,7 +1093,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
 | 
			
		||||
  subdivides(cg,fg); 
 | 
			
		||||
 | 
			
		||||
  assert(cg->_ndimension==fg->_ndimension);
 | 
			
		||||
  GRID_ASSERT(cg->_ndimension==fg->_ndimension);
 | 
			
		||||
 | 
			
		||||
  Coordinate ratio(cg->_ndimension);
 | 
			
		||||
 | 
			
		||||
@@ -1145,7 +1157,7 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
 | 
			
		||||
 | 
			
		||||
      int lex;
 | 
			
		||||
      Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
 | 
			
		||||
      assert(lex < out.size());
 | 
			
		||||
      GRID_ASSERT(lex < out.size());
 | 
			
		||||
      out_ptrs[lane] = &out[lex];
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
@@ -1209,7 +1221,7 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
			
		||||
  typedef typename vobj::vector_type vtype;
 | 
			
		||||
  
 | 
			
		||||
  GridBase* grid = out.Grid();
 | 
			
		||||
  assert(in.size()==grid->lSites());
 | 
			
		||||
  GRID_ASSERT(in.size()==grid->lSites());
 | 
			
		||||
  
 | 
			
		||||
  const int ndim     = grid->Nd();
 | 
			
		||||
  constexpr int nsimd    = vtype::Nsimd();
 | 
			
		||||
@@ -1256,7 +1268,7 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
			
		||||
  typedef typename vobj::vector_type vtype;
 | 
			
		||||
  
 | 
			
		||||
  GridBase* grid = out._grid;
 | 
			
		||||
  assert(in.size()==grid->lSites());
 | 
			
		||||
  GRID_ASSERT(in.size()==grid->lSites());
 | 
			
		||||
  
 | 
			
		||||
  int ndim     = grid->Nd();
 | 
			
		||||
  int nsimd    = vtype::Nsimd();
 | 
			
		||||
@@ -1317,9 +1329,9 @@ void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
{
 | 
			
		||||
  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
			
		||||
  GRID_ASSERT(out.Grid()->Nd() == in.Grid()->Nd());
 | 
			
		||||
  for(int d=0;d<out.Grid()->Nd();d++){
 | 
			
		||||
    assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
 | 
			
		||||
    GRID_ASSERT(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
 | 
			
		||||
  }
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  GridBase *in_grid=in.Grid();
 | 
			
		||||
@@ -1370,9 +1382,9 @@ class precisionChangeWorkspace{
 | 
			
		||||
public:
 | 
			
		||||
  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
 | 
			
		||||
    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
			
		||||
    assert(out_grid->Nd() == in_grid->Nd());
 | 
			
		||||
    GRID_ASSERT(out_grid->Nd() == in_grid->Nd());
 | 
			
		||||
    for(int d=0;d<out_grid->Nd();d++){
 | 
			
		||||
      assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
			
		||||
      GRID_ASSERT(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    int Nsimd_out = out_grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
@@ -1537,7 +1549,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
  GRID_ASSERT(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0].Grid();
 | 
			
		||||
  GridBase *split_grid = split.Grid();
 | 
			
		||||
@@ -1555,18 +1567,18 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].Checkerboard() == cb);
 | 
			
		||||
    GRID_ASSERT(full[n].Checkerboard() == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
			
		||||
      assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
			
		||||
      GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
			
		||||
      GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
  GRID_ASSERT(nvector*split_nproc==full_nproc);
 | 
			
		||||
  GRID_ASSERT(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  Coordinate ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
@@ -1610,7 +1622,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
 | 
			
		||||
      int fvol   = lsites;
 | 
			
		||||
      
 | 
			
		||||
      int chunk  = (nvec*fvol)/sP;          assert(chunk*sP == nvec*fvol);
 | 
			
		||||
      int chunk  = (nvec*fvol)/sP;          GRID_ASSERT(chunk*sP == nvec*fvol);
 | 
			
		||||
 | 
			
		||||
      // Loop over reordered data post A2A
 | 
			
		||||
      thread_for(c, chunk, {
 | 
			
		||||
@@ -1663,7 +1675,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
  GRID_ASSERT(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0].Grid();
 | 
			
		||||
  GridBase *split_grid = split.Grid();
 | 
			
		||||
@@ -1681,18 +1693,18 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  GRID_ASSERT(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].Checkerboard() == cb);
 | 
			
		||||
    GRID_ASSERT(full[n].Checkerboard() == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
			
		||||
      assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
			
		||||
      GRID_ASSERT(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
 | 
			
		||||
      GRID_ASSERT(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
  GRID_ASSERT(nvector*split_nproc==full_nproc);
 | 
			
		||||
  GRID_ASSERT(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  Coordinate ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
@@ -1728,7 +1740,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
      auto lsites= rsites/M;                // Decreases rsites by M
 | 
			
		||||
      
 | 
			
		||||
      int fvol   = lsites;
 | 
			
		||||
      int chunk  = (nvec*fvol)/sP;          assert(chunk*sP == nvec*fvol);
 | 
			
		||||
      int chunk  = (nvec*fvol)/sP;          GRID_ASSERT(chunk*sP == nvec*fvol);
 | 
			
		||||
	
 | 
			
		||||
      {
 | 
			
		||||
	// Loop over reordered data post A2A
 | 
			
		||||
 
 | 
			
		||||
@@ -106,6 +106,47 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_LOG_VIEWS
 | 
			
		||||
// Little autoscope assister
 | 
			
		||||
template<class View> 
 | 
			
		||||
class ViewCloser
 | 
			
		||||
{
 | 
			
		||||
  View v;  // Take a copy of view and call view close when I go out of scope automatically
 | 
			
		||||
  const char* filename; int line, mode;
 | 
			
		||||
public:
 | 
			
		||||
  ViewCloser(View &_v, const char* _filename, int _line, int _mode) :
 | 
			
		||||
    v(_v), filename(_filename), line(_line), mode(_mode) {
 | 
			
		||||
    
 | 
			
		||||
    switch (mode){
 | 
			
		||||
    case AcceleratorRead:
 | 
			
		||||
    case AcceleratorWrite:
 | 
			
		||||
    case CpuRead:
 | 
			
		||||
    case CpuWrite:
 | 
			
		||||
      ViewLogger::LogOpen(filename, line, 1, mode, &v[0], v.size() * sizeof(v[0]));
 | 
			
		||||
      break;
 | 
			
		||||
    } 
 | 
			
		||||
    
 | 
			
		||||
  };
 | 
			
		||||
  ~ViewCloser() {
 | 
			
		||||
    
 | 
			
		||||
    switch (mode) {
 | 
			
		||||
    case AcceleratorWriteDiscard:
 | 
			
		||||
    case AcceleratorWrite:
 | 
			
		||||
    case CpuWrite:
 | 
			
		||||
      ViewLogger::LogClose(filename, line, -1, mode, &v[0], v.size() * sizeof(v[0]));
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    v.ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define autoView(l_v,l,mode)				\
 | 
			
		||||
	  auto l_v = l.View(mode);			\
 | 
			
		||||
	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v,__FILE__,__LINE__,mode);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
// Little autoscope assister
 | 
			
		||||
template<class View> 
 | 
			
		||||
class ViewCloser
 | 
			
		||||
@@ -119,6 +160,7 @@ class ViewCloser
 | 
			
		||||
#define autoView(l_v,l,mode)				\
 | 
			
		||||
	  auto l_v = l.View(mode);			\
 | 
			
		||||
	  ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Lattice expression types used by ET to assemble the AST
 | 
			
		||||
 
 | 
			
		||||
@@ -54,7 +54,7 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
 | 
			
		||||
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
 | 
			
		||||
					      Lattice<vobj> &lat,
 | 
			
		||||
					      int x,
 | 
			
		||||
					      int dim,
 | 
			
		||||
@@ -82,10 +82,10 @@ template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
 | 
			
		||||
 | 
			
		||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
			
		||||
  int rNsimda= Nsimd/simd[dim]; // should be equal
 | 
			
		||||
  assert(rNsimda==rNsimd);
 | 
			
		||||
  GRID_ASSERT(rNsimda==rNsimd);
 | 
			
		||||
  int face_ovol=block*nblock;
 | 
			
		||||
 | 
			
		||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
  //  GRID_ASSERT(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
 | 
			
		||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
			
		||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
			
		||||
@@ -140,7 +140,7 @@ template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
 | 
			
		||||
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
 | 
			
		||||
					     const Lattice<vobj> &lat,
 | 
			
		||||
					     int x,
 | 
			
		||||
					     int dim,
 | 
			
		||||
@@ -172,7 +172,7 @@ template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
 | 
			
		||||
  
 | 
			
		||||
  int face_ovol=block*nblock;
 | 
			
		||||
 | 
			
		||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
  //  GRID_ASSERT(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
 | 
			
		||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
			
		||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
			
		||||
@@ -247,7 +247,7 @@ public:
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
			
		||||
      if ( procs[d] > 1 ) GRID_ASSERT(local[d]>=depth);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeleteGrids(void)
 | 
			
		||||
@@ -448,9 +448,9 @@ public:
 | 
			
		||||
    int nld   = to.Grid()->_ldimensions[dimension];
 | 
			
		||||
    const int Nsimd = vobj::Nsimd();
 | 
			
		||||
 | 
			
		||||
    assert(depth<=lds[dimension]); // A must be on neighbouring node
 | 
			
		||||
    assert(depth>0);   // A caller bug if zero
 | 
			
		||||
    assert(ld+2*depth==nld);
 | 
			
		||||
    GRID_ASSERT(depth<=lds[dimension]); // A must be on neighbouring node
 | 
			
		||||
    GRID_ASSERT(depth>0);   // A caller bug if zero
 | 
			
		||||
    GRID_ASSERT(ld+2*depth==nld);
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Face size and byte calculations
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -460,15 +460,21 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    buffer_size = buffer_size  / Nsimd;
 | 
			
		||||
    int rNsimd = Nsimd / simd[dimension];
 | 
			
		||||
    assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
			
		||||
    GRID_ASSERT( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
			
		||||
 | 
			
		||||
    static cshiftVector<vobj> send_buf; 
 | 
			
		||||
    static cshiftVector<vobj> recv_buf;
 | 
			
		||||
    static deviceVector<vobj> send_buf; 
 | 
			
		||||
    static deviceVector<vobj> recv_buf;
 | 
			
		||||
    send_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    recv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    static hostVector<vobj> hsend_buf; 
 | 
			
		||||
    static hostVector<vobj> hrecv_buf;
 | 
			
		||||
    hsend_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    hrecv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
#endif    
 | 
			
		||||
 | 
			
		||||
    std::vector<CommsRequest_t> fwd_req;   
 | 
			
		||||
    std::vector<CommsRequest_t> bwd_req;   
 | 
			
		||||
    std::vector<MpiCommsRequest_t> fwd_req;   
 | 
			
		||||
    std::vector<MpiCommsRequest_t> bwd_req;   
 | 
			
		||||
 | 
			
		||||
    int words = buffer_size;
 | 
			
		||||
    int bytes = words * sizeof(vobj);
 | 
			
		||||
@@ -495,9 +501,16 @@ public:
 | 
			
		||||
      t_gather+=usecond()-t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
#endif
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
     }
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
@@ -508,9 +521,16 @@ public:
 | 
			
		||||
      t_gather+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
#endif      
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -533,8 +553,13 @@ public:
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(fwd_req);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
@@ -543,6 +568,11 @@ public:
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(bwd_req);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
 
 | 
			
		||||
@@ -69,6 +69,7 @@ GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
 | 
			
		||||
GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
 | 
			
		||||
GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE");
 | 
			
		||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
 | 
			
		||||
GridLogger GridLogComms      (1, "Comms",  GridLogColours, "BLUE");
 | 
			
		||||
GridLogger GridLogDslash     (1, "Dslash", GridLogColours, "BLUE");
 | 
			
		||||
GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE");
 | 
			
		||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
 | 
			
		||||
@@ -84,6 +85,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
			
		||||
  GridLogDebug.Active(0);
 | 
			
		||||
  GridLogPerformance.Active(0);
 | 
			
		||||
  GridLogDslash.Active(0);
 | 
			
		||||
  GridLogComms.Active(0);
 | 
			
		||||
  GridLogIntegrator.Active(1);
 | 
			
		||||
  GridLogColours.Active(0);
 | 
			
		||||
  GridLogHMC.Active(1);
 | 
			
		||||
@@ -97,6 +99,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
			
		||||
    if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("Dslash"))      GridLogDslash.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("Comms"))       GridLogComms.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0);
 | 
			
		||||
    if (logstreams[i] == std::string("NoHMC"))       GridLogHMC.Active(0);
 | 
			
		||||
    if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1);
 | 
			
		||||
 
 | 
			
		||||
@@ -33,10 +33,6 @@
 | 
			
		||||
#ifndef GRID_LOG_H
 | 
			
		||||
#define GRID_LOG_H
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_EXECINFO_H
 | 
			
		||||
#include <execinfo.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -180,6 +176,7 @@ extern GridLogger GridLogError;
 | 
			
		||||
extern GridLogger GridLogWarning;
 | 
			
		||||
extern GridLogger GridLogMessage;
 | 
			
		||||
extern GridLogger GridLogDebug;
 | 
			
		||||
extern GridLogger GridLogComms;
 | 
			
		||||
extern GridLogger GridLogPerformance;
 | 
			
		||||
extern GridLogger GridLogDslash;
 | 
			
		||||
extern GridLogger GridLogIterative;
 | 
			
		||||
@@ -226,8 +223,6 @@ inline void Grid_pass(Args&&... args) {
 | 
			
		||||
    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define _NBACKTRACE (256)
 | 
			
		||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
			
		||||
 | 
			
		||||
#define BACKTRACEFILE() {						\
 | 
			
		||||
    char string[20];							\
 | 
			
		||||
 
 | 
			
		||||
@@ -293,9 +293,9 @@ class BinaryIO {
 | 
			
		||||
    // Flatten the file
 | 
			
		||||
    uint64_t lsites = grid->lSites();
 | 
			
		||||
    if ( control & BINARYIO_MASTER_APPEND )  {
 | 
			
		||||
      assert(iodata.size()==1);
 | 
			
		||||
      GRID_ASSERT(iodata.size()==1);
 | 
			
		||||
    } else {
 | 
			
		||||
      assert(lsites==iodata.size());
 | 
			
		||||
      GRID_ASSERT(lsites==iodata.size());
 | 
			
		||||
    }
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      gStart[d] = lLattice[d]*pcoor[d];
 | 
			
		||||
@@ -326,20 +326,20 @@ class BinaryIO {
 | 
			
		||||
    // Sobj in MPI phrasing
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int ierr;
 | 
			
		||||
    ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject);    assert(ierr==0);
 | 
			
		||||
    ierr = MPI_Type_contiguous(numword,mpiword,&mpiObject);    GRID_ASSERT(ierr==0);
 | 
			
		||||
    ierr = MPI_Type_commit(&mpiObject);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // File global array data type
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray);    assert(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_commit(&fileArray);    assert(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_create_subarray(ndim,&gLattice[0],&lLattice[0],&gStart[0],MPI_ORDER_FORTRAN, mpiObject,&fileArray);    GRID_ASSERT(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_commit(&fileArray);    GRID_ASSERT(ierr==0);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // local lattice array
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray);    assert(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_commit(&localArray);    assert(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_create_subarray(ndim,&lLattice[0],&lLattice[0],&lStart[0],MPI_ORDER_FORTRAN, mpiObject,&localArray);    GRID_ASSERT(ierr==0);
 | 
			
		||||
    ierr=MPI_Type_commit(&localArray);    GRID_ASSERT(ierr==0);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -349,8 +349,8 @@ class BinaryIO {
 | 
			
		||||
    int ieee32    = (format == std::string("IEEE32"));
 | 
			
		||||
    int ieee64big = (format == std::string("IEEE64BIG"));
 | 
			
		||||
    int ieee64    = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
 | 
			
		||||
    assert(ieee64||ieee32|ieee64big||ieee32big);
 | 
			
		||||
    assert((ieee64+ieee32+ieee64big+ieee32big)==1);
 | 
			
		||||
    GRID_ASSERT(ieee64||ieee32|ieee64big||ieee32big);
 | 
			
		||||
    GRID_ASSERT((ieee64+ieee32+ieee64big+ieee32big)==1);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Do the I/O
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -361,9 +361,9 @@ class BinaryIO {
 | 
			
		||||
      if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
 | 
			
		||||
#ifdef USE_MPI_IO
 | 
			
		||||
	std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl;
 | 
			
		||||
	ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);    assert(ierr==0);
 | 
			
		||||
	ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);    assert(ierr==0);
 | 
			
		||||
	ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status);    assert(ierr==0);
 | 
			
		||||
	ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);    GRID_ASSERT(ierr==0);
 | 
			
		||||
	ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);    GRID_ASSERT(ierr==0);
 | 
			
		||||
	ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status);    GRID_ASSERT(ierr==0);
 | 
			
		||||
	MPI_File_close(&fh);
 | 
			
		||||
	MPI_Type_free(&fileArray);
 | 
			
		||||
	MPI_Type_free(&localArray);
 | 
			
		||||
@@ -384,13 +384,14 @@ class BinaryIO {
 | 
			
		||||
          fin.seekg(offset + myrank * lsites * sizeof(fobj));
 | 
			
		||||
        }
 | 
			
		||||
        fin.read((char *)&iodata[0], iodata.size() * sizeof(fobj));
 | 
			
		||||
        assert(fin.fail() == 0);
 | 
			
		||||
        GRID_ASSERT(fin.fail() == 0);
 | 
			
		||||
        fin.close();
 | 
			
		||||
      }
 | 
			
		||||
      timer.Stop();
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	  timer.Stop();
 | 
			
		||||
 | 
			
		||||
      bstimer.Start();
 | 
			
		||||
      ScidacChecksum(grid,iodata,scidac_csuma,scidac_csumb);
 | 
			
		||||
      if (ieee32big) be32toh_v((void *)&iodata[0], sizeof(fobj)*iodata.size());
 | 
			
		||||
@@ -435,11 +436,11 @@ class BinaryIO {
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogDebug << "MPI write I/O set view " << file << std::endl;
 | 
			
		||||
        ierr = MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL);
 | 
			
		||||
        assert(ierr == 0);
 | 
			
		||||
        GRID_ASSERT(ierr == 0);
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogDebug << "MPI write I/O write all " << file << std::endl;
 | 
			
		||||
        ierr = MPI_File_write_all(fh, &iodata[0], 1, localArray, &status);
 | 
			
		||||
        assert(ierr == 0);
 | 
			
		||||
        GRID_ASSERT(ierr == 0);
 | 
			
		||||
 | 
			
		||||
        MPI_Offset os;
 | 
			
		||||
        MPI_File_get_position(fh, &os);
 | 
			
		||||
@@ -506,6 +507,7 @@ class BinaryIO {
 | 
			
		||||
  offset  = fout.tellp();
 | 
			
		||||
	fout.close();
 | 
			
		||||
      }
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      timer.Stop();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 
 | 
			
		||||
@@ -289,7 +289,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
	return;
 | 
			
		||||
      }      
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Read a generic serialisable object
 | 
			
		||||
@@ -314,7 +314,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }  
 | 
			
		||||
    assert(0);
 | 
			
		||||
    GRID_ASSERT(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class serialisable_object>
 | 
			
		||||
@@ -348,7 +348,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
     filename= _filename;
 | 
			
		||||
     if ( boss_node ) {
 | 
			
		||||
       File = fopen(filename.c_str(), "w");
 | 
			
		||||
       LimeW = limeCreateWriter(File); assert(LimeW != NULL );
 | 
			
		||||
       LimeW = limeCreateWriter(File); GRID_ASSERT(LimeW != NULL );
 | 
			
		||||
     }
 | 
			
		||||
   }
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
@@ -368,7 +368,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      LimeRecordHeader *h;
 | 
			
		||||
      h = limeCreateHeader(MB, ME, const_cast<char *>(message.c_str()), PayloadSize);
 | 
			
		||||
      assert(limeWriteRecordHeader(h, LimeW) >= 0);
 | 
			
		||||
      GRID_ASSERT(limeWriteRecordHeader(h, LimeW) >= 0);
 | 
			
		||||
      limeDestroyHeader(h);
 | 
			
		||||
    }
 | 
			
		||||
    return LIME_SUCCESS;
 | 
			
		||||
@@ -386,11 +386,11 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
      //    std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl;
 | 
			
		||||
      int err;
 | 
			
		||||
      LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes); 
 | 
			
		||||
      assert(h!= NULL);
 | 
			
		||||
      GRID_ASSERT(h!= NULL);
 | 
			
		||||
      
 | 
			
		||||
      err=limeWriteRecordHeader(h, LimeW);                    assert(err>=0);
 | 
			
		||||
      err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
 | 
			
		||||
      err=limeWriterCloseRecord(LimeW);                       assert(err>=0);
 | 
			
		||||
      err=limeWriteRecordHeader(h, LimeW);                    GRID_ASSERT(err>=0);
 | 
			
		||||
      err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); GRID_ASSERT(err>=0);
 | 
			
		||||
      err=limeWriterCloseRecord(LimeW);                       GRID_ASSERT(err>=0);
 | 
			
		||||
      limeDestroyHeader(h);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -431,7 +431,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    
 | 
			
		||||
    GridBase *grid = field.Grid();
 | 
			
		||||
    assert(boss_node == field.Grid()->IsBoss() );
 | 
			
		||||
    GRID_ASSERT(boss_node == field.Grid()->IsBoss() );
 | 
			
		||||
 | 
			
		||||
    FieldNormMetaData FNMD; FNMD.norm2 = norm2(field);
 | 
			
		||||
 | 
			
		||||
@@ -473,7 +473,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
    if ( boss_node ) {
 | 
			
		||||
      fseek(File,0,SEEK_END);             
 | 
			
		||||
      uint64_t offset2 = ftello(File);     //    std::cout << " now at offset "<<offset2 << std::endl;
 | 
			
		||||
      assert( (offset2-offset1) == PayloadSize);
 | 
			
		||||
      GRID_ASSERT( (offset2-offset1) == PayloadSize);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -481,7 +481,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    if ( boss_node ) { 
 | 
			
		||||
      err=limeWriterCloseRecord(LimeW);  assert(err>=0);
 | 
			
		||||
      err=limeWriterCloseRecord(LimeW);  GRID_ASSERT(err>=0);
 | 
			
		||||
    }
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // Write checksum element, propagaing forward from the BinaryIO
 | 
			
		||||
@@ -621,8 +621,8 @@ class IldgWriter : public ScidacWriter {
 | 
			
		||||
    uint64_t PayloadSize = LFN.size();
 | 
			
		||||
    int err;
 | 
			
		||||
    createLimeRecordHeader(ILDG_DATA_LFN, 0 , 0, PayloadSize);
 | 
			
		||||
    err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); assert(err>=0);
 | 
			
		||||
    err=limeWriterCloseRecord(LimeW); assert(err>=0);
 | 
			
		||||
    err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); GRID_ASSERT(err>=0);
 | 
			
		||||
    err=limeWriterCloseRecord(LimeW); GRID_ASSERT(err>=0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -656,7 +656,7 @@ class IldgWriter : public ScidacWriter {
 | 
			
		||||
    header.sequence_number = sequence;
 | 
			
		||||
    header.ildg_lfn = LFN;
 | 
			
		||||
 | 
			
		||||
    assert ( (format == std::string("IEEE32BIG"))  
 | 
			
		||||
    GRID_ASSERT ( (format == std::string("IEEE32BIG"))  
 | 
			
		||||
           ||(format == std::string("IEEE64BIG")) );
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
@@ -676,8 +676,8 @@ class IldgWriter : public ScidacWriter {
 | 
			
		||||
    ildgfmt.ly = header.dimension[1];
 | 
			
		||||
    ildgfmt.lz = header.dimension[2];
 | 
			
		||||
    ildgfmt.lt = header.dimension[3];
 | 
			
		||||
    assert(header.nd==4);
 | 
			
		||||
    assert(header.nd==header.dimension.size());
 | 
			
		||||
    GRID_ASSERT(header.nd==4);
 | 
			
		||||
    GRID_ASSERT(header.nd==header.dimension.size());
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Field norm tests
 | 
			
		||||
@@ -734,7 +734,7 @@ class IldgReader : public GridLimeReader {
 | 
			
		||||
 | 
			
		||||
    Coordinate dims = Umu.Grid()->FullDimensions();
 | 
			
		||||
 | 
			
		||||
    assert(dims.size()==4);
 | 
			
		||||
    GRID_ASSERT(dims.size()==4);
 | 
			
		||||
 | 
			
		||||
    // Metadata holders
 | 
			
		||||
    ildgFormat     ildgFormat_    ;
 | 
			
		||||
@@ -793,10 +793,10 @@ class IldgReader : public GridLimeReader {
 | 
			
		||||
	  if ( ildgFormat_.precision == 64 ) format = std::string("IEEE64BIG");
 | 
			
		||||
	  if ( ildgFormat_.precision == 32 ) format = std::string("IEEE32BIG");
 | 
			
		||||
 | 
			
		||||
	  assert( ildgFormat_.lx == dims[0]);
 | 
			
		||||
	  assert( ildgFormat_.ly == dims[1]);
 | 
			
		||||
	  assert( ildgFormat_.lz == dims[2]);
 | 
			
		||||
	  assert( ildgFormat_.lt == dims[3]);
 | 
			
		||||
	  GRID_ASSERT( ildgFormat_.lx == dims[0]);
 | 
			
		||||
	  GRID_ASSERT( ildgFormat_.ly == dims[1]);
 | 
			
		||||
	  GRID_ASSERT( ildgFormat_.lz == dims[2]);
 | 
			
		||||
	  GRID_ASSERT( ildgFormat_.lt == dims[3]);
 | 
			
		||||
 | 
			
		||||
	  found_ildgFormat = 1;
 | 
			
		||||
	}
 | 
			
		||||
@@ -813,10 +813,10 @@ class IldgReader : public GridLimeReader {
 | 
			
		||||
 | 
			
		||||
	  format = FieldMetaData_.floating_point;
 | 
			
		||||
 | 
			
		||||
	  assert(FieldMetaData_.dimension[0] == dims[0]);
 | 
			
		||||
	  assert(FieldMetaData_.dimension[1] == dims[1]);
 | 
			
		||||
	  assert(FieldMetaData_.dimension[2] == dims[2]);
 | 
			
		||||
	  assert(FieldMetaData_.dimension[3] == dims[3]);
 | 
			
		||||
	  GRID_ASSERT(FieldMetaData_.dimension[0] == dims[0]);
 | 
			
		||||
	  GRID_ASSERT(FieldMetaData_.dimension[1] == dims[1]);
 | 
			
		||||
	  GRID_ASSERT(FieldMetaData_.dimension[2] == dims[2]);
 | 
			
		||||
	  GRID_ASSERT(FieldMetaData_.dimension[3] == dims[3]);
 | 
			
		||||
 | 
			
		||||
	  found_FieldMetaData = 1;
 | 
			
		||||
	}
 | 
			
		||||
@@ -866,13 +866,13 @@ class IldgReader : public GridLimeReader {
 | 
			
		||||
    // Minimally must find binary segment and checksum
 | 
			
		||||
    // Since this is an ILDG reader require ILDG format
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    assert(found_ildgLFN);
 | 
			
		||||
    assert(found_ildgBinary);
 | 
			
		||||
    assert(found_ildgFormat);
 | 
			
		||||
    assert(found_scidacChecksum);
 | 
			
		||||
    GRID_ASSERT(found_ildgLFN);
 | 
			
		||||
    GRID_ASSERT(found_ildgBinary);
 | 
			
		||||
    GRID_ASSERT(found_ildgFormat);
 | 
			
		||||
    GRID_ASSERT(found_scidacChecksum);
 | 
			
		||||
 | 
			
		||||
    // Must find something with the lattice dimensions
 | 
			
		||||
    assert(found_FieldMetaData||found_ildgFormat);
 | 
			
		||||
    GRID_ASSERT(found_FieldMetaData||found_ildgFormat);
 | 
			
		||||
 | 
			
		||||
    if ( found_FieldMetaData ) {
 | 
			
		||||
 | 
			
		||||
@@ -880,9 +880,9 @@ class IldgReader : public GridLimeReader {
 | 
			
		||||
 | 
			
		||||
    } else { 
 | 
			
		||||
 | 
			
		||||
      assert(found_ildgFormat);
 | 
			
		||||
      GRID_ASSERT(found_ildgFormat);
 | 
			
		||||
      const std::string stNC = std::to_string( Nc ) ;
 | 
			
		||||
      assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
 | 
			
		||||
      GRID_ASSERT ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Populate our Grid metadata as best we can
 | 
			
		||||
@@ -927,20 +927,20 @@ class IldgReader : public GridLimeReader {
 | 
			
		||||
      FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
			
		||||
      FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
			
		||||
      scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
 | 
			
		||||
      assert( scidac_csuma ==FieldMetaData_.scidac_checksuma);
 | 
			
		||||
      assert( scidac_csumb ==FieldMetaData_.scidac_checksumb);
 | 
			
		||||
      GRID_ASSERT( scidac_csuma ==FieldMetaData_.scidac_checksuma);
 | 
			
		||||
      GRID_ASSERT( scidac_csumb ==FieldMetaData_.scidac_checksumb);
 | 
			
		||||
      std::cout << GridLogMessage<<"SciDAC checksums match " << std::endl;
 | 
			
		||||
    } else { 
 | 
			
		||||
      std::cout << GridLogWarning<<"SciDAC checksums not found. This is unsafe. " << std::endl;
 | 
			
		||||
      assert(0); // Can I insist always checksum ?
 | 
			
		||||
      GRID_ASSERT(0); // Can I insist always checksum ?
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ( found_FieldMetaData || found_usqcdInfo ) {
 | 
			
		||||
      FieldMetaData checker;
 | 
			
		||||
      stats Stats;
 | 
			
		||||
      Stats(Umu,checker);
 | 
			
		||||
      assert(fabs(checker.plaquette  - FieldMetaData_.plaquette )<1.0e-5);
 | 
			
		||||
      assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
 | 
			
		||||
      GRID_ASSERT(fabs(checker.plaquette  - FieldMetaData_.plaquette )<1.0e-5);
 | 
			
		||||
      GRID_ASSERT(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
 | 
			
		||||
      std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -203,7 +203,7 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
 | 
			
		||||
//////////////////////////////////////////////////////////////////////
 | 
			
		||||
inline void reconstruct3(LorentzColourMatrix & cm)
 | 
			
		||||
{
 | 
			
		||||
  assert( Nc < 4 && Nc > 1 ) ;
 | 
			
		||||
  GRID_ASSERT( Nc < 4 && Nc > 1 ) ;
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    #if Nc == 2
 | 
			
		||||
      cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ;
 | 
			
		||||
@@ -240,7 +240,7 @@ struct BinarySimpleUnmunger {
 | 
			
		||||
    sobj_stype *in_buffer = (sobj_stype *)∈
 | 
			
		||||
    size_t fobj_words = sizeof(out) / sizeof(fobj_stype);
 | 
			
		||||
    size_t sobj_words = sizeof(in) / sizeof(sobj_stype);
 | 
			
		||||
    assert(fobj_words == sobj_words);
 | 
			
		||||
    GRID_ASSERT(fobj_words == sobj_words);
 | 
			
		||||
    
 | 
			
		||||
    for (unsigned int word = 0; word < sobj_words; word++)
 | 
			
		||||
      out_buffer[word] = in_buffer[word];  // type conversion on the fly
 | 
			
		||||
@@ -259,7 +259,7 @@ struct BinarySimpleMunger {
 | 
			
		||||
    sobj_stype *out_buffer = (sobj_stype *)&out;
 | 
			
		||||
    size_t fobj_words = sizeof(in) / sizeof(fobj_stype);
 | 
			
		||||
    size_t sobj_words = sizeof(out) / sizeof(sobj_stype);
 | 
			
		||||
    assert(fobj_words == sobj_words);
 | 
			
		||||
    GRID_ASSERT(fobj_words == sobj_words);
 | 
			
		||||
    
 | 
			
		||||
    for (unsigned int word = 0; word < sobj_words; word++)
 | 
			
		||||
      out_buffer[word] = in_buffer[word];  // type conversion on the fly
 | 
			
		||||
 
 | 
			
		||||
@@ -76,7 +76,7 @@ public:
 | 
			
		||||
    removeWhitespace(line);
 | 
			
		||||
    std::cout << GridLogMessage << "* " << line << std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(line==std::string("BEGIN_HEADER"));
 | 
			
		||||
    GRID_ASSERT(line==std::string("BEGIN_HEADER"));
 | 
			
		||||
 | 
			
		||||
    do {
 | 
			
		||||
      getline(fin,line); // read one line
 | 
			
		||||
@@ -106,9 +106,9 @@ public:
 | 
			
		||||
    field.dimension[2] = std::stol(header["DIMENSION_3"]);
 | 
			
		||||
    field.dimension[3] = std::stol(header["DIMENSION_4"]);
 | 
			
		||||
 | 
			
		||||
    assert(grid->_ndimension == 4);
 | 
			
		||||
    GRID_ASSERT(grid->_ndimension == 4);
 | 
			
		||||
    for(int d=0;d<4;d++){
 | 
			
		||||
      assert(grid->_fdimensions[d]==field.dimension[d]);
 | 
			
		||||
      GRID_ASSERT(grid->_fdimensions[d]==field.dimension[d]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    field.link_trace = std::stod(header["LINK_TRACE"]);
 | 
			
		||||
@@ -183,7 +183,7 @@ public:
 | 
			
		||||
	   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      assert(0);
 | 
			
		||||
      GRID_ASSERT(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    GaugeStats Stats; Stats(Umu,clone);
 | 
			
		||||
@@ -205,9 +205,9 @@ public:
 | 
			
		||||
      std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
    if(exitOnReadPlaquetteMismatch()) GRID_ASSERT(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    GRID_ASSERT(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    GRID_ASSERT(nersc_csum == header.checksum );
 | 
			
		||||
      
 | 
			
		||||
    std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
@@ -246,7 +246,7 @@ public:
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
    GridMetaData(grid,header);
 | 
			
		||||
    assert(header.nd==4);
 | 
			
		||||
    GRID_ASSERT(header.nd==4);
 | 
			
		||||
    GaugeStats Stats; Stats(Umu,header);
 | 
			
		||||
    MachineCharacteristics(header);
 | 
			
		||||
 | 
			
		||||
@@ -302,7 +302,7 @@ public:
 | 
			
		||||
    GridBase *grid = parallel.Grid();
 | 
			
		||||
 | 
			
		||||
    GridMetaData(grid,header);
 | 
			
		||||
    assert(header.nd==4);
 | 
			
		||||
    GRID_ASSERT(header.nd==4);
 | 
			
		||||
    header.link_trace=0.0;
 | 
			
		||||
    header.plaquette=0.0;
 | 
			
		||||
    MachineCharacteristics(header);
 | 
			
		||||
@@ -355,16 +355,16 @@ public:
 | 
			
		||||
    std::string data_type(header.data_type);
 | 
			
		||||
 | 
			
		||||
#ifdef RNG_RANLUX
 | 
			
		||||
    assert(format == std::string("UINT64"));
 | 
			
		||||
    assert(data_type == std::string("RANLUX48"));
 | 
			
		||||
    GRID_ASSERT(format == std::string("UINT64"));
 | 
			
		||||
    GRID_ASSERT(data_type == std::string("RANLUX48"));
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_MT19937
 | 
			
		||||
    assert(format == std::string("UINT32"));
 | 
			
		||||
    assert(data_type == std::string("MT19937"));
 | 
			
		||||
    GRID_ASSERT(format == std::string("UINT32"));
 | 
			
		||||
    GRID_ASSERT(data_type == std::string("MT19937"));
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef RNG_SITMO
 | 
			
		||||
    assert(format == std::string("UINT64"));
 | 
			
		||||
    assert(data_type == std::string("SITMO"));
 | 
			
		||||
    GRID_ASSERT(format == std::string("UINT64"));
 | 
			
		||||
    GRID_ASSERT(data_type == std::string("SITMO"));
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    // depending on datatype, set up munger;
 | 
			
		||||
@@ -376,7 +376,7 @@ public:
 | 
			
		||||
      std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
    GRID_ASSERT(nersc_csum == header.checksum );
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -49,7 +49,7 @@ public:
 | 
			
		||||
    {
 | 
			
		||||
      std::ifstream fin(file, std::ios::in | std::ios::binary);
 | 
			
		||||
      fin.read(reinterpret_cast<char*>(&header), sizeof(OpenQcdHeader));
 | 
			
		||||
      assert(!fin.fail());
 | 
			
		||||
      GRID_ASSERT(!fin.fail());
 | 
			
		||||
      field.data_start = fin.tellg();
 | 
			
		||||
      fin.close();
 | 
			
		||||
    }
 | 
			
		||||
@@ -57,10 +57,10 @@ public:
 | 
			
		||||
    header.plaq /= normalisationFactor;
 | 
			
		||||
 | 
			
		||||
    // sanity check (should trigger on endian issues)
 | 
			
		||||
    assert(0 < header.Nt && header.Nt <= 1024);
 | 
			
		||||
    assert(0 < header.Nx && header.Nx <= 1024);
 | 
			
		||||
    assert(0 < header.Ny && header.Ny <= 1024);
 | 
			
		||||
    assert(0 < header.Nz && header.Nz <= 1024);
 | 
			
		||||
    GRID_ASSERT(0 < header.Nt && header.Nt <= 1024);
 | 
			
		||||
    GRID_ASSERT(0 < header.Nx && header.Nx <= 1024);
 | 
			
		||||
    GRID_ASSERT(0 < header.Ny && header.Ny <= 1024);
 | 
			
		||||
    GRID_ASSERT(0 < header.Nz && header.Nz <= 1024);
 | 
			
		||||
 | 
			
		||||
    field.dimension[0] = header.Nx;
 | 
			
		||||
    field.dimension[1] = header.Ny;
 | 
			
		||||
@@ -71,9 +71,9 @@ public:
 | 
			
		||||
    std::cout << GridLogDebug << "grid dimensions: " << grid->_fdimensions << std::endl;
 | 
			
		||||
    std::cout << GridLogDebug << "file dimensions: " << field.dimension << std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(grid->_ndimension == Nd);
 | 
			
		||||
    GRID_ASSERT(grid->_ndimension == Nd);
 | 
			
		||||
    for(int d = 0; d < Nd; d++)
 | 
			
		||||
      assert(grid->_fdimensions[d] == field.dimension[d]);
 | 
			
		||||
      GRID_ASSERT(grid->_fdimensions[d] == field.dimension[d]);
 | 
			
		||||
 | 
			
		||||
    field.plaquette = header.plaq;
 | 
			
		||||
 | 
			
		||||
@@ -86,10 +86,10 @@ public:
 | 
			
		||||
                                       std::string                           file) {
 | 
			
		||||
    typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubleStoredGaugeField;
 | 
			
		||||
 | 
			
		||||
    assert(Ns == 4 and Nd == 4 and Nc == 3);
 | 
			
		||||
    GRID_ASSERT(Ns == 4 and Nd == 4 and Nc == 3);
 | 
			
		||||
 | 
			
		||||
    auto grid = dynamic_cast<GridCartesian*>(Umu.Grid());
 | 
			
		||||
    assert(grid != nullptr); assert(grid->_ndimension == Nd);
 | 
			
		||||
    GRID_ASSERT(grid != nullptr); GRID_ASSERT(grid->_ndimension == Nd);
 | 
			
		||||
 | 
			
		||||
    uint64_t offset = readHeader(file, Umu.Grid(), header);
 | 
			
		||||
 | 
			
		||||
@@ -171,7 +171,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    if(plaq_diff >= tol)
 | 
			
		||||
      std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl;
 | 
			
		||||
    assert(plaq_diff < tol);
 | 
			
		||||
    GRID_ASSERT(plaq_diff < tol);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user