1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 04:37:05 +01:00

Compare commits

..

3 Commits

1290 changed files with 56946 additions and 216418 deletions

View File

@ -1,54 +0,0 @@
name: Bug report
description: Report a bug.
title: "<insert title>"
labels: [bug]
body:
- type: markdown
attributes:
value: >
Thank you for taking the time to file a bug report.
Please check that the code is pointing to the HEAD of develop
or any commit in master which is tagged with a version number.
- type: textarea
attributes:
label: "Describe the issue:"
description: >
Describe the issue and any previous attempt to solve it.
validations:
required: true
- type: textarea
attributes:
label: "Code example:"
description: >
If relevant, show how to reproduce the issue using a minimal working
example.
placeholder: |
<< your code here >>
render: shell
validations:
required: false
- type: textarea
attributes:
label: "Target platform:"
description: >
Give a description of the target platform (CPU, network, compiler).
Please give the full CPU part description, using for example
`cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
or `sysctl machdep.cpu.brand_string` (macOS) and the full output
the `--version` option of your compiler.
validations:
required: true
- type: textarea
attributes:
label: "Configure options:"
description: >
Please give the exact configure command used and attach
`config.log`, `grid.config.summary` and the output of `make V=1`.
render: shell
validations:
required: true

29
.gitignore vendored
View File

@ -1,7 +1,3 @@
# Doxygen stuff
html/*
latex/*
# Compiled Object files #
#########################
*.slo
@ -87,36 +83,37 @@ ltmain.sh
.Trashes
ehthumbs.db
Thumbs.db
.dirstamp
# build directory #
###################
build*/*
Documentation/_build
# IDE related files #
#####################
*.xcodeproj/*
build.sh
.vscode
*.code-workspace
# Eigen source #
################
Grid/Eigen
Eigen/*
lib/Eigen/*
# FFTW source #
################
lib/fftw/*
# libtool macros #
##################
m4/lt*
m4/libtool.m4
# github pages #
################
gh-pages/
# Buck files #
##############
.buck*
buck-out
BUCK
make-bin-BUCK.sh
# generated sources #
#####################
Grid/qcd/spin/gamma-gen/*.h
Grid/qcd/spin/gamma-gen/*.cc
Grid/util/Version.h
lib/qcd/spin/gamma-gen/*.h
lib/qcd/spin/gamma-gen/*.cc

106
.travis.yml Normal file
View File

@ -0,0 +1,106 @@
language: cpp
cache:
directories:
- clang
matrix:
include:
- os: osx
osx_image: xcode7.2
compiler: clang
- compiler: gcc
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-4.9
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: VERSION=-4.9
- compiler: gcc
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-5
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: VERSION=-5
- compiler: clang
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-4.8
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: CLANG_LINK=http://llvm.org/releases/3.8.0/clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
- compiler: clang
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-4.8
- libmpfr-dev
- libgmp-dev
- libmpc-dev
- libopenmpi-dev
- openmpi-bin
- binutils-dev
env: CLANG_LINK=http://llvm.org/releases/3.7.0/clang+llvm-3.7.0-x86_64-linux-gnu-ubuntu-14.04.tar.xz
before_install:
- export GRIDDIR=`pwd`
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install openmpi; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]] && [[ "$CC" == "gcc" ]]; then brew install gcc5; fi
install:
- export CC=$CC$VERSION
- export CXX=$CXX$VERSION
- echo $PATH
- which $CC
- $CC --version
- which $CXX
- $CXX --version
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
script:
- ./bootstrap.sh
- mkdir build
- cd build
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1
- echo make clean
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1
- echo make clean
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then export CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto
- make -j4
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then mpirun -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi

File diff suppressed because it is too large Load Diff

View File

@ -1,2 +0,0 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL

View File

@ -1,5 +0,0 @@
CXX=hipcc
MPICXX=mpicxx
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench

View File

@ -1,2 +0,0 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL

View File

@ -1,5 +0,0 @@
Version : 0.8.0
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
- MPI and MPI3 comms optimisations for KNL and OPA finished
- Half precision comms

View File

@ -1,73 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/DisableWarnings.h
Copyright (C) 2016
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef DISABLE_WARNINGS_H
#define DISABLE_WARNINGS_H
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
//disables and intel compiler specific warning (in json.hpp)
#ifdef __ICC
#pragma warning disable 488
#endif
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register"
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
//disables nvcc specific warning in json.hpp
#pragma nv_diag_suppress unsigned_compare_with_zero
#pragma nv_diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
#pragma nv_diag_suppress extra_semicolon
#else
//disables nvcc specific warning in json.hpp
#pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon
#endif
#endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
#ifdef __ALTIVEC__
#define EIGEN_DONT_VECTORIZE
#endif
#ifdef __VSX__
#define EIGEN_DONT_VECTORIZE
#endif
#endif

View File

@ -1,35 +0,0 @@
#ifndef GRID_STD_H
#define GRID_STD_H
///////////////////
// Std C++ dependencies
///////////////////
#include <cassert>
#include <complex>
#include <memory>
#include <vector>
#include <array>
#include <string>
#include <iostream>
#include <iomanip>
#include <random>
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>
#include <sys/time.h>
#include <chrono>
#include <zlib.h>
///////////////////
// Grid config
///////////////////
#include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS
#endif
#endif /* GRID_STD_H */

View File

@ -1,75 +0,0 @@
#include <Grid/GridCore.h>
#pragma once
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
#ifdef USE_MKL
#define EIGEN_USE_MKL_ALL
#endif
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
/* NVCC save and restore compile environment*/
#ifdef __NVCC__
#pragma push
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress code_is_unreachable
#else
#pragma diag_suppress code_is_unreachable
#endif
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")
#undef __CUDA_ARCH__
#undef __NVCC__
#undef __CUDACC__
#define __NVCC__REDEFINE__
#endif
/* SYCL save and restore compile environment*/
#ifdef GRID_SYCL
#pragma push
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#define EIGEN_DONT_VECTORIZE
#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif
/* HIP save and restore compile environment*/
#ifdef GRID_HIP
#pragma push
#pragma push_macro("__HIP_DEVICE_COMPILE__")
#endif
#define EIGEN_NO_HIP
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
/* NVCC restore */
#ifdef __NVCC__REDEFINE__
#pragma pop_macro("__CUDACC__")
#pragma pop_macro("__NVCC__")
#pragma pop_macro("__CUDA_ARCH__")
#pragma pop
#endif
/*SYCL restore*/
#ifdef __SYCL__REDEFINE__
#pragma pop_macro("__SYCL_DEVICE_ONLY__")
#pragma pop
#endif
/*HIP restore*/
#ifdef __HIP__REDEFINE__
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -1 +0,0 @@
#include <Grid/Grid_Eigen_Dense.h>

View File

@ -1,81 +0,0 @@
extra_sources=
extra_headers=
if BUILD_COMMS_MPI3
extra_sources+=communicator/Communicator_mpi3.cc
extra_sources+=communicator/Communicator_base.cc
extra_sources+=communicator/SharedMemoryMPI.cc
extra_sources+=communicator/SharedMemory.cc
endif
if BUILD_COMMS_NONE
extra_sources+=communicator/Communicator_none.cc
extra_sources+=communicator/Communicator_base.cc
extra_sources+=communicator/SharedMemoryNone.cc
extra_sources+=communicator/SharedMemory.cc
endif
if BUILD_HDF5
extra_sources+=serialisation/Hdf5IO.cc
extra_headers+=serialisation/Hdf5IO.h
extra_headers+=serialisation/Hdf5Type.h
endif
all: version-cache Version.h
version-cache:
@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
a="uncommited changes";\
else\
a="clean";\
fi;\
echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d $$a\\"%n" HEAD`" > vertmp;\
if [ -e version-cache ]; then\
d=`diff vertmp version-cache`;\
if [ "$${d}" != "" ]; then\
mv vertmp version-cache;\
rm -f Version.h;\
fi;\
else\
mv vertmp version-cache;\
rm -f Version.h;\
fi;\
rm -f vertmp
Version.h: version-cache
cp version-cache Version.h
.PHONY: version-cache
#
# Libraries
#
include Make.inc
include Eigen.inc
extra_sources+=$(WILS_FERMION_FILES)
extra_sources+=$(STAG_FERMION_FILES)
if BUILD_ZMOBIUS
extra_sources+=$(ZWILS_FERMION_FILES)
endif
if BUILD_GPARITY
extra_sources+=$(GP_FERMION_FILES)
endif
if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
if BUILD_SP
extra_sources+=$(SP_FERMION_FILES)
extra_sources+=$(SP_TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a
CCFILES += $(extra_sources)
HFILES += $(extra_headers) Config.h Version.h
libGrid_a_SOURCES = $(CCFILES)
libGrid_adir = $(includedir)/Grid
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) $(eigen_unsupp_files)

View File

@ -1,43 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Namespace.h
Copyright (C) 2016
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <type_traits>
#include <cassert>
#include <exception>
#define NAMESPACE_BEGIN(A) namespace A {
#define NAMESPACE_END(A) }
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
#define EXCEPTION_CHECK_BEGIN(A) try {
#define EXCEPTION_CHECK_END(A) } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }

View File

@ -1,303 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Cshift.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
#ifdef HAVE_FFTW
#if defined(USE_MKL) || defined(GRID_SYCL)
#include <fftw/fftw3.h>
#else
#include <fftw3.h>
#endif
#endif
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
#ifdef HAVE_FFTW
template<> struct FFTW<ComplexD> {
public:
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
template<> struct FFTW<ComplexF> {
public:
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
#endif
#ifndef FFTW_FORWARD
#define FFTW_FORWARD (-1)
#define FFTW_BACKWARD (+1)
#endif
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
double flops;
double flops_call;
uint64_t usec;
Coordinate dimensions;
Coordinate processors;
Coordinate processor_coor;
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
double Flops(void) {return flops;}
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
{
flops=0;
usec =0;
Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors,*grid);
};
~FFT ( void) {
delete sgrid;
}
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
}
}
}
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
Coordinate mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
std::cerr << "FFTW is not compiled but is called"<<std::endl;
assert(0);
#else
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
Coordinate layout(Nd,1);
Coordinate pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
}
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
int *inembed = n, *onembed = n;
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
}
// Barrel shift and collect global pencil
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
{
autoView(r_v,result,CpuRead);
autoView(p_v,pgbuf,CpuWrite);
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,r_v,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
pokeLocalSite(s,p_v,cbuf);
});
}
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
}
}
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
thread_for( idx,NN,{
Coordinate cbuf(Nd);
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
});
timer.Stop();
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
autoView(result_v,result,CpuWrite);
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf_v,cgbuf);
pokeLocalSite(s,result_v,clbuf);
});
}
result = result*div;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,711 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/LinearOperator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
virtual void OpDirAll (const Field &in, std::vector<Field> &out) = 0; // Abstract base
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
virtual ~LinearOperatorBase(){};
};
/////////////////////////////////////////////////////////////////////////////////////////////
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Construct herm op from non-herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class MdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MdagM(in,out);
}
};
template<class Matrix,class Field>
class MMdagLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MMdag(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MMdag(in,out);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _shift;
public:
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MdagM(in,out);
out = out + _shift*in;
}
};
////////////////////////////////////////////////////////////////////
// Create a shifted HermOp
////////////////////////////////////////////////////////////////////
template<class Field>
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
LinearOperatorBase<Field> &_Mat;
RealD _shift;
public:
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
HermOp(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.HermOp(in,out);
out = out + _shift*in;
}
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
}
};
template<class Matrix,class Field>
class NonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual void Mpc (const Field &in, Field &out) =0;
virtual void MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
ComplexD dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
virtual void HermOp(const Field &in, Field &out){
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
public:
Matrix &_Mat;
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
axpy(out,-1.0,tmp,out);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
axpy(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
axpy(out,-1.0,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
axpy(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
axpy(out,-1.0,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
axpy(out,-1.0,tmp,in);
}
};
template<class Field>
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
{
public:
virtual void Mpc (const Field& in, Field& out) = 0;
virtual void MpcDag (const Field& in, Field& out) = 0;
virtual void MpcDagMpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
assert(0);
}
virtual void HermOp(const Field& in, Field& out) {
assert(0);
}
void Op(const Field& in, Field& out) {
Mpc(in, out);
}
void AdjOp(const Field& in, Field& out) {
MpcDag(in, out);
}
// Support for coarsening to a multigrid
void OpDiag(const Field& in, Field& out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir(const Field& in, Field& out, int dir, int disp) {
assert(0);
}
void OpDirAll(const Field& in, std::vector<Field>& out){
assert(0);
};
};
template<class Matrix, class Field>
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
{
public:
Matrix& _Mat;
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
_Mat.Mooee(in, out);
axpy(out, -1.0, tmp, out);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeDag(in, out);
axpy(out, -1.0, tmp, out);
}
};
template<class Matrix,class Field>
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix &_Mat;
public:
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.Meooe(in, out);
_Mat.MooeeInv(out, tmp);
_Mat.Meooe(tmp, out);
_Mat.MooeeInv(out, tmp);
axpy(out, -1.0, tmp, in);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInvDag(in, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
axpy(out, -1.0, tmp, in);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix& _Mat;
public:
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in, out);
_Mat.Meooe(out, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
axpy(out, -1.0, tmp, in);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, out);
_Mat.MooeeInvDag(out, tmp);
_Mat.MeooeDag(tmp, out);
_Mat.MooeeInvDag(out, tmp);
axpy(out, -1.0, tmp, in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
Field tmp;
RealD mass;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
mass = _Mat.Mass();
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
Mpc(in,out);
ComplexD dot= innerProduct(in,out);
n1 = real(dot);
n2 =0.0;
}
virtual void HermOp(const Field &in, Field &out){
Mpc(in,out);
// _Mat.Meooe(in,out);
// _Mat.Meooe(out,tmp);
// axpby(out,-1.0,mass*mass,tmp,in);
}
virtual void Mpc (const Field &in, Field &out)
{
Field tmp(in.Grid());
Field tmp2(in.Grid());
// _Mat.Mooee(in,out);
// _Mat.Mooee(out,tmp);
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
axpby(out,-1.0,mass*mass,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out) {
assert(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
assert(in.size()==out.size());
for(int k=0;k<in.size();k++){
(*this)(Linop,in[k],out[k]);
}
};
virtual ~OperatorFunction(){};
};
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
assert(in.size() == out.size());
for (unsigned int i = 0; i < in.size(); ++i)
{
(*this)(in[i], out[i]);
}
}
virtual ~LinearFunction(){};
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
public:
void operator() (const Field &in, Field &out){
out = in;
};
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorMultiFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
};
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
using OperatorFunction<Field>::operator();
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in.Grid());
Field Mtmp(in.Grid());
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
NAMESPACE_END(Grid);

View File

@ -1,52 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/Preconditioner.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PRECONDITIONER_H
#define GRID_PRECONDITIONER_H
NAMESPACE_BEGIN(Grid);
template<class Field> using Preconditioner = LinearFunction<Field> ;
/*
template<class Field> class Preconditioner : public LinearFunction<Field> {
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field & psi)=0;
};
*/
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
using Preconditioner<Field>::operator();
virtual void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,86 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/SparseMatrix.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_SPARSE_MATRIX_H
#define GRID_ALGORITHM_SPARSE_MATRIX_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual void M (const Field &in, Field &out)=0;
virtual void Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out) {
Field tmp (in.Grid());
M(in,tmp);
Mdag(tmp,out);
}
virtual void MMdag(const Field &in, Field &out) {
Field tmp (in.Grid());
Mdag(in,tmp);
M(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
virtual ~SparseMatrixBase() {};
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface augmented by a red black sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
virtual void MooeeInv (const Field &in, Field &out)=0;
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
virtual ~CheckerBoardedSparseMatrixBase() {};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,414 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/Chebyshev.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CHEBYSHEV_H
#define GRID_CHEBYSHEV_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
struct ChebyParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
RealD, alpha,
RealD, beta,
int, Npoly);
};
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class Chebyshev : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
std::vector<RealD> Coeffs;
int order;
RealD hi;
RealD lo;
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.02;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
// Convenience for plotting the approximation
void PlotApprox(std::ostream &out) {
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
out <<x<<"\t"<<approx(x)<<std::endl;
}
};
Chebyshev(){};
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
////////////////////////////////////////////////////////////////////////////////////////////////////
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
////////////////////////////////////////////////////////////////////////////////////////////////////
// CJ: the one we need for Lanczos
void Init(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order,0.0);
Coeffs[order-1] = 1.0;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
// Similar kick effect below the threshold as Lanczos filter approach
void InitLowPass(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD k=(order-1.0);
RealD s=std::cos( j*M_PI*(k+0.5)/order );
Coeffs[j] = s * 2.0/order;
}
};
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
template<class functor>
void Init(RealD _lo,RealD _hi,int _order, functor & func)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){
RealD M=order;
RealD alpha = M_PI/(M+2);
RealD lmax = std::cos(alpha);
RealD sumUsq =0;
std::vector<RealD> U(M);
std::vector<RealD> a(M);
std::vector<RealD> g(M);
for(int n=0;n<=M;n++){
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
sumUsq += U[n]*U[n];
}
sumUsq = std::sqrt(sumUsq);
for(int i=1;i<=M;i++){
a[i] = U[i]/sumUsq;
}
g[0] = 1.0;
for(int m=1;m<=M;m++){
g[m] = 0;
for(int i=0;i<=M-m;i++){
g[m]+= a[i]*a[m+i];
}
}
for(int m=1;m<=M;m++){
Coeffs[m]*=g[m];
}
}
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
RealD approxD(RealD x)
{
RealD Un;
RealD Unm;
RealD Unp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD U0=1;
RealD U1=2*y;
RealD sum;
sum = Coeffs[1]*U0;
sum+= Coeffs[2]*U1*2.0;
Un =U1;
Unm=U0;
for(int i=2;i<order-1;i++){
Unp=2*y*Un-Unm;
Unm=Un;
Un =Unp;
sum+= Un*Coeffs[i+1]*(i+1.0);
}
return sum/(0.5*(hi-lo));
};
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
RealD x = x0;
RealD eps;
int i;
for (i=0;i<maxiter;i++) {
eps = approx(x) - z;
if (fabs(eps / z) < resid)
return x;
x = x - eps / approxD(x);
}
return std::numeric_limits<double>::quiet_NaN();
}
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
typedef typename Field::vector_type vector_type;
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
axpby(T1,xscale,mscale,y,in);
// sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1;
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y);
axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD alpha;
RealD beta;
RealD mu;
public:
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
alpha(_alpha),
beta(_beta),
mu(_mu)
{
order=_order;
Coeffs.resize(order);
for(int i=0;i<_order;i++){
Coeffs[i] = 0.0;
}
Coeffs[order-1]=1.0;
};
void csv(std::ostream &out){
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
RealD approx(RealD xx) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
Real aa = alpha * alpha;
Real bb = beta * beta;
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
RealD y= x;
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
// shift_Multiply in Rudy's code
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
{
GridBase *grid=in.Grid();
Field tmp(grid);
RealD aa= alpha*alpha;
RealD bb= beta * beta;
Linop.HermOp(in,out);
out = out - mu*in;
Linop.HermOp(out,tmp);
tmp = tmp - mu * out;
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M )*in
AminusMuSq(Linop,T0,T1);
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
for(int n=2;n<order;n++){
AminusMuSq(Linop,*Tn,y);
*Tnp=2.0*y-(*Tnm);
out=out+Coeffs[n]* (*Tnp);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,152 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/Forecast.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef INCLUDED_FORECAST_H
#define INCLUDED_FORECAST_H
NAMESPACE_BEGIN(Grid);
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
// used to forecast solutions across poles of the EOFA heatbath.
//
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
template<class Matrix, class Field>
class ChronoForecast : public Forecast<Matrix,Field>
{
public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = Zero(); return chi; }
else if(degree == 1){ return prev_solns[0]; }
// RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
std::vector<Field> MdagMv(degree,phi);
// Array to hold the matrix elements
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
// Solution and source vectors
std::vector<ComplexD> a(degree);
std::vector<ComplexD> b(degree);
// Orthonormalize the vector basis
for(int i=0; i<degree; i++){
v[i] *= 1.0/std::sqrt(norm2(v[i]));
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
}
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}
// Construct the matrix
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = conjugate(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
for(int i=0; i<degree; i++){
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
b[i] = xp;
for(int j=0; j<degree; j++){
xp = G[k][j];
G[k][j] = G[i][j];
G[i][j] = xp;
}
}
// Convert matrix to upper triangular form
for(int j=i+1; j<degree; j++){
xp = G[j][i]/G[i][i];
b[j] -= xp * b[i];
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
}
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = Zero();
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
a[i] = (b[i]-a[i])/G[i][i];
chi += a[i]*v[i];
r -= a[i]*MdagMv[i];
}
RealD true_r(0.0);
ComplexD tmp;
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = conjugate(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
RealD error = std::sqrt(norm2(r)/norm2(phi));
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
return chi;
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,129 +0,0 @@
#ifndef GRID_JACOBIPOLYNOMIAL_H
#define GRID_JACOBIPOLYNOMIAL_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
template<class Field>
class JacobiPolynomial : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
int order;
RealD hi;
RealD lo;
RealD alpha;
RealD beta;
public:
void csv(std::ostream &out){
csv(out,lo,hi);
}
void csv(std::ostream &out,RealD llo,RealD hhi){
RealD diff = hhi-llo;
RealD delta = diff*1.0e-5;
for (RealD x=llo-delta; x<=hhi; x+=delta) {
RealD f = approx(x);
out<< x<<" "<<f <<std::endl;
}
return;
}
JacobiPolynomial(){};
JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
{
lo=_lo;
hi=_hi;
alpha=_alpha;
beta=_beta;
order=_order;
};
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1.0;
RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
Tn =T1;
Tnm=T0;
for(int n=2;n<=order;n++){
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
Tnm=Tn;
Tn =Tnp;
}
return Tnp;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid);
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// RealD T0=1.0;
T0=in;
// RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
// = x * 2/(hi-lo) - (hi+lo)/(hi-lo)
Linop.HermOp(T0,y);
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
y=y*xscale+in*mscale;
// RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
RealD halfAmB = (alpha-beta)*0.5;
RealD halfApBp2= (alpha+beta+2.0)*0.5;
T1 = halfAmB * in + halfApBp2*y;
for(int n=2;n<=order;n++){
Linop.HermOp(*Tn,y);
y=xscale*y+mscale*(*Tn);
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
// Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
cny=cny/cnp;
cn1=cn1/cnp;
cn1=cn1/cnp;
cnm=cnm/cnp;
*Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
out=*Tnp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,473 +0,0 @@
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<iostream>
#include<iomanip>
#include<cassert>
#include<Grid/algorithms/approx/RemezGeneral.h>
// Constructor
AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision,
bigfloat (*f)(bigfloat x, void *data), void *data): f(f),
data(data),
prec(precision),
apstrt(lower), apend(upper), apwidt(upper - lower),
n(0), d(0), pow_n(0), pow_d(0)
{
bigfloat::setDefaultPrecision(prec);
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
}
//Determine the properties of the numerator and denominator polynomials
void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){
pow_n = num_degree;
pow_d = den_degree;
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
num_type = num_type_in;
den_type = den_type_in;
num_pows.resize(pow_n+1);
den_pows.resize(pow_d+1);
int n_in = 0;
bool odd = num_type == PolyType::Full || num_type == PolyType::Odd;
bool even = num_type == PolyType::Full || num_type == PolyType::Even;
for(int i=0;i<=pow_n;i++){
num_pows[i] = -1;
if(i % 2 == 0 && even) num_pows[i] = n_in++;
if(i % 2 == 1 && odd) num_pows[i] = n_in++;
}
std::cout << n_in << " terms in numerator" << std::endl;
--n_in; //power is 1 less than the number of terms, eg pow=1 a x^1 + b x^0
int d_in = 0;
odd = den_type == PolyType::Full || den_type == PolyType::Odd;
even = den_type == PolyType::Full || den_type == PolyType::Even;
for(int i=0;i<=pow_d;i++){
den_pows[i] = -1;
if(i % 2 == 0 && even) den_pows[i] = d_in++;
if(i % 2 == 1 && odd) den_pows[i] = d_in++;
}
std::cout << d_in << " terms in denominator" << std::endl;
--d_in;
n = n_in;
d = d_in;
}
//Setup algorithm
void AlgRemezGeneral::reinitializeAlgorithm(){
spread = 1.0e37;
iter = 0;
neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1
param.resize(neq);
yy.resize(neq+1);
//Initialize linear equation temporaries
A.resize(neq*neq);
B.resize(neq);
IPS.resize(neq);
//Initialize maximum and minimum errors
xx.resize(neq+2);
mm.resize(neq+1);
initialGuess();
//Initialize search steps
step.resize(neq+1);
stpini();
}
double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,
const PolyType num_type_in, const PolyType den_type_in,
const double _tolerance, const int report_freq){
//Setup the properties of the polynomial
setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in);
//Setup the algorithm
reinitializeAlgorithm();
bigfloat tolerance = _tolerance;
//Iterate until convergance
while (spread > tolerance) {
if (iter++ % report_freq==0)
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;
equations();
if (delta < tolerance) {
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
assert(0);
};
assert( delta>= tolerance );
search();
}
int sign;
double error = (double)getErr(mm[0],&sign);
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
// Return the maximum error in the approximation
return error;
}
// Initial values of maximal and minimal errors
void AlgRemezGeneral::initialGuess(){
// Supply initial guesses for solution points
long ncheb = neq; // Degree of Chebyshev error estimate
// Find ncheb+1 extrema of Chebyshev polynomial
bigfloat a = ncheb;
bigfloat r;
mm[0] = apstrt;
for (long i = 1; i < ncheb; i++) {
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
//r *= sqrt_bf(r);
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
mm[i] = apstrt + r * apwidt;
}
mm[ncheb] = apend;
a = 2.0 * ncheb;
for (long i = 0; i <= ncheb; i++) {
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
//r *= sqrt_bf(r); // Squeeze to low end of interval
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
xx[i] = apstrt + r * apwidt;
}
}
// Initialise step sizes
void AlgRemezGeneral::stpini(){
xx[neq+1] = apend;
delta = 0.25;
step[0] = xx[0] - apstrt;
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
step[neq] = step[neq-1];
}
// Search for error maxima and minima
void AlgRemezGeneral::search(){
bigfloat a, q, xm, ym, xn, yn, xx1;
int emsign, ensign, steps;
int meq = neq + 1;
bigfloat eclose = 1.0e30;
bigfloat farther = 0l;
bigfloat xx0 = apstrt;
for (int i = 0; i < meq; i++) {
steps = 0;
xx1 = xx[i]; // Next zero
if (i == meq-1) xx1 = apend;
xm = mm[i];
ym = getErr(xm,&emsign);
q = step[i];
xn = xm + q;
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
} else {
yn = getErr(xn,&ensign);
if (yn < ym) {
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
}
}
while(yn >= ym) { // March until error becomes smaller.
if (++steps > 10)
break;
ym = yn;
xm = xn;
emsign = ensign;
a = xm + q;
if (a == xm || a <= xx0 || a >= xx1)
break;// Must not skip over the zeros either side.
xn = a;
yn = getErr(xn,&ensign);
}
mm[i] = xm; // Position of maximum
yy[i] = ym; // Value of maximum
if (eclose > ym) eclose = ym;
if (farther < ym) farther = ym;
xx0 = xx1; // Walk to next zero.
} // end of search loop
q = (farther - eclose); // Decrease step size if error spread increased
if (eclose != 0.0) q /= eclose; // Relative error spread
if (q >= spread)
delta *= 0.5; // Spread is increasing; decrease step size
spread = q;
for (int i = 0; i < neq; i++) {
q = yy[i+1];
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
else q = 0.0625;
if (q > (bigfloat)0.25) q = 0.25;
q *= mm[i+1] - mm[i];
step[i] = q * delta;
}
step[neq] = step[neq-1];
for (int i = 0; i < neq; i++) { // Insert new locations for the zeros.
xm = xx[i] - step[i];
if (xm <= apstrt)
continue;
if (xm >= apend)
continue;
if (xm <= mm[i])
xm = (bigfloat)0.5 * (mm[i] + xx[i]);
if (xm >= mm[i+1])
xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
xx[i] = xm;
}
}
// Solve the equations
void AlgRemezGeneral::equations(){
bigfloat x, y, z;
bigfloat *aa;
for (int i = 0; i < neq; i++) { // set up the equations for solution by simq()
int ip = neq * i; // offset to 1st element of this row of matrix
x = xx[i]; // the guess for this row
y = func(x); // right-hand-side vector
z = (bigfloat)1l;
aa = A.data()+ip;
int t = 0;
for (int j = 0; j <= pow_n; j++) {
if(num_pows[j] != -1){ *aa++ = z; t++; }
z *= x;
}
assert(t == n+1);
z = (bigfloat)1l;
t = 0;
for (int j = 0; j < pow_d; j++) {
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
z *= x;
}
assert(t == d);
B[i] = y * z; // Right hand side vector
}
// Solve the simultaneous linear equations.
if (simq()){
std::cout<<"simq failed\n";
exit(0);
}
}
// Evaluate the rational form P(x)/Q(x) using coefficients
// from the solution vector param
bigfloat AlgRemezGeneral::approx(const bigfloat x) const{
// Work backwards toward the constant term.
int c = n;
bigfloat yn = param[c--]; // Highest order numerator coefficient
for (int i = pow_n-1; i >= 0; i--) yn = x * yn + (num_pows[i] != -1 ? param[c--] : bigfloat(0l));
c = n+d;
bigfloat yd = 1l; //Highest degree coefficient is 1.0
for (int i = pow_d-1; i >= 0; i--) yd = x * yd + (den_pows[i] != -1 ? param[c--] : bigfloat(0l));
return(yn/yd);
}
// Compute size and sign of the approximation error at x
bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{
bigfloat f = func(x);
bigfloat e = approx(x) - f;
if (f != 0) e /= f;
if (e < (bigfloat)0.0) {
*sign = -1;
e = -e;
}
else *sign = 1;
return(e);
}
// Solve the system AX=B
int AlgRemezGeneral::simq(){
int ip, ipj, ipk, ipn;
int idxpiv;
int kp, kp1, kpk, kpn;
int nip, nkp;
bigfloat em, q, rownrm, big, size, pivot, sum;
bigfloat *aa;
bigfloat *X = param.data();
int n = neq;
int nm1 = n - 1;
// Initialize IPS and X
int ij = 0;
for (int i = 0; i < n; i++) {
IPS[i] = i;
rownrm = 0.0;
for(int j = 0; j < n; j++) {
q = abs_bf(A[ij]);
if(rownrm < q) rownrm = q;
++ij;
}
if (rownrm == (bigfloat)0l) {
std::cout<<"simq rownrm=0\n";
return(1);
}
X[i] = (bigfloat)1.0 / rownrm;
}
for (int k = 0; k < nm1; k++) {
big = 0.0;
idxpiv = 0;
for (int i = k; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
size = abs_bf(A[ipk]) * X[ip];
if (size > big) {
big = size;
idxpiv = i;
}
}
if (big == (bigfloat)0l) {
std::cout<<"simq big=0\n";
return(2);
}
if (idxpiv != k) {
int j = IPS[k];
IPS[k] = IPS[idxpiv];
IPS[idxpiv] = j;
}
kp = IPS[k];
kpk = n*kp + k;
pivot = A[kpk];
kp1 = k+1;
for (int i = kp1; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
em = -A[ipk] / pivot;
A[ipk] = -em;
nip = n*ip;
nkp = n*kp;
aa = A.data()+nkp+kp1;
for (int j = kp1; j < n; j++) {
ipj = nip + j;
A[ipj] = A[ipj] + em * *aa++;
}
}
}
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
if (A[kpn] == (bigfloat)0l) {
std::cout<<"simq A[kpn]=0\n";
return(3);
}
ip = IPS[0];
X[0] = B[ip];
for (int i = 1; i < n; i++) {
ip = IPS[i];
ipj = n * ip;
sum = 0.0;
for (int j = 0; j < i; j++) {
sum += A[ipj] * X[j];
++ipj;
}
X[i] = B[ip] - sum;
}
ipn = n * IPS[n-1] + n - 1;
X[n-1] = X[n-1] / A[ipn];
for (int iback = 1; iback < n; iback++) {
//i goes (n-1),...,1
int i = nm1 - iback;
ip = IPS[i];
nip = n*ip;
sum = 0.0;
aa = A.data()+nip+i+1;
for (int j= i + 1; j < n; j++)
sum += *aa++ * X[j];
X[i] = (X[i] - sum) / A[nip+i];
}
return(0);
}
void AlgRemezGeneral::csv(std::ostream & os) const{
os << "Numerator" << std::endl;
for(int i=0;i<=pow_n;i++){
os << getCoeffNum(i) << "*x^" << i;
if(i!=pow_n) os << " + ";
}
os << std::endl;
os << "Denominator" << std::endl;
for(int i=0;i<=pow_d;i++){
os << getCoeffDen(i) << "*x^" << i;
if(i!=pow_d) os << " + ";
}
os << std::endl;
//For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc
int sign;
os << "Errors at maxima: coordinate, error, (sign)" << std::endl;
for(int i=0;i<neq+1;i++){
os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl;
}
os << "Scan over range:" << std::endl;
int npt = 60;
bigfloat dlt = (apend - apstrt)/bigfloat(npt-1);
for (bigfloat x=apstrt; x<=apend; x = x + dlt) {
double f = evaluateFunc(x);
double r = evaluateApprox(x);
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
}
return;
}

View File

@ -1,170 +0,0 @@
/*
C.Kelly Jan 2020 based on implementation by M. Clark May 2005
AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial
It includes optional restriction to odd/even polynomials for the numerator and/or denominator
*/
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
#define INCLUDED_ALG_REMEZ_GENERAL_H
#include <stddef.h>
#include <Grid/GridStd.h>
#ifdef HAVE_LIBGMP
#include "bigfloat.h"
#else
#include "bigfloat_double.h"
#endif
class AlgRemezGeneral{
public:
enum PolyType { Even, Odd, Full };
private:
// In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
bigfloat (*f)(bigfloat x, void *data);
void *data;
// The approximation parameters
std::vector<bigfloat> param;
bigfloat norm;
// The number of non-zero terms in the numerator and denominator
int n, d;
// The numerator and denominator degree (i.e. the largest power)
int pow_n, pow_d;
// Specify if the numerator and/or denominator are odd/even polynomials
PolyType num_type;
PolyType den_type;
std::vector<int> num_pows; //contains the mapping, with -1 if not present
std::vector<int> den_pows;
// The bounds of the approximation
bigfloat apstrt, apwidt, apend;
// Variables used to calculate the approximation
int nd1, iter;
std::vector<bigfloat> xx;
std::vector<bigfloat> mm;
std::vector<bigfloat> step;
bigfloat delta, spread;
// Variables used in search
std::vector<bigfloat> yy;
// Variables used in solving linear equations
std::vector<bigfloat> A;
std::vector<bigfloat> B;
std::vector<int> IPS;
// The number of equations we must solve at each iteration (n+d+1)
int neq;
// The precision of the GNU MP library
long prec;
// Initialize member variables associated with the polynomial's properties
void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
// Initial values of maximal and minmal errors
void initialGuess();
// Initialise step sizes
void stpini();
// Initialize the algorithm
void reinitializeAlgorithm();
// Solve the equations
void equations();
// Search for error maxima and minima
void search();
// Calculate function required for the approximation
inline bigfloat func(bigfloat x) const{
return f(x, data);
}
// Compute size and sign of the approximation error at x
bigfloat getErr(bigfloat x, int *sign) const;
// Solve the system AX=B where X = param
int simq();
// Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
bigfloat approx(bigfloat x) const;
public:
AlgRemezGeneral(double lower, double upper, long prec,
bigfloat (*f)(bigfloat x, void *data), void *data);
inline int getDegree(void) const{
assert(n==d);
return n;
}
// Reset the bounds of the approximation
inline void setBounds(double lower, double upper) {
apstrt = lower;
apend = upper;
apwidt = apend - apstrt;
}
// Get the bounds of the approximation
inline void getBounds(double &lower, double &upper) const{
lower=(double)apstrt;
upper=(double)apend;
}
// Run the algorithm to generate the rational approximation
double generateApprox(int num_degree, int den_degree,
PolyType num_type, PolyType den_type,
const double tolerance = 1e-15, const int report_freq = 1000);
inline double generateApprox(int num_degree, int den_degree,
const double tolerance = 1e-15, const int report_freq = 1000){
return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
}
// Evaluate the rational form P(x)/Q(x) using coefficients from the
// solution vector param
inline double evaluateApprox(double x) const{
return (double)approx((bigfloat)x);
}
// Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
inline double evaluateInverseApprox(double x) const{
return 1.0/(double)approx((bigfloat)x);
}
// Calculate function required for the approximation
inline double evaluateFunc(double x) const{
return (double)func((bigfloat)x);
}
// Calculate inverse function required for the approximation
inline double evaluateInverseFunc(double x) const{
return 1.0/(double)func((bigfloat)x);
}
// Dump csv of function, approx and error
void csv(std::ostream &os = std::cout) const;
// Get the coefficient of the term x^i in the numerator
inline double getCoeffNum(const int i) const{
return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
}
// Get the coefficient of the term x^i in the denominator
inline double getCoeffDen(const int i) const{
if(i == pow_d) return 1.0;
else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);
}
};
#endif

View File

@ -1,183 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/algorithms/approx/ZMobius.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the tanh approximation
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
int Ls = w.size();
ComplexD fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return ((fxp - fmp)/(fxp + fmp)).real();
}
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
int Ls = w.size();
double fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the tanh approximation in a form suitable for the Remez
bigfloat epsilonMobius(bigfloat x, void* data){
const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
bigfloat fxp(1.0);
bigfloat fmp(1.0);
for(int i=0;i<omega.size();i++){
fxp = fxp * ( bigfloat(omega[i]) + x);
fmp = fmp * ( bigfloat(omega[i]) - x);
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound){
assert(omega_in.size() == Ls_in);
omega_out.resize(Ls_out);
//Use the Remez algorithm to generate the appropriate rational polynomial
//For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)
AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);
remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
remez.csv(std::cout);
//The rational approximation has the form [ f(x) - f(-x) ] / [ f(x) + f(-x) ] where f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
//cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7 pg 102
//omega_i are therefore the negative of the complex roots of f(x)
//We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
// \rho(\lambda) = det( A - \lambda I ) where I is the unit matrix
//The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n is the companion matrix
// A = | 0 1 0 0 0 .... 0 |
// | 0 0 1 0 0 .... 0 |
// | : : : : : : |
// | 0 0 0 0 0 1
// | -a0 -a1 -a2 ... ... -an|
//Note the Remez defines the largest power to have unit coefficient
std::vector<RealD> coeffs(Ls_out+1);
for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
std::vector<std::complex<RealD> > roots(Ls_out);
//Form the companion matrix
Eigen::MatrixXd compn(Ls_out,Ls_out);
for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
compn(Ls_out - 1, 0) = -coeffs[0];
for(int j=1;j<Ls_out;j++){
for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
compn(Ls_out - 1, j) = -coeffs[j];
}
//Eigensolve
Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
const auto & ev = slv.eigenvalues();
for(int i=0;i<Ls_out;i++)
omega_out[i] = -ev(i);
//Sort ascending (smallest at start of vector!)
std::sort(omega_out.begin(), omega_out.end(),
[&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
//McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
std::vector<ComplexD> omega_tmp = omega_out;
int s_low=0, s_high=Ls_out-1, ss=0;
for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
int s_to;
if(ss % 2 == 0){
s_to = s_low++;
}else{
s_to = s_high--;
}
omega_out[s_to] = omega_tmp[s_from];
++ss;
}
std::cout << "Resulting omega_i:" << std::endl;
for(int i=0;i<Ls_out;i++)
std::cout << omega_out[i] << std::endl;
std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
int npt = 60;
double dlt = lambda_bound/double(npt-1);
for (int i =0; i<npt; i++){
double x = i*dlt;
double r = remez.evaluateApprox(x);
double p = epsilonMobius(x, omega_out);
double e = epsilonMobius(x, omega_in);
std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
}
}
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
}
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound){
computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
}
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);

View File

@ -1,57 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ZMOBIUS_APPROX_H
#define GRID_ZMOBIUS_APPROX_H
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound);
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound);
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: BatchedBlas.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/algorithms/blas/BatchedBlas.h>
NAMESPACE_BEGIN(Grid);
gridblasHandle_t GridBLAS::gridblasHandle;
int GridBLAS::gridblasInit;
NAMESPACE_END(Grid);

File diff suppressed because it is too large Load Diff

View File

@ -1,157 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_DEFLATION_H
#define GRID_DEFLATION_H
namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { };
};
template<class Field>
class SourceGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = src; };
};
////////////////////////////////
// Fine grid deflation
////////////////////////////////
template<class Field>
class DeflatedGuesser: public LinearFunction<Field> {
private:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
const unsigned int N;
public:
using LinearFunction<Field>::operator();
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
: DeflatedGuesser(_evec, _eval, _evec.size())
{}
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
: evec(_evec), eval(_eval), N(_N)
{
assert(evec.size()==eval.size());
assert(N <= evec.size());
}
virtual void operator()(const Field &src,Field &guess) {
guess = Zero();
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
}
guess.Checkerboard() = src.Checkerboard();
}
};
template<class FineField, class CoarseField>
class LocalCoherenceDeflatedGuesser: public LinearFunction<FineField> {
private:
const std::vector<FineField> &subspace;
const std::vector<CoarseField> &evec_coarse;
const std::vector<RealD> &eval_coarse;
public:
using LinearFunction<FineField>::operator();
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
const std::vector<CoarseField> &_evec_coarse,
const std::vector<RealD> &_eval_coarse)
: subspace(_subspace),
evec_coarse(_evec_coarse),
eval_coarse(_eval_coarse)
{
}
void operator()(const FineField &src,FineField &guess) {
int N = (int)evec_coarse.size();
CoarseField src_coarse(evec_coarse[0].Grid());
CoarseField guess_coarse(evec_coarse[0].Grid()); guess_coarse = Zero();
blockProject(src_coarse,src,subspace);
for (int i=0;i<N;i++) {
const CoarseField & tmp = evec_coarse[i];
axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
}
blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard();
};
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
int Nevec = (int)evec_coarse.size();
int Nsrc = (int)src.size();
// make temp variables
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
//Preporcessing
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
guess_coarse[j] = Zero();
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockProject(src_coarse[j],src[j],subspace);
}
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
for (int i=0;i<Nevec;i++)
{
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
const CoarseField & tmp = evec_coarse[i];
for (int j=0;j<Nsrc;j++)
{
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
}
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};
};
}
#endif

View File

@ -1,376 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSBlockCGLinalg.h
Copyright (C) 2024
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs blockCG */
template<class Field>
class MultiRHSBlockCGLinalg
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef typename Field::vector_object vector_object;
deviceVector<scalar> BLAS_X; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_Y; // nrhs x vol -- the result
deviceVector<scalar> BLAS_C; // nrhs x nrhs -- the coefficients
deviceVector<scalar> BLAS_Cred; // nrhs x nrhs x oSites -- reduction buffer
deviceVector<scalar *> Xdip;
deviceVector<scalar *> Ydip;
deviceVector<scalar *> Cdip;
MultiRHSBlockCGLinalg() {};
~MultiRHSBlockCGLinalg(){ Deallocate(); };
void Deallocate(void)
{
Xdip.resize(0);
Ydip.resize(0);
Cdip.resize(0);
BLAS_Cred.resize(0);
BLAS_C.resize(0);
BLAS_X.resize(0);
BLAS_Y.resize(0);
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
{
std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
for(int r=0;r<AP.size();r++){
Y_copy[r] = Y[r];
}
MulMatrix(AP,m,X);
for(int r=0;r<AP.size();r++){
AP[r] = scale*AP[r]+Y_copy[r];
}
}
void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
{
typedef typename Field::scalar_type scomplex;
GridBase *grid;
uint64_t vol;
uint64_t words;
int nrhs = Y.size();
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
}
// Assumes Eigen storage contiguous
acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
* Yxr = [Y1(x)][..][Ym(x)]
* Y = X . C
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
RealD t2 = usecond();
GridBLAS BLAS;
/////////////////////////////////////////
// Y = X*C (transpose?)
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nrhs,
scalar(1.0),
Xd,
Cd,
scalar(0.0), // wipe out Y
Yd);
BLAS.synchronise();
RealD t3 = usecond();
// Copy back Y = m X
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(y_v,Y[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
{
#if 0
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
autoView(y_v,Y[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,vw,
ComplexD(1.0),
Xd,
Yd,
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
RealD t5 = usecond();
for(int rr=0;rr<nrhs;rr++){
for(int r=0;r<nrhs;r++){
int off = r+nrhs*rr;
m(r,rr)=HOST_C[off];
}
}
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
int rd0 = grid->_rdimensions[0] * grid->_rdimensions[1];
vol = grid->oSites()/rd0;
words = rd0*sizeof(vector_object)/sizeof(scalar);
int64_t vw = vol * words;
assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources -- layout batched BLAS ready
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
autoView(x_v,X[r],AcceleratorRead);
autoView(y_v,Y[r],AcceleratorRead);
scalar *from_x=(scalar *)&x_v[0];
scalar *from_y=(scalar *)&y_v[0];
scalar *BX = &BLAS_X[0];
scalar *BY = &BLAS_Y[0];
accelerator_for(ssw,vw,1,{
uint64_t ss=ssw/words;
uint64_t w=ssw%words;
uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
BX[offset] = from_x[ssw];
BY[offset] = from_y[ssw];
});
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
Xdip.resize(vol);
Ydip.resize(vol);
Cdip.resize(vol);
std::vector<scalar *> Xh(vol);
std::vector<scalar *> Yh(vol);
std::vector<scalar *> Ch(vol);
for(uint64_t ss=0;ss<vol;ss++){
Xh[ss] = & BLAS_X[ss*nrhs*words];
Yh[ss] = & BLAS_Y[ss*nrhs*words];
Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
}
acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,words,
ComplexD(1.0),
Xdip,
Ydip,
ComplexD(0.0), // wipe out C
Cdip);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_Cred.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
RealD t5 = usecond();
m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
for(int ss=0;ss<vol;ss++){
Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
m = m + eC;
}
RealD t6l = usecond();
grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD xybytes = grid->lSites()*sizeof(scalar_object);
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};
NAMESPACE_END(Grid);

View File

@ -1,513 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSDeflation.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/*
MultiRHS block projection
Import basis -> nblock x nbasis x (block x internal)
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
=> coarse_(nrhs x nbasis )^block = via batched GEMM
//template<class vobj,class CComplex,int nbasis,class VLattice>
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
// const VLattice &fineData,
// const VLattice &Basis)
*/
template<class Field>
class MultiRHSBlockProject
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef Field Fermion;
int nbasis;
GridBase *coarse_grid;
GridBase *fine_grid;
uint64_t block_vol;
uint64_t fine_vol;
uint64_t coarse_vol;
uint64_t words;
// Row major layout "C" order:
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
/*
* in Fortran column major notation (cuBlas order)
*
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
*
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
*
* Block project:
* C_br = V^dag F x coarse vol
*
* Block promote:
* F_xr = Vxb Cbr x coarse_vol
*/
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
RealD blasNorm2(deviceVector<scalar> &blas)
{
scalar ss(0.0);
std::vector<scalar> tmp(blas.size());
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
for(int64_t s=0;s<blas.size();s++){
ss=ss+tmp[s]*adj(tmp[s]);
}
coarse_grid->GlobalSum(ss);
return real(ss);
}
MultiRHSBlockProject(){};
~MultiRHSBlockProject(){ Deallocate(); };
void Deallocate(void)
{
nbasis=0;
coarse_grid=nullptr;
fine_grid=nullptr;
fine_vol=0;
block_vol=0;
coarse_vol=0;
words=0;
BLAS_V.resize(0);
BLAS_F.resize(0);
BLAS_C.resize(0);
}
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
{
nbasis=_nbasis;
fine_grid=_fgrid;
coarse_grid=_cgrid;
fine_vol = fine_grid->lSites();
coarse_vol = coarse_grid->lSites();
block_vol = fine_vol/coarse_vol;
words = sizeof(scalar_object)/sizeof(scalar);
BLAS_V.resize (fine_vol * words * nbasis );
}
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename Field::vector_object vobj;
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
assert(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
}
uint64_t sz = blas.size();
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
Coordinate fine_rdimensions = fine_grid->_rdimensions;
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
int64_t bv= block_vol;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
autoView( fineData , vecs[v], AcceleratorRead);
auto blasData_p = &blas[0];
auto fineData_p = &fineData[0];
int64_t osites = fine_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
// std::cout << "sz "<<sz<<std::endl;
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
uint64_t lwords= words; // local variable for copy in to GPU
accelerator_for(sf,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
// One thread per fine site
Coordinate coor_f(_ndimension);
Coordinate coor_b(_ndimension);
Coordinate coor_c(_ndimension);
// Fine site to fine coor
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
int sc;// coarse site
int sb;// block site
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
scalar_object data = extractLane(lane,fineData[sf]);
// BLAS layout address calculation
// words * block_vol * nbasis x coarse_vol
// coarse oSite x block vole x lanes
int64_t site = (lane*osites + sc*bv)*nvec
+ v*bv
+ sb;
// assert(site*lwords<sz);
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
*ptr = data;
#ifdef GRID_SIMT
}
#else
}
#endif
});
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
}
}
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
{
typedef typename Field::vector_object vobj;
int nvec = vecs.size();
assert(vecs[0].Grid()==fine_grid);
subdivides(coarse_grid,fine_grid); // require they map
int _ndimension = coarse_grid->_ndimension;
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
}
Coordinate fine_rdimensions = fine_grid->_rdimensions;
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
int64_t bv= block_vol;
for(int v=0;v<vecs.size();v++){
autoView( fineData , vecs[v], AcceleratorWrite);
auto blasData_p = &blas[0];
auto fineData_p = &fineData[0];
int64_t osites = fine_grid->oSites();
uint64_t lwords = words;
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
// std::cout << " lwords is "<<lwords << std::endl;
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
// loop over fine sites
accelerator_for(sf,osites,vobj::Nsimd(),{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
#else
for(int lane=0;lane<vobj::Nsimd();lane++) {
#endif
// One thread per fine site
Coordinate coor_f(_ndimension);
Coordinate coor_b(_ndimension);
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
int sc;
int sb;
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
// BLAS layout address calculation
// words * block_vol * nbasis x coarse_vol
int64_t site = (lane*osites + sc*bv)*nvec
+ v*bv
+ sb;
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
scalar_object data = *ptr;
insertLane(lane,fineData[sf],data);
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
}
template<class vobj>
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename vobj::scalar_object coarse_scalar_object;
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
uint64_t sz = blas.size();
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
autoView( coarseData , vecs[v], AcceleratorRead);
auto blasData_p = &blas[0];
auto coarseData_p = &coarseData[0];
int64_t osites = coarse_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
// C_br per site
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
*ptr = data;
#ifdef GRID_SIMT
}
#else
}
#endif
});
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
}
}
template<class vobj>
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
{
int nvec = vecs.size();
typedef typename vobj::scalar_object coarse_scalar_object;
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
assert(vecs[0].Grid()==coarse_grid);
int _ndimension = coarse_grid->_ndimension;
uint64_t sz = blas.size();
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
for(int v=0;v<vecs.size();v++){
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
autoView( coarseData , vecs[v], AcceleratorWrite);
auto blasData_p = &blas[0];
auto coarseData_p = &coarseData[0];
int64_t osites = coarse_grid->oSites();
// loop over fine sites
const int Nsimd = vobj::Nsimd();
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
assert(cwords==nbasis);
accelerator_for(sc,osites,Nsimd,{
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
coarse_scalar_object data = *ptr;
insertLane(lane,coarseData[sc],data);
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
}
void ImportBasis(std::vector < Field > &vecs)
{
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
ImportFineGridVectors(vecs,BLAS_V);
}
template<class cobj>
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
assert(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
/////////////////////////////////////////////
// Copy in the multi-rhs sources to same data layout
/////////////////////////////////////////////
// std::cout << "BlockProject import fine"<<std::endl;
ImportFineGridVectors(fine,BLAS_F);
deviceVector<scalar *> Vd(coarse_vol);
deviceVector<scalar *> Fd(coarse_vol);
deviceVector<scalar *> Cd(coarse_vol);
// std::cout << "BlockProject pointers"<<std::endl;
for(int c=0;c<coarse_vol;c++){
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
acceleratorPut(Vd[c],Vh);
acceleratorPut(Fd[c],Fh);
acceleratorPut(Cd[c],Ch);
}
GridBLAS BLAS;
// std::cout << "BlockProject BLAS"<<std::endl;
int64_t vw = block_vol * words;
/////////////////////////////////////////
// C_br = V^dag R
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nbasis,nrhs,vw,
scalar(1.0),
Vd,
Fd,
scalar(0.0), // wipe out C
Cd);
BLAS.synchronise();
// std::cout << "BlockProject done"<<std::endl;
ExportCoarseGridVectors(coarse, BLAS_C);
// std::cout << "BlockProject done"<<std::endl;
}
template<class cobj>
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
{
int nrhs=fine.size();
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
assert(nbasis==_nbasis);
BLAS_F.resize (fine_vol * words * nrhs );
BLAS_C.resize (coarse_vol * nbasis * nrhs );
ImportCoarseGridVectors(coarse, BLAS_C);
GridBLAS BLAS;
deviceVector<scalar *> Vd(coarse_vol);
deviceVector<scalar *> Fd(coarse_vol);
deviceVector<scalar *> Cd(coarse_vol);
for(int c=0;c<coarse_vol;c++){
// BLAS_V[coarse_vol][nbasis][block_vol][words]
// BLAS_F[coarse_vol][nrhs][block_vol][words]
// BLAS_C[coarse_vol][nrhs][nbasis]
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
acceleratorPut(Vd[c],Vh);
acceleratorPut(Fd[c],Fh);
acceleratorPut(Cd[c],Ch);
}
/////////////////////////////////////////
// Block promote:
// F_xr = Vxb Cbr (x coarse_vol)
/////////////////////////////////////////
int64_t vw = block_vol * words;
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nbasis,
scalar(1.0),
Vd,
Cd,
scalar(0.0), // wipe out C
Fd);
BLAS.synchronise();
// std::cout << " blas call done"<<std::endl;
ExportFineGridVectors(fine, BLAS_F);
// std::cout << " exported "<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -1,233 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSDeflation.h
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs projection
i) MultiRHS Deflation
Import Evecs -> nev x vol x internal
Import vector of Lattice objects -> nrhs x vol x internal
=> Cij (nrhs x Nev) via GEMM.
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
Export
ii) MultiRHS block projection
Import basis -> nblock x nbasis x (block x internal)
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
=> coarse_(nrhs x nbasis )^block = via batched GEMM
iii) Alternate interface:
Import higher dim Lattice object-> vol x nrhs layout
*/
template<class Field>
class MultiRHSDeflation
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
int nev;
std::vector<RealD> eval;
GridBase *grid;
uint64_t vol;
uint64_t words;
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
MultiRHSDeflation(){};
~MultiRHSDeflation(){ Deallocate(); };
void Deallocate(void)
{
nev=0;
grid=nullptr;
vol=0;
words=0;
BLAS_E.resize(0);
BLAS_R.resize(0);
BLAS_C.resize(0);
BLAS_G.resize(0);
}
void Allocate(int _nev,GridBase *_grid)
{
nev=_nev;
grid=_grid;
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
eval.resize(nev);
BLAS_E.resize (vol * words * nev );
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
}
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
{
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
assert(ev<eval.size());
eval[ev] = _eval;
int64_t offset = ev*vol*words;
autoView(v,evec,AcceleratorRead);
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
}
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
{
ImportEigenBasis(evec,_eval,0,evec.size());
}
// Could use to import a batch of eigenvectors
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
{
assert(_ev0+_nev<=evec.size());
Allocate(_nev,evec[0].Grid());
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
for(int e=0;e<nev;e++){
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
}
}
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
{
int nrhs = source.size();
assert(source.size()==guess.size());
assert(grid == guess[0].Grid());
conformable(guess[0],source[0]);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
// for(int r=0;r<nrhs;r++){
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
// }
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(v,source[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
}
/*
* in Fortran column major notation (cuBlas order)
*
* Exe = [e1(x)][..][en(x)]
*
* Rxr = [r1(x)][..][rm(x)]
*
* C_er = E^dag R
* C_er = C_er / lambda_e
* G_xr = Exe Cer
*/
deviceVector<scalar *> Ed(1);
deviceVector<scalar *> Rd(1);
deviceVector<scalar *> Cd(1);
deviceVector<scalar *> Gd(1);
scalar * Eh = & BLAS_E[0];
scalar * Rh = & BLAS_R[0];
scalar * Ch = & BLAS_C[0];
scalar * Gh = & BLAS_G[0];
acceleratorPut(Ed[0],Eh);
acceleratorPut(Rd[0],Rh);
acceleratorPut(Cd[0],Ch);
acceleratorPut(Gd[0],Gh);
GridBLAS BLAS;
/////////////////////////////////////////
// C_er = E^dag R
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nev,nrhs,vw,
scalar(1.0),
Ed,
Rd,
scalar(0.0), // wipe out C
Cd);
BLAS.synchronise();
assert(BLAS_C.size()==nev*nrhs);
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
for(int e=0;e<nev;e++){
RealD lam(1.0/eval[e]);
for(int r=0;r<nrhs;r++){
int off = e+nev*r;
HOST_C[off]=HOST_C[off] * lam;
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
}
}
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/////////////////////////////////////////
// Guess G_xr = Exe Cer
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nev,
scalar(1.0),
Ed, // x . nev
Cd, // nev . nrhs
scalar(0.0),
Gd);
BLAS.synchronise();
///////////////////////////////////////
// Copy out the multirhs
///////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(v,guess[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
}
RealD t1 = usecond();
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -1,599 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/AdefGeneric.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
#define GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
/*
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
*/
NAMESPACE_BEGIN(Grid);
template<class Field>
class TwoLevelCG : public LinearFunction<Field>
{
public:
RealD Tolerance;
Integer MaxIterations;
GridBase *grid;
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
// more most opertor functions
TwoLevelCG(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
Tolerance(tol),
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
{
grid = fine;
};
virtual void operator() (const Field &src, Field &x)
{
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 5;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
std::vector<Field> p(mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field z(grid);
Field tmp(grid);
Field mp (grid);
Field r (grid);
Field mu (grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
//Initial residual computation & set up
RealD guess = norm2(x);
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
RealD src_nrm = norm2(src);
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
if ( src_nrm == 0.0 ) {
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
x=Zero();
}
RealD tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp[0]);
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
{
double n1 = norm2(x);
double n2 = norm2(mmp[0]);
double n3 = norm2(r);
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Solve for Mss mu = P A z and set p = z-mu
// Def2 p = 1 - Q Az = Pright z
// Other algos M2 is trivial
///////////////////////////////////////
PcgM2(z,p[0]);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
Field pp(grid);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= PcgM3(p[peri_k],mmp[peri_k]);
a = rtz/d;
// Memorise this
pAp[peri_k] = d;
axpy(x,a,p[peri_k],x);
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
// Compute z = M x
PcgM1(r,z);
{
RealD n1,n2;
n1=norm2(r);
n2=norm2(z);
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
}
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
// PcgM2(z,p[0]);
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
p[peri_kp]=mu;
// Standard search direction p -> z + b p
b = (rtzp)/rtz;
int northog;
// k=zero <=> peri_kp=1; northog = 1
// k=1 <=> peri_kp=2; northog = 2
// ... ... ...
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
// k=mmax-1<=> peri_kp=0; northog = 1
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
RealD beta = -pbApk/pAp[peri_back];
axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
}
RealD rrn=sqrt(rn/ssq);
RealD rtn=sqrt(rtz/ssq);
RealD rtnp=sqrt(rtzp/ssq);
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
// Stopping condition
if ( rn <= rsq ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp[0]);
axpy(tmp,-1.0,src,mmp[0]);
RealD mmpnorm = sqrt(norm2(mmp[0]));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 3;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
src[0].Grid()->Barrier();
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
a[rhs] = rtz[rhs]/d[rhs];
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
}
// Compute z = M x (for *all* RHS)
PcgM1(r,z);
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
grid->Barrier();
RealD max_rn=0.0;
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
{
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<in.size();rhs++){
this->PcgM1(in[rhs],out[rhs]);
}
}
virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
{
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<x.size();rhs++){
this->Vstart(x[rhs],src[rhs]);
}
}
virtual void Vstart(Field & x,const Field & src)=0;
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout.
/////////////////////////////////////////////////////////////////////
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2 : public TwoLevelCG<Field>
{
public:
///////////////////////////////////////////////////////////////////////////////////
// Need something that knows how to get from Coarse to fine and back again
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
///////////////////////////////////////////////////////////////////////////////////
GridBase *coarsegrid;
Aggregation &_Aggregates;
LinearFunction<CoarseField> &_CoarseSolver;
LinearFunction<CoarseField> &_CoarseSolverPrecise;
///////////////////////////////////////////////////////////////////////////////////
// more most opertor functions
TwoLevelADEF2(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
Aggregation &Aggregates
) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
_CoarseSolver(CoarseSolver),
_CoarseSolverPrecise(CoarseSolverPrecise),
_Aggregates(Aggregates)
{
coarsegrid = Aggregates.CoarseGrid;
};
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("MultiGridPreconditioner ");
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(this->grid);
Field Min(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
GridStopWatch SmootherTimer;
GridStopWatch MatrixTimer;
SmootherTimer.Start();
this->_Smoother(in,Min);
SmootherTimer.Stop();
MatrixTimer.Start();
this->_FineLinop.HermOp(Min,out);
MatrixTimer.Stop();
axpy(tmp,-1.0,out,in); // tmp = in - A Min
GridStopWatch ProjTimer;
GridStopWatch CoarseTimer;
GridStopWatch PromTimer;
ProjTimer.Start();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
ProjTimer.Stop();
CoarseTimer.Start();
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
CoarseTimer.Stop();
PromTimer.Start();
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
PromTimer.Stop();
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
axpy(out,1.0,Min,tmp); // Min+tmp
}
virtual void Vstart(Field & x,const Field & src)
{
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
// = [1 - Ass_inv A] Guess + Assinv src
// = P^T guess + Assinv src
// = Vstart [Tang notation]
// This gives:
// W^T (src - A x_0) = src_s - A guess_s - r_s
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
Field r(this->grid);
Field mmp(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
this->_Aggregates.ProjectToSubspace(PleftProj,src);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
}
};
template<class Field>
class TwoLevelADEF1defl : public TwoLevelCG<Field>
{
public:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
TwoLevelADEF1defl(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
std::vector<Field> &_evec,
std::vector<RealD> &_eval) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
evec(_evec),
eval(_eval)
{};
// Can just inherit existing M2
// Can just inherit existing M3
// Simple vstart - do nothing
virtual void Vstart(Field & x,const Field & src){
x=src; // Could apply Q
};
// Override PcgM1
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("EvecPreconditioner ");
int N=evec.size();
Field Pin(this->grid);
Field Qin(this->grid);
//MP + Q = M(1-AQ) + Q = M
// // If we are eigenvector deflating in coarse space
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
// // A Q = Sum_i |phi_i> <phi_i|
// // M(1-AQ) = M(1-proj) + Q
Qin.Checkerboard()=in.Checkerboard();
Qin = Zero();
Pin = in;
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
auto ip = TensorRemove(innerProduct(tmp,in));
axpy(Qin, ip / eval[i],tmp,Qin);
axpy(Pin, -ip ,tmp,Pin);
}
this->_Smoother(Pin,out);
out = out + Qin;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,734 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/AdefGeneric.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
/*
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
*/
NAMESPACE_BEGIN(Grid);
template<class Field>
class TwoLevelCGmrhs
{
public:
RealD Tolerance;
Integer MaxIterations;
GridBase *grid;
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
GridStopWatch ProjectTimer;
GridStopWatch PromoteTimer;
GridStopWatch DeflateTimer;
GridStopWatch CoarseTimer;
GridStopWatch FineTimer;
GridStopWatch SmoothTimer;
GridStopWatch InsertTimer;
/*
Field rrr;
Field sss;
Field qqq;
Field zzz;
*/
// more most opertor functions
TwoLevelCGmrhs(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
Tolerance(tol),
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
/*
rrr(fine),
sss(fine),
qqq(fine),
zzz(fine)
*/
{
grid = fine;
};
// Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
// SolveSingleSystem(src,x);
SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
//
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
//
// Q C = R => Q = R C^{-1}
//
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
//
// Set C = L^{dag}, and then Q^dag Q = ident
//
// Checks:
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_zz,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
std::vector<Field> & MQ,
const std::vector<Field> & Z,
const std::vector<Field> & MZ)
{
RealD t0=usecond();
_BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
RealD t1=usecond();
m_zz = 0.5*(m_zz+m_zz.adjoint());
Eigen::MatrixXcd L = m_zz.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
RealD t3=usecond();
_BlockCGLinalg.MulMatrix( Q,Cinv,Z);
_BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
RealD t4=usecond();
std::cout << " ThinQRfact IP :"<< t1-t0<<" us"<<std::endl;
std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
}
virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
// std::vector<RealD> f(nrhs);
// std::vector<RealD> rtzp(nrhs);
// std::vector<RealD> rtz(nrhs);
// std::vector<RealD> a(nrhs);
// std::vector<RealD> d(nrhs);
// std::vector<RealD> b(nrhs);
// std::vector<RealD> rptzp(nrhs);
////////////////////////////////////////////
//Initial residual computation & set up
////////////////////////////////////////////
std::vector<RealD> ssq(nrhs);
for(int rhs=0;rhs<nrhs;rhs++){
ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
}
///////////////////////////
// Fields -- eliminate duplicates between fPcg and block cg
///////////////////////////
std::vector<Field> Mtmp(nrhs,grid);
std::vector<Field> tmp(nrhs,grid);
std::vector<Field> Z(nrhs,grid); // Rename Z to R
std::vector<Field> MZ(nrhs,grid); // Rename MZ to Z
std::vector<Field> Q(nrhs,grid); //
std::vector<Field> MQ(nrhs,grid); // Rename to P
std::vector<Field> D(nrhs,grid);
std::vector<Field> AD(nrhs,grid);
/************************************************************************
* Preconditioned Block conjugate gradient rQ
* Generalise Sebastien Birk Thesis, after Dubrulle 2001.
* Introduce preconditioning following Saad Ch9
************************************************************************
* Dimensions:
*
* X,B etc... ==(Nferm x nrhs)
* Matrix A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
* QC => Thin QR factorisation (google it)
*
* R = B-AX
* Z = Mi R
* QC = Z
* D = Q
* for k:
* R = AD
* Z = Mi R
* M = [D^dag R]^{-1}
* X = X + D M C
* QS = Q - Z.M
* D = Q + D S^dag
* C = S C
*/
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_zz = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(nrhs,nrhs);
GridStopWatch HDCGTimer;
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(X,src);
//////////////////////////
// R = B-AX
//////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(X[rhs],tmp[rhs]);
axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]); // Computes R=Z=src - A X0
}
//////////////////////////////////
// Compute MZ = M1 Z = M1 B - M1 A x0
//////////////////////////////////
PcgM1(Z,MZ);
//////////////////////////////////
// QC = Z
//////////////////////////////////
ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
//////////////////////////////////
// D=MQ
//////////////////////////////////
for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
ProjectTimer.Reset();
PromoteTimer.Reset();
DeflateTimer.Reset();
CoarseTimer.Reset();
SmoothTimer.Reset();
FineTimer.Reset();
InsertTimer.Reset();
GridStopWatch M1Timer;
GridStopWatch M2Timer;
GridStopWatch M3Timer;
GridStopWatch LinalgTimer;
GridStopWatch InnerProdTimer;
HDCGTimer.Start();
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
////////////////////
// Z = AD
////////////////////
M3Timer.Start();
for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);
M3Timer.Stop();
////////////////////
// MZ = M1 Z <==== the Multigrid preconditioner
////////////////////
M1Timer.Start();
PcgM1(Z,MZ);
M1Timer.Stop();
FineTimer.Start();
////////////////////
// M = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
////////////////////
InnerProdTimer.Start();
_BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
InnerProdTimer.Stop();
m_M = m_DZ.inverse();
///////////////////////////
// X = X + D MC
///////////////////////////
m_tmp = m_M * m_C;
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(X,m_tmp, D,X); // D are the search directions and X takes the updates
LinalgTimer.Stop();
///////////////////////////
// QS = Q - M Z
// (MQ) S = MQ - M (M1Z)
///////////////////////////
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
_BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
LinalgTimer.Stop();
////////////////////////////
// D = MQ + D S^dag
////////////////////////////
m_tmp = m_S.adjoint();
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
LinalgTimer.Stop();
////////////////////////////
// C = S C
////////////////////////////
m_C = m_S*m_C;
////////////////////////////
// convergence monitor
////////////////////////////
m_rr = m_C.adjoint() * m_C;
FineTimer.Stop();
RealD max_resid=0;
RealD rrsum=0;
RealD sssum=0;
RealD rr;
for(int b=0;b<nrhs;b++) {
rrsum+=real(m_rr(b,b));
sssum+=ssq[b];
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogMessage <<
"\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H "<<M3Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine "<<FineTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert "<<InsertTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(X[rhs],tmp[rhs]);
Field mytmp(grid);
axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
RealD xnorm = sqrt(norm2(X[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(mytmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
assert(0);
}
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 3;
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
ProjectTimer.Reset();
PromoteTimer.Reset();
DeflateTimer.Reset();
CoarseTimer.Reset();
SmoothTimer.Reset();
FineTimer.Reset();
InsertTimer.Reset();
GridStopWatch M1Timer;
GridStopWatch M2Timer;
GridStopWatch M3Timer;
GridStopWatch LinalgTimer;
HDCGTimer.Start();
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
M3Timer.Start();
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
M3Timer.Stop();
a[rhs] = rtz[rhs]/d[rhs];
LinalgTimer.Start();
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
LinalgTimer.Stop();
}
// Compute z = M x (for *all* RHS)
M1Timer.Start();
PcgM1(r,z);
M1Timer.Stop();
RealD max_rn=0.0;
LinalgTimer.Start();
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
LinalgTimer.Stop();
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
};
template<class Field, class CoarseField>
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
{
public:
GridBase *coarsegrid;
GridBase *coarsegridmrhs;
LinearFunction<CoarseField> &_CoarseSolverMrhs;
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
MultiRHSBlockProject<Field> &_Projector;
MultiRHSDeflation<CoarseField> &_Deflator;
TwoLevelADEF2mrhs(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolverMrhs,
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
MultiRHSBlockProject<Field> &Projector,
MultiRHSDeflation<CoarseField> &Deflator,
GridBase *_coarsemrhsgrid) :
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
_CoarseSolverMrhs(CoarseSolverMrhs),
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
_Projector(Projector),
_Deflator(Deflator)
{
coarsegrid = Projector.coarse_grid;
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
};
// Override Vstart
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
{
int nrhs=x.size();
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
// = [1 - Ass_inv A] Guess + Assinv src
// = P^T guess + Assinv src
// = Vstart [Tang notation]
// This gives:
// W^T (src - A x_0) = src_s - A guess_s - r_s
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
this->_Projector.blockProject(src,PleftProj);
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
for(int rhs=0;rhs<nrhs;rhs++) {
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
}
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
}
this->_Projector.blockPromote(x,PleftMss_proj);
}
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
int nrhs=in.size();
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
std::vector<Field> tmp(nrhs,this->grid);
std::vector<Field> Min(nrhs,this->grid);
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
// this->rrr=in[0];
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
this->_Smoother(in,Min);
this->SmoothTimer.Stop();
#else
for(int rhs=0;rhs<nrhs;rhs++) {
this->SmoothTimer.Start();
this->_Smoother(in[rhs],Min[rhs]);
this->SmoothTimer.Stop();
}
#endif
// this->sss=Min[0];
for(int rhs=0;rhs<nrhs;rhs++) {
this->FineTimer.Start();
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
this->FineTimer.Stop();
}
this->ProjectTimer.Start();
this->_Projector.blockProject(tmp,PleftProj);
this->ProjectTimer.Stop();
this->DeflateTimer.Start();
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
this->DeflateTimer.Stop();
this->InsertTimer.Start();
for(int rhs=0;rhs<nrhs;rhs++) {
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
}
this->InsertTimer.Stop();
this->CoarseTimer.Start();
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
this->CoarseTimer.Stop();
this->InsertTimer.Start();
for(int rhs=0;rhs<nrhs;rhs++) {
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
}
this->InsertTimer.Stop();
this->PromoteTimer.Start();
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
this->PromoteTimer.Stop();
this->FineTimer.Start();
// this->qqq=tmp[0];
for(int rhs=0;rhs<nrhs;rhs++) {
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
}
// this->zzz=out[0];
this->FineTimer.Stop();
}
};
NAMESPACE_END(Grid);

View File

@ -1,234 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: juettner <juettner@soton.ac.uk>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_H
#define GRID_BICGSTAB_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class BiCGSTAB : public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :
Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)
{
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
RealD a(0), bo(0), b(0), ssq(0);
Field p(src);
Field r(src);
Field rhat(src);
Field v(src);
Field s(src);
Field t(src);
Field h(src);
v = Zero();
p = Zero();
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.Op(psi, v);
b = norm2(v);
r = src - v;
rhat = r;
a = norm2(r);
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if(a <= rsq){ return; }
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
GridStopWatch LinearCombTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++)
{
rho_prev = rho;
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Crho = innerProduct(rhat,r);
InnerTimer.Stop();
rho = Crho.real();
beta = (rho / rho_prev) * (alpha / omega);
LinearCombTimer.Start();
bo = beta * omega;
{
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(p,v);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Calpha = innerProduct(rhat,v);
InnerTimer.Stop();
alpha = rho / Calpha.real();
LinearCombTimer.Start();
{
autoView( p_v , p, AcceleratorRead);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
autoView( psi_v,psi, AcceleratorRead);
autoView( h_v , h, AcceleratorWrite);
autoView( s_v , s, AcceleratorWrite);
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(s,t);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Comega = innerProduct(t,s);
InnerTimer.Stop();
omega = Comega.real() / norm2(t);
LinearCombTimer.Start();
{
autoView( psi_v,psi, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
autoView( h_v , h, AcceleratorRead);
autoView( s_v , s, AcceleratorRead);
autoView( t_v , t, AcceleratorRead);
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
}
LinearCombTimer.Stop();
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition
if(cp <= rsq)
{
SolverTimer.Stop();
Linop.Op(psi, v);
p = v - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown " << std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
if(ErrorOnNoConverge){ assert(0); }
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,159 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_MIXED_PREC_H
#define GRID_BICGSTAB_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
// Mixed precision restarted defect correction BiCGSTAB
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
using LinearFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; // Grid for single-precision fields
RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,
LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
void useGuesser(LinearFunction<FieldF>& g){
guesser = &g;
}
void operator() (const FieldD& src_d_in, FieldD& sol_d)
{
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
{
// Compute double precision rsd and also new RHS vector.
Linop_d.Op(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL){ (*guesser)(src_f, sol_f); }
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
//Final trial CG
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TotalTimer.Stop();
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,741 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
Copyright (C) 2017
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
typedef typename Field::scalar_type scomplex;
int Nblock = X.size();
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
template<class Field>
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
//
//Could pack "X" and "AP" into a Nblock x Volume dense array.
// AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
template<class Field>
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
template<class Field>
double normv(const std::vector<Field> &P){
int Nblock = P.size();
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
int blockDim ;
int Nblock;
BlockCGtype CGtype;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer PrintInterval; //GridLogMessages or Iterative
RealD TrueResidual;
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
{};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
//
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
//
// Q C = R => Q = R C^{-1}
//
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
//
// Set C = L^{dag}, and then Q^dag Q = ident
//
// Checks:
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
// Q = R C^{-1}
//
// Q_j = R_i Cinv(i,j)
//
// NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
////////////////////////////////////////////////////////////////////////////////////////////////////
sliceMulMatrix(Q,Cinv,R,Orthog);
}
// see comments above
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
const std::vector<Field> & R)
{
InnerProductMatrix(m_rr,R,R);
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint();
Cinv = C.inverse();
MulMatrix(Q,Cinv,R);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Call one of several implementations
////////////////////////////////////////////////////////////////////////////////////////////////////
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
if ( CGtype == BlockCGrQ ) {
BlockCGrQsolve(Linop,Src,Psi);
} else if (CGtype == CGmultiRHS ) {
CGmultiRHSsolve(Linop,Src,Psi);
} else {
assert(0);
}
}
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
{
if ( CGtype == BlockCGrQVec ) {
BlockCGrQsolveVec(Linop,Src,Psi);
} else {
assert(0);
}
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQ implementation:
//--------------------------
// X is guess/Solution
// B is RHS
// Solve A X_i = B_i ; i refers to Nblock index
////////////////////////////////////////////////////////////////////////////
void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = B.Grid()->_fdimensions[Orthog];
/* FAKE */
Nblock=8;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
X.Checkerboard() = B.Checkerboard();
conformable(X, B);
Field tmp(B);
Field Q(B);
Field D(B);
Field Z(B);
Field AD(B);
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,B,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
sliceNorm(residuals,B,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,X,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
************************************************************************
* Dimensions:
*
* X,B==(Nferm x Nblock)
* A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
*
* QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
* for k:
* Z = AD
* M = [D^dag Z]^{-1}
* X = X + D MC
* QS = Q - ZM
* D = Q + D S^dag
* C = S C
*/
///////////////////////////////////////
// Initial block: initial search dir is guess
///////////////////////////////////////
std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
Linop.HermOp(X, AD);
tmp = B - AD;
sliceNorm(residuals,tmp,Orthog);
for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
D=Q;
std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
RealD max_resid=0;
int k;
for (k = 1; k <= MaxIterations; k++) {
//3. Z = AD
MatrixTimer.Start();
Linop.HermOp(D, Z);
MatrixTimer.Stop();
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();
sliceMaddMatrix(X,m_tmp, D,X,Orthog);
sliceMaddTimer.Stop();
//6. QS = Q - ZM
sliceMaddTimer.Start();
sliceMaddMatrix(tmp,m_M,Z,Q,Orthog,-1.0);
sliceMaddTimer.Stop();
QRTimer.Start();
ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
QRTimer.Stop();
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
sliceMaddTimer.Stop();
//8. C = S C
m_C = m_S*m_C;
/*********************
* convergence monitor
*********************
*/
m_rr = m_C.adjoint() * m_C;
max_resid=0;
RealD rrsum=0;
RealD rr;
for(int b=0;b<Nblock;b++) {
rrsum+=real(m_rr(b,b));
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" ave "<<std::sqrt(rrsum/sssum) << " max "<< max_resid <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(X, AD);
AD = AD-B;
TrueResidual = std::sqrt(norm2(AD)/norm2(B));
std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
<<" residual "<< std::sqrt(max_resid)<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction
// Use this for spread out across nodes
//////////////////////////////////////////////////////////////////////////
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim
Nblock = Src.Grid()->_fdimensions[Orthog];
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.Checkerboard() = Src.Checkerboard();
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
std::vector<ComplexD> v_pAp(Nblock);
std::vector<RealD> v_rr (Nblock);
std::vector<RealD> v_rr_inv(Nblock);
std::vector<RealD> v_alpha(Nblock);
std::vector<RealD> v_beta(Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
R = Src - AP;
P = R;
sliceNorm(v_rr,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch sliceNormTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductVector(v_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
for(int b=0;b<Nblock;b++){
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
}
// Psi, R update
sliceMaddTimer.Start();
sliceMaddVector(Psi,v_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddVector(R ,v_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
for(int b=0;b<Nblock;b++){
v_rr_inv[b] = 1.0/v_rr[b];
}
sliceNormTimer.Start();
sliceNorm(v_rr,R,Orthog);
sliceNormTimer.Stop();
for(int b=0;b<Nblock;b++){
v_beta[b] = v_rr_inv[b] *v_rr[b];
}
// Search update
sliceMaddTimer.Start();
sliceMaddVector(P,v_beta,P,R,Orthog);
sliceMaddTimer.Stop();
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
for(int b=0;b<Nblock;b++){
RealD rr = v_rr[b]/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" computed resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
TrueResidual = std::sqrt(norm2(AP)/norm2(Src));
std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << sliceNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation:
//--------------------------
// X is guess/Solution
// B is RHS
// Solve A X_i = B_i ; i refers to Nblock index
////////////////////////////////////////////////////////////////////////////
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
{
Nblock = B.size();
assert(Nblock == X.size());
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
for(int b=0;b<Nblock;b++){
X[b].Checkerboard() = B[b].Checkerboard();
conformable(X[b], B[b]);
conformable(X[b], X[0]);
}
Field Fake(B[0]);
std::vector<Field> tmp(Nblock,Fake);
std::vector<Field> Q(Nblock,Fake);
std::vector<Field> D(Nblock,Fake);
std::vector<Field> Z(Nblock,Fake);
std::vector<Field> AD(Nblock,Fake);
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
************************************************************************
* Dimensions:
*
* X,B==(Nferm x Nblock)
* A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
*
* QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
* for k:
* Z = AD
* M = [D^dag Z]^{-1}
* X = X + D MC
* QS = Q - ZM
* D = Q + D S^dag
* C = S C
*/
///////////////////////////////////////
// Initial block: initial search dir is guess
///////////////////////////////////////
std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b];
std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
}
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
for(int b=0;b<Nblock;b++) D[b]=Q[b];
std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
//3. Z = AD
MatrixTimer.Start();
for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);
MatrixTimer.Stop();
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
InnerProductMatrix(m_DZ,D,Z);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();
MaddMatrix(X,m_tmp, D,X);
sliceMaddTimer.Stop();
//6. QS = Q - ZM
sliceMaddTimer.Start();
MaddMatrix(tmp,m_M,Z,Q,-1.0);
sliceMaddTimer.Stop();
QRTimer.Start();
ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
QRTimer.Stop();
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
MaddMatrix(D,m_tmp,D,Q);
sliceMaddTimer.Stop();
//8. C = S C
m_C = m_S*m_C;
/*********************
* convergence monitor
*********************
*/
m_rr = m_C.adjoint() * m_C;
RealD max_resid=0;
RealD rrsum=0;
RealD rr;
for(int b=0;b<Nblock;b++) {
rrsum+=real(m_rr(b,b));
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
TrueResidual = std::sqrt(normv(AD)/normv(B));
std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);

View File

@ -1,248 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
ComplexD scale = 1.0/gamma[0];
v[0] = scale * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,373 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_H
#define GRID_CONJUGATE_GRADIENT_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
RealD TrueResidual;
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv)
{};
virtual void LogIteration(int k,RealD a,RealD b){
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
};
virtual void LogBegin(void){
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
this->LogBegin();
GRID_TRACE("ConjugateGradient");
GridStopWatch PreambleTimer;
GridStopWatch ConstructTimer;
GridStopWatch NormTimer;
GridStopWatch AssignTimer;
PreambleTimer.Start();
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq;
//RealD b_pred;
// Was doing copies
ConstructTimer.Start();
Field p (src.Grid());
Field mmp(src.Grid());
Field r (src.Grid());
ConstructTimer.Stop();
// Initial residual computation & set up
NormTimer.Start();
ssq = norm2(src);
RealD guess = norm2(psi);
NormTimer.Stop();
assert(std::isnan(guess) == 0);
AssignTimer.Start();
if ( guess == 0.0 ) {
r = src;
p = r;
a = ssq;
} else {
Linop.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
}
cp = a;
AssignTimer.Stop();
// Handle trivial case of zero src
if (ssq == 0.){
psi = Zero();
IterationsToComplete = 1;
TrueResidual = 0.;
return;
}
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if (cp <= rsq) {
TrueResidual = std::sqrt(a/ssq);
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
IterationsToComplete = 0;
return;
}
std::cout << GridLogIterative << std::setprecision(8)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
PreambleTimer.Stop();
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
GridStopWatch LinearCombTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
RealD usecs = -usecond();
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
GridStopWatch IterationTimer;
IterationTimer.Start();
c = cp;
MatrixTimer.Start();
Linop.HermOp(p, mmp);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD dc = innerProduct(p,mmp);
InnerTimer.Stop();
d = dc.real();
a = c / d;
AxpyNormTimer.Start();
cp = axpy_norm(r, -a, mmp, r);
AxpyNormTimer.Stop();
b = cp / c;
LinearCombTimer.Start();
{
autoView( psi_v , psi, AcceleratorWrite);
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
LogIteration(k,a,b);
IterationTimer.Stop();
if ( (k % 500) == 0 ) {
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
} else {
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
}
// Stopping condition
if (cp <= rsq) {
usecs +=usecond();
SolverTimer.Stop();
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
GridBase *grid = src.Grid();
RealD DwfFlops = (1452. )*grid->gSites()*4*k
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
<< "\tComputed residual " << std::sqrt(cp / ssq)
<< "\tTrue residual " << true_residual
<< "\tTarget " << Tolerance << std::endl;
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
TrueResidual = true_residual;
return;
}
}
// Failed. Calculate true residual before giving up
// Linop.HermOpAndNorm(psi, mmp, d, qq);
// p = mmp - src;
//TrueResidual = sqrt(norm2(p)/ssq);
// TrueResidual = 1;
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
template <class Field>
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
public:
// Optionally record the CG polynomial
std::vector<double> ak;
std::vector<double> bk;
std::vector<double> poly_p;
std::vector<double> poly_r;
std::vector<double> poly_Ap;
std::vector<double> polynomial;
public:
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
{ };
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
Field tmp(src.Grid());
Field AtoN(src.Grid());
AtoN = src;
psi=AtoN*polynomial[0];
for(int n=1;n<polynomial.size();n++){
tmp = AtoN;
Linop.HermOp(tmp,AtoN);
psi = psi + polynomial[n]*AtoN;
}
}
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
{
Field Ap(src.Grid());
Field r(src.Grid());
Field p(src.Grid());
p=src;
r=src;
x=Zero();
x.Checkerboard()=src.Checkerboard();
for(int k=0;k<ak.size();k++){
x = x + ak[k]*p;
Linop.HermOp(p,Ap);
r = r - ak[k] * Ap;
p = r + bk[k] * p;
}
}
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
psi=Zero();
this->operator ()(Linop,src,psi);
}
virtual void LogBegin(void)
{
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
ak.resize(0);
bk.resize(0);
polynomial.resize(0);
poly_Ap.resize(0);
poly_Ap.resize(0);
poly_p.resize(1);
poly_r.resize(1);
poly_p[0]=1.0;
poly_r[0]=1.0;
};
virtual void LogIteration(int k,RealD a,RealD b)
{
// With zero guess,
// p = r = src
//
// iterate:
// x = x + a p
// r = r - a A p
// p = r + b p
//
// [0]
// r = x
// p = x
// Ap=0
//
// [1]
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
// x = x + a p ==> add polynomials term by term
// r = r - a A p ==> add polynomials term by term
// p = r + b p ==> add polynomials term by term
//
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
ak.push_back(a);
bk.push_back(b);
// Ap= right_shift(p)
poly_Ap.resize(k+1);
poly_Ap[0]=0.0;
for(int i=0;i<k;i++){
poly_Ap[i+1]=poly_p[i];
}
// x = x + a p
polynomial.resize(k);
polynomial[k-1]=0.0;
for(int i=0;i<k;i++){
polynomial[i] = polynomial[i] + a * poly_p[i];
}
// r = r - a Ap
// p = r + b p
poly_r.resize(k+1);
poly_p.resize(k+1);
poly_r[k] = poly_p[k] = 0.0;
for(int i=0;i<k+1;i++){
poly_r[i] = poly_r[i] - a * poly_Ap[i];
poly_p[i] = poly_r[i] + b * poly_p[i];
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,170 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
//Mixed precision restarted defect correction CG
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
using LinearFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
RealD TrueResidual;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionConjugateGradient(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ };
void useGuesser(LinearFunction<FieldF> &g){
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL)
(*guesser)(src_f, sol_f);
//Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
//Final trial CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TrueResidual = CG_d.TrueResidual;
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,213 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
Copyright (C) 2015
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
NAMESPACE_BEGIN(Grid);
//Mixed precision restarted defect correction CG
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
public:
using LinearFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
Integer MaxPatchupIterations;
GridBase* SinglePrecGrid; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
bool updateResidual;
MixedPrecisionConjugateGradientBatched(RealD tol,
Integer maxinnerit,
Integer maxouterit,
Integer maxpatchit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d,
bool _updateResidual=true) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
void useGuesser(LinearFunction<FieldF> &g){
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::vector<FieldD> srcs_d_in{src_d_in};
std::vector<FieldD> sols_d{sol_d};
(*this)(srcs_d_in,sols_d);
sol_d = sols_d[0];
}
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
assert(src_d_in.size() == sol_d.size());
int NBatch = src_d_in.size();
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
Integer TotalOuterIterations = 0; //Number of restarts
std::vector<Integer> TotalInnerIterations(NBatch,0); //Number of inner CG iterations
std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
GridStopWatch TotalTimer;
TotalTimer.Start();
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
int cb = src_d_in[0].Checkerboard();
std::vector<RealD> src_norm;
std::vector<RealD> norm;
std::vector<RealD> stop;
GridBase* DoublePrecGrid = src_d_in[0].Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
std::vector<FieldD> src_d;
std::vector<FieldF> src_f;
std::vector<FieldF> sol_f;
for (int i=0; i<NBatch; i++) {
sol_d[i].Checkerboard() = cb;
src_norm.push_back(norm2(src_d_in[i]));
norm.push_back(0.);
stop.push_back(src_norm[i] * Tolerance*Tolerance);
src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
src_f.push_back(SinglePrecGrid);
src_f[i].Checkerboard() = cb;
sol_f.push_back(SinglePrecGrid);
sol_f[i].Checkerboard() = cb;
}
RealD inner_tol = InnerTolerance;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
bool allConverged = true;
for (int i=0; i<NBatch; i++) {
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d[i], tmp_d);
norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
PrecChangeTimer.Start();
precisionChange(src_f[i], src_d[i]);
PrecChangeTimer.Stop();
sol_f[i] = Zero();
if(norm[i] > OuterLoopNormMult * stop[i]) {
allConverged = false;
}
}
if (allConverged) break;
if (updateResidual) {
RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
CG_f.Tolerance = inner_tol;
}
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL) {
(*guesser)(src_f, sol_f);
}
for (int i=0; i<NBatch; i++) {
//Inner CG
InnerCGtimer.Start();
CG_f(Linop_f, src_f[i], sol_f[i]);
InnerCGtimer.Stop();
TotalInnerIterations[i] += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f[i]);
PrecChangeTimer.Stop();
axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
}
}
//Final trial CG
std::cout << GridLogMessage << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
for (int i=0; i<NBatch; i++) {
ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
CG_d(Linop_d, src_d_in[i], sol_d[i]);
TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
}
TotalTimer.Stop();
std::cout << GridLogMessage << std::endl;
for (int i=0; i<NBatch; i++) {
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
}
std::cout << GridLogMessage << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,346 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
// RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<Field> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{
GRID_TRACE("ConjugateGradientMultiShift");
GridBase *grid = src.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
std::vector<Field> ps(nshift,grid);// Search directions
assert(psi.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// remove dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
Field r(grid);
Field p(grid);
Field tmp(grid);
Field mmp(grid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
<<" target resid^2 "<<rsq[s]<<std::endl;
ps[s] = src;
}
// r and p for primary
r=src;
p=src;
//MdagM+m[0]
Linop.HermOpAndNorm(p,mmp,d,qq);
axpy(mmp,mass[0],p,mmp);
RealD rn = norm2(p);
d += rn*mass[0];
// have verified that inner product of
// p and mmp is equal to d after this since
// the d computation is tricky
// qq = real(innerProduct(p,mmp));
// std::cout<<GridLogMessage << "debug equal ? qq "<<qq<<" d "<< d<<std::endl;
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r,b,mmp,r);
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer;
GridStopWatch ShiftTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p,a,p,r);
AXPYTimer.Stop();
// Note to self - direction ps is iterated seperately
// for each shift. Does not appear to have any scope
// for avoiding linear algebra in "single" case.
//
// However SAME r is used. Could load "r" and update
// ALL ps[s]. 2/3 Bandwidth saving
// New Kernel: Load r, vector of coeffs, vector of pointers ps
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps[s],a,ps[s],r);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps[s],z[s][iz],as,r,ps[s]);
}
}
}
AXPYTimer.Stop();
cp=c;
MatrixTimer.Start();
//Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
// The below is faster on KNL
Linop.HermOp(p,mmp);
d=real(innerProduct(p,mmp));
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp,mass[0],p,mmp);
AXPYTimer.Stop();
RealD rn = norm2(p);
d += rn*mass[0];
bp=b;
b=-cp/d;
AXPYTimer.Start();
c=axpy_norm(r,b,mmp,r);
AXPYTimer.Stop();
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
for(int s=0;s<nshift;s++){
int ss = s;
// Scope for optimisation here in case of "single".
// Could load psi[0] and pull all ps[s] in.
// if ( single ) ss=primary;
// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
// Pipelined CG gain:
//
// New Kernel: Load r, vector of coeffs, vector of pointers ps
// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
// on ps[s].
// Before: 3 x npole + 3 x npole
// After : 2 x npole (ps[s]) => 3x speed up of multishift CG.
if( (!converged[s]) ) {
axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
}
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop.HermOpAndNorm(psi[s],mmp,d,qq);
axpy(tmp,mass[s],psi[s],mmp);
axpy(r,-alpha[s],src,tmp);
RealD rn = norm2(r);
RealD cn = norm2(src);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
}
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,373 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//PB Pure single, then double fixup
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterationsMshift;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq) :
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
MaxIterations(20000)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
GridBase *DoublePrecGrid = src_d.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldF r_f(SinglePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<RealD> rsqf(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF p_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
psi_f[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
rsqf[s] =rsq[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
// ps_d[s] = src_d;
precisionChange(ps_f[s],src_d);
}
// r and p for primary
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
r_d = p_d;
//MdagM+m[0]
precisionChange(p_f,p_d);
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
precisionChange(tmp_d,mmp_f);
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
// assert(norm2(tmp_d)< 1.0e-4);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_d,b,mmp_d,r_d);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
precisionChange(psi_f[s],psi_d[s]);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterationsMshift;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(r_f, r_d);
PrecChangeTimer.Stop();
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_f[s],a,ps_f[s],r_f);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
}
}
}
AXPYTimer.Stop();
cp=c;
PrecChangeTimer.Start();
precisionChange(p_f, p_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
MatrixTimer.Stop();
PrecChangeTimer.Start();
precisionChange(mmp_d, mmp_f); // From Float to Double
PrecChangeTimer.Stop();
d=real(innerProduct(p_d,mmp_d));
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update single precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
}
}
c = axpy_norm(r_d,b,mmp_d,r_d);
AXPYTimer.Stop();
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsqf[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged || k == MaxIterationsMshift-1){
SolverTimer.Stop();
for(int s=0;s<nshift;s++){
precisionChange(psi_d[s],psi_f[s]);
}
if ( all_converged ){
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
} else {
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
}
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);

View File

@ -1,416 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//Linop to add shift to input linop, used in cleanup CG
namespace ConjugateGradientMultiShiftMixedPrecSupport{
template<typename Field>
class ShiftedLinop: public LinearOperatorBase<Field>{
public:
LinearOperatorBase<Field> &linop_base;
RealD shift;
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
axpy(out, shift, in, out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
};
};
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterationsMshift;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq) :
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
MaxIterations(20000)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
GridBase *DoublePrecGrid = src_d.Grid();
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<RealD> rsqf(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF p_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
rsqf[s] =rsq[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d;
}
// r and p for primary
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
r_d = p_d;
//MdagM+m[0]
precisionChange(p_f, p_d, pc_wk_d_to_s);
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
assert(norm2(tmp_d)< 1.0);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_d,b,mmp_d,r_d);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterationsMshift;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_d[s],a,ps_d[s],r_d);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
}
}
}
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
PrecChangeTimer.Stop();
cp=c;
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
MatrixTimer.Stop();
PrecChangeTimer.Start();
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
PrecChangeTimer.Stop();
AXPYTimer.Start();
d=real(innerProduct(p_d,mmp_d));
axpy(mmp_d,mass[0],p_d,mmp_d);
AXPYTimer.Stop();
RealD rn = norm2(p_d);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update double precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
}
}
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
c = axpy_norm(r_d,b,mmp_d,r_d);
AXPYTimer.Stop();
if(k % ReliableUpdateFreq == 0){
RealD c_old = c;
//Replace r with true residual
MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
c = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsqf[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged || k == MaxIterationsMshift-1){
SolverTimer.Stop();
if ( all_converged ){
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
} else {
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
}
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,277 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
NAMESPACE_BEGIN(Grid);
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer ReliableUpdatesPerformed;
bool DoFinalCleanup; //Final DP cleanup, defaults to true
Integer IterationsToCleanup; //Final DP cleanup step iterations
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback;
RealD fallback_transition_tol;
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
Delta(_delta),
Linop_f(_Linop_f),
Linop_d(_Linop_d),
SinglePrecGrid(_sp_grid),
ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true),
Linop_fallback(NULL)
{
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback;
fallback_transition_tol = _fallback_transition_tol;
}
void operator()(const FieldD &src, FieldD &psi) {
GRID_TRACE("ConjugateGradientReliableUpdate");
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
FieldD p(src);
FieldD mmp(src);
FieldD r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop_d.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if (cp <= rsq) {
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
return;
}
//Single prec initialization
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
FieldF r_f(SinglePrecGrid);
r_f.Checkerboard() = r.Checkerboard();
precisionChange(r_f, r, pc_wk_dp_to_sp);
FieldF psi_f(r_f);
psi_f = Zero();
FieldF p_f(r_f);
FieldF mmp_f(r_f);
RealD MaxResidSinceLastRelUp = cp; //initial residual
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
GridStopWatch PrecChangeTimer;
SolverTimer.Start();
int k = 0;
int l = 0;
for (k = 1; k <= MaxIterations; k++) {
c = cp;
MatrixTimer.Start();
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
MatrixTimer.Stop();
LinalgTimer.Start();
a = c / d;
b_pred = a * (a * qq - d) / c;
cp = axpy_norm(r_f, -a, mmp_f, r_f);
b = cp / c;
// Fuse these loops ; should be really easy
psi_f = a * p_f + psi_f;
//p_f = p_f * b + r_f;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
if(cp > MaxResidSinceLastRelUp){
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
MaxResidSinceLastRelUp = cp;
}
// Stopping condition
if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution
PrecChangeTimer.Start();
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
psi = psi + mmp;
SolverTimer.Stop();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
if(DoFinalCleanup){
//Do a final CG to cleanup
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
CG.ErrorOnNoConverge = ErrorOnNoConverge;
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
return;
}
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
PrecChangeTimer.Start();
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
psi = psi + mmp;
MatrixTimer.Start();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
MatrixTimer.Stop();
r = src - mmp;
psi_f = Zero();
PrecChangeTimer.Start();
precisionChange(r_f, r, pc_wk_dp_to_sp);
PrecChangeTimer.Stop();
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
b = cp/c;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
l = l+1;
}
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
Linop_f_use = Linop_fallback;
using_fallback = true;
}
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,113 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_RESIDUAL_H
#define GRID_CONJUGATE_RESIDUAL_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
verbose=0;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b; // c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src.Grid();
psi=Zero();
Field r(grid), p(grid), Ap(grid), Ar(grid);
r=src;
p=src;
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=1;k<MaxIterations;k++){
a = rAr/pAAp;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,Ap,r);
rArp=rAr;
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<std::sqrt(cp/ssq)
<< " true residual "<<std::sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
}
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,258 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,256 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
FlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,244 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the GMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,739 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BIRL_H
#define GRID_BIRL_H
#include <string.h> //memset
//#include <zlib.h>
#include <sys/stat.h>
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template<class Field> class ImplicitlyRestartedLanczosTester
{
public:
virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
};
enum IRLdiagonalisation {
IRLdiagonaliseWithDSTEGR,
IRLdiagonaliseWithQR,
IRLdiagonaliseWithEigen
};
template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public ImplicitlyRestartedLanczosTester<Field>
{
public:
LinearFunction<Field> &_HermOp;
ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOp) : _HermOp(HermOp) { };
int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
{
return TestConvergence(j,resid,B,eval,evalMaxApprox);
}
int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
{
Field v(B);
RealD eval_poly = eval;
// Apply operator
_HermOp(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<" target " << eresid*eresid << " conv " <<conv
<<std::endl;
return conv;
}
};
template<class Field>
class ImplicitlyRestartedLanczos {
private:
const RealD small = 1.0e-8;
int MaxIter;
int MinRestart; // Minimum number of restarts; only check for convergence after
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
int Nm; // Nm -- total number of vectors
IRLdiagonalisation diagonalisation;
int orth_period;
RealD OrthoTime;
RealD eresid, betastp;
////////////////////////////////
// Embedded objects
////////////////////////////////
LinearFunction<Field> &_PolyOp;
LinearFunction<Field> &_HermOp;
ImplicitlyRestartedLanczosTester<Field> &_Tester;
// Default tester provided (we need a ref to something in default case)
ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
/////////////////////////
// Constructor
/////////////////////////
public:
//////////////////////////////////////////////////////////////////
// PAB:
//////////////////////////////////////////////////////////////////
// Too many options & knobs.
// Eliminate:
// orth_period
// betastp
// MinRestart
//
// Do we really need orth_period
// What is the theoretical basis & guarantees of betastp ?
// Nstop=Nk viable?
// MinRestart avoidable with new convergence test?
// Could cut to PolyOp, HermOp, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
// HermOp could be eliminated if we dropped the Power method for max eval.
// -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
//////////////////////////////////////////////////////////////////
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
LinearFunction<Field> & HermOp,
ImplicitlyRestartedLanczosTester<Field> & Tester,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=0, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
eresid(_eresid), betastp(_betastp),
MaxIter(_MaxIter) , MinRestart(_MinRestart),
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
LinearFunction<Field> & HermOp,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=0, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
eresid(_eresid), betastp(_betastp),
MaxIter(_MaxIter) , MinRestart(_MinRestart),
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
////////////////////////////////
// Helpers
////////////////////////////////
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = std::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
{
OrthoTime-=usecond()/1e6;
basisOrthogonalize(evec,w,k);
normalise(w);
OrthoTime+=usecond()/1e6;
}
/* Rudy Arthur's thesis pp.137
------------------------
Require: M > K P = M K †
Compute the factorization AVM = VM HM + fM eM
repeat
Q=I
for i = 1,...,P do
QiRi =HM θiI Q = QQi
H M = Q †i H M Q i
end for
βK =HM(K+1,K) σK =Q(M,K)
r=vK+1βK +rσK
VK =VM(1:M)Q(1:M,1:K)
HK =HM(1:K,1:K)
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
{
GridBase *grid = src.Grid();
assert(grid == evec[0].Grid());
// GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
}
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
assert(Nm <= evec.size() && Nm <= eval.size());
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
{
auto src_n = src;
auto tmp = src;
std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl;
const int _MAX_ITER_IRL_MEVAPP_ = 50;
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
normalise(src_n);
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
src_n = tmp;
}
}
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);
std::vector<RealD> eval2(Nm);
std::vector<RealD> eval2_copy(Nm);
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
Field f(grid);
Field v(grid);
int k1 = 1;
int k2 = Nk;
RealD beta_k;
Nconv = 0;
// Set initial vector
evec[0] = src;
normalise(evec[0]);
// Initial Nk steps
OrthoTime=0.;
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
//////////////////////////////////
// Restarting loop begins
//////////////////////////////////
int iter;
for(iter = 0; iter<MaxIter; ++iter){
OrthoTime=0.;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
f *= lme[Nm-1];
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
//////////////////////////////////
// getting eigenvalues
//////////////////////////////////
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k+k1-1];
lme2[k] = lme[k+k1-1];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
//////////////////////////////////
// sorting
//////////////////////////////////
eval2_copy = eval2;
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
const int chunk=8;
for(int io=0; io<k2;io+=chunk){
std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
for(int ii=0;ii<chunk;ii++){
if ( (io+ii)<k2 )
std::cout<< " "<< std::setw(12)<< eval2[io+ii];
}
std::cout << std::endl;
}
//////////////////////////////////
// Implicitly shifted QR transformations
//////////////////////////////////
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
for(int ip=k2; ip<Nm; ++ip){
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
}
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
////////////////////////////////////////////////////
// Compressed vector f and beta(k2)
////////////////////////////////////////////////////
f *= Qt(k2-1,Nm-1);
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = std::sqrt(beta_k);
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[k2] = betar * f;
lme[k2-1] = beta_k;
////////////////////////////////////////////////////
// Convergence test
////////////////////////////////////////////////////
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k];
lme2[k] = lme[k];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
Nconv = 0;
if (iter >= MinRestart) {
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
// power of two search pattern; not every evalue in eval2 is assessed.
int allconv =1;
for(int jj = 1; jj<=Nstop; jj*=2){
int j = Nstop-jj;
RealD e = eval2_copy[j]; // Discard the evalue
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
allconv=0;
}
}
// Do evec[0] for good measure
{
int j=0;
RealD e = eval2_copy[0];
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) allconv=0;
}
if ( allconv ) Nconv = Nstop;
// test if we converged, if so, terminate
std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
// if( Nconv>=Nstop || beta_k < betastp){
if( Nconv>=Nstop){
goto converged;
}
} else {
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
} // end of iter loop
}
std::cout<<GridLogError<<"\n NOT converged.\n";
abort();
converged:
{
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
Nconv=0;
//////////////////////////////////////////////////////////////////////
// Full final convergence test; unconditionally applied
//////////////////////////////////////////////////////////////////////
for(int j = 0; j<=Nk; j++){
B=evec[j];
if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
Nconv++;
}
}
if ( Nconv < Nstop ) {
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
}
eval=eval2;
//Keep only converged
eval.resize(Nstop);// was Nconv
evec.resize(Nstop,grid);// was Nconv
basisSortInPlace(evec,eval,reverse);
}
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
}
private:
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avk - b_k v_{k-1}
4. ak:=(wk,vk) //
5. wk:=wk-akvk // wk orthog vk
6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop
7. vk+1 := wk/b_k+1
8. EndDo
*/
void step(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
const RealD tiny = 1.0e-20;
assert( k< Nm );
GridStopWatch gsw_op,gsw_o;
Field& evec_k = evec[k];
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
if(k>0) w -= lme[k-1] * evec[k-1];
ComplexD zalph = innerProduct(evec_k,w);
RealD alph = real(zalph);
w = w - alph * evec_k;
RealD beta = normalise(w);
lmd[k] = alph;
lme[k] = beta;
if ( (k>0) && ( (k % orth_period) == 0 )) {
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt, // Nm x Nm
GridBase *grid)
{
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
for (int i = 0; i < Nk; i++) {
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
}
for (int i = 0; i < Nk; i++) {
for (int j = 0; j < Nk; j++) {
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
}
}
}
///////////////////////////////////////////////////////////////////////////
// File could end here if settle on Eigen ??? !!!
///////////////////////////////////////////////////////////////////////////
void QR_decomp(std::vector<RealD>& lmd, // Nm
std::vector<RealD>& lme, // Nm
int Nk, int Nm, // Nk, Nm
Eigen::MatrixXd& Qt, // Nm x Nm matrix
RealD Dsh, int kmin, int kmax)
{
int k = kmin-1;
RealD x;
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
RealD c = ( lmd[k] -Dsh) *Fden;
RealD s = -lme[k] *Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
x =-s*lme[k+1];
lme[k+1] = c*lme[k+1];
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt(k,i);
RealD Qtmp2 = Qt(k+1,i);
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
}
// Givens transformations
for(int k = kmin; k < kmax-1; ++k){
RealD Fden = 1.0/hypot(x,lme[k-1]);
RealD c = lme[k-1]*Fden;
RealD s = - x*Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
lme[k-1] = c*lme[k-1] -s*x;
if(k != kmax-2){
x = -s*lme[k+1];
lme[k+1] = c*lme[k+1];
}
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt(k,i);
RealD Qtmp2 = Qt(k+1,i);
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
}
}
}
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
} else {
assert(0);
}
}
#ifdef USE_LAPACK
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
#endif
void diagonalize_lapack(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd& Qt,
GridBase *grid)
{
#ifdef USE_LAPACK
const int size = Nm;
int NN = Nk;
double evals_tmp[NN];
double evec_tmp[NN][NN];
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
double DD[NN];
double EE[NN];
for (int i = 0; i< NN; i++) {
for (int j = i - 1; j <= i + 1; j++) {
if ( j < NN && j >= 0 ) {
if (i==j) DD[i] = lmd[i];
if (i==j) evals_tmp[i] = lmd[i];
if (j==(i-1)) EE[j] = lme[j];
}
}
}
int evals_found;
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
int liwork = 3+NN*10 ;
int iwork[liwork];
double work[lwork];
int isuppz[2*NN];
char jobz = 'V'; // calculate evals & evecs
char range = 'I'; // calculate all evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
int info;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN/total)+1;
double vl = 0.0, vu = 0.0;
int il = interval*node+1 , iu = interval*(node+1);
if (iu > NN) iu=NN;
double tol = 0.0;
if (1) {
memset(evals_tmp,0,sizeof(double)*NN);
if ( il <= NN){
LAPACK_dstegr(&jobz, &range, &NN,
(double*)DD, (double*)EE,
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
isuppz,
work, &lwork, iwork, &liwork,
&info);
for (int i = iu-1; i>= il-1; i--){
evals_tmp[i] = evals_tmp[i - (il-1)];
if (il>1) evals_tmp[i-(il-1)]=0.;
for (int j = 0; j< NN; j++){
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
if (il>1) evec_tmp[i-(il-1)][j]=0.;
}
}
}
{
grid->GlobalSumVector(evals_tmp,NN);
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
}
}
// Safer to sort instead of just reversing it,
// but the document of the routine says evals are sorted in increasing order.
// qr gives evals in decreasing order.
for(int i=0;i<NN;i++){
lmd [NN-1-i]=evals_tmp[i];
for(int j=0;j<NN;j++){
Qt((NN-1-i),j)=evec_tmp[i][j];
}
}
#else
assert(0);
#endif
}
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
int QRiter = 100*Nm;
int kmin = 1;
int kmax = Nk;
// (this should be more sophisticated)
for(int iter=0; iter<QRiter; ++iter){
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
// transformation
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
if(fabs(lme[j-1])+dds > dds){
kmax = j+1;
goto continued;
}
}
QRiter = iter;
return;
continued:
for(int j=0; j<kmax-1; ++j){
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
if(fabs(lme[j])+dds > dds){
kmin = j+1;
break;
}
}
}
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
abort();
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,454 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
Copyright (C) 2015
Author: Christoph Lehner <clehner@bnl.gov>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LOCAL_COHERENCE_IRL_H
#define GRID_LOCAL_COHERENCE_IRL_H
NAMESPACE_BEGIN(Grid);
struct LanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
ChebyParams, Cheby,/*Chebyshev*/
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
int, Nk, /*Vecs in Lanczos seek converge*/
int, Nm, /*Total vecs in Lanczos include restart*/
RealD, resid, /*residual*/
int, MaxIt,
RealD, betastp, /* ? */
int, MinRes); // Must restart
};
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
bool, saveEvecs,
bool, doFine,
bool, doFineRead,
bool, doCoarse,
bool, doCoarseRead,
LanczosParams, FineParams,
LanczosParams, CoarseParams,
ChebyParams, Smoother,
RealD , coarse_relax_tol,
std::vector<int>, blockSize,
std::string, config,
std::vector < ComplexD >, omega,
RealD, mass,
RealD, M5);
};
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearOperatorBase<FineField> &_Linop;
std::vector<FineField> &subspace;
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
_Linop(linop), subspace(_subspace)
{
assert(subspace.size() >0);
};
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.Checkerboard()= checkerboard;
FineField fout(FineGrid); fout.Checkerboard() = checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
OperatorFunction<FineField> & _poly;
LinearOperatorBase<FineField> &_Linop;
std::vector<FineField> &subspace;
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,
LinearOperatorBase<FineField>& linop,
std::vector<FineField> & _subspace) :
_poly(poly),
_Linop(linop),
subspace(_subspace)
{ };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearFunction<CoarseField> & _Poly;
OperatorFunction<FineField> & _smoother;
LinearOperatorBase<FineField> &_Linop;
RealD _coarse_relax_tol;
std::vector<FineField> &_subspace;
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
OperatorFunction<FineField> &smoother,
LinearOperatorBase<FineField> &Linop,
std::vector<FineField> &subspace,
RealD coarse_relax_tol=5.0e3,
int largestEvalIdxForReport=-1)
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
{ };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
RealD eval_poly = eval;
// Apply operator
_Poly(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
RealD tmp_eval;
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
}
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
blockPromote(B,fv,_subspace);
_smoother(_Linop,fv,fB);
RealD eval_poly = eval;
_Linop.HermOp(fB,fv);
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
RealD vden = norm2(fB);
RealD vv0 = norm2(fv);
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<std::endl;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
};
////////////////////////////////////////////
// Make serializable Lanczos params
////////////////////////////////////////////
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczos
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
protected:
GridBase *_CoarseGrid;
GridBase *_FineGrid;
int _checkerboard;
LinearOperatorBase<FineField> & _FineOp;
std::vector<RealD> &evals_fine;
std::vector<RealD> &evals_coarse;
std::vector<FineField> &subspace;
std::vector<CoarseField> &evec_coarse;
private:
std::vector<RealD> _evals_fine;
std::vector<RealD> _evals_coarse;
std::vector<FineField> _subspace;
std::vector<CoarseField> _evec_coarse;
public:
LocalCoherenceLanczos(GridBase *FineGrid,
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_FineOp(FineOp),
_checkerboard(checkerboard),
evals_fine (_evals_fine),
evals_coarse(_evals_coarse),
subspace (_subspace),
evec_coarse(_evec_coarse)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
//////////////////////////////////////////////////////////////////////////
// Alternate constructore, external storage for use by Hadrons module
//////////////////////////////////////////////////////////////////////////
LocalCoherenceLanczos(GridBase *FineGrid,
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard,
std::vector<FineField> &ext_subspace,
std::vector<CoarseField> &ext_coarse,
std::vector<RealD> &ext_eval_fine,
std::vector<RealD> &ext_eval_coarse
) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_FineOp(FineOp),
_checkerboard(checkerboard),
evals_fine (ext_eval_fine),
evals_coarse(ext_eval_coarse),
subspace (ext_subspace),
evec_coarse (ext_coarse)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
};
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = ::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
/*
void fakeFine(void)
{
int Nk = nbasis;
subspace.resize(Nk,_FineGrid);
subspace[0]=1.0;
subspace[0].Checkerboard()=_checkerboard;
normalise(subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
subspace[k].Checkerboard()=_checkerboard;
Op(subspace[k-1],subspace[k]);
normalise(subspace[k]);
}
}
*/
void testFine(RealD resid)
{
assert(evals_fine.size() == nbasis);
assert(subspace.size() == nbasis);
PlainHermOp<FineField> Op(_FineOp);
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
for(int k=0;k<nbasis;k++){
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
}
}
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
assert(subspace.size() == nbasis);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,subspace);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
for(int k=0;k<evec_coarse.size();k++){
if ( k < nbasis ) {
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
} else {
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
}
}
}
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
assert(nbasis<=Nm);
Chebyshev<FineField> Cheby(cheby_parms);
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
PlainHermOp<FineField> Op(_FineOp);
evals_fine.resize(Nm);
subspace.resize(Nm,_FineGrid);
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid);
typedef typename FineField::scalar_type Scalar;
// src=1.0;
src=Scalar(1.0);
src.Checkerboard() = _checkerboard;
int Nconv;
IRL.calc(evals_fine,subspace,src,Nconv,false);
// Shrink down to number saved
assert(Nstop>=nbasis);
assert(Nconv>=nbasis);
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
assert(Nconv>=Nstop);
evals_coarse.resize(Nstop);
evec_coarse.resize (Nstop,_CoarseGrid);
for (int i=0;i<Nstop;i++){
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,157 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MINIMAL_RESIDUAL_H
#define GRID_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
RealD overRelaxParam;
Integer IterationsToComplete; // Number of iterations the MR took to finish.
// Filled in upon completion
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
ComplexD a, c;
RealD d;
Field Mr(src);
Field r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Linop.Op(psi, Mr);
r = src - Mr;
RealD cp = norm2(r);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
if (cp <= rsq) {
return;
}
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
MatrixTimer.Start();
Linop.Op(r, Mr);
MatrixTimer.Stop();
LinalgTimer.Start();
c = innerProduct(Mr, r);
d = norm2(Mr);
a = c / d;
a = a * overRelaxParam;
psi = psi + r * a;
r = r - Mr * a;
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
Linop.Op(psi, Mr);
r = src - Mr;
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
if (ErrorOnNoConverge)
assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
<< std::endl;
if (ErrorOnNoConverge)
assert(0);
IterationsToComplete = k;
}
};
} // namespace Grid
#endif

View File

@ -1,276 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
public:
using OperatorFunction<FieldD>::operator();
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
GridStopWatch ChangePrecTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GridBase* SinglePrecGrid;
LinearFunction<FieldF> &Preconditioner;
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
GridBase * sp_grid,
LinearFunction<FieldF> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, SinglePrecGrid(sp_grid)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
FieldD r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
ChangePrecTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
RealD cp = 0;
FieldD w(src.Grid());
FieldD r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
FieldF v_f(SinglePrecGrid);
FieldF z_f(SinglePrecGrid);
ChangePrecTimer.Start();
precisionChange(v_f, v[iter]);
precisionChange(z_f, z[iter]);
ChangePrecTimer.Stop();
PrecTimer.Start();
Preconditioner(v_f, z_f);
PrecTimer.Stop();
ChangePrecTimer.Start();
precisionChange(z[iter], z_f);
ChangePrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,138 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/NormalEquations.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_NORMAL_EQUATIONS_H
#define GRID_NORMAL_EQUATIONS_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations : public LinearFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field src(in.Grid());
Field tmp(in.Grid());
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Matrix.Mdag(in,src);
_Guess(src,out);
_HermitianSolver(MdagMOp,src,out); // Mdag M out = Mdag in
}
};
template<class Field> class NormalResidual : public LinearFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field res(in.Grid());
Field tmp(in.Grid());
MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
_Guess(in,res);
_HermitianSolver(MMdagOp,in,res); // M Mdag res = in ;
_Matrix.Mdag(res,out); // out = Mdag res
}
};
template<class Field> class HPDSolver : public LinearFunction<Field> {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
HPDSolver(LinearOperatorBase<Field> &Matrix,
OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
_Guess(in,out);
_HermitianSolver(_Matrix,in,out); //M out = in
}
};
template<class Field> class MdagMSolver : public LinearFunction<Field> {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Guess(in,out);
_HermitianSolver(MdagMOp,in,out); // Mdag M out = Mdag in
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,46 +0,0 @@
#pragma once
namespace Grid {
template<class Field> class PowerMethod
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_EST_ = 200;
for (int i=0;i<_MAX_ITER_EST_;i++) {
normalise(src_n);
HermOp.HermOp(src_n,tmp);
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
// if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {
// evalMaxApprox = na;
// return evalMaxApprox;
// }
evalMaxApprox = na;
src_n = tmp;
}
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
};
}

View File

@ -1,76 +0,0 @@
#pragma once
namespace Grid {
class Band
{
RealD lo, hi;
public:
Band(RealD _lo,RealD _hi)
{
lo=_lo;
hi=_hi;
}
RealD operator() (RealD x){
if ( x>lo && x<hi ){
return 1.0;
} else {
return 0.0;
}
}
};
class PowerSpectrum
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
std::vector<RealD> ranges;
std::vector<int> order;
PowerSpectrum( std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order) { };
template<class Field>
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
int N=ranges.size();
RealD hi = ranges[N-1];
RealD lo_band = 0.0;
RealD hi_band;
RealD nn=norm2(src);
RealD ss=0.0;
Field tmp = src;
for(int b=0;b<N;b++){
hi_band = ranges[b];
Band Notch(lo_band,hi_band);
Chebyshev<Field> polynomial;
polynomial.Init(0.0,hi,order[b],Notch);
polynomial.JacksonSmooth();
polynomial(HermOp,src,tmp) ;
RealD p=norm2(tmp);
ss=ss+p;
std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
lo_band=hi_band;
}
std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
return 0;
};
};
}

View File

@ -1,119 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecConjugateResidual.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
#define GRID_PREC_CONJUGATE_RESIDUAL_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class PrecConjugateResidual : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
LinearFunction<Field> &Preconditioner;
PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit), Preconditioner(Prec)
{
verbose=1;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b, c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src.Grid();
Field r(grid), p(grid), Ap(grid), Ar(grid), z(grid);
psi=zero;
r = src;
Preconditioner(r,p);
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Ar=Ap;
rAr=pAp;
rAAr=pAAp;
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=0;k<MaxIterations;k++){
Preconditioner(Ap,z);
RealD rq= real(innerProduct(Ap,z));
a = rAr/rq;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,z,r);
rArp=rAr;
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual "<<sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
}
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,239 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_H
#define GRID_PREC_GCR_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.HermOp(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
/*
GCRLogLevel<<"PGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
*/
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
RealD a, b;
RealD zAz, zAAz;
RealD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,242 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_NON_HERM_H
#define GRID_PREC_GCR_NON_HERM_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
// psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.Op(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b;
// ComplexD zAz;
RealD zAAz;
ComplexD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
LinalgTimer.Start();
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= innerProduct(q[peri_k],r); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,371 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h
Copyright (C) 2019
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
RealD innerG5ProductReal(Field &l, Field &r)
{
Gamma G5(Gamma::Algebra::Gamma5);
Field tmp(l.Grid());
// tmp = G5*r;
G5R5(tmp,r);
ComplexD ip =innerProduct(l,tmp);
std::cout << "innerProductRealG5R5 "<<ip<<std::endl;
return ip.real();
}
template<class Field>
class QuasiMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge;
RealD Tolerance;
Integer MaxIterations;
Integer IterationCount;
QuasiMinimalResidual(RealD tol,
Integer maxit,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, ErrorOnNoConverge(err_on_no_conv)
{};
#if 1
void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)
{
RealD resid;
IterationCount=0;
RealD rho, rho_1, xi, gamma, gamma_1, theta, theta_1;
RealD eta, delta, ep, beta;
GridBase *Grid = b.Grid();
Field r(Grid), d(Grid), s(Grid);
Field v(Grid), w(Grid), y(Grid), z(Grid);
Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid);
Field p(Grid), q(Grid), p_tld(Grid);
Real normb = norm2(b);
LinOp.Op(x,r); r = b - r;
assert(normb> 0.0);
resid = norm2(r)/normb;
if (resid <= Tolerance) {
return;
}
v_tld = r;
y = v_tld;
rho = norm2(y);
// Take Gamma5 conjugate
// Gamma G5(Gamma::Algebra::Gamma5);
// G5R5(w_tld,r);
// w_tld = G5* v_tld;
w_tld=v_tld;
z = w_tld;
xi = norm2(z);
gamma = 1.0;
eta = -1.0;
theta = 0.0;
for (int i = 1; i <= MaxIterations; i++) {
// Breakdown tests
assert( rho != 0.0);
assert( xi != 0.0);
v = (1. / rho) * v_tld;
y = (1. / rho) * y;
w = (1. / xi) * w_tld;
z = (1. / xi) * z;
ComplexD Zdelta = innerProduct(z, y); // Complex?
std::cout << "Zdelta "<<Zdelta<<std::endl;
delta = Zdelta.real();
y_tld = y;
z_tld = z;
if (i > 1) {
p = y_tld - (xi * delta / ep) * p;
q = z_tld - (rho * delta / ep) * q;
} else {
p = y_tld;
q = z_tld;
}
LinOp.Op(p,p_tld); // p_tld = A * p;
ComplexD Zep = innerProduct(q, p_tld);
ep=Zep.real();
std::cout << "Zep "<<Zep <<std::endl;
// Complex Audit
assert(abs(ep)>0);
beta = ep / delta;
assert(abs(beta)>0);
v_tld = p_tld - beta * v;
y = v_tld;
rho_1 = rho;
rho = norm2(y);
LinOp.AdjOp(q,w_tld);
w_tld = w_tld - beta * w;
z = w_tld;
xi = norm2(z);
gamma_1 = gamma;
theta_1 = theta;
theta = rho / (gamma_1 * beta);
gamma = 1.0 / sqrt(1.0 + theta * theta);
std::cout << "theta "<<theta<<std::endl;
std::cout << "gamma "<<gamma<<std::endl;
assert(abs(gamma)> 0.0);
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
if (i > 1) {
d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d;
s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s;
} else {
d = eta * p;
s = eta * p_tld;
}
x =x+d; // update approximation vector
r =r-s; // compute residual
if ((resid = norm2(r) / normb) <= Tolerance) {
return;
}
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
}
assert(0);
return; // no convergence
}
#else
// QMRg5 SMP thesis
void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)
{
// Real scalars
GridBase *grid = b.Grid();
Field r(grid);
Field p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid);
Field v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid);
Field tmp(grid);
RealD w;
RealD z1, z2;
RealD delta_m, delta_m_minus_1;
RealD c_m_plus_1, c_m, c_m_minus_1;
RealD s_m_plus_1, s_m, s_m_minus_1;
RealD alpha, beta, gamma, epsilon;
RealD mu, nu, rho, theta, xi, chi;
RealD mod2r, mod2b;
RealD tau2, target2;
mod2b=norm2(b);
/////////////////////////
// Initial residual
/////////////////////////
LinOp.Op(x,tmp);
r = b - tmp;
/////////////////////////
// \mu = \rho = |r_0|
/////////////////////////
mod2r = norm2(r);
rho = sqrt( mod2r);
mu=rho;
std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
/////////////////////////
// Zero negative history
/////////////////////////
v_m_plus_1 = Zero();
v_m_minus_1 = Zero();
p_m_minus_1 = Zero();
p_m_minus_2 = Zero();
// v0
v_m = (1.0/rho)*r;
/////////////////////////
// Initial coeffs
/////////////////////////
delta_m_minus_1 = 1.0;
c_m_minus_1 = 1.0;
c_m = 1.0;
s_m_minus_1 = 0.0;
s_m = 0.0;
/////////////////////////
// Set up convergence check
/////////////////////////
tau2 = mod2r;
target2 = mod2b * Tolerance*Tolerance;
for(int iter = 0 ; iter < MaxIterations; iter++){
/////////////////////////
// \delta_m = (v_m, \gamma_5 v_m)
/////////////////////////
delta_m = innerG5ProductReal(v_m,v_m);
std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl;
/////////////////////////
// tmp = A v_m
/////////////////////////
LinOp.Op(v_m,tmp);
/////////////////////////
// \alpha = (v_m, \gamma_5 temp) / \delta_m
/////////////////////////
alpha = innerG5ProductReal(v_m,tmp);
alpha = alpha/delta_m ;
std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl;
/////////////////////////
// \beta = \rho \delta_m / \delta_{m-1}
/////////////////////////
beta = rho * delta_m / delta_m_minus_1;
std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl;
/////////////////////////
// \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1}
/////////////////////////
v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1;
///////////////////////////////
// \rho = || \tilde{v}_{m+1} ||
///////////////////////////////
rho = sqrt( norm2(v_m_plus_1) );
std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
///////////////////////////////
// v_{m+1} = \tilde{v}_{m+1}
///////////////////////////////
v_m_plus_1 = (1.0 / rho) * v_m_plus_1;
////////////////////////////////
// QMR recurrence coefficients.
////////////////////////////////
theta = s_m_minus_1 * beta;
gamma = c_m_minus_1 * beta;
epsilon = c_m * gamma + s_m * alpha;
xi = -s_m * gamma + c_m * alpha;
nu = sqrt( xi*xi + rho*rho );
c_m_plus_1 = fabs(xi) / nu;
if ( xi == 0.0 ) {
s_m_plus_1 = 1.0;
} else {
s_m_plus_1 = c_m_plus_1 * rho / xi;
}
chi = c_m_plus_1 * xi + s_m_plus_1 * rho;
std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl;
std::cout << "QuasiMinimalResidual coeffs "<< chi <<std::endl;
////////////////////////////////
//p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi
////////////////////////////////
p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2;
////////////////////////////////////////////////////////////////
// \psi = \psi + c_{m+1} \mu p_m
////////////////////////////////////////////////////////////////
x = x + ( c_m_plus_1 * mu ) * p_m;
////////////////////////////////////////
//
////////////////////////////////////////
mu = -s_m_plus_1 * mu;
delta_m_minus_1 = delta_m;
c_m_minus_1 = c_m;
c_m = c_m_plus_1;
s_m_minus_1 = s_m;
s_m = s_m_plus_1;
////////////////////////////////////
// Could use pointer swizzle games.
////////////////////////////////////
v_m_minus_1 = v_m;
v_m = v_m_plus_1;
p_m_minus_2 = p_m_minus_1;
p_m_minus_1 = p_m;
/////////////////////////////////////
// Convergence checks
/////////////////////////////////////
z1 = RealD(iter+1.0);
z2 = z1 + 1.0;
tau2 = tau2 *( z2 / z1 ) * s_m * s_m;
std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl;
std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl;
// Compute true residual
mod2r = tau2;
if ( 1 || (tau2 < (100.0 * target2)) ) {
LinOp.Op(x,tmp);
r = b - tmp;
mod2r = norm2(r);
std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl;
}
if ( mod2r < target2 ) {
std::cout << " QuasiMinimumResidual has converged"<<std::endl;
return;
}
}
}
#endif
};
NAMESPACE_END(Grid);

View File

@ -1,732 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_SCHUR_RED_BLACK_H
#define GRID_SCHUR_RED_BLACK_H
/*
* Red black Schur decomposition
*
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
* = L D U
*
* L^-1 = (1 0 )
* (-MoeMee^{-1} 1 )
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
* ( 0 1 )
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* U^-1 = (1 -Mee^{-1} Meo)
* (0 1 )
* U^{dag} = ( 1 0)
* (Meo^dag Mee^{-dag} 1)
* U^{-dag} = ( 1 0)
* (-Meo^dag Mee^{-dag} 1)
***********************
* M psi = eta
***********************
*Odd
* i) D_oo psi_o = L^{-1} eta_o
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
*
* Wilson:
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
* Stag:
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
*
* L^-1 eta_o= (1 0 ) (e
* (-MoeMee^{-1} 1 )
*
*Even
* ii) Mee psi_e + Meo psi_o = src_e
*
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
*
*
* TODO: Other options:
*
* a) change checkerboards for Schur e<->o
*
* Left precon by Moo^-1
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
*
* Right precon by Moo^-1
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
* psi_o = M_oo^-1 phi_o
* TODO: Deflation
*/
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Use base class to share code
///////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackBase {
protected:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
public:
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false) :
_HermitianRBSolver(HermitianRBSolver),
useSolnAsInitGuess(_solnAsInitGuess)
{
CBfactorise = 0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
/////////////////////////////////////////////////////////////
// Shared code
/////////////////////////////////////////////////////////////
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)
{
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
Field tmp(grid);
int nblock = in.size();
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
}
// James can write his own deflated guesser
// with optimised code for the inner products
// RedBlackSolveSplitGrid();
// RedBlackSolve(_Matrix,src_o,sol_o);
void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
{
GridBase *grid = _Matrix.RedBlackGrid();
Field tmp(grid);
int nblock = in.size();
for(int b=0;b<nblock;b++) {
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
}
}
template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
int nblock = in.size();
std::vector<Field> src_o(nblock,grid);
std::vector<Field> sol_o(nblock,grid);
std::vector<Field> guess_save;
Field resid(fgrid);
Field tmp(grid);
////////////////////////////////////////////////
// Prepare RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_o);
// for(int b=0;b<nblock;b++){
// RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
// }
////////////////////////////////////////////////
// Make the guesses
////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid);
if(useSolnAsInitGuess) {
for(int b=0;b<nblock;b++){
pickCheckerboard(Odd, sol_o[b], out[b]);
}
} else {
guess(src_o, sol_o);
}
if ( subGuess ) {
for(int b=0;b<nblock;b++){
guess_save[b] = sol_o[b];
}
}
//////////////////////////////////////////////////////////////
// Call the block solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// A2A boolean behavioural control & reconstruct other checkerboard
////////////////////////////////////////////////
for(int b=0;b<nblock;b++) {
if (subGuess) sol_o[b] = sol_o[b] - guess_save[b];
///////// Needs even source //////////////
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
}
}
template<class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field resid(fgrid);
Field src_o(grid);
Field src_e(grid);
Field sol_o(grid);
////////////////////////////////////////////////
// RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_e,src_o);
////////////////////////////////
// Construct the guess
////////////////////////////////
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o, out);
} else {
guess(src_o,sol_o);
}
Field guess_save(grid);
guess_save = sol_o;
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// Fionn A2A boolean behavioural control
////////////////////////////////////////////////
if (subGuess) sol_o= sol_o-guess_save;
///////////////////////////////////////////////////
// RedBlack solution needs the even source
///////////////////////////////////////////////////
RedBlackSolution(_Matrix,sol_o,src_e,out);
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
} else {
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
}
}
/////////////////////////////////////////////////////////////
// Override in derived.
/////////////////////////////////////////////////////////////
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)=0;
};
template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)
{
}
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e(grid);
src_e = src_e_c; // Const correctness
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it.
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
}
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
}
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, left preconditioned by Mee^inv
// ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv ) phi = Mee_inv eta
//
// Solve:
// ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag Mee_inv eta
//
// Old notation e<->o
//
// Left precon by Moo^-1
// b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o = [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1} eta_o
// eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
Mtmp=src_o-Mtmp;
_Matrix.MooeeInv(Mtmp,tmp); assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, right preconditioned by Mee^inv
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
//=> psi = MeeInv phi
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o,tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o, tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
};
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
};
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
}
#endif

View File

@ -1,608 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/Aggregates.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x)
{
// return std::pow(x,-4);
// return std::pow(x,-3);
return std::pow(x,-5);
}
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
constexpr int Nbasis(void) { return nbasis; };
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
int nn=nbasis;
RealD scale;
FineField noise(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
subspace[b] = noise;
}
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
{
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
{
RealD scale;
TrivialPrecon<FineField> simple_fine;
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
FineField noise(FineGrid);
FineField src(FineGrid);
FineField guess(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<3;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
src = noise;
guess=Zero();
GCR(src,guess);
subspace[b] = guess;
#else
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
src=Zero();
guess = noise;
GCR(src,guess);
subspace[b] = guess;
#endif
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
<<ordermin<<" step "<<orderstep
<<" lo"<<filterlo<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
ComplexD ip;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
ComplexD ip;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo1,
int orderfilter,
double lo2,
int orderstep)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn);
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
// Generate a full sequence of Chebyshevs
for(int n=1;n<nn;n++){
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
Cheb(hermop,subspace[n-1],Mn);
for(int m=0;m<n;m++){
ComplexD c = innerProduct(subspace[m],Mn);
Mn = Mn - c*subspace[m];
}
// normalise
scale = std::pow(norm2(Mn),-0.5);
Mn=Mn*scale;
subspace[n]=Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
// Refine
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
noise = Mn;
PowerLaw(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
// normalise
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
int orderfilter
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
double hi
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Filter
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
/*266
Chebyshev<FineField> Cheb1(3.0,hi,300);
Chebyshev<FineField> Cheb2(1.0,hi,50);
Chebyshev<FineField> Cheb3(0.5,hi,300);
Chebyshev<FineField> Cheb4(0.05,hi,500);
Chebyshev<FineField> Cheb5(0.01,hi,2000);
*/
/* 242 */
/*
Chebyshev<FineField> Cheb3(0.1,hi,300);
Chebyshev<FineField> Cheb2(0.02,hi,1000);
Chebyshev<FineField> Cheb1(0.003,hi,2000);
8?
*/
/* How many??
*/
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
Chebyshev<FineField> Cheb1(0.02,hi,600);
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
// Chebyshev<FineField> Cheb1(0.02,hi,600);
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
subspace[b] = noise;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
}
}
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
double Lo,double tol,int maxit)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
// Filter
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
//
// 1/(x+Lo) - 1/(x+2 Lo)
double epsilon = Lo/3;
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
std::vector<RealD> tols({tol,tol,tol,tol});
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
MultiShiftFunction msf(4,0.0,95.0);
std::cout << "msf constructed "<<std::endl;
msf.poles=shifts;
msf.residues=alpha;
msf.tolerances=tols;
msf.norm=0.0;
msf.order=alpha.size();
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
for(int b =0;b<nbasis;b++)
{
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn);
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
MSCG(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
double Lo,double tol,int maxit)
{
FineField tmp(FineGrid);
for(int b =0;b<nbasis;b++)
{
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
tmp=Zero();
CGsloppy(hermop,subspace[b],tmp);
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
subspace[b]=tmp;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
int nrhs)
{
std::vector<FineField> src_mrhs(nrhs,FineGrid);
std::vector<FineField> res_mrhs(nrhs,FineGrid);
FineField tmp(FineGrid);
for(int b =0;b<nbasis;b+=nrhs)
{
tmp = subspace[b];
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
subspace[b] =tmp;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
src_mrhs[r] = subspace[b+r];
}
for(int r=0;r<nrhs;r++){
res_mrhs[r] = Zero();
}
theHDCG(src_mrhs,res_mrhs);
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
tmp = res_mrhs[r];
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
subspace[b+r]=tmp;
}
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
}
}
};
NAMESPACE_END(Grid);

View File

@ -1,837 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/CoarsenedMatrix.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
NAMESPACE_BEGIN(Grid);
template<class vobj,class CComplex>
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> fine_inner_msk(fine);
// Multiply could be fused with innerProduct
// Single block sum kernel could do both masks.
fine_inner = localInnerProduct(fineX,fineY);
mult(fine_inner_msk, fine_inner,FineMask);
blockSum(CoarseInner,fine_inner_msk);
}
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<CComplex > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef CoarseVector FermionField;
// enrich interface, use default implementation as in FermionOperator ///////
void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
GridBase* _cbgrid;
int hermitian;
CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
std::vector<CoarseMatrix> A;
std::vector<CoarseMatrix> Aeven;
std::vector<CoarseMatrix> Aodd;
CoarseMatrix AselfInv;
CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd;
deviceVector<RealD> dag_factor;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
GridBase * RedBlackGrid() { return _cbgrid; };
int ConstEE() { return 0; }
void M (const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int point=0;point<npoint;point++){
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
};
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if(hermitian) {
// corresponds to Petrov-Galerkin coarsening
return M(in,out);
} else {
// corresponds to Galerkin coarsening
return MdagNonHermitian(in, out);
}
};
void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
deviceVector<int> points(geom.npoint);
for(int p=0; p<geom.npoint; p++) {
acceleratorPut(points[p],geom.points_dagger[p]);
}
auto points_p = &points[0];
RealD* dag_factor_p = &dag_factor[0];
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}
void MdirComms(const CoarseVector &in)
{
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
}
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
{
conformable(_grid,in.Grid());
conformable(_grid,out.Grid());
out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
autoView( Stencil_v , Stencil, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
this->MdirComms(in);
int ndir=geom.npoint-1;
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
assert(0);
}
for(int p=0;p<ndir;p++){
MdirCalc(in,out[p],p);
}
};
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
this->MdirComms(in);
MdirCalc(in,out,geom.point(dir,disp));
};
void Mdiag(const CoarseVector &in, CoarseVector &out)
{
int point=geom.npoint-1;
MdirCalc(in, out, point); // No comms
};
void Mooee(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseNo);
}
void MooeeInv(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseYes);
}
void MooeeDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseNo);
}
void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseYes);
}
void Meooe(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
void MeooeDag(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, A, in, out, dag);
}
void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, Aodd, in, out, dag);
}
void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, Aeven, in, out, dag);
}
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
out.Checkerboard() = in.Checkerboard();
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
CoarseMatrix *Aself = nullptr;
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
DselfInternal(StencilOdd, *Aself, in, out, dag);
} else {
Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
DselfInternal(StencilEven, *Aself, in, out, dag);
}
} else {
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
DselfInternal(Stencil, *Aself, in, out, dag);
}
assert(Aself != nullptr);
}
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
const CoarseVector &in, CoarseVector &out, int dag) {
int point = geom.npoint-1;
autoView( out_v, out, AcceleratorWrite);
autoView( in_v, in, AcceleratorRead);
autoView( st_v, st, AcceleratorRead);
autoView( a_v, a, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
}
}
void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
const CoarseVector &in, CoarseVector &out, int dag) {
SimpleCompressor<siteVector> compressor;
st.HaloExchange(in,compressor);
autoView( in_v, in, AcceleratorRead);
autoView( out_v, out, AcceleratorWrite);
autoView( st_v , st, AcceleratorRead);
typedef LatticeView<Cobj> Aview;
// determine in what order we need the points
int npoint = geom.npoint-1;
deviceVector<int> points(npoint);
for(int p=0; p<npoint; p++) {
int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
acceleratorPut(points[p], val);
}
auto points_p = &points[0];
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
}
for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,_cbgrid),
Aodd(geom.npoint,_cbgrid),
AselfInv(&CoarseGrid),
AselfInvEven(_cbgrid),
AselfInvOdd(_cbgrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(&CoarseRBGrid),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,&CoarseRBGrid),
Aodd(geom.npoint,&CoarseRBGrid),
AselfInv(&CoarseGrid),
AselfInvEven(&CoarseRBGrid),
AselfInvOdd(&CoarseRBGrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
void fillFactor() {
Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
if(!hermitian) {
const int nb = nbasis/2;
dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
}
// GPU readable prefactor
std::vector<RealD> h_dag_factor(nbasis*nbasis);
thread_for(i, nbasis*nbasis, {
int j = i/nbasis;
int k = i%nbasis;
h_dag_factor[i] = dag_factor_eigen(j, k);
});
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
}
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type;
std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
FineComplexField imask(FineGrid); // contributions from within this block
FineComplexField omask(FineGrid); // contributions from outwith this block
FineComplexField evenmask(FineGrid);
FineComplexField oddmask(FineGrid);
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=Zero();
FineField Mphi(FineGrid);
FineField Mphie(FineGrid);
FineField Mphio(FineGrid);
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
Lattice<iScalar<vInteger> > coor (FineGrid);
Lattice<iScalar<vInteger> > bcoor(FineGrid);
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
CoarseVector iProj(Grid());
CoarseVector oProj(Grid());
CoarseVector SelfProj(Grid());
CoarseComplexField iZProj(Grid());
CoarseComplexField oZProj(Grid());
CoarseScalar InnerProd(Grid());
std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++)
{
int dir = geom.directions[p];
int disp = geom.displacements[p];
A[p]=Zero();
if( geom.displacements[p]==0){
self_stencil=p;
}
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
///////////////////////////////////////////////////////
// Work out even and odd block checkerboarding for fast diagonal term
///////////////////////////////////////////////////////
if ( disp==1 ) {
bcb = bcb + div(coor,block);
}
if ( disp==0 ) {
masks[p]= Zero();
} else if ( disp==1 ) {
masks[p] = where(mod(coor,block)==(block-1),one,zero);
} else if ( disp==-1 ) {
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
}
}
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
oddmask = one-evenmask;
assert(self_stencil!=-1);
for(int i=0;i<nbasis;i++){
phi=Subspace.subspace[i];
std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
for(int p=0;p<geom.npoint;p++){
Mphi = Mphi_p[p];
int dir = geom.directions[p];
int disp = geom.displacements[p];
if ( (disp==-1) || (!hermitian ) ) {
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
omask = masks[p];
imask = one-omask;
for(int j=0;j<nbasis;j++){
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
autoView( iZProj_v , iZProj, AcceleratorRead) ;
autoView( oZProj_v , oZProj, AcceleratorRead) ;
autoView( A_p , A[p], AcceleratorWrite);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
if ( hermitian && (disp==-1) ) {
for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
auto sft = conjugate(Cshift(oZProj,dir,1));
autoView( sft_v , sft , AcceleratorWrite);
autoView( A_pp , A[pp], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
}
}
}
}
}
}
///////////////////////////////////////////
// Faster alternate self coupling.. use hermiticity to save 2x
///////////////////////////////////////////
{
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
{
autoView( tmp_ , tmp, AcceleratorWrite);
autoView( evenmask_ , evenmask, AcceleratorRead);
autoView( oddmask_ , oddmask, AcceleratorRead);
autoView( Mphie_ , Mphie, AcceleratorRead);
autoView( Mphio_ , Mphio, AcceleratorRead);
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
});
}
blockProject(SelfProj,tmp,Subspace.subspace);
autoView( SelfProj_ , SelfProj, AcceleratorRead);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
for(int j=0;j<nbasis;j++){
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
}
});
}
}
if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
}
InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl;
FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl;
}
void InvertSelfStencilLink() {
std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
int localVolume = Grid()->lSites();
typedef typename Cobj::scalar_object scalar_object;
autoView(Aself_v, A[geom.npoint-1], CpuRead);
autoView(AselfInv_v, AselfInv, CpuWrite);
thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
Eigen::MatrixXcd selfLinkEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
scalar_object selfLink = Zero();
scalar_object selfLinkInv = Zero();
Coordinate lcoor;
Grid()->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(selfLink, Aself_v, lcoor);
for (int i = 0; i < nbasis; ++i)
for (int j = 0; j < nbasis; ++j)
selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
selfLinkInvEigen = selfLinkEigen.inverse();
for(int i = 0; i < nbasis; ++i)
for(int j = 0; j < nbasis; ++j)
selfLinkInv(i, j) = selfLinkInvEigen(i, j);
pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
});
}
void FillHalfCbs() {
std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
for(int p = 0; p < geom.npoint; ++p) {
pickCheckerboard(Even, Aeven[p], A[p]);
pickCheckerboard(Odd, Aodd[p], A[p]);
}
pickCheckerboard(Even, AselfInvEven, AselfInv);
pickCheckerboard(Odd, AselfInvOdd, AselfInv);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,619 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
int hermitian;
GridBase * _FineGrid;
GridCartesian * _CoarseGrid;
NonLocalStencilGeometry &geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
std::vector<CoarseMatrix> _A;
std::vector<CoarseMatrix> _Adag;
std::vector<CoarseVector> MultTemporaries;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
/* void ShiftMatrix(RealD shift)
{
int Nd=_FineGrid->Nd();
Coordinate zero_shift(Nd,0);
for(int p=0;p<geom.npoint;p++){
if ( zero_shift==geom.shifts[p] ) {
_A[p] = _A[p]+shift;
// _Adag[p] = _Adag[p]+shift;
}
}
}
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
{
int nfound=0;
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
for(int p=0;p<geom.npoint;p++){
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
// Search for the same relative shift
// Avoids brutal handling of Grid pointers
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
nfound++;
}
}
}
assert(nfound==geom.npoint);
ExchangeCoarseLinks();
}
*/
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
_CoarseGrid(CoarseGrid),
hermitian(1),
Cell(_geom.Depth(),_CoarseGrid),
Stencil(Cell.grids.back(),geom.shifts)
{
{
int npoint = _geom.npoint;
}
_A.resize(geom.npoint,CoarseGrid);
// _Adag.resize(geom.npoint,CoarseGrid);
}
void M (const CoarseVector &in, CoarseVector &out)
{
Mult(_A,in,out);
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
assert(hermitian);
Mult(_A,in,out);
// if ( hermitian ) M(in,out);
// else Mult(_Adag,in,out);
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
RealD tmult2=0;
ttot=-usecond();
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
texch-=usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin);
texch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t osites=pin.Grid()->oSites();
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
+ 2.0*osites*sizeof(siteVector)*npoint;
{
tviews-=usecond();
autoView( in_v , pin, AcceleratorRead);
autoView( out_v , pout, AcceleratorWriteDiscard);
autoView( Stencil_v , Stencil, AcceleratorRead);
tviews+=usecond();
// Static and prereserve to keep UVM region live and not resized across multiple calls
ttemps-=usecond();
MultTemporaries.resize(npoint,pin.Grid());
ttemps+=usecond();
std::vector<Aview> AcceleratorViewContainer_h;
std::vector<Vview> AcceleratorVecViewContainer_h;
tviews-=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
}
tviews+=usecond();
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
auto Aview_p = &AcceleratorViewContainer[0];
auto Vview_p = &AcceleratorVecViewContainer[0];
tcopy-=usecond();
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
tcopy+=usecond();
tmult-=usecond();
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int32_t ss = spb/(nbasis*npoint);
int32_t bp = spb%(nbasis*npoint);
int32_t point= bp/nbasis;
int32_t b = bp%nbasis;
auto SE = Stencil_v.GetEntry(point,ss);
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
for(int bb=1;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
}
coalescedWrite(Vview_p[point][ss](b),res);
});
tmult2-=usecond();
accelerator_for(sb, osites*nbasis, Nsimd, {
int ss = sb/nbasis;
int b = sb%nbasis;
auto res = coalescedRead(Vview_p[0][ss](b));
for(int point=1;point<npoint;point++){
res = res + coalescedRead(Vview_p[point][ss](b));
}
coalescedWrite(out_v[ss](b),res);
});
tmult2+=usecond();
tmult+=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h[p].ViewClose();
AcceleratorVecViewContainer_h[p].ViewClose();
}
}
text-=usecond();
out = Cell.Extract(pout);
text+=usecond();
ttot+=usecond();
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
// std::cout << GridLogPerformance<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
void PopulateAdag(void)
{
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
Coordinate bcoor;
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
for(int p=0;p<geom.npoint;p++){
Coordinate scoor = bcoor;
for(int mu=0;mu<bcoor.size();mu++){
int L = CoarseGrid()->GlobalDimensions()[mu];
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
}
// Flip to poke/peekLocalSite and not too bad
auto link = peekSite(_A[p],scoor);
int pp = geom.Reverse(p);
pokeSite(adj(link),_Adag[pp],bcoor);
}
}
}
/////////////////////////////////////////////////////////////
//
// A) Only reduced flops option is to use a padded cell of depth 4
// and apply MpcDagMpc in the padded cell.
//
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
// Cost is 81x more, same as stencil size.
//
// But: can eliminate comms and do as local dirichlet.
//
// Local exchange gauge field once.
// Apply to all vectors, local only computation.
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
//
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
// pad by 2, apply Doe
// pad by 3, apply Deo
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
//
// => almost factor of 10 in setup cost, excluding data rearrangement
//
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
/////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// BFM HDCG style approach: Solve a system of equations to get Aij
//////////////////////////////////////////////////////////
/*
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
*
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
* = \sum_ball e^{iqk.delta} A_ji
*
* Must invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*/
#if 0
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
CoarseVector coarseInner(CoarseGrid());
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
tphase-=usecond();
CoarseComplexField coor(CoarseGrid());
CoarseComplexField pha(CoarseGrid()); pha=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha =exp(pha*ci);
phaV=Zero();
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
tphase+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#else
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
// for(int s=0;s<Subspace.subspace.size();s++){
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
// }
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
CoarseVector coarseInner(CoarseGrid());
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
tphase=-usecond();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid());
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
}
for(int p=0;p<geom.npoint;p++){
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#endif
void ExchangeCoarseLinks(void){
for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.ExchangePeriodic(_A[p]);
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -1,729 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef typename CComplex::scalar_object SComplex;
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef iVector<SComplex,nbasis > calcVector;
typedef iMatrix<SComplex,nbasis > calcMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
GridCartesian * _CoarseGridMulti;
NonLocalStencilGeometry geom;
NonLocalStencilGeometry geom_srhs;
PaddedCell Cell;
GeneralLocalStencil Stencil;
deviceVector<calcVector> BLAS_B;
deviceVector<calcVector> BLAS_C;
std::vector<deviceVector<calcMatrix> > BLAS_A;
std::vector<deviceVector<ComplexD *> > BLAS_AP;
std::vector<deviceVector<ComplexD *> > BLAS_BP;
deviceVector<ComplexD *> BLAS_CP;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
// Can be used to do I/O on the operator matrices externally
void SetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
GridtoBLAS(A[p],BLAS_A[p]);
}
void GetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
BLAStoGrid(A[p],BLAS_A[p]);
}
void CopyMatrix (GeneralCoarseOp &_Op)
{
for(int p=0;p<geom.npoint;p++){
auto Aup = _Op.Cell.Extract(_Op._A[p]);
//Unpadded
GridtoBLAS(Aup,BLAS_A[p]);
}
}
/*
void CheckMatrix (GeneralCoarseOp &_Op)
{
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
for(int p=0;p<geom.npoint;p++){
//Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]);
auto Ack = Aup;
BLAStoGrid(Ack,BLAS_A[p]);
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
}
std::cout <<"************* "<<std::endl;
}
*/
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
_CoarseGridMulti(CoarseGridMulti),
geom_srhs(_geom),
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
Cell(geom.Depth(),_CoarseGridMulti),
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
{
int32_t padded_sites = Cell.grids.back()->lSites();
int32_t unpadded_sites = CoarseGridMulti->lSites();
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
int32_t orhs = nrhs/CComplex::Nsimd();
padded_sites = padded_sites/nrhs;
unpadded_sites = unpadded_sites/nrhs;
/////////////////////////////////////////////////
// Device data vector storage
/////////////////////////////////////////////////
BLAS_A.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
}
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
BLAS_AP.resize(geom.npoint);
BLAS_BP.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_AP[p].resize(unpadded_sites);
BLAS_BP[p].resize(unpadded_sites);
}
BLAS_CP.resize(unpadded_sites);
/////////////////////////////////////////////////
// Pointers to data
/////////////////////////////////////////////////
// Site identity mapping for A
for(int p=0;p<geom.npoint;p++){
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
acceleratorPut(BLAS_AP[p][ss],ptr);
}
}
// Site identity mapping for C
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
acceleratorPut(BLAS_CP[ss],ptr);
}
// Neighbour table is more complicated
int32_t j=0; // Interior point counter (unpadded)
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
int ghost_zone=0;
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
}
}
if( ghost_zone==0) {
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
assert(nbr<BLAS_B.size());
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
}
j++;
}
}
assert(j==unpadded_sites);
}
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Fg = from.Grid();
assert(!Fg->_isCheckerBoarded);
int nd = Fg->_ndimension;
to.resize(Fg->lSites());
Coordinate LocalLatt = Fg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
autoView(from_v,from,AcceleratorRead);
auto to_v = &to[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate from_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
from_coor[i] = base[i];
}
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
scalar_type* to = (scalar_type *)&to_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
to[w] = stmp;
}
});
}
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Tg = grid.Grid();
assert(!Tg->_isCheckerBoarded);
int nd = Tg->_ndimension;
assert(in.size()==Tg->lSites());
Coordinate LocalLatt = Tg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
autoView(to_v,grid,AcceleratorWrite);
auto from_v = &in[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate to_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
to_coor[i] = base[i];
}
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type* from = (scalar_type *)&from_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp=from[w];
putlane(to[w], stmp, to_lane);
}
});
}
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace,
GridBase *CoarseGrid)
{
#if 0
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
// Could save on temporary storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
phaV = phaF[p]*Subspace.subspace[i];
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
linop.Op(phaV,MphaV);
// Fixme, could use batched block projector here
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
}
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
for(int k=0;k<npoint;k++){
FT = Zero();
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
/*
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
Takes 600s to compute matrix elements, DOMINATED by the block project.
Easy to speed up with the batched block project.
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
// Block project below taks to 240s
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
*/
#else
RealD tproj=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
MultiRHSBlockProject<Lattice<Fobj> > Projector;
Projector.Allocate(nbasis,grid,CoarseGrid);
Projector.ImportBasis(Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
tphase=-usecond();
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
// Could save on temporary storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
// Count use small chunks than npoint == 81 and save memory
int batch = 9;
std::vector<FineField> _MphaV(batch,grid);
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
// Fixme : do this in batches
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
for(int b=0;b<MIN(batch,npoint-p);b++){
tphaseBZ-=usecond();
phaV = phaF[p+b]*Subspace.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
// Memory footprint was an issue
tmat-=usecond();
linop.Op(phaV,MphaV);
_MphaV[b] = MphaV;
tmat+=usecond();
}
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
tproj-=usecond();
Projector.blockProject(_MphaV,TmpProj);
tproj+=usecond();
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
for(int b=0;b<MIN(batch,npoint-p);b++){
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
}
}
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT = Zero();
// 81 kernel calls as many ComputeProj vectors
// Could fuse with a vector of views, but ugly
// Could unroll the expression and run fewer kernels -- much more attractive
// Could also do non blocking.
#if 0
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
#else
const int radix = 9;
int ll;
for(ll=0;ll+radix-1<npoint;ll+=radix){
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
FT = FT
+ invMkl(ll+0,k)*ComputeProj[ll+0]
+ invMkl(ll+1,k)*ComputeProj[ll+1]
+ invMkl(ll+2,k)*ComputeProj[ll+2]
+ invMkl(ll+3,k)*ComputeProj[ll+3]
+ invMkl(ll+4,k)*ComputeProj[ll+4]
+ invMkl(ll+5,k)*ComputeProj[ll+5]
+ invMkl(ll+6,k)*ComputeProj[ll+6]
+ invMkl(ll+7,k)*ComputeProj[ll+7]
+ invMkl(ll+8,k)*ComputeProj[ll+8];
}
for(int l=ll;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
#endif
// 1 kernel call -- must be cheaper
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
#endif
}
void Mdag(const CoarseVector &in, CoarseVector &out)
{
this->M(in,out);
}
void M (const CoarseVector &in, CoarseVector &out)
{
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
RealD t_tot;
RealD t_exch;
RealD t_GtoB;
RealD t_BtoG;
RealD t_mult;
t_tot=-usecond();
CoarseVector tin=in;
t_exch=-usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
t_exch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef calcMatrix* Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
RealD flops,bytes;
int64_t osites=in.Grid()->oSites(); // unpadded
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
+ 2.0*osites*sizeof(siteVector)*npoint;
t_GtoB=-usecond();
GridtoBLAS(pin,BLAS_B);
t_GtoB+=usecond();
GridBLAS BLAS;
t_mult=-usecond();
for(int p=0;p<geom.npoint;p++){
RealD c = 1.0;
if (p==0) c = 0.0;
ComplexD beta(c);
BLAS.gemmBatched(nbasis,nrhs,nbasis,
ComplexD(1.0),
BLAS_AP[p],
BLAS_BP[p],
ComplexD(c),
BLAS_CP);
}
BLAS.synchronise();
t_mult+=usecond();
t_BtoG=-usecond();
BLAStoGrid(out,BLAS_C);
t_BtoG+=usecond();
t_tot+=usecond();
/*
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
*/
// std::cout << GridLogMessage<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);

View File

@ -1,238 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////
// Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
/////////////////////////////////////////////////////////////////
// Less local equivalent of Geometry class in cartesian case
/////////////////////////////////////////////////////////////////
class NonLocalStencilGeometry {
public:
// int depth;
int skip;
int hops;
int npoint;
std::vector<Coordinate> shifts;
Coordinate stencil_size;
Coordinate stencil_lo;
Coordinate stencil_hi;
GridCartesian *grid;
GridCartesian *Grid() {return grid;};
int Depth(void){return 1;}; // Ghost zone depth
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
int DimSkip(void){return skip;};
virtual ~NonLocalStencilGeometry() {};
int Reverse(int point)
{
int Nd = Grid()->Nd();
Coordinate shft = shifts[point];
Coordinate rev(Nd);
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
for(int p=0;p<npoint;p++){
if(rev==shifts[p]){
return p;
}
}
assert(0);
return -1;
}
void BuildShifts(void)
{
this->shifts.resize(0);
int Nd = this->grid->Nd();
int dd = this->DimSkip();
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
Coordinate sft(Nd,0);
sft[dd+0] = s0;
sft[dd+1] = s1;
sft[dd+2] = s2;
sft[dd+3] = s3;
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
if(nhops<=this->hops) this->shifts.push_back(sft);
}}}}
this->npoint = this->shifts.size();
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
}
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
{
Coordinate latt = grid->GlobalDimensions();
stencil_size.resize(grid->Nd());
stencil_lo.resize(grid->Nd());
stencil_hi.resize(grid->Nd());
for(int d=0;d<grid->Nd();d++){
if ( latt[d] == 1 ) {
stencil_lo[d] = 0;
stencil_hi[d] = 0;
stencil_size[d]= 1;
} else if ( latt[d] == 2 ) {
stencil_lo[d] = -1;
stencil_hi[d] = 0;
stencil_size[d]= 2;
} else if ( latt[d] > 2 ) {
stencil_lo[d] = -1;
stencil_hi[d] = 1;
stencil_size[d]= 3;
}
}
this->BuildShifts();
};
};
// Need to worry about red-black now
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
public:
virtual int DerivedDimSkip(void) { return 0;};
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
virtual ~NonLocalStencilGeometry4D() {};
};
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
public:
virtual int DerivedDimSkip(void) { return 1; };
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
virtual ~NonLocalStencilGeometry5D() {};
};
/*
* Bunch of different options classes
*/
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
{
};
};
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
{
};
};
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
{
};
};
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
{
};
};
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
public:
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
{
};
};
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
public:
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
{
};
};
NAMESPACE_END(Grid);

View File

@ -1,222 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/AlignedAllocator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<typename _Tp>
class alignedAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef alignedAllocator<_Tp1> other; };
alignedAllocator() throw() { }
alignedAllocator(const alignedAllocator&) throw() { }
template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { }
~alignedAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::CpuFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////
// Unified virtual memory
//////////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class uvmAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef uvmAllocator<_Tp1> other; };
uvmAllocator() throw() { }
uvmAllocator(const uvmAllocator&) throw() { }
template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
~uvmAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::SharedFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Device memory
////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class devAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
devAllocator() throw() { }
devAllocator(const devAllocator&) throw() { }
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
~devAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
if ( (_Tp*)ptr == (_Tp *) NULL ) {
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
}
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::AcceleratorFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
/*
template<class T> class vecView
{
protected:
T * data;
uint64_t size;
ViewMode mode;
void * cpu_ptr;
public:
// Rvalue accessor
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
vecView(Vector<T> &refer_to_me,ViewMode _mode)
{
cpu_ptr = &refer_to_me[0];
size = refer_to_me.size();
mode = _mode;
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
size*sizeof(T),
mode,
AdviseDefault);
}
void ViewClose(void)
{ // Inform the manager
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
{
vecView<T> ret(vec,_mode); // does the open
return ret; // must be closed
}
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid);

View File

@ -1,4 +0,0 @@
#pragma once
#include <Grid/allocator/MemoryStats.h>
#include <Grid/allocator/MemoryManager.h>
#include <Grid/allocator/AlignedAllocator.h>

View File

@ -1,362 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
/*Allocation types, saying which pointer cache should be used*/
#define Cpu (0)
#define CpuHuge (1)
#define CpuSmall (2)
#define Acc (3)
#define AccHuge (4)
#define AccSmall (5)
#define Shared (6)
#define SharedHuge (7)
#define SharedSmall (8)
#undef GRID_MM_VERBOSE
uint64_t total_shared;
uint64_t total_device;
uint64_t total_host;;
#if defined(__has_feature)
#if __has_feature(leak_sanitizer)
#define ASAN_LEAK_CHECK
#endif
#endif
#ifdef ASAN_LEAK_CHECK
#include <sanitizer/asan_interface.h>
#include <sanitizer/common_interface_defs.h>
#include <sanitizer/lsan_interface.h>
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
#else
#define LEAK_CHECK(A) { }
#endif
void MemoryManager::DisplayMallinfo(void)
{
#ifdef __linux__
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
mi = mallinfo();
std::cout << "MemoryManager: Total non-mmapped bytes (arena): "<< (size_t)mi.arena<<std::endl;
std::cout << "MemoryManager: # of free chunks (ordblks): "<< (size_t)mi.ordblks<<std::endl;
std::cout << "MemoryManager: # of free fastbin blocks (smblks): "<< (size_t)mi.smblks<<std::endl;
std::cout << "MemoryManager: # of mapped regions (hblks): "<< (size_t)mi.hblks<<std::endl;
std::cout << "MemoryManager: Bytes in mapped regions (hblkhd): "<< (size_t)mi.hblkhd<<std::endl;
std::cout << "MemoryManager: Max. total allocated space (usmblks): "<< (size_t)mi.usmblks<<std::endl;
std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
std::cout << "MemoryManager: Total allocated space (uordblks): "<< (size_t)mi.uordblks<<std::endl;
std::cout << "MemoryManager: Total free space (fordblks): "<< (size_t)mi.fordblks<<std::endl;
std::cout << "MemoryManager: Topmost releasable block (keepcost): "<< (size_t)mi.keepcost<<std::endl;
#endif
LEAK_CHECK();
}
void MemoryManager::PrintBytes(void)
{
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
std::cout << " MemoryManager : PrintBytes "<<std::endl;
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared Mbytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
std::cout << " MemoryManager : "<<(total_host>>20) <<" cpu Mbytes "<<std::endl;
uint64_t cacheBytes;
cacheBytes = CacheBytes[Cpu];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
cacheBytes = CacheBytes[Acc];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
cacheBytes = CacheBytes[Shared];
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
#ifdef GRID_CUDA
cuda_mem();
#endif
DisplayMallinfo();
}
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
uint64_t MemoryManager::HostCacheBytes() { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
//////////////////////////////////////////////////////////////////////
// Data tables for recently freed pooiniter caches
//////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
//////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils
//////////////////////////////////////////////////////////////////////
void *MemoryManager::AcceleratorAllocate(size_t bytes)
{
total_device+=bytes;
void *ptr = (void *) Lookup(bytes,Acc);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocDevice(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"AcceleratorAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
{
total_device-=bytes;
void *__freeme = Insert(ptr,bytes,Acc);
if ( __freeme ) {
acceleratorFreeDevice(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"AcceleratorFree "<<std::endl;
PrintBytes();
#endif
}
void *MemoryManager::SharedAllocate(size_t bytes)
{
total_shared+=bytes;
void *ptr = (void *) Lookup(bytes,Shared);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"SharedAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::SharedFree (void *ptr,size_t bytes)
{
total_shared-=bytes;
void *__freeme = Insert(ptr,bytes,Shared);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"SharedFree "<<std::endl;
PrintBytes();
#endif
}
#ifdef GRID_UVM
void *MemoryManager::CpuAllocate(size_t bytes)
{
total_host+=bytes;
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
total_host-=bytes;
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuFree "<<std::endl;
PrintBytes();
#endif
}
#else
void *MemoryManager::CpuAllocate(size_t bytes)
{
total_host+=bytes;
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocCpu(bytes);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuAllocate "<<std::endl;
PrintBytes();
#endif
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
total_host-=bytes;
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeCpu(__freeme);
}
#ifdef GRID_MM_VERBOSE
std::cout <<"CpuFree "<<std::endl;
PrintBytes();
#endif
}
#endif
//////////////////////////////////////////
// call only once
//////////////////////////////////////////
void MemoryManager::Init(void)
{
char * str;
int Nc;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[Cpu]=Nc;
Ncache[Acc]=Nc;
Ncache[Shared]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_HUGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuHuge]=Nc;
Ncache[AccHuge]=Nc;
Ncache[SharedHuge]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuSmall]=Nc;
Ncache[AccSmall]=Nc;
Ncache[SharedSmall]=Nc;
}
}
}
void MemoryManager::InitMessage(void) {
#ifndef GRID_UVM
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
#endif
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
#endif
#ifdef GRID_UVM
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
#endif
#else
std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
int cache;
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
else cache = type;
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
#else
return ptr;
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
if (ncache == 0) return ptr;
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
cacheBytes -= entries[v].bytes;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
cacheBytes += bytes;
return ret;
}
void *MemoryManager::Lookup(size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
int cache;
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
else cache = type;
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
#else
return NULL;
#endif
}
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
{
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
cacheBytes -= entries[e].bytes;
return entries[e].address;
}
}
return NULL;
}
NAMESPACE_END(Grid);

View File

@ -1,227 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryManager.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <list>
#include <unordered_map>
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define GRID_ALLOC_SMALL_LIMIT (4096)
#define GRID_ALLOC_HUGE_LIMIT (2147483648)
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
/*Pinning pages is costly*/
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum ViewAdvise {
AdviseDefault = 0x0, // Regular data
AdviseInfrequentUse = 0x1 // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
// AdviseTransient = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
// AdviseAcceleratorWriteDiscard = 0x4 // Field will be written in entirety on device
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
AcceleratorRead = 0x01,
AcceleratorWrite = 0x02,
AcceleratorWriteDiscard = 0x04,
CpuRead = 0x08,
CpuWrite = 0x10,
CpuWriteDiscard = 0x10 // same for now
};
struct MemoryStatus {
uint64_t DeviceBytes;
uint64_t DeviceLRUBytes;
uint64_t DeviceMaxBytes;
uint64_t HostToDeviceBytes;
uint64_t DeviceToHostBytes;
uint64_t HostToDeviceXfer;
uint64_t DeviceToHostXfer;
uint64_t DeviceEvictions;
uint64_t DeviceDestroy;
uint64_t DeviceAllocCacheBytes;
uint64_t HostAllocCacheBytes;
};
class MemoryManager {
private:
////////////////////////////////////////////////////////////
// For caching recently freed allocations
////////////////////////////////////////////////////////////
typedef struct {
void *address;
size_t bytes;
int valid;
} AllocationCacheEntry;
static const int NallocCacheMax=128;
static const int NallocType=9;
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
static int Victim[NallocType];
static int Ncache[NallocType];
static uint64_t CacheBytes[NallocType];
/////////////////////////////////////////////////
// Free pool
/////////////////////////////////////////////////
static void *Insert(void *ptr,size_t bytes,int type) ;
static void *Lookup(size_t bytes,int type) ;
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
public:
static void PrintBytes(void);
static void Audit(std::string s);
static void Init(void);
static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes);
static void CpuFree (void *ptr,size_t bytes);
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
static uint64_t DeviceBytes;
static uint64_t DeviceLRUBytes;
static uint64_t DeviceMaxBytes;
static uint64_t HostToDeviceBytes;
static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer;
static uint64_t DeviceEvictions;
static uint64_t DeviceDestroy;
static uint64_t DeviceCacheBytes();
static uint64_t HostCacheBytes();
static MemoryStatus GetFootprint(void) {
MemoryStatus stat;
stat.DeviceBytes = DeviceBytes;
stat.DeviceLRUBytes = DeviceLRUBytes;
stat.DeviceMaxBytes = DeviceMaxBytes;
stat.HostToDeviceBytes = HostToDeviceBytes;
stat.DeviceToHostBytes = DeviceToHostBytes;
stat.HostToDeviceXfer = HostToDeviceXfer;
stat.DeviceToHostXfer = DeviceToHostXfer;
stat.DeviceEvictions = DeviceEvictions;
stat.DeviceDestroy = DeviceDestroy;
stat.DeviceAllocCacheBytes = DeviceCacheBytes();
stat.HostAllocCacheBytes = HostCacheBytes();
return stat;
};
private:
#ifndef GRID_UVM
//////////////////////////////////////////////////////////////////////
// Data tables for ViewCache
//////////////////////////////////////////////////////////////////////
typedef std::list<uint64_t> LRU_t;
typedef typename LRU_t::iterator LRUiterator;
typedef struct {
int LRU_valid;
LRUiterator LRU_entry;
uint64_t CpuPtr;
uint64_t AccPtr;
size_t bytes;
uint32_t transient;
uint32_t state;
uint32_t accLock;
uint32_t cpuLock;
} AcceleratorViewEntry;
typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
typedef typename AccViewTable_t::iterator AccViewTableIterator ;
static AccViewTable_t AccViewTable;
static LRU_t LRU;
/////////////////////////////////////////////////
// Device motion
/////////////////////////////////////////////////
static void Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EvictVictims(uint64_t bytes); // Frees up <bytes>
static void Evict(AcceleratorViewEntry &AccCache);
static void Flush(AcceleratorViewEntry &AccCache);
static void Clone(AcceleratorViewEntry &AccCache);
static void AccDiscard(AcceleratorViewEntry &AccCache);
static void CpuDiscard(AcceleratorViewEntry &AccCache);
// static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table
static int EntryPresent(uint64_t CpuPtr);
static void EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EntryErase (uint64_t CpuPtr);
static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
static void EntrySet (uint64_t CpuPtr,AcceleratorViewEntry &entry);
static void AcceleratorViewClose(uint64_t AccPtr);
static uint64_t AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
public:
static void DisplayMallinfo(void);
static void NotifyDeletion(void * CpuPtr);
static void Print(void);
static void PrintAll(void);
static void PrintState( void* CpuPtr);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
};
NAMESPACE_END(Grid);

View File

@ -1,606 +0,0 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
NAMESPACE_BEGIN(Grid);
#define MAXLINE 512
static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
//#define dprintf(...)
//#define mprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
MemoryManager::LRU_t MemoryManager::LRU;
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceEvictions;
uint64_t MemoryManager::DeviceDestroy;
////////////////////////////////////
// Priority ordering for unlocked entries
// Empty
// CpuDirty
// Consistent
// AccDirty
////////////////////////////////////
#define Empty (0x0) /*Entry unoccupied */
#define CpuDirty (0x1) /*CPU copy is golden, Acc buffer MAY not be allocated*/
#define Consistent (0x2) /*ACC copy AND CPU copy are valid */
#define AccDirty (0x4) /*ACC copy is golden */
#define EvictNext (0x8) /*Priority for eviction*/
/////////////////////////////////////////////////
// Mechanics of data table maintenance
/////////////////////////////////////////////////
int MemoryManager::EntryPresent(uint64_t CpuPtr)
{
if(AccViewTable.empty()) return 0;
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
return count;
}
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
assert(!EntryPresent(CpuPtr));
AcceleratorViewEntry AccCache;
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty;
AccCache.LRU_valid=0;
AccCache.transient=0;
AccCache.accLock=0;
AccCache.cpuLock=0;
AccViewTable[CpuPtr] = AccCache;
}
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
{
assert(EntryPresent(CpuPtr));
auto AccCacheIterator = AccViewTable.find(CpuPtr);
assert(AccCacheIterator!=AccViewTable.end());
return AccCacheIterator;
}
void MemoryManager::EntryErase(uint64_t CpuPtr)
{
auto AccCache = EntryLookup(CpuPtr);
AccViewTable.erase(CpuPtr);
}
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
if (AccCache.transient) {
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
} else {
LRU.push_front(AccCache.CpuPtr);
AccCache.LRU_entry = LRU.begin();
}
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
LRU.erase(AccCache.LRU_entry);
AccCache.LRU_valid = 0;
DeviceLRUBytes-=AccCache.bytes;
}
/////////////////////////////////////////////////
// Accelerator cache motion & consistency logic
/////////////////////////////////////////////////
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////
// Remove from Accelerator, remove entry, without flush
// Cannot be locked. If allocated Must be in LRU pool.
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceDestroy++;
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
// Cannot be acclocked. If allocated must be in LRU pool.
//
// Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
// and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
// but there is a weakness where CpuLock entries are attempted for erase
// Take these OUT LRU queue when CPU locked?
// Cannot take out the table as cpuLock data is important.
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
if (AccCache.cpuLock!=0) return;
if(AccCache.state==AccDirty) {
Flush(AccCache);
}
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
// uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++;
// EntryErase(CpuPtr);
}
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==AccDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
}
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==CpuDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
(uint64_t)AccCache.bytes,
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
AccCache.state=Consistent;
}
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state!=Empty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
AccCache.state=AccDirty;
}
/////////////////////////////////////////////////////////////////////////////////
// View management
/////////////////////////////////////////////////////////////////////////////////
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
} else {
assert(0);
}
}
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
} else {
assert(0);
return NULL;
}
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
assert(LRU.size()>0);
uint64_t victim = LRU.back(); // From the LRU
auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second;
Evict(AccCache);
} else {
return;
}
}
}
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
(uint64_t)bytes,
(uint64_t)AccCache.accLock);
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
/*
* State transitions and actions
*
* Action State StateNext Flush Clone
*
* AccRead Empty Consistent - Y
* AccWrite Empty AccDirty - Y
* AccRead CpuDirty Consistent - Y
* AccWrite CpuDirty AccDirty - Y
* AccRead Consistent Consistent - -
* AccWrite Consistent AccDirty - -
* AccRead AccDirty AccDirty - -
* AccWrite AccDirty AccDirty - -
*/
if(AccCache.state==Empty) {
assert(AccCache.LRU_valid==0);
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Cpu starts primary
if(mode==AcceleratorWriteDiscard){
CpuDiscard(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite){
Clone(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite) {
Clone(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else {
assert(0);
}
assert(AccCache.accLock>0);
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU ");
LRUremove(AccCache);
}
int transient =hint;
AccCache.transient= transient? EvictNext : 0;
return AccCache.AccPtr;
}
////////////////////////////////////
// look up & decrement lock count
////////////////////////////////////
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock==0);
assert(AccCache.accLock>0);
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock>0);
assert(AccCache.accLock==0);
AccCache.cpuLock--;
}
/*
* Action State StateNext Flush Clone
*
* CpuRead Empty CpuDirty - -
* CpuWrite Empty CpuDirty - -
* CpuRead CpuDirty CpuDirty - -
* CpuWrite CpuDirty CpuDirty - -
* CpuRead Consistent Consistent - -
* CpuWrite Consistent CpuDirty - -
* CpuRead AccDirty Consistent Y -
* CpuWrite AccDirty CpuDirty Y -
*/
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
// CPU doesn't need to free space
// if (!AccCache.AccPtr) {
// EvictVictims(bytes);
// }
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes==bytes);
}
if(AccCache.state==Empty) {
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
AccCache.accLock= 0;
AccCache.cpuLock= 1;
} else if(AccCache.state==CpuDirty ){
// AccPtr dont care, deferred allocate
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
AccCache.cpuLock++;
} else if(AccCache.state==Consistent) {
assert(AccCache.AccPtr != (uint64_t)NULL);
if(mode==CpuWrite)
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
else
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
AccCache.cpuLock++;
} else if(AccCache.state==AccDirty) {
assert(AccCache.AccPtr != (uint64_t)NULL);
Flush(AccCache);
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
AccCache.cpuLock++;
} else {
assert(0); // should be unreachable
}
AccCache.transient= transient? EvictNext : 0;
return AccCache.CpuPtr;
}
void MemoryManager::NotifyDeletion(void *_ptr)
{
// Look up in ViewCache
uint64_t ptr = (uint64_t)_ptr;
if(EntryPresent(ptr)) {
auto e = EntryLookup(ptr);
AccDiscard(e->second);
}
}
void MemoryManager::Print(void)
{
PrintBytes();
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "Memory Manager " << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogMessage << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogMessage << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
acceleratorMem();
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
}
void MemoryManager::PrintAll(void)
{
Print();
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
}
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
};
int MemoryManager::isOpen (void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
return AccCache.cpuLock+AccCache.accLock;
} else {
return 0;
}
}
void MemoryManager::Audit(std::string s)
{
uint64_t CpuBytes=0;
uint64_t AccBytes=0;
uint64_t LruBytes1=0;
uint64_t LruBytes2=0;
uint64_t LruCnt=0;
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
for(auto it=LRU.begin();it!=LRU.end();it++){
uint64_t cpuPtr = *it;
assert(EntryPresent(cpuPtr));
auto AccCacheIterator = EntryLookup(cpuPtr);
auto & AccCache = AccCacheIterator->second;
LruBytes2+=AccCache.bytes;
assert(AccCache.LRU_valid==1);
assert(AccCache.LRU_entry==it);
}
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
CpuBytes+=AccCache.bytes;
if( AccCache.AccPtr ) AccBytes+=AccCache.bytes;
if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
if( AccCache.LRU_valid ) LruCnt++;
if ( AccCache.cpuLock || AccCache.accLock ) {
assert(AccCache.LRU_valid==0);
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t cpuLock " << AccCache.cpuLock
<< "\t accLock " << AccCache.accLock
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
}
assert( AccCache.cpuLock== 0 ) ;
assert( AccCache.accLock== 0 ) ;
}
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
assert(LruBytes1==LruBytes2);
assert(LruBytes1==DeviceLRUBytes);
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
assert(AccBytes==DeviceBytes);
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
assert(LruCnt == LRU.size());
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
}
void MemoryManager::PrintState(void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
} else {
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,31 +0,0 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping
/////////////////////////////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceEvictions;
uint64_t MemoryManager::DeviceDestroy;
void MemoryManager::Audit(std::string s){};
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::PrintState(void* CpuPtr)
{
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
};
void MemoryManager::Print(void){};
void MemoryManager::PrintAll(void){};
void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid);
#endif

View File

@ -1,67 +0,0 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
std::vector<uint64_t> pagedata(npages);
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -1,95 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryStats.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
}
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
NAMESPACE_END(Grid);

View File

@ -1,292 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_base.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_BASE_H
#define GRID_CARTESIAN_BASE_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// Coordinate _processors; // processor grid
// int _processor; // linear processor rank
// Coordinate _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator , public GridThread {
public:
int dummy;
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;};
virtual ~GridBase() = default;
// Physics Grid information.
Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
Coordinate _gdimensions;// Global dimensions of array after cb removal
Coordinate _ldimensions;// local dimensions of array with processor images removed
Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
Coordinate _ostride; // Outer stride for each dimension
Coordinate _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int64_t _fsites; // _isites*_osites = product(dimensions).
int64_t _gsites;
Coordinate _slice_block;// subslice information
Coordinate _slice_stride;
Coordinate _slice_nblock;
Coordinate _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
Coordinate _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
int _checker_dim;
public:
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim) =0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
virtual int CheckerBoardFromOindex (int Oindex)=0;
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations
//////////////////////////////////////////////////////////////////////////////////////////////
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
//
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
virtual int oIndex(Coordinate &coor)
{
int idx=0;
// Works with either global or local coordinates
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
virtual int iIndex(Coordinate &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
inline int oIndexReduced(Coordinate &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
// for fast indexing and inline the routine
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (Coordinate& coor,int Oindex){
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
}
inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
lcoor.resize(_ndimension);
for (int d = 0; d < _ndimension; d++)
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
}
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline void iCoorFromIindex(Coordinate &coor,int lane)
{
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
}
inline int PermuteDim(int dimension){
return _simd_layout[dimension]>1;
}
inline int PermuteType(int dimension){
int permute_type=0;
//
// Best way to encode this would be to present a mask
// for which simd dimensions are rotated, and the rotation
// size. If there is only one simd dimension rotated, this is just
// a permute.
//
// Cases: PermuteType == 1,2,4,8
// Distance should be either 0,1,2..
//
if ( _simd_layout[dimension] > 2 ) {
for(int d=0;d<_ndimension;d++){
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
}
permute_type = RotateBit; // How to specify distance; this is not just direction.
return permute_type;
}
for(int d=_ndimension-1;d>dimension;d--){
if (_simd_layout[d]>1 ) permute_type++;
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////
inline int iSites(void) const { return _isites; };
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const Coordinate LocalStarts(void) { return _lstart; };
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Utility to print the full decomposition details
////////////////////////////////////////////////////////////////
void show_decomposition(){
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
}
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {
gidx+=mult*gcoor[mu];
mult*=_gdimensions[mu];
}
}
void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++){
int _fld = _fdimensions[mu]/_processors[mu];
pcoor[mu] = gcoor[mu]/_fld;
lcoor[mu] = gcoor[mu]%_fld;
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
{
Coordinate pcoor;
Coordinate lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
/*
Coordinate cblcoor(lcoor);
for(int d=0;d<cblcoor.size();d++){
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
}
}
*/
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
{
gcoor.resize(_ndimension);
Coordinate coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
iCoorFromIindex(coor,i_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
oCoorFromOindex (coor,o_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
}
}
void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,179 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_full.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_FULL_H
#define GRID_CARTESIAN_FULL_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
class GridCartesian: public GridBase {
public:
int dummy;
// Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
virtual int CheckerBoardFromOindex (int Oindex)
{
return 0;
}
virtual int CheckerBoarded(int dim) {
return 0;
}
virtual int CheckerBoard(const Coordinate &site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift,int dim){
return 0;
}
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
return shift;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
Init(dimensions,simd_layout,processor_grid);
}
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
Init(dimensions,simd_layout,processor_grid);
}
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid);
}
virtual ~GridCartesian() = default;
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_isCheckerBoarded = false;
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_checker_dim = -1;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
for (int d = 0; d < _ndimension; d++)
{
_checker_dim_mask[d]=0;
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
// Use a reduced simd grid
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
_slice_stride[d] = _ostride[d] * _rdimensions[d];
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,306 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_red_black.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_RED_BLACK_H
#define GRID_CARTESIAN_RED_BLACK_H
NAMESPACE_BEGIN(Grid);
static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk)
{
int nd=rdim.size();
Coordinate coor(nd);
Lexicographic::CoorFromIndex(coor,oindex,rdim);
int linear=0;
for(int d=0;d<nd;d++){
if(chk_dim_msk[d])
linear=linear+coor[d];
}
return (linear&0x1);
}
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
// Coordinate _checker_dim_mask;
// int _checker_dim;
std::vector<int> _checker_board;
virtual int isCheckerBoarded(void) const { return 1; };
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(const Coordinate &site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
if(_checker_dim_mask[d])
linear=linear+site[d];
}
return (linear&0x1);
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
if(dim != _checker_dim) return shift;
int fulldim =_fdimensions[dim];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
virtual int CheckerBoardFromOindexTable (int Oindex) {
return _checker_board[Oindex];
}
virtual int CheckerBoardFromOindex (int Oindex)
{
Coordinate ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != _checker_dim) return shift;
int ocb=CheckerBoardFromOindex(osite);
return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
}
virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
if ( _checker_dim_mask[dim] ) {
// If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
// does NOT cause a parity hop.
int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
if ( (shift+add) &0x1) {
return 1-source_cb;
} else {
return source_cb;
}
} else {
return source_cb;
}
};
////////////////////////////////////////////////////////////
// Create Redblack from original grid; require full grid pointer ?
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
{
int dims = base->_ndimension;
Coordinate checker_dim_mask(dims,1);
int checker_dim = 0;
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
};
////////////////////////////////////////////////////////////
// Create redblack from original grid, with non-trivial checker dim mask
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const Coordinate &checker_dim_mask,
int checker_dim
) : GridBase(base->_processors,*base)
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
virtual ~GridRedBlackCartesian() = default;
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const Coordinate &checker_dim_mask,
int checker_dim)
{
_isCheckerBoarded = true;
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim] == 1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size() == _ndimension);
assert(processor_grid.size() == _ndimension);
assert(simd_layout.size() == _ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
_checker_dim_mask = checker_dim_mask;
for (int d = 0; d < _ndimension; d++)
{
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
if (d == _checker_dim)
{
assert((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
_gsites /= 2;
}
_ldimensions[d] = _gdimensions[d] / _processors[d];
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
assert(_rdimensions[d] > 0);
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
if (_simd_layout[d] > 1)
{
if (checker_dim_mask[d])
{
assert((_rdimensions[d] & 0x1) == 0);
}
}
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
_slice_stride[d] = _ostride[d] * _rdimensions[d];
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
////////////////////////////////////////////////
// Create a checkerboard lookup table
////////////////////////////////////////////////
int rvol = 1;
for (int d = 0; d < _ndimension; d++)
{
rvol = rvol * _rdimensions[d];
}
_checker_board.resize(rvol);
for (int osite = 0; osite < _osites; osite++)
{
_checker_board[osite] = CheckerBoardFromOindex(osite);
}
};
protected:
virtual int oIndex(Coordinate &coor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
}
else
{
idx += _ostride[d] * (coor[d] % _rdimensions[d]);
}
}
return idx;
};
virtual int iIndex(Coordinate &lcoor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
}
else
{
idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
}
}
return idx;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,90 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_none.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/mman.h>
NAMESPACE_BEGIN(Grid);
bool Stencil_force_mpi = true;
///////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////
CartesianCommunicator::CommunicatorPolicy_t
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
int CartesianCommunicator::nCommThreads = -1;
/////////////////////////////////
// Grid information queries
/////////////////////////////////
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
int CartesianCommunicator::BossRank(void) { return 0; };
int CartesianCommunicator::ThisRank(void) { return _processor; };
const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
const Coordinate & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
int CartesianCommunicator::ProcessorCount(void) { return _Nprocessors; };
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumP2P(c);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumP2P(c);
}
#else
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumVector((float *)&c,2);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumVector((double *)&c,2);
}
#endif
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
{
GlobalSumVector((double *)c,2*N);
}
NAMESPACE_END(Grid);

View File

@ -1,250 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_base.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATOR_BASE_H
#define GRID_COMMUNICATOR_BASE_H
///////////////////////////////////
// Processor layout information
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
#define NVLINK_GET
NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
class CartesianCommunicator : public SharedMemory {
public:
////////////////////////////////////////////
// Policies
////////////////////////////////////////////
enum CommunicatorPolicy_t { CommunicatorPolicyConcurrent, CommunicatorPolicySequential };
static CommunicatorPolicy_t CommunicatorPolicy;
static void SetCommunicatorPolicy(CommunicatorPolicy_t policy ) { CommunicatorPolicy = policy; }
static int nCommThreads;
////////////////////////////////////////////
// Communicator should know nothing of the physics grid, only processor grid.
////////////////////////////////////////////
int _Nprocessors; // How many in all
int _processor; // linear processor rank
unsigned long _ndimension;
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processor_coor; // linear processor coordinate
static Grid_MPI_Comm communicator_world;
Grid_MPI_Comm communicator;
std::vector<Grid_MPI_Comm> communicator_halo;
////////////////////////////////////////////////
// Must call in Grid startup
////////////////////////////////////////////////
static void Init(int *argc, char ***argv);
////////////////////////////////////////////////
// Constructors to sub-divide a parent communicator
// and default to comm world
////////////////////////////////////////////////
CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank);
CartesianCommunicator(const Coordinate &pdimensions_in);
virtual ~CartesianCommunicator();
private:
////////////////////////////////////////////////
// Private initialise from an MPI communicator
// Can use after an MPI_Comm_split, but hidden from user so private
////////////////////////////////////////////////
void InitFromMPICommunicator(const Coordinate &processors, Grid_MPI_Comm communicator_base);
public:
////////////////////////////////////////////////////////////////////////////////////////
// Wraps MPI_Cart routines, or implements equivalent on other impls
////////////////////////////////////////////////////////////////////////////////////////
void ShiftedRanks(int dim,int shift,int & source, int & dest);
int RankFromProcessorCoor(Coordinate &coor);
void ProcessorCoorFromRank(int rank,Coordinate &coor);
int Dimensions(void) ;
int IsBoss(void) ;
int BossRank(void) ;
int ThisRank(void) ;
const Coordinate & ThisProcessorCoor(void) ;
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
const Coordinate & ProcessorGrid(void) ;
int ProcessorCount(void) ;
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
static int RankWorld(void) ;
static void BroadcastWorld(int root,void* data, int bytes);
static void BarrierWorld(void);
////////////////////////////////////////////////////////////
// Reduction
////////////////////////////////////////////////////////////
void GlobalMax(RealD &);
void GlobalMax(RealF &);
void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &);
void GlobalSumVector(RealD *,int N);
void GlobalSum(uint32_t &);
void GlobalSum(uint64_t &);
void GlobalSumVector(uint64_t*,int N);
void GlobalSum(ComplexF &c);
void GlobalSumVector(ComplexF *c,int N);
void GlobalSum(ComplexD &c);
void GlobalSumVector(ComplexD *c,int N);
void GlobalXOR(uint32_t &);
void GlobalXOR(uint64_t &);
template<class obj> void GlobalSumP2P(obj &o)
{
std::vector<obj> column;
obj accum = o;
int source,dest;
for(int d=0;d<_ndimension;d++){
column.resize(_processors[d]);
column[0] = accum;
std::vector<MpiCommsRequest_t> list;
for(int p=1;p<_processors[d];p++){
ShiftedRanks(d,p,source,dest);
SendToRecvFromBegin(list,
&column[0],
dest,
&column[p],
source,
sizeof(obj),d*100+p);
}
if (!list.empty()) // avoid triggering assert in comms == none
CommsComplete(list);
for(int p=1;p<_processors[d];p++){
accum = accum + column[p];
}
}
Broadcast(0,accum);
o=accum;
}
template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type;
int words = sizeof(obj)/sizeof(scalar_type);
scalar_type * ptr = (scalar_type *)& o; // Safe alias
GlobalSumVector(ptr,words);
}
////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way
////////////////////////////////////////////////////////////
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir);
void SendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int bytes,int dir);
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
void StencilBarrier(void);
////////////////////////////////////////////////////////////
// Barrier
////////////////////////////////////////////////////////////
void Barrier(void);
////////////////////////////////////////////////////////////
// Broadcast a buffer and composite larger
////////////////////////////////////////////////////////////
void Broadcast(int root,void* data, int bytes);
////////////////////////////////////////////////////////////
// All2All down one dimension
////////////////////////////////////////////////////////////
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
assert(dim>=0);
assert(dim<_ndimension);
assert(in.size()==out.size());
int numnode = _processors[dim];
uint64_t bytes=sizeof(T);
uint64_t words=in.size()/numnode;
assert(numnode * words == in.size());
assert(words < (1ULL<<31));
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
}
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
void AllToAll(void *in,void *out,uint64_t words ,uint64_t bytes);
template<class obj> void Broadcast(int root,obj &data)
{
Broadcast(root,(void *)&data,sizeof(data));
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,857 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/communicator/SharedMemory.h>
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
// First initialise of comms system
////////////////////////////////////////////
void CartesianCommunicator::Init(int *argc, char ***argv)
{
int flag;
int provided;
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
#ifndef GRID_COMMS_THREADS
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
// other comms schemes are ok
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
#else
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0);
}
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
assert(0);
}
}
// Never clean up as done once.
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
Grid_quiesce_nodes();
GlobalSharedMemory::Init(communicator_world);
GlobalSharedMemory::SharedMemoryAllocate(
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
GlobalSharedMemory::Hugepages);
Grid_unquiesce_nodes();
}
///////////////////////////////////////////////////////////////////////////
// Use cartesian communicators now even in MPI3
///////////////////////////////////////////////////////////////////////////
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
assert(ierr==0);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialises from communicator_world
////////////////////////////////////////////////////////////////////////////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
MPI_Comm optimal_comm;
////////////////////////////////////////////////////
// Remap using the shared memory optimising routine
// The remap creates a comm which must be freed
////////////////////////////////////////////////////
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors);
InitFromMPICommunicator(processors,optimal_comm);
SetCommunicator(optimal_comm);
///////////////////////////////////////////////////
// Free the temp communicator
///////////////////////////////////////////////////
MPI_Comm_free(&optimal_comm);
}
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1);
Coordinate shm_processors (_ndimension,1);
// Can make 5d grid from 4d etc...
int pad = _ndimension-parent_ndimension;
for(int d=0;d<parent_ndimension;d++){
parent_processor_coor[pad+d]=parent._processor_coor[d];
parent_processors [pad+d]=parent._processors[d];
shm_processors [pad+d]=parent._shm_processors[d];
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
// int Nparent = parent._processors ;
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
int childsize=1;
for(int d=0;d<processors.size();d++) {
childsize *= processors[d];
}
int Nchild = Nparent/childsize;
assert (childsize * Nchild == Nparent);
Coordinate ccoor(_ndimension); // coor within subcommunicator
Coordinate scoor(_ndimension); // coor of split within parent
Coordinate ssize(_ndimension); // coor of split within parent
for(int d=0;d<_ndimension;d++){
ccoor[d] = parent_processor_coor[d] % processors[d];
scoor[d] = parent_processor_coor[d] / processors[d];
ssize[d] = parent_processors[d] / processors[d];
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
int crank;
// Mpi uses the reverse Lexico convention to us; so reversed routines called
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
MPI_Comm comm_split;
if ( Nchild > 1 ) {
////////////////////////////////////////////////////////////////
// Split the communicator
////////////////////////////////////////////////////////////////
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
assert(ierr==0);
} else {
srank = 0;
int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
assert(ierr==0);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Set up from the new split communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
InitFromMPICommunicator(processors,comm_split);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Take the right SHM buffers
//////////////////////////////////////////////////////////////////////////////////////////////////////
SetCommunicator(comm_split);
///////////////////////////////////////////////
// Free the temp communicator
///////////////////////////////////////////////
MPI_Comm_free(&comm_split);
if(0){
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
for(int d=0;d<processors.size();d++){
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
}
}
for(int d=0;d<processors.size();d++){
assert(_processor_coor[d] == ccoor[d] );
}
}
void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base)
{
////////////////////////////////////////////////////
// Creates communicator, and the communicator_halo
////////////////////////////////////////////////////
_ndimension = processors.size();
_processor_coor.resize(_ndimension);
/////////////////////////////////
// Count the requested nodes
/////////////////////////////////
_Nprocessors=1;
_processors = processors;
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
Coordinate periodic(_ndimension,1);
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
if ( 0 && (communicator_base != communicator_world) ) {
std::cout << "InitFromMPICommunicator Cartesian communicator created with a non-world communicator"<<std::endl;
std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
for(int d=0;d<_processors.size();d++){
std::cout << _processor_coor[d]<<" ";
}
std::cout << std::endl;
}
int Size;
MPI_Comm_size(communicator,&Size);
communicator_halo.resize (2*_ndimension);
for(int i=0;i<_ndimension*2;i++){
MPI_Comm_dup(communicator,&communicator_halo[i]);
}
assert(Size==_Nprocessors);
}
CartesianCommunicator::~CartesianCommunicator()
{
int MPI_is_finalised;
MPI_Finalized(&MPI_is_finalised);
if (communicator && !MPI_is_finalised) {
MPI_Comm_free(&communicator);
for(int i=0;i<communicator_halo.size();i++){
MPI_Comm_free(&communicator_halo[i]);
}
}
}
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(float &f){
CartesianCommunicator::GlobalSumP2P(f);
}
void CartesianCommunicator::GlobalSum(double &d)
{
CartesianCommunicator::GlobalSumP2P(d);
}
#else
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
#endif
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(float &f)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
MPI_Request xrq;
MPI_Request rrq;
assert(dest != _processor);
assert(from != _processor);
int tag;
tag= dir+from*32;
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
{
int nreq=list.size();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
std::vector<MpiCommsRequest_t> reqs(0);
int myrank = _processor;
int ierr;
// Enforce no UVM in comms, device or host OK
assert(acceleratorIsCommunicable(xmit));
assert(acceleratorIsCommunicable(recv));
// Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest, int dox,
void *recv,
int from, int dor,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
return 0.0; // Do nothing -- no preparation required
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
}
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
}
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
acceleratorCopySynchronise();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
this->StencilBarrier();
}
#else /* NOT ... ACCELERATOR_AWARE_MPI */
///////////////////////////////////////////
// Pipeline mode through host memory
///////////////////////////////////////////
/*
* In prepare (phase 1):
* PHASE 1: (prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
* - post device - device transfers
* PHASE 3: (Complete)
* - MPI_waitall
* - host-device transfers
*
*********************************
* NB could split this further:
*--------------------------------
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (BeginInterNode)
* - complete all copies
* - post MPI send asynch
* PHASE 3: (BeginIntraNode)
* - post device - device transfers
* PHASE 4: (Complete)
* - MPI_waitall
* - host-device transfers asynch
* - (complete all copies)
*/
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
/*
* Bring sequence from Stencil.h down to lower level.
* Assume using XeLink is ok
*/
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_recv = NULL;
void * host_xmit = NULL;
/*
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
*/
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
host_recv = this->HostBufferMalloc(rbytes);
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
CommsRequest_t srq;
srq.PacketType = InterNodeRecv;
srq.bytes = rbytes;
srq.req = rrq;
srq.host_buf = host_recv;
srq.device_buf = recv;
list.push_back(srq);
off_node_bytes+=rbytes;
}
}
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// off_node_bytes+=xbytes;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
srq.tag = tag;
srq.dest = dest;
srq.commdir = commdir;
list.push_back(srq);
}
}
return off_node_bytes;
}
/*
* In the interest of better pipelining, poll for completion on each DtoH and
* start MPI_ISend in the meantime
*/
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeRecv ) {
int flag = 0;
MPI_Status status;
int ierr = MPI_Test(&list[idx].req,&flag,&status);
assert(ierr==0);
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
}
}
}
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
} while ( pending );
}
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeXmit ) {
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
///////////////////
// Send packet
///////////////////
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
list[idx].PacketType=InterNodeXmitISend;
} else {
// not done, so return to polling loop
pending++;
}
}
}
} while (pending);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_xmit = NULL;
////////////////////////////////
// Receives already posted
// Copies already started
////////////////////////////////
/*
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
*/
#ifdef NVLINK_GET
if ( dor ) {
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
srq.PacketType = IntraNodeRecv;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#else
if (dox) {
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
srq.PacketType = IntraNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#endif
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
std::vector<MPI_Status> status;
std::vector<MPI_Request> MpiRequests;
for(int r=0;r<list.size();r++){
// Must check each Send buf is clear to reuse
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
}
int nreq=MpiRequests.size();
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
}
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
#ifndef NVLINK_GET
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
#endif
}
#endif
////////////////////////////////////////////
// END PIPELINE MODE / NO CUDA AWARE MPI
////////////////////////////////////////////
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
//{
//}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator);
assert(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
void CartesianCommunicator::BarrierWorld(void){
int ierr = MPI_Barrier(communicator_world);
assert(ierr==0);
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator_world);
assert(ierr==0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
Coordinate row(_ndimension,1);
assert(dim>=0 && dim<_ndimension);
// Split the communicator
row[dim] = _processors[dim];
int me;
CartesianCommunicator Comm(row,*this,me);
Comm.AllToAll(in,out,words,bytes);
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
// MPI is a pain and uses "int" arguments
// 64*64*64*128*16 == 500Million elements of data.
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
// (Turns up on 32^3 x 64 Gparity too)
MPI_Datatype object;
int iwords;
int ibytes;
iwords = words;
ibytes = bytes;
assert(words == iwords); // safe to cast to int ?
assert(bytes == ibytes); // safe to cast to int ?
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
MPI_Type_commit(&object);
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
MPI_Type_free(&object);
}
NAMESPACE_END(Grid);

View File

@ -1,163 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_none.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
Grid_MPI_Comm CartesianCommunicator::communicator_world;
void CartesianCommunicator::Init(int *argc, char *** arv)
{
GlobalSharedMemory::Init(communicator_world);
GlobalSharedMemory::SharedMemoryAllocate(
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
GlobalSharedMemory::Hugepages);
}
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors)
{
_shm_processors = Coordinate(processors.size(),1);
srank=0;
SetCommunicator(communicator_world);
}
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
_shm_processors = Coordinate(processors.size(),1);
_processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1);
_processor_coor.resize(_ndimension);
// Require 1^N processor grid for fake
_Nprocessors=1;
_processor = 0;
for(int d=0;d<_ndimension;d++) {
assert(_processors[d]==1);
_processor_coor[d] = 0;
}
SetCommunicator(communicator_world);
}
CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalMax(float &){}
void CartesianCommunicator::GlobalMax(double &){}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}
void CartesianCommunicator::GlobalSumVector(double *,int N){}
void CartesianCommunicator::GlobalSum(uint32_t &){}
void CartesianCommunicator::GlobalSum(uint64_t &){}
void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){}
// Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes,int dir)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
}
int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
void CartesianCommunicator::BarrierWorld(void) { }
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
source =0;
dest=0;
}
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int bytes, int dir)
{
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return xbytes+rbytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
}
void CartesianCommunicator::StencilBarrier(void){};
NAMESPACE_END(Grid);

View File

@ -1,172 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/SharedMemory.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
// static data
int GlobalSharedMemory::HPEhypercube = 1;
uint64_t GlobalSharedMemory::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
int GlobalSharedMemory::Hugepages = 0;
int GlobalSharedMemory::_ShmSetup;
int GlobalSharedMemory::_ShmAlloc;
uint64_t GlobalSharedMemory::_ShmAllocBytes;
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
#ifndef ACCELERATOR_AWARE_MPI
void * GlobalSharedMemory::HostCommBuf;
#endif
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
int GlobalSharedMemory::WorldShmRank;
int GlobalSharedMemory::WorldShmSize;
std::vector<int> GlobalSharedMemory::WorldShmRanks;
Grid_MPI_Comm GlobalSharedMemory::WorldComm;
int GlobalSharedMemory::WorldSize;
int GlobalSharedMemory::WorldRank;
int GlobalSharedMemory::WorldNodes;
int GlobalSharedMemory::WorldNode;
void GlobalSharedMemory::SharedMemoryFree(void)
{
assert(_ShmAlloc);
assert(_ShmAllocBytes>0);
for(int r=0;r<WorldShmSize;r++){
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
}
_ShmAlloc = 0;
_ShmAllocBytes = 0;
}
/////////////////////////////////
// Alloc, free shmem region
/////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
void *SharedMemory::HostBufferMalloc(size_t bytes){
void *ptr = (void *)host_heap_top;
host_heap_top += bytes;
host_heap_bytes+= bytes;
if (host_heap_bytes >= host_heap_size) {
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
assert(host_heap_bytes<host_heap_size);
}
return ptr;
}
void SharedMemory::HostBufferFreeAll(void) {
host_heap_top =(size_t)HostCommBuf;
host_heap_bytes=0;
}
#endif
void *SharedMemory::ShmBufferMalloc(size_t bytes){
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
void *ptr = (void *)heap_top;
heap_top += bytes;
heap_bytes+= bytes;
if (heap_bytes >= heap_size) {
std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
assert(heap_bytes<heap_size);
}
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
return ptr;
}
void SharedMemory::ShmBufferFreeAll(void) {
heap_top =(size_t)ShmBufferSelf();
heap_bytes=0;
}
void *SharedMemory::ShmBufferSelf(void)
{
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
return ShmCommBufs[ShmRank];
}
static inline int divides(int a,int b)
{
return ( b == ( (b/a)*a ) );
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Allow user to configure through environment variable
////////////////////////////////////////////////////////////////
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
return;
}
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
int ndimension = WorldDims.size();
ShmDims=Coordinate(ndimension,1);
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
NAMESPACE_END(Grid);

View File

@ -1,208 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/SharedMemory.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/GridCore.h>
#if defined (GRID_COMMS_MPI3)
#include <mpi.h>
#endif
#include <semaphore.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
#include <zlib.h>
NAMESPACE_BEGIN(Grid);
#if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request MpiCommsRequest_t;
#ifdef ACCELERATOR_AWARE_MPI
typedef MPI_Request CommsRequest_t;
#else
/*
* Enable state transitions as each packet flows.
*/
enum PacketType_t {
FaceGather,
InterNodeXmit,
InterNodeRecv,
IntraNodeXmit,
IntraNodeRecv,
InterNodeXmitISend,
InterNodeReceiveHtoD
};
/*
*Package arguments needed for various actions along packet flow
*/
typedef struct {
PacketType_t PacketType;
void *host_buf;
void *device_buf;
int dest;
int tag;
int commdir;
unsigned long bytes;
acceleratorEvent_t ev;
MpiCommsRequest_t req;
} CommsRequest_t;
#endif
#else
typedef int MpiCommsRequest_t;
typedef int CommsRequest_t;
typedef int Grid_MPI_Comm;
#endif
class GlobalSharedMemory {
private:
static const int MAXLOG2RANKSPERNODE = 16;
// Init once lock on the buffer allocation
static int _ShmSetup;
static int _ShmAlloc;
static uint64_t _ShmAllocBytes;
public:
///////////////////////////////////////
// HPE 8600 hypercube optimisation
///////////////////////////////////////
static int HPEhypercube;
static int ShmSetup(void) { return _ShmSetup; }
static int ShmAlloc(void) { return _ShmAlloc; }
static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
static uint64_t MAX_MPI_SHM_BYTES;
static int Hugepages;
static std::vector<void *> WorldShmCommBufs;
#ifndef ACCELERATOR_AWARE_MPI
static void *HostCommBuf;
#endif
static Grid_MPI_Comm WorldComm;
static int WorldRank;
static int WorldSize;
static Grid_MPI_Comm WorldShmComm;
static int WorldShmRank;
static int WorldShmSize;
static int WorldNodes;
static int WorldNode;
static std::vector<int> WorldShmRanks;
//////////////////////////////////////////////////////////////////////////////////////
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
//////////////////////////////////////////////////////////////////////////////////////
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
// Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
///////////////////////////////////////////////////
// Provide shared memory facilities off comm world
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};
//////////////////////////////
// one per communicator
//////////////////////////////
class SharedMemory
{
private:
static const int MAXLOG2RANKSPERNODE = 16;
size_t heap_top;
size_t heap_bytes;
size_t heap_size;
#ifndef ACCELERATOR_AWARE_MPI
size_t host_heap_top; // set in free all
size_t host_heap_bytes;// set in free all
void *HostCommBuf; // set in SetCommunicator
size_t host_heap_size; // set in SetCommunicator
#endif
protected:
Grid_MPI_Comm ShmComm; // for barriers
int ShmRank;
int ShmSize;
std::vector<void *> ShmCommBufs;
std::vector<int> ShmRanks;// Mapping comm ranks to Shm ranks
public:
SharedMemory() {};
~SharedMemory();
///////////////////////////////////////////////////////////////////////////////////////
// set the buffers & sizes
///////////////////////////////////////////////////////////////////////////////////////
void SetCommunicator(Grid_MPI_Comm comm);
////////////////////////////////////////////////////////////////////////
// For this instance ; disjoint buffer sets between splits if split grid
////////////////////////////////////////////////////////////////////////
void ShmBarrier(void);
///////////////////////////////////////////////////
// Call on any instance
///////////////////////////////////////////////////
void SharedMemoryTest(void);
void *ShmBufferSelf(void);
void *ShmBuffer (int rank);
void *ShmBufferTranslate(int rank,void * local_p);
void *ShmBufferMalloc(size_t bytes);
void ShmBufferFreeAll(void) ;
#ifndef ACCELERATOR_AWARE_MPI
void *HostBufferMalloc(size_t bytes);
void HostBufferFreeAll(void);
#endif
//////////////////////////////////////////////////////////////////////////
// Make info on Nodes & ranks and Shared memory available
//////////////////////////////////////////////////////////////////////////
int NodeCount(void) { return GlobalSharedMemory::WorldNodes;};
int RankCount(void) { return GlobalSharedMemory::WorldSize;};
};
NAMESPACE_END(Grid);

File diff suppressed because it is too large Load Diff

View File

@ -1,171 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/SharedMemory.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryNone: "
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
{
assert(_ShmSetup==0);
WorldComm = 0;
WorldRank = 0;
WorldSize = 1;
WorldShmComm = 0 ;
WorldShmRank = 0 ;
WorldShmSize = 1 ;
WorldNodes = 1 ;
WorldNode = 0 ;
WorldShmRanks.resize(WorldSize); WorldShmRanks[0] = 0;
WorldShmCommBufs.resize(1);
_ShmSetup=1;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
optimal_comm = WorldComm;
SHM = Coordinate(processors.size(),1);
}
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended, use anonymous mmap
////////////////////////////////////////////////////////////////////////////////////////////
#if 1
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
int mmap_flag =0;
#ifdef MAP_ANONYMOUS
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
#endif
#ifdef MAP_ANON
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
#endif
#ifdef MAP_HUGETLB
if ( flags ) mmap_flag |= MAP_HUGETLB;
#endif
ShmCommBuf =(void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag, -1, 0);
if (ShmCommBuf == (void *)MAP_FAILED) {
perror("mmap failed ");
exit(EXIT_FAILURE);
}
#ifdef MADV_HUGEPAGE
if (!Hugepages ) madvise(ShmCommBuf,bytes,MADV_HUGEPAGE);
#endif
bzero(ShmCommBuf,bytes);
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
};
#endif
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
////////////////////////////////////////////////////////
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
{
assert(GlobalSharedMemory::ShmAlloc()==1);
ShmRanks.resize(1);
ShmCommBufs.resize(1);
ShmRanks[0] = 0;
ShmRank = 0;
ShmSize = 1;
//////////////////////////////////////////////////////////////////////
// Map ShmRank to WorldShmRank and use the right buffer
//////////////////////////////////////////////////////////////////////
ShmCommBufs[0] = GlobalSharedMemory::WorldShmCommBufs[0];
heap_size = GlobalSharedMemory::ShmAllocBytes();
ShmBufferFreeAll();
return;
}
//////////////////////////////////////////////////////////////////
// On node barrier
//////////////////////////////////////////////////////////////////
void SharedMemory::ShmBarrier(void){ return ; }
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// Test the shared memory is working
//////////////////////////////////////////////////////////////////////////////////////////////////////////
void SharedMemory::SharedMemoryTest(void) { return; }
void *SharedMemory::ShmBuffer(int rank)
{
return NULL;
}
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
{
return NULL;
}
SharedMemory::~SharedMemory()
{};
NAMESPACE_END(Grid);

View File

@ -1,440 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cshift/Cshift_common.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table;
extern deviceVector<std::pair<int,int> > Cshift_table_device;
inline std::pair<int,int> *MapCshiftTable(void)
{
// GPU version
uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz);
}
acceleratorCopyToDevice((void *)&Cshift_table[0],
(void *)&Cshift_table_device[0],
sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0];
// CPU version use identify map
}
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int ent = 0;
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int stride=rhs.Grid()->_slice_stride[dimension];
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
}
}
} else {
int bo=0;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb &cbmask ) {
Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
}
}
}
}
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
}
}
///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_extract(const Lattice<vobj> &rhs,
ExtractPointerArray<typename vobj::scalar_object> pointers,
int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
} else {
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int stride=rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ent =0;
if ( cbmask ==0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs.Grid()->_slice_stride[dimension];
int bo =n*rhs.Grid()->_slice_block[dimension];
Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b);
}
}
} else {
int bo=0;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs.Grid()->_slice_stride[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++);
}
}
}
}
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
}
}
//////////////////////////////////////////////////////
// Scatter for when there *is* need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
assert(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) {
merge(rhs_v[so+o+b],pointers,offset);
}
}
}
}
}
//////////////////////////////////////////////////////
// local to node block strided copies
//////////////////////////////////////////////////////
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int ro = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs.Grid()->_slice_block[dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ent=0;
if(cbmask == 0x3 ){
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
if ( ocb&cbmask ) {
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
}
}
{
auto table = MapCshiftTable();
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
}
}
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
{
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int ro = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block [dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ent=0;
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
}
{
auto table = MapCshiftTable();
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
}
}
//////////////////////////////////////////////////////
// Local to node Cshift
//////////////////////////////////////////////////////
template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Cshift_local(ret,rhs,dimension,shift,0x3);
} else {
Cshift_local(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_local(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid = rhs.Grid();
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int gd = grid->_gdimensions[dimension];
int ly = grid->_simd_layout[dimension];
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
// the permute type
ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
int permute_dim =grid->PermuteDim(dimension);
int permute_type=grid->PermuteType(dimension);
int permute_type_dist;
for(int x=0;x<rd;x++){
// int o = 0;
int bo = x * grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
int sx = (x+sshift)%rd;
// wrap is whether sshift > rd.
// num is sshift mod rd.
//
// shift 7
//
// XoXo YcYc
// oXoX cYcY
// XoXo YcYc
// oXoX cYcY
//
// sshift --
//
// XX YY ; 3
// XX YY ; 0
// XX YY ; 3
// XX YY ; 0
//
int permute_slice=0;
if(permute_dim){
int wrap = sshift/rd; wrap=wrap % ly;
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = (wrap+1)%ly;
if ( (ly>2) && (permute_slice) ) {
assert(permute_type & RotateBit);
permute_type_dist = permute_type|permute_slice;
} else {
permute_type_dist = permute_type;
}
}
if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type_dist);
else Copy_plane(ret,rhs,dimension,x,sx,cbmask);
}
}
NAMESPACE_END(Grid);

View File

@ -1,349 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cshift/Cshift_mpi.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_CSHIFT_MPI_H_
#define _GRID_CSHIFT_MPI_H_
NAMESPACE_BEGIN(Grid);
const int Cshift_verbose=0;
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
Lattice<vobj> ret(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
// the permute type
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
RealD t1,t0;
t0=usecond();
if ( !comm_dim ) {
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
} else if ( splice_dim ) {
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift);
} else {
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift);
}
t1=usecond();
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret;
}
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x3);
} else {
// std::cout << "Two pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
} else {
// std::cout << "Two pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
tscatter+=usecond();
}
}
if (Cshift_verbose){
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
tgather-=usecond();
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
#endif
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,5 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table;
deviceVector<std::pair<int,int> > Cshift_table_device;
NAMESPACE_END(Grid);

File diff suppressed because it is too large Load Diff

View File

@ -1,534 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_ET.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Christoph Lehner <christoph@lhnr.de
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ET_H
#define GRID_LATTICE_ET_H
#include <iostream>
#include <tuple>
#include <typeinfo>
#include <vector>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
#ifdef GRID_SIMT
// drop to scalar in SIMT; cleaner in fact
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
Integer mask = TensorRemove(predicate);
typename std::remove_const<vobj>::type ret= iffalse;
if (mask) ret=iftrue;
return ret;
}
#else
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
// typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
#endif
/////////////////////////////////////////////////////
//Specialization of getVectorType for lattices
/////////////////////////////////////////////////////
template<typename T>
struct getVectorType<Lattice<T> >{
typedef typename Lattice<T>::vector_object type;
};
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj,
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
{
return arg(ss);
}
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// whole vector return, used only for expression return type inference
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj vecEval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)
{
return arg[ss];
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
// vecEval needed (but never called as all expressions offloaded) to infer the return type
// in SIMT contexts of closure.
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
{
return expr.op.func( vecEval(ss, expr.arg1) );
}
// vecEval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
{
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
}
// vecEval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
{
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand coalesced
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( eval(ss, expr.arg1)))
{
return expr.op.func( eval(ss, expr.arg1) );
}
// eval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
// eval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3)))
{
#ifdef GRID_SIMT
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
typedef typename std::remove_reference<rvobj>::type vobj;
const int Nsimd = vobj::vector_type::Nsimd();
auto vpred = vecEval(ss,expr.arg1);
ExtractBuffer<Integer> mask(Nsimd);
extract<vInteger, Integer>(TensorRemove(vpred), mask);
int s = acceleratorSIMTlane(Nsimd);
return expr.op.func(mask[s],
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#else
return expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#endif
}
//////////////////////////////////////////////////////////////////////////
// Obtain the grid from an expression, ensuring conformable. This must follow a
// tree recursion; must retain grid pointer in the LatticeView class which sucks
// Use a different method, and make it void *.
// Perhaps a conformable method.
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
{
lat.Conformable(grid);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline
void GridFromExpression(GridBase *&grid,const T1 &notlat) // non-lattice leaf
{}
template <typename Op, typename T1>
accelerator_inline
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
}
template <typename Op, typename T1, typename T2>
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2);
}
template <typename Op, typename T1, typename T2, typename T3>
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2); // recurse
GridFromExpression(grid, expr.arg3); // recurse
}
//////////////////////////////////////////////////////////////////////////
// Obtain the CB from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.Checkerboard());
}
cb = lat.Checkerboard();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) {} // non-lattice leaf
template <typename Op, typename T1> inline
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
CBFromExpression(cb, expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewOpen
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &lat) // Lattice leaf
{
lat.ViewOpen(AcceleratorRead);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // rrecurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
ExpressionViewOpen(expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewClose
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose( T1 &lat) // Lattice leaf
{
lat.ViewClose();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
ExpressionViewClose(expr.arg3); // recurse AST
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
struct name { \
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnarySpTa, SpTa(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
GridUnopClass(UnaryAcos, acos(a));
GridUnopClass(UnaryLog, log(a));
GridUnopClass(UnaryExp, exp(a));
////////////////////////////////////////////
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
struct name { \
template <class _left, class _right> \
static auto accelerator_inline \
func(const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
};
GridBinOpClass(BinaryAdd, lhs + rhs);
GridBinOpClass(BinarySub, lhs - rhs);
GridBinOpClass(BinaryMul, lhs *rhs);
GridBinOpClass(BinaryDiv, lhs /rhs);
GridBinOpClass(BinaryAnd, lhs &rhs);
GridBinOpClass(BinaryOr, lhs | rhs);
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
GridBinOpClass(BinaryOrOr, lhs || rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
struct name { \
template <class _predicate,class _left, class _right> \
static auto accelerator_inline \
func(const _predicate &pred, const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
};
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<
typename std::remove_reference<_predicate>::type,
typename std::remove_reference<_left>::type,
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name
#define GRID_BINOP(name) name
#define GRID_TRINOP(name) name
#define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
{ \
return LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
}
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
}
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
}
#define GRID_DEF_BINOP(op, name) \
GRID_BINOP_LEFT(op, name); \
GRID_BINOP_RIGHT(op, name);
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
{ \
return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
}
////////////////////////
// Operator definitions
////////////////////////
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
//GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(SpTa, UnarySpTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
GRID_DEF_UNOP(acos, UnaryAcos);
GRID_DEF_UNOP(log, UnaryLog);
GRID_DEF_UNOP(exp, UnaryExp);
GRID_DEF_BINOP(operator+, BinaryAdd);
GRID_DEF_BINOP(operator-, BinarySub);
GRID_DEF_BINOP(operator*, BinaryMul);
GRID_DEF_BINOP(operator/, BinaryDiv);
GRID_DEF_BINOP(operator&, BinaryAnd);
GRID_DEF_BINOP(operator|, BinaryOr);
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
GRID_DEF_BINOP(operator||, BinaryOrOr);
GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
// Closure convenience to force expression to evaluate
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type >
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type > ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
auto function(Expression &expr) -> decltype(function(closure(expr))) \
{ \
return function(closure(expr)); \
}
#undef GRID_UNOP
#undef GRID_BINOP
#undef GRID_TRINOP
#undef GRID_DEF_UNOP
#undef GRID_DEF_BINOP
#undef GRID_DEF_TRINOP
NAMESPACE_END(Grid);
#endif

View File

@ -1,324 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_arith.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ARITH_H
#define GRID_LATTICE_ARITH_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
conformable(ret,rhs);
conformable(lhs,rhs);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t = lhs_v(ss);
auto rhs_t = rhs_v(ss);
mult(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
auto tmp =ret_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("add");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
mult(&tmp,&lhs_v(ss),&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss);
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
sub(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
GRID_TRACE("add");
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
add(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mult");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mult(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("mac");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss);
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("sub");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
GRID_TRACE("add");
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
GRID_TRACE("axpy");
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
GRID_TRACE("axpby");
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
#define FAST_AXPY_NORM
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpy_norm");
#ifdef FAST_AXPY_NORM
return axpy_norm_fast(ret,a,x,y);
#else
ret = a*x+y;
RealD nn=norm2(ret);
return nn;
#endif
}
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
GRID_TRACE("axpby_norm");
#ifdef FAST_AXPY_NORM
return axpby_norm_fast(ret,a,b,x,y);
#else
ret = a*x+b*y;
RealD nn=norm2(ret);
return nn;
#endif
}
/// Trace product
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
-> Lattice<decltype(trace(obj()))>
{
typedef decltype(trace(obj())) robj;
Lattice<robj> ret_i(rhs_1.Grid());
autoView( rhs1 , rhs_1, AcceleratorRead);
autoView( rhs2 , rhs_2, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs_1.Checkerboard();
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
});
return ret_i;
}
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
-> Lattice<decltype(trace(obj1()))>
{
typedef decltype(trace(obj1())) robj;
Lattice<robj> ret_i(rhs_1.Grid());
autoView( rhs1 , rhs_1, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs_1.Checkerboard();
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
});
return ret_i;
}
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
-> Lattice<decltype(trace(obj1()))>
{
return traceProduct(rhs_1,rhs_2);
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,395 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_base.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#define STREAMING_STORES
NAMESPACE_BEGIN(Grid);
extern int GridCshiftPermuteMap[4][16];
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class Lattice : public LatticeAccelerator<vobj>
{
public:
GridBase *Grid(void) const { return this->_grid; }
///////////////////////////////////////////////////
// Member types
///////////////////////////////////////////////////
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef vobj vector_object;
private:
void dealloc(void)
{
if( this->_odata_size ) {
alignedAllocator<vobj> alloc;
alloc.deallocate(this->_odata,this->_odata_size);
this->_odata=nullptr;
this->_odata_size=0;
}
}
void resize(uint64_t size)
{
if ( this->_odata_size != size ) {
alignedAllocator<vobj> alloc;
dealloc();
this->_odata_size = size;
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
}
public:
/////////////////////////////////////////////////////////////////////////////////
// Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
/////////////////////////////////////////////////////////////////////////////////
void SetViewMode(ViewMode mode) {
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
// Helper function to print the state of this object in the AccCache
void PrintCacheState(void)
{
MemoryManager::PrintState(this->_odata);
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (ViewMode mode) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
}
}
////////////////////////////////////////////////////////////////////////////////
// Expression Template closure support
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{
GRID_TRACE("ExpressionTemplateEval");
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
//GridFromExpression is tricky to do
template<class Op,class T1>
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class Op,class T1, class T2>
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class Op,class T1, class T2, class T3>
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp;
vtmp = r;
#if 0
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(*vvtmp_p);
coalescedWrite(me[ss],stmp);
});
#else
auto me = View(CpuWrite);
thread_for(ss,me.size(),{
me[ss]= r;
});
#endif
me.ViewClose();
return *this;
}
//////////////////////////////////////////////////////////////////
// Follow rule of five, with Constructor requires "grid" passed
// to user defined constructor
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
SetViewMode(mode);
}
// virtual ~Lattice(void) = default;
void reset(GridBase* grid) {
if (this->_grid != grid) {
this->_grid = grid;
this->resize(grid->oSites());
this->checkerboard = 0;
}
}
///////////////////////////////////////////
// copy constructor
///////////////////////////////////////////
Lattice(const Lattice& r){
this->_grid = r.Grid();
resize(this->_grid->oSites());
*this = r;
}
///////////////////////////////////////////
// move constructor
///////////////////////////////////////////
Lattice(Lattice && r){
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
}
///////////////////////////////////////////
// assignment template
///////////////////////////////////////////
template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto him= r.View(AcceleratorRead);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////
// Copy assignment
///////////////////////////////////////////
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto him= r.View(AcceleratorRead);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////
// Move assignment possible if same type
///////////////////////////////////////////
inline Lattice<vobj> & operator = (Lattice<vobj> && r){
resize(0); // deletes if appropriate
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
return *this;
}
/////////////////////////////////////////////////////////////////////////////
// *=,+=,-= operators inherit behvour from correspond */+/- operation
/////////////////////////////////////////////////////////////////////////////
template<class T> inline Lattice<vobj> &operator *=(const T &r) {
*this = (*this)*r;
return *this;
}
template<class T> inline Lattice<vobj> &operator -=(const T &r) {
*this = (*this)-r;
return *this;
}
template<class T> inline Lattice<vobj> &operator +=(const T &r) {
*this = (*this)+r;
return *this;
}
friend inline void swap(Lattice &l, Lattice &r) {
conformable(l,r);
LatticeAccelerator<vobj> tmp;
LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
tmp = *lp; *lp=*rp; *rp=tmp;
}
}; // class Lattice
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int64_t g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
return stream;
}
NAMESPACE_END(Grid);

View File

@ -1,235 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_basis.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class VField, class Matrix>
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
h_basis_v[k] = basis[k].View(AcceleratorWrite);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
}
View *basis_vp = &d_basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
return;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
deviceVector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
h_Qt_jv[i]=Qt(j,k);
});
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
decltype(coalescedRead(Bp[ss])) z;
z=Zero();
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View(AcceleratorRead)) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
for(int k=0;k<basis.size();k++){
h_basis_v[k]=basis[k].View(AcceleratorRead);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
}
vobj zz=Zero();
deviceVector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
auto basis_vp=& d_basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero();
auto B=coalescedRead(zzz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
NAMESPACE_END(Grid);

View File

@ -1,179 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_comparison.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COMPARISON_H
#define GRID_LATTICE_COMPARISON_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////
// relational operators
//
// Support <,>,<=,>=,==,!=
//
//Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
typedef iScalar<vInteger> vPredicate ;
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vPredicate> ret(lhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, lhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs,rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// not equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,55 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_coordinate.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
{
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
autoView(l_v, l, CpuWrite);
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
};
NAMESPACE_END(Grid);

View File

@ -1,55 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
typedef typename vobj::tensor_reduced normtype;
typedef typename normtype::scalar_object scalar;
std::vector<scalar> sff;
sliceSum(ff,sff,mu);
for(int t=0;t<sff.size();t++){
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
}
}
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -1,87 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_local.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_LOCALREDUCTION_H
#define GRID_LATTICE_LOCALREDUCTION_H
///////////////////////////////////////////////
// localInner, localNorm, outerProduct
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
// localNorm2,
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
});
return ret;
}
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
});
return ret;
}
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
{
typedef decltype(coalescedRead(ll())) sll;
typedef decltype(coalescedRead(rr())) srr;
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),1,{
// FIXME had issues with scalar version of outer
// Use vector [] operator and don't read coalesce this loop
ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,199 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid_Eigen_Dense.h>
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
NAMESPACE_BEGIN(Grid);
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( Y_v , Y, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v , lhs, CpuRead);
autoView( rhs_v , rhs, CpuRead);
thread_region {
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_loop_collapse2((int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
ComplexD z = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(z),imag(z));
}}
}});
thread_critical {
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
NAMESPACE_END(Grid);

View File

@ -1,231 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_peekpoke.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_PEEK_H
#define GRID_LATTICE_PEEK_H
///////////////////////////////////////////////
// Peeking and poking around
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
// FIXME accelerator_loop and accelerator_inline these
////////////////////////////////////////////////////////////////////////////////////////////////////
// Peek internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
{
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
});
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
{
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
});
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Poke internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
});
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
});
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid();
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
// Optional to broadcast from node 0.
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
grid->Broadcast(grid->BossRank(),s);
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
if ( rank == grid->ThisRank() ) {
extract(l_v[odx],buf);
buf[idx] = s;
merge(l_v[odx],buf);
}
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj>
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
typename vobj::scalar_object s;
peekSite(s,l,site);
return s;
}
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid();
int Nsimd = grid->Nsimd();
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[odx],buf);
s = buf[idx];
grid->Broadcast(rank,s);
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
// Must be CPU read view
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid = l.getGrid();
assert(l.mode==CpuRead);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
const vector_type *vp = (const vector_type *) &l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx);
}
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
return;
};
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuRead);
peekLocalSite(s,lv,site);
return;
};
// Must be CPU write view
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid=l.getGrid();
assert(l.mode==CpuWrite);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
vector_type * vp = (vector_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
putlane(vp[w],pt[w],idx);
}
return;
};
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuWrite);
pokeLocalSite(s,lv,site);
return;
};
NAMESPACE_END(Grid);
#endif

Some files were not shown because too many files have changed in this diff Show More