mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-14 13:57:07 +01:00
Compare commits
3 Commits
FgridStagg
...
feature/fe
Author | SHA1 | Date | |
---|---|---|---|
f4e6824f22 | |||
ac5cfd33a6 | |||
f605230bbb |
@ -5,7 +5,7 @@ EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2'
|
||||
echo "-- deploying Eigen source..."
|
||||
wget ${EIGEN_URL} --no-check-certificate
|
||||
./scripts/update_eigen.sh `basename ${EIGEN_URL}`
|
||||
#rm `basename ${EIGEN_URL}`
|
||||
rm `basename ${EIGEN_URL}`
|
||||
|
||||
echo '-- generating Make.inc files...'
|
||||
./scripts/filelist
|
||||
|
@ -550,7 +550,6 @@ AC_CONFIG_FILES(tests/forces/Makefile)
|
||||
AC_CONFIG_FILES(tests/hadrons/Makefile)
|
||||
AC_CONFIG_FILES(tests/hmc/Makefile)
|
||||
AC_CONFIG_FILES(tests/solver/Makefile)
|
||||
AC_CONFIG_FILES(tests/lanczos/Makefile)
|
||||
AC_CONFIG_FILES(tests/smearing/Makefile)
|
||||
AC_CONFIG_FILES(tests/qdpxx/Makefile)
|
||||
AC_CONFIG_FILES(tests/testu01/Makefile)
|
||||
|
@ -1,25 +1,26 @@
|
||||
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
|
||||
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
|
||||
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
|
||||
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
|
||||
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
|
||||
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
|
||||
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Laplacian.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
|
||||
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
|
||||
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
|
||||
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
|
||||
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
|
||||
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
|
||||
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
|
||||
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
|
||||
|
153
extras/Hadrons/Modules/MSource/Laplacian.hpp
Normal file
153
extras/Hadrons/Modules/MSource/Laplacian.hpp
Normal file
@ -0,0 +1,153 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: extras/Hadrons/Modules/MSource/Laplacian.hpp
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef Hadrons_MSource_Laplacian_hpp_
|
||||
#define Hadrons_MSource_Laplacian_hpp_
|
||||
|
||||
#include <Grid/Hadrons/Global.hpp>
|
||||
#include <Grid/Hadrons/Module.hpp>
|
||||
#include <Grid/Hadrons/ModuleFactory.hpp>
|
||||
|
||||
BEGIN_HADRONS_NAMESPACE
|
||||
|
||||
/*
|
||||
|
||||
Laplacian smearing source
|
||||
-----------------------------
|
||||
|
||||
* options:
|
||||
- source: name of source object to be smeared (string)
|
||||
- N: number of steps (integer)
|
||||
- alpha: smearing parameter (real)
|
||||
|
||||
*/
|
||||
|
||||
/******************************************************************************
|
||||
* Laplace smearing operator *
|
||||
******************************************************************************/
|
||||
BEGIN_MODULE_NAMESPACE(MSource)
|
||||
|
||||
class LaplacianPar : Serializable
|
||||
{
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianPar,
|
||||
std::string, source,
|
||||
std::string, gauge,
|
||||
unsigned int, N,
|
||||
double, alpha);
|
||||
};
|
||||
|
||||
template <typename FImpl>
|
||||
class TLaplacian : public Module<LaplacianPar>
|
||||
{
|
||||
public:
|
||||
FERM_TYPE_ALIASES(FImpl, );
|
||||
|
||||
public:
|
||||
// constructor
|
||||
TLaplacian(const std::string name);
|
||||
// destructor
|
||||
virtual ~TLaplacian(void) = default;
|
||||
// dependency relation
|
||||
virtual std::vector<std::string> getInput(void);
|
||||
virtual std::vector<std::string> getOutput(void);
|
||||
// setup
|
||||
virtual void setup(void);
|
||||
// execution
|
||||
virtual void execute(void);
|
||||
};
|
||||
|
||||
MODULE_REGISTER_NS(LaplaceSmearing, TLaplacian<FIMPL>, MSource);
|
||||
|
||||
/******************************************************************************
|
||||
* TLaplacian template implementation *
|
||||
******************************************************************************/
|
||||
// constructor /////////////////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
TLaplacian<FImpl>::TLaplacian(const std::string name)
|
||||
: Module<LaplacianPar>(name)
|
||||
{
|
||||
}
|
||||
|
||||
// dependencies/products ///////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
std::vector<std::string> TLaplacian<FImpl>::getInput(void)
|
||||
{
|
||||
std::vector<std::string> in = {par().source, par().gauge};
|
||||
|
||||
return in;
|
||||
}
|
||||
|
||||
template <typename FImpl>
|
||||
std::vector<std::string> TLaplacian<FImpl>::getOutput(void)
|
||||
{
|
||||
std::vector<std::string> out = {getName()};
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// setup ///////////////////////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
void TLaplacian<FImpl>::setup(void)
|
||||
{
|
||||
env().template registerLattice<PropagatorField>(getName());
|
||||
}
|
||||
|
||||
// execution ///////////////////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
void TLaplacian<FImpl>::execute(void)
|
||||
{
|
||||
|
||||
FermionField source(env().getGrid()), tmp(env().getGrid());
|
||||
PropagatorField &SmrSrc = *env().template createLattice<PropagatorField>(getName());
|
||||
PropagatorField &fullSrc = *env().template getObject<PropagatorField>(par().source);
|
||||
auto &U = *env().template getObject<LatticeGaugeField>(par().gauge);
|
||||
Laplacian<FImpl> LaplaceOperator(env().getGrid());
|
||||
LaplaceOperator.ImportGauge(U);
|
||||
double prefactor = par().alpha / (double)(par().N);
|
||||
|
||||
for (unsigned int s = 0; s < Ns; ++s)
|
||||
{
|
||||
for (unsigned int c = 0; c < Nc; ++c)
|
||||
{
|
||||
PropToFerm(source, fullSrc, s, c);
|
||||
for (int smr = 0; smr < par().N; ++smr)
|
||||
{
|
||||
LaplaceOperator.M(source, tmp);
|
||||
source += prefactor * tmp;
|
||||
}
|
||||
FermToProp(SmrSrc, source, s, c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
END_MODULE_NAMESPACE
|
||||
|
||||
END_HADRONS_NAMESPACE
|
||||
|
||||
#endif // Hadrons_MSource_Z2_hpp_
|
@ -1,38 +1,39 @@
|
||||
modules_cc =\
|
||||
Modules/MContraction/WeakHamiltonianEye.cc \
|
||||
Modules/MContraction/WeakHamiltonianNonEye.cc \
|
||||
Modules/MContraction/WeakNeutral4ptDisc.cc \
|
||||
Modules/MGauge/Load.cc \
|
||||
Modules/MContraction/WeakHamiltonianEye.cc \
|
||||
Modules/MScalar/FreeProp.cc \
|
||||
Modules/MScalar/ChargedProp.cc \
|
||||
Modules/MGauge/Unit.cc \
|
||||
Modules/MGauge/Random.cc \
|
||||
Modules/MGauge/StochEm.cc \
|
||||
Modules/MGauge/Unit.cc \
|
||||
Modules/MScalar/ChargedProp.cc \
|
||||
Modules/MScalar/FreeProp.cc
|
||||
Modules/MGauge/Load.cc
|
||||
|
||||
modules_hpp =\
|
||||
Modules/MAction/DWF.hpp \
|
||||
Modules/MAction/Wilson.hpp \
|
||||
Modules/MContraction/Baryon.hpp \
|
||||
Modules/MContraction/DiscLoop.hpp \
|
||||
Modules/MContraction/Gamma3pt.hpp \
|
||||
Modules/MContraction/Meson.hpp \
|
||||
Modules/MLoop/NoiseLoop.hpp \
|
||||
Modules/MFermion/GaugeProp.hpp \
|
||||
Modules/MContraction/WeakHamiltonian.hpp \
|
||||
Modules/MContraction/Meson.hpp \
|
||||
Modules/MContraction/DiscLoop.hpp \
|
||||
Modules/MContraction/WeakHamiltonianEye.hpp \
|
||||
Modules/MContraction/Baryon.hpp \
|
||||
Modules/MContraction/WeakHamiltonianNonEye.hpp \
|
||||
Modules/MContraction/WeakNeutral4ptDisc.hpp \
|
||||
Modules/MFermion/GaugeProp.hpp \
|
||||
Modules/MGauge/Load.hpp \
|
||||
Modules/MGauge/Random.hpp \
|
||||
Modules/MGauge/StochEm.hpp \
|
||||
Modules/MGauge/Unit.hpp \
|
||||
Modules/MLoop/NoiseLoop.hpp \
|
||||
Modules/MContraction/Gamma3pt.hpp \
|
||||
Modules/MSource/Z2.hpp \
|
||||
Modules/MSource/SeqGamma.hpp \
|
||||
Modules/MSource/Point.hpp \
|
||||
Modules/MSource/Wall.hpp \
|
||||
Modules/MSource/Laplacian.hpp \
|
||||
Modules/MSolver/RBPrecCG.hpp \
|
||||
Modules/MScalar/ChargedProp.hpp \
|
||||
Modules/MScalar/FreeProp.hpp \
|
||||
Modules/MScalar/Scalar.hpp \
|
||||
Modules/MSink/Point.hpp \
|
||||
Modules/MSolver/RBPrecCG.hpp \
|
||||
Modules/MSource/Point.hpp \
|
||||
Modules/MSource/SeqGamma.hpp \
|
||||
Modules/MSource/Wall.hpp \
|
||||
Modules/MSource/Z2.hpp
|
||||
Modules/MAction/DWF.hpp \
|
||||
Modules/MAction/Wilson.hpp \
|
||||
Modules/MGauge/StochEm.hpp \
|
||||
Modules/MGauge/Unit.hpp \
|
||||
Modules/MGauge/Random.hpp \
|
||||
Modules/MGauge/Load.hpp \
|
||||
Modules/MSink/Point.hpp
|
||||
|
||||
|
@ -39,10 +39,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/approx/MultiShiftFunction.h>
|
||||
#include <Grid/algorithms/approx/Forecast.h>
|
||||
|
||||
#include <Grid/algorithms/densematrix/DenseMatrix.h>
|
||||
#include <Grid/algorithms/densematrix/Francis.h>
|
||||
#include <Grid/algorithms/densematrix/Householder.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/NormalEquations.h>
|
||||
@ -52,8 +48,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczosCJ.h>
|
||||
#include <Grid/algorithms/iterative/SimpleLanczos.h>
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
|
@ -8,7 +8,6 @@
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -163,10 +162,15 @@ namespace Grid {
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
ComplexD dot;
|
||||
|
||||
_Mat.M(in,out);
|
||||
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
|
||||
dot = innerProduct(out,out);
|
||||
n2=real(dot);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
@ -188,10 +192,10 @@ namespace Grid {
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
@ -208,6 +212,7 @@ namespace Grid {
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
@ -265,6 +270,7 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
@ -293,168 +299,6 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
n2 = Mpc(in,out);
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
n1 = real(dot);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
_Mat.Meooe(in,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
_Mat.Mooee(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
return Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
// template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
template<class Matrix,class Field>
|
||||
// class SchurStagOperator : public LinearOperatorBase<Field> {
|
||||
class SchurStagOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurStagOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
Field tmp2(in._grid);
|
||||
|
||||
_Mat.Mooee(in,out);
|
||||
_Mat.Mooee(out,tmp);
|
||||
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.Meooe(out,tmp2);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp2,tmp);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
|
||||
return Mpc(in,out);
|
||||
}
|
||||
#if 0
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
Field tmp(in._grid);
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
#endif
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
n2 = Mpc(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1 = real(dot);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
void Op (const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
MpcDag(in,out);
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#if 0
|
||||
// This is specific to (Z)mobius fermions
|
||||
template<class Matrix, class Field>
|
||||
class KappaSimilarityTransform {
|
||||
public:
|
||||
// INHERIT_IMPL_TYPES(Matrix);
|
||||
typedef typename Matrix::Coeff_t Coeff_t;
|
||||
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
|
||||
|
||||
KappaSimilarityTransform (Matrix &zmob) {
|
||||
for (int i=0;i<(int)zmob.bs.size();i++) {
|
||||
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
|
||||
kappa.push_back( k );
|
||||
kappaDag.push_back( conj(k) );
|
||||
kappaInv.push_back( 1.0 / k );
|
||||
kappaInvDag.push_back( 1.0 / conj(k) );
|
||||
}
|
||||
}
|
||||
|
||||
template<typename vobj>
|
||||
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
|
||||
GridBase *grid=out._grid;
|
||||
out.checkerboard = in.checkerboard;
|
||||
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
|
||||
int Ls = grid->_rdimensions[0];
|
||||
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
||||
vobj tmp = s[ss % Ls]*in._odata[ss];
|
||||
vstream(out._odata[ss],tmp);
|
||||
}
|
||||
}
|
||||
|
||||
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
|
||||
sscale(in,out,s);
|
||||
return norm2(out);
|
||||
}
|
||||
|
||||
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
|
||||
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
|
||||
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
|
||||
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
|
||||
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
KappaSimilarityTransform<Matrix, Field> _S;
|
||||
SchurDiagTwoOperator<Matrix, Field> _Mat;
|
||||
|
||||
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
|
||||
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
|
||||
_S.MInv(in,out);
|
||||
_Mat.Mpc(out,tmp);
|
||||
return _S.M(tmp,out);
|
||||
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in._grid);
|
||||
|
||||
_S.MDag(in,out);
|
||||
_Mat.MpcDag(out,tmp);
|
||||
return _S.MInvDag(tmp,out);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
@ -8,7 +8,6 @@
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -194,47 +193,6 @@ namespace Grid {
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
|
@ -1,137 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/DenseMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_DENSE_MATRIX_H
|
||||
#define GRID_DENSE_MATRIX_H
|
||||
|
||||
namespace Grid {
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Matrix untils
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class T> using DenseVector = std::vector<T>;
|
||||
template<class T> using DenseMatrix = DenseVector<DenseVector<T> >;
|
||||
|
||||
template<class T> void Size(DenseVector<T> & vec, int &N)
|
||||
{
|
||||
N= vec.size();
|
||||
}
|
||||
template<class T> void Size(DenseMatrix<T> & mat, int &N,int &M)
|
||||
{
|
||||
N= mat.size();
|
||||
M= mat[0].size();
|
||||
}
|
||||
|
||||
template<class T> void SizeSquare(DenseMatrix<T> & mat, int &N)
|
||||
{
|
||||
int M; Size(mat,N,M);
|
||||
assert(N==M);
|
||||
}
|
||||
|
||||
template<class T> void Resize(DenseVector<T > & mat, int N) {
|
||||
mat.resize(N);
|
||||
}
|
||||
template<class T> void Resize(DenseMatrix<T > & mat, int N, int M) {
|
||||
mat.resize(N);
|
||||
for(int i=0;i<N;i++){
|
||||
mat[i].resize(M);
|
||||
}
|
||||
}
|
||||
template<class T> void Fill(DenseMatrix<T> & mat, T&val) {
|
||||
int N,M;
|
||||
Size(mat,N,M);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
mat[i][j] = val;
|
||||
}}
|
||||
}
|
||||
|
||||
/** Transpose of a matrix **/
|
||||
template<class T> DenseMatrix<T> Transpose(DenseMatrix<T> & mat){
|
||||
int N,M;
|
||||
Size(mat,N,M);
|
||||
DenseMatrix<T> C; Resize(C,M,N);
|
||||
for(int i=0;i<M;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
C[i][j] = mat[j][i];
|
||||
}}
|
||||
return C;
|
||||
}
|
||||
/** Set DenseMatrix to unit matrix **/
|
||||
template<class T> void Unity(DenseMatrix<T> &A){
|
||||
int N; SizeSquare(A,N);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
if ( i==j ) A[i][j] = 1;
|
||||
else A[i][j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Add C * I to matrix **/
|
||||
template<class T>
|
||||
void PlusUnit(DenseMatrix<T> & A,T c){
|
||||
int dim; SizeSquare(A,dim);
|
||||
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
|
||||
}
|
||||
|
||||
/** return the Hermitian conjugate of matrix **/
|
||||
template<class T>
|
||||
DenseMatrix<T> HermitianConj(DenseMatrix<T> &mat){
|
||||
|
||||
int dim; SizeSquare(mat,dim);
|
||||
|
||||
DenseMatrix<T> C; Resize(C,dim,dim);
|
||||
|
||||
for(int i=0;i<dim;i++){
|
||||
for(int j=0;j<dim;j++){
|
||||
C[i][j] = conj(mat[j][i]);
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
/**Get a square submatrix**/
|
||||
template <class T>
|
||||
DenseMatrix<T> GetSubMtx(DenseMatrix<T> &A,int row_st, int row_end, int col_st, int col_end)
|
||||
{
|
||||
DenseMatrix<T> H; Resize(H,row_end - row_st,col_end-col_st);
|
||||
|
||||
for(int i = row_st; i<row_end; i++){
|
||||
for(int j = col_st; j<col_end; j++){
|
||||
H[i-row_st][j-col_st]=A[i][j];
|
||||
}}
|
||||
return H;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#include "Householder.h"
|
||||
#include "Francis.h"
|
||||
|
||||
#endif
|
||||
|
@ -1,525 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/Francis.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef FRANCIS_H
|
||||
#define FRANCIS_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include <fstream>
|
||||
#include <complex>
|
||||
#include <algorithm>
|
||||
|
||||
//#include <timer.h>
|
||||
//#include <lapacke.h>
|
||||
//#include <Eigen/Dense>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template <class T> int SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
|
||||
template <class T> int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
|
||||
|
||||
/**
|
||||
Find the eigenvalues of an upper hessenberg matrix using the Francis QR algorithm.
|
||||
H =
|
||||
x x x x x x x x x
|
||||
x x x x x x x x x
|
||||
0 x x x x x x x x
|
||||
0 0 x x x x x x x
|
||||
0 0 0 x x x x x x
|
||||
0 0 0 0 x x x x x
|
||||
0 0 0 0 0 x x x x
|
||||
0 0 0 0 0 0 x x x
|
||||
0 0 0 0 0 0 0 x x
|
||||
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary.
|
||||
**/
|
||||
template <class T>
|
||||
int QReigensystem(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
|
||||
{
|
||||
DenseMatrix<T> H = Hin;
|
||||
|
||||
int N ; SizeSquare(H,N);
|
||||
int M = N;
|
||||
|
||||
Fill(evals,0);
|
||||
Fill(evecs,0);
|
||||
|
||||
T s,t,x=0,y=0,z=0;
|
||||
T u,d;
|
||||
T apd,amd,bc;
|
||||
DenseVector<T> p(N,0);
|
||||
T nrm = Norm(H); ///DenseMatrix Norm
|
||||
int n, m;
|
||||
int e = 0;
|
||||
int it = 0;
|
||||
int tot_it = 0;
|
||||
int l = 0;
|
||||
int r = 0;
|
||||
DenseMatrix<T> P; Resize(P,N,N); Unity(P);
|
||||
DenseVector<int> trows(N,0);
|
||||
|
||||
/// Check if the matrix is really hessenberg, if not abort
|
||||
RealD sth = 0;
|
||||
for(int j=0;j<N;j++){
|
||||
for(int i=j+2;i<N;i++){
|
||||
sth = abs(H[i][j]);
|
||||
if(sth > small){
|
||||
std::cout << "Non hessenberg H = " << sth << " > " << small << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
do{
|
||||
std::cout << "Francis QR Step N = " << N << std::endl;
|
||||
/** Check for convergence
|
||||
x x x x x
|
||||
0 x x x x
|
||||
0 0 x x x
|
||||
0 0 x x x
|
||||
0 0 0 0 x
|
||||
for this matrix l = 4
|
||||
**/
|
||||
do{
|
||||
l = Chop_subdiag(H,nrm,e,small);
|
||||
r = 0; ///May have converged on more than one eval
|
||||
///Single eval
|
||||
if(l == N-1){
|
||||
evals[e] = H[l][l];
|
||||
N--; e++; r++; it = 0;
|
||||
}
|
||||
///RealD eval
|
||||
if(l == N-2){
|
||||
trows[l+1] = 1; ///Needed for UTSolve
|
||||
apd = H[l][l] + H[l+1][l+1];
|
||||
amd = H[l][l] - H[l+1][l+1];
|
||||
bc = (T)4.0*H[l+1][l]*H[l][l+1];
|
||||
evals[e] = (T)0.5*( apd + sqrt(amd*amd + bc) );
|
||||
evals[e+1] = (T)0.5*( apd - sqrt(amd*amd + bc) );
|
||||
N-=2; e+=2; r++; it = 0;
|
||||
}
|
||||
} while(r>0);
|
||||
|
||||
if(N ==0) break;
|
||||
|
||||
DenseVector<T > ck; Resize(ck,3);
|
||||
DenseVector<T> v; Resize(v,3);
|
||||
|
||||
for(int m = N-3; m >= l; m--){
|
||||
///Starting vector essentially random shift.
|
||||
if(it%10 == 0 && N >= 3 && it > 0){
|
||||
s = (T)1.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
|
||||
t = (T)0.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
|
||||
x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
|
||||
y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
|
||||
z = H[m+1][m]*H[m+2][m+1];
|
||||
}
|
||||
///Starting vector implicit Q theorem
|
||||
else{
|
||||
s = (H[N-2][N-2] + H[N-1][N-1]);
|
||||
t = (H[N-2][N-2]*H[N-1][N-1] - H[N-2][N-1]*H[N-1][N-2]);
|
||||
x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
|
||||
y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
|
||||
z = H[m+1][m]*H[m+2][m+1];
|
||||
}
|
||||
ck[0] = x; ck[1] = y; ck[2] = z;
|
||||
|
||||
if(m == l) break;
|
||||
|
||||
/** Some stupid thing from numerical recipies, seems to work**/
|
||||
// PAB.. for heaven's sake quote page, purpose, evidence it works.
|
||||
// what sort of comment is that!?!?!?
|
||||
u=abs(H[m][m-1])*(abs(y)+abs(z));
|
||||
d=abs(x)*(abs(H[m-1][m-1])+abs(H[m][m])+abs(H[m+1][m+1]));
|
||||
if ((T)abs(u+d) == (T)abs(d) ){
|
||||
l = m; break;
|
||||
}
|
||||
|
||||
//if (u < small){l = m; break;}
|
||||
}
|
||||
if(it > 100000){
|
||||
std::cout << "QReigensystem: bugger it got stuck after 100000 iterations" << std::endl;
|
||||
std::cout << "got " << e << " evals " << l << " " << N << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
normalize(ck); ///Normalization cancels in PHP anyway
|
||||
T beta;
|
||||
Householder_vector<T >(ck, 0, 2, v, beta);
|
||||
Householder_mult<T >(H,v,beta,0,l,l+2,0);
|
||||
Householder_mult<T >(H,v,beta,0,l,l+2,1);
|
||||
///Accumulate eigenvector
|
||||
Householder_mult<T >(P,v,beta,0,l,l+2,1);
|
||||
int sw = 0; ///Are we on the last row?
|
||||
for(int k=l;k<N-2;k++){
|
||||
x = H[k+1][k];
|
||||
y = H[k+2][k];
|
||||
z = (T)0.0;
|
||||
if(k+3 <= N-1){
|
||||
z = H[k+3][k];
|
||||
} else{
|
||||
sw = 1;
|
||||
v[2] = (T)0.0;
|
||||
}
|
||||
ck[0] = x; ck[1] = y; ck[2] = z;
|
||||
normalize(ck);
|
||||
Householder_vector<T >(ck, 0, 2-sw, v, beta);
|
||||
Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,0);
|
||||
Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,1);
|
||||
///Accumulate eigenvector
|
||||
Householder_mult<T >(P,v, beta,0,k+1,k+3-sw,1);
|
||||
}
|
||||
it++;
|
||||
tot_it++;
|
||||
}while(N > 1);
|
||||
N = evals.size();
|
||||
///Annoying - UT solves in reverse order;
|
||||
DenseVector<T> tmp; Resize(tmp,N);
|
||||
for(int i=0;i<N;i++){
|
||||
tmp[i] = evals[N-i-1];
|
||||
}
|
||||
evals = tmp;
|
||||
UTeigenvectors(H, trows, evals, evecs);
|
||||
for(int i=0;i<evals.size();i++){evecs[i] = P*evecs[i]; normalize(evecs[i]);}
|
||||
return tot_it;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
|
||||
{
|
||||
/**
|
||||
Find the eigenvalues of an upper Hessenberg matrix using the Wilkinson QR algorithm.
|
||||
H =
|
||||
x x 0 0 0 0
|
||||
x x x 0 0 0
|
||||
0 x x x 0 0
|
||||
0 0 x x x 0
|
||||
0 0 0 x x x
|
||||
0 0 0 0 x x
|
||||
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary. **/
|
||||
return my_Wilkinson(Hin, evals, evecs, small, small);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small, RealD tol)
|
||||
{
|
||||
int N; SizeSquare(Hin,N);
|
||||
int M = N;
|
||||
|
||||
///I don't want to modify the input but matricies must be passed by reference
|
||||
//Scale a matrix by its "norm"
|
||||
//RealD Hnorm = abs( Hin.LargestDiag() ); H = H*(1.0/Hnorm);
|
||||
DenseMatrix<T> H; H = Hin;
|
||||
|
||||
RealD Hnorm = abs(Norm(Hin));
|
||||
H = H * (1.0 / Hnorm);
|
||||
|
||||
// TODO use openmp and memset
|
||||
Fill(evals,0);
|
||||
Fill(evecs,0);
|
||||
|
||||
T s, t, x = 0, y = 0, z = 0;
|
||||
T u, d;
|
||||
T apd, amd, bc;
|
||||
DenseVector<T> p; Resize(p,N); Fill(p,0);
|
||||
|
||||
T nrm = Norm(H); ///DenseMatrix Norm
|
||||
int n, m;
|
||||
int e = 0;
|
||||
int it = 0;
|
||||
int tot_it = 0;
|
||||
int l = 0;
|
||||
int r = 0;
|
||||
DenseMatrix<T> P; Resize(P,N,N);
|
||||
Unity(P);
|
||||
DenseVector<int> trows(N, 0);
|
||||
/// Check if the matrix is really symm tridiag
|
||||
RealD sth = 0;
|
||||
for(int j = 0; j < N; ++j)
|
||||
{
|
||||
for(int i = j + 2; i < N; ++i)
|
||||
{
|
||||
if(abs(H[i][j]) > tol || abs(H[j][i]) > tol)
|
||||
{
|
||||
std::cout << "Non Tridiagonal H(" << i << ","<< j << ") = |" << Real( real( H[j][i] ) ) << "| > " << tol << std::endl;
|
||||
std::cout << "Warning tridiagonalize and call again" << std::endl;
|
||||
// exit(1); // see what is going on
|
||||
//return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
do{
|
||||
do{
|
||||
//Jasper
|
||||
//Check if the subdiagonal term is small enough (<small)
|
||||
//if true then it is converged.
|
||||
//check start from H.dim - e - 1
|
||||
//How to deal with more than 2 are converged?
|
||||
//What if Chop_symm_subdiag return something int the middle?
|
||||
//--------------
|
||||
l = Chop_symm_subdiag(H,nrm, e, small);
|
||||
r = 0; ///May have converged on more than one eval
|
||||
//Jasper
|
||||
//In this case
|
||||
// x x 0 0 0 0
|
||||
// x x x 0 0 0
|
||||
// 0 x x x 0 0
|
||||
// 0 0 x x x 0
|
||||
// 0 0 0 x x 0
|
||||
// 0 0 0 0 0 x <- l
|
||||
//--------------
|
||||
///Single eval
|
||||
if(l == N - 1)
|
||||
{
|
||||
evals[e] = H[l][l];
|
||||
N--;
|
||||
e++;
|
||||
r++;
|
||||
it = 0;
|
||||
}
|
||||
//Jasper
|
||||
// x x 0 0 0 0
|
||||
// x x x 0 0 0
|
||||
// 0 x x x 0 0
|
||||
// 0 0 x x 0 0
|
||||
// 0 0 0 0 x x <- l
|
||||
// 0 0 0 0 x x
|
||||
//--------------
|
||||
///RealD eval
|
||||
if(l == N - 2)
|
||||
{
|
||||
trows[l + 1] = 1; ///Needed for UTSolve
|
||||
apd = H[l][l] + H[l + 1][ l + 1];
|
||||
amd = H[l][l] - H[l + 1][l + 1];
|
||||
bc = (T) 4.0 * H[l + 1][l] * H[l][l + 1];
|
||||
evals[e] = (T) 0.5 * (apd + sqrt(amd * amd + bc));
|
||||
evals[e + 1] = (T) 0.5 * (apd - sqrt(amd * amd + bc));
|
||||
N -= 2;
|
||||
e += 2;
|
||||
r++;
|
||||
it = 0;
|
||||
}
|
||||
}while(r > 0);
|
||||
//Jasper
|
||||
//Already converged
|
||||
//--------------
|
||||
if(N == 0) break;
|
||||
|
||||
DenseVector<T> ck,v; Resize(ck,2); Resize(v,2);
|
||||
|
||||
for(int m = N - 3; m >= l; m--)
|
||||
{
|
||||
///Starting vector essentially random shift.
|
||||
if(it%10 == 0 && N >= 3 && it > 0)
|
||||
{
|
||||
t = abs(H[N - 1][N - 2]) + abs(H[N - 2][N - 3]);
|
||||
x = H[m][m] - t;
|
||||
z = H[m + 1][m];
|
||||
} else {
|
||||
///Starting vector implicit Q theorem
|
||||
d = (H[N - 2][N - 2] - H[N - 1][N - 1]) * (T) 0.5;
|
||||
t = H[N - 1][N - 1] - H[N - 1][N - 2] * H[N - 1][N - 2]
|
||||
/ (d + sign(d) * sqrt(d * d + H[N - 1][N - 2] * H[N - 1][N - 2]));
|
||||
x = H[m][m] - t;
|
||||
z = H[m + 1][m];
|
||||
}
|
||||
//Jasper
|
||||
//why it is here????
|
||||
//-----------------------
|
||||
if(m == l)
|
||||
break;
|
||||
|
||||
u = abs(H[m][m - 1]) * (abs(y) + abs(z));
|
||||
d = abs(x) * (abs(H[m - 1][m - 1]) + abs(H[m][m]) + abs(H[m + 1][m + 1]));
|
||||
if ((T)abs(u + d) == (T)abs(d))
|
||||
{
|
||||
l = m;
|
||||
break;
|
||||
}
|
||||
}
|
||||
//Jasper
|
||||
if(it > 1000000)
|
||||
{
|
||||
std::cout << "Wilkinson: bugger it got stuck after 100000 iterations" << std::endl;
|
||||
std::cout << "got " << e << " evals " << l << " " << N << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
//
|
||||
T s, c;
|
||||
Givens_calc<T>(x, z, c, s);
|
||||
Givens_mult<T>(H, l, l + 1, c, -s, 0);
|
||||
Givens_mult<T>(H, l, l + 1, c, s, 1);
|
||||
Givens_mult<T>(P, l, l + 1, c, s, 1);
|
||||
//
|
||||
for(int k = l; k < N - 2; ++k)
|
||||
{
|
||||
x = H.A[k + 1][k];
|
||||
z = H.A[k + 2][k];
|
||||
Givens_calc<T>(x, z, c, s);
|
||||
Givens_mult<T>(H, k + 1, k + 2, c, -s, 0);
|
||||
Givens_mult<T>(H, k + 1, k + 2, c, s, 1);
|
||||
Givens_mult<T>(P, k + 1, k + 2, c, s, 1);
|
||||
}
|
||||
it++;
|
||||
tot_it++;
|
||||
}while(N > 1);
|
||||
|
||||
N = evals.size();
|
||||
///Annoying - UT solves in reverse order;
|
||||
DenseVector<T> tmp(N);
|
||||
for(int i = 0; i < N; ++i)
|
||||
tmp[i] = evals[N-i-1];
|
||||
evals = tmp;
|
||||
//
|
||||
UTeigenvectors(H, trows, evals, evecs);
|
||||
//UTSymmEigenvectors(H, trows, evals, evecs);
|
||||
for(int i = 0; i < evals.size(); ++i)
|
||||
{
|
||||
evecs[i] = P * evecs[i];
|
||||
normalize(evecs[i]);
|
||||
evals[i] = evals[i] * Hnorm;
|
||||
}
|
||||
// // FIXME this is to test
|
||||
// Hin.write("evecs3", evecs);
|
||||
// Hin.write("evals3", evals);
|
||||
// // check rsd
|
||||
// for(int i = 0; i < M; i++) {
|
||||
// vector<T> Aevec = Hin * evecs[i];
|
||||
// RealD norm2(0.);
|
||||
// for(int j = 0; j < M; j++) {
|
||||
// norm2 += (Aevec[j] - evals[i] * evecs[i][j]) * (Aevec[j] - evals[i] * evecs[i][j]);
|
||||
// }
|
||||
// }
|
||||
return tot_it;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void Hess(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
|
||||
|
||||
/**
|
||||
turn a matrix A =
|
||||
x x x x x
|
||||
x x x x x
|
||||
x x x x x
|
||||
x x x x x
|
||||
x x x x x
|
||||
into
|
||||
x x x x x
|
||||
x x x x x
|
||||
0 x x x x
|
||||
0 0 x x x
|
||||
0 0 0 x x
|
||||
with householder rotations
|
||||
Slow.
|
||||
*/
|
||||
int N ; SizeSquare(A,N);
|
||||
DenseVector<T > p; Resize(p,N); Fill(p,0);
|
||||
|
||||
for(int k=start;k<N-2;k++){
|
||||
//cerr << "hess" << k << std::endl;
|
||||
DenseVector<T > ck,v; Resize(ck,N-k-1); Resize(v,N-k-1);
|
||||
for(int i=k+1;i<N;i++){ck[i-k-1] = A(i,k);} ///kth column
|
||||
normalize(ck); ///Normalization cancels in PHP anyway
|
||||
T beta;
|
||||
Householder_vector<T >(ck, 0, ck.size()-1, v, beta); ///Householder vector
|
||||
Householder_mult<T>(A,v,beta,start,k+1,N-1,0); ///A -> PA
|
||||
Householder_mult<T >(A,v,beta,start,k+1,N-1,1); ///PA -> PAP^H
|
||||
///Accumulate eigenvector
|
||||
Householder_mult<T >(Q,v,beta,start,k+1,N-1,1); ///Q -> QP^H
|
||||
}
|
||||
/*for(int l=0;l<N-2;l++){
|
||||
for(int k=l+2;k<N;k++){
|
||||
A(0,k,l);
|
||||
}
|
||||
}*/
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void Tri(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
|
||||
///Tridiagonalize a matrix
|
||||
int N; SizeSquare(A,N);
|
||||
Hess(A,Q,start);
|
||||
/*for(int l=0;l<N-2;l++){
|
||||
for(int k=l+2;k<N;k++){
|
||||
A(0,l,k);
|
||||
}
|
||||
}*/
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ForceTridiagonal(DenseMatrix<T> &A){
|
||||
///Tridiagonalize a matrix
|
||||
int N ; SizeSquare(A,N);
|
||||
for(int l=0;l<N-2;l++){
|
||||
for(int k=l+2;k<N;k++){
|
||||
A[l][k]=0;
|
||||
A[k][l]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
int my_SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
|
||||
///Solve a symmetric eigensystem, not necessarily in tridiagonal form
|
||||
int N; SizeSquare(Ain,N);
|
||||
DenseMatrix<T > A; A = Ain;
|
||||
DenseMatrix<T > Q; Resize(Q,N,N); Unity(Q);
|
||||
Tri(A,Q,0);
|
||||
int it = my_Wilkinson<T>(A, evals, evecs, small);
|
||||
for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
|
||||
return it;
|
||||
}
|
||||
|
||||
|
||||
template <class T>
|
||||
int Wilkinson(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
|
||||
return my_Wilkinson(Ain, evals, evecs, small);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
int SymmEigensystem(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
|
||||
return my_SymmEigensystem(Ain, evals, evecs, small);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
|
||||
///Solve a general eigensystem, not necessarily in tridiagonal form
|
||||
int N = Ain.dim;
|
||||
DenseMatrix<T > A(N); A = Ain;
|
||||
DenseMatrix<T > Q(N);Q.Unity();
|
||||
Hess(A,Q,0);
|
||||
int it = QReigensystem<T>(A, evals, evecs, small);
|
||||
for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
|
||||
return it;
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
@ -1,242 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/Householder.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef HOUSEHOLDER_H
|
||||
#define HOUSEHOLDER_H
|
||||
|
||||
#define TIMER(A) std::cout << GridLogMessage << __FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
|
||||
#define ENTER() std::cout << GridLogMessage << "ENTRY "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
|
||||
#define LEAVE() std::cout << GridLogMessage << "EXIT "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
|
||||
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include <fstream>
|
||||
#include <complex>
|
||||
#include <algorithm>
|
||||
|
||||
namespace Grid {
|
||||
/** Comparison function for finding the max element in a vector **/
|
||||
template <class T> bool cf(T i, T j) {
|
||||
return abs(i) < abs(j);
|
||||
}
|
||||
|
||||
/**
|
||||
Calculate a real Givens angle
|
||||
**/
|
||||
template <class T> inline void Givens_calc(T y, T z, T &c, T &s){
|
||||
|
||||
RealD mz = (RealD)abs(z);
|
||||
|
||||
if(mz==0.0){
|
||||
c = 1; s = 0;
|
||||
}
|
||||
if(mz >= (RealD)abs(y)){
|
||||
T t = -y/z;
|
||||
s = (T)1.0 / sqrt ((T)1.0 + t * t);
|
||||
c = s * t;
|
||||
} else {
|
||||
T t = -z/y;
|
||||
c = (T)1.0 / sqrt ((T)1.0 + t * t);
|
||||
s = c * t;
|
||||
}
|
||||
}
|
||||
|
||||
template <class T> inline void Givens_mult(DenseMatrix<T> &A, int i, int k, T c, T s, int dir)
|
||||
{
|
||||
int q ; SizeSquare(A,q);
|
||||
|
||||
if(dir == 0){
|
||||
for(int j=0;j<q;j++){
|
||||
T nu = A[i][j];
|
||||
T w = A[k][j];
|
||||
A[i][j] = (c*nu + s*w);
|
||||
A[k][j] = (-s*nu + c*w);
|
||||
}
|
||||
}
|
||||
|
||||
if(dir == 1){
|
||||
for(int j=0;j<q;j++){
|
||||
T nu = A[j][i];
|
||||
T w = A[j][k];
|
||||
A[j][i] = (c*nu - s*w);
|
||||
A[j][k] = (s*nu + c*w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
from input = x;
|
||||
Compute the complex Householder vector, v, such that
|
||||
P = (I - b v transpose(v) )
|
||||
b = 2/v.v
|
||||
|
||||
P | x | | x | k = 0
|
||||
| x | | 0 |
|
||||
| x | = | 0 |
|
||||
| x | | 0 | j = 3
|
||||
| x | | x |
|
||||
|
||||
These are the "Unreduced" Householder vectors.
|
||||
|
||||
**/
|
||||
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, DenseVector<T> &v, T &beta)
|
||||
{
|
||||
int N ; Size(input,N);
|
||||
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf<T> );
|
||||
|
||||
if(abs(m) > 0.0){
|
||||
T alpha = 0;
|
||||
|
||||
for(int i=k; i<j+1; i++){
|
||||
v[i] = input[i]/m;
|
||||
alpha = alpha + v[i]*conj(v[i]);
|
||||
}
|
||||
alpha = sqrt(alpha);
|
||||
beta = (T)1.0/(alpha*(alpha + abs(v[k]) ));
|
||||
|
||||
if(abs(v[k]) > 0.0) v[k] = v[k] + (v[k]/abs(v[k]))*alpha;
|
||||
else v[k] = -alpha;
|
||||
} else{
|
||||
for(int i=k; i<j+1; i++){
|
||||
v[i] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
from input = x;
|
||||
Compute the complex Householder vector, v, such that
|
||||
P = (I - b v transpose(v) )
|
||||
b = 2/v.v
|
||||
|
||||
Px = alpha*e_dir
|
||||
|
||||
These are the "Unreduced" Householder vectors.
|
||||
|
||||
**/
|
||||
|
||||
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, int dir, DenseVector<T> &v, T &beta)
|
||||
{
|
||||
int N = input.size();
|
||||
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf);
|
||||
|
||||
if(abs(m) > 0.0){
|
||||
T alpha = 0;
|
||||
|
||||
for(int i=k; i<j+1; i++){
|
||||
v[i] = input[i]/m;
|
||||
alpha = alpha + v[i]*conj(v[i]);
|
||||
}
|
||||
|
||||
alpha = sqrt(alpha);
|
||||
beta = 1.0/(alpha*(alpha + abs(v[dir]) ));
|
||||
|
||||
if(abs(v[dir]) > 0.0) v[dir] = v[dir] + (v[dir]/abs(v[dir]))*alpha;
|
||||
else v[dir] = -alpha;
|
||||
}else{
|
||||
for(int i=k; i<j+1; i++){
|
||||
v[i] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Compute the product PA if trans = 0
|
||||
AP if trans = 1
|
||||
P = (I - b v transpose(v) )
|
||||
b = 2/v.v
|
||||
start at element l of matrix A
|
||||
v is of length j - k + 1 of v are nonzero
|
||||
**/
|
||||
|
||||
template <class T> inline void Householder_mult(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int k, int j, int trans)
|
||||
{
|
||||
int N ; SizeSquare(A,N);
|
||||
|
||||
if(abs(beta) > 0.0){
|
||||
for(int p=l; p<N; p++){
|
||||
T s = 0;
|
||||
if(trans==0){
|
||||
for(int i=k;i<j+1;i++) s += conj(v[i-k])*A[i][p];
|
||||
s *= beta;
|
||||
for(int i=k;i<j+1;i++){ A[i][p] = A[i][p]-s*conj(v[i-k]);}
|
||||
} else {
|
||||
for(int i=k;i<j+1;i++){ s += conj(v[i-k])*A[p][i];}
|
||||
s *= beta;
|
||||
for(int i=k;i<j+1;i++){ A[p][i]=A[p][i]-s*conj(v[i-k]);}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Compute the product PA if trans = 0
|
||||
AP if trans = 1
|
||||
P = (I - b v transpose(v) )
|
||||
b = 2/v.v
|
||||
start at element l of matrix A
|
||||
v is of length j - k + 1 of v are nonzero
|
||||
A is tridiagonal
|
||||
**/
|
||||
template <class T> inline void Householder_mult_tri(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int M, int k, int j, int trans)
|
||||
{
|
||||
if(abs(beta) > 0.0){
|
||||
|
||||
int N ; SizeSquare(A,N);
|
||||
|
||||
DenseMatrix<T> tmp; Resize(tmp,N,N); Fill(tmp,0);
|
||||
|
||||
T s;
|
||||
for(int p=l; p<M; p++){
|
||||
s = 0;
|
||||
if(trans==0){
|
||||
for(int i=k;i<j+1;i++) s = s + conj(v[i-k])*A[i][p];
|
||||
}else{
|
||||
for(int i=k;i<j+1;i++) s = s + v[i-k]*A[p][i];
|
||||
}
|
||||
s = beta*s;
|
||||
if(trans==0){
|
||||
for(int i=k;i<j+1;i++) tmp[i][p] = tmp(i,p) - s*v[i-k];
|
||||
}else{
|
||||
for(int i=k;i<j+1;i++) tmp[p][i] = tmp[p][i] - s*conj(v[i-k]);
|
||||
}
|
||||
}
|
||||
for(int p=l; p<M; p++){
|
||||
if(trans==0){
|
||||
for(int i=k;i<j+1;i++) A[i][p] = A[i][p] + tmp[i][p];
|
||||
}else{
|
||||
for(int i=k;i<j+1;i++) A[p][i] = A[p][i] + tmp[p][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
@ -1,753 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_BIRL_H
|
||||
#define GRID_BIRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class BlockImplicitlyRestartedLanczos {
|
||||
|
||||
const RealD small = 1.0e-16;
|
||||
public:
|
||||
int lock;
|
||||
int get;
|
||||
int Niter;
|
||||
int converged;
|
||||
|
||||
int Nminres; // Minimum number of restarts; only check for convergence after
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Np; // Np -- Number of spare vecs in kryloc space
|
||||
int Nm; // Nm -- total number of vectors
|
||||
|
||||
int orth_period;
|
||||
|
||||
RealD OrthoTime;
|
||||
|
||||
RealD eresid, betastp;
|
||||
SortEigen<Field> _sort;
|
||||
LinearFunction<Field> &_HermOp;
|
||||
LinearFunction<Field> &_HermOpTest;
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
|
||||
BlockImplicitlyRestartedLanczos(
|
||||
LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
RealD _betastp, // if beta(k) < betastp: converged
|
||||
int _Niter, // Max iterations
|
||||
int _Nminres, int _orth_period = 1) :
|
||||
_HermOp(HermOp),
|
||||
_HermOpTest(HermOpTest),
|
||||
Nstop(_Nstop),
|
||||
Nk(_Nk),
|
||||
Nm(_Nm),
|
||||
eresid(_eresid),
|
||||
betastp(_betastp),
|
||||
Niter(_Niter),
|
||||
Nminres(_Nminres),
|
||||
orth_period(_orth_period)
|
||||
{
|
||||
Np = Nm-Nk; assert(Np>0);
|
||||
};
|
||||
|
||||
BlockImplicitlyRestartedLanczos(
|
||||
LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
RealD _betastp, // if beta(k) < betastp: converged
|
||||
int _Niter, // Max iterations
|
||||
int _Nminres,
|
||||
int _orth_period = 1) :
|
||||
_HermOp(HermOp),
|
||||
_HermOpTest(HermOpTest),
|
||||
Nstop(_Nk),
|
||||
Nk(_Nk),
|
||||
Nm(_Nm),
|
||||
eresid(_eresid),
|
||||
betastp(_betastp),
|
||||
Niter(_Niter),
|
||||
Nminres(_Nminres),
|
||||
orth_period(_orth_period)
|
||||
{
|
||||
Np = Nm-Nk; assert(Np>0);
|
||||
};
|
||||
|
||||
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
BasisFieldVector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
assert( k< Nm );
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
gsw_op.Start();
|
||||
_HermOp(evec_k,w);
|
||||
gsw_op.Stop();
|
||||
|
||||
if(k>0){
|
||||
w -= lme[k-1] * evec[k-1];
|
||||
}
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
std::cout<<GridLogMessage << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
if ( beta < tiny ) {
|
||||
std::cout<<GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
gsw_o.Start();
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
}
|
||||
gsw_o.Stop();
|
||||
|
||||
if(k < Nm-1) {
|
||||
evec[k+1] = w;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() <<
|
||||
" orth=" << gsw_o.Elapsed() << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int Nk,
|
||||
int Nm,
|
||||
std::vector<RealD>& Qt,
|
||||
RealD Dsh,
|
||||
int kmin,
|
||||
int kmax)
|
||||
{
|
||||
int k = kmin-1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||||
RealD s = -lme[k] *Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
x =-s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt[i+Nm*k ];
|
||||
RealD Qtmp2 = Qt[i+Nm*(k+1)];
|
||||
Qt[i+Nm*k ] = c*Qtmp1 - s*Qtmp2;
|
||||
Qt[i+Nm*(k+1)] = s*Qtmp1 + c*Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for(int k = kmin; k < kmax-1; ++k){
|
||||
|
||||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||||
RealD c = lme[k-1]*Fden;
|
||||
RealD s = - x*Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
lme[k-1] = c*lme[k-1] -s*x;
|
||||
|
||||
if(k != kmax-2){
|
||||
x = -s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt[i+Nm*k ];
|
||||
RealD Qtmp2 = Qt[i+Nm*(k+1)];
|
||||
Qt[i+Nm*k ] = c*Qtmp1 -s*Qtmp2;
|
||||
Qt[i+Nm*(k+1)] = s*Qtmp1 +c*Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK_IRL
|
||||
#define LAPACK_INT int
|
||||
//long long
|
||||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int N1,
|
||||
int N2,
|
||||
std::vector<RealD>& Qt,
|
||||
GridBase *grid){
|
||||
|
||||
std::cout << GridLogMessage << "diagonalize_lapack start\n";
|
||||
GridStopWatch gsw;
|
||||
|
||||
const int size = Nm;
|
||||
// tevals.resize(size);
|
||||
// tevecs.resize(size);
|
||||
LAPACK_INT NN = N1;
|
||||
std::vector<double> evals_tmp(NN);
|
||||
std::vector<double> evec_tmp(NN*NN);
|
||||
memset(&evec_tmp[0],0,sizeof(double)*NN*NN);
|
||||
// double AA[NN][NN];
|
||||
std::vector<double> DD(NN);
|
||||
std::vector<double> EE(NN);
|
||||
for (int i = 0; i< NN; i++)
|
||||
for (int j = i - 1; j <= i + 1; j++)
|
||||
if ( j < NN && j >= 0 ) {
|
||||
if (i==j) DD[i] = lmd[i];
|
||||
if (i==j) evals_tmp[i] = lmd[i];
|
||||
if (j==(i-1)) EE[j] = lme[j];
|
||||
}
|
||||
LAPACK_INT evals_found;
|
||||
LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||||
LAPACK_INT liwork = 3+NN*10 ;
|
||||
std::vector<LAPACK_INT> iwork(liwork);
|
||||
std::vector<double> work(lwork);
|
||||
std::vector<LAPACK_INT> isuppz(2*NN);
|
||||
char jobz = 'V'; // calculate evals & evecs
|
||||
char range = 'I'; // calculate all evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
std::vector<int> ifail(NN);
|
||||
LAPACK_INT info;
|
||||
// int total = QMP_get_number_of_nodes();
|
||||
// int node = QMP_get_node_number();
|
||||
// GridBase *grid = evec[0]._grid;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN/total)+1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
LAPACK_INT il = interval*node+1 , iu = interval*(node+1);
|
||||
if (iu > NN) iu=NN;
|
||||
double tol = 0.0;
|
||||
if (1) {
|
||||
memset(&evals_tmp[0],0,sizeof(double)*NN);
|
||||
if ( il <= NN){
|
||||
std::cout << GridLogMessage << "dstegr started" << std::endl;
|
||||
gsw.Start();
|
||||
dstegr(&jobz, &range, &NN,
|
||||
(double*)&DD[0], (double*)&EE[0],
|
||||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN,
|
||||
&isuppz[0],
|
||||
&work[0], &lwork, &iwork[0], &liwork,
|
||||
&info);
|
||||
gsw.Stop();
|
||||
std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl;
|
||||
for (int i = iu-1; i>= il-1; i--){
|
||||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||||
for (int j = 0; j< NN; j++){
|
||||
evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j];
|
||||
if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
// QMP_sum_double_array(evals_tmp,NN);
|
||||
// QMP_sum_double_array((double *)evec_tmp,NN*NN);
|
||||
grid->GlobalSumVector(&evals_tmp[0],NN);
|
||||
grid->GlobalSumVector(&evec_tmp[0],NN*NN);
|
||||
}
|
||||
}
|
||||
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
|
||||
for(int i=0;i<NN;i++){
|
||||
for(int j=0;j<NN;j++)
|
||||
Qt[(NN-1-i)*N2+j]=evec_tmp[i*NN + j];
|
||||
lmd [NN-1-i]=evals_tmp[i];
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "diagonalize_lapack complete\n";
|
||||
}
|
||||
#undef LAPACK_INT
|
||||
#endif
|
||||
|
||||
|
||||
void diagonalize(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int N2,
|
||||
int N1,
|
||||
std::vector<RealD>& Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
|
||||
#ifdef USE_LAPACK_IRL
|
||||
const int check_lapack=0; // just use lapack if 0, check against lapack if 1
|
||||
|
||||
if(!check_lapack)
|
||||
return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
|
||||
|
||||
std::vector <RealD> lmd2(N1);
|
||||
std::vector <RealD> lme2(N1);
|
||||
std::vector<RealD> Qt2(N1*N1);
|
||||
for(int k=0; k<N1; ++k){
|
||||
lmd2[k] = lmd[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
for(int k=0; k<N1*N1; ++k)
|
||||
Qt2[k] = Qt[k];
|
||||
|
||||
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
|
||||
#endif
|
||||
|
||||
int Niter = 10000*N1;
|
||||
int kmin = 1;
|
||||
int kmax = N2;
|
||||
// (this should be more sophisticated)
|
||||
|
||||
for(int iter=0; ; ++iter){
|
||||
if ( (iter+1)%(100*N1)==0)
|
||||
std::cout<<GridLogMessage << "[QL method] Not converged - iteration "<<iter+1<<"\n";
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
Niter = iter;
|
||||
#ifdef USE_LAPACK_IRL
|
||||
if(check_lapack){
|
||||
const double SMALL=1e-8;
|
||||
diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
|
||||
std::vector <RealD> lmd3(N2);
|
||||
for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
|
||||
_sort.push(lmd3,N2);
|
||||
_sort.push(lmd2,N2);
|
||||
for(int k=0; k<N2; ++k){
|
||||
if (fabs(lmd2[k] - lmd3[k]) >SMALL) std::cout<<GridLogMessage <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
|
||||
// if (fabs(lme2[k] - lme[k]) >SMALL) std::cout<<GridLogMessage <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
|
||||
}
|
||||
for(int k=0; k<N1*N1; ++k){
|
||||
// if (fabs(Qt2[k] - Qt[k]) >SMALL) std::cout<<GridLogMessage <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout<<GridLogMessage << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
#if 1
|
||||
template<typename T>
|
||||
static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w,
|
||||
BasisFieldVector<Field>& evec,
|
||||
int k)
|
||||
{
|
||||
double t0=-usecond()/1e6;
|
||||
|
||||
evec.orthogonalize(w,k);
|
||||
|
||||
normalise(w);
|
||||
t0+=usecond()/1e6;
|
||||
OrthoTime +=t0;
|
||||
}
|
||||
|
||||
void setUnit_Qt(int Nm, std::vector<RealD> &Qt) {
|
||||
for(int i=0; i<Qt.size(); ++i) Qt[i] = 0.0;
|
||||
for(int k=0; k<Nm; ++k) Qt[k + k*Nm] = 1.0;
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
|
||||
void calc(std::vector<RealD>& eval,
|
||||
BasisFieldVector<Field>& evec,
|
||||
const Field& src,
|
||||
int& Nconv,
|
||||
bool reverse,
|
||||
int SkipTest)
|
||||
{
|
||||
|
||||
GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid;
|
||||
assert(grid == src._grid);
|
||||
|
||||
std::cout<<GridLogMessage << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
|
||||
std::cout<<GridLogMessage << " -- Nm = " << Nm << std::endl;
|
||||
std::cout<<GridLogMessage << " -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout<<GridLogMessage << " -- size of evec = " << evec.size() << std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
_HermOpTest(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> eval2_copy(Nm);
|
||||
std::vector<RealD> Qt(Nm*Nm);
|
||||
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
normalise(evec[0]);
|
||||
std:: cout<<GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0])<<std::endl;
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime=0.;
|
||||
double t0=usecond()/1e6;
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
double t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::Initial steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
t1=usecond()/1e6;
|
||||
|
||||
// Restarting loop begins
|
||||
for(int iter = 0; iter<Niter; ++iter){
|
||||
|
||||
std::cout<<GridLogMessage<<"\n Restart iteration = "<< iter << std::endl;
|
||||
|
||||
//
|
||||
// Rudy does a sort first which looks very different. Getting fed up with sorting out the algo defs.
|
||||
// We loop over
|
||||
//
|
||||
OrthoTime=0.;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL:: "<<Np <<" steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
f *= lme[Nm-1];
|
||||
|
||||
t1=usecond()/1e6;
|
||||
|
||||
|
||||
// getting eigenvalues
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
setUnit_Qt(Nm,Qt);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL:: diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
// sorting
|
||||
eval2_copy = eval2;
|
||||
|
||||
_sort.push(eval2,Nm);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL:: eval sorting: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
setUnit_Qt(Nm,Qt);
|
||||
for(int ip=0; ip<k2; ++ip){
|
||||
std::cout<<GridLogMessage << "eval "<< ip << " "<< eval2[ip] << std::endl;
|
||||
}
|
||||
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
std::cout<<GridLogMessage << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
|
||||
}
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::qr_decomp: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
assert(k2<Nm);
|
||||
|
||||
|
||||
assert(k2<Nm);
|
||||
assert(k1>0);
|
||||
evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm);
|
||||
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::QR rotation: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
fflush(stdout);
|
||||
|
||||
// Compressed vector f and beta(k2)
|
||||
f *= Qt[Nm-1+Nm*(k2-1)];
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<<GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
// Convergence test
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
|
||||
std::cout<<GridLogMessage << "eval2[" << k << "] = " << eval2[k] << std::endl;
|
||||
}
|
||||
setUnit_Qt(Nm,Qt);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
if (iter >= Nminres) {
|
||||
std::cout << GridLogMessage << "Rotation to test convergence " << std::endl;
|
||||
|
||||
Field ev0_orig(grid);
|
||||
ev0_orig = evec[0];
|
||||
|
||||
evec.rotate(Qt,0,Nk,0,Nk,Nm);
|
||||
|
||||
{
|
||||
std::cout << GridLogMessage << "Test convergence" << std::endl;
|
||||
Field B(grid);
|
||||
|
||||
for(int j = 0; j<Nk; j+=SkipTest){
|
||||
B=evec[j];
|
||||
//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl;
|
||||
B.checkerboard = evec[0].checkerboard;
|
||||
|
||||
_HermOpTest(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval2[j] = vnum/vden;
|
||||
v -= eval2[j]*B;
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
|
||||
<<" "<< vnum/(sqrt(vden)*sqrt(vv0))
|
||||
<< " norm(B["<<j<<"])="<< vden <<std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (j == Nconv) ){
|
||||
Nconv+=SkipTest;
|
||||
}
|
||||
}
|
||||
|
||||
// test if we converged, if so, terminate
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::convergence testing: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
std::cout<<GridLogMessage<<" #modes converged: "<<Nconv<<std::endl;
|
||||
|
||||
if( Nconv>=Nstop || beta_k < betastp){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Rotate back" << std::endl;
|
||||
//B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
|
||||
{
|
||||
Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
for (int k=0;k<Nk;k++)
|
||||
for (int j=0;j<Nk;j++)
|
||||
qm(j,k) = Qt[k+Nm*j];
|
||||
GridStopWatch timeInv;
|
||||
timeInv.Start();
|
||||
Eigen::MatrixXd qmI = qm.inverse();
|
||||
timeInv.Stop();
|
||||
std::vector<RealD> QtI(Nm*Nm);
|
||||
for (int k=0;k<Nk;k++)
|
||||
for (int j=0;j<Nk;j++)
|
||||
QtI[k+Nm*j] = qmI(j,k);
|
||||
|
||||
RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
|
||||
assert(res_check_rotate_inverse < 1e-7);
|
||||
evec.rotate(QtI,0,Nk,0,Nk,Nm);
|
||||
|
||||
axpy(ev0_orig,-1.0,evec[0],ev0_orig);
|
||||
std::cout << GridLogMessage << "Rotation done (in " << timeInv.Elapsed() << " = " << timeInv.useconds() << " us" <<
|
||||
", error = " << res_check_rotate_inverse <<
|
||||
"); | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cout << GridLogMessage << "iter < Nminres: do not yet test for convergence\n";
|
||||
} // end of iter loop
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"\n NOT converged.\n";
|
||||
abort();
|
||||
|
||||
converged:
|
||||
|
||||
if (SkipTest == 1) {
|
||||
eval = eval2;
|
||||
} else {
|
||||
|
||||
// test quickly
|
||||
for (int j=0;j<Nstop;j+=SkipTest) {
|
||||
std::cout<<GridLogMessage << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
|
||||
}
|
||||
|
||||
eval2_copy.resize(eval2.size());
|
||||
eval = eval2_copy;
|
||||
}
|
||||
|
||||
evec.sortInPlace(eval,reverse);
|
||||
|
||||
{
|
||||
|
||||
// test
|
||||
for (int j=0;j<Nstop;j++) {
|
||||
std::cout<<GridLogMessage << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//_sort.push(eval,evec,Nconv);
|
||||
//evec.sort(eval,Nconv);
|
||||
|
||||
std::cout<<GridLogMessage << "\n Converged\n Summary :\n";
|
||||
std::cout<<GridLogMessage << " -- Iterations = "<< Nconv << "\n";
|
||||
std::cout<<GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout<<GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -1,143 +0,0 @@
|
||||
namespace Grid {
|
||||
|
||||
/*
|
||||
BlockProjector
|
||||
|
||||
If _HP_BLOCK_PROJECTORS_ is defined, we assume that _evec is a basis that is not
|
||||
fully orthonormalized (to the precision of the coarse field) and we allow for higher-precision
|
||||
coarse field than basis field.
|
||||
|
||||
*/
|
||||
//#define _HP_BLOCK_PROJECTORS_
|
||||
|
||||
template<typename Field>
|
||||
class BlockProjector {
|
||||
public:
|
||||
|
||||
BasisFieldVector<Field>& _evec;
|
||||
BlockedGrid<Field>& _bgrid;
|
||||
|
||||
BlockProjector(BasisFieldVector<Field>& evec, BlockedGrid<Field>& bgrid) : _evec(evec), _bgrid(bgrid) {
|
||||
}
|
||||
|
||||
void createOrthonormalBasis(RealD thres = 0.0) {
|
||||
|
||||
GridStopWatch sw;
|
||||
sw.Start();
|
||||
|
||||
int cnt = 0;
|
||||
|
||||
#pragma omp parallel shared(cnt)
|
||||
{
|
||||
int lcnt = 0;
|
||||
|
||||
#pragma omp for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
|
||||
for (int i=0;i<_evec._Nm;i++) {
|
||||
|
||||
auto nrm0 = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
|
||||
|
||||
// |i> -= <j|i> |j>
|
||||
for (int j=0;j<i;j++) {
|
||||
_bgrid.block_caxpy(b,_evec._v[i],-_bgrid.block_sp(b,_evec._v[j],_evec._v[i]),_evec._v[j],_evec._v[i]);
|
||||
}
|
||||
|
||||
auto nrm = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
|
||||
|
||||
auto eps = nrm/nrm0;
|
||||
if (Reduce(eps).real() < thres) {
|
||||
lcnt++;
|
||||
}
|
||||
|
||||
// TODO: if norm is too small, remove this eigenvector/mark as not needed; in practice: set it to zero norm here and return a mask
|
||||
// that is then used later to decide not to write certain eigenvectors to disk (add a norm calculation before subtraction step and look at nrm/nrm0 < eps to decide)
|
||||
_bgrid.block_cscale(b,1.0 / sqrt(nrm),_evec._v[i]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#pragma omp critical
|
||||
{
|
||||
cnt += lcnt;
|
||||
}
|
||||
}
|
||||
sw.Stop();
|
||||
std::cout << GridLogMessage << "Gram-Schmidt to create blocked basis took " << sw.Elapsed() << " (" << ((RealD)cnt / (RealD)_bgrid._o_blocks / (RealD)_evec._Nm)
|
||||
<< " below threshold)" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void coarseToFine(const CoarseField& in, Field& out) {
|
||||
|
||||
out = zero;
|
||||
out.checkerboard = _evec._v[0].checkerboard;
|
||||
|
||||
int Nbasis = sizeof(in._odata[0]._internal._internal) / sizeof(in._odata[0]._internal._internal[0]);
|
||||
assert(Nbasis == _evec._Nm);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
for (int j=0;j<_evec._Nm;j++) {
|
||||
_bgrid.block_caxpy(b,out,in._odata[b]._internal._internal[j],_evec._v[j],out);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void fineToCoarse(const Field& in, CoarseField& out) {
|
||||
|
||||
out = zero;
|
||||
|
||||
int Nbasis = sizeof(out._odata[0]._internal._internal) / sizeof(out._odata[0]._internal._internal[0]);
|
||||
assert(Nbasis == _evec._Nm);
|
||||
|
||||
|
||||
Field tmp(_bgrid._grid);
|
||||
tmp = in;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
for (int j=0;j<_evec._Nm;j++) {
|
||||
// |rhs> -= <j|rhs> |j>
|
||||
auto c = _bgrid.block_sp(b,_evec._v[j],tmp);
|
||||
_bgrid.block_caxpy(b,tmp,-c,_evec._v[j],tmp); // may make this more numerically stable
|
||||
out._odata[b]._internal._internal[j] = c;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflateFine(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
for (int i=0;i<N;i++) {
|
||||
Field tmp(result._grid);
|
||||
coarseToFine(_coef._v[i],tmp);
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflateCoarse(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
CoarseField src_coarse(_coef._v[0]._grid);
|
||||
CoarseField result_coarse = src_coarse;
|
||||
result_coarse = zero;
|
||||
fineToCoarse(src_orig,src_coarse);
|
||||
for (int i=0;i<N;i++) {
|
||||
axpy(result_coarse,TensorRemove(innerProduct(_coef._v[i],src_coarse)) / eval[i],_coef._v[i],result_coarse);
|
||||
}
|
||||
coarseToFine(result_coarse,result);
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflate(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
// Deflation on coarse Grid is much faster, so use it by default. Deflation on fine Grid is kept for legacy reasons for now.
|
||||
deflateCoarse(_coef,eval,N,src_orig,result);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
@ -1,401 +0,0 @@
|
||||
namespace Grid {
|
||||
|
||||
template<typename Field>
|
||||
class BlockedGrid {
|
||||
public:
|
||||
GridBase* _grid;
|
||||
typedef typename Field::scalar_type Coeff_t;
|
||||
typedef typename Field::vector_type vCoeff_t;
|
||||
|
||||
std::vector<int> _bs; // block size
|
||||
std::vector<int> _nb; // number of blocks
|
||||
std::vector<int> _l; // local dimensions irrespective of cb
|
||||
std::vector<int> _l_cb; // local dimensions of checkerboarded vector
|
||||
std::vector<int> _l_cb_o; // local dimensions of inner checkerboarded vector
|
||||
std::vector<int> _bs_cb; // block size in checkerboarded vector
|
||||
std::vector<int> _nb_o; // number of blocks of simd o-sites
|
||||
|
||||
int _nd, _blocks, _cf_size, _cf_block_size, _cf_o_block_size, _o_blocks, _block_sites;
|
||||
|
||||
BlockedGrid(GridBase* grid, const std::vector<int>& block_size) :
|
||||
_grid(grid), _bs(block_size), _nd((int)_bs.size()),
|
||||
_nb(block_size), _l(block_size), _l_cb(block_size), _nb_o(block_size),
|
||||
_l_cb_o(block_size), _bs_cb(block_size) {
|
||||
|
||||
_blocks = 1;
|
||||
_o_blocks = 1;
|
||||
_l = grid->FullDimensions();
|
||||
_l_cb = grid->LocalDimensions();
|
||||
_l_cb_o = grid->_rdimensions;
|
||||
|
||||
_cf_size = 1;
|
||||
_block_sites = 1;
|
||||
for (int i=0;i<_nd;i++) {
|
||||
_l[i] /= grid->_processors[i];
|
||||
|
||||
assert(!(_l[i] % _bs[i])); // lattice must accommodate choice of blocksize
|
||||
|
||||
int r = _l[i] / _l_cb[i];
|
||||
assert(!(_bs[i] % r)); // checkerboarding must accommodate choice of blocksize
|
||||
_bs_cb[i] = _bs[i] / r;
|
||||
_block_sites *= _bs_cb[i];
|
||||
_nb[i] = _l[i] / _bs[i];
|
||||
_nb_o[i] = _nb[i] / _grid->_simd_layout[i];
|
||||
if (_nb[i] % _grid->_simd_layout[i]) { // simd must accommodate choice of blocksize
|
||||
std::cout << GridLogMessage << "Problem: _nb[" << i << "] = " << _nb[i] << " _grid->_simd_layout[" << i << "] = " << _grid->_simd_layout[i] << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
_blocks *= _nb[i];
|
||||
_o_blocks *= _nb_o[i];
|
||||
_cf_size *= _l[i];
|
||||
}
|
||||
|
||||
_cf_size *= 12 / 2;
|
||||
_cf_block_size = _cf_size / _blocks;
|
||||
_cf_o_block_size = _cf_size / _o_blocks;
|
||||
|
||||
std::cout << GridLogMessage << "BlockedGrid:" << std::endl;
|
||||
std::cout << GridLogMessage << " _l = " << _l << std::endl;
|
||||
std::cout << GridLogMessage << " _l_cb = " << _l_cb << std::endl;
|
||||
std::cout << GridLogMessage << " _l_cb_o = " << _l_cb_o << std::endl;
|
||||
std::cout << GridLogMessage << " _bs = " << _bs << std::endl;
|
||||
std::cout << GridLogMessage << " _bs_cb = " << _bs_cb << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << " _nb = " << _nb << std::endl;
|
||||
std::cout << GridLogMessage << " _nb_o = " << _nb_o << std::endl;
|
||||
std::cout << GridLogMessage << " _blocks = " << _blocks << std::endl;
|
||||
std::cout << GridLogMessage << " _o_blocks = " << _o_blocks << std::endl;
|
||||
std::cout << GridLogMessage << " sizeof(vCoeff_t) = " << sizeof(vCoeff_t) << std::endl;
|
||||
std::cout << GridLogMessage << " _cf_size = " << _cf_size << std::endl;
|
||||
std::cout << GridLogMessage << " _cf_block_size = " << _cf_block_size << std::endl;
|
||||
std::cout << GridLogMessage << " _block_sites = " << _block_sites << std::endl;
|
||||
std::cout << GridLogMessage << " _grid->oSites() = " << _grid->oSites() << std::endl;
|
||||
|
||||
// _grid->Barrier();
|
||||
//abort();
|
||||
}
|
||||
|
||||
void block_to_coor(int b, std::vector<int>& x0) {
|
||||
|
||||
std::vector<int> bcoor;
|
||||
bcoor.resize(_nd);
|
||||
x0.resize(_nd);
|
||||
assert(b < _o_blocks);
|
||||
Lexicographic::CoorFromIndex(bcoor,b,_nb_o);
|
||||
int i;
|
||||
|
||||
for (i=0;i<_nd;i++) {
|
||||
x0[i] = bcoor[i]*_bs_cb[i];
|
||||
}
|
||||
|
||||
//std::cout << GridLogMessage << "Map block b -> " << x0 << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void block_site_to_o_coor(const std::vector<int>& x0, std::vector<int>& coor, int i) {
|
||||
Lexicographic::CoorFromIndex(coor,i,_bs_cb);
|
||||
for (int j=0;j<_nd;j++)
|
||||
coor[j] += x0[j];
|
||||
}
|
||||
|
||||
int block_site_to_o_site(const std::vector<int>& x0, int i) {
|
||||
std::vector<int> coor; coor.resize(_nd);
|
||||
block_site_to_o_coor(x0,coor,i);
|
||||
Lexicographic::IndexFromCoor(coor,i,_l_cb_o);
|
||||
return i;
|
||||
}
|
||||
|
||||
vCoeff_t block_sp(int b, const Field& x, const Field& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
vCoeff_t ret = 0.0;
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
ret += TensorRemove(innerProduct(x._odata[ss],y._odata[ss]));
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
vCoeff_t block_sp(int b, const Field& x, const std::vector< ComplexD >& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
std::vector< ComplexD > ret(nsimd);
|
||||
for (int i=0;i<nsimd;i++)
|
||||
ret[i] = 0.0;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
int n = lsize / nsimd;
|
||||
for (int l=0;l<n;l++) {
|
||||
for (int j=0;j<nsimd;j++) {
|
||||
int t = lsize * i + l*nsimd + j;
|
||||
|
||||
ret[j] += conjugate(((Coeff_t*)&x._odata[ss]._internal)[l*nsimd + j]) * y[t];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vCoeff_t vret;
|
||||
for (int i=0;i<nsimd;i++)
|
||||
((Coeff_t*)&vret)[i] = (Coeff_t)ret[i];
|
||||
|
||||
return vret;
|
||||
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void vcaxpy(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x,const iScalar<T>& y) {
|
||||
vcaxpy(r._internal,a,x._internal,y._internal);
|
||||
}
|
||||
|
||||
template<class T,int N>
|
||||
void vcaxpy(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x,const iVector<T,N>& y) {
|
||||
for (int i=0;i<N;i++)
|
||||
vcaxpy(r._internal[i],a,x._internal[i],y._internal[i]);
|
||||
}
|
||||
|
||||
void vcaxpy(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x,const vCoeff_t& y) {
|
||||
r = a*x + y;
|
||||
}
|
||||
|
||||
void block_caxpy(int b, Field& ret, const vCoeff_t& a, const Field& x, const Field& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
vcaxpy(ret._odata[ss],a,x._odata[ss],y._odata[ss]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_caxpy(int b, std::vector< ComplexD >& ret, const vCoeff_t& a, const Field& x, const std::vector< ComplexD >& y) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
int n = lsize / nsimd;
|
||||
for (int l=0;l<n;l++) {
|
||||
vCoeff_t r = a* ((vCoeff_t*)&x._odata[ss]._internal)[l];
|
||||
|
||||
for (int j=0;j<nsimd;j++) {
|
||||
int t = lsize * i + l*nsimd + j;
|
||||
ret[t] = y[t] + ((Coeff_t*)&r)[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_set(int b, Field& ret, const std::vector< ComplexD >& x) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
for (int l=0;l<lsize;l++)
|
||||
((Coeff_t*)&ret._odata[ss]._internal)[l] = (Coeff_t)x[lsize * i + l]; // convert precision
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_get(int b, const Field& ret, std::vector< ComplexD >& x) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
for (int l=0;l<lsize;l++)
|
||||
x[lsize * i + l] = (ComplexD)((Coeff_t*)&ret._odata[ss]._internal)[l];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void vcscale(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x) {
|
||||
vcscale(r._internal,a,x._internal);
|
||||
}
|
||||
|
||||
template<class T,int N>
|
||||
void vcscale(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x) {
|
||||
for (int i=0;i<N;i++)
|
||||
vcscale(r._internal[i],a,x._internal[i]);
|
||||
}
|
||||
|
||||
void vcscale(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x) {
|
||||
r = a*x;
|
||||
}
|
||||
|
||||
void block_cscale(int b, const vCoeff_t& a, Field& ret) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
vcscale(ret._odata[ss],a,ret._odata[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
void getCanonicalBlockOffset(int cb, std::vector<int>& x0) {
|
||||
const int ndim = 5;
|
||||
assert(_nb.size() == ndim);
|
||||
std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
x0.resize(ndim);
|
||||
|
||||
assert(cb >= 0);
|
||||
assert(cb < _nbc[0]*_nbc[1]*_nbc[2]*_nbc[3]*_nbc[4]);
|
||||
|
||||
Lexicographic::CoorFromIndex(x0,cb,_nbc);
|
||||
int i;
|
||||
|
||||
for (i=0;i<ndim;i++) {
|
||||
x0[i] *= _bsc[i];
|
||||
}
|
||||
|
||||
//if (cb < 2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << " To: " << x0 << std::endl;
|
||||
}
|
||||
|
||||
void pokeBlockOfVectorCanonical(int cb,Field& v,const std::vector<float>& buf) {
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
std::vector<int> ldim = v._grid->LocalDimensions();
|
||||
std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
|
||||
const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
|
||||
// take canonical block cb of v and put it in canonical ordering in buf
|
||||
std::vector<int> cx0;
|
||||
getCanonicalBlockOffset(cb,cx0);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<int> co0,cl0;
|
||||
co0=cx0; cl0=cx0;
|
||||
|
||||
#pragma omp for
|
||||
for (int i=0;i<_nbsc;i++) {
|
||||
Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
|
||||
for (int j=0;j<(int)_bsc.size();j++)
|
||||
cl0[j] = cx0[j] + co0[j];
|
||||
|
||||
std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
|
||||
int oi = v._grid->oIndex(l0);
|
||||
int ii = v._grid->iIndex(l0);
|
||||
int lti = i;
|
||||
|
||||
//if (cb < 2 && i<2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
|
||||
|
||||
for (int s=0;s<4;s++)
|
||||
for (int c=0;c<3;c++) {
|
||||
Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
|
||||
int ti = 12*lti + 3*s + c;
|
||||
ld = Coeff_t(buf[2*ti+0], buf[2*ti+1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void peekBlockOfVectorCanonical(int cb,const Field& v,std::vector<float>& buf) {
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
std::vector<int> ldim = v._grid->LocalDimensions();
|
||||
std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
|
||||
const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
|
||||
// take canonical block cb of v and put it in canonical ordering in buf
|
||||
std::vector<int> cx0;
|
||||
getCanonicalBlockOffset(cb,cx0);
|
||||
|
||||
buf.resize(_cf_block_size * 2);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<int> co0,cl0;
|
||||
co0=cx0; cl0=cx0;
|
||||
|
||||
#pragma omp for
|
||||
for (int i=0;i<_nbsc;i++) {
|
||||
Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
|
||||
for (int j=0;j<(int)_bsc.size();j++)
|
||||
cl0[j] = cx0[j] + co0[j];
|
||||
|
||||
std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
|
||||
int oi = v._grid->oIndex(l0);
|
||||
int ii = v._grid->iIndex(l0);
|
||||
int lti = i;
|
||||
|
||||
//if (cb < 2 && i<2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
|
||||
|
||||
for (int s=0;s<4;s++)
|
||||
for (int c=0;c<3;c++) {
|
||||
Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
|
||||
int ti = 12*lti + 3*s + c;
|
||||
buf[2*ti+0] = ld.real();
|
||||
buf[2*ti+1] = ld.imag();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int globalToLocalCanonicalBlock(int slot,const std::vector<int>& src_nodes,int nb) {
|
||||
// processor coordinate
|
||||
int _nd = (int)src_nodes.size();
|
||||
std::vector<int> _src_nodes = src_nodes;
|
||||
std::vector<int> pco(_nd);
|
||||
Lexicographic::CoorFromIndex(pco,slot,_src_nodes);
|
||||
std::vector<int> cpco = { pco[1], pco[2], pco[3], pco[4], pco[0] };
|
||||
|
||||
// get local block
|
||||
std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
|
||||
assert(_nd == 5);
|
||||
std::vector<int> c_src_local_blocks(_nd);
|
||||
for (int i=0;i<_nd;i++) {
|
||||
assert(_grid->_fdimensions[i] % (src_nodes[i] * _bs[i]) == 0);
|
||||
c_src_local_blocks[(i+4) % 5] = _grid->_fdimensions[i] / src_nodes[i] / _bs[i];
|
||||
}
|
||||
std::vector<int> cbcoor(_nd); // coordinate of block in slot in canonical form
|
||||
Lexicographic::CoorFromIndex(cbcoor,nb,c_src_local_blocks);
|
||||
|
||||
// cpco, cbcoor
|
||||
std::vector<int> clbcoor(_nd);
|
||||
for (int i=0;i<_nd;i++) {
|
||||
int cgcoor = cpco[i] * c_src_local_blocks[i] + cbcoor[i]; // global block coordinate
|
||||
int pcoor = cgcoor / _nbc[i]; // processor coordinate in my Grid
|
||||
int tpcoor = _grid->_processor_coor[(i+1)%5];
|
||||
if (pcoor != tpcoor)
|
||||
return -1;
|
||||
clbcoor[i] = cgcoor - tpcoor * _nbc[i]; // canonical local block coordinate for canonical dimension i
|
||||
}
|
||||
|
||||
int lnb;
|
||||
Lexicographic::IndexFromCoor(clbcoor,lnb,_nbc);
|
||||
//std::cout << "Mapped slot = " << slot << " nb = " << nb << " to " << lnb << std::endl;
|
||||
return lnb;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
@ -1,163 +0,0 @@
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class BasisFieldVector {
|
||||
public:
|
||||
int _Nm;
|
||||
|
||||
typedef typename Field::scalar_type Coeff_t;
|
||||
typedef typename Field::vector_type vCoeff_t;
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
std::vector<Field> _v; // _Nfull vectors
|
||||
|
||||
void report(int n,GridBase* value) {
|
||||
|
||||
std::cout << GridLogMessage << "BasisFieldVector allocated:\n";
|
||||
std::cout << GridLogMessage << " Delta N = " << n << "\n";
|
||||
std::cout << GridLogMessage << " Size of full vectors (size) = " <<
|
||||
((double)n*sizeof(vobj)*value->oSites() / 1024./1024./1024.) << " GB\n";
|
||||
std::cout << GridLogMessage << " Size = " << _v.size() << " Capacity = " << _v.capacity() << std::endl;
|
||||
|
||||
value->Barrier();
|
||||
|
||||
if (value->IsBoss()) {
|
||||
system("cat /proc/meminfo");
|
||||
}
|
||||
|
||||
value->Barrier();
|
||||
|
||||
}
|
||||
|
||||
BasisFieldVector(int Nm,GridBase* value) : _Nm(Nm), _v(Nm,value) {
|
||||
report(Nm,value);
|
||||
}
|
||||
|
||||
~BasisFieldVector() {
|
||||
}
|
||||
|
||||
Field& operator[](int i) {
|
||||
return _v[i];
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, int k) {
|
||||
for(int j=0; j<k; ++j){
|
||||
Coeff_t ip = (Coeff_t)innerProduct(_v[j],w);
|
||||
w = w - ip*_v[j];
|
||||
}
|
||||
}
|
||||
|
||||
void rotate(std::vector<RealD>& Qt,int j0, int j1, int k0,int k1,int Nm) {
|
||||
|
||||
GridBase* grid = _v[0]._grid;
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector < vobj > B(Nm);
|
||||
|
||||
#pragma omp for
|
||||
for(int ss=0;ss < grid->oSites();ss++){
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt[k+Nm*j] * _v[k]._odata[ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
_v[j]._odata[ss] = B[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return _Nm;
|
||||
}
|
||||
|
||||
void resize(int n) {
|
||||
if (n > _Nm)
|
||||
_v.reserve(n);
|
||||
|
||||
_v.resize(n,_v[0]._grid);
|
||||
|
||||
if (n < _Nm)
|
||||
_v.shrink_to_fit();
|
||||
|
||||
report(n - _Nm,_v[0]._grid);
|
||||
|
||||
_Nm = n;
|
||||
}
|
||||
|
||||
std::vector<int> getIndex(std::vector<RealD>& sort_vals) {
|
||||
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
sort(idx.begin(), idx.end(),
|
||||
[&sort_vals](int i1, int i2) {return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);});
|
||||
|
||||
return idx;
|
||||
}
|
||||
|
||||
void reorderInPlace(std::vector<RealD>& sort_vals, std::vector<int>& idx) {
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
|
||||
int nswaps = 0;
|
||||
for (size_t i=0;i<idx.size();i++) {
|
||||
if (idx[i] != i) {
|
||||
|
||||
// find proper place (this could be done in logarithmic time, don't bother for now)
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
assert(j!=idx.size());
|
||||
|
||||
Field _t(_v[0]._grid);
|
||||
_t = _v[idx[j]];
|
||||
_v[idx[j]] = _v[idx[i]];
|
||||
_v[idx[i]] = _t;
|
||||
|
||||
RealD _td = sort_vals[idx[j]];
|
||||
sort_vals[idx[j]] = sort_vals[idx[i]];
|
||||
sort_vals[idx[i]] = _td;
|
||||
|
||||
int _tt = idx[i];
|
||||
idx[i] = idx[j];
|
||||
idx[j] = _tt;
|
||||
|
||||
nswaps++;
|
||||
}
|
||||
}
|
||||
|
||||
// sort values
|
||||
gsw.Stop();
|
||||
std::cout << GridLogMessage << "Sorted eigenspace in place in " << gsw.Elapsed() << " using " << nswaps << " swaps" << std::endl;
|
||||
}
|
||||
|
||||
void sortInPlace(std::vector<RealD>& sort_vals, bool reverse) {
|
||||
|
||||
std::vector<int> idx = getIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
reorderInPlace(sort_vals,idx);
|
||||
|
||||
}
|
||||
|
||||
void deflate(const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
@ -60,7 +60,6 @@ namespace Grid {
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -7,7 +7,6 @@
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -54,194 +53,16 @@ Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
* M psi = eta
|
||||
***********************
|
||||
*Odd
|
||||
* i) D_oo psi_o = L^{-1} eta_o
|
||||
* i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Wilson:
|
||||
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* Stag:
|
||||
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* L^-1 eta_o= (1 0 ) (e
|
||||
* (-MoeMee^{-1} 1 )
|
||||
*
|
||||
*Even
|
||||
* ii) Mee psi_e + Meo psi_o = src_e
|
||||
*
|
||||
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
*
|
||||
*
|
||||
* TODO: Other options:
|
||||
*
|
||||
* a) change checkerboards for Schur e<->o
|
||||
*
|
||||
* Left precon by Moo^-1
|
||||
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Right precon by Moo^-1
|
||||
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* psi_o = M_oo^-1 phi_o
|
||||
* TODO: Deflation
|
||||
*/
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field> class SchurRedBlackStaggeredSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
src_o = tmp; assert(src_o.checkerboard ==Odd);
|
||||
// _Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
|
||||
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
// template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
|
||||
template<class Field> class SchurRedBlackStagSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackStagSolve(OperatorFunction<Field> &HermitianRBSolver, int cb) :
|
||||
_HermitianRBSolver(HermitianRBSolver), CBfactorise(cb) {}
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurStagOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
int Schur = CBfactorise;
|
||||
int Other = 1 - CBfactorise;
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Other,src_e,in);
|
||||
pickCheckerboard(Schur ,src_o,in);
|
||||
pickCheckerboard(Other,sol_e,out);
|
||||
pickCheckerboard(Schur ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Other);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Schur);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Schur);
|
||||
|
||||
#if 0
|
||||
// get the right MpcDag
|
||||
// _HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Schur);
|
||||
#else
|
||||
_Matrix.Mooee(tmp,src_o); assert(src_o.checkerboard ==Schur);
|
||||
#endif
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Schur);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Other);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Other);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Other);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Other);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Schur );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStag solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
@ -255,10 +76,12 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=cb;
|
||||
};
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
@ -318,238 +141,5 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoMixed {
|
||||
private:
|
||||
LinearFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_HermitianRBSolver(src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class SchurRedBlackStagMixed {
|
||||
private:
|
||||
LinearFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackStagMixed(LinearFunction<Field> &HermitianRBSolver, int cb) :
|
||||
_HermitianRBSolver(HermitianRBSolver), CBfactorise(cb) {}
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurStagOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
int Schur = CBfactorise;
|
||||
int Other = 1 - CBfactorise;
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Other,src_e,in);
|
||||
pickCheckerboard(Schur ,src_o,in);
|
||||
pickCheckerboard(Other,sol_e,out);
|
||||
pickCheckerboard(Schur ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Other);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Schur);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Schur);
|
||||
|
||||
_Matrix.Mooee(tmp,src_o); assert(src_o.checkerboard ==Schur);
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Schur);
|
||||
_HermitianRBSolver(src_o,sol_o); assert(sol_o.checkerboard==Other);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Other);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Other);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Other);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Other);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Schur );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStag solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -1,933 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LANC_H
|
||||
#define GRID_LANC_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
#ifdef USE_MKL
|
||||
#include<mkl_lapack.h>
|
||||
#else
|
||||
void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||||
int *m, double *w, double *z, int *ldz, int *isuppz,
|
||||
double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
//#include <lapacke/lapacke.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <Grid/algorithms/densematrix/DenseMatrix.h>
|
||||
//#include <Grid/algorithms/iterative/EigenSort.h>
|
||||
|
||||
// eliminate temorary vector in calc()
|
||||
#define MEM_SAVE
|
||||
|
||||
namespace Grid
|
||||
{
|
||||
|
||||
struct Bisection
|
||||
{
|
||||
|
||||
#if 0
|
||||
static void get_eig2 (int row_num, std::vector < RealD > &ALPHA,
|
||||
std::vector < RealD > &BETA,
|
||||
std::vector < RealD > &eig)
|
||||
{
|
||||
int i, j;
|
||||
std::vector < RealD > evec1 (row_num + 3);
|
||||
std::vector < RealD > evec2 (row_num + 3);
|
||||
RealD eps2;
|
||||
ALPHA[1] = 0.;
|
||||
BETHA[1] = 0.;
|
||||
for (i = 0; i < row_num - 1; i++)
|
||||
{
|
||||
ALPHA[i + 1] = A[i * (row_num + 1)].real ();
|
||||
BETHA[i + 2] = A[i * (row_num + 1) + 1].real ();
|
||||
}
|
||||
ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real ();
|
||||
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2);
|
||||
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2);
|
||||
|
||||
// Do we really need to sort here?
|
||||
int begin = 1;
|
||||
int end = row_num;
|
||||
int swapped = 1;
|
||||
while (swapped)
|
||||
{
|
||||
swapped = 0;
|
||||
for (i = begin; i < end; i++)
|
||||
{
|
||||
if (mag (evec2[i]) > mag (evec2[i + 1]))
|
||||
{
|
||||
swap (evec2 + i, evec2 + i + 1);
|
||||
swapped = 1;
|
||||
}
|
||||
}
|
||||
end--;
|
||||
for (i = end - 1; i >= begin; i--)
|
||||
{
|
||||
if (mag (evec2[i]) > mag (evec2[i + 1]))
|
||||
{
|
||||
swap (evec2 + i, evec2 + i + 1);
|
||||
swapped = 1;
|
||||
}
|
||||
}
|
||||
begin++;
|
||||
}
|
||||
|
||||
for (i = 0; i < row_num; i++)
|
||||
{
|
||||
for (j = 0; j < row_num; j++)
|
||||
{
|
||||
if (i == j)
|
||||
H[i * row_num + j] = evec2[i + 1];
|
||||
else
|
||||
H[i * row_num + j] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void bisec (std::vector < RealD > &c,
|
||||
std::vector < RealD > &b,
|
||||
int n,
|
||||
int m1,
|
||||
int m2,
|
||||
RealD eps1,
|
||||
RealD relfeh, std::vector < RealD > &x, RealD & eps2)
|
||||
{
|
||||
std::vector < RealD > wu (n + 2);
|
||||
|
||||
RealD h, q, x1, xu, x0, xmin, xmax;
|
||||
int i, a, k;
|
||||
|
||||
b[1] = 0.0;
|
||||
xmin = c[n] - fabs (b[n]);
|
||||
xmax = c[n] + fabs (b[n]);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
h = fabs (b[i]) + fabs (b[i + 1]);
|
||||
if (c[i] + h > xmax)
|
||||
xmax = c[i] + h;
|
||||
if (c[i] - h < xmin)
|
||||
xmin = c[i] - h;
|
||||
}
|
||||
xmax *= 2.;
|
||||
|
||||
eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin);
|
||||
if (eps1 <= 0.0)
|
||||
eps1 = eps2;
|
||||
eps2 = 0.5 * eps1 + 7.0 * (eps2);
|
||||
x0 = xmax;
|
||||
for (i = m1; i <= m2; i++)
|
||||
{
|
||||
x[i] = xmax;
|
||||
wu[i] = xmin;
|
||||
}
|
||||
|
||||
for (k = m2; k >= m1; k--)
|
||||
{
|
||||
xu = xmin;
|
||||
i = k;
|
||||
do
|
||||
{
|
||||
if (xu < wu[i])
|
||||
{
|
||||
xu = wu[i];
|
||||
i = m1 - 1;
|
||||
}
|
||||
i--;
|
||||
}
|
||||
while (i >= m1);
|
||||
if (x0 > x[k])
|
||||
x0 = x[k];
|
||||
while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1)
|
||||
{
|
||||
x1 = (xu + x0) / 2;
|
||||
|
||||
a = 0;
|
||||
q = 1.0;
|
||||
for (i = 1; i <= n; i++)
|
||||
{
|
||||
q =
|
||||
c[i] - x1 -
|
||||
((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh);
|
||||
if (q < 0)
|
||||
a++;
|
||||
}
|
||||
// printf("x1=%0.14e a=%d\n",x1,a);
|
||||
if (a < k)
|
||||
{
|
||||
if (a < m1)
|
||||
{
|
||||
xu = x1;
|
||||
wu[m1] = x1;
|
||||
}
|
||||
else
|
||||
{
|
||||
xu = x1;
|
||||
wu[a + 1] = x1;
|
||||
if (x[a] > x1)
|
||||
x[a] = x1;
|
||||
}
|
||||
}
|
||||
else
|
||||
x0 = x1;
|
||||
}
|
||||
printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k);
|
||||
x[k] = (x0 + xu) / 2;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
template < class Field > class SimpleLanczos
|
||||
{
|
||||
|
||||
const RealD small = 1.0e-16;
|
||||
public:
|
||||
int lock;
|
||||
int get;
|
||||
int Niter;
|
||||
int converged;
|
||||
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Np; // Np -- Number of spare vecs in kryloc space
|
||||
int Nm; // Nm -- total number of vectors
|
||||
|
||||
|
||||
RealD OrthoTime;
|
||||
|
||||
RealD eresid;
|
||||
|
||||
SortEigen < Field > _sort;
|
||||
|
||||
LinearOperatorBase < Field > &_Linop;
|
||||
|
||||
OperatorFunction < Field > &_poly;
|
||||
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
void init (void)
|
||||
{
|
||||
};
|
||||
void Abort (int ff, DenseVector < RealD > &evals,
|
||||
DenseVector < DenseVector < RealD > >&evecs);
|
||||
|
||||
SimpleLanczos (LinearOperatorBase < Field > &Linop, // op
|
||||
OperatorFunction < Field > &poly, // polynmial
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _Niter): // Max iterations
|
||||
|
||||
_Linop (Linop),
|
||||
_poly (poly),
|
||||
Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter)
|
||||
{
|
||||
Np = Nm - Nk;
|
||||
assert (Np > 0);
|
||||
};
|
||||
|
||||
/////////////////////////
|
||||
// Sanity checked this routine (step) against Saad.
|
||||
/////////////////////////
|
||||
void RitzMatrix (DenseVector < Field > &evec, int k)
|
||||
{
|
||||
|
||||
if (1)
|
||||
return;
|
||||
|
||||
GridBase *grid = evec[0]._grid;
|
||||
Field w (grid);
|
||||
std::cout << GridLogMessage << "RitzMatrix " << std::endl;
|
||||
for (int i = 0; i < k; i++)
|
||||
{
|
||||
_Linop.HermOp (evec[i], w);
|
||||
// _poly(_Linop,evec[i],w);
|
||||
std::cout << GridLogMessage << "[" << i << "] ";
|
||||
for (int j = 0; j < k; j++)
|
||||
{
|
||||
ComplexD in = innerProduct (evec[j], w);
|
||||
if (fabs ((double) i - j) > 1)
|
||||
{
|
||||
if (abs (in) > 1.0e-9)
|
||||
{
|
||||
std::cout << GridLogMessage << "oops" << std::endl;
|
||||
abort ();
|
||||
}
|
||||
else
|
||||
std::cout << GridLogMessage << " 0 ";
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << GridLogMessage << " " << in << " ";
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void step (DenseVector < RealD > &lmd,
|
||||
DenseVector < RealD > &lme,
|
||||
Field & last, Field & current, Field & next, uint64_t k)
|
||||
{
|
||||
if (lmd.size () <= k)
|
||||
lmd.resize (k + Nm);
|
||||
if (lme.size () <= k)
|
||||
lme.resize (k + Nm);
|
||||
|
||||
|
||||
// _poly(_Linop,current,next ); // 3. wk:=Avk−βkv_{k−1}
|
||||
_Linop.HermOp (current, next); // 3. wk:=Avk−βkv_{k−1}
|
||||
if (k > 0)
|
||||
{
|
||||
next -= lme[k - 1] * last;
|
||||
}
|
||||
// std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl;
|
||||
|
||||
ComplexD zalph = innerProduct (current, next); // 4. αk:=(wk,vk)
|
||||
RealD alph = real (zalph);
|
||||
|
||||
next = next - alph * current; // 5. wk:=wk−αkvk
|
||||
// std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl;
|
||||
|
||||
RealD beta = normalise (next); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
// norm=beta;
|
||||
|
||||
int interval = Nm / 100 + 1;
|
||||
if ((k % interval) == 0)
|
||||
std::
|
||||
cout << GridLogMessage << k << " : alpha = " << zalph << " beta " <<
|
||||
beta << std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
if (beta < tiny)
|
||||
{
|
||||
std::cout << GridLogMessage << " beta is tiny " << beta << std::
|
||||
endl;
|
||||
}
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
}
|
||||
|
||||
void qr_decomp (DenseVector < RealD > &lmd,
|
||||
DenseVector < RealD > &lme,
|
||||
int Nk,
|
||||
int Nm,
|
||||
DenseVector < RealD > &Qt, RealD Dsh, int kmin, int kmax)
|
||||
{
|
||||
int k = kmin - 1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]);
|
||||
RealD c = (lmd[k] - Dsh) * Fden;
|
||||
RealD s = -lme[k] * Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k + 1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
|
||||
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
|
||||
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
|
||||
x = -s * lme[k + 1];
|
||||
lme[k + 1] = c * lme[k + 1];
|
||||
|
||||
for (int i = 0; i < Nk; ++i)
|
||||
{
|
||||
RealD Qtmp1 = Qt[i + Nm * k];
|
||||
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
|
||||
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
|
||||
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for (int k = kmin; k < kmax - 1; ++k)
|
||||
{
|
||||
|
||||
RealD Fden = 1.0 / hypot (x, lme[k - 1]);
|
||||
RealD c = lme[k - 1] * Fden;
|
||||
RealD s = -x * Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k + 1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
|
||||
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
|
||||
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
|
||||
lme[k - 1] = c * lme[k - 1] - s * x;
|
||||
|
||||
if (k != kmax - 2)
|
||||
{
|
||||
x = -s * lme[k + 1];
|
||||
lme[k + 1] = c * lme[k + 1];
|
||||
}
|
||||
|
||||
for (int i = 0; i < Nk; ++i)
|
||||
{
|
||||
RealD Qtmp1 = Qt[i + Nm * k];
|
||||
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
|
||||
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
|
||||
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
#ifdef USE_MKL
|
||||
#define LAPACK_INT MKL_INT
|
||||
#else
|
||||
#define LAPACK_INT long long
|
||||
#endif
|
||||
void diagonalize_lapack (DenseVector < RealD > &lmd, DenseVector < RealD > &lme, int N1, // all
|
||||
int N2, // get
|
||||
GridBase * grid)
|
||||
{
|
||||
const int size = Nm;
|
||||
LAPACK_INT NN = N1;
|
||||
double evals_tmp[NN];
|
||||
double DD[NN];
|
||||
double EE[NN];
|
||||
for (int i = 0; i < NN; i++)
|
||||
for (int j = i - 1; j <= i + 1; j++)
|
||||
if (j < NN && j >= 0)
|
||||
{
|
||||
if (i == j)
|
||||
DD[i] = lmd[i];
|
||||
if (i == j)
|
||||
evals_tmp[i] = lmd[i];
|
||||
if (j == (i - 1))
|
||||
EE[j] = lme[j];
|
||||
}
|
||||
LAPACK_INT evals_found;
|
||||
LAPACK_INT lwork =
|
||||
((18 * NN) >
|
||||
(1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN));
|
||||
LAPACK_INT liwork = 3 + NN * 10;
|
||||
LAPACK_INT iwork[liwork];
|
||||
double work[lwork];
|
||||
LAPACK_INT isuppz[2 * NN];
|
||||
char jobz = 'N'; // calculate evals only
|
||||
char range = 'I'; // calculate il-th to iu-th evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
int ifail[NN];
|
||||
LAPACK_INT info;
|
||||
// int total = QMP_get_number_of_nodes();
|
||||
// int node = QMP_get_node_number();
|
||||
// GridBase *grid = evec[0]._grid;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN / total) + 1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
LAPACK_INT il = interval * node + 1, iu = interval * (node + 1);
|
||||
if (iu > NN)
|
||||
iu = NN;
|
||||
double tol = 0.0;
|
||||
if (1)
|
||||
{
|
||||
memset (evals_tmp, 0, sizeof (double) * NN);
|
||||
if (il <= NN)
|
||||
{
|
||||
printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu);
|
||||
#ifdef USE_MKL
|
||||
dstegr (&jobz, &range, &NN,
|
||||
#else
|
||||
LAPACK_dstegr (&jobz, &range, &NN,
|
||||
#endif
|
||||
(double *) DD, (double *) EE, &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, evals_tmp, (double *) NULL, &NN,
|
||||
isuppz, work, &lwork, iwork, &liwork, &info);
|
||||
for (int i = iu - 1; i >= il - 1; i--)
|
||||
{
|
||||
printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node,
|
||||
evals_found, i - (il - 1), evals_tmp[i - (il - 1)]);
|
||||
evals_tmp[i] = evals_tmp[i - (il - 1)];
|
||||
if (il > 1)
|
||||
evals_tmp[i - (il - 1)] = 0.;
|
||||
}
|
||||
}
|
||||
{
|
||||
grid->GlobalSumVector (evals_tmp, NN);
|
||||
}
|
||||
}
|
||||
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
|
||||
}
|
||||
#undef LAPACK_INT
|
||||
#endif
|
||||
|
||||
|
||||
void diagonalize (DenseVector < RealD > &lmd,
|
||||
DenseVector < RealD > &lme,
|
||||
int N2, int N1, GridBase * grid)
|
||||
{
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
const int check_lapack = 0; // just use lapack if 0, check against lapack if 1
|
||||
|
||||
if (!check_lapack)
|
||||
return diagonalize_lapack (lmd, lme, N2, N1, grid);
|
||||
|
||||
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if 1
|
||||
static RealD normalise (Field & v)
|
||||
{
|
||||
RealD nn = norm2 (v);
|
||||
nn = sqrt (nn);
|
||||
v = v * (1.0 / nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize (Field & w, DenseVector < Field > &evec, int k)
|
||||
{
|
||||
double t0 = -usecond () / 1e6;
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
if (0)
|
||||
{
|
||||
for (int j = 0; j < k; ++j)
|
||||
{
|
||||
normalise (evec[j]);
|
||||
for (int i = 0; i < j; i++)
|
||||
{
|
||||
ip = innerProduct (evec[i], evec[j]); // are the evecs normalised? ; this assumes so.
|
||||
evec[j] = evec[j] - ip * evec[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < k; ++j)
|
||||
{
|
||||
ip = innerProduct (evec[j], w); // are the evecs normalised? ; this assumes so.
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalise (w);
|
||||
t0 += usecond () / 1e6;
|
||||
OrthoTime += t0;
|
||||
}
|
||||
|
||||
void setUnit_Qt (int Nm, DenseVector < RealD > &Qt)
|
||||
{
|
||||
for (int i = 0; i < Qt.size (); ++i)
|
||||
Qt[i] = 0.0;
|
||||
for (int k = 0; k < Nm; ++k)
|
||||
Qt[k + k * Nm] = 1.0;
|
||||
}
|
||||
|
||||
|
||||
void calc (DenseVector < RealD > &eval, const Field & src, int &Nconv)
|
||||
{
|
||||
|
||||
GridBase *grid = src._grid;
|
||||
// assert(grid == src._grid);
|
||||
|
||||
std::
|
||||
cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std::
|
||||
endl;
|
||||
std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl;
|
||||
std::cout << GridLogMessage << " -- size of eval = " << eval.
|
||||
size () << std::endl;
|
||||
|
||||
// assert(c.size() && Nm == eval.size());
|
||||
|
||||
DenseVector < RealD > lme (Nm);
|
||||
DenseVector < RealD > lmd (Nm);
|
||||
|
||||
|
||||
Field current (grid);
|
||||
Field last (grid);
|
||||
Field next (grid);
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// Set initial vector
|
||||
// (uniform vector) Why not src??
|
||||
// evec[0] = 1.0;
|
||||
current = src;
|
||||
std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std::
|
||||
endl;
|
||||
normalise (current);
|
||||
std::
|
||||
cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) <<
|
||||
std::endl;
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime = 0.;
|
||||
double t0 = usecond () / 1e6;
|
||||
RealD norm; // sqrt norm of last vector
|
||||
|
||||
uint64_t iter = 0;
|
||||
|
||||
bool initted = false;
|
||||
std::vector < RealD > low (Nstop * 10);
|
||||
std::vector < RealD > high (Nstop * 10);
|
||||
RealD cont = 0.;
|
||||
while (1) {
|
||||
cont = 0.;
|
||||
std::vector < RealD > lme2 (Nm);
|
||||
std::vector < RealD > lmd2 (Nm);
|
||||
for (uint64_t k = 0; k < Nm; ++k, iter++) {
|
||||
step (lmd, lme, last, current, next, iter);
|
||||
last = current;
|
||||
current = next;
|
||||
}
|
||||
double t1 = usecond () / 1e6;
|
||||
std::cout << GridLogMessage << "IRL::Initial steps: " << t1 -
|
||||
t0 << "seconds" << std::endl;
|
||||
t0 = t1;
|
||||
std::
|
||||
cout << GridLogMessage << "IRL::Initial steps:OrthoTime " <<
|
||||
OrthoTime << "seconds" << std::endl;
|
||||
|
||||
// getting eigenvalues
|
||||
lmd2.resize (iter + 2);
|
||||
lme2.resize (iter + 2);
|
||||
for (uint64_t k = 0; k < iter; ++k) {
|
||||
lmd2[k + 1] = lmd[k];
|
||||
lme2[k + 2] = lme[k];
|
||||
}
|
||||
t1 = usecond () / 1e6;
|
||||
std::cout << GridLogMessage << "IRL:: copy: " << t1 -
|
||||
t0 << "seconds" << std::endl;
|
||||
t0 = t1;
|
||||
{
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (Nstop / total) + 1;
|
||||
int iu = (iter + 1) - (interval * node + 1);
|
||||
int il = (iter + 1) - (interval * (node + 1));
|
||||
std::vector < RealD > eval2 (iter + 3);
|
||||
RealD eps2;
|
||||
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
|
||||
eps2);
|
||||
// diagonalize(eval2,lme2,iter,Nk,grid);
|
||||
RealD diff = 0.;
|
||||
for (int i = il; i <= iu; i++) {
|
||||
if (initted)
|
||||
diff =
|
||||
fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) +
|
||||
fabs (high[iu-i]));
|
||||
if (initted && (diff > eresid))
|
||||
cont = 1.;
|
||||
if (initted)
|
||||
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
|
||||
high[iu-i], diff);
|
||||
high[iu-i] = eval2[i];
|
||||
}
|
||||
il = (interval * node + 1);
|
||||
iu = (interval * (node + 1));
|
||||
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
|
||||
eps2);
|
||||
for (int i = il; i <= iu; i++) {
|
||||
if (initted)
|
||||
diff =
|
||||
fabs (eval2[i] - low[i]) / (fabs (eval2[i]) +
|
||||
fabs (low[i]));
|
||||
if (initted && (diff > eresid))
|
||||
cont = 1.;
|
||||
if (initted)
|
||||
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
|
||||
low[i], diff);
|
||||
low[i] = eval2[i];
|
||||
}
|
||||
t1 = usecond () / 1e6;
|
||||
std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 -
|
||||
t0 << "seconds" << std::endl;
|
||||
t0 = t1;
|
||||
}
|
||||
|
||||
for (uint64_t k = 0; k < Nk; ++k) {
|
||||
// eval[k] = eval2[k];
|
||||
}
|
||||
if (initted)
|
||||
{
|
||||
grid->GlobalSumVector (&cont, 1);
|
||||
if (cont < 1.) return;
|
||||
}
|
||||
initted = true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
There is some matrix Q such that for any vector y
|
||||
Q.e_1 = y and Q is unitary.
|
||||
**/
|
||||
template < class T >
|
||||
static T orthQ (DenseMatrix < T > &Q, DenseVector < T > y)
|
||||
{
|
||||
int N = y.size (); //Matrix Size
|
||||
Fill (Q, 0.0);
|
||||
T tau;
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
Q[i][0] = y[i];
|
||||
}
|
||||
T sig = conj (y[0]) * y[0];
|
||||
T tau0 = fabs (sqrt (sig));
|
||||
|
||||
for (int j = 1; j < N; j++)
|
||||
{
|
||||
sig += conj (y[j]) * y[j];
|
||||
tau = abs (sqrt (sig));
|
||||
|
||||
if (abs (tau0) > 0.0)
|
||||
{
|
||||
|
||||
T gam = conj ((y[j] / tau) / tau0);
|
||||
for (int k = 0; k <= j - 1; k++)
|
||||
{
|
||||
Q[k][j] = -gam * y[k];
|
||||
}
|
||||
Q[j][j] = tau0 / tau;
|
||||
}
|
||||
else
|
||||
{
|
||||
Q[j - 1][j] = 1.0;
|
||||
}
|
||||
tau0 = tau;
|
||||
}
|
||||
return tau;
|
||||
}
|
||||
|
||||
/**
|
||||
There is some matrix Q such that for any vector y
|
||||
Q.e_k = y and Q is unitary.
|
||||
**/
|
||||
template < class T >
|
||||
static T orthU (DenseMatrix < T > &Q, DenseVector < T > y)
|
||||
{
|
||||
T tau = orthQ (Q, y);
|
||||
SL (Q);
|
||||
return tau;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Wind up with a matrix with the first con rows untouched
|
||||
|
||||
say con = 2
|
||||
Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum
|
||||
and the matrix is upper hessenberg
|
||||
and with f and Q appropriately modidied with Q is the arnoldi factorization
|
||||
|
||||
**/
|
||||
|
||||
template < class T > static void Lock (DenseMatrix < T > &H, ///Hess mtx
|
||||
DenseMatrix < T > &Q, ///Lock Transform
|
||||
T val, ///value to be locked
|
||||
int con, ///number already locked
|
||||
RealD small, int dfg, bool herm)
|
||||
{
|
||||
//ForceTridiagonal(H);
|
||||
|
||||
int M = H.dim;
|
||||
DenseVector < T > vec;
|
||||
Resize (vec, M - con);
|
||||
|
||||
DenseMatrix < T > AH;
|
||||
Resize (AH, M - con, M - con);
|
||||
AH = GetSubMtx (H, con, M, con, M);
|
||||
|
||||
DenseMatrix < T > QQ;
|
||||
Resize (QQ, M - con, M - con);
|
||||
|
||||
Unity (Q);
|
||||
Unity (QQ);
|
||||
|
||||
DenseVector < T > evals;
|
||||
Resize (evals, M - con);
|
||||
DenseMatrix < T > evecs;
|
||||
Resize (evecs, M - con, M - con);
|
||||
|
||||
Wilkinson < T > (AH, evals, evecs, small);
|
||||
|
||||
int k = 0;
|
||||
RealD cold = abs (val - evals[k]);
|
||||
for (int i = 1; i < M - con; i++)
|
||||
{
|
||||
RealD cnew = abs (val - evals[i]);
|
||||
if (cnew < cold)
|
||||
{
|
||||
k = i;
|
||||
cold = cnew;
|
||||
}
|
||||
}
|
||||
vec = evecs[k];
|
||||
|
||||
ComplexD tau;
|
||||
orthQ (QQ, vec);
|
||||
//orthQM(QQ,AH,vec);
|
||||
|
||||
AH = Hermitian (QQ) * AH;
|
||||
AH = AH * QQ;
|
||||
|
||||
for (int i = con; i < M; i++)
|
||||
{
|
||||
for (int j = con; j < M; j++)
|
||||
{
|
||||
Q[i][j] = QQ[i - con][j - con];
|
||||
H[i][j] = AH[i - con][j - con];
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = M - 1; j > con + 2; j--)
|
||||
{
|
||||
|
||||
DenseMatrix < T > U;
|
||||
Resize (U, j - 1 - con, j - 1 - con);
|
||||
DenseVector < T > z;
|
||||
Resize (z, j - 1 - con);
|
||||
T nm = norm (z);
|
||||
for (int k = con + 0; k < j - 1; k++)
|
||||
{
|
||||
z[k - con] = conj (H (j, k + 1));
|
||||
}
|
||||
normalise (z);
|
||||
|
||||
RealD tmp = 0;
|
||||
for (int i = 0; i < z.size () - 1; i++)
|
||||
{
|
||||
tmp = tmp + abs (z[i]);
|
||||
}
|
||||
|
||||
if (tmp < small / ((RealD) z.size () - 1.0))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
tau = orthU (U, z);
|
||||
|
||||
DenseMatrix < T > Hb;
|
||||
Resize (Hb, j - 1 - con, M);
|
||||
|
||||
for (int a = 0; a < M; a++)
|
||||
{
|
||||
for (int b = 0; b < j - 1 - con; b++)
|
||||
{
|
||||
T sum = 0;
|
||||
for (int c = 0; c < j - 1 - con; c++)
|
||||
{
|
||||
sum += H[a][con + 1 + c] * U[c][b];
|
||||
} //sum += H(a,con+1+c)*U(c,b);}
|
||||
Hb[b][a] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = con + 1; k < j; k++)
|
||||
{
|
||||
for (int l = 0; l < M; l++)
|
||||
{
|
||||
H[l][k] = Hb[k - 1 - con][l];
|
||||
}
|
||||
} //H(Hb[k-1-con][l] , l,k);}}
|
||||
|
||||
DenseMatrix < T > Qb;
|
||||
Resize (Qb, M, M);
|
||||
|
||||
for (int a = 0; a < M; a++)
|
||||
{
|
||||
for (int b = 0; b < j - 1 - con; b++)
|
||||
{
|
||||
T sum = 0;
|
||||
for (int c = 0; c < j - 1 - con; c++)
|
||||
{
|
||||
sum += Q[a][con + 1 + c] * U[c][b];
|
||||
} //sum += Q(a,con+1+c)*U(c,b);}
|
||||
Qb[b][a] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = con + 1; k < j; k++)
|
||||
{
|
||||
for (int l = 0; l < M; l++)
|
||||
{
|
||||
Q[l][k] = Qb[k - 1 - con][l];
|
||||
}
|
||||
} //Q(Qb[k-1-con][l] , l,k);}}
|
||||
|
||||
DenseMatrix < T > Hc;
|
||||
Resize (Hc, M, M);
|
||||
|
||||
for (int a = 0; a < j - 1 - con; a++)
|
||||
{
|
||||
for (int b = 0; b < M; b++)
|
||||
{
|
||||
T sum = 0;
|
||||
for (int c = 0; c < j - 1 - con; c++)
|
||||
{
|
||||
sum += conj (U[c][a]) * H[con + 1 + c][b];
|
||||
} //sum += conj( U(c,a) )*H(con+1+c,b);}
|
||||
Hc[b][a] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = 0; k < M; k++)
|
||||
{
|
||||
for (int l = con + 1; l < j; l++)
|
||||
{
|
||||
H[l][k] = Hc[k][l - 1 - con];
|
||||
}
|
||||
} //H(Hc[k][l-1-con] , l,k);}}
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
@ -1,122 +0,0 @@
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <vector>
|
||||
|
||||
struct Bisection {
|
||||
|
||||
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
|
||||
{
|
||||
int i,j;
|
||||
std::vector<RealD> evec1(row_num+3);
|
||||
std::vector<RealD> evec2(row_num+3);
|
||||
RealD eps2;
|
||||
ALPHA[1]=0.;
|
||||
BETHA[1]=0.;
|
||||
for(i=0;i<row_num-1;i++) {
|
||||
ALPHA[i+1] = A[i*(row_num+1)].real();
|
||||
BETHA[i+2] = A[i*(row_num+1)+1].real();
|
||||
}
|
||||
ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
|
||||
bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
|
||||
bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
|
||||
|
||||
// Do we really need to sort here?
|
||||
int begin=1;
|
||||
int end = row_num;
|
||||
int swapped=1;
|
||||
while(swapped) {
|
||||
swapped=0;
|
||||
for(i=begin;i<end;i++){
|
||||
if(mag(evec2[i])>mag(evec2[i+1])) {
|
||||
swap(evec2+i,evec2+i+1);
|
||||
swapped=1;
|
||||
}
|
||||
}
|
||||
end--;
|
||||
for(i=end-1;i>=begin;i--){
|
||||
if(mag(evec2[i])>mag(evec2[i+1])) {
|
||||
swap(evec2+i,evec2+i+1);
|
||||
swapped=1;
|
||||
}
|
||||
}
|
||||
begin++;
|
||||
}
|
||||
|
||||
for(i=0;i<row_num;i++){
|
||||
for(j=0;j<row_num;j++) {
|
||||
if(i==j) H[i*row_num+j]=evec2[i+1];
|
||||
else H[i*row_num+j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void bisec(std::vector<RealD> &c,
|
||||
std::vector<RealD> &b,
|
||||
int n,
|
||||
int m1,
|
||||
int m2,
|
||||
RealD eps1,
|
||||
RealD relfeh,
|
||||
std::vector<RealD> &x,
|
||||
RealD &eps2)
|
||||
{
|
||||
std::vector<RealD> wu(n+2);
|
||||
|
||||
RealD h,q,x1,xu,x0,xmin,xmax;
|
||||
int i,a,k;
|
||||
|
||||
b[1]=0.0;
|
||||
xmin=c[n]-fabs(b[n]);
|
||||
xmax=c[n]+fabs(b[n]);
|
||||
for(i=1;i<n;i++){
|
||||
h=fabs(b[i])+fabs(b[i+1]);
|
||||
if(c[i]+h>xmax) xmax= c[i]+h;
|
||||
if(c[i]-h<xmin) xmin= c[i]-h;
|
||||
}
|
||||
xmax *=2.;
|
||||
|
||||
eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
|
||||
if(eps1<=0.0) eps1=eps2;
|
||||
eps2=0.5*eps1+7.0*(eps2);
|
||||
x0=xmax;
|
||||
for(i=m1;i<=m2;i++){
|
||||
x[i]=xmax;
|
||||
wu[i]=xmin;
|
||||
}
|
||||
|
||||
for(k=m2;k>=m1;k--){
|
||||
xu=xmin;
|
||||
i=k;
|
||||
do{
|
||||
if(xu<wu[i]){
|
||||
xu=wu[i];
|
||||
i=m1-1;
|
||||
}
|
||||
i--;
|
||||
}while(i>=m1);
|
||||
if(x0>x[k]) x0=x[k];
|
||||
while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
|
||||
x1=(xu+x0)/2;
|
||||
|
||||
a=0;
|
||||
q=1.0;
|
||||
for(i=1;i<=n;i++){
|
||||
q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
|
||||
if(q<0) a++;
|
||||
}
|
||||
// printf("x1=%e a=%d\n",x1,a);
|
||||
if(a<k){
|
||||
if(a<m1){
|
||||
xu=x1;
|
||||
wu[m1]=x1;
|
||||
}else {
|
||||
xu=x1;
|
||||
wu[a+1]=x1;
|
||||
if(x[a]>x1) x[a]=x1;
|
||||
}
|
||||
}else x0=x1;
|
||||
}
|
||||
x[k]=(x0+xu)/2;
|
||||
}
|
||||
}
|
||||
}
|
@ -52,8 +52,6 @@ public:
|
||||
GridBase(const std::vector<int> & processor_grid,
|
||||
const CartesianCommunicator &parent) : CartesianCommunicator(processor_grid,parent) {};
|
||||
|
||||
virtual ~GridBase() = default;
|
||||
|
||||
// Physics Grid information.
|
||||
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
|
||||
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
|
||||
|
@ -81,8 +81,6 @@ public:
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
|
||||
virtual ~GridCartesian() = default;
|
||||
|
||||
void Init(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid)
|
||||
|
@ -133,8 +133,6 @@ public:
|
||||
{
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
|
||||
}
|
||||
|
||||
virtual ~GridRedBlackCartesian() = default;
|
||||
#if 0
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create redblack grid ;; deprecate these. Should not
|
||||
|
@ -102,6 +102,7 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
assert(_ndimension = parent._ndimension);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// split the communicator
|
||||
@ -116,52 +117,32 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
|
||||
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
|
||||
std::vector<int> scoor(_ndimension); // coor of split within parent
|
||||
std::vector<int> ssize(_ndimension); // coor of split within parent
|
||||
|
||||
std::vector<int> pcoor(_ndimension,0);
|
||||
std::vector<int> pdims(_ndimension,1);
|
||||
|
||||
if(parent._processors.size()==4 && _ndimension==5){
|
||||
for(int i=0;i<4;i++) pcoor[i+1]=parent._processor_coor[i];
|
||||
for(int i=0;i<4;i++) pdims[i+1]=parent._processors[i];
|
||||
} else {
|
||||
assert(_ndimension == parent._ndimension);
|
||||
for(int i=0;i<_ndimension;i++) pcoor[i]=parent._processor_coor[i];
|
||||
for(int i=0;i<_ndimension;i++) pdims[i]=parent._processors[i];
|
||||
}
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
ccoor[d] = pcoor[d] % processors[d];
|
||||
scoor[d] = pcoor[d] / processors[d];
|
||||
ssize[d] = pdims[d] / processors[d];
|
||||
}
|
||||
int crank,srank; // rank within subcomm ; rank of subcomm within blocks of subcomms
|
||||
Lexicographic::IndexFromCoor(ccoor,crank,processors);
|
||||
Lexicographic::IndexFromCoor(scoor,srank,ssize);
|
||||
int prank; MPI_Comm_rank(parent.communicator,&prank);
|
||||
int crank = prank % childsize;
|
||||
int ccomm = prank / childsize;
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
// std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
// std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
// for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
|
||||
// std::cout<<std::endl;
|
||||
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
// std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
// for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
// std::cout<<std::endl;
|
||||
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||
int ierr= MPI_Comm_split(parent.communicator, ccomm,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Declare victory
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
// << Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
<<Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
} else {
|
||||
comm_split=parent.communicator;
|
||||
// std::cout << "Passed parental communicator to a new communicator" <<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -155,7 +155,6 @@ class CartesianCommunicator {
|
||||
////////////////////////////////////////////////
|
||||
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent);
|
||||
CartesianCommunicator(const std::vector<int> &pdimensions_in);
|
||||
virtual ~CartesianCommunicator();
|
||||
|
||||
private:
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT)
|
||||
@ -263,27 +262,6 @@ class CartesianCommunicator {
|
||||
// Broadcast a buffer and composite larger
|
||||
////////////////////////////////////////////////////////////
|
||||
void Broadcast(int root,void* data, int bytes);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// All2All down one dimension
|
||||
////////////////////////////////////////////////////////////
|
||||
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
||||
assert(dim>=0);
|
||||
assert(dim<_ndimension);
|
||||
int numnode = _processors[dim];
|
||||
// std::cerr << " AllToAll in.size() "<<in.size()<<std::endl;
|
||||
// std::cerr << " AllToAll out.size() "<<out.size()<<std::endl;
|
||||
assert(in.size()==out.size());
|
||||
uint64_t bytes=sizeof(T);
|
||||
uint64_t words=in.size()/numnode;
|
||||
|
||||
assert(numnode * words == in.size());
|
||||
assert(words < (1ULL<<32));
|
||||
|
||||
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
|
||||
}
|
||||
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
|
||||
void AllToAll(void *in,void *out,uint64_t words ,uint64_t bytes);
|
||||
|
||||
template<class obj> void Broadcast(int root,obj &data)
|
||||
{
|
||||
|
@ -52,15 +52,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
{
|
||||
int MPI_is_finalised;
|
||||
MPI_Finalized(&MPI_is_finalised);
|
||||
if (communicator && MPI_is_finalised)
|
||||
MPI_Comm_free(&communicator);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
@ -196,35 +187,6 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
std::vector<int> row(_ndimension,1);
|
||||
assert(dim>=0 && dim<_ndimension);
|
||||
|
||||
// Split the communicator
|
||||
row[dim] = _processors[dim];
|
||||
|
||||
CartesianCommunicator Comm(row,*this);
|
||||
Comm.AllToAll(in,out,words,bytes);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
// MPI is a pain and uses "int" arguments
|
||||
// 64*64*64*128*16 == 500Million elements of data.
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
// (Turns up on 32^3 x 64 Gparity too)
|
||||
MPI_Datatype object;
|
||||
int iwords;
|
||||
int ibytes;
|
||||
iwords = words;
|
||||
ibytes = bytes;
|
||||
assert(words == iwords); // safe to cast to int ?
|
||||
assert(bytes == ibytes); // safe to cast to int ?
|
||||
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
||||
MPI_Type_commit(&object);
|
||||
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
||||
MPI_Type_free(&object);
|
||||
}
|
||||
///////////////////////////////////////////////////////
|
||||
// Should only be used prior to Grid Init finished.
|
||||
@ -245,7 +207,5 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -712,8 +712,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
assert(dir < communicator_halo.size());
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
@ -733,14 +732,14 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
gfrom = MPI_UNDEFINED;
|
||||
#endif
|
||||
if ( gfrom ==MPI_UNDEFINED) {
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[dir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=bytes;
|
||||
}
|
||||
|
||||
if ( gdest == MPI_UNDEFINED ) {
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[dir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=bytes;
|
||||
|
@ -53,13 +53,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
{
|
||||
if (communicator && !MPI::Is_finalized())
|
||||
MPI_Comm_free(&communicator);
|
||||
}
|
||||
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
@ -224,14 +217,13 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
assert(dir < communicator_halo.size());
|
||||
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
MPI_Request req[2];
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[commdir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[commdir],&req[0]);
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
|
||||
|
||||
list.push_back(req[0]);
|
||||
list.push_back(req[1]);
|
||||
@ -250,14 +242,13 @@ double CartesianCommunicator::StencilSendToRecvFrom(void *xmit,
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo.size()<< <std::endl;
|
||||
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
assert(dir < communicator_halo.size());
|
||||
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
MPI_Request req[2];
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[commdir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[commdir],&req[0]);
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
|
||||
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
|
@ -56,8 +56,6 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
}
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator(){}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(float &){}
|
||||
void CartesianCommunicator::GlobalSumVector(float *,int N){}
|
||||
void CartesianCommunicator::GlobalSum(double &){}
|
||||
@ -100,14 +98,6 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
}
|
||||
|
||||
int CartesianCommunicator::RankWorld(void){return 0;}
|
||||
void CartesianCommunicator::Barrier(void){}
|
||||
|
@ -684,307 +684,6 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
merge(out._odata[out_oidx], ptrs, 0);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// All to all plan
|
||||
//
|
||||
// Subvolume on fine grid is v. Vectors a,b,c,d
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLEST CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Mesh of nodes (2) ; subdivide to 1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 N1 va1 vb1
|
||||
//
|
||||
// For each dimension do an all to all
|
||||
//
|
||||
// full AllToAll(0)
|
||||
// N0 va0 va1 N1 vb0 vb1
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 N1 vb01
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLE CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
|
||||
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
|
||||
//
|
||||
// Ratio = full[dim] / split[dim]
|
||||
//
|
||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
|
||||
// Ldim -> Ldim * ratio
|
||||
// LocalVol -> LocalVol * ratio
|
||||
// full AllToAll(0)
|
||||
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
|
||||
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 vb01 N1 vc01 vd01
|
||||
// N2 va23 vb23 N3 vc23 vd23
|
||||
//
|
||||
// full AllToAll(1) // Not what is wanted. FIXME
|
||||
// N0 va01 va23 N1 vc01 vc23
|
||||
// N2 vb01 vb23 N3 vd01 vd23
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va0123 N1 vc0123
|
||||
// N2 vb0123 N3 vd0123
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
//
|
||||
/////////////////////////////////////////////////////////
|
||||
template<class Vobj>
|
||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
uint64_t lsites = full_grid->lSites();
|
||||
uint64_t sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
for(int v=0;v<nvector;v++){
|
||||
unvectorizeToLexOrdArray(scalardata,full[v]);
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
alldata[v*lsites+site] = scalardata[site];
|
||||
}
|
||||
}
|
||||
|
||||
int nvec = nvector; // Counts down to 1 as we collapse dims
|
||||
std::vector<int> ldims = full_grid->_ldimensions;
|
||||
std::vector<int> lcoor(ndim);
|
||||
|
||||
for(int d=0;d<ndim;d++){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
full_grid ->AllToAll(d,alldata,tmpdata);
|
||||
|
||||
//////////////////////////////////////////
|
||||
//Local volume for this dimension is expanded by ratio of processor extents
|
||||
// Number of vectors is decreased by same factor
|
||||
// Rearrange to lexico for bigger volume
|
||||
//////////////////////////////////////////
|
||||
nvec /= ratio[d];
|
||||
auto rdims = ldims; rdims[d] *= ratio[d];
|
||||
auto rsites= lsites*ratio[d];
|
||||
for(int v=0;v<nvec;v++){
|
||||
|
||||
// For loop over each site within old subvol
|
||||
for(int lsite=0;lsite<lsites;lsite++){
|
||||
|
||||
Lexicographic::CoorFromIndex(lcoor, lsite, ldims);
|
||||
|
||||
for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
|
||||
|
||||
auto rcoor = lcoor; rcoor[d] += r*ldims[d];
|
||||
|
||||
int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);
|
||||
rsite += v * rsites;
|
||||
|
||||
int rmul=nvec*lsites;
|
||||
int vmul= lsites;
|
||||
alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
ldims[d]*= ratio[d];
|
||||
lsites *= ratio[d];
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
tmpdata = alldata;
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vectorizeFromLexOrdArray(alldata,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
|
||||
{
|
||||
int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
|
||||
std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
|
||||
for(int n=0;n<nvector;n++){
|
||||
full_v[n] = full;
|
||||
}
|
||||
Grid_split(full_v,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
uint64_t lsites = full_grid->lSites();
|
||||
uint64_t sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
|
||||
unvectorizeToLexOrdArray(alldata,split);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Start from split grid and work towards full grid
|
||||
/////////////////////////////////////////////////////////////////
|
||||
std::vector<int> lcoor(ndim);
|
||||
std::vector<int> rcoor(ndim);
|
||||
|
||||
int nvec = 1;
|
||||
lsites = split_grid->lSites();
|
||||
std::vector<int> ldims = split_grid->_ldimensions;
|
||||
|
||||
for(int d=ndim-1;d>=0;d--){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
tmpdata = alldata;
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
//Local volume for this dimension is expanded by ratio of processor extents
|
||||
// Number of vectors is decreased by same factor
|
||||
// Rearrange to lexico for bigger volume
|
||||
//////////////////////////////////////////
|
||||
auto rsites= lsites/ratio[d];
|
||||
auto rdims = ldims; rdims[d]/=ratio[d];
|
||||
|
||||
for(int v=0;v<nvec;v++){
|
||||
|
||||
// rsite, rcoor --> smaller local volume
|
||||
// lsite, lcoor --> bigger original (single node?) volume
|
||||
// For loop over each site within smaller subvol
|
||||
for(int rsite=0;rsite<rsites;rsite++){
|
||||
|
||||
Lexicographic::CoorFromIndex(rcoor, rsite, rdims);
|
||||
int lsite;
|
||||
|
||||
for(int r=0;r<ratio[d];r++){
|
||||
|
||||
lcoor = rcoor; lcoor[d] += r*rdims[d];
|
||||
Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
|
||||
|
||||
int rmul=nvec*rsites;
|
||||
int vmul= rsites;
|
||||
tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
nvec *= ratio[d];
|
||||
ldims[d]=rdims[d];
|
||||
lsites =rsites;
|
||||
|
||||
full_grid ->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
}
|
||||
|
||||
lsites = full_grid->lSites();
|
||||
for(int v=0;v<nvector;v++){
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
scalardata[site] = alldata[v*lsites+site];
|
||||
}
|
||||
assert(v<full.size());
|
||||
|
||||
vectorizeFromLexOrdArray(scalardata,full[v]);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -47,4 +47,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
////////////////////////////////////////
|
||||
#include <Grid/qcd/action/pseudofermion/PseudoFermion.h>
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Laplacian on fermion fields
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/qcd/utils/CovariantLaplacian.h>
|
||||
#endif
|
||||
|
@ -53,7 +53,7 @@ directory
|
||||
// Utility functions
|
||||
////////////////////////////////////////////
|
||||
#include <Grid/qcd/utils/Metric.h>
|
||||
#include <Grid/qcd/utils/CovariantLaplacian.h>
|
||||
#include <Grid/qcd/utils/CovariantAdjointLaplacian.h>
|
||||
|
||||
|
||||
|
||||
|
@ -415,8 +415,6 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
|
||||
assert(omega[i]!=Coeff_t(0.0));
|
||||
bs[i] = 0.5*(bpc/omega[i] + bmc);
|
||||
cs[i] = 0.5*(bpc/omega[i] - bmc);
|
||||
std::cout<<GridLogMessage << "CayleyFermion5D "<<i<<" bs="<<bs[i]<<" cs="<<cs[i]<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
|
@ -60,11 +60,11 @@ namespace QCD {
|
||||
Approx::zolotarev_free(zdata);
|
||||
}
|
||||
|
||||
/***************************************************************
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
/*
|
||||
Additional EOFA operators only called outside the inverter.
|
||||
Since speed is not essential, simple axpby-style
|
||||
implementations should be fine.
|
||||
*/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
@ -115,9 +115,9 @@ namespace QCD {
|
||||
return(norm2(chi));
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
// Performance critical fermion operators called inside the inverter
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
|
@ -61,8 +61,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
#include <Grid/qcd/action/fermion/MobiusFermion.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
|
||||
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
|
||||
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
|
||||
//#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
|
||||
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>
|
||||
#include <Grid/qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>
|
||||
|
@ -77,11 +77,11 @@ namespace QCD {
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
/*
|
||||
Additional EOFA operators only called outside the inverter.
|
||||
Since speed is not essential, simple axpby-style
|
||||
implementations should be fine.
|
||||
*/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
@ -193,9 +193,9 @@ namespace QCD {
|
||||
return(norm2(chi));
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
// Performance critical fermion operators called inside the inverter
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
|
@ -1,4 +1,3 @@
|
||||
#if 1
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
@ -98,117 +97,6 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
#if 0
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Copied from DiagTwoSolve
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwoKappa solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
#endif
|
||||
namespace QCD{
|
||||
//
|
||||
// Determinant is det of middle factor
|
||||
// This assumes Mee is indept of U.
|
||||
//
|
||||
//
|
||||
template<class Impl>
|
||||
class SchurDifferentiableDiagTwo: public SchurDiagTwoOperator<FermionOperator<Impl>,typename Impl::FermionField>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef FermionOperator<Impl> Matrix;
|
||||
|
||||
SchurDifferentiableDiagTwo (Matrix &Mat) : SchurDiagTwoOperator<Matrix,FermionField>(Mat) {};
|
||||
};
|
||||
#if 0
|
||||
template<class Impl>
|
||||
class SchurDifferentiableDiagTwoKappa : public SchurDiagTwoKappaOperator<FermionOperator<Impl>,typename Impl::FermionField>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef FermionOperator<Impl> Matrix;
|
||||
|
||||
SchurDifferentiableDiagTwoKappa (Matrix &Mat) : SchurDiagTwoKappaOperator<Matrix,FermionField>(Mat) {};
|
||||
};
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -38,7 +38,7 @@ namespace Grid{
|
||||
// (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
|
||||
//
|
||||
// Determinant is det of middle factor
|
||||
// This assumes Mee is indept of U.
|
||||
// NOTICE: This assumes Mee is indept of U in computing the derivative
|
||||
//
|
||||
template<class Impl>
|
||||
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<FermionOperator<Impl>,typename Impl::FermionField>
|
||||
@ -77,7 +77,7 @@ namespace Grid{
|
||||
// X^dag Der_oe MeeInv Meo Y
|
||||
// Use Mooee as nontrivial but gauge field indept
|
||||
this->_Mat.Meooe (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
|
||||
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
|
||||
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
|
||||
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerNo);
|
||||
// Accumulate X^dag M_oe MeeInv Der_eo Y
|
||||
this->_Mat.MeooeDag (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
|
||||
@ -140,7 +140,6 @@ namespace Grid{
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -231,7 +231,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
Field Pfg(U._grid);
|
||||
Ufg = U;
|
||||
Pfg = zero;
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
|
||||
std::cout << GridLogMessage << "FG update " << fg_dt << " " << ep
|
||||
<< std::endl;
|
||||
// prepare_fg; no prediction/result cache for now
|
||||
// could relax CG stopping conditions for the
|
||||
|
209
lib/qcd/utils/CovariantAdjointLaplacian.h
Normal file
209
lib/qcd/utils/CovariantAdjointLaplacian.h
Normal file
@ -0,0 +1,209 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/scalar/CovariantAdjointLaplacian.h
|
||||
|
||||
Copyright (C) 2016
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef COVARIANT_ADJOINT_LAPLACIAN_H
|
||||
#define COVARIANT_ADJOINT_LAPLACIAN_H
|
||||
|
||||
namespace Grid
|
||||
{
|
||||
namespace QCD
|
||||
{
|
||||
|
||||
struct LaplacianParams : Serializable
|
||||
{
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision);
|
||||
|
||||
// constructor
|
||||
LaplacianParams(RealD lo = 0.0,
|
||||
RealD hi = 1.0,
|
||||
int maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int degree = 10,
|
||||
int precision = 64)
|
||||
: lo(lo),
|
||||
hi(hi),
|
||||
MaxIter(maxit),
|
||||
tolerance(tol),
|
||||
degree(degree),
|
||||
precision(precision){};
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Laplacian operator L on adjoint fields
|
||||
//
|
||||
// phi: adjoint field
|
||||
// L: D_mu^dag D_mu
|
||||
//
|
||||
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
|
||||
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
|
||||
// -2phi(x)]
|
||||
//
|
||||
// Operator designed to be encapsulated by
|
||||
// an HermitianLinearOperator<.. , ..>
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
class LaplacianAdjointField : public Metric<typename Impl::Field>
|
||||
{
|
||||
OperatorFunction<typename Impl::Field> &Solver;
|
||||
LaplacianParams param;
|
||||
MultiShiftFunction PowerHalf;
|
||||
MultiShiftFunction PowerInvHalf;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Impl);
|
||||
|
||||
LaplacianAdjointField(GridBase *grid, OperatorFunction<GaugeField> &S, LaplacianParams &p, const RealD k = 1.0)
|
||||
: U(Nd, grid), Solver(S), param(p), kappa(k)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerHalf.Init(remez, param.tolerance, false);
|
||||
PowerInvHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
void Mdir(const GaugeField &, GaugeField &, int, int) { assert(0); }
|
||||
void Mdiag(const GaugeField &, GaugeField &) { assert(0); }
|
||||
|
||||
void ImportGauge(const GaugeField &_U)
|
||||
{
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
{
|
||||
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
|
||||
}
|
||||
}
|
||||
|
||||
void M(const GaugeField &in, GaugeField &out)
|
||||
{
|
||||
// in is an antihermitian matrix
|
||||
// test
|
||||
//GaugeField herm = in + adj(in);
|
||||
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
|
||||
|
||||
GaugeLinkField tmp(in._grid);
|
||||
GaugeLinkField tmp2(in._grid);
|
||||
GaugeLinkField sum(in._grid);
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
sum = zero;
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
GaugeLinkField out_nu(out._grid);
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
{
|
||||
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
|
||||
tmp2 = adj(U[mu]) * in_nu * U[mu];
|
||||
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
|
||||
}
|
||||
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
|
||||
PokeIndex<LorentzIndex>(out, out_nu, nu);
|
||||
}
|
||||
}
|
||||
|
||||
void MDeriv(const GaugeField &in, GaugeField &der)
|
||||
{
|
||||
// in is anti-hermitian
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
{
|
||||
GaugeLinkField der_mu(der._grid);
|
||||
der_mu = zero;
|
||||
for (int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
|
||||
}
|
||||
// the minus sign comes by using the in_nu instead of the
|
||||
// adjoint in the last multiplication
|
||||
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
// separating this temporarily
|
||||
void MDeriv(const GaugeField &left, const GaugeField &right,
|
||||
GaugeField &der)
|
||||
{
|
||||
// in is anti-hermitian
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
{
|
||||
GaugeLinkField der_mu(der._grid);
|
||||
der_mu = zero;
|
||||
for (int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
|
||||
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
|
||||
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
|
||||
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
|
||||
}
|
||||
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
void Minv(const GaugeField &in, GaugeField &inverted)
|
||||
{
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>, GaugeField> HermOp(*this);
|
||||
Solver(HermOp, in, inverted);
|
||||
}
|
||||
|
||||
void MSquareRoot(GaugeField &P)
|
||||
{
|
||||
GaugeField Gp(P._grid);
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>, GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter, PowerHalf);
|
||||
msCG(HermOp, P, Gp);
|
||||
P = Gp;
|
||||
}
|
||||
|
||||
void MInvSquareRoot(GaugeField &P)
|
||||
{
|
||||
GaugeField Gp(P._grid);
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>, GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter, PowerInvHalf);
|
||||
msCG(HermOp, P, Gp);
|
||||
P = Gp;
|
||||
}
|
||||
|
||||
private:
|
||||
RealD kappa;
|
||||
std::vector<GaugeLinkField> U;
|
||||
};
|
||||
|
||||
} // QCD
|
||||
} // Grid
|
||||
#endif
|
@ -4,7 +4,7 @@ Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
|
||||
|
||||
Copyright (C) 2016
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
@ -30,168 +30,57 @@ directory
|
||||
#ifndef COVARIANT_LAPLACIAN_H
|
||||
#define COVARIANT_LAPLACIAN_H
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
struct LaplacianParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision);
|
||||
|
||||
// constructor
|
||||
LaplacianParams(RealD lo = 0.0,
|
||||
RealD hi = 1.0,
|
||||
int maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int degree = 10,
|
||||
int precision = 64)
|
||||
: lo(lo),
|
||||
hi(hi),
|
||||
MaxIter(maxit),
|
||||
tolerance(tol),
|
||||
degree(degree),
|
||||
precision(precision){};
|
||||
};
|
||||
|
||||
|
||||
namespace Grid
|
||||
{
|
||||
namespace QCD
|
||||
{
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Laplacian operator L on adjoint fields
|
||||
// Laplacian operator L on fermion fields
|
||||
//
|
||||
// phi: adjoint field
|
||||
// L: D_mu^dag D_mu
|
||||
// phi: fermion field
|
||||
//
|
||||
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
|
||||
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
|
||||
// -2phi(x)]
|
||||
// L phi(x) = Sum_mu [ U_mu(x) phi(x+mu) + U_mu(x-mu) phi(x-mu) - 2phi(x)]
|
||||
//
|
||||
// Operator designed to be encapsulated by
|
||||
// an HermitianLinearOperator<.. , ..>
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// has to inherit from a fermion implementation
|
||||
template <class Impl>
|
||||
class LaplacianAdjointField: public Metric<typename Impl::Field> {
|
||||
OperatorFunction<typename Impl::Field> &Solver;
|
||||
LaplacianParams param;
|
||||
MultiShiftFunction PowerHalf;
|
||||
MultiShiftFunction PowerInvHalf;
|
||||
class Laplacian
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Impl);
|
||||
// add a bool to smear only in the spatial directions
|
||||
Laplacian(GridBase *grid, bool spatial = false)
|
||||
: U(Nd, grid), spatial_laplacian(spatial){};
|
||||
|
||||
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
|
||||
: U(Nd, grid), Solver(S), param(p), kappa(k){
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerInvHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
void Mdir(const FermionField &, FermionField &, int, int) { assert(0); }
|
||||
void Mdiag(const FermionField &, FermionField &) { assert(0); }
|
||||
|
||||
};
|
||||
|
||||
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
|
||||
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
|
||||
|
||||
void ImportGauge(const GaugeField& _U) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
void ImportGauge(const GaugeField &_U)
|
||||
{
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
|
||||
}
|
||||
}
|
||||
|
||||
void M(const GaugeField& in, GaugeField& out) {
|
||||
// in is an antihermitian matrix
|
||||
// test
|
||||
//GaugeField herm = in + adj(in);
|
||||
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
|
||||
void M(const FermionField &in, FermionField &out)
|
||||
{
|
||||
int dims = spatial_laplacian ? (Nd - 1) : Nd;
|
||||
|
||||
GaugeLinkField tmp(in._grid);
|
||||
GaugeLinkField tmp2(in._grid);
|
||||
GaugeLinkField sum(in._grid);
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
sum = zero;
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
GaugeLinkField out_nu(out._grid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
|
||||
tmp2 = adj(U[mu]) * in_nu * U[mu];
|
||||
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
|
||||
}
|
||||
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
|
||||
PokeIndex<LorentzIndex>(out, out_nu, nu);
|
||||
}
|
||||
out = -2.0 * dims * in;
|
||||
// eventually speed up with the stencil operator, if necessary
|
||||
for (int mu = 0; mu < dims; mu++)
|
||||
out += Impl::CovShiftForward(U[mu], mu, in) + Impl::CovShiftBackward(U[mu], mu, in);
|
||||
}
|
||||
|
||||
void MDeriv(const GaugeField& in, GaugeField& der) {
|
||||
// in is anti-hermitian
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++){
|
||||
GaugeLinkField der_mu(der._grid);
|
||||
der_mu = zero;
|
||||
for (int nu = 0; nu < Nd; nu++){
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
|
||||
}
|
||||
// the minus sign comes by using the in_nu instead of the
|
||||
// adjoint in the last multiplication
|
||||
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
// separating this temporarily
|
||||
void MDeriv(const GaugeField& left, const GaugeField& right,
|
||||
GaugeField& der) {
|
||||
// in is anti-hermitian
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
GaugeLinkField der_mu(der._grid);
|
||||
der_mu = zero;
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
|
||||
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
|
||||
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
|
||||
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
|
||||
}
|
||||
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
void Minv(const GaugeField& in, GaugeField& inverted){
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
Solver(HermOp, in, inverted);
|
||||
}
|
||||
|
||||
void MSquareRoot(GaugeField& P){
|
||||
GaugeField Gp(P._grid);
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
|
||||
msCG(HermOp,P,Gp);
|
||||
P = Gp;
|
||||
}
|
||||
|
||||
void MInvSquareRoot(GaugeField& P){
|
||||
GaugeField Gp(P._grid);
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
|
||||
msCG(HermOp,P,Gp);
|
||||
P = Gp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
RealD kappa;
|
||||
private:
|
||||
bool spatial_laplacian;
|
||||
std::vector<GaugeLinkField> U;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
}; // Laplacian
|
||||
|
||||
} // QCD
|
||||
} // Grid
|
||||
#endif
|
||||
|
@ -50,7 +50,6 @@ GridCartesian *SpaceTimeGrid::makeFourDimDWFGrid(const std::vector<int> & latt,c
|
||||
GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian *FourDimGrid)
|
||||
{
|
||||
int N4=FourDimGrid->_ndimension;
|
||||
assert(N4==4);
|
||||
|
||||
std::vector<int> latt5(1,Ls);
|
||||
std::vector<int> simd5(1,1);
|
||||
|
@ -243,12 +243,6 @@ void Grid_init(int *argc,char ***argv)
|
||||
fname<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(fname.str().c_str(),"w",stdout);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
|
||||
std::ostringstream ename;
|
||||
ename<<"Grid.stderr.";
|
||||
ename<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(ename.str().c_str(),"w",stderr);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
|
@ -18,10 +18,6 @@ namespace Grid{
|
||||
|
||||
static inline void IndexFromCoor (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
|
||||
int nd=dims.size();
|
||||
if(nd > coor.size()) {
|
||||
std::cout<< "coor.size "<<coor.size()<<" >dims.size "<<dims.size()<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=0;d<nd;d++){
|
||||
|
@ -1,4 +1,4 @@
|
||||
SUBDIRS = . core forces hmc solver debug smearing IO lanczos
|
||||
SUBDIRS = . core forces hmc solver debug smearing IO
|
||||
|
||||
if BUILD_CHROMA_REGRESSION
|
||||
SUBDIRS+= qdpxx
|
||||
|
105
tests/core/Test_laplacian.cc
Normal file
105
tests/core/Test_laplacian.cc
Normal file
@ -0,0 +1,105 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_laplacian.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
||||
GridParallelRNG pRNG(&Grid);
|
||||
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
|
||||
std::vector<int> point({0,0,0,0});
|
||||
|
||||
LatticeFermion src (&Grid); //random(pRNG,src);
|
||||
SpinColourVectorD Sp;
|
||||
for (unsigned int s = 0; s < Ns; ++s)
|
||||
for (unsigned int c = 0; c < Nc; ++c)
|
||||
Sp()(s)(c) = 1;
|
||||
|
||||
src = zero;
|
||||
pokeSite(Sp,src,point);
|
||||
|
||||
LatticeFermion result(&Grid); result=zero;
|
||||
LatticeFermion tmp(&Grid); tmp=zero;
|
||||
|
||||
// Gauge configuration
|
||||
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
|
||||
|
||||
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage<<"= Testing the laplacian operator on a point source "<<std::endl;
|
||||
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
|
||||
|
||||
Laplacian<WilsonImplR> LaplaceOperator(src._grid);
|
||||
LaplaceOperator.ImportGauge(Umu);
|
||||
LaplaceOperator.M(src, result);
|
||||
|
||||
std::cout << "Source vector" << std::endl;
|
||||
std::cout << src << std::endl;
|
||||
|
||||
std::cout << "Result vector" << std::endl;
|
||||
std::cout << result << std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage<<"= Testing the laplacian smearing operator on a point source "<<std::endl;
|
||||
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
|
||||
|
||||
LatticeFermion smeared (&Grid); smeared = src;
|
||||
for (int smr = 0; smr < 10; ++smr)
|
||||
{
|
||||
LaplaceOperator.M(smeared, tmp);
|
||||
smeared += 0.1*tmp;
|
||||
}
|
||||
|
||||
std::cout << "Smeared vector" << std::endl;
|
||||
std::cout << smeared << std::endl;
|
||||
|
||||
// Norm of vector
|
||||
LatticeComplex smr_norm(&Grid);
|
||||
smr_norm = localNorm2(smeared);
|
||||
std::cout << "Smeared vector norm" << std::endl;
|
||||
std::cout << smr_norm << std::endl;
|
||||
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
195
tests/hadrons/Test_hadrons_meson_3pt_laplacian.cc
Normal file
195
tests/hadrons/Test_hadrons_meson_3pt_laplacian.cc
Normal file
@ -0,0 +1,195 @@
|
||||
/*******************************************************************************
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: tests/hadrons/Test_hadrons_meson_3pt.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory.
|
||||
*******************************************************************************/
|
||||
|
||||
#include <Grid/Hadrons/Application.hpp>
|
||||
|
||||
using namespace Grid;
|
||||
using namespace Hadrons;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
// initialization //////////////////////////////////////////////////////////
|
||||
Grid_init(&argc, &argv);
|
||||
HadronsLogError.Active(GridLogError.isActive());
|
||||
HadronsLogWarning.Active(GridLogWarning.isActive());
|
||||
HadronsLogMessage.Active(GridLogMessage.isActive());
|
||||
HadronsLogIterative.Active(GridLogIterative.isActive());
|
||||
HadronsLogDebug.Active(GridLogDebug.isActive());
|
||||
LOG(Message) << "Grid initialized" << std::endl;
|
||||
|
||||
// run setup ///////////////////////////////////////////////////////////////
|
||||
Application application;
|
||||
std::vector<std::string> flavour = {"l", "s", "c1", "c2", "c3"};
|
||||
std::vector<double> mass = {.01, .04, .2 , .25 , .3 };
|
||||
unsigned int nt = GridDefaultLatt()[Tp];
|
||||
|
||||
// global parameters
|
||||
Application::GlobalPar globalPar;
|
||||
globalPar.trajCounter.start = 1500;
|
||||
globalPar.trajCounter.end = 1520;
|
||||
globalPar.trajCounter.step = 20;
|
||||
globalPar.seed = "1 2 3 4";
|
||||
globalPar.genetic.maxGen = 1000;
|
||||
globalPar.genetic.maxCstGen = 200;
|
||||
globalPar.genetic.popSize = 20;
|
||||
globalPar.genetic.mutationRate = .1;
|
||||
application.setPar(globalPar);
|
||||
|
||||
|
||||
// gauge field
|
||||
application.createModule<MGauge::Unit>("gauge");
|
||||
|
||||
// set fermion boundary conditions to be periodic space, antiperiodic time.
|
||||
std::string boundary = "1 1 1 -1";
|
||||
|
||||
// sink
|
||||
MSink::Point::Par sinkPar;
|
||||
sinkPar.mom = "0 0 0";
|
||||
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
|
||||
for (unsigned int i = 0; i < flavour.size(); ++i)
|
||||
{
|
||||
// actions
|
||||
MAction::DWF::Par actionPar;
|
||||
actionPar.gauge = "gauge";
|
||||
actionPar.Ls = 12;
|
||||
actionPar.M5 = 1.8;
|
||||
actionPar.mass = mass[i];
|
||||
actionPar.boundary = boundary;
|
||||
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
|
||||
|
||||
// solvers
|
||||
MSolver::RBPrecCG::Par solverPar;
|
||||
solverPar.action = "DWF_" + flavour[i];
|
||||
solverPar.residual = 1.0e-8;
|
||||
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
|
||||
solverPar);
|
||||
}
|
||||
for (unsigned int t = 0; t < nt; t += 1)
|
||||
{
|
||||
std::string srcName;
|
||||
std::string lapName;
|
||||
std::vector<std::string> qName;
|
||||
std::vector<std::vector<std::string>> seqName;
|
||||
|
||||
// Z2 source
|
||||
MSource::Z2::Par z2Par;
|
||||
z2Par.tA = t;
|
||||
z2Par.tB = t;
|
||||
srcName = "z2_" + std::to_string(t);
|
||||
application.createModule<MSource::Z2>(srcName, z2Par);
|
||||
|
||||
// Example of smearing of the source
|
||||
MSource::LaplaceSmearing::Par LapPar;
|
||||
LapPar.N = 10;
|
||||
LapPar.alpha = 0.1;
|
||||
LapPar.source = srcName;
|
||||
LapPar.gauge = "gauge";
|
||||
lapName = "z2smr_" + std::to_string(t);
|
||||
application.createModule<MSource::LaplaceSmearing>(lapName, LapPar);
|
||||
|
||||
for (unsigned int i = 0; i < flavour.size(); ++i)
|
||||
{
|
||||
// sequential sources
|
||||
MSource::SeqGamma::Par seqPar;
|
||||
qName.push_back("QZ2_" + flavour[i] + "_" + std::to_string(t));
|
||||
seqPar.q = qName[i];
|
||||
seqPar.tA = (t + nt/4) % nt;
|
||||
seqPar.tB = (t + nt/4) % nt;
|
||||
seqPar.mom = "1. 0. 0. 0.";
|
||||
seqName.push_back(std::vector<std::string>(Nd));
|
||||
for (unsigned int mu = 0; mu < Nd; ++mu)
|
||||
{
|
||||
seqPar.gamma = 0x1 << mu;
|
||||
seqName[i][mu] = "G" + std::to_string(seqPar.gamma)
|
||||
+ "_" + std::to_string(seqPar.tA) + "-"
|
||||
+ qName[i];
|
||||
application.createModule<MSource::SeqGamma>(seqName[i][mu], seqPar);
|
||||
}
|
||||
|
||||
// propagators
|
||||
MFermion::GaugeProp::Par quarkPar;
|
||||
quarkPar.solver = "CG_" + flavour[i];
|
||||
quarkPar.source = srcName;
|
||||
application.createModule<MFermion::GaugeProp>(qName[i], quarkPar);
|
||||
for (unsigned int mu = 0; mu < Nd; ++mu)
|
||||
{
|
||||
quarkPar.source = seqName[i][mu];
|
||||
seqName[i][mu] = "Q_" + flavour[i] + "-" + seqName[i][mu];
|
||||
application.createModule<MFermion::GaugeProp>(seqName[i][mu], quarkPar);
|
||||
}
|
||||
}
|
||||
|
||||
// contractions
|
||||
MContraction::Meson::Par mesPar;
|
||||
for (unsigned int i = 0; i < flavour.size(); ++i)
|
||||
for (unsigned int j = i; j < flavour.size(); ++j)
|
||||
{
|
||||
mesPar.output = "mesons/Z2_" + flavour[i] + flavour[j];
|
||||
mesPar.q1 = qName[i];
|
||||
mesPar.q2 = qName[j];
|
||||
mesPar.gammas = "all";
|
||||
mesPar.sink = "sink";
|
||||
application.createModule<MContraction::Meson>("meson_Z2_"
|
||||
+ std::to_string(t)
|
||||
+ "_"
|
||||
+ flavour[i]
|
||||
+ flavour[j],
|
||||
mesPar);
|
||||
}
|
||||
for (unsigned int i = 0; i < flavour.size(); ++i)
|
||||
for (unsigned int j = 0; j < flavour.size(); ++j)
|
||||
for (unsigned int mu = 0; mu < Nd; ++mu)
|
||||
{
|
||||
MContraction::Meson::Par mesPar;
|
||||
|
||||
mesPar.output = "3pt/Z2_" + flavour[i] + flavour[j] + "_"
|
||||
+ std::to_string(mu);
|
||||
mesPar.q1 = qName[i];
|
||||
mesPar.q2 = seqName[j][mu];
|
||||
mesPar.gammas = "all";
|
||||
mesPar.sink = "sink";
|
||||
application.createModule<MContraction::Meson>("3pt_Z2_"
|
||||
+ std::to_string(t)
|
||||
+ "_"
|
||||
+ flavour[i]
|
||||
+ flavour[j]
|
||||
+ "_"
|
||||
+ std::to_string(mu),
|
||||
mesPar);
|
||||
}
|
||||
}
|
||||
|
||||
// execution
|
||||
application.saveParameterFile("meson3pt.xml");
|
||||
application.run();
|
||||
|
||||
// epilogue
|
||||
LOG(Message) << "Grid is finalizing now" << std::endl;
|
||||
Grid_finalize();
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
include Make.inc
|
@ -1,136 +0,0 @@
|
||||
/*
|
||||
Params IO
|
||||
|
||||
Author: Christoph Lehner
|
||||
Date: 2017
|
||||
*/
|
||||
|
||||
#define PADD(p,X) p.get(#X,X);
|
||||
|
||||
class Params {
|
||||
protected:
|
||||
|
||||
std::string trim(const std::string& sc) {
|
||||
std::string s = sc;
|
||||
s.erase(s.begin(), std::find_if(s.begin(), s.end(),
|
||||
std::not1(std::ptr_fun<int, int>(std::isspace))));
|
||||
s.erase(std::find_if(s.rbegin(), s.rend(),
|
||||
std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
|
||||
return s;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
std::map< std::string, std::string > lines;
|
||||
std::string _fn;
|
||||
|
||||
Params(const char* fn) : _fn(fn) {
|
||||
FILE* f = fopen(fn,"rt");
|
||||
assert(f);
|
||||
while (!feof(f)) {
|
||||
char buf[4096];
|
||||
if (fgets(buf,sizeof(buf),f)) {
|
||||
if (buf[0] != '#' && buf[0] != '\r' && buf[0] != '\n') {
|
||||
char* sep = strchr(buf,'=');
|
||||
assert(sep);
|
||||
*sep = '\0';
|
||||
lines[trim(buf)] = trim(sep+1);
|
||||
}
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
~Params() {
|
||||
}
|
||||
|
||||
std::string loghead() {
|
||||
return _fn + ": ";
|
||||
}
|
||||
|
||||
bool has(const char* name) {
|
||||
auto f = lines.find(name);
|
||||
return (f != lines.end());
|
||||
}
|
||||
|
||||
const std::string& get(const char* name) {
|
||||
auto f = lines.find(name);
|
||||
if (f == lines.end()) {
|
||||
std::cout << Grid::GridLogMessage << loghead() << "Could not find value for " << name << std::endl;
|
||||
abort();
|
||||
}
|
||||
return f->second;
|
||||
}
|
||||
|
||||
void parse(std::string& s, const std::string& cval) {
|
||||
std::stringstream trimmer;
|
||||
trimmer << cval;
|
||||
s.clear();
|
||||
trimmer >> s;
|
||||
}
|
||||
|
||||
void parse(int& i, const std::string& cval) {
|
||||
assert(sscanf(cval.c_str(),"%d",&i)==1);
|
||||
}
|
||||
|
||||
void parse(long long& i, const std::string& cval) {
|
||||
assert(sscanf(cval.c_str(),"%lld",&i)==1);
|
||||
}
|
||||
|
||||
void parse(double& f, const std::string& cval) {
|
||||
assert(sscanf(cval.c_str(),"%lf",&f)==1);
|
||||
}
|
||||
|
||||
void parse(float& f, const std::string& cval) {
|
||||
assert(sscanf(cval.c_str(),"%f",&f)==1);
|
||||
}
|
||||
|
||||
void parse(bool& b, const std::string& cval) {
|
||||
std::string lcval = cval;
|
||||
std::transform(lcval.begin(), lcval.end(), lcval.begin(), ::tolower);
|
||||
if (lcval == "true" || lcval == "yes") {
|
||||
b = true;
|
||||
} else if (lcval == "false" || lcval == "no") {
|
||||
b = false;
|
||||
} else {
|
||||
std::cout << "Invalid value for boolean: " << b << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
void parse(std::complex<double>& f, const std::string& cval) {
|
||||
double r,i;
|
||||
assert(sscanf(cval.c_str(),"%lf %lf",&r,&i)==2);
|
||||
f = std::complex<double>(r,i);
|
||||
}
|
||||
|
||||
void parse(std::complex<float>& f, const std::string& cval) {
|
||||
float r,i;
|
||||
assert(sscanf(cval.c_str(),"%f %f",&r,&i)==2);
|
||||
f = std::complex<float>(r,i);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void get(const char* name, std::vector<T>& v) {
|
||||
int i = 0;
|
||||
v.resize(0);
|
||||
while (true) {
|
||||
char buf[4096];
|
||||
sprintf(buf,"%s[%d]",name,i++);
|
||||
if (!has(buf))
|
||||
break;
|
||||
T val;
|
||||
parse(val,get(buf));
|
||||
std::cout << Grid::GridLogMessage << loghead() << "Set " << buf << " to " << val << std::endl;
|
||||
v.push_back(val);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void get(const char* name, T& f) {
|
||||
parse(f,get(name));
|
||||
std::cout << Grid::GridLogMessage << loghead() << "Set " << name << " to " << f << std::endl;
|
||||
}
|
||||
|
||||
|
||||
};
|
@ -1,727 +0,0 @@
|
||||
/*
|
||||
Authors: Christoph Lehner
|
||||
Date: 2017
|
||||
|
||||
Multigrid Lanczos
|
||||
|
||||
|
||||
|
||||
TODO:
|
||||
|
||||
High priority:
|
||||
- Explore filtering of starting vector again, should really work: If cheby has 4 for low mode region and 1 for high mode, applying 15 iterations has 1e9 suppression
|
||||
of high modes, which should create the desired invariant subspace already? Missing something here??? Maybe dynamic range dangerous, i.e., could also kill interesting
|
||||
eigenrange if not careful.
|
||||
|
||||
Better: Use all Cheby up to order N in order to approximate a step function; try this! Problem: width of step function. Can kill eigenspace > 1e-3 and have < 1e-5 equal
|
||||
to 1
|
||||
|
||||
Low priority:
|
||||
- Given that I seem to need many restarts and high degree poly to create the base and this takes about 1 day, seriously consider a simple method to create a basis
|
||||
(ortho krylov low poly); and then fix up lowest say 200 eigenvalues by 1 run with high-degree poly (600 could be enough)
|
||||
*/
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h>
|
||||
#include "FieldVectorIO.h"
|
||||
#include "Params.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
bool read_evals(GridBase* _grid, char* fn, std::vector<RealD>& evals) {
|
||||
|
||||
FILE* f = 0;
|
||||
uint32_t status = 0;
|
||||
if (_grid->IsBoss()) {
|
||||
f = fopen(fn,"rt");
|
||||
status = f ? 1 : 0;
|
||||
}
|
||||
_grid->GlobalSum(status);
|
||||
|
||||
if (!status)
|
||||
return false;
|
||||
|
||||
uint32_t N;
|
||||
if (f)
|
||||
assert(fscanf(f,"%d\n",&N)==1);
|
||||
else
|
||||
N = 0;
|
||||
_grid->GlobalSum(N);
|
||||
|
||||
std::cout << "Reading " << N << " eigenvalues" << std::endl;
|
||||
|
||||
evals.resize(N);
|
||||
|
||||
for (int i=0;i<N;i++) {
|
||||
if (f)
|
||||
assert(fscanf(f,"%lf",&evals[i])==1);
|
||||
else
|
||||
evals[i] = 0;
|
||||
}
|
||||
|
||||
_grid->GlobalSumVector(&evals[0],evals.size());
|
||||
|
||||
if (f)
|
||||
fclose(f);
|
||||
return true;
|
||||
}
|
||||
|
||||
void write_evals(char* fn, std::vector<RealD>& evals) {
|
||||
FILE* f = fopen(fn,"wt");
|
||||
assert(f);
|
||||
|
||||
int N = (int)evals.size();
|
||||
fprintf(f,"%d\n",N);
|
||||
|
||||
for (int i=0;i<N;i++) {
|
||||
fprintf(f,"%.15E\n",evals[i]);
|
||||
}
|
||||
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
void write_history(char* fn, std::vector<RealD>& hist) {
|
||||
FILE* f = fopen(fn,"wt");
|
||||
assert(f);
|
||||
|
||||
int N = (int)hist.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
fprintf(f,"%d %.15E\n",i,hist[i]);
|
||||
}
|
||||
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop) : _poly(poly), _Linop(linop) {
|
||||
}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_poly(_Linop,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class CheckpointedLinearFunction : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearFunction<Field>& _op;
|
||||
std::string _dir;
|
||||
int _max_apply;
|
||||
int _apply, _apply_actual;
|
||||
GridBase* _grid;
|
||||
FILE* _f;
|
||||
|
||||
CheckpointedLinearFunction(GridBase* grid, LinearFunction<Field>& op, const char* dir,int max_apply) : _op(op), _dir(dir), _grid(grid), _f(0),
|
||||
_max_apply(max_apply), _apply(0), _apply_actual(0) {
|
||||
|
||||
FieldVectorIO::conditionalMkDir(dir);
|
||||
|
||||
char fn[4096];
|
||||
sprintf(fn,"%s/ckpt_op.%4.4d",_dir.c_str(),_grid->ThisRank());
|
||||
printf("CheckpointLinearFunction:: file %s\n",fn);
|
||||
_f = fopen(fn,"r+b");
|
||||
if (!_f)
|
||||
_f = fopen(fn,"w+b");
|
||||
assert(_f);
|
||||
fseek(_f,0,SEEK_CUR);
|
||||
|
||||
}
|
||||
|
||||
~CheckpointedLinearFunction() {
|
||||
if (_f) {
|
||||
fclose(_f);
|
||||
_f = 0;
|
||||
}
|
||||
}
|
||||
|
||||
bool load_ckpt(const Field& in, Field& out) {
|
||||
|
||||
off_t cur = ftello(_f);
|
||||
fseeko(_f,0,SEEK_END);
|
||||
if (cur == ftello(_f))
|
||||
return false;
|
||||
fseeko(_f,cur,SEEK_SET);
|
||||
|
||||
size_t sz = sizeof(out._odata[0]) * out._odata.size();
|
||||
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
uint32_t crc_exp;
|
||||
assert(fread(&crc_exp,4,1,_f)==1);
|
||||
assert(fread(&out._odata[0],sz,1,_f)==1);
|
||||
assert(FieldVectorIO::crc32_threaded((unsigned char*)&out._odata[0],sz,0x0)==crc_exp);
|
||||
gsw.Stop();
|
||||
|
||||
printf("CheckpointLinearFunction:: reading %lld\n",(long long)sz);
|
||||
std::cout << GridLogMessage << "Loading " << ((RealD)sz/1024./1024./1024.) << " GB in " << gsw.Elapsed() << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
void save_ckpt(const Field& in, Field& out) {
|
||||
|
||||
fseek(_f,0,SEEK_CUR); // switch to write
|
||||
|
||||
size_t sz = sizeof(out._odata[0]) * out._odata.size();
|
||||
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
uint32_t crc = FieldVectorIO::crc32_threaded((unsigned char*)&out._odata[0],sz,0x0);
|
||||
assert(fwrite(&crc,4,1,_f)==1);
|
||||
assert(fwrite(&out._odata[0],sz,1,_f)==1);
|
||||
fflush(_f); // try this on the GPFS to suppress OPA usage for disk during dslash; this is not needed at Lustre/JLAB
|
||||
gsw.Stop();
|
||||
|
||||
printf("CheckpointLinearFunction:: writing %lld\n",(long long)sz);
|
||||
std::cout << GridLogMessage << "Saving " << ((RealD)sz/1024./1024./1024.) << " GB in " << gsw.Elapsed() << std::endl;
|
||||
}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
|
||||
_apply++;
|
||||
|
||||
if (load_ckpt(in,out))
|
||||
return;
|
||||
|
||||
_op(in,out);
|
||||
|
||||
save_ckpt(in,out);
|
||||
|
||||
if (_apply_actual++ >= _max_apply) {
|
||||
std::cout << GridLogMessage << "Maximum application of operator reached, checkpoint and finish in future job" << std::endl;
|
||||
if (_f) { fclose(_f); _f=0; }
|
||||
in._grid->Barrier();
|
||||
Grid_finalize();
|
||||
exit(3);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename CoarseField,typename Field>
|
||||
class ProjectedFunctionHermOp : public LinearFunction<CoarseField> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
BlockProjector<Field>& _pr;
|
||||
|
||||
ProjectedFunctionHermOp(BlockProjector<Field>& pr,OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop) : _poly(poly), _Linop(linop), _pr(pr) {
|
||||
}
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
assert(_pr._bgrid._o_blocks == in._grid->oSites());
|
||||
|
||||
Field fin(_pr._bgrid._grid);
|
||||
Field fout(_pr._bgrid._grid);
|
||||
|
||||
GridStopWatch gsw1,gsw2,gsw3;
|
||||
// fill fin
|
||||
gsw1.Start();
|
||||
_pr.coarseToFine(in,fin);
|
||||
gsw1.Stop();
|
||||
|
||||
// apply poly
|
||||
gsw2.Start();
|
||||
_poly(_Linop,fin,fout);
|
||||
gsw2.Stop();
|
||||
|
||||
// fill out
|
||||
gsw3.Start();
|
||||
_pr.fineToCoarse(fout,out);
|
||||
gsw3.Stop();
|
||||
|
||||
auto eps = innerProduct(in,out);
|
||||
std::cout << GridLogMessage << "Operator timing details: c2f = " << gsw1.Elapsed() << " poly = " << gsw2.Elapsed() << " f2c = " << gsw3.Elapsed() <<
|
||||
" Complimentary Hermiticity check: " << eps.imag() / std::abs(eps) << std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<typename CoarseField,typename Field>
|
||||
class ProjectedHermOp : public LinearFunction<CoarseField> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
BlockProjector<Field>& _pr;
|
||||
|
||||
ProjectedHermOp(BlockProjector<Field>& pr,LinearOperatorBase<Field>& linop) : _Linop(linop), _pr(pr) {
|
||||
}
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
assert(_pr._bgrid._o_blocks == in._grid->oSites());
|
||||
Field fin(_pr._bgrid._grid);
|
||||
Field fout(_pr._bgrid._grid);
|
||||
_pr.coarseToFine(in,fin);
|
||||
_Linop.HermOp(fin,fout);
|
||||
_pr.fineToCoarse(fout,out);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) {
|
||||
}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_Linop.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename vtype, int N > using CoarseSiteFieldGeneral = iScalar< iVector<vtype, N> >;
|
||||
template<int N> using CoarseSiteFieldD = CoarseSiteFieldGeneral< vComplexD, N >;
|
||||
template<int N> using CoarseSiteFieldF = CoarseSiteFieldGeneral< vComplexF, N >;
|
||||
template<int N> using CoarseSiteField = CoarseSiteFieldGeneral< vComplex, N >;
|
||||
template<int N> using CoarseLatticeFermion = Lattice< CoarseSiteField<N> >;
|
||||
template<int N> using CoarseLatticeFermionD = Lattice< CoarseSiteFieldD<N> >;
|
||||
|
||||
template<typename Field,int Nstop1>
|
||||
void CoarseGridLanczos(BlockProjector<Field>& pr,RealD alpha2,RealD beta,int Npoly2,
|
||||
int Nstop2,int Nk2,int Nm2,RealD resid2,RealD betastp2,int MaxIt,int MinRes2,
|
||||
LinearOperatorBase<Field>& HermOp, std::vector<RealD>& eval1, bool cg_test_enabled,
|
||||
int cg_test_maxiter,int nsingle,int SkipTest2, int MaxApply2,bool smoothed_eval_enabled,
|
||||
int smoothed_eval_inner,int smoothed_eval_outer,int smoothed_eval_begin,
|
||||
int smoothed_eval_end,RealD smoothed_eval_inner_resid) {
|
||||
|
||||
BlockedGrid<Field>& bgrid = pr._bgrid;
|
||||
BasisFieldVector<Field>& basis = pr._evec;
|
||||
|
||||
|
||||
std::vector<int> coarseFourDimLatt;
|
||||
for (int i=0;i<4;i++)
|
||||
coarseFourDimLatt.push_back(bgrid._nb[1+i] * bgrid._grid->_processors[1+i]);
|
||||
assert(bgrid._grid->_processors[0] == 1);
|
||||
|
||||
std::cout << GridLogMessage << "CoarseGrid = " << coarseFourDimLatt << " with basis = " << Nstop1 << std::endl;
|
||||
GridCartesian * UCoarseGrid = SpaceTimeGrid::makeFourDimGrid(coarseFourDimLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridCartesian * FCoarseGrid = SpaceTimeGrid::makeFiveDimGrid(bgrid._nb[0],UCoarseGrid);
|
||||
|
||||
Chebyshev<Field> Cheb2(alpha2,beta,Npoly2);
|
||||
CoarseLatticeFermion<Nstop1> src_coarse(FCoarseGrid);
|
||||
|
||||
// Second round of Lanczos in blocked space
|
||||
std::vector<RealD> eval2(Nm2);
|
||||
std::vector<RealD> eval3(Nm2);
|
||||
BasisFieldVector<CoarseLatticeFermion<Nstop1> > coef(Nm2,FCoarseGrid);
|
||||
|
||||
ProjectedFunctionHermOp<CoarseLatticeFermion<Nstop1>,LatticeFermion> Op2plain(pr,Cheb2,HermOp);
|
||||
CheckpointedLinearFunction<CoarseLatticeFermion<Nstop1> > Op2ckpt(src_coarse._grid,Op2plain,"checkpoint",MaxApply2);
|
||||
LinearFunction< CoarseLatticeFermion<Nstop1> >* Op2;
|
||||
if (MaxApply2) {
|
||||
Op2 = &Op2ckpt;
|
||||
} else {
|
||||
Op2 = &Op2plain;
|
||||
}
|
||||
ProjectedHermOp<CoarseLatticeFermion<Nstop1>,LatticeFermion> Op2nopoly(pr,HermOp);
|
||||
BlockImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2);
|
||||
|
||||
|
||||
src_coarse = 1.0;
|
||||
|
||||
// Precision test
|
||||
{
|
||||
Field tmp(bgrid._grid);
|
||||
CoarseLatticeFermion<Nstop1> tmp2(FCoarseGrid);
|
||||
CoarseLatticeFermion<Nstop1> tmp3(FCoarseGrid);
|
||||
tmp2 = 1.0;
|
||||
tmp3 = 1.0;
|
||||
|
||||
pr.coarseToFine(tmp2,tmp);
|
||||
pr.fineToCoarse(tmp,tmp2);
|
||||
|
||||
tmp2 -= tmp3;
|
||||
std::cout << GridLogMessage << "Precision Test c->f->c: " << norm2(tmp2) / norm2(tmp3) << std::endl;
|
||||
|
||||
//bgrid._grid->Barrier();
|
||||
//return;
|
||||
}
|
||||
|
||||
int Nconv;
|
||||
if (!FieldVectorIO::read_compressed_vectors("lanczos.output",pr,coef) ||
|
||||
!read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt",eval3) ||
|
||||
!read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt.linear",eval1) ||
|
||||
!read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt.poly",eval2)
|
||||
) {
|
||||
|
||||
|
||||
IRL2.calc(eval2,coef,src_coarse,Nconv,true,SkipTest2);
|
||||
|
||||
coef.resize(Nstop2);
|
||||
eval2.resize(Nstop2);
|
||||
eval3.resize(Nstop2);
|
||||
|
||||
std::vector<Field> step3_cache;
|
||||
|
||||
// reconstruct eigenvalues of original operator
|
||||
for (int i=0;i<Nstop2;i++){
|
||||
RealD eval2_linear;
|
||||
|
||||
if (i<Nstop1) {
|
||||
eval2_linear = eval1[i];
|
||||
} else {
|
||||
eval2_linear = eval2[i-1];
|
||||
}
|
||||
|
||||
RealD eval2_poly = eval2[i];
|
||||
RealD eval_reconstruct = Cheb2.approxInv(eval2_poly,eval2_linear,100,1e-10);
|
||||
std::cout << i << " Reconstructed eval = " << eval_reconstruct << " from quess " << eval2_linear << std::endl;
|
||||
eval2[i] = eval_reconstruct;
|
||||
}
|
||||
|
||||
// as demonstrated in CG test below, best result from mixed determination
|
||||
for (int i=0;i<Nstop2;i++)
|
||||
eval3[i] = (i < Nstop1) ? eval1[i] : eval2[i];
|
||||
|
||||
for(int i=0;i<Nstop2;i++){
|
||||
std::cout << i<<" / "<< Nstop2<< " eigenvalue "<< eval3[i] <<std::endl;
|
||||
};
|
||||
|
||||
// write
|
||||
mkdir("lanczos.output",ACCESSPERMS);
|
||||
FieldVectorIO::write_compressed_vectors("lanczos.output",pr,coef,nsingle);
|
||||
if (bgrid._grid->IsBoss()) {
|
||||
write_evals((char *)"lanczos.output/eigen-values.txt",eval3);
|
||||
write_evals((char *)"lanczos.output/eigen-values.txt.linear",eval1);
|
||||
write_evals((char *)"lanczos.output/eigen-values.txt.poly",eval2);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// fix up eigenvalues
|
||||
if (!read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt.smoothed",eval3) && smoothed_eval_enabled) {
|
||||
|
||||
ConjugateGradient<LatticeFermion> CG(smoothed_eval_inner_resid, smoothed_eval_inner, false);
|
||||
|
||||
LatticeFermion v_i(basis[0]._grid);
|
||||
auto tmp = v_i;
|
||||
auto tmp2 = v_i;
|
||||
|
||||
for (int i=smoothed_eval_begin;i<smoothed_eval_end;i++) {
|
||||
|
||||
GridStopWatch gsw;
|
||||
|
||||
gsw.Start();
|
||||
|
||||
pr.coarseToFine(coef[i],v_i);
|
||||
v_i.checkerboard = Odd;
|
||||
|
||||
for (int j=0;j<smoothed_eval_outer;j++) {
|
||||
tmp=zero;
|
||||
//pr.deflate(coef,eval3,Nstop2,v_i,tmp);
|
||||
CG(HermOp, v_i, tmp);
|
||||
|
||||
v_i = 1.0 / ::sqrt( norm2(tmp) ) * tmp;
|
||||
}
|
||||
|
||||
tmp = v_i;
|
||||
|
||||
HermOp.HermOp(tmp,tmp2);
|
||||
|
||||
RealD ev = innerProduct(tmp,tmp2).real();
|
||||
|
||||
gsw.Stop();
|
||||
|
||||
std::cout << GridLogMessage << "Smoothed eigenvalue " << i << " from " << eval3[i] << " to " << ev << " in " << gsw.Elapsed() << std::endl;
|
||||
// " with effective smoother precision " << (CG.ResHistory.back() / CG.ResHistory.front() ) << std::endl;
|
||||
// CG.ResHistory.clear();
|
||||
|
||||
eval3[i] = ev;
|
||||
}
|
||||
|
||||
if (bgrid._grid->IsBoss()) {
|
||||
write_evals((char *)"lanczos.output/eigen-values.txt.smoothed",eval3);
|
||||
write_evals((char *)"lanczos.output/eigen-values.txt",eval3); // also reset this to the best ones we have available
|
||||
}
|
||||
}
|
||||
|
||||
// do CG test with and without deflation
|
||||
if (cg_test_enabled) {
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-8, cg_test_maxiter, false);
|
||||
LatticeFermion src_orig(bgrid._grid);
|
||||
src_orig.checkerboard = Odd;
|
||||
src_orig = 1.0;
|
||||
src_orig = src_orig * (1.0 / ::sqrt(norm2(src_orig)) );
|
||||
auto result = src_orig;
|
||||
|
||||
// undeflated solve
|
||||
result = zero;
|
||||
CG(HermOp, src_orig, result);
|
||||
// if (UCoarseGrid->IsBoss())
|
||||
// write_history("cg_test.undefl",CG.ResHistory);
|
||||
// CG.ResHistory.clear();
|
||||
|
||||
// deflated solve with all eigenvectors
|
||||
result = zero;
|
||||
pr.deflate(coef,eval2,Nstop2,src_orig,result);
|
||||
CG(HermOp, src_orig, result);
|
||||
// if (UCoarseGrid->IsBoss())
|
||||
// write_history("cg_test.defl_all",CG.ResHistory);
|
||||
// CG.ResHistory.clear();
|
||||
|
||||
// deflated solve with non-blocked eigenvectors
|
||||
result = zero;
|
||||
pr.deflate(coef,eval1,Nstop1,src_orig,result);
|
||||
CG(HermOp, src_orig, result);
|
||||
// if (UCoarseGrid->IsBoss())
|
||||
// write_history("cg_test.defl_full",CG.ResHistory);
|
||||
// CG.ResHistory.clear();
|
||||
|
||||
// deflated solve with all eigenvectors and original eigenvalues from proj
|
||||
result = zero;
|
||||
pr.deflate(coef,eval3,Nstop2,src_orig,result);
|
||||
CG(HermOp, src_orig, result);
|
||||
// if (UCoarseGrid->IsBoss())
|
||||
// write_history("cg_test.defl_all_ev3",CG.ResHistory);
|
||||
// CG.ResHistory.clear();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename Field>
|
||||
void quick_krylov_basis(BasisFieldVector<Field>& evec,Field& src,LinearFunction<Field>& Op,int Nstop) {
|
||||
Field tmp = src;
|
||||
Field tmp2 = tmp;
|
||||
|
||||
for (int i=0;i<Nstop;i++) {
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
Op(tmp,tmp2);
|
||||
gsw.Stop();
|
||||
evec.orthogonalize(tmp2,i);
|
||||
|
||||
RealD nn = norm2(tmp2);
|
||||
nn = Grid::sqrt(nn);
|
||||
tmp2 = tmp2 * (1.0/nn);
|
||||
|
||||
evec[i] = tmp2;
|
||||
tmp = tmp2;
|
||||
std::cout << GridLogMessage << "Quick_krylov_basis: " << i << "/" << Nstop << " timing of operator=" << gsw.Elapsed() << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main (int argc, char ** argv) {
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int MaxIt = 10000;
|
||||
|
||||
int Ls;
|
||||
RealD mass;
|
||||
RealD M5;
|
||||
std::vector < std::complex<double> > omega;
|
||||
|
||||
RealD alpha1, alpha2, beta;
|
||||
int Npoly1, Npoly2;
|
||||
int Nstop1, Nstop2;
|
||||
int Nk1, Nk2;
|
||||
int Np1, Np2;
|
||||
int MinRes1, MinRes2;
|
||||
int SkipTest2, MaxApply2;
|
||||
bool checkpoint_basis;
|
||||
bool cg_test_enabled;
|
||||
bool exit_after_basis_calculation;
|
||||
bool simple_krylov_basis;
|
||||
int cg_test_maxiter;
|
||||
int nsingle; // store in single precision, the rest in FP16
|
||||
int max_cheb_time_ms;
|
||||
bool smoothed_eval_enabled;
|
||||
int smoothed_eval_inner;
|
||||
int smoothed_eval_outer;
|
||||
int smoothed_eval_begin;
|
||||
int smoothed_eval_end;
|
||||
RealD smoothed_eval_inner_resid;
|
||||
|
||||
// vector representation
|
||||
std::vector<int> block_size; // 5d block size
|
||||
|
||||
RealD resid1, resid2, betastp1, betastp2, basis_norm_threshold;
|
||||
|
||||
std::string config;
|
||||
|
||||
Params jp("params.txt");
|
||||
PADD(jp,Npoly1); PADD(jp,Npoly2);
|
||||
PADD(jp,max_cheb_time_ms);
|
||||
PADD(jp,Nstop1); PADD(jp,Nstop2); PADD(jp,MaxApply2);
|
||||
PADD(jp,Nk1); PADD(jp,Nk2); PADD(jp,betastp1); PADD(jp,betastp2);
|
||||
PADD(jp,Np1); PADD(jp,Np2); basis_norm_threshold = 1e-5; //PADD(jp,basis_norm_threshold);
|
||||
PADD(jp,block_size); PADD(jp,smoothed_eval_enabled); PADD(jp,smoothed_eval_inner);
|
||||
PADD(jp,resid1); PADD(jp,resid2); PADD(jp,smoothed_eval_outer);
|
||||
PADD(jp,alpha1); PADD(jp,alpha2); PADD(jp,smoothed_eval_begin);
|
||||
PADD(jp,MinRes1); PADD(jp,MinRes2); PADD(jp,smoothed_eval_end);
|
||||
PADD(jp,beta); PADD(jp,mass); PADD(jp,smoothed_eval_inner_resid);
|
||||
PADD(jp,omega); PADD(jp,config);
|
||||
PADD(jp,M5); PADD(jp,cg_test_enabled);
|
||||
PADD(jp,cg_test_maxiter); PADD(jp,checkpoint_basis);
|
||||
PADD(jp,nsingle); PADD(jp,exit_after_basis_calculation);
|
||||
PADD(jp,simple_krylov_basis); PADD(jp,SkipTest2);
|
||||
|
||||
Ls = (int)omega.size();
|
||||
|
||||
// Grids
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridCartesian * UGridHP = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian * UrbGridHP = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridHP);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridCartesian * FGridHP = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridHP);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGridHP = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridHP);
|
||||
|
||||
// Gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration(Umu,header,config);
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt()
|
||||
<< " Ls: " << Ls << std::endl;
|
||||
|
||||
// ZMobius EO Operator
|
||||
ZMobiusFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, omega,1.,0.);
|
||||
SchurDiagTwoOperator<ZMobiusFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
|
||||
// Eigenvector storage
|
||||
const int Nm1 = Np1 + Nk1;
|
||||
const int Nm2 = Np2 + Nk2; // maximum number of vectors we need to keep
|
||||
std::cout << GridLogMessage << "Keep " << Nm1 << " full vectors" << std::endl;
|
||||
std::cout << GridLogMessage << "Keep " << Nm2 << " total vectors" << std::endl;
|
||||
assert(Nm2 >= Nm1);
|
||||
BasisFieldVector<LatticeFermion> evec(Nm1,FrbGrid); // start off with keeping full vectors
|
||||
|
||||
// First and second cheby
|
||||
Chebyshev<LatticeFermion> Cheb1(alpha1,beta,Npoly1);
|
||||
FunctionHermOp<LatticeFermion> Op1(Cheb1,HermOp);
|
||||
PlainHermOp<LatticeFermion> Op1test(HermOp);
|
||||
|
||||
// Eigenvalue storage
|
||||
std::vector<RealD> eval1(evec.size());
|
||||
|
||||
// Construct source vector
|
||||
LatticeFermion src(FrbGrid);
|
||||
{
|
||||
src=1.0;
|
||||
src.checkerboard = Odd;
|
||||
|
||||
// normalize
|
||||
RealD nn = norm2(src);
|
||||
nn = Grid::sqrt(nn);
|
||||
src = src * (1.0/nn);
|
||||
}
|
||||
|
||||
// Do a benchmark and a quick exit if performance is too little (ugly but needed due to performance fluctuations)
|
||||
if (max_cheb_time_ms) {
|
||||
// one round of warmup
|
||||
auto tmp = src;
|
||||
GridStopWatch gsw1,gsw2;
|
||||
gsw1.Start();
|
||||
Cheb1(HermOp,src,tmp);
|
||||
gsw1.Stop();
|
||||
Ddwf.ZeroCounters();
|
||||
gsw2.Start();
|
||||
Cheb1(HermOp,src,tmp);
|
||||
gsw2.Stop();
|
||||
Ddwf.Report();
|
||||
std::cout << GridLogMessage << "Performance check; warmup = " << gsw1.Elapsed() << " test = " << gsw2.Elapsed() << std::endl;
|
||||
int ms = (int)(gsw2.useconds()/1e3);
|
||||
if (ms > max_cheb_time_ms) {
|
||||
std::cout << GridLogMessage << "Performance too poor: " << ms << " ms, cutoff = " << max_cheb_time_ms << " ms" << std::endl;
|
||||
Grid_finalize();
|
||||
return 2;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// First round of Lanczos to get low mode basis
|
||||
BlockImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,betastp1,MaxIt,MinRes1);
|
||||
int Nconv;
|
||||
|
||||
char tag[1024];
|
||||
if (!FieldVectorIO::read_argonne(evec,(char *)"checkpoint") || !read_evals(UGrid,(char *)"checkpoint/eigen-values.txt",eval1)) {
|
||||
|
||||
if (simple_krylov_basis) {
|
||||
quick_krylov_basis(evec,src,Op1,Nstop1);
|
||||
} else {
|
||||
IRL1.calc(eval1,evec,src,Nconv,false,1);
|
||||
}
|
||||
evec.resize(Nstop1); // and throw away superfluous
|
||||
eval1.resize(Nstop1);
|
||||
if (checkpoint_basis)
|
||||
FieldVectorIO::write_argonne(evec,(char *)"checkpoint");
|
||||
if (UGrid->IsBoss() && checkpoint_basis)
|
||||
write_evals((char *)"checkpoint/eigen-values.txt",eval1);
|
||||
|
||||
Ddwf.Report();
|
||||
|
||||
if (exit_after_basis_calculation) {
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// now test eigenvectors
|
||||
if (!simple_krylov_basis) {
|
||||
for (int i=0;i<Nstop1;i++){
|
||||
auto B = evec[i];
|
||||
auto tmp = B;
|
||||
auto v = B;
|
||||
|
||||
{
|
||||
HermOp.HermOp(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
RealD eval2 = vnum/vden;
|
||||
v -= eval2*B;
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout << i << " OP eval = " << eval2 << " (" << eval1[i] << ") "
|
||||
<< "res2 = " << vv << " norm2 = " << norm2(B) << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// do second step only if needed
|
||||
if (Nstop1 <= Nstop2) {
|
||||
|
||||
// Now setup blocking
|
||||
assert(evec.size() == Nstop1);
|
||||
BlockedGrid<LatticeFermion> bgrid(FrbGrid, block_size);
|
||||
BlockProjector<LatticeFermion> pr(evec,bgrid);
|
||||
pr.createOrthonormalBasis(basis_norm_threshold);
|
||||
pr.createOrthonormalBasis(basis_norm_threshold); // another round due to precision issues created by local coherence
|
||||
|
||||
constexpr int common_basis_sizes[] = { 60, 250, 400 };
|
||||
constexpr int n_common_basis_sizes = sizeof(common_basis_sizes) / sizeof(common_basis_sizes[0]);
|
||||
switch (Nstop1) {
|
||||
#define BASIS(n) case common_basis_sizes[n]:\
|
||||
CoarseGridLanczos<LatticeFermion,common_basis_sizes[n]>\
|
||||
(pr,alpha2,beta,Npoly2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2,HermOp,eval1, \
|
||||
cg_test_enabled,cg_test_maxiter,nsingle,SkipTest2, \
|
||||
MaxApply2,smoothed_eval_enabled,smoothed_eval_inner,smoothed_eval_outer, \
|
||||
smoothed_eval_begin,smoothed_eval_end,smoothed_eval_inner_resid); break;
|
||||
BASIS(0);
|
||||
BASIS(1);
|
||||
BASIS(2);
|
||||
default:
|
||||
std::cout << GridLogMessage << "Basis size " << Nstop1 << " must be added at compile-time" << std::endl;
|
||||
std::cout << GridLogMessage << "Currently available sizes: " << std::endl;
|
||||
for (int i=0;i<n_common_basis_sizes;i++) {
|
||||
std::cout << GridLogMessage << " " << common_basis_sizes[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -38,7 +38,7 @@ int main (int argc, char ** argv)
|
||||
typedef typename DomainWallFermionR::ComplexField ComplexField;
|
||||
typename DomainWallFermionR::ImplParams params;
|
||||
|
||||
const int Ls=4;
|
||||
const int Ls=8;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
@ -47,24 +47,29 @@ int main (int argc, char ** argv)
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
std::vector<int> mpi_split (mpi_layout.size(),1);
|
||||
|
||||
std::cout << "UGrid (world root)"<<std::endl;
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
|
||||
std::cout << "FGrid (child of UGrid)"<<std::endl;
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
int nrhs = UGrid->RankCount() ;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Split into 1^4 mpi communicators
|
||||
/////////////////////////////////////////////
|
||||
std::cout << "SGrid (world root)"<<std::endl;
|
||||
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
mpi_split,
|
||||
*UGrid);
|
||||
|
||||
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
|
||||
std::cout << "SFGrid"<<std::endl;
|
||||
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
|
||||
std::cout << "SrbGrid"<<std::endl;
|
||||
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
|
||||
std::cout << "SFrbGrid"<<std::endl;
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Set up the problem as a 4d spreadout job
|
||||
@ -74,12 +79,10 @@ int main (int argc, char ** argv)
|
||||
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
|
||||
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
|
||||
std::vector<FermionField> src(nrhs,FGrid);
|
||||
std::vector<FermionField> src_chk(nrhs,FGrid);
|
||||
std::vector<FermionField> result(nrhs,FGrid);
|
||||
FermionField tmp(FGrid);
|
||||
|
||||
for(int s=0;s<nrhs;s++) random(pRNG5,src[s]);
|
||||
for(int s=0;s<nrhs;s++) result[s]=zero;
|
||||
for(int s=0;s<nrhs;s++) result[s] = zero;
|
||||
|
||||
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
|
||||
|
||||
@ -96,8 +99,6 @@ int main (int argc, char ** argv)
|
||||
int me = UGrid->ThisRank();
|
||||
LatticeGaugeField s_Umu(SGrid);
|
||||
FermionField s_src(SFGrid);
|
||||
FermionField s_src_split(SFGrid);
|
||||
FermionField s_tmp(SFGrid);
|
||||
FermionField s_res(SFGrid);
|
||||
|
||||
{
|
||||
@ -156,24 +157,6 @@ int main (int argc, char ** argv)
|
||||
FGrid->Barrier();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// split the source out using MPI instead of I/O
|
||||
///////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << " Splitting the grid data "<<std::endl;
|
||||
Grid_split (src,s_src_split);
|
||||
std::cout << GridLogMessage << " Finished splitting the grid data "<<std::endl;
|
||||
for(int n=0;n<nrhs;n++){
|
||||
std::cout <<GridLogMessage<<"Full "<< n <<" "<< norm2(src[n])<<std::endl;
|
||||
}
|
||||
s_tmp = s_src_split - s_src;
|
||||
for(int n=0;n<nrhs;n++){
|
||||
FGrid->Barrier();
|
||||
if ( n==me ) {
|
||||
std::cerr << GridLogMessage<<"Split "<< me << " " << norm2(s_src_split) << " " << norm2(s_src)<< " diff " << norm2(s_tmp)<<std::endl;
|
||||
}
|
||||
FGrid->Barrier();
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Set up N-solvers as trivially parallel
|
||||
@ -181,7 +164,6 @@ int main (int argc, char ** argv)
|
||||
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
DomainWallFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5);
|
||||
DomainWallFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5);
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
@ -189,41 +171,25 @@ int main (int argc, char ** argv)
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
|
||||
ConjugateGradient<FermionField> CG((1.0e-8/(me+1)),10000);
|
||||
s_res = zero;
|
||||
CG(HermOp,s_src,s_res);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Report how long they all took
|
||||
/////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////
|
||||
// Share the information
|
||||
///////////////////////////////////////
|
||||
std::vector<uint32_t> iterations(nrhs,0);
|
||||
iterations[me] = CG.IterationsToComplete;
|
||||
|
||||
for(int n=0;n<nrhs;n++){
|
||||
UGrid->GlobalSum(iterations[n]);
|
||||
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gather and residual check on the results
|
||||
// Report how long they all took
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
|
||||
Grid_unsplit(result,s_res);
|
||||
/*
|
||||
Grid_unsplit(src_chk,s_src);
|
||||
for(int n=0;n<nrhs;n++){
|
||||
tmp = src[n]-src_chk[n];
|
||||
std::cout << " src_chk "<<n<<" "<<norm2(src_chk[n])<<" " <<norm2(src[n])<<" " <<norm2(tmp)<< std::endl;
|
||||
std::cout << " diff " <<tmp<<std::endl;
|
||||
for(int r=0;r<nrhs;r++){
|
||||
std::cout << GridLogMessage<<" Rank "<<r<<" "<< iterations[r]<<" CG iterations"<<std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
|
||||
for(int n=0;n<nrhs;n++){
|
||||
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
|
||||
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -1,144 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_dwf_mrhs_cg.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
typedef typename DomainWallFermionR::FermionField FermionField;
|
||||
typedef typename DomainWallFermionR::ComplexField ComplexField;
|
||||
typename DomainWallFermionR::ImplParams params;
|
||||
|
||||
const int Ls=4;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
std::vector<int> mpi_split (mpi_layout.size(),1);
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
int nrhs = UGrid->RankCount() ;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Split into 1^4 mpi communicators
|
||||
/////////////////////////////////////////////
|
||||
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
mpi_split,
|
||||
*UGrid);
|
||||
|
||||
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
|
||||
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
|
||||
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Set up the problem as a 4d spreadout job
|
||||
///////////////////////////////////////////////
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
|
||||
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
|
||||
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
|
||||
std::vector<FermionField> src(nrhs,FGrid);
|
||||
std::vector<FermionField> src_chk(nrhs,FGrid);
|
||||
std::vector<FermionField> result(nrhs,FGrid);
|
||||
FermionField tmp(FGrid);
|
||||
|
||||
for(int s=0;s<nrhs;s++) random(pRNG5,src[s]);
|
||||
for(int s=0;s<nrhs;s++) result[s]=zero;
|
||||
|
||||
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
|
||||
|
||||
/////////////////
|
||||
// MPI only sends
|
||||
/////////////////
|
||||
int me = UGrid->ThisRank();
|
||||
|
||||
LatticeGaugeField s_Umu(SGrid);
|
||||
FermionField s_src(SFGrid);
|
||||
FermionField s_tmp(SFGrid);
|
||||
FermionField s_res(SFGrid);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// split the source out using MPI instead of I/O
|
||||
///////////////////////////////////////////////////////////////
|
||||
Grid_split (Umu,s_Umu);
|
||||
Grid_split (src,s_src);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Set up N-solvers as trivially parallel
|
||||
///////////////////////////////////////////////////////////////
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
DomainWallFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5);
|
||||
DomainWallFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5);
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
|
||||
ConjugateGradient<FermionField> CG((1.0e-8/(me+1)),10000);
|
||||
s_res = zero;
|
||||
CG(HermOp,s_src,s_res);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Report how long they all took
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::vector<uint32_t> iterations(nrhs,0);
|
||||
iterations[me] = CG.IterationsToComplete;
|
||||
|
||||
for(int n=0;n<nrhs;n++){
|
||||
UGrid->GlobalSum(iterations[n]);
|
||||
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gather and residual check on the results
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
|
||||
Grid_unsplit(result,s_res);
|
||||
|
||||
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
|
||||
for(int n=0;n<nrhs;n++){
|
||||
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
|
||||
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -1,163 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_dwf_mrhs_cg.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
typedef typename DomainWallFermionR::FermionField FermionField;
|
||||
typedef typename DomainWallFermionR::ComplexField ComplexField;
|
||||
typename DomainWallFermionR::ImplParams params;
|
||||
|
||||
const int Ls=4;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
std::vector<int> mpi_split (mpi_layout.size(),1);
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
int nrhs = UGrid->RankCount() ;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Split into 1^4 mpi communicators
|
||||
/////////////////////////////////////////////
|
||||
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
mpi_split,
|
||||
*UGrid);
|
||||
|
||||
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
|
||||
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
|
||||
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Set up the problem as a 4d spreadout job
|
||||
///////////////////////////////////////////////
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
|
||||
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
|
||||
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
|
||||
std::vector<FermionField> src(nrhs,FGrid);
|
||||
std::vector<FermionField> src_chk(nrhs,FGrid);
|
||||
std::vector<FermionField> result(nrhs,FGrid);
|
||||
FermionField tmp(FGrid);
|
||||
|
||||
std::vector<FermionField> src_e(nrhs,FrbGrid);
|
||||
std::vector<FermionField> src_o(nrhs,FrbGrid);
|
||||
|
||||
for(int s=0;s<nrhs;s++) random(pRNG5,src[s]);
|
||||
for(int s=0;s<nrhs;s++) result[s]=zero;
|
||||
|
||||
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
|
||||
|
||||
/////////////////
|
||||
// MPI only sends
|
||||
/////////////////
|
||||
int me = UGrid->ThisRank();
|
||||
|
||||
LatticeGaugeField s_Umu(SGrid);
|
||||
FermionField s_src(SFGrid);
|
||||
FermionField s_src_e(SFrbGrid);
|
||||
FermionField s_src_o(SFrbGrid);
|
||||
FermionField s_tmp(SFGrid);
|
||||
FermionField s_res(SFGrid);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// split the source out using MPI instead of I/O
|
||||
///////////////////////////////////////////////////////////////
|
||||
Grid_split (Umu,s_Umu);
|
||||
Grid_split (src,s_src);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Check even odd cases
|
||||
///////////////////////////////////////////////////////////////
|
||||
for(int s=0;s<nrhs;s++){
|
||||
pickCheckerboard(Odd , src_o[s], src[s]);
|
||||
pickCheckerboard(Even, src_e[s], src[s]);
|
||||
}
|
||||
Grid_split (src_e,s_src_e);
|
||||
Grid_split (src_o,s_src_o);
|
||||
setCheckerboard(s_tmp, s_src_o);
|
||||
setCheckerboard(s_tmp, s_src_e);
|
||||
s_tmp = s_tmp - s_src;
|
||||
std::cout << GridLogMessage<<" EvenOdd Difference " <<norm2(s_tmp)<<std::endl;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Set up N-solvers as trivially parallel
|
||||
///////////////////////////////////////////////////////////////
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
DomainWallFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5);
|
||||
DomainWallFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5);
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
|
||||
ConjugateGradient<FermionField> CG((1.0e-8/(me+1)),10000);
|
||||
s_res = zero;
|
||||
CG(HermOp,s_src,s_res);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Report how long they all took
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::vector<uint32_t> iterations(nrhs,0);
|
||||
iterations[me] = CG.IterationsToComplete;
|
||||
|
||||
for(int n=0;n<nrhs;n++){
|
||||
UGrid->GlobalSum(iterations[n]);
|
||||
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gather and residual check on the results
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
|
||||
Grid_unsplit(result,s_res);
|
||||
|
||||
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
|
||||
for(int n=0;n<nrhs;n++){
|
||||
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
|
||||
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -1,130 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_wilson_cg_unprec.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
template<class d>
|
||||
struct scal {
|
||||
d internal;
|
||||
};
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
typedef typename ImprovedStaggeredFermion5DR::FermionField FermionField;
|
||||
typedef typename ImprovedStaggeredFermion5DR::ComplexField ComplexField;
|
||||
typename ImprovedStaggeredFermion5DR::ImplParams params;
|
||||
|
||||
const int Ls=8;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
|
||||
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
|
||||
|
||||
FermionField src(FGrid); random(pRNG5,src);
|
||||
FermionField src_o(FrbGrid); pickCheckerboard(Odd,src_o,src);
|
||||
FermionField result_o(FrbGrid); result_o=zero;
|
||||
RealD nrm = norm2(src);
|
||||
|
||||
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
|
||||
|
||||
RealD mass=0.003;
|
||||
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass);
|
||||
SchurStaggeredOperator<ImprovedStaggeredFermion5DR,FermionField> HermOp(Ds);
|
||||
|
||||
ConjugateGradient<FermionField> CG(1.0e-8,10000);
|
||||
int blockDim = 0;
|
||||
BlockConjugateGradient<FermionField> BCGrQ(BlockCGrQ,blockDim,1.0e-8,10000);
|
||||
BlockConjugateGradient<FermionField> BCG (BlockCG,blockDim,1.0e-8,10000);
|
||||
BlockConjugateGradient<FermionField> mCG (CGmultiRHS,blockDim,1.0e-8,10000);
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling 4d CG "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass);
|
||||
SchurStaggeredOperator<ImprovedStaggeredFermionR,FermionField> HermOp4d(Ds4d);
|
||||
FermionField src4d(UGrid); random(pRNG,src4d);
|
||||
FermionField src4d_o(UrbGrid); pickCheckerboard(Odd,src4d_o,src4d);
|
||||
FermionField result4d_o(UrbGrid);
|
||||
|
||||
result4d_o=zero;
|
||||
CG(HermOp4d,src4d_o,result4d_o);
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
|
||||
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling 5d CG for "<<Ls <<" right hand sides" <<std::endl;
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
Ds.ZeroCounters();
|
||||
result_o=zero;
|
||||
CG(HermOp,src_o,result_o);
|
||||
Ds.Report();
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling multiRHS CG for "<<Ls <<" right hand sides" <<std::endl;
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
Ds.ZeroCounters();
|
||||
result_o=zero;
|
||||
mCG(HermOp,src_o,result_o);
|
||||
Ds.Report();
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
Ds.ZeroCounters();
|
||||
result_o=zero;
|
||||
BCGrQ(HermOp,src_o,result_o);
|
||||
Ds.Report();
|
||||
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -48,6 +48,7 @@ struct scal {
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
|
||||
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
|
||||
typename ImprovedStaggeredFermionR::ImplParams params;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
@ -70,7 +71,7 @@ int main (int argc, char ** argv)
|
||||
volume=volume*latt_size[mu];
|
||||
}
|
||||
|
||||
RealD mass=0.003;
|
||||
RealD mass=0.1;
|
||||
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
|
||||
|
||||
FermionField res_o(&RBGrid);
|
||||
@ -78,14 +79,9 @@ int main (int argc, char ** argv)
|
||||
pickCheckerboard(Odd,src_o,src);
|
||||
res_o=zero;
|
||||
|
||||
SchurStaggeredOperator<ImprovedStaggeredFermionR,FermionField> HermOpEO(Ds);
|
||||
SchurDiagMooeeOperator<ImprovedStaggeredFermionR,FermionField> HermOpEO(Ds);
|
||||
ConjugateGradient<FermionField> CG(1.0e-8,10000);
|
||||
CG(HermOpEO,src_o,res_o);
|
||||
|
||||
FermionField tmp(&RBGrid);
|
||||
|
||||
HermOpEO.Mpc(res_o,tmp);
|
||||
std::cout << "check Mpc resid " << axpy_norm(tmp,-1.0,src_o,tmp)/norm2(src_o) << "\n";
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -1,76 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_wilson_cg_schur.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
template<class d>
|
||||
struct scal {
|
||||
d internal;
|
||||
};
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
|
||||
typename ImprovedStaggeredFermionR::ImplParams params;
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
|
||||
|
||||
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
|
||||
|
||||
FermionField src(&Grid); random(pRNG,src);
|
||||
FermionField result(&Grid); result=zero;
|
||||
FermionField resid(&Grid);
|
||||
|
||||
RealD mass=0.1;
|
||||
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
|
||||
|
||||
ConjugateGradient<FermionField> CG(1.0e-8,10000);
|
||||
SchurRedBlackStaggeredSolve<FermionField> SchurSolver(CG);
|
||||
|
||||
SchurSolver(Ds,src,result);
|
||||
|
||||
Grid_finalize();
|
||||
}
|
Reference in New Issue
Block a user