mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-14 13:57:07 +01:00
Compare commits
3 Commits
feature/gp
...
feature/fe
Author | SHA1 | Date | |
---|---|---|---|
f4e6824f22 | |||
ac5cfd33a6 | |||
f605230bbb |
22
.gitignore
vendored
22
.gitignore
vendored
@ -83,7 +83,6 @@ ltmain.sh
|
||||
.Trashes
|
||||
ehthumbs.db
|
||||
Thumbs.db
|
||||
.dirstamp
|
||||
|
||||
# build directory #
|
||||
###################
|
||||
@ -94,12 +93,14 @@ build*/*
|
||||
*.xcodeproj/*
|
||||
build.sh
|
||||
.vscode
|
||||
*.code-workspace
|
||||
|
||||
# Eigen source #
|
||||
################
|
||||
Grid/Eigen
|
||||
Eigen/*
|
||||
lib/Eigen/*
|
||||
|
||||
# FFTW source #
|
||||
################
|
||||
lib/fftw/*
|
||||
|
||||
# libtool macros #
|
||||
##################
|
||||
@ -110,8 +111,15 @@ m4/libtool.m4
|
||||
################
|
||||
gh-pages/
|
||||
|
||||
# Buck files #
|
||||
##############
|
||||
.buck*
|
||||
buck-out
|
||||
BUCK
|
||||
make-bin-BUCK.sh
|
||||
|
||||
# generated sources #
|
||||
#####################
|
||||
Grid/qcd/spin/gamma-gen/*.h
|
||||
Grid/qcd/spin/gamma-gen/*.cc
|
||||
Grid/util/Version.h
|
||||
lib/qcd/spin/gamma-gen/*.h
|
||||
lib/qcd/spin/gamma-gen/*.cc
|
||||
|
||||
|
27
.travis.yml
27
.travis.yml
@ -9,11 +9,6 @@ matrix:
|
||||
- os: osx
|
||||
osx_image: xcode8.3
|
||||
compiler: clang
|
||||
env: PREC=single
|
||||
- os: osx
|
||||
osx_image: xcode8.3
|
||||
compiler: clang
|
||||
env: PREC=double
|
||||
|
||||
before_install:
|
||||
- export GRIDDIR=`pwd`
|
||||
@ -21,11 +16,9 @@ before_install:
|
||||
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
|
||||
|
||||
install:
|
||||
- export CWD=`pwd`
|
||||
- echo $CWD
|
||||
- export CC=$CC$VERSION
|
||||
- export CXX=$CXX$VERSION
|
||||
- echo $PATH
|
||||
@ -38,24 +31,16 @@ install:
|
||||
- which $CXX
|
||||
- $CXX --version
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi
|
||||
|
||||
script:
|
||||
- ./bootstrap.sh
|
||||
- mkdir build
|
||||
- cd build
|
||||
- mkdir lime
|
||||
- cd lime
|
||||
- mkdir build
|
||||
- cd build
|
||||
- wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz
|
||||
- tar xf lime-1.3.2.tar.gz
|
||||
- cd lime-1.3.2
|
||||
- ./configure --prefix=$CWD/build/lime/install
|
||||
- make -j4
|
||||
- make install
|
||||
- cd $CWD/build
|
||||
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
|
||||
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
|
||||
- make -j4
|
||||
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
|
||||
- echo make clean
|
||||
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
|
||||
- make -j4
|
||||
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
|
||||
- make check
|
||||
|
@ -1,5 +0,0 @@
|
||||
Version : 0.8.0
|
||||
|
||||
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
|
||||
- MPI and MPI3 comms optimisations for KNL and OPA finished
|
||||
- Half precision comms
|
||||
|
@ -1,63 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/DisableWarnings.h
|
||||
|
||||
Copyright (C) 2016
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef DISABLE_WARNINGS_H
|
||||
#define DISABLE_WARNINGS_H
|
||||
|
||||
|
||||
|
||||
#if defined __GNUC__ && __GNUC__>=6
|
||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||||
#endif
|
||||
|
||||
//disables and intel compiler specific warning (in json.hpp)
|
||||
#pragma warning disable 488
|
||||
|
||||
#ifdef __NVCC__
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
|
||||
#pragma diag_suppress unsigned_compare_with_zero
|
||||
#pragma diag_suppress cast_to_qualified_type
|
||||
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma diag_suppress extra_semicolon
|
||||
|
||||
//Eigen only
|
||||
#endif
|
||||
|
||||
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
|
||||
#ifdef __ALTIVEC__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
#endif
|
||||
#ifdef __VSX__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,41 +0,0 @@
|
||||
#include <Grid/GridCore.h>
|
||||
#pragma once
|
||||
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
|
||||
#ifdef USE_MKL
|
||||
#define EIGEN_USE_MKL_ALL
|
||||
#endif
|
||||
|
||||
|
||||
#if defined __GNUC__
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
/* NVCC save and restore compile environment*/
|
||||
#ifdef __NVCC__
|
||||
#pragma push
|
||||
#pragma diag_suppress code_is_unreachable
|
||||
#pragma push_macro("__CUDA_ARCH__")
|
||||
#pragma push_macro("__NVCC__")
|
||||
#pragma push_macro("__CUDACC__")
|
||||
#undef __NVCC__
|
||||
#undef __CUDACC__
|
||||
#undef __CUDA_ARCH__
|
||||
#define __NVCC__REDEFINE__
|
||||
#endif
|
||||
|
||||
#include <Grid/Eigen/Dense>
|
||||
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
||||
|
||||
/* NVCC restore */
|
||||
#ifdef __NVCC__REDEFINE__
|
||||
#pragma pop_macro("__CUDACC__")
|
||||
#pragma pop_macro("__NVCC__")
|
||||
#pragma pop_macro("__CUDA_ARCH__")
|
||||
#pragma pop
|
||||
#endif
|
||||
|
||||
#if defined __GNUC__
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
@ -1 +0,0 @@
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
@ -1,63 +0,0 @@
|
||||
extra_sources=
|
||||
extra_headers=
|
||||
|
||||
if BUILD_COMMS_MPI3
|
||||
extra_sources+=communicator/Communicator_mpi3.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
extra_sources+=communicator/SharedMemoryMPI.cc
|
||||
extra_sources+=communicator/SharedMemory.cc
|
||||
endif
|
||||
|
||||
if BUILD_COMMS_NONE
|
||||
extra_sources+=communicator/Communicator_none.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
extra_sources+=communicator/SharedMemoryNone.cc
|
||||
extra_sources+=communicator/SharedMemory.cc
|
||||
endif
|
||||
|
||||
if BUILD_HDF5
|
||||
extra_sources+=serialisation/Hdf5IO.cc
|
||||
extra_headers+=serialisation/Hdf5IO.h
|
||||
extra_headers+=serialisation/Hdf5Type.h
|
||||
endif
|
||||
|
||||
all: version-cache
|
||||
|
||||
version-cache:
|
||||
@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
|
||||
a="uncommited changes";\
|
||||
else\
|
||||
a="clean";\
|
||||
fi;\
|
||||
echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d $$a\\"%n" HEAD`" > vertmp;\
|
||||
if [ -e version-cache ]; then\
|
||||
d=`diff vertmp version-cache`;\
|
||||
if [ "$${d}" != "" ]; then\
|
||||
mv vertmp version-cache;\
|
||||
rm -f Version.h;\
|
||||
fi;\
|
||||
else\
|
||||
mv vertmp version-cache;\
|
||||
rm -f Version.h;\
|
||||
fi;\
|
||||
rm -f vertmp
|
||||
|
||||
Version.h:
|
||||
cp version-cache Version.h
|
||||
|
||||
.PHONY: version-cache
|
||||
|
||||
#
|
||||
# Libraries
|
||||
#
|
||||
include Make.inc
|
||||
include Eigen.inc
|
||||
|
||||
lib_LIBRARIES = libGrid.a
|
||||
|
||||
CCFILES += $(extra_sources)
|
||||
HFILES += $(extra_headers) Config.h Version.h
|
||||
|
||||
libGrid_a_SOURCES = $(CCFILES)
|
||||
libGrid_adir = $(includedir)/Grid
|
||||
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) $(eigen_unsupp_files)
|
@ -1,38 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/Namespace.h
|
||||
|
||||
Copyright (C) 2016
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <type_traits>
|
||||
#include <cassert>
|
||||
|
||||
#define NAMESPACE_BEGIN(A) namespace A {
|
||||
#define NAMESPACE_END(A) }
|
||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
|
||||
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
|
||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
|
@ -1,512 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/CoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
|
||||
#define GRID_ALGORITHM_COARSENED_MATRIX_H
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class Geometry {
|
||||
// int dimension;
|
||||
public:
|
||||
int npoint;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
int base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[2*d ] = d+base;
|
||||
directions[2*d+1] = d+base;
|
||||
displacements[2*d ] = +1;
|
||||
displacements[2*d+1] = -1;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
|
||||
//// report back
|
||||
std::cout<<GridLogMessage<<"directions :";
|
||||
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
|
||||
std::cout <<std::endl;
|
||||
std::cout<<GridLogMessage<<"displacements :";
|
||||
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
// Original cleaner code
|
||||
Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
|
||||
for(int d=0;d<dimension;d++){
|
||||
directions[2*d ] = d;
|
||||
directions[2*d+1] = d;
|
||||
displacements[2*d ] = +1;
|
||||
displacements[2*d+1] = -1;
|
||||
}
|
||||
directions [2*dimension]=0;
|
||||
displacements[2*dimension]=0;
|
||||
}
|
||||
std::vector<int> GetDelta(int point) {
|
||||
std::vector<int> delta(dimension,0);
|
||||
delta[directions[point]] = displacements[point];
|
||||
return delta;
|
||||
};
|
||||
*/
|
||||
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
|
||||
// CheckOrthogonal();
|
||||
}
|
||||
void CheckOrthogonal(void){
|
||||
CoarseVector iProj(CoarseGrid);
|
||||
CoarseVector eProj(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){
|
||||
blockProject(iProj,subspace[i],subspace);
|
||||
eProj=Zero();
|
||||
thread_for(ss, CoarseGrid->oSites(),{
|
||||
eProj[ss](i)=CComplex(1.0);
|
||||
});
|
||||
eProj=eProj - iProj;
|
||||
std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl;
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void CreateSubspaceRandom(GridParallelRNG &RNG){
|
||||
for(int i=0;i<nbasis;i++){
|
||||
random(RNG,subspace[i]);
|
||||
std::cout<<GridLogMessage<<" norm subspace["<<i<<"] "<<norm2(subspace[i])<<std::endl;
|
||||
}
|
||||
Orthogonalise();
|
||||
}
|
||||
|
||||
/*
|
||||
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
// Run a Lanczos with sloppy convergence
|
||||
const int Nstop = nn;
|
||||
const int Nk = nn+20;
|
||||
const int Np = nn+20;
|
||||
const int Nm = Nk+Np;
|
||||
const int MaxIt= 10000;
|
||||
RealD resid = 1.0e-3;
|
||||
|
||||
Chebyshev<FineField> Cheb(0.5,64.0,21);
|
||||
ImplicitlyRestartedLanczos<FineField> IRL(hermop,Cheb,Nstop,Nk,Nm,resid,MaxIt);
|
||||
// IRL.lock = 1;
|
||||
|
||||
FineField noise(FineGrid); gaussian(RNG,noise);
|
||||
FineField tmp(FineGrid);
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<FineField> evec(Nm,FineGrid);
|
||||
|
||||
int Nconv;
|
||||
IRL.calc(eval,evec,
|
||||
noise,
|
||||
Nconv);
|
||||
|
||||
// pull back nn vectors
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = evec[b];
|
||||
|
||||
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
|
||||
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
noise = tmp - sqrt(eval[b])*subspace[b] ;
|
||||
|
||||
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
|
||||
|
||||
noise = tmp + eval[b]*subspace[b] ;
|
||||
|
||||
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
|
||||
|
||||
}
|
||||
Orthogonalise();
|
||||
for(int b=0;b<nn;b++){
|
||||
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
|
||||
}
|
||||
}
|
||||
*/
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,10000);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
|
||||
Orthogonalise();
|
||||
|
||||
}
|
||||
};
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
Geometry geom;
|
||||
GridBase * _grid;
|
||||
|
||||
CartesianStencil<siteVector,siteVector,int> Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> A;
|
||||
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
|
||||
|
||||
RealD M (const CoarseVector &in, CoarseVector &out){
|
||||
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
auto in_v = in.View();
|
||||
auto out_v = in.View();
|
||||
thread_for(ss,Grid()->oSites(),{
|
||||
siteVector res = Zero();
|
||||
siteVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
for(int point=0;point<geom.npoint;point++){
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local&&SE->_permute) {
|
||||
permute(nbr,in_v[SE->_offset],ptype);
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in_v[SE->_offset];
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
auto A_point = A[point].View();
|
||||
res = res + A_point[ss]*nbr;
|
||||
}
|
||||
vstream(out_v[ss],res);
|
||||
});
|
||||
return norm2(out);
|
||||
};
|
||||
|
||||
RealD Mdag (const CoarseVector &in, CoarseVector &out){
|
||||
// // corresponds to Petrov-Galerkin coarsening
|
||||
// return M(in,out);
|
||||
|
||||
// corresponds to Galerkin coarsening
|
||||
CoarseVector tmp(Grid());
|
||||
G5C(tmp, in);
|
||||
M(tmp, out);
|
||||
G5C(out, out);
|
||||
return norm2(out);
|
||||
};
|
||||
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
|
||||
auto point = [dir, disp](){
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else
|
||||
return (4 * dir + 1 - disp) / 2;
|
||||
}();
|
||||
|
||||
auto out_v = out.View();
|
||||
auto in_v = in.View();
|
||||
thread_for(ss,Grid()->oSites(),{
|
||||
siteVector res = Zero();
|
||||
siteVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local&&SE->_permute) {
|
||||
permute(nbr,in_v[SE->_offset],ptype);
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in_v[SE->_offset];
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
|
||||
auto A_point = A[point].View();
|
||||
res = res + A_point[ss]*nbr;
|
||||
|
||||
vstream(out_v[ss],res);
|
||||
});
|
||||
};
|
||||
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out){
|
||||
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
|
||||
};
|
||||
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid) :
|
||||
|
||||
_grid(&CoarseGrid),
|
||||
geom(CoarseGrid._ndimension),
|
||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||
A(geom.npoint,&CoarseGrid)
|
||||
{
|
||||
};
|
||||
|
||||
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace){
|
||||
|
||||
FineField iblock(FineGrid); // contributions from within this block
|
||||
FineField oblock(FineGrid); // contributions from outwith this block
|
||||
|
||||
FineField phi(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField zz(FineGrid); zz=Zero();
|
||||
FineField Mphi(FineGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(FineGrid);
|
||||
|
||||
CoarseVector iProj(Grid());
|
||||
CoarseVector oProj(Grid());
|
||||
CoarseScalar InnerProd(Grid());
|
||||
|
||||
// Orthogonalise the subblocks over the basis
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
// Compute the matrix elements of linop between this orthonormal
|
||||
// set of vectors.
|
||||
int self_stencil=-1;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
A[p]=Zero();
|
||||
if( geom.displacements[p]==0){
|
||||
self_stencil=p;
|
||||
}
|
||||
}
|
||||
assert(self_stencil!=-1);
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
phi=Subspace.subspace[i];
|
||||
|
||||
std::cout<<GridLogMessage<<"("<<i<<").."<<std::endl;
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
|
||||
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
|
||||
LatticeCoordinate(coor,dir);
|
||||
|
||||
if ( disp==0 ){
|
||||
linop.OpDiag(phi,Mphi);
|
||||
}
|
||||
else {
|
||||
linop.OpDir(phi,Mphi,dir,disp);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Pick out contributions coming from this cell and neighbour cell
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
if ( disp==0 ) {
|
||||
iblock = Mphi;
|
||||
oblock = Zero();
|
||||
} else if ( disp==1 ) {
|
||||
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
|
||||
} else if ( disp==-1 ) {
|
||||
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
Subspace.ProjectToSubspace(iProj,iblock);
|
||||
Subspace.ProjectToSubspace(oProj,oblock);
|
||||
// blockProject(iProj,iblock,Subspace.subspace);
|
||||
// blockProject(oProj,oblock,Subspace.subspace);
|
||||
auto iProj_v = iProj.View() ;
|
||||
auto oProj_v = oProj.View() ;
|
||||
auto A_p = A[p].View();
|
||||
auto A_self = A[self_stencil].View();
|
||||
thread_for(ss, Grid()->oSites(),{
|
||||
for(int j=0;j<nbasis;j++){
|
||||
if( disp!= 0 ) {
|
||||
A_p[ss](j,i) = oProj_v[ss](j);
|
||||
}
|
||||
A_self[ss](j,i) = A_self[ss](j,i) + iProj_v[ss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
///////////////////////////
|
||||
// test code worth preserving in if block
|
||||
///////////////////////////
|
||||
std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl;
|
||||
std::cout<<GridLogMessage<< A[p] << std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl;
|
||||
|
||||
phi=Subspace.subspace[0];
|
||||
std::vector<int> bc(FineGrid->_ndimension,0);
|
||||
|
||||
blockPick(Grid(),phi,tmp,bc); // Pick out a block
|
||||
linop.Op(tmp,Mphi); // Apply big dop
|
||||
blockProject(iProj,Mphi,Subspace.subspace); // project it and print it
|
||||
std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl;
|
||||
std::cout<<GridLogMessage<< iProj <<std::endl;
|
||||
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
|
||||
#endif
|
||||
// ForceHermitian();
|
||||
// AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
}
|
||||
|
||||
void ForceHermitian(void) {
|
||||
for(int d=0;d<4;d++){
|
||||
int dd=d+1;
|
||||
A[2*d] = adj(Cshift(A[2*d+1],dd,1));
|
||||
}
|
||||
// A[8] = 0.5*(A[8] + adj(A[8]));
|
||||
}
|
||||
void AssertHermitian(void) {
|
||||
CoarseMatrix AA (Grid());
|
||||
CoarseMatrix AAc (Grid());
|
||||
CoarseMatrix Diff (Grid());
|
||||
for(int d=0;d<4;d++){
|
||||
|
||||
int dd=d+1;
|
||||
AAc = Cshift(A[2*d+1],dd,1);
|
||||
AA = A[2*d];
|
||||
|
||||
Diff = AA - adj(AAc);
|
||||
|
||||
std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl;
|
||||
|
||||
}
|
||||
Diff = A[8] - adj(A[8]);
|
||||
std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,291 +0,0 @@
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/Cshift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef _GRID_FFT_H_
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class scalar> struct FFTW { };
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
template<> struct FFTW<ComplexD> {
|
||||
public:
|
||||
|
||||
typedef fftw_complex FFTW_scalar;
|
||||
typedef fftw_plan FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
|
||||
FFTW_scalar *in, const int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, const int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
||||
}
|
||||
|
||||
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
|
||||
::fftw_flops(p,add,mul,fmas);
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
|
||||
::fftw_execute_dft(p,in,out);
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
::fftw_destroy_plan(p);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct FFTW<ComplexF> {
|
||||
public:
|
||||
|
||||
typedef fftwf_complex FFTW_scalar;
|
||||
typedef fftwf_plan FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
|
||||
FFTW_scalar *in, const int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, const int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
||||
}
|
||||
|
||||
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
|
||||
::fftwf_flops(p,add,mul,fmas);
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
|
||||
::fftwf_execute_dft(p,in,out);
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
::fftwf_destroy_plan(p);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef FFTW_FORWARD
|
||||
#define FFTW_FORWARD (-1)
|
||||
#define FFTW_BACKWARD (+1)
|
||||
#endif
|
||||
|
||||
class FFT {
|
||||
private:
|
||||
|
||||
GridCartesian *vgrid;
|
||||
GridCartesian *sgrid;
|
||||
|
||||
int Nd;
|
||||
double flops;
|
||||
double flops_call;
|
||||
uint64_t usec;
|
||||
|
||||
Coordinate dimensions;
|
||||
Coordinate processors;
|
||||
Coordinate processor_coor;
|
||||
|
||||
public:
|
||||
|
||||
static const int forward=FFTW_FORWARD;
|
||||
static const int backward=FFTW_BACKWARD;
|
||||
|
||||
double Flops(void) {return flops;}
|
||||
double MFlops(void) {return flops/usec;}
|
||||
double USec(void) {return (double)usec;}
|
||||
|
||||
FFT ( GridCartesian * grid ) :
|
||||
vgrid(grid),
|
||||
Nd(grid->_ndimension),
|
||||
dimensions(grid->_fdimensions),
|
||||
processors(grid->_processors),
|
||||
processor_coor(grid->_processor_coor)
|
||||
{
|
||||
flops=0;
|
||||
usec =0;
|
||||
Coordinate layout(Nd,1);
|
||||
sgrid = new GridCartesian(dimensions,layout,processors);
|
||||
};
|
||||
|
||||
~FFT ( void) {
|
||||
delete sgrid;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
|
||||
|
||||
conformable(result.Grid(),vgrid);
|
||||
conformable(source.Grid(),vgrid);
|
||||
Lattice<vobj> tmp(vgrid);
|
||||
tmp = source;
|
||||
for(int d=0;d<Nd;d++){
|
||||
if( mask[d] ) {
|
||||
FFT_dim(result,tmp,d,sign);
|
||||
tmp=result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
|
||||
Coordinate mask(Nd,1);
|
||||
FFT_dim_mask(result,source,mask,sign);
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
|
||||
#ifndef HAVE_FFTW
|
||||
assert(0);
|
||||
#else
|
||||
conformable(result.Grid(),vgrid);
|
||||
conformable(source.Grid(),vgrid);
|
||||
|
||||
int L = vgrid->_ldimensions[dim];
|
||||
int G = vgrid->_fdimensions[dim];
|
||||
|
||||
Coordinate layout(Nd,1);
|
||||
Coordinate pencil_gd(vgrid->_fdimensions);
|
||||
|
||||
pencil_gd[dim] = G*processors[dim];
|
||||
|
||||
// Pencil global vol LxLxGxLxL per node
|
||||
GridCartesian pencil_g(pencil_gd,layout,processors);
|
||||
|
||||
// Construct pencils
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename sobj::scalar_type scalar;
|
||||
|
||||
Lattice<sobj> pgbuf(&pencil_g);
|
||||
auto pgbuf_v = pgbuf.View();
|
||||
|
||||
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
|
||||
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
|
||||
|
||||
int Ncomp = sizeof(sobj)/sizeof(scalar);
|
||||
int Nlow = 1;
|
||||
for(int d=0;d<dim;d++){
|
||||
Nlow*=vgrid->_ldimensions[d];
|
||||
}
|
||||
|
||||
int rank = 1; /* 1d transforms */
|
||||
int n[] = {G}; /* 1d transforms of length G */
|
||||
int howmany = Ncomp;
|
||||
int odist,idist,istride,ostride;
|
||||
idist = odist = 1; /* Distance between consecutive FT's */
|
||||
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
|
||||
int *inembed = n, *onembed = n;
|
||||
|
||||
scalar div;
|
||||
if ( sign == backward ) div = 1.0/G;
|
||||
else if ( sign == forward ) div = 1.0;
|
||||
else assert(0);
|
||||
|
||||
FFTW_plan p;
|
||||
{
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
|
||||
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
|
||||
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
|
||||
in,inembed,
|
||||
istride,idist,
|
||||
out,onembed,
|
||||
ostride, odist,
|
||||
sign,FFTW_ESTIMATE);
|
||||
}
|
||||
|
||||
// Barrel shift and collect global pencil
|
||||
Coordinate lcoor(Nd), gcoor(Nd);
|
||||
result = source;
|
||||
int pc = processor_coor[dim];
|
||||
for(int p=0;p<processors[dim];p++) {
|
||||
thread_for(idx, sgrid->lSites(),{
|
||||
Coordinate cbuf(Nd);
|
||||
sobj s;
|
||||
sgrid->LocalIndexToLocalCoor(idx,cbuf);
|
||||
peekLocalSite(s,result,cbuf);
|
||||
cbuf[dim]+=((pc+p) % processors[dim])*L;
|
||||
// cbuf[dim]+=p*L;
|
||||
pokeLocalSite(s,pgbuf,cbuf);
|
||||
});
|
||||
if (p != processors[dim] - 1) {
|
||||
result = Cshift(result,dim,L);
|
||||
}
|
||||
}
|
||||
|
||||
// Loop over orthog coords
|
||||
int NN=pencil_g.lSites();
|
||||
GridStopWatch timer;
|
||||
timer.Start();
|
||||
thread_for( idx,NN,{
|
||||
Coordinate cbuf(Nd);
|
||||
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
|
||||
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
|
||||
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
|
||||
FFTW<scalar>::fftw_execute_dft(p,in,out);
|
||||
}
|
||||
});
|
||||
timer.Stop();
|
||||
|
||||
// performance counting
|
||||
double add,mul,fma;
|
||||
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
|
||||
flops_call = add+mul+2.0*fma;
|
||||
usec += timer.useconds();
|
||||
flops+= flops_call*NN;
|
||||
|
||||
// writing out result
|
||||
thread_for(idx,sgrid->lSites(),{
|
||||
Coordinate clbuf(Nd), cgbuf(Nd);
|
||||
sobj s;
|
||||
sgrid->LocalIndexToLocalCoor(idx,clbuf);
|
||||
cgbuf = clbuf;
|
||||
cgbuf[dim] = clbuf[dim]+L*pc;
|
||||
peekLocalSite(s,pgbuf,cgbuf);
|
||||
pokeLocalSite(s,result,clbuf);
|
||||
});
|
||||
result = result*div;
|
||||
|
||||
// destroying plan
|
||||
FFTW<scalar>::fftw_destroy_plan(p);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,495 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/LinearOperator.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// LinearOperators Take a something and return a something.
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real):
|
||||
//SBase
|
||||
// i) F(a x + b y) = aF(x) + b F(y).
|
||||
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
|
||||
//
|
||||
// Would be fun to have a test linearity & Herm Conj function!
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class LinearOperatorBase {
|
||||
public:
|
||||
|
||||
// Support for coarsening to a multigrid
|
||||
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
|
||||
|
||||
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
|
||||
virtual void HermOp(const Field &in, Field &out)=0;
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
|
||||
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
|
||||
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
|
||||
// replication of code.
|
||||
//
|
||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
|
||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
|
||||
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
|
||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Construct herm op from non-herm matrix
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class MdagMLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.Mdag(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.MdagM(in,out,n1,n2);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Construct herm op and shift it for mgrid smoother
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
RealD _shift;
|
||||
public:
|
||||
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
assert(0);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
assert(0);
|
||||
}
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
assert(0);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.Mdag(in,out);
|
||||
assert(0);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.MdagM(in,out,n1,n2);
|
||||
out = out + _shift*in;
|
||||
|
||||
ComplexD dot;
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Wrap an already herm matrix
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class HermitianLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.M(in,out);
|
||||
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Even Odd Schur decomp operators; there are several
|
||||
// ways to introduce the even odd checkerboarding
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
public:
|
||||
virtual RealD Mpc (const Field &in, Field &out) =0;
|
||||
virtual RealD MpcDag (const Field &in, Field &out) =0;
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = in.Checkerboard();
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
void Op (const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
MpcDag(in,out);
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
Matrix &_Mat;
|
||||
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = !in.Checkerboard();
|
||||
//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
|
||||
|
||||
_Mat.Meooe(in,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
|
||||
//std::cout << "cb in " << in.Checkerboard() << " cb out " << out.Checkerboard() << std::endl;
|
||||
_Mat.Mooee(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in,tmp);
|
||||
_Mat.MooeeInvDag(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
|
||||
_Mat.MooeeDag(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.MooeeInv(out,tmp);
|
||||
_Mat.Meooe(tmp,out);
|
||||
_Mat.MooeeInv(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInvDag(in,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
_Mat.MooeeInvDag(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInv(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in,out);
|
||||
_Mat.MooeeInvDag(out,tmp);
|
||||
_Mat.MeooeDag(tmp,out);
|
||||
_Mat.MooeeInvDag(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
Field tmp;
|
||||
RealD mass;
|
||||
double tMpc;
|
||||
double tIP;
|
||||
double tMeo;
|
||||
double taxpby_norm;
|
||||
uint64_t ncall;
|
||||
public:
|
||||
void Report(void)
|
||||
{
|
||||
std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl;
|
||||
std::cout << GridLogMessage << " HermOpAndNorm.IP "<< tIP /ncall<<" usec "<<std::endl;
|
||||
std::cout << GridLogMessage << " Mpc.MeoMoe "<< tMeo/ncall<<" usec "<<std::endl;
|
||||
std::cout << GridLogMessage << " Mpc.axpby_norm "<< taxpby_norm/ncall<<" usec "<<std::endl;
|
||||
}
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
|
||||
{
|
||||
assert( _Mat.isTrivialEE() );
|
||||
mass = _Mat.Mass();
|
||||
tMpc=0;
|
||||
tIP =0;
|
||||
tMeo=0;
|
||||
taxpby_norm=0;
|
||||
ncall=0;
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
ncall++;
|
||||
tMpc-=usecond();
|
||||
n2 = Mpc(in,out);
|
||||
tMpc+=usecond();
|
||||
tIP-=usecond();
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
tIP+=usecond();
|
||||
n1 = real(dot);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
ncall++;
|
||||
tMpc-=usecond();
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
tMpc+=usecond();
|
||||
taxpby_norm-=usecond();
|
||||
axpby(out,-1.0,mass*mass,tmp,in);
|
||||
taxpby_norm+=usecond();
|
||||
}
|
||||
virtual RealD Mpc (const Field &in, Field &out)
|
||||
{
|
||||
|
||||
Field tmp(in.Grid());
|
||||
Field tmp2(in.Grid());
|
||||
|
||||
// std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
|
||||
_Mat.Mooee(in,out);
|
||||
_Mat.Mooee(out,tmp);
|
||||
// std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
|
||||
|
||||
tMeo-=usecond();
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
tMeo+=usecond();
|
||||
taxpby_norm-=usecond();
|
||||
RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in);
|
||||
taxpby_norm+=usecond();
|
||||
return nn;
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
return Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for functions of operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class OperatorFunction {
|
||||
public:
|
||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
|
||||
assert(in.size()==out.size());
|
||||
for(int k=0;k<in.size();k++){
|
||||
(*this)(Linop,in[k],out[k]);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template<class Field> class LinearFunction {
|
||||
public:
|
||||
virtual void operator() (const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||
public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
out = in;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for Multishift solvers for operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class OperatorMultiFunction {
|
||||
public:
|
||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
|
||||
};
|
||||
|
||||
// FIXME : To think about
|
||||
|
||||
// Chroma functionality list defining LinearOperator
|
||||
/*
|
||||
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
|
||||
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
|
||||
virtual const Subset& subset() const = 0;
|
||||
virtual unsigned long nFlops() const { return 0; }
|
||||
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
|
||||
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
|
||||
const Subset& subset() const {return all;}
|
||||
};
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hermitian operator Linear function and operator function
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||
{}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_Linop.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
||||
: _poly(poly), _Linop(linop) {};
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_poly(_Linop,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in.Grid());
|
||||
Field Mtmp(in.Grid());
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,79 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/SparseMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ALGORITHM_SPARSE_MATRIX_H
|
||||
#define GRID_ALGORITHM_SPARSE_MATRIX_H
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SparseMatrixBase {
|
||||
public:
|
||||
virtual GridBase *Grid(void) =0;
|
||||
// Full checkerboar operations
|
||||
virtual RealD M (const Field &in, Field &out)=0;
|
||||
virtual RealD Mdag (const Field &in, Field &out)=0;
|
||||
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
Field tmp (in.Grid());
|
||||
ni=M(in,tmp);
|
||||
no=Mdag(tmp,out);
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out)=0;
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Interface augmented by a red black sparse matrix, such as a Fermion action
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
|
||||
public:
|
||||
virtual GridBase *RedBlackGrid(void)=0;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Query the even even properties to make algorithmic decisions
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
virtual RealD Mass(void) { return 0.0; };
|
||||
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
|
||||
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Meooe (const Field &in, Field &out)=0;
|
||||
virtual void Mooee (const Field &in, Field &out)=0;
|
||||
virtual void MooeeInv (const Field &in, Field &out)=0;
|
||||
|
||||
virtual void MeooeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeInvDag (const Field &in, Field &out)=0;
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,379 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/approx/Chebyshev.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CHEBYSHEV_H
|
||||
#define GRID_CHEBYSHEV_H
|
||||
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
struct ChebyParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
|
||||
RealD, alpha,
|
||||
RealD, beta,
|
||||
int, Npoly);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Chebyshev approximations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class Chebyshev : public OperatorFunction<Field> {
|
||||
private:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD hi;
|
||||
RealD lo;
|
||||
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
RealD diff = hi-lo;
|
||||
RealD delta = diff*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Convenience for plotting the approximation
|
||||
void PlotApprox(std::ostream &out) {
|
||||
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
|
||||
out <<x<<"\t"<<approx(x)<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
Chebyshev(){};
|
||||
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CJ: the one we need for Lanczos
|
||||
void Init(RealD _lo,RealD _hi,int _order)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
};
|
||||
|
||||
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
for(int j=0;j<order;j++){
|
||||
RealD s=0;
|
||||
for(int k=0;k<order;k++){
|
||||
RealD y=std::cos(M_PI*(k+0.5)/order);
|
||||
RealD x=0.5*(y*(hi-lo)+(hi+lo));
|
||||
RealD f=func(x);
|
||||
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
|
||||
}
|
||||
Coeffs[j] = s * 2.0/order;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void JacksonSmooth(void){
|
||||
RealD M=order;
|
||||
RealD alpha = M_PI/(M+2);
|
||||
RealD lmax = std::cos(alpha);
|
||||
RealD sumUsq =0;
|
||||
std::vector<RealD> U(M);
|
||||
std::vector<RealD> a(M);
|
||||
std::vector<RealD> g(M);
|
||||
for(int n=0;n<=M;n++){
|
||||
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
|
||||
sumUsq += U[n]*U[n];
|
||||
}
|
||||
sumUsq = std::sqrt(sumUsq);
|
||||
|
||||
for(int i=1;i<=M;i++){
|
||||
a[i] = U[i]/sumUsq;
|
||||
}
|
||||
g[0] = 1.0;
|
||||
for(int m=1;m<=M;m++){
|
||||
g[m] = 0;
|
||||
for(int i=0;i<=M-m;i++){
|
||||
g[m]+= a[i]*a[m+i];
|
||||
}
|
||||
}
|
||||
for(int m=1;m<=M;m++){
|
||||
Coeffs[m]*=g[m];
|
||||
}
|
||||
}
|
||||
RealD approx(RealD x) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD T0=1;
|
||||
RealD T1=y;
|
||||
|
||||
RealD sum;
|
||||
sum = 0.5*Coeffs[0]*T0;
|
||||
sum+= Coeffs[1]*T1;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int i=2;i<order;i++){
|
||||
Tnp=2*y*Tn-Tnm;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
sum+= Tn*Coeffs[i];
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
GridBase *grid=in.Grid();
|
||||
|
||||
// std::cout << "Chevyshef(): in.Grid()="<<in.Grid()<<std::endl;
|
||||
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
T1=y*xscale+in*mscale;
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
Linop.HermOp(*Tn,y);
|
||||
|
||||
y=xscale*y+mscale*(*Tn);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field>
|
||||
class ChebyshevLanczos : public Chebyshev<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD alpha;
|
||||
RealD beta;
|
||||
RealD mu;
|
||||
|
||||
public:
|
||||
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
|
||||
alpha(_alpha),
|
||||
beta(_beta),
|
||||
mu(_mu)
|
||||
{
|
||||
order=_order;
|
||||
Coeffs.resize(order);
|
||||
for(int i=0;i<_order;i++){
|
||||
Coeffs[i] = 0.0;
|
||||
}
|
||||
Coeffs[order-1]=1.0;
|
||||
};
|
||||
|
||||
void csv(std::ostream &out){
|
||||
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
RealD approx(RealD xx) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
Real aa = alpha * alpha;
|
||||
Real bb = beta * beta;
|
||||
|
||||
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
|
||||
|
||||
RealD y= x;
|
||||
|
||||
RealD T0=1;
|
||||
RealD T1=y;
|
||||
|
||||
RealD sum;
|
||||
sum = 0.5*Coeffs[0]*T0;
|
||||
sum+= Coeffs[1]*T1;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int i=2;i<order;i++){
|
||||
Tnp=2*y*Tn-Tnm;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
sum+= Tn*Coeffs[i];
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
|
||||
// shift_Multiply in Rudy's code
|
||||
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
|
||||
{
|
||||
GridBase *grid=in.Grid();
|
||||
Field tmp(grid);
|
||||
|
||||
RealD aa= alpha*alpha;
|
||||
RealD bb= beta * beta;
|
||||
|
||||
Linop.HermOp(in,out);
|
||||
out = out - mu*in;
|
||||
|
||||
Linop.HermOp(out,tmp);
|
||||
tmp = tmp - mu * out;
|
||||
|
||||
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
|
||||
};
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
GridBase *grid=in.Grid();
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M )*in
|
||||
AminusMuSq(Linop,T0,T1);
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
AminusMuSq(Linop,*Tn,y);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,152 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/approx/Forecast.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef INCLUDED_FORECAST_H
|
||||
#define INCLUDED_FORECAST_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Abstract base class.
|
||||
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
|
||||
// and returns a forecasted solution to the system D*psi = phi (psi).
|
||||
template<class Matrix, class Field>
|
||||
class Forecast
|
||||
{
|
||||
public:
|
||||
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
|
||||
};
|
||||
|
||||
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
|
||||
// used to forecast solutions across poles of the EOFA heatbath.
|
||||
//
|
||||
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
|
||||
template<class Matrix, class Field>
|
||||
class ChronoForecast : public Forecast<Matrix,Field>
|
||||
{
|
||||
public:
|
||||
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
|
||||
{
|
||||
int degree = prev_solns.size();
|
||||
Field chi(phi); // forecasted solution
|
||||
|
||||
// Trivial cases
|
||||
if(degree == 0){ chi = Zero(); return chi; }
|
||||
else if(degree == 1){ return prev_solns[0]; }
|
||||
|
||||
// RealD dot;
|
||||
ComplexD xp;
|
||||
Field r(phi); // residual
|
||||
Field Mv(phi);
|
||||
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
|
||||
std::vector<Field> MdagMv(degree,phi);
|
||||
|
||||
// Array to hold the matrix elements
|
||||
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
|
||||
|
||||
// Solution and source vectors
|
||||
std::vector<ComplexD> a(degree);
|
||||
std::vector<ComplexD> b(degree);
|
||||
|
||||
// Orthonormalize the vector basis
|
||||
for(int i=0; i<degree; i++){
|
||||
v[i] *= 1.0/std::sqrt(norm2(v[i]));
|
||||
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
|
||||
}
|
||||
|
||||
// Perform sparse matrix multiplication and construct rhs
|
||||
for(int i=0; i<degree; i++){
|
||||
b[i] = innerProduct(v[i],phi);
|
||||
Mat.M(v[i],Mv);
|
||||
Mat.Mdag(Mv,MdagMv[i]);
|
||||
G[i][i] = innerProduct(v[i],MdagMv[i]);
|
||||
}
|
||||
|
||||
// Construct the matrix
|
||||
for(int j=0; j<degree; j++){
|
||||
for(int k=j+1; k<degree; k++){
|
||||
G[j][k] = innerProduct(v[j],MdagMv[k]);
|
||||
G[k][j] = conjugate(G[j][k]);
|
||||
}}
|
||||
|
||||
// Gauss-Jordan elimination with partial pivoting
|
||||
for(int i=0; i<degree; i++){
|
||||
|
||||
// Perform partial pivoting
|
||||
int k = i;
|
||||
for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
|
||||
if(k != i){
|
||||
xp = b[k];
|
||||
b[k] = b[i];
|
||||
b[i] = xp;
|
||||
for(int j=0; j<degree; j++){
|
||||
xp = G[k][j];
|
||||
G[k][j] = G[i][j];
|
||||
G[i][j] = xp;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert matrix to upper triangular form
|
||||
for(int j=i+1; j<degree; j++){
|
||||
xp = G[j][i]/G[i][i];
|
||||
b[j] -= xp * b[i];
|
||||
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
|
||||
}
|
||||
}
|
||||
|
||||
// Use Gaussian elimination to solve equations and calculate initial guess
|
||||
chi = Zero();
|
||||
r = phi;
|
||||
for(int i=degree-1; i>=0; i--){
|
||||
a[i] = 0.0;
|
||||
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
|
||||
a[i] = (b[i]-a[i])/G[i][i];
|
||||
chi += a[i]*v[i];
|
||||
r -= a[i]*MdagMv[i];
|
||||
}
|
||||
|
||||
RealD true_r(0.0);
|
||||
ComplexD tmp;
|
||||
for(int i=0; i<degree; i++){
|
||||
tmp = -b[i];
|
||||
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
|
||||
tmp = conjugate(tmp)*tmp;
|
||||
true_r += std::sqrt(tmp.real());
|
||||
}
|
||||
|
||||
RealD error = std::sqrt(norm2(r)/norm2(phi));
|
||||
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
|
||||
|
||||
return chi;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,248 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<ComplexD> y;
|
||||
std::vector<ComplexD> gamma;
|
||||
std::vector<ComplexD> c;
|
||||
std::vector<ComplexD> s;
|
||||
|
||||
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// this should probably be made a class member so that it is only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
ComplexD scale = 1.0/gamma[0];
|
||||
v[0] = scale * r;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(v, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(v[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - ComplexD(H(iter, i)) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
|
||||
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = conjugate(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
|
||||
y[i] = y[i] / ComplexD(H(i, i));
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + v[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,161 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Mixed precision restarted defect correction CG
|
||||
template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
||||
public:
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
|
||||
MixedPrecisionConjugateGradient(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF> &_Linop_f,
|
||||
LinearOperatorBase<FieldD> &_Linop_d) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d),
|
||||
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
|
||||
OuterLoopNormMult(100.), guesser(NULL){ };
|
||||
|
||||
void useGuesser(LinearFunction<FieldF> &g){
|
||||
guesser = &g;
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
TotalTimer.Start();
|
||||
|
||||
int cb = src_d_in.Checkerboard();
|
||||
sol_d.Checkerboard() = cb;
|
||||
|
||||
RealD src_norm = norm2(src_d_in);
|
||||
RealD stop = src_norm * Tolerance*Tolerance;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in.Grid();
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
FieldD tmp2_d(DoublePrecGrid);
|
||||
tmp2_d.Checkerboard() = cb;
|
||||
|
||||
FieldD src_d(DoublePrecGrid);
|
||||
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
|
||||
|
||||
RealD inner_tol = InnerTolerance;
|
||||
|
||||
FieldF src_f(SinglePrecGrid);
|
||||
src_f.Checkerboard() = cb;
|
||||
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
GridStopWatch InnerCGtimer;
|
||||
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d, tmp_d);
|
||||
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
|
||||
|
||||
if(norm < OuterLoopNormMult * stop){
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
|
||||
break;
|
||||
}
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
|
||||
//Optionally improve inner solver guess (eg using known eigenvectors)
|
||||
if(guesser != NULL)
|
||||
(*guesser)(src_f, sol_f);
|
||||
|
||||
//Inner CG
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
InnerCGtimer.Stop();
|
||||
TotalInnerIterations += CG_f.IterationsToComplete;
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
}
|
||||
|
||||
//Final trial CG
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
|
||||
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,325 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
|
||||
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
|
||||
public OperatorFunction<Field>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
|
||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||
MaxIterations(maxit),
|
||||
shifts(_shifts)
|
||||
{
|
||||
verbose=1;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<Field> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
|
||||
{
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
std::vector<Field> ps(nshift,grid);// Search directions
|
||||
|
||||
assert(psi.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
Field r(grid);
|
||||
Field p(grid);
|
||||
Field tmp(grid);
|
||||
Field mmp(grid);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src);
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||
<<" target resid "<<rsq[s]<<std::endl;
|
||||
ps[s] = src;
|
||||
}
|
||||
// r and p for primary
|
||||
r=src;
|
||||
p=src;
|
||||
|
||||
//MdagM+m[0]
|
||||
Linop.HermOpAndNorm(p,mmp,d,qq);
|
||||
axpy(mmp,mass[0],p,mmp);
|
||||
RealD rn = norm2(p);
|
||||
d += rn*mass[0];
|
||||
|
||||
// have verified that inner product of
|
||||
// p and mmp is equal to d after this since
|
||||
// the d computation is tricky
|
||||
// qq = real(innerProduct(p,mmp));
|
||||
// std::cout<<GridLogMessage << "debug equal ? qq "<<qq<<" d "<< d<<std::endl;
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r,b,mmp,r);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer;
|
||||
GridStopWatch ShiftTimer;
|
||||
GridStopWatch QRTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
|
||||
a = c /cp;
|
||||
AXPYTimer.Start();
|
||||
axpy(p,a,p,r);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
// Note to self - direction ps is iterated seperately
|
||||
// for each shift. Does not appear to have any scope
|
||||
// for avoiding linear algebra in "single" case.
|
||||
//
|
||||
// However SAME r is used. Could load "r" and update
|
||||
// ALL ps[s]. 2/3 Bandwidth saving
|
||||
// New Kernel: Load r, vector of coeffs, vector of pointers ps
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps[s],a,ps[s],r);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps[s],z[s][iz],as,r,ps[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
MatrixTimer.Start();
|
||||
//Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
|
||||
// The below is faster on KNL
|
||||
Linop.HermOp(p,mmp);
|
||||
d=real(innerProduct(p,mmp));
|
||||
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp,mass[0],p,mmp);
|
||||
AXPYTimer.Stop();
|
||||
RealD rn = norm2(p);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
AXPYTimer.Start();
|
||||
c=axpy_norm(r,b,mmp,r);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
// Scope for optimisation here in case of "single".
|
||||
// Could load psi[0] and pull all ps[s] in.
|
||||
// if ( single ) ss=primary;
|
||||
// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
|
||||
// Pipelined CG gain:
|
||||
//
|
||||
// New Kernel: Load r, vector of coeffs, vector of pointers ps
|
||||
// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
|
||||
// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
|
||||
// on ps[s].
|
||||
// Before: 3 x npole + 3 x npole
|
||||
// After : 2 x npole (ps[s]) => 3x speed up of multishift CG.
|
||||
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsq[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged ){
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
|
||||
std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop.HermOpAndNorm(psi[s],mmp,d,qq);
|
||||
axpy(tmp,mass[s],psi[s],mmp);
|
||||
axpy(r,-alpha[s],src,tmp);
|
||||
RealD rn = norm2(r);
|
||||
RealD cn = norm2(src);
|
||||
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
// ugly hack
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,258 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
|
||||
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer ReliableUpdatesPerformed;
|
||||
|
||||
bool DoFinalCleanup; //Final DP cleanup, defaults to true
|
||||
Integer IterationsToCleanup; //Final DP cleanup step iterations
|
||||
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
GridBase* SinglePrecGrid;
|
||||
RealD Delta; //reliable update parameter
|
||||
|
||||
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
||||
LinearOperatorBase<FieldF> *Linop_fallback;
|
||||
RealD fallback_transition_tol;
|
||||
|
||||
|
||||
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
Delta(_delta),
|
||||
Linop_f(_Linop_f),
|
||||
Linop_d(_Linop_d),
|
||||
SinglePrecGrid(_sp_grid),
|
||||
ErrorOnNoConverge(err_on_no_conv),
|
||||
DoFinalCleanup(true),
|
||||
Linop_fallback(NULL)
|
||||
{};
|
||||
|
||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||
Linop_fallback = &_Linop_fallback;
|
||||
fallback_transition_tol = _fallback_transition_tol;
|
||||
}
|
||||
|
||||
void operator()(const FieldD &src, FieldD &psi) {
|
||||
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
||||
bool using_fallback = false;
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD cp, c, a, d, b, ssq, qq, b_pred;
|
||||
|
||||
FieldD p(src);
|
||||
FieldD mmp(src);
|
||||
FieldD r(src);
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
a = norm2(p);
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
|
||||
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
|
||||
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
//Single prec initialization
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
r_f.Checkerboard() = r.Checkerboard();
|
||||
precisionChange(r_f, r);
|
||||
|
||||
FieldF psi_f(r_f);
|
||||
psi_f = Zero();
|
||||
|
||||
FieldF p_f(r_f);
|
||||
FieldF mmp_f(r_f);
|
||||
|
||||
RealD MaxResidSinceLastRelUp = cp; //initial residual
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k = 0;
|
||||
int l = 0;
|
||||
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
a = c / d;
|
||||
b_pred = a * (a * qq - d) / c;
|
||||
|
||||
cp = axpy_norm(r_f, -a, mmp_f, r_f);
|
||||
b = cp / c;
|
||||
|
||||
// Fuse these loops ; should be really easy
|
||||
psi_f = a * p_f + psi_f;
|
||||
//p_f = p_f * b + r_f;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
|
||||
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
|
||||
|
||||
if(cp > MaxResidSinceLastRelUp){
|
||||
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
|
||||
MaxResidSinceLastRelUp = cp;
|
||||
}
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
//Although not written in the paper, I assume that I have to add on the final solution
|
||||
precisionChange(mmp, psi_f);
|
||||
psi = psi + mmp;
|
||||
|
||||
|
||||
SolverTimer.Stop();
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
RealD srcnorm = std::sqrt(norm2(src));
|
||||
RealD resnorm = std::sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
|
||||
if(DoFinalCleanup){
|
||||
//Do a final CG to cleanup
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
|
||||
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
|
||||
CG.ErrorOnNoConverge = ErrorOnNoConverge;
|
||||
CG(Linop_d,src,psi);
|
||||
IterationsToCleanup = CG.IterationsToComplete;
|
||||
}
|
||||
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
|
||||
return;
|
||||
}
|
||||
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
||||
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
||||
precisionChange(mmp, psi_f);
|
||||
psi = psi + mmp;
|
||||
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
r = src - mmp;
|
||||
|
||||
psi_f = Zero();
|
||||
precisionChange(r_f, r);
|
||||
cp = norm2(r);
|
||||
MaxResidSinceLastRelUp = cp;
|
||||
|
||||
b = cp/c;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
|
||||
|
||||
l = l+1;
|
||||
}
|
||||
|
||||
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
|
||||
|
||||
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
|
||||
Linop_f_use = Linop_fallback;
|
||||
using_fallback = true;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
#endif
|
@ -1,113 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_RESIDUAL_H
|
||||
#define GRID_CONJUGATE_RESIDUAL_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class ConjugateResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
|
||||
ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
|
||||
verbose=0;
|
||||
};
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
|
||||
RealD a, b; // c, d;
|
||||
RealD cp, ssq,rsq;
|
||||
|
||||
RealD rAr, rAAr, rArp;
|
||||
RealD pAp, pAAp;
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
psi=Zero();
|
||||
Field r(grid), p(grid), Ap(grid), Ar(grid);
|
||||
|
||||
r=src;
|
||||
p=src;
|
||||
|
||||
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
|
||||
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
|
||||
|
||||
cp =norm2(r);
|
||||
ssq=norm2(src);
|
||||
rsq=Tolerance*Tolerance*ssq;
|
||||
|
||||
if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
|
||||
|
||||
for(int k=1;k<MaxIterations;k++){
|
||||
|
||||
a = rAr/pAAp;
|
||||
|
||||
axpy(psi,a,p,psi);
|
||||
|
||||
cp = axpy_norm(r,-a,Ap,r);
|
||||
|
||||
rArp=rAr;
|
||||
|
||||
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
|
||||
|
||||
b =rAr/rArp;
|
||||
|
||||
axpy(p,b,p,r);
|
||||
pAAp=axpy_norm(Ap,b,Ap,Ar);
|
||||
|
||||
if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
|
||||
|
||||
if(cp<rsq) {
|
||||
Linop.HermOp(psi,Ap);
|
||||
axpy(r,-1.0,src,Ap);
|
||||
RealD true_resid = norm2(r)/ssq;
|
||||
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
|
||||
<< " computed residual "<<std::sqrt(cp/ssq)
|
||||
<< " true residual "<<std::sqrt(true_resid)
|
||||
<< " target " <<Tolerance <<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,108 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_DEFLATION_H
|
||||
#define GRID_DEFLATION_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class ZeroGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
|
||||
};
|
||||
template<class Field>
|
||||
class DoNothingGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { };
|
||||
};
|
||||
template<class Field>
|
||||
class SourceGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = src; };
|
||||
};
|
||||
|
||||
////////////////////////////////
|
||||
// Fine grid deflation
|
||||
////////////////////////////////
|
||||
template<class Field>
|
||||
class DeflatedGuesser: public LinearFunction<Field> {
|
||||
private:
|
||||
const std::vector<Field> &evec;
|
||||
const std::vector<RealD> &eval;
|
||||
|
||||
public:
|
||||
|
||||
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
|
||||
|
||||
virtual void operator()(const Field &src,Field &guess) {
|
||||
guess = Zero();
|
||||
assert(evec.size()==eval.size());
|
||||
auto N = evec.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
const Field& tmp = evec[i];
|
||||
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
|
||||
}
|
||||
guess.Checkerboard() = src.Checkerboard();
|
||||
}
|
||||
};
|
||||
|
||||
template<class FineField, class CoarseField>
|
||||
class LocalCoherenceDeflatedGuesser: public LinearFunction<FineField> {
|
||||
private:
|
||||
const std::vector<FineField> &subspace;
|
||||
const std::vector<CoarseField> &evec_coarse;
|
||||
const std::vector<RealD> &eval_coarse;
|
||||
public:
|
||||
|
||||
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
|
||||
const std::vector<CoarseField> &_evec_coarse,
|
||||
const std::vector<RealD> &_eval_coarse)
|
||||
: subspace(_subspace),
|
||||
evec_coarse(_evec_coarse),
|
||||
eval_coarse(_eval_coarse)
|
||||
{
|
||||
}
|
||||
|
||||
void operator()(const FineField &src,FineField &guess) {
|
||||
int N = (int)evec_coarse.size();
|
||||
CoarseField src_coarse(evec_coarse[0].Grid());
|
||||
CoarseField guess_coarse(evec_coarse[0].Grid()); guess_coarse = Zero();
|
||||
blockProject(src_coarse,src,subspace);
|
||||
for (int i=0;i<N;i++) {
|
||||
const CoarseField & tmp = evec_coarse[i];
|
||||
axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
|
||||
}
|
||||
blockPromote(guess_coarse,guess,subspace);
|
||||
guess.Checkerboard() = src.Checkerboard();
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
|
||||
}
|
||||
#endif
|
@ -1,258 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<ComplexD> y;
|
||||
std::vector<ComplexD> gamma;
|
||||
std::vector<ComplexD> c;
|
||||
std::vector<ComplexD> s;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
LinearFunction<Field> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v[iter], z[iter]);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - ComplexD(H(iter, i)) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
|
||||
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = conjugate(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
|
||||
y[i] = y[i] / ComplexD(H(i, i));
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,256 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the FGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<ComplexD> y;
|
||||
std::vector<ComplexD> gamma;
|
||||
std::vector<ComplexD> c;
|
||||
std::vector<ComplexD> s;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
FlexibleGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
LinearFunction<Field> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v[iter], z[iter]);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - ComplexD(H(iter, i)) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
|
||||
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = conjugate(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
|
||||
y[i] = y[i] / ComplexD(H(i, i));
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,244 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the GMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<ComplexD> y;
|
||||
std::vector<ComplexD> gamma;
|
||||
std::vector<ComplexD> c;
|
||||
std::vector<ComplexD> s;
|
||||
|
||||
GeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// this should probably be made a class member so that it is only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(v, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(v[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - ComplexD(H(iter, i)) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
|
||||
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = conjugate(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
|
||||
y[i] = y[i] / ComplexD(H(i, i));
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + v[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,863 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_BIRL_H
|
||||
#define GRID_BIRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
//#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Move following 100 LOC to lattice/Lattice_basis.h
|
||||
////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef decltype(basis[0].View()) View;
|
||||
auto tmp_v = basis[0].View();
|
||||
std::vector<View> basis_v(basis.size(),tmp_v);
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v[k] = basis[k].View();
|
||||
}
|
||||
|
||||
thread_region
|
||||
{
|
||||
std::vector < vobj , commAllocator<vobj> > B(Nm); // Thread private
|
||||
thread_for_in_region(ss, grid->oSites(),{
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis_v[k][ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis_v[j][ss] = B[j];
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
template<class Field>
|
||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
result.Checkerboard() = basis[0].Checkerboard();
|
||||
auto result_v=result.View();
|
||||
thread_for(ss, grid->oSites(),{
|
||||
vobj B = Zero();
|
||||
for(int k=k0; k<k1; ++k){
|
||||
auto basis_k = basis[k].View();
|
||||
B +=Qt(j,k) * basis_k[ss];
|
||||
}
|
||||
result_v[ss] = B;
|
||||
});
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
if (idx[i] != i) {
|
||||
|
||||
//////////////////////////////////////
|
||||
// idx[i] is a table of desired sources giving a permutation.
|
||||
// Swap v[i] with v[idx[i]].
|
||||
// Find j>i for which _vnew[j] = _vold[i],
|
||||
// track the move idx[j] => idx[i]
|
||||
// track the move idx[i] => i
|
||||
//////////////////////////////////////
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||
|
||||
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
|
||||
idx[j] = idx[i];
|
||||
idx[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
|
||||
{
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
|
||||
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
|
||||
});
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
|
||||
{
|
||||
std::vector<int> idx = basisSortGetIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
basisReorderInPlace(_v,sort_vals,idx);
|
||||
}
|
||||
|
||||
// PAB: faster to compute the inner products first then fuse loops.
|
||||
// If performance critical can improve.
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = Zero();
|
||||
assert(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class ImplicitlyRestartedLanczosTester
|
||||
{
|
||||
public:
|
||||
virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
|
||||
virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
|
||||
};
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public ImplicitlyRestartedLanczosTester<Field>
|
||||
{
|
||||
public:
|
||||
|
||||
LinearFunction<Field> &_HermOp;
|
||||
ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOp) : _HermOp(HermOp) { };
|
||||
int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
return TestConvergence(j,resid,B,eval,evalMaxApprox);
|
||||
}
|
||||
int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
Field v(B);
|
||||
RealD eval_poly = eval;
|
||||
// Apply operator
|
||||
_HermOp(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval = vnum/vden;
|
||||
v -= eval*B;
|
||||
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
|
||||
return conv;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedLanczos {
|
||||
private:
|
||||
const RealD small = 1.0e-8;
|
||||
int MaxIter;
|
||||
int MinRestart; // Minimum number of restarts; only check for convergence after
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
|
||||
int Nm; // Nm -- total number of vectors
|
||||
IRLdiagonalisation diagonalisation;
|
||||
int orth_period;
|
||||
|
||||
RealD OrthoTime;
|
||||
RealD eresid, betastp;
|
||||
////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////
|
||||
LinearFunction<Field> &_PolyOp;
|
||||
LinearFunction<Field> &_HermOp;
|
||||
ImplicitlyRestartedLanczosTester<Field> &_Tester;
|
||||
// Default tester provided (we need a ref to something in default case)
|
||||
ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
|
||||
public:
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// PAB:
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Too many options & knobs.
|
||||
// Eliminate:
|
||||
// orth_period
|
||||
// betastp
|
||||
// MinRestart
|
||||
//
|
||||
// Do we really need orth_period
|
||||
// What is the theoretical basis & guarantees of betastp ?
|
||||
// Nstop=Nk viable?
|
||||
// MinRestart avoidable with new convergence test?
|
||||
// Could cut to PolyOp, HermOp, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
|
||||
// HermOp could be eliminated if we dropped the Power method for max eval.
|
||||
// -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
|
||||
//////////////////////////////////////////////////////////////////
|
||||
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
|
||||
LinearFunction<Field> & HermOp,
|
||||
ImplicitlyRestartedLanczosTester<Field> & Tester,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
|
||||
LinearFunction<Field> & HermOp,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = std::sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
|
||||
{
|
||||
OrthoTime-=usecond()/1e6;
|
||||
basisOrthogonalize(evec,w,k);
|
||||
normalise(w);
|
||||
OrthoTime+=usecond()/1e6;
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
assert(grid == evec[0].Grid());
|
||||
|
||||
GridLogIRL.TimingMode(1);
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
|
||||
}
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
normalise(src_n);
|
||||
_HermOp(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> eval2_copy(Nm);
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
RealD beta_k;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
normalise(evec[0]);
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime=0.;
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// Restarting loop begins
|
||||
//////////////////////////////////
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
OrthoTime=0.;
|
||||
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
|
||||
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
f *= lme[Nm-1];
|
||||
|
||||
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// getting eigenvalues
|
||||
//////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// sorting
|
||||
//////////////////////////////////
|
||||
eval2_copy = eval2;
|
||||
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
|
||||
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
|
||||
const int chunk=8;
|
||||
for(int io=0; io<k2;io+=chunk){
|
||||
std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
|
||||
for(int ii=0;ii<chunk;ii++){
|
||||
if ( (io+ii)<k2 )
|
||||
std::cout<< " "<< std::setw(12)<< eval2[io+ii];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Implicitly shifted QR transformations
|
||||
//////////////////////////////////
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
||||
|
||||
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
|
||||
|
||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Compressed vector f and beta(k2)
|
||||
////////////////////////////////////////////////////
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = std::sqrt(beta_k);
|
||||
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Convergence test
|
||||
////////////////////////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
|
||||
|
||||
Nconv = 0;
|
||||
if (iter >= MinRestart) {
|
||||
|
||||
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
|
||||
|
||||
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
|
||||
|
||||
// power of two search pattern; not every evalue in eval2 is assessed.
|
||||
int allconv =1;
|
||||
for(int jj = 1; jj<=Nstop; jj*=2){
|
||||
int j = Nstop-jj;
|
||||
RealD e = eval2_copy[j]; // Discard the evalue
|
||||
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
|
||||
if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
|
||||
allconv=0;
|
||||
}
|
||||
}
|
||||
// Do evec[0] for good measure
|
||||
{
|
||||
int j=0;
|
||||
RealD e = eval2_copy[0];
|
||||
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
|
||||
if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) allconv=0;
|
||||
}
|
||||
if ( allconv ) Nconv = Nstop;
|
||||
|
||||
// test if we converged, if so, terminate
|
||||
std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
|
||||
// if( Nconv>=Nstop || beta_k < betastp){
|
||||
if( Nconv>=Nstop){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
} else {
|
||||
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
|
||||
} // end of iter loop
|
||||
}
|
||||
|
||||
std::cout<<GridLogError<<"\n NOT converged.\n";
|
||||
abort();
|
||||
|
||||
converged:
|
||||
{
|
||||
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
|
||||
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
|
||||
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
|
||||
Nconv=0;
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Full final convergence test; unconditionally applied
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
for(int j = 0; j<=Nk; j++){
|
||||
B=evec[j];
|
||||
if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
|
||||
Nconv++;
|
||||
}
|
||||
}
|
||||
|
||||
if ( Nconv < Nstop )
|
||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||
|
||||
eval=eval2;
|
||||
|
||||
//Keep only converged
|
||||
eval.resize(Nconv);// Nstop?
|
||||
evec.resize(Nconv,grid);// Nstop?
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
}
|
||||
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
|
||||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ??? !!!
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
void QR_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||||
RealD Dsh, int kmin, int kmax)
|
||||
{
|
||||
int k = kmin-1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||||
RealD s = -lme[k] *Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
x =-s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
|
||||
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for(int k = kmin; k < kmax-1; ++k){
|
||||
|
||||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||||
RealD c = lme[k-1]*Fden;
|
||||
RealD s = - x*Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
lme[k-1] = c*lme[k-1] -s*x;
|
||||
|
||||
if(k != kmax-2){
|
||||
x = -s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
|
||||
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||||
int *m, double *w, double *z, int *ldz, int *isuppz,
|
||||
double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
#endif
|
||||
|
||||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd& Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
#ifdef USE_LAPACK
|
||||
const int size = Nm;
|
||||
int NN = Nk;
|
||||
double evals_tmp[NN];
|
||||
double evec_tmp[NN][NN];
|
||||
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
|
||||
double DD[NN];
|
||||
double EE[NN];
|
||||
for (int i = 0; i< NN; i++) {
|
||||
for (int j = i - 1; j <= i + 1; j++) {
|
||||
if ( j < NN && j >= 0 ) {
|
||||
if (i==j) DD[i] = lmd[i];
|
||||
if (i==j) evals_tmp[i] = lmd[i];
|
||||
if (j==(i-1)) EE[j] = lme[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
int evals_found;
|
||||
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||||
int liwork = 3+NN*10 ;
|
||||
int iwork[liwork];
|
||||
double work[lwork];
|
||||
int isuppz[2*NN];
|
||||
char jobz = 'V'; // calculate evals & evecs
|
||||
char range = 'I'; // calculate all evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
int ifail[NN];
|
||||
int info;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN/total)+1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
int il = interval*node+1 , iu = interval*(node+1);
|
||||
if (iu > NN) iu=NN;
|
||||
double tol = 0.0;
|
||||
if (1) {
|
||||
memset(evals_tmp,0,sizeof(double)*NN);
|
||||
if ( il <= NN){
|
||||
LAPACK_dstegr(&jobz, &range, &NN,
|
||||
(double*)DD, (double*)EE,
|
||||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
|
||||
isuppz,
|
||||
work, &lwork, iwork, &liwork,
|
||||
&info);
|
||||
for (int i = iu-1; i>= il-1; i--){
|
||||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||||
for (int j = 0; j< NN; j++){
|
||||
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
|
||||
if (il>1) evec_tmp[i-(il-1)][j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
grid->GlobalSumVector(evals_tmp,NN);
|
||||
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
|
||||
}
|
||||
}
|
||||
// Safer to sort instead of just reversing it,
|
||||
// but the document of the routine says evals are sorted in increasing order.
|
||||
// qr gives evals in decreasing order.
|
||||
for(int i=0;i<NN;i++){
|
||||
lmd [NN-1-i]=evals_tmp[i];
|
||||
for(int j=0;j<NN;j++){
|
||||
Qt((NN-1-i),j)=evec_tmp[i][j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int QRiter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<QRiter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
QRiter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
|
||||
abort();
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,409 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LOCAL_COHERENCE_IRL_H
|
||||
#define GRID_LOCAL_COHERENCE_IRL_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
struct LanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
|
||||
ChebyParams, Cheby,/*Chebyshev*/
|
||||
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
|
||||
int, Nk, /*Vecs in Lanczos seek converge*/
|
||||
int, Nm, /*Total vecs in Lanczos include restart*/
|
||||
RealD, resid, /*residual*/
|
||||
int, MaxIt,
|
||||
RealD, betastp, /* ? */
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
bool, saveEvecs,
|
||||
bool, doFine,
|
||||
bool, doFineRead,
|
||||
bool, doCoarse,
|
||||
bool, doCoarseRead,
|
||||
LanczosParams, FineParams,
|
||||
LanczosParams, CoarseParams,
|
||||
ChebyParams, Smoother,
|
||||
RealD , coarse_relax_tol,
|
||||
std::vector<int>, blockSize,
|
||||
std::string, config,
|
||||
std::vector < ComplexD >, omega,
|
||||
RealD, mass,
|
||||
RealD, M5);
|
||||
};
|
||||
|
||||
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
std::vector<FineField> &subspace;
|
||||
|
||||
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
|
||||
_Linop(linop), subspace(_subspace)
|
||||
{
|
||||
assert(subspace.size() >0);
|
||||
};
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
GridBase *FineGrid = subspace[0].Grid();
|
||||
int checkerboard = subspace[0].Checkerboard();
|
||||
|
||||
FineField fin (FineGrid); fin.Checkerboard()= checkerboard;
|
||||
FineField fout(FineGrid); fout.Checkerboard() = checkerboard;
|
||||
|
||||
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
|
||||
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
|
||||
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
|
||||
OperatorFunction<FineField> & _poly;
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
std::vector<FineField> &subspace;
|
||||
|
||||
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,
|
||||
LinearOperatorBase<FineField>& linop,
|
||||
std::vector<FineField> & _subspace) :
|
||||
_poly(poly),
|
||||
_Linop(linop),
|
||||
subspace(_subspace)
|
||||
{ };
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
|
||||
GridBase *FineGrid = subspace[0].Grid();
|
||||
int checkerboard = subspace[0].Checkerboard();
|
||||
|
||||
FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
|
||||
FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
|
||||
|
||||
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
|
||||
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
|
||||
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LinearFunction<CoarseField> & _Poly;
|
||||
OperatorFunction<FineField> & _smoother;
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
RealD _coarse_relax_tol;
|
||||
std::vector<FineField> &_subspace;
|
||||
|
||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||
OperatorFunction<FineField> &smoother,
|
||||
LinearOperatorBase<FineField> &Linop,
|
||||
std::vector<FineField> &subspace,
|
||||
RealD coarse_relax_tol=5.0e3)
|
||||
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
||||
_coarse_relax_tol(coarse_relax_tol)
|
||||
{ };
|
||||
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
RealD eval_poly = eval;
|
||||
|
||||
// Apply operator
|
||||
_Poly(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval = vnum/vden;
|
||||
v -= eval*B;
|
||||
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
GridBase *FineGrid = _subspace[0].Grid();
|
||||
int checkerboard = _subspace[0].Checkerboard();
|
||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||
FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
|
||||
|
||||
blockPromote(B,fv,_subspace);
|
||||
|
||||
_smoother(_Linop,fv,fB);
|
||||
|
||||
RealD eval_poly = eval;
|
||||
_Linop.HermOp(fB,fv);
|
||||
|
||||
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
|
||||
RealD vden = norm2(fB);
|
||||
RealD vv0 = norm2(fv);
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Make serializable Lanczos params
|
||||
////////////////////////////////////////////
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class LocalCoherenceLanczos
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
protected:
|
||||
GridBase *_CoarseGrid;
|
||||
GridBase *_FineGrid;
|
||||
int _checkerboard;
|
||||
LinearOperatorBase<FineField> & _FineOp;
|
||||
|
||||
std::vector<RealD> &evals_fine;
|
||||
std::vector<RealD> &evals_coarse;
|
||||
std::vector<FineField> &subspace;
|
||||
std::vector<CoarseField> &evec_coarse;
|
||||
|
||||
private:
|
||||
std::vector<RealD> _evals_fine;
|
||||
std::vector<RealD> _evals_coarse;
|
||||
std::vector<FineField> _subspace;
|
||||
std::vector<CoarseField> _evec_coarse;
|
||||
|
||||
public:
|
||||
|
||||
LocalCoherenceLanczos(GridBase *FineGrid,
|
||||
GridBase *CoarseGrid,
|
||||
LinearOperatorBase<FineField> &FineOp,
|
||||
int checkerboard) :
|
||||
_CoarseGrid(CoarseGrid),
|
||||
_FineGrid(FineGrid),
|
||||
_FineOp(FineOp),
|
||||
_checkerboard(checkerboard),
|
||||
evals_fine (_evals_fine),
|
||||
evals_coarse(_evals_coarse),
|
||||
subspace (_subspace),
|
||||
evec_coarse(_evec_coarse)
|
||||
{
|
||||
evals_fine.resize(0);
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Alternate constructore, external storage for use by Hadrons module
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
LocalCoherenceLanczos(GridBase *FineGrid,
|
||||
GridBase *CoarseGrid,
|
||||
LinearOperatorBase<FineField> &FineOp,
|
||||
int checkerboard,
|
||||
std::vector<FineField> &ext_subspace,
|
||||
std::vector<CoarseField> &ext_coarse,
|
||||
std::vector<RealD> &ext_eval_fine,
|
||||
std::vector<RealD> &ext_eval_coarse
|
||||
) :
|
||||
_CoarseGrid(CoarseGrid),
|
||||
_FineGrid(FineGrid),
|
||||
_FineOp(FineOp),
|
||||
_checkerboard(checkerboard),
|
||||
evals_fine (ext_eval_fine),
|
||||
evals_coarse(ext_eval_coarse),
|
||||
subspace (ext_subspace),
|
||||
evec_coarse (ext_coarse)
|
||||
{
|
||||
evals_fine.resize(0);
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
|
||||
void Orthogonalise(void ) {
|
||||
CoarseScalar InnerProd(_CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
};
|
||||
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = ::sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
/*
|
||||
void fakeFine(void)
|
||||
{
|
||||
int Nk = nbasis;
|
||||
subspace.resize(Nk,_FineGrid);
|
||||
subspace[0]=1.0;
|
||||
subspace[0].Checkerboard()=_checkerboard;
|
||||
normalise(subspace[0]);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
for(int k=1;k<Nk;k++){
|
||||
subspace[k].Checkerboard()=_checkerboard;
|
||||
Op(subspace[k-1],subspace[k]);
|
||||
normalise(subspace[k]);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
void testFine(RealD resid)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(subspace.size() == nbasis);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
|
||||
for(int k=0;k<nbasis;k++){
|
||||
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(subspace.size() == nbasis);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,subspace);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
|
||||
for(int k=0;k<evec_coarse.size();k++){
|
||||
if ( k < nbasis ) {
|
||||
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
|
||||
} else {
|
||||
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
assert(nbasis<=Nm);
|
||||
Chebyshev<FineField> Cheby(cheby_parms);
|
||||
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
|
||||
evals_fine.resize(Nm);
|
||||
subspace.resize(Nm,_FineGrid);
|
||||
|
||||
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
|
||||
FineField src(_FineGrid);
|
||||
typedef typename FineField::scalar_type Scalar;
|
||||
// src=1.0;
|
||||
src=Scalar(1.0);
|
||||
src.Checkerboard() = _checkerboard;
|
||||
|
||||
int Nconv;
|
||||
IRL.calc(evals_fine,subspace,src,Nconv,false);
|
||||
|
||||
// Shrink down to number saved
|
||||
assert(Nstop>=nbasis);
|
||||
assert(Nconv>=nbasis);
|
||||
evals_fine.resize(nbasis);
|
||||
subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
assert(Nconv>=Nstop);
|
||||
evals_coarse.resize(Nstop);
|
||||
evec_coarse.resize (Nstop,_CoarseGrid);
|
||||
for (int i=0;i<Nstop;i++){
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,157 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MINIMAL_RESIDUAL_H
|
||||
#define GRID_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
RealD overRelaxParam;
|
||||
Integer IterationsToComplete; // Number of iterations the MR took to finish.
|
||||
// Filled in upon completion
|
||||
|
||||
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
|
||||
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
ComplexD a, c;
|
||||
RealD d;
|
||||
|
||||
Field Mr(src);
|
||||
Field r(src);
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Linop.Op(psi, Mr);
|
||||
|
||||
r = src - Mr;
|
||||
|
||||
RealD cp = norm2(r);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
|
||||
|
||||
if (cp <= rsq) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(r, Mr);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
c = innerProduct(Mr, r);
|
||||
|
||||
d = norm2(Mr);
|
||||
|
||||
a = c / d;
|
||||
|
||||
a = a * overRelaxParam;
|
||||
|
||||
psi = psi + r * a;
|
||||
|
||||
r = r - Mr * a;
|
||||
|
||||
cp = norm2(r);
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
SolverTimer.Stop();
|
||||
|
||||
Linop.Op(psi, Mr);
|
||||
r = src - Mr;
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
};
|
||||
} // namespace Grid
|
||||
#endif
|
@ -1,276 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
GridStopWatch ChangePrecTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<ComplexD> y;
|
||||
std::vector<ComplexD> gamma;
|
||||
std::vector<ComplexD> c;
|
||||
std::vector<ComplexD> s;
|
||||
|
||||
GridBase* SinglePrecGrid;
|
||||
|
||||
LinearFunction<FieldF> &Preconditioner;
|
||||
|
||||
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
GridBase * sp_grid,
|
||||
LinearFunction<FieldF> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, SinglePrecGrid(sp_grid)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
FieldD r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
ChangePrecTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
FieldD w(src.Grid());
|
||||
FieldD r(src.Grid());
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
|
||||
|
||||
FieldF v_f(SinglePrecGrid);
|
||||
FieldF z_f(SinglePrecGrid);
|
||||
|
||||
ChangePrecTimer.Start();
|
||||
precisionChange(v_f, v[iter]);
|
||||
precisionChange(z_f, z[iter]);
|
||||
ChangePrecTimer.Stop();
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v_f, z_f);
|
||||
PrecTimer.Stop();
|
||||
|
||||
ChangePrecTimer.Start();
|
||||
precisionChange(z[iter], z_f);
|
||||
ChangePrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - ComplexD(H(iter, i)) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
|
||||
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = conjugate(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
|
||||
y[i] = y[i] / ComplexD(H(i, i));
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,45 +0,0 @@
|
||||
#pragma once
|
||||
namespace Grid {
|
||||
template<class Field> class PowerMethod
|
||||
{
|
||||
public:
|
||||
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 50;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
normalise(src_n);
|
||||
HermOp.HermOp(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.01) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
return evalMaxApprox;
|
||||
}
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
assert(0);
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
}
|
@ -1,119 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/PrecConjugateResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
|
||||
#define GRID_PREC_CONJUGATE_RESIDUAL_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class PrecConjugateResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit), Preconditioner(Prec)
|
||||
{
|
||||
verbose=1;
|
||||
};
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
|
||||
RealD a, b, c, d;
|
||||
RealD cp, ssq,rsq;
|
||||
|
||||
RealD rAr, rAAr, rArp;
|
||||
RealD pAp, pAAp;
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
Field r(grid), p(grid), Ap(grid), Ar(grid), z(grid);
|
||||
|
||||
psi=zero;
|
||||
r = src;
|
||||
Preconditioner(r,p);
|
||||
|
||||
|
||||
|
||||
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
|
||||
Ar=Ap;
|
||||
rAr=pAp;
|
||||
rAAr=pAAp;
|
||||
|
||||
cp =norm2(r);
|
||||
ssq=norm2(src);
|
||||
rsq=Tolerance*Tolerance*ssq;
|
||||
|
||||
if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
|
||||
|
||||
for(int k=0;k<MaxIterations;k++){
|
||||
|
||||
|
||||
Preconditioner(Ap,z);
|
||||
RealD rq= real(innerProduct(Ap,z));
|
||||
|
||||
a = rAr/rq;
|
||||
|
||||
axpy(psi,a,p,psi);
|
||||
cp = axpy_norm(r,-a,z,r);
|
||||
|
||||
rArp=rAr;
|
||||
|
||||
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
|
||||
|
||||
b =rAr/rArp;
|
||||
|
||||
axpy(p,b,p,r);
|
||||
pAAp=axpy_norm(Ap,b,Ap,Ar);
|
||||
|
||||
if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
|
||||
|
||||
if(cp<rsq) {
|
||||
Linop.HermOp(psi,Ap);
|
||||
axpy(r,-1.0,src,Ap);
|
||||
RealD true_resid = norm2(r)/ssq;
|
||||
std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
|
||||
<< " computed residual "<<sqrt(cp/ssq)
|
||||
<< " true residual "<<sqrt(true_resid)
|
||||
<< " target " <<Tolerance <<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,243 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_PREC_GCR_H
|
||||
#define GRID_PREC_GCR_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//VPGCR Abe and Zhang, 2005.
|
||||
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
|
||||
//Computing and Information Volume 2, Number 2, Pages 147-161
|
||||
//NB. Likely not original reference since they are focussing on a preconditioner variant.
|
||||
// but VPGCR was nicely written up in their paper
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field>
|
||||
class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
int mmax;
|
||||
int nstep;
|
||||
int steps;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch MatTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
Preconditioner(Prec),
|
||||
mmax(_mmax),
|
||||
nstep(_nstep)
|
||||
{
|
||||
verbose=1;
|
||||
};
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
|
||||
psi=Zero();
|
||||
RealD cp, ssq,rsq;
|
||||
ssq=norm2(src);
|
||||
rsq=Tolerance*Tolerance*ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
steps=0;
|
||||
for(int k=0;k<MaxIterations;k++){
|
||||
|
||||
cp=GCRnStep(Linop,src,psi,rsq);
|
||||
|
||||
std::cout<<GridLogMessage<<"VPGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<std::endl;
|
||||
|
||||
if(cp<rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
Linop.HermOp(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
RealD tr = norm2(r);
|
||||
std::cout<<GridLogMessage<<"PrecGeneralisedConjugateResidual: Converged on iteration " <<steps
|
||||
<< " computed residual "<<sqrt(cp/ssq)
|
||||
<< " true residual " <<sqrt(tr/ssq)
|
||||
<< " target " <<Tolerance <<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){
|
||||
|
||||
RealD cp;
|
||||
RealD a, b;
|
||||
RealD zAz, zAAz;
|
||||
RealD rq;
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
|
||||
Field r(grid);
|
||||
Field z(grid);
|
||||
Field tmp(grid);
|
||||
Field ttmp(grid);
|
||||
Field Az(grid);
|
||||
|
||||
////////////////////////////////
|
||||
// history for flexible orthog
|
||||
////////////////////////////////
|
||||
std::vector<Field> q(mmax,grid);
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<RealD> qq(mmax);
|
||||
|
||||
|
||||
//////////////////////////////////
|
||||
// initial guess x0 is taken as nonzero.
|
||||
// r0=src-A x0 = src
|
||||
//////////////////////////////////
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r=src-Az;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
/////////////////////
|
||||
// p = Prec(r)
|
||||
/////////////////////
|
||||
PrecTimer.Start();
|
||||
Preconditioner(r,z);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.HermOp(z,tmp);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
ttmp=tmp;
|
||||
tmp=tmp-r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
/*
|
||||
std::cout<<GridLogMessage<<r<<std::endl;
|
||||
std::cout<<GridLogMessage<<z<<std::endl;
|
||||
std::cout<<GridLogMessage<<ttmp<<std::endl;
|
||||
std::cout<<GridLogMessage<<tmp<<std::endl;
|
||||
*/
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
//p[0],q[0],qq[0]
|
||||
p[0]= z;
|
||||
q[0]= Az;
|
||||
qq[0]= zAAz;
|
||||
|
||||
cp =norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for(int k=0;k<nstep;k++){
|
||||
|
||||
steps++;
|
||||
|
||||
int kp = k+1;
|
||||
int peri_k = k %mmax;
|
||||
int peri_kp= kp%mmax;
|
||||
|
||||
LinalgTimer.Start();
|
||||
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
|
||||
a = rq/qq[peri_k];
|
||||
|
||||
axpy(psi,a,p[peri_k],psi);
|
||||
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
if((k==nstep-1)||(cp<rsq)){
|
||||
return cp;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<< " VPGCR_step["<<steps<<"] resid " <<sqrt(cp/rsq)<<std::endl;
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(r,z);// solve Az = r
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
Linop.HermOp(z,tmp);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
tmp=tmp-r;
|
||||
std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;
|
||||
|
||||
q[peri_kp]=Az;
|
||||
p[peri_kp]=z;
|
||||
|
||||
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
||||
for(int back=0;back<northog;back++){
|
||||
|
||||
int peri_back=(k-back)%mmax; assert((k-back)>=0);
|
||||
|
||||
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
||||
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
||||
q[peri_kp]=q[peri_kp]+b*q[peri_back];
|
||||
|
||||
}
|
||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
assert(0); // never reached
|
||||
return cp;
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,486 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_SCHUR_RED_BLACK_H
|
||||
#define GRID_SCHUR_RED_BLACK_H
|
||||
|
||||
|
||||
/*
|
||||
* Red black Schur decomposition
|
||||
*
|
||||
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
|
||||
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
|
||||
* = L D U
|
||||
*
|
||||
* L^-1 = (1 0 )
|
||||
* (-MoeMee^{-1} 1 )
|
||||
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
*
|
||||
* U^-1 = (1 -Mee^{-1} Meo)
|
||||
* (0 1 )
|
||||
* U^{dag} = ( 1 0)
|
||||
* (Meo^dag Mee^{-dag} 1)
|
||||
* U^{-dag} = ( 1 0)
|
||||
* (-Meo^dag Mee^{-dag} 1)
|
||||
***********************
|
||||
* M psi = eta
|
||||
***********************
|
||||
*Odd
|
||||
* i) D_oo psi_o = L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Wilson:
|
||||
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* Stag:
|
||||
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* L^-1 eta_o= (1 0 ) (e
|
||||
* (-MoeMee^{-1} 1 )
|
||||
*
|
||||
*Even
|
||||
* ii) Mee psi_e + Meo psi_o = src_e
|
||||
*
|
||||
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
*
|
||||
*
|
||||
* TODO: Other options:
|
||||
*
|
||||
* a) change checkerboards for Schur e<->o
|
||||
*
|
||||
* Left precon by Moo^-1
|
||||
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Right precon by Moo^-1
|
||||
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* psi_o = M_oo^-1 phi_o
|
||||
* TODO: Deflation
|
||||
*/
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Use base class to share code
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackBase {
|
||||
protected:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
bool subGuess;
|
||||
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
|
||||
public:
|
||||
|
||||
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false) :
|
||||
_HermitianRBSolver(HermitianRBSolver),
|
||||
useSolnAsInitGuess(_solnAsInitGuess)
|
||||
{
|
||||
CBfactorise = 0;
|
||||
subtractGuess(initSubGuess);
|
||||
};
|
||||
void subtractGuess(const bool initSubGuess)
|
||||
{
|
||||
subGuess = initSubGuess;
|
||||
}
|
||||
bool isSubtractGuess(void)
|
||||
{
|
||||
return subGuess;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Shared code
|
||||
/////////////////////////////////////////////////////////////
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
ZeroGuesser<Field> guess;
|
||||
(*this)(_Matrix,in,out,guess);
|
||||
}
|
||||
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)
|
||||
{
|
||||
ZeroGuesser<Field> guess;
|
||||
(*this)(_Matrix,in,out,guess);
|
||||
}
|
||||
|
||||
template<class Guesser>
|
||||
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
int nblock = in.size();
|
||||
|
||||
std::vector<Field> src_o(nblock,grid);
|
||||
std::vector<Field> sol_o(nblock,grid);
|
||||
|
||||
std::vector<Field> guess_save;
|
||||
|
||||
Field resid(fgrid);
|
||||
Field tmp(grid);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Prepare RedBlack source
|
||||
////////////////////////////////////////////////
|
||||
for(int b=0;b<nblock;b++){
|
||||
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
||||
}
|
||||
////////////////////////////////////////////////
|
||||
// Make the guesses
|
||||
////////////////////////////////////////////////
|
||||
if ( subGuess ) guess_save.resize(nblock,grid);
|
||||
|
||||
for(int b=0;b<nblock;b++){
|
||||
if(useSolnAsInitGuess) {
|
||||
pickCheckerboard(Odd, sol_o[b], out[b]);
|
||||
} else {
|
||||
guess(src_o[b],sol_o[b]);
|
||||
}
|
||||
|
||||
if ( subGuess ) {
|
||||
guess_save[b] = sol_o[b];
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the block solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
|
||||
RedBlackSolve(_Matrix,src_o,sol_o);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// A2A boolean behavioural control & reconstruct other checkerboard
|
||||
////////////////////////////////////////////////
|
||||
for(int b=0;b<nblock;b++) {
|
||||
|
||||
if (subGuess) sol_o[b] = sol_o[b] - guess_save[b];
|
||||
|
||||
///////// Needs even source //////////////
|
||||
pickCheckerboard(Even,tmp,in[b]);
|
||||
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Check unprec residual if possible
|
||||
/////////////////////////////////////////////////
|
||||
if ( ! subGuess ) {
|
||||
_Matrix.M(out[b],resid);
|
||||
resid = resid-in[b];
|
||||
RealD ns = norm2(in[b]);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
|
||||
} else {
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
template<class Guesser>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field resid(fgrid);
|
||||
Field src_o(grid);
|
||||
Field src_e(grid);
|
||||
Field sol_o(grid);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// RedBlack source
|
||||
////////////////////////////////////////////////
|
||||
RedBlackSource(_Matrix,in,src_e,src_o);
|
||||
|
||||
////////////////////////////////
|
||||
// Construct the guess
|
||||
////////////////////////////////
|
||||
if(useSolnAsInitGuess) {
|
||||
pickCheckerboard(Odd, sol_o, out);
|
||||
} else {
|
||||
guess(src_o,sol_o);
|
||||
}
|
||||
|
||||
Field guess_save(grid);
|
||||
guess_save = sol_o;
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
RedBlackSolve(_Matrix,src_o,sol_o);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Fionn A2A boolean behavioural control
|
||||
////////////////////////////////////////////////
|
||||
if (subGuess) sol_o= sol_o-guess_save;
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// RedBlack solution needs the even source
|
||||
///////////////////////////////////////////////////
|
||||
RedBlackSolution(_Matrix,sol_o,src_e,out);
|
||||
|
||||
// Verify the unprec residual
|
||||
if ( ! subGuess ) {
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
|
||||
} else {
|
||||
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Override in derived.
|
||||
/////////////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)=0;
|
||||
|
||||
};
|
||||
|
||||
template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)
|
||||
{
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Override RedBlack specialisation
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd ,src_o,src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
|
||||
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
|
||||
}
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
Field src_e(grid);
|
||||
|
||||
src_e = src_e_c; // Const correctness
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||
}
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal has Mooee on it.
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Override RedBlack specialisation
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd ,src_o,src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||
|
||||
}
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
Field src_e_i(grid);
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||
}
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, right preconditioned by Mee^inv
|
||||
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
||||
//=> psi = MeeInv phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd ,src_o,src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field sol_o_i(grid);
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// MooeeInv due to pecond
|
||||
////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(sol_o,tmp);
|
||||
sol_o_i = tmp;
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,244 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/AlignedAllocator.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ALIGNED_ALLOCATOR_H
|
||||
#define GRID_ALIGNED_ALLOCATOR_H
|
||||
|
||||
#ifdef HAVE_MALLOC_MALLOC_H
|
||||
#include <malloc/malloc.h>
|
||||
#endif
|
||||
#ifdef HAVE_MALLOC_H
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
#include <mm_malloc.h>
|
||||
#endif
|
||||
|
||||
#define POINTER_CACHE
|
||||
#define GRID_ALLOC_ALIGN (2*1024*1024)
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Move control to configure.ac and Config.h?
|
||||
#ifdef POINTER_CACHE
|
||||
class PointerCache {
|
||||
private:
|
||||
|
||||
static const int Ncache=8;
|
||||
static int victim;
|
||||
|
||||
typedef struct {
|
||||
void *address;
|
||||
size_t bytes;
|
||||
int valid;
|
||||
} PointerCacheEntry;
|
||||
|
||||
static PointerCacheEntry Entries[Ncache];
|
||||
|
||||
public:
|
||||
|
||||
|
||||
static void *Insert(void *ptr,size_t bytes) ;
|
||||
static void *Lookup(size_t bytes) ;
|
||||
|
||||
};
|
||||
#endif
|
||||
|
||||
std::string sizeString(size_t bytes);
|
||||
|
||||
struct MemoryStats
|
||||
{
|
||||
size_t totalAllocated{0}, maxAllocated{0},
|
||||
currentlyAllocated{0}, totalFreed{0};
|
||||
};
|
||||
|
||||
class MemoryProfiler
|
||||
{
|
||||
public:
|
||||
static MemoryStats *stats;
|
||||
static bool debug;
|
||||
};
|
||||
|
||||
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
|
||||
#define profilerDebugPrint \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
|
||||
<< std::endl; \
|
||||
}
|
||||
|
||||
#define profilerAllocate(bytes) \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
s->totalAllocated += (bytes); \
|
||||
s->currentlyAllocated += (bytes); \
|
||||
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
|
||||
} \
|
||||
if (MemoryProfiler::debug) \
|
||||
{ \
|
||||
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
|
||||
profilerDebugPrint; \
|
||||
}
|
||||
|
||||
#define profilerFree(bytes) \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
s->totalFreed += (bytes); \
|
||||
s->currentlyAllocated -= (bytes); \
|
||||
} \
|
||||
if (MemoryProfiler::debug) \
|
||||
{ \
|
||||
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
|
||||
profilerDebugPrint; \
|
||||
}
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES);
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// A lattice of something, but assume the something is SIMDized.
|
||||
////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename _Tp>
|
||||
class alignedAllocator {
|
||||
public:
|
||||
typedef std::size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef _Tp* pointer;
|
||||
typedef const _Tp* const_pointer;
|
||||
typedef _Tp& reference;
|
||||
typedef const _Tp& const_reference;
|
||||
typedef _Tp value_type;
|
||||
|
||||
template<typename _Tp1> struct rebind { typedef alignedAllocator<_Tp1> other; };
|
||||
alignedAllocator() throw() { }
|
||||
alignedAllocator(const alignedAllocator&) throw() { }
|
||||
template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { }
|
||||
~alignedAllocator() throw() { }
|
||||
pointer address(reference __x) const { return &__x; }
|
||||
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
||||
|
||||
pointer allocate(size_type __n, const void* _p= 0)
|
||||
{
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
|
||||
|
||||
#ifdef POINTER_CACHE
|
||||
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
|
||||
#else
|
||||
pointer ptr = nullptr;
|
||||
#endif
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
////////////////////////////////////
|
||||
// Unified (managed) memory
|
||||
////////////////////////////////////
|
||||
if ( ptr == (_Tp *) NULL ) {
|
||||
auto err = cudaMallocManaged((void **)&ptr,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (_Tp *) NULL;
|
||||
std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
assert( ptr != (_Tp *)NULL);
|
||||
#else
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 2MB align; could make option probably doesn't need configurability
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
|
||||
#else
|
||||
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
|
||||
#endif
|
||||
assert( ptr != (_Tp *)NULL);
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// First touch optimise in threaded loop
|
||||
//////////////////////////////////////////////////
|
||||
uint64_t *cp = (uint64_t *)ptr;
|
||||
thread_for(n,bytes/sizeof(uint64_t), { // need only one touch per page
|
||||
cp[n]=0;
|
||||
});
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void deallocate(pointer __p, size_type __n) {
|
||||
size_type bytes = __n * sizeof(_Tp);
|
||||
|
||||
profilerFree(bytes);
|
||||
|
||||
#ifdef POINTER_CACHE
|
||||
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
|
||||
#else
|
||||
pointer __freeme = __p;
|
||||
#endif
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
if ( __freeme ) cudaFree((void *)__freeme);
|
||||
#else
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
if ( __freeme ) _mm_free((void *)__freeme);
|
||||
#else
|
||||
if ( __freeme ) free((void *)__freeme);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
// FIXME: hack for the copy constructor, eventually it must be avoided
|
||||
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
|
||||
//void construct(pointer __p, const _Tp& __val) { };
|
||||
void construct(pointer __p) { };
|
||||
void destroy(pointer __p) { };
|
||||
};
|
||||
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
|
||||
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Template typedefs
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<class T> using commAllocator = alignedAllocator<T>;
|
||||
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,290 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/cartesian/Cartesian_base.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CARTESIAN_BASE_H
|
||||
#define GRID_CARTESIAN_BASE_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Commicator provides information on the processor grid
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// unsigned long _ndimension;
|
||||
// Coordinate _processors; // processor grid
|
||||
// int _processor; // linear processor rank
|
||||
// Coordinate _processor_coor; // linear processor rank
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
class GridBase : public CartesianCommunicator , public GridThread {
|
||||
|
||||
public:
|
||||
int dummy;
|
||||
// Give Lattice access
|
||||
template<class object> friend class Lattice;
|
||||
|
||||
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) {};
|
||||
|
||||
GridBase(const Coordinate & processor_grid,
|
||||
const CartesianCommunicator &parent,
|
||||
int &split_rank)
|
||||
: CartesianCommunicator(processor_grid,parent,split_rank) {};
|
||||
|
||||
GridBase(const Coordinate & processor_grid,
|
||||
const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processor_grid,parent,dummy) {};
|
||||
|
||||
virtual ~GridBase() = default;
|
||||
|
||||
|
||||
// Physics Grid information.
|
||||
Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
|
||||
Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
|
||||
Coordinate _gdimensions;// Global dimensions of array after cb removal
|
||||
Coordinate _ldimensions;// local dimensions of array with processor images removed
|
||||
Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
|
||||
Coordinate _ostride; // Outer stride for each dimension
|
||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||
int _osites; // _isites*_osites = product(dimensions).
|
||||
int _isites;
|
||||
int _fsites; // _isites*_osites = product(dimensions).
|
||||
int _gsites;
|
||||
Coordinate _slice_block;// subslice information
|
||||
Coordinate _slice_stride;
|
||||
Coordinate _slice_nblock;
|
||||
|
||||
Coordinate _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
|
||||
Coordinate _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
|
||||
|
||||
bool _isCheckerBoarded;
|
||||
|
||||
public:
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Checkerboarding interface is virtual and overridden by
|
||||
// GridCartesian / GridRedBlackCartesian
|
||||
////////////////////////////////////////////////////////////////
|
||||
virtual int CheckerBoarded(int dim)=0;
|
||||
virtual int CheckerBoard(const Coordinate &site)=0;
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
||||
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
|
||||
virtual int CheckerBoardFromOindex (int Oindex)=0;
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Local layout calculations
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// These routines are key. Subdivide the linearised cartesian index into
|
||||
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
|
||||
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
|
||||
//
|
||||
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
|
||||
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
|
||||
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
|
||||
// lanes are operated upon simultaneously.
|
||||
|
||||
virtual int oIndex(Coordinate &coor)
|
||||
{
|
||||
int idx=0;
|
||||
// Works with either global or local coordinates
|
||||
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
|
||||
return idx;
|
||||
}
|
||||
virtual int iIndex(Coordinate &lcoor)
|
||||
{
|
||||
int idx=0;
|
||||
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
|
||||
return idx;
|
||||
}
|
||||
inline int oIndexReduced(Coordinate &ocoor)
|
||||
{
|
||||
int idx=0;
|
||||
// ocoor is already reduced so can eliminate the modulo operation
|
||||
// for fast indexing and inline the routine
|
||||
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
|
||||
return idx;
|
||||
}
|
||||
inline void oCoorFromOindex (Coordinate& coor,int Oindex){
|
||||
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
|
||||
}
|
||||
|
||||
inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
|
||||
lcoor.resize(_ndimension);
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// SIMD lane addressing
|
||||
//////////////////////////////////////////////////////////
|
||||
inline void iCoorFromIindex(Coordinate &coor,int lane)
|
||||
{
|
||||
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
|
||||
}
|
||||
|
||||
inline int PermuteDim(int dimension){
|
||||
return _simd_layout[dimension]>1;
|
||||
}
|
||||
inline int PermuteType(int dimension){
|
||||
int permute_type=0;
|
||||
//
|
||||
// Best way to encode this would be to present a mask
|
||||
// for which simd dimensions are rotated, and the rotation
|
||||
// size. If there is only one simd dimension rotated, this is just
|
||||
// a permute.
|
||||
//
|
||||
// Cases: PermuteType == 1,2,4,8
|
||||
// Distance should be either 0,1,2..
|
||||
//
|
||||
if ( _simd_layout[dimension] > 2 ) {
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
|
||||
}
|
||||
permute_type = RotateBit; // How to specify distance; this is not just direction.
|
||||
return permute_type;
|
||||
}
|
||||
|
||||
for(int d=_ndimension-1;d>dimension;d--){
|
||||
if (_simd_layout[d]>1 ) permute_type++;
|
||||
}
|
||||
return permute_type;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Array sizing queries
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
inline int iSites(void) const { return _isites; };
|
||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||
inline int oSites(void) const { return _osites; };
|
||||
inline int lSites(void) const { return _isites*_osites; };
|
||||
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||
inline int Nd (void) const { return _ndimension;};
|
||||
|
||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
|
||||
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
|
||||
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
|
||||
inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Utility to print the full decomposition details
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
void show_decomposition(){
|
||||
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
|
||||
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
|
||||
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
|
||||
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
|
||||
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
|
||||
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
|
||||
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
|
||||
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
|
||||
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
|
||||
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
|
||||
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
|
||||
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||
assert(gidx< gSites());
|
||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||
}
|
||||
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
|
||||
assert(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||
gidx=0;
|
||||
int mult=1;
|
||||
for(int mu=0;mu<_ndimension;mu++) {
|
||||
gidx+=mult*gcoor[mu];
|
||||
mult*=_gdimensions[mu];
|
||||
}
|
||||
}
|
||||
void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
|
||||
{
|
||||
pcoor.resize(_ndimension);
|
||||
lcoor.resize(_ndimension);
|
||||
for(int mu=0;mu<_ndimension;mu++){
|
||||
int _fld = _fdimensions[mu]/_processors[mu];
|
||||
pcoor[mu] = gcoor[mu]/_fld;
|
||||
lcoor[mu] = gcoor[mu]%_fld;
|
||||
}
|
||||
}
|
||||
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
|
||||
{
|
||||
Coordinate pcoor;
|
||||
Coordinate lcoor;
|
||||
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
|
||||
rank = RankFromProcessorCoor(pcoor);
|
||||
/*
|
||||
Coordinate cblcoor(lcoor);
|
||||
for(int d=0;d<cblcoor.size();d++){
|
||||
if( this->CheckerBoarded(d) ) {
|
||||
cblcoor[d] = lcoor[d]/2;
|
||||
}
|
||||
}
|
||||
*/
|
||||
i_idx= iIndex(lcoor);
|
||||
o_idx= oIndex(lcoor);
|
||||
}
|
||||
|
||||
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
|
||||
{
|
||||
gcoor.resize(_ndimension);
|
||||
Coordinate coor(_ndimension);
|
||||
|
||||
ProcessorCoorFromRank(rank,coor);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
|
||||
|
||||
iCoorFromIindex(coor,i_idx);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
|
||||
|
||||
oCoorFromOindex (coor,o_idx);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
|
||||
|
||||
}
|
||||
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
|
||||
{
|
||||
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
|
||||
if(CheckerBoarded(0)){
|
||||
fcoor[0] = fcoor[0]*2+cb;
|
||||
}
|
||||
}
|
||||
void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
|
||||
{
|
||||
gcoor.resize(_ndimension);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,174 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/cartesian/Cartesian_full.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CARTESIAN_FULL_H
|
||||
#define GRID_CARTESIAN_FULL_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Grid Support.
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class GridCartesian: public GridBase {
|
||||
|
||||
public:
|
||||
int dummy;
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoardFromOindex (int Oindex)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoarded(int dim){
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoard(const Coordinate &site){
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoardDestination(int cb,int shift,int dim){
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
|
||||
return shift;
|
||||
}
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
|
||||
return shift;
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Constructor takes a parent grid and possibly subdivides communicator.
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
GridCartesian(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid,
|
||||
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
GridCartesian(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid,
|
||||
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Construct from comm world
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
GridCartesian(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid) : GridBase(processor_grid)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
|
||||
virtual ~GridCartesian() = default;
|
||||
|
||||
void Init(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid)
|
||||
{
|
||||
///////////////////////
|
||||
// Grid information
|
||||
///////////////////////
|
||||
_isCheckerBoarded = false;
|
||||
_ndimension = dimensions.size();
|
||||
|
||||
_fdimensions.resize(_ndimension);
|
||||
_gdimensions.resize(_ndimension);
|
||||
_ldimensions.resize(_ndimension);
|
||||
_rdimensions.resize(_ndimension);
|
||||
_simd_layout.resize(_ndimension);
|
||||
_lstart.resize(_ndimension);
|
||||
_lend.resize(_ndimension);
|
||||
|
||||
_ostride.resize(_ndimension);
|
||||
_istride.resize(_ndimension);
|
||||
|
||||
_fsites = _gsites = _osites = _isites = 1;
|
||||
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
_fdimensions[d] = dimensions[d]; // Global dimensions
|
||||
_gdimensions[d] = _fdimensions[d]; // Global dimensions
|
||||
_simd_layout[d] = simd_layout[d];
|
||||
_fsites = _fsites * _fdimensions[d];
|
||||
_gsites = _gsites * _gdimensions[d];
|
||||
|
||||
// Use a reduced simd grid
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
|
||||
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
|
||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
|
||||
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||
|
||||
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
||||
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
||||
_osites *= _rdimensions[d];
|
||||
_isites *= _simd_layout[d];
|
||||
|
||||
// Addressing support
|
||||
if (d == 0)
|
||||
{
|
||||
_ostride[d] = 1;
|
||||
_istride[d] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
|
||||
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// subplane information
|
||||
///////////////////////
|
||||
_slice_block.resize(_ndimension);
|
||||
_slice_stride.resize(_ndimension);
|
||||
_slice_nblock.resize(_ndimension);
|
||||
|
||||
int block = 1;
|
||||
int nblock = 1;
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
nblock *= _rdimensions[d];
|
||||
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
nblock /= _rdimensions[d];
|
||||
_slice_block[d] = block;
|
||||
_slice_stride[d] = _ostride[d] * _rdimensions[d];
|
||||
_slice_nblock[d] = nblock;
|
||||
block = block * _rdimensions[d];
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,289 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/cartesian/Cartesian_red_black.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CARTESIAN_RED_BLACK_H
|
||||
#define GRID_CARTESIAN_RED_BLACK_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
static const int CbRed =0;
|
||||
static const int CbBlack=1;
|
||||
static const int Even =CbRed;
|
||||
static const int Odd =CbBlack;
|
||||
|
||||
// Specialise this for red black grids storing half the data like a chess board.
|
||||
class GridRedBlackCartesian : public GridBase
|
||||
{
|
||||
public:
|
||||
Coordinate _checker_dim_mask;
|
||||
int _checker_dim;
|
||||
std::vector<int> _checker_board;
|
||||
|
||||
virtual int CheckerBoarded(int dim){
|
||||
if( dim==_checker_dim) return 1;
|
||||
else return 0;
|
||||
}
|
||||
virtual int CheckerBoard(const Coordinate &site){
|
||||
int linear=0;
|
||||
assert(site.size()==_ndimension);
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
if(_checker_dim_mask[d])
|
||||
linear=linear+site[d];
|
||||
}
|
||||
return (linear&0x1);
|
||||
}
|
||||
|
||||
// Depending on the cb of site, we toggle source cb.
|
||||
// for block #b, element #e = (b, e)
|
||||
// we need
|
||||
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
|
||||
if(dim != _checker_dim) return shift;
|
||||
|
||||
int fulldim =_fdimensions[dim];
|
||||
shift = (shift+fulldim)%fulldim;
|
||||
|
||||
// Probably faster with table lookup;
|
||||
// or by looping over x,y,z and multiply rather than computing checkerboard.
|
||||
|
||||
if ( (source_cb+ocb)&1 ) {
|
||||
return (shift)/2;
|
||||
} else {
|
||||
return (shift+1)/2;
|
||||
}
|
||||
}
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||
return _checker_board[Oindex];
|
||||
}
|
||||
virtual int CheckerBoardFromOindex (int Oindex)
|
||||
{
|
||||
Coordinate ocoor;
|
||||
oCoorFromOindex(ocoor,Oindex);
|
||||
return CheckerBoard(ocoor);
|
||||
}
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
|
||||
|
||||
if(dim != _checker_dim) return shift;
|
||||
|
||||
int ocb=CheckerBoardFromOindex(osite);
|
||||
|
||||
return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
|
||||
}
|
||||
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
|
||||
if ( _checker_dim_mask[dim] ) {
|
||||
// If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
|
||||
// does NOT cause a parity hop.
|
||||
int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
|
||||
if ( (shift+add) &0x1) {
|
||||
return 1-source_cb;
|
||||
} else {
|
||||
return source_cb;
|
||||
}
|
||||
} else {
|
||||
return source_cb;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create Redblack from original grid; require full grid pointer ?
|
||||
////////////////////////////////////////////////////////////
|
||||
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
|
||||
{
|
||||
int dims = base->_ndimension;
|
||||
Coordinate checker_dim_mask(dims,1);
|
||||
int checker_dim = 0;
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create redblack from original grid, with non-trivial checker dim mask
|
||||
////////////////////////////////////////////////////////////
|
||||
GridRedBlackCartesian(const GridBase *base,
|
||||
const Coordinate &checker_dim_mask,
|
||||
int checker_dim
|
||||
) : GridBase(base->_processors,*base)
|
||||
{
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
|
||||
}
|
||||
|
||||
virtual ~GridRedBlackCartesian() = default;
|
||||
|
||||
void Init(const Coordinate &dimensions,
|
||||
const Coordinate &simd_layout,
|
||||
const Coordinate &processor_grid,
|
||||
const Coordinate &checker_dim_mask,
|
||||
int checker_dim)
|
||||
{
|
||||
|
||||
_isCheckerBoarded = true;
|
||||
_checker_dim = checker_dim;
|
||||
assert(checker_dim_mask[checker_dim] == 1);
|
||||
_ndimension = dimensions.size();
|
||||
assert(checker_dim_mask.size() == _ndimension);
|
||||
assert(processor_grid.size() == _ndimension);
|
||||
assert(simd_layout.size() == _ndimension);
|
||||
|
||||
_fdimensions.resize(_ndimension);
|
||||
_gdimensions.resize(_ndimension);
|
||||
_ldimensions.resize(_ndimension);
|
||||
_rdimensions.resize(_ndimension);
|
||||
_simd_layout.resize(_ndimension);
|
||||
_lstart.resize(_ndimension);
|
||||
_lend.resize(_ndimension);
|
||||
|
||||
_ostride.resize(_ndimension);
|
||||
_istride.resize(_ndimension);
|
||||
|
||||
_fsites = _gsites = _osites = _isites = 1;
|
||||
|
||||
_checker_dim_mask = checker_dim_mask;
|
||||
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
_fdimensions[d] = dimensions[d];
|
||||
_gdimensions[d] = _fdimensions[d];
|
||||
_fsites = _fsites * _fdimensions[d];
|
||||
_gsites = _gsites * _gdimensions[d];
|
||||
|
||||
if (d == _checker_dim)
|
||||
{
|
||||
assert((_gdimensions[d] & 0x1) == 0);
|
||||
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
|
||||
_gsites /= 2;
|
||||
}
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d];
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
||||
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
||||
|
||||
// Use a reduced simd grid
|
||||
_simd_layout[d] = simd_layout[d];
|
||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
|
||||
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||
assert(_rdimensions[d] > 0);
|
||||
|
||||
// all elements of a simd vector must have same checkerboard.
|
||||
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
|
||||
if (_simd_layout[d] > 1)
|
||||
{
|
||||
if (checker_dim_mask[d])
|
||||
{
|
||||
assert((_rdimensions[d] & 0x1) == 0);
|
||||
}
|
||||
}
|
||||
|
||||
_osites *= _rdimensions[d];
|
||||
_isites *= _simd_layout[d];
|
||||
|
||||
// Addressing support
|
||||
if (d == 0)
|
||||
{
|
||||
_ostride[d] = 1;
|
||||
_istride[d] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
|
||||
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// subplane information
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
_slice_block.resize(_ndimension);
|
||||
_slice_stride.resize(_ndimension);
|
||||
_slice_nblock.resize(_ndimension);
|
||||
|
||||
int block = 1;
|
||||
int nblock = 1;
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
nblock *= _rdimensions[d];
|
||||
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
nblock /= _rdimensions[d];
|
||||
_slice_block[d] = block;
|
||||
_slice_stride[d] = _ostride[d] * _rdimensions[d];
|
||||
_slice_nblock[d] = nblock;
|
||||
block = block * _rdimensions[d];
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Create a checkerboard lookup table
|
||||
////////////////////////////////////////////////
|
||||
int rvol = 1;
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
rvol = rvol * _rdimensions[d];
|
||||
}
|
||||
_checker_board.resize(rvol);
|
||||
for (int osite = 0; osite < _osites; osite++)
|
||||
{
|
||||
_checker_board[osite] = CheckerBoardFromOindex(osite);
|
||||
}
|
||||
};
|
||||
|
||||
protected:
|
||||
virtual int oIndex(Coordinate &coor)
|
||||
{
|
||||
int idx = 0;
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
if (d == _checker_dim)
|
||||
{
|
||||
idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
|
||||
}
|
||||
else
|
||||
{
|
||||
idx += _ostride[d] * (coor[d] % _rdimensions[d]);
|
||||
}
|
||||
}
|
||||
return idx;
|
||||
};
|
||||
|
||||
virtual int iIndex(Coordinate &lcoor)
|
||||
{
|
||||
int idx = 0;
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
if (d == _checker_dim)
|
||||
{
|
||||
idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
|
||||
}
|
||||
else
|
||||
{
|
||||
idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
|
||||
}
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,77 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_none.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <limits.h>
|
||||
#include <sys/mman.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////
|
||||
CartesianCommunicator::CommunicatorPolicy_t
|
||||
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
|
||||
int CartesianCommunicator::nCommThreads = -1;
|
||||
|
||||
/////////////////////////////////
|
||||
// Grid information queries
|
||||
/////////////////////////////////
|
||||
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
|
||||
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
|
||||
int CartesianCommunicator::BossRank(void) { return 0; };
|
||||
int CartesianCommunicator::ThisRank(void) { return _processor; };
|
||||
const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
|
||||
const Coordinate & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
|
||||
int CartesianCommunicator::ProcessorCount(void) { return _Nprocessors; };
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
||||
{
|
||||
GlobalSumVector((float *)&c,2);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
||||
{
|
||||
GlobalSumVector((float *)c,2*N);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
||||
{
|
||||
GlobalSumVector((double *)&c,2);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||
{
|
||||
GlobalSumVector((double *)c,2*N);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -1,483 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_mpi.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// First initialise of comms system
|
||||
////////////////////////////////////////////
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
{
|
||||
|
||||
int flag;
|
||||
int provided;
|
||||
|
||||
MPI_Initialized(&flag); // needed to coexist with other libs apparently
|
||||
if ( !flag ) {
|
||||
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
|
||||
|
||||
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
|
||||
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
// Never clean up as done once.
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
|
||||
|
||||
Grid_quiesce_nodes();
|
||||
GlobalSharedMemory::Init(communicator_world);
|
||||
GlobalSharedMemory::SharedMemoryAllocate(
|
||||
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
|
||||
GlobalSharedMemory::Hugepages);
|
||||
Grid_unquiesce_nodes();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Use cartesian communicators now even in MPI3
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
|
||||
{
|
||||
int rank;
|
||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||
assert(ierr==0);
|
||||
return rank;
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
|
||||
{
|
||||
coor.resize(_ndimension);
|
||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Initialises from communicator_world
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
{
|
||||
MPI_Comm optimal_comm;
|
||||
////////////////////////////////////////////////////
|
||||
// Remap using the shared memory optimising routine
|
||||
// The remap creates a comm which must be freed
|
||||
////////////////////////////////////////////////////
|
||||
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
|
||||
InitFromMPICommunicator(processors,optimal_comm);
|
||||
SetCommunicator(optimal_comm);
|
||||
///////////////////////////////////////////////////
|
||||
// Free the temp communicator
|
||||
///////////////////////////////////////////////////
|
||||
MPI_Comm_free(&optimal_comm);
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Try to subdivide communicator
|
||||
//////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||
{
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||
Coordinate parent_processor_coor(_ndimension,0);
|
||||
Coordinate parent_processors (_ndimension,1);
|
||||
|
||||
// Can make 5d grid from 4d etc...
|
||||
int pad = _ndimension-parent_ndimension;
|
||||
for(int d=0;d<parent_ndimension;d++){
|
||||
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
||||
parent_processors [pad+d]=parent._processors[d];
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// split the communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// int Nparent = parent._processors ;
|
||||
int Nparent;
|
||||
MPI_Comm_size(parent.communicator,&Nparent);
|
||||
|
||||
int childsize=1;
|
||||
for(int d=0;d<processors.size();d++) {
|
||||
childsize *= processors[d];
|
||||
}
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
|
||||
Coordinate ccoor(_ndimension); // coor within subcommunicator
|
||||
Coordinate scoor(_ndimension); // coor of split within parent
|
||||
Coordinate ssize(_ndimension); // coor of split within parent
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
ccoor[d] = parent_processor_coor[d] % processors[d];
|
||||
scoor[d] = parent_processor_coor[d] / processors[d];
|
||||
ssize[d] = parent_processors[d] / processors[d];
|
||||
}
|
||||
|
||||
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
||||
int crank;
|
||||
// Mpi uses the reverse Lexico convention to us; so reversed routines called
|
||||
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
|
||||
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Split the communicator
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
|
||||
} else {
|
||||
srank = 0;
|
||||
int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set up from the new split communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
InitFromMPICommunicator(processors,comm_split);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take the right SHM buffers
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
SetCommunicator(comm_split);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Free the temp communicator
|
||||
///////////////////////////////////////////////
|
||||
MPI_Comm_free(&comm_split);
|
||||
|
||||
if(0){
|
||||
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
|
||||
for(int d=0;d<processors.size();d++){
|
||||
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
|
||||
}
|
||||
}
|
||||
for(int d=0;d<processors.size();d++){
|
||||
assert(_processor_coor[d] == ccoor[d] );
|
||||
}
|
||||
}
|
||||
|
||||
void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base)
|
||||
{
|
||||
////////////////////////////////////////////////////
|
||||
// Creates communicator, and the communicator_halo
|
||||
////////////////////////////////////////////////////
|
||||
_ndimension = processors.size();
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
/////////////////////////////////
|
||||
// Count the requested nodes
|
||||
/////////////////////////////////
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
Coordinate periodic(_ndimension,1);
|
||||
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
|
||||
MPI_Comm_rank(communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
|
||||
if ( 0 && (communicator_base != communicator_world) ) {
|
||||
std::cout << "InitFromMPICommunicator Cartesian communicator created with a non-world communicator"<<std::endl;
|
||||
std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
|
||||
for(int d=0;d<_processors.size();d++){
|
||||
std::cout << _processor_coor[d]<<" ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator,&Size);
|
||||
|
||||
communicator_halo.resize (2*_ndimension);
|
||||
for(int i=0;i<_ndimension*2;i++){
|
||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||
}
|
||||
assert(Size==_Nprocessors);
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
{
|
||||
int MPI_is_finalised;
|
||||
MPI_Finalized(&MPI_is_finalised);
|
||||
if (communicator && !MPI_is_finalised) {
|
||||
MPI_Comm_free(&communicator);
|
||||
for(int i=0;i<communicator_halo.size();i++){
|
||||
MPI_Comm_free(&communicator_halo[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
|
||||
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
|
||||
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
|
||||
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
|
||||
SendToRecvFromComplete(reqs);
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
|
||||
}
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int sender,
|
||||
int receiver,
|
||||
int bytes)
|
||||
{
|
||||
MPI_Status stat;
|
||||
assert(sender != receiver);
|
||||
int tag = sender;
|
||||
if ( _processor == sender ) {
|
||||
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
|
||||
}
|
||||
if ( _processor == receiver ) {
|
||||
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
|
||||
}
|
||||
}
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
|
||||
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
|
||||
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
list.push_back(rrq);
|
||||
} else {
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||
recv,bytes,MPI_CHAR,from, from,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
}
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
|
||||
StencilSendToRecvFromComplete(list,dir);
|
||||
return offbytes;
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
int ierr;
|
||||
int gdest = ShmRanks[dest];
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
assert(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
|
||||
if ( gfrom ==MPI_UNDEFINED) {
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=bytes;
|
||||
}
|
||||
|
||||
if ( gdest == MPI_UNDEFINED ) {
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=bytes;
|
||||
}
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
|
||||
this->StencilSendToRecvFromComplete(list,dir);
|
||||
}
|
||||
|
||||
return off_node_bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
SendToRecvFromComplete(waitall);
|
||||
}
|
||||
void CartesianCommunicator::StencilBarrier(void)
|
||||
{
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
}
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr=MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
int r;
|
||||
MPI_Comm_rank(communicator_world,&r);
|
||||
return r;
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr= MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator_world);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
Coordinate row(_ndimension,1);
|
||||
assert(dim>=0 && dim<_ndimension);
|
||||
|
||||
// Split the communicator
|
||||
row[dim] = _processors[dim];
|
||||
|
||||
int me;
|
||||
CartesianCommunicator Comm(row,*this,me);
|
||||
Comm.AllToAll(in,out,words,bytes);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
// MPI is a pain and uses "int" arguments
|
||||
// 64*64*64*128*16 == 500Million elements of data.
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
// (Turns up on 32^3 x 64 Gparity too)
|
||||
MPI_Datatype object;
|
||||
int iwords;
|
||||
int ibytes;
|
||||
iwords = words;
|
||||
ibytes = bytes;
|
||||
assert(words == iwords); // safe to cast to int ?
|
||||
assert(bytes == ibytes); // safe to cast to int ?
|
||||
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
||||
MPI_Type_commit(&object);
|
||||
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
||||
MPI_Type_free(&object);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -1,94 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// static data
|
||||
|
||||
int GlobalSharedMemory::HPEhypercube = 1;
|
||||
uint64_t GlobalSharedMemory::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
|
||||
int GlobalSharedMemory::Hugepages = 0;
|
||||
int GlobalSharedMemory::_ShmSetup;
|
||||
int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
int GlobalSharedMemory::WorldShmSize;
|
||||
std::vector<int> GlobalSharedMemory::WorldShmRanks;
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldComm;
|
||||
int GlobalSharedMemory::WorldSize;
|
||||
int GlobalSharedMemory::WorldRank;
|
||||
|
||||
int GlobalSharedMemory::WorldNodes;
|
||||
int GlobalSharedMemory::WorldNode;
|
||||
|
||||
void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
{
|
||||
assert(_ShmAlloc);
|
||||
assert(_ShmAllocBytes>0);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
|
||||
}
|
||||
_ShmAlloc = 0;
|
||||
_ShmAllocBytes = 0;
|
||||
}
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
heap_top += bytes;
|
||||
heap_bytes+= bytes;
|
||||
if (heap_bytes >= heap_size) {
|
||||
std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl;
|
||||
assert(heap_bytes<heap_size);
|
||||
}
|
||||
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::ShmBufferFreeAll(void) {
|
||||
heap_top =(size_t)ShmBufferSelf();
|
||||
heap_bytes=0;
|
||||
}
|
||||
void *SharedMemory::ShmBufferSelf(void)
|
||||
{
|
||||
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
|
||||
return ShmCommBufs[ShmRank];
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,165 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
#if defined (GRID_COMMS_MPI3)
|
||||
#include <mpi.h>
|
||||
#endif
|
||||
#include <semaphore.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <limits.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/shm.h>
|
||||
#include <sys/mman.h>
|
||||
#include <zlib.h>
|
||||
#ifdef HAVE_NUMAIF_H
|
||||
#include <numaif.h>
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#if defined (GRID_COMMS_MPI3)
|
||||
typedef MPI_Comm Grid_MPI_Comm;
|
||||
typedef MPI_Request CommsRequest_t;
|
||||
#else
|
||||
typedef int CommsRequest_t;
|
||||
typedef int Grid_MPI_Comm;
|
||||
#endif
|
||||
|
||||
class GlobalSharedMemory {
|
||||
private:
|
||||
static const int MAXLOG2RANKSPERNODE = 16;
|
||||
|
||||
|
||||
// Init once lock on the buffer allocation
|
||||
static int _ShmSetup;
|
||||
static int _ShmAlloc;
|
||||
static uint64_t _ShmAllocBytes;
|
||||
|
||||
public:
|
||||
///////////////////////////////////////
|
||||
// HPE 8600 hypercube optimisation
|
||||
///////////////////////////////////////
|
||||
static int HPEhypercube;
|
||||
|
||||
static int ShmSetup(void) { return _ShmSetup; }
|
||||
static int ShmAlloc(void) { return _ShmAlloc; }
|
||||
static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
|
||||
static uint64_t MAX_MPI_SHM_BYTES;
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
|
||||
static Grid_MPI_Comm WorldShmComm;
|
||||
static int WorldShmRank;
|
||||
static int WorldShmSize;
|
||||
|
||||
static int WorldNodes;
|
||||
static int WorldNode;
|
||||
|
||||
static std::vector<int> WorldShmRanks;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
///////////////////////////////////////////////////
|
||||
// Provide shared memory facilities off comm world
|
||||
///////////////////////////////////////////////////
|
||||
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
||||
static void SharedMemoryFree(void);
|
||||
static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
|
||||
static void SharedMemoryZero(void *dest,size_t bytes);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////
|
||||
// one per communicator
|
||||
//////////////////////////////
|
||||
class SharedMemory
|
||||
{
|
||||
private:
|
||||
static const int MAXLOG2RANKSPERNODE = 16;
|
||||
|
||||
size_t heap_top;
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
int ShmRank;
|
||||
int ShmSize;
|
||||
std::vector<void *> ShmCommBufs;
|
||||
std::vector<int> ShmRanks;// Mapping comm ranks to Shm ranks
|
||||
|
||||
public:
|
||||
SharedMemory() {};
|
||||
~SharedMemory();
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// set the buffers & sizes
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
void SetCommunicator(Grid_MPI_Comm comm);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// For this instance ; disjoint buffer sets between splits if split grid
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
void ShmBarrier(void);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Call on any instance
|
||||
///////////////////////////////////////////////////
|
||||
void SharedMemoryTest(void);
|
||||
|
||||
void *ShmBufferSelf(void);
|
||||
void *ShmBuffer (int rank);
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
int NodeCount(void) { return GlobalSharedMemory::WorldNodes;};
|
||||
int RankCount(void) { return GlobalSharedMemory::WorldSize;};
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,784 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
#include <pwd.h>
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
#include <cuda_runtime_api.h>
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#define header "SharedMemoryMpi: "
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(_ShmSetup==0);
|
||||
WorldComm = comm;
|
||||
MPI_Comm_rank(WorldComm,&WorldRank);
|
||||
MPI_Comm_size(WorldComm,&WorldSize);
|
||||
// WorldComm, WorldSize, WorldRank
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
|
||||
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
|
||||
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
||||
|
||||
if ( WorldRank == 0) {
|
||||
std::cout << header " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
}
|
||||
// WorldShmComm, WorldShmSize, WorldShmRank
|
||||
|
||||
// WorldNodes
|
||||
WorldNodes = WorldSize/WorldShmSize;
|
||||
assert( (WorldNodes * WorldShmSize) == WorldSize );
|
||||
|
||||
// FIXME: Check all WorldShmSize are the same ?
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find world ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Group WorldGroup, ShmGroup;
|
||||
MPI_Comm_group (WorldComm, &WorldGroup);
|
||||
MPI_Comm_group (WorldShmComm, &ShmGroup);
|
||||
|
||||
std::vector<int> world_ranks(WorldSize); for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
|
||||
|
||||
WorldShmRanks.resize(WorldSize);
|
||||
MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &WorldShmRanks[0]);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Identify who is in my group and nominate the leader
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int g=0;
|
||||
std::vector<int> MyGroup;
|
||||
MyGroup.resize(WorldShmSize);
|
||||
for(int rank=0;rank<WorldSize;rank++){
|
||||
if(WorldShmRanks[rank]!=MPI_UNDEFINED){
|
||||
assert(g<WorldShmSize);
|
||||
MyGroup[g++] = rank;
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(MyGroup.begin(),MyGroup.end(),std::less<int>());
|
||||
int myleader = MyGroup[0];
|
||||
|
||||
std::vector<int> leaders_1hot(WorldSize,0);
|
||||
std::vector<int> leaders_group(WorldNodes,0);
|
||||
leaders_1hot [ myleader ] = 1;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// global sum leaders over comm world
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
|
||||
assert(ierr==0);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// find the group leaders world rank
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int group=0;
|
||||
for(int l=0;l<WorldSize;l++){
|
||||
if(leaders_1hot[l]){
|
||||
leaders_group[group++] = l;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Identify the node of the group in which I (and my leader) live
|
||||
///////////////////////////////////////////////////////////////////
|
||||
WorldNode=-1;
|
||||
for(int g=0;g<WorldNodes;g++){
|
||||
if (myleader == leaders_group[g]){
|
||||
WorldNode=g;
|
||||
}
|
||||
}
|
||||
assert(WorldNode!=-1);
|
||||
_ShmSetup=1;
|
||||
}
|
||||
// Gray encode support
|
||||
int BinaryToGray (int binary) {
|
||||
int gray = (binary>>1)^binary;
|
||||
return gray;
|
||||
}
|
||||
int Log2Size(int TwoToPower,int MAXLOG2)
|
||||
{
|
||||
int log2size = -1;
|
||||
for(int i=0;i<=MAXLOG2;i++){
|
||||
if ( (0x1<<i) == TwoToPower ) {
|
||||
log2size = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return log2size;
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
const int namelen = _POSIX_HOST_NAME_MAX;
|
||||
char name[namelen];
|
||||
int R;
|
||||
int I;
|
||||
int N;
|
||||
gethostname(name,namelen);
|
||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||
|
||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
|
||||
assert(log2size != -1);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify the hypercube coordinate of this node using hostname
|
||||
////////////////////////////////////////////////////////////////
|
||||
// n runs 0...7 9...16 18...25 27...34 (8*4) 5 bits
|
||||
// i runs 0..7 3 bits
|
||||
// r runs 0..3 2 bits
|
||||
// 2^10 = 1024 nodes
|
||||
const int maxhdim = 10;
|
||||
std::vector<int> HyperCubeCoords(maxhdim,0);
|
||||
std::vector<int> RootHyperCubeCoords(maxhdim,0);
|
||||
int R;
|
||||
int I;
|
||||
int N;
|
||||
const int namelen = _POSIX_HOST_NAME_MAX;
|
||||
char name[namelen];
|
||||
|
||||
// Parse ICE-XA hostname to get hypercube location
|
||||
gethostname(name,namelen);
|
||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||
assert(nscan==3);
|
||||
|
||||
int nlo = N%9;
|
||||
int nhi = N/9;
|
||||
uint32_t hypercoor = (R<<8)|(I<<5)|(nhi<<3)|nlo ;
|
||||
uint32_t rootcoor = hypercoor;
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Print debug info
|
||||
//////////////////////////////////////////////////////////////////
|
||||
for(int d=0;d<maxhdim;d++){
|
||||
HyperCubeCoords[d] = (hypercoor>>d)&0x1;
|
||||
}
|
||||
|
||||
std::string hname(name);
|
||||
// std::cout << "hostname "<<hname<<std::endl;
|
||||
// std::cout << "R " << R << " I " << I << " N "<< N
|
||||
// << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl;
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// broadcast node 0's base coordinate for this partition.
|
||||
//////////////////////////////////////////////////////////////////
|
||||
MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm);
|
||||
hypercoor=hypercoor-rootcoor;
|
||||
assert(hypercoor<WorldSize);
|
||||
assert(hypercoor>=0);
|
||||
|
||||
//////////////////////////////////////
|
||||
// Printing
|
||||
//////////////////////////////////////
|
||||
for(int d=0;d<maxhdim;d++){
|
||||
HyperCubeCoords[d] = (hypercoor>>d)&0x1;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify subblock of ranks on node spreading across dims
|
||||
// in a maximally symmetrical way
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = processors.size();
|
||||
std::vector<int> processor_coor(ndimension);
|
||||
std::vector<int> WorldDims = processors.toVector();
|
||||
std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
|
||||
std::vector<int> ShmCoor (ndimension); std::vector<int> NodeCoor (ndimension); std::vector<int> WorldCoor(ndimension);
|
||||
std::vector<int> HyperCoor(ndimension);
|
||||
int dim = 0;
|
||||
for(int l2=0;l2<log2size;l2++){
|
||||
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension;
|
||||
ShmDims[dim]*=2;
|
||||
dim=(dim+1)%ndimension;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish torus of processes and nodes with sub-blockings
|
||||
////////////////////////////////////////////////////////////////
|
||||
for(int d=0;d<ndimension;d++){
|
||||
NodeDims[d] = WorldDims[d]/ShmDims[d];
|
||||
}
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Map Hcube according to physical lattice
|
||||
// must partition. Loop over dims and find out who would join.
|
||||
////////////////////////////////////////////////////////////////
|
||||
int hcoor = hypercoor;
|
||||
for(int d=0;d<ndimension;d++){
|
||||
int bits = Log2Size(NodeDims[d],MAXLOG2RANKSPERNODE);
|
||||
int msk = (0x1<<bits)-1;
|
||||
HyperCoor[d]=hcoor & msk;
|
||||
HyperCoor[d]=BinaryToGray(HyperCoor[d]); // Space filling curve magic
|
||||
hcoor = hcoor >> bits;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Check processor counts match
|
||||
////////////////////////////////////////////////////////////////
|
||||
int Nprocessors=1;
|
||||
for(int i=0;i<ndimension;i++){
|
||||
Nprocessors*=processors[i];
|
||||
}
|
||||
assert(WorldSize==Nprocessors);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish mapping between lexico physics coord and WorldRank
|
||||
////////////////////////////////////////////////////////////////
|
||||
int rank;
|
||||
|
||||
Lexicographic::CoorFromIndexReversed(NodeCoor,WorldNode ,NodeDims);
|
||||
|
||||
for(int d=0;d<ndimension;d++) NodeCoor[d]=HyperCoor[d];
|
||||
|
||||
Lexicographic::CoorFromIndexReversed(ShmCoor ,WorldShmRank,ShmDims);
|
||||
for(int d=0;d<ndimension;d++) WorldCoor[d] = NodeCoor[d]*ShmDims[d]+ShmCoor[d];
|
||||
Lexicographic::IndexFromCoorReversed(WorldCoor,rank,WorldDims);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Build the new communicator
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
|
||||
assert(log2size != -1);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify subblock of ranks on node spreading across dims
|
||||
// in a maximally symmetrical way
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = processors.size();
|
||||
Coordinate processor_coor(ndimension);
|
||||
Coordinate WorldDims = processors; Coordinate ShmDims(ndimension,1); Coordinate NodeDims (ndimension);
|
||||
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
|
||||
int dim = 0;
|
||||
for(int l2=0;l2<log2size;l2++){
|
||||
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension;
|
||||
ShmDims[dim]*=2;
|
||||
dim=(dim+1)%ndimension;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish torus of processes and nodes with sub-blockings
|
||||
////////////////////////////////////////////////////////////////
|
||||
for(int d=0;d<ndimension;d++){
|
||||
NodeDims[d] = WorldDims[d]/ShmDims[d];
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Check processor counts match
|
||||
////////////////////////////////////////////////////////////////
|
||||
int Nprocessors=1;
|
||||
for(int i=0;i<ndimension;i++){
|
||||
Nprocessors*=processors[i];
|
||||
}
|
||||
assert(WorldSize==Nprocessors);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish mapping between lexico physics coord and WorldRank
|
||||
////////////////////////////////////////////////////////////////
|
||||
int rank;
|
||||
|
||||
Lexicographic::CoorFromIndexReversed(NodeCoor,WorldNode ,NodeDims);
|
||||
Lexicographic::CoorFromIndexReversed(ShmCoor ,WorldShmRank,ShmDims);
|
||||
for(int d=0;d<ndimension;d++) WorldCoor[d] = NodeCoor[d]*ShmDims[d]+ShmCoor[d];
|
||||
Lexicographic::IndexFromCoorReversed(WorldCoor,rank,WorldDims);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Build the new communicator
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SHMGET
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_MPI3_SHMGET
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
std::vector<int> shmids(WorldShmSize);
|
||||
|
||||
if ( WorldShmRank == 0 ) {
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
size_t size = bytes;
|
||||
key_t key = IPC_PRIVATE;
|
||||
int flags = IPC_CREAT | SHM_R | SHM_W;
|
||||
#ifdef SHM_HUGETLB
|
||||
if (Hugepages) flags|=SHM_HUGETLB;
|
||||
#endif
|
||||
if ((shmids[r]= shmget(key,size, flags)) ==-1) {
|
||||
int errsv = errno;
|
||||
printf("Errno %d\n",errsv);
|
||||
printf("key %d\n",key);
|
||||
printf("size %ld\n",size);
|
||||
printf("flags %d\n",flags);
|
||||
perror("shmget");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Barrier(WorldShmComm);
|
||||
MPI_Bcast(&shmids[0],WorldShmSize*sizeof(int),MPI_BYTE,0,WorldShmComm);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
WorldShmCommBufs[r] = (uint64_t *)shmat(shmids[r], NULL,0);
|
||||
if (WorldShmCommBufs[r] == (uint64_t *)-1) {
|
||||
perror("Shared memory attach failure");
|
||||
shmctl(shmids[r], IPC_RMID, NULL);
|
||||
exit(2);
|
||||
}
|
||||
}
|
||||
MPI_Barrier(WorldShmComm);
|
||||
///////////////////////////////////
|
||||
// Mark for clean up
|
||||
///////////////////////////////////
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
shmctl(shmids[r], IPC_RMID,(struct shmid_ds *)NULL);
|
||||
}
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
}
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_NVCC
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the pointer array for shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// TODO/FIXME : NOT ALL NVLINK BOARDS have full Peer to peer connectivity.
|
||||
// The annoyance is that they have partial peer 2 peer. This occurs on the 8 GPU blades.
|
||||
// e.g. DGX1, supermicro board,
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
|
||||
cudaSetDevice(WorldShmRank);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
auto err = cudaMalloc(&ShmCommBuf, bytes);
|
||||
if ( err != cudaSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
}
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Loop over ranks/gpu's on our node
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// If it is me, pass around the IPC access key
|
||||
//////////////////////////////////////////////////
|
||||
cudaIpcMemHandle_t handle;
|
||||
|
||||
if ( r==WorldShmRank ) {
|
||||
err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
|
||||
if ( err != cudaSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// Share this IPC handle across the Shm Comm
|
||||
//////////////////////////////////////////////////
|
||||
{
|
||||
int ierr=MPI_Bcast(&handle,
|
||||
sizeof(handle),
|
||||
MPI_BYTE,
|
||||
r,
|
||||
WorldShmComm);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// If I am not the source, overwrite thisBuf with remote buffer
|
||||
///////////////////////////////////////////////////////////////
|
||||
void * thisBuf = ShmCommBuf;
|
||||
if ( r!=WorldShmRank ) {
|
||||
err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
|
||||
if ( err != cudaSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Save a copy of the device buffers
|
||||
///////////////////////////////////////////////////////////////
|
||||
WorldShmCommBufs[r] = thisBuf;
|
||||
}
|
||||
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#else
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs and others map filesystems as mappable huge pages
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
char shm_name [NAME_MAX];
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",WorldNode,r);
|
||||
int fd=open(shm_name,O_RDWR|O_CREAT,0666);
|
||||
if ( fd == -1) {
|
||||
printf("open %s failed\n",shm_name);
|
||||
perror("open hugetlbfs");
|
||||
exit(0);
|
||||
}
|
||||
int mmap_flag = MAP_SHARED ;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag|=MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( flags ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||
if ( ptr == (void *)MAP_FAILED ) {
|
||||
printf("mmap %s failed\n",shm_name);
|
||||
perror("failed mmap"); assert(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
};
|
||||
#endif // MMAP
|
||||
|
||||
#ifdef GRID_MPI3_SHM_NONE
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbf and others map filesystems as mappable huge pages
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
char shm_name [NAME_MAX];
|
||||
assert(WorldShmSize == 1);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
int fd=-1;
|
||||
int mmap_flag = MAP_SHARED |MAP_ANONYMOUS ;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag|=MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( flags ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||
if ( ptr == (void *)MAP_FAILED ) {
|
||||
printf("mmap %s failed\n",shm_name);
|
||||
perror("failed mmap"); assert(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
};
|
||||
#endif // MMAP
|
||||
|
||||
#ifdef GRID_MPI3_SHMOPEN
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
|
||||
// tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for
|
||||
// the posix shm virtual file system
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
char shm_name [NAME_MAX];
|
||||
if ( WorldShmRank == 0 ) {
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
size_t size = bytes;
|
||||
|
||||
struct passwd *pw = getpwuid (getuid());
|
||||
sprintf(shm_name,"/Grid_%s_mpi3_shm_%d_%d",pw->pw_name,WorldNode,r);
|
||||
|
||||
shm_unlink(shm_name);
|
||||
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
|
||||
if ( fd < 0 ) { perror("failed shm_open"); assert(0); }
|
||||
ftruncate(fd, size);
|
||||
|
||||
int mmap_flag = MAP_SHARED;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag |= MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if (flags) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
|
||||
|
||||
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
|
||||
if ( ptr == (void * )MAP_FAILED ) {
|
||||
perror("failed mmap");
|
||||
assert(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
close(fd);
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
if ( WorldShmRank != 0 ) {
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
size_t size = bytes ;
|
||||
|
||||
struct passwd *pw = getpwuid (getuid());
|
||||
sprintf(shm_name,"/Grid_%s_mpi3_shm_%d_%d",pw->pw_name,WorldNode,r);
|
||||
|
||||
int fd=shm_open(shm_name,O_RDWR,0666);
|
||||
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
|
||||
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
|
||||
close(fd);
|
||||
}
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
}
|
||||
#endif
|
||||
#endif // End NVCC case for GPU device buffers
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
// Routines accessing shared memory should route through for GPU safety
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
{
|
||||
#ifdef GRID_NVCC
|
||||
cudaMemset(dest,0,bytes);
|
||||
#else
|
||||
bzero(dest,bytes);
|
||||
#endif
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
|
||||
{
|
||||
#ifdef GRID_NVCC
|
||||
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
|
||||
#else
|
||||
bcopy(src,dest,bytes);
|
||||
#endif
|
||||
}
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
////////////////////////////////////////////////////////
|
||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
{
|
||||
int rank, size;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&size);
|
||||
ShmRanks.resize(size);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
|
||||
MPI_Comm_rank(ShmComm ,&ShmRank);
|
||||
MPI_Comm_size(ShmComm ,&ShmSize);
|
||||
ShmCommBufs.resize(ShmSize);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Map ShmRank to WorldShmRank and use the right buffer
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
assert (GlobalSharedMemory::ShmAlloc()==1);
|
||||
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
|
||||
uint32_t wsr = (r==ShmRank) ? GlobalSharedMemory::WorldShmRank : 0 ;
|
||||
|
||||
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
|
||||
|
||||
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Group FullGroup, ShmGroup;
|
||||
MPI_Comm_group (comm , &FullGroup);
|
||||
MPI_Comm_group (ShmComm, &ShmGroup);
|
||||
|
||||
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
|
||||
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
|
||||
|
||||
SharedMemoryTest();
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
//////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::ShmBarrier(void)
|
||||
{
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Test the shared memory is working
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::SharedMemoryTest(void)
|
||||
{
|
||||
ShmBarrier();
|
||||
uint64_t check[3];
|
||||
uint64_t magic = 0x5A5A5A;
|
||||
if ( ShmRank == 0 ) {
|
||||
for(uint64_t r=0;r<ShmSize;r++){
|
||||
check[0]=GlobalSharedMemory::WorldNode;
|
||||
check[1]=r;
|
||||
check[2]=magic;
|
||||
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
|
||||
}
|
||||
}
|
||||
ShmBarrier();
|
||||
for(uint64_t r=0;r<ShmSize;r++){
|
||||
ShmBarrier();
|
||||
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
|
||||
ShmBarrier();
|
||||
assert(check[0]==GlobalSharedMemory::WorldNode);
|
||||
assert(check[1]==r);
|
||||
assert(check[2]==magic);
|
||||
ShmBarrier();
|
||||
}
|
||||
}
|
||||
|
||||
void *SharedMemory::ShmBuffer(int rank)
|
||||
{
|
||||
int gpeer = ShmRanks[rank];
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
return ShmCommBufs[gpeer];
|
||||
}
|
||||
}
|
||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
||||
{
|
||||
int gpeer = ShmRanks[rank];
|
||||
assert(gpeer!=ShmRank); // never send to self
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
|
||||
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
|
||||
return (void *) remote;
|
||||
}
|
||||
}
|
||||
SharedMemory::~SharedMemory()
|
||||
{
|
||||
int MPI_is_finalised; MPI_Finalized(&MPI_is_finalised);
|
||||
if ( !MPI_is_finalised ) {
|
||||
MPI_Comm_free(&ShmComm);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,129 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(_ShmSetup==0);
|
||||
WorldComm = 0;
|
||||
WorldRank = 0;
|
||||
WorldSize = 1;
|
||||
WorldShmComm = 0 ;
|
||||
WorldShmRank = 0 ;
|
||||
WorldShmSize = 1 ;
|
||||
WorldNodes = 1 ;
|
||||
WorldNode = 0 ;
|
||||
WorldShmRanks.resize(WorldSize); WorldShmRanks[0] = 0;
|
||||
WorldShmCommBufs.resize(1);
|
||||
_ShmSetup=1;
|
||||
}
|
||||
|
||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
optimal_comm = WorldComm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs mapping intended, use anonymous mmap
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
int mmap_flag =0;
|
||||
#ifdef MAP_ANONYMOUS
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
||||
#endif
|
||||
#ifdef MAP_ANON
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( flags ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
ShmCommBuf =(void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag, -1, 0);
|
||||
if (ShmCommBuf == (void *)MAP_FAILED) {
|
||||
perror("mmap failed ");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#ifdef MADV_HUGEPAGE
|
||||
if (!Hugepages ) madvise(ShmCommBuf,bytes,MADV_HUGEPAGE);
|
||||
#endif
|
||||
bzero(ShmCommBuf,bytes);
|
||||
WorldShmCommBufs[0] = ShmCommBuf;
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
////////////////////////////////////////////////////////
|
||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(GlobalSharedMemory::ShmAlloc()==1);
|
||||
ShmRanks.resize(1);
|
||||
ShmCommBufs.resize(1);
|
||||
ShmRanks[0] = 0;
|
||||
ShmRank = 0;
|
||||
ShmSize = 1;
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Map ShmRank to WorldShmRank and use the right buffer
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
ShmCommBufs[0] = GlobalSharedMemory::WorldShmCommBufs[0];
|
||||
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
||||
ShmBufferFreeAll();
|
||||
return;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
//////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::ShmBarrier(void){ return ; }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Test the shared memory is working
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::SharedMemoryTest(void) { return; }
|
||||
|
||||
void *SharedMemory::ShmBuffer(int rank)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
SharedMemory::~SharedMemory()
|
||||
{};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,407 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_ET.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_ET_H
|
||||
#define GRID_LATTICE_ET_H
|
||||
|
||||
#include <iostream>
|
||||
#include <tuple>
|
||||
#include <typeinfo>
|
||||
#include <vector>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Predicated where support
|
||||
////////////////////////////////////////////////////
|
||||
template <class iobj, class vobj, class robj>
|
||||
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
|
||||
const robj &iffalse) {
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
|
||||
ExtractBuffer<Integer> mask(Nsimd);
|
||||
ExtractBuffer<scalar_object> truevals(Nsimd);
|
||||
ExtractBuffer<scalar_object> falsevals(Nsimd);
|
||||
|
||||
extract(iftrue, truevals);
|
||||
extract(iffalse, falsevals);
|
||||
extract<vInteger, Integer>(TensorRemove(predicate), mask);
|
||||
|
||||
for (int s = 0; s < Nsimd; s++) {
|
||||
if (mask[s]) falsevals[s] = truevals[s];
|
||||
}
|
||||
|
||||
merge(ret, falsevals);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
//Specialization of getVectorType for lattices
|
||||
/////////////////////////////////////////////////////
|
||||
template<typename T>
|
||||
struct getVectorType<Lattice<T> >{
|
||||
typedef typename Lattice<T>::vector_object type;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////
|
||||
//-- recursive evaluation of expressions; --
|
||||
// handle leaves of syntax tree
|
||||
///////////////////////////////////////////////////
|
||||
template<class sobj> accelerator_inline
|
||||
sobj eval(const uint64_t ss, const sobj &arg)
|
||||
{
|
||||
return arg;
|
||||
}
|
||||
|
||||
template <class lobj> accelerator_inline
|
||||
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
|
||||
{
|
||||
return arg[ss];
|
||||
}
|
||||
template <class lobj> accelerator_inline
|
||||
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
|
||||
{
|
||||
auto view = arg.View();
|
||||
return view[ss];
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// handle nodes in syntax tree- eval one operand
|
||||
///////////////////////////////////////////////////
|
||||
template <typename Op, typename T1> accelerator_inline
|
||||
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
|
||||
-> decltype(expr.op.func( eval(ss, expr.arg1)))
|
||||
{
|
||||
return expr.op.func( eval(ss, expr.arg1) );
|
||||
}
|
||||
///////////////////////
|
||||
// eval two operands
|
||||
///////////////////////
|
||||
template <typename Op, typename T1, typename T2> accelerator_inline
|
||||
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
|
||||
{
|
||||
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
|
||||
}
|
||||
///////////////////////
|
||||
// eval three operands
|
||||
///////////////////////
|
||||
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
|
||||
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
|
||||
{
|
||||
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Obtain the grid from an expression, ensuring conformable. This must follow a
|
||||
// tree recursion; must retain grid pointer in the LatticeView class which sucks
|
||||
// Use a different method, and make it void *.
|
||||
// Perhaps a conformable method.
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
|
||||
{
|
||||
lat.Conformable(grid);
|
||||
}
|
||||
|
||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
accelerator_inline
|
||||
void GridFromExpression(GridBase *&grid,const T1 ¬lat) // non-lattice leaf
|
||||
{}
|
||||
|
||||
template <typename Op, typename T1>
|
||||
accelerator_inline
|
||||
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)
|
||||
{
|
||||
GridFromExpression(grid, expr.arg1); // recurse
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2>
|
||||
accelerator_inline
|
||||
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
{
|
||||
GridFromExpression(grid, expr.arg1); // recurse
|
||||
GridFromExpression(grid, expr.arg2);
|
||||
}
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
accelerator_inline
|
||||
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
{
|
||||
GridFromExpression(grid, expr.arg1); // recurse
|
||||
GridFromExpression(grid, expr.arg2); // recurse
|
||||
GridFromExpression(grid, expr.arg3); // recurse
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Obtain the CB from an expression, ensuring conformable. This must follow a
|
||||
// tree recursion
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
||||
{
|
||||
if ((cb == Odd) || (cb == Even)) {
|
||||
assert(cb == lat.Checkerboard());
|
||||
}
|
||||
cb = lat.Checkerboard();
|
||||
}
|
||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void CBFromExpression(int &cb, const T1 ¬lat) // non-lattice leaf
|
||||
{
|
||||
}
|
||||
|
||||
template <typename Op, typename T1> inline
|
||||
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
|
||||
{
|
||||
CBFromExpression(cb, expr.arg1); // recurse AST
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2> inline
|
||||
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
{
|
||||
CBFromExpression(cb, expr.arg1); // recurse AST
|
||||
CBFromExpression(cb, expr.arg2); // recurse AST
|
||||
}
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
{
|
||||
CBFromExpression(cb, expr.arg1); // recurse AST
|
||||
CBFromExpression(cb, expr.arg2); // recurse AST
|
||||
CBFromExpression(cb, expr.arg3); // recurse AST
|
||||
}
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Unary operators and funcs
|
||||
////////////////////////////////////////////
|
||||
#define GridUnopClass(name, ret) \
|
||||
template <class arg> \
|
||||
struct name { \
|
||||
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
|
||||
};
|
||||
|
||||
GridUnopClass(UnarySub, -a);
|
||||
GridUnopClass(UnaryNot, Not(a));
|
||||
GridUnopClass(UnaryAdj, adj(a));
|
||||
GridUnopClass(UnaryConj, conjugate(a));
|
||||
GridUnopClass(UnaryTrace, trace(a));
|
||||
GridUnopClass(UnaryTranspose, transpose(a));
|
||||
GridUnopClass(UnaryTa, Ta(a));
|
||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryReal, real(a));
|
||||
GridUnopClass(UnaryImag, imag(a));
|
||||
GridUnopClass(UnaryToReal, toReal(a));
|
||||
GridUnopClass(UnaryToComplex, toComplex(a));
|
||||
GridUnopClass(UnaryTimesI, timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs, abs(a));
|
||||
GridUnopClass(UnarySqrt, sqrt(a));
|
||||
GridUnopClass(UnaryRsqrt, rsqrt(a));
|
||||
GridUnopClass(UnarySin, sin(a));
|
||||
GridUnopClass(UnaryCos, cos(a));
|
||||
GridUnopClass(UnaryAsin, asin(a));
|
||||
GridUnopClass(UnaryAcos, acos(a));
|
||||
GridUnopClass(UnaryLog, log(a));
|
||||
GridUnopClass(UnaryExp, exp(a));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Binary operators
|
||||
////////////////////////////////////////////
|
||||
#define GridBinOpClass(name, combination) \
|
||||
template <class left, class right> \
|
||||
struct name { \
|
||||
static auto accelerator_inline \
|
||||
func(const left &lhs, const right &rhs) \
|
||||
-> decltype(combination) const \
|
||||
{ \
|
||||
return combination; \
|
||||
} \
|
||||
};
|
||||
|
||||
GridBinOpClass(BinaryAdd, lhs + rhs);
|
||||
GridBinOpClass(BinarySub, lhs - rhs);
|
||||
GridBinOpClass(BinaryMul, lhs *rhs);
|
||||
GridBinOpClass(BinaryDiv, lhs /rhs);
|
||||
GridBinOpClass(BinaryAnd, lhs &rhs);
|
||||
GridBinOpClass(BinaryOr, lhs | rhs);
|
||||
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
|
||||
GridBinOpClass(BinaryOrOr, lhs || rhs);
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Trinary conditional op
|
||||
////////////////////////////////////////////////////
|
||||
#define GridTrinOpClass(name, combination) \
|
||||
template <class predicate, class left, class right> \
|
||||
struct name { \
|
||||
static auto accelerator_inline \
|
||||
func(const predicate &pred, const left &lhs, const right &rhs) \
|
||||
-> decltype(combination) const \
|
||||
{ \
|
||||
return combination; \
|
||||
} \
|
||||
};
|
||||
|
||||
GridTrinOpClass(TrinaryWhere,
|
||||
(predicatedWhere<predicate,
|
||||
typename std::remove_reference<left>::type,
|
||||
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Operator syntactical glue
|
||||
////////////////////////////////////////////
|
||||
|
||||
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
||||
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
|
||||
#define GRID_DEF_UNOP(op, name) \
|
||||
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
|
||||
inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
|
||||
{ \
|
||||
return LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
|
||||
}
|
||||
|
||||
#define GRID_BINOP_LEFT(op, name) \
|
||||
template <typename T1, typename T2, \
|
||||
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
|
||||
inline auto op(const T1 &lhs, const T2 &rhs) \
|
||||
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
|
||||
{ \
|
||||
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
|
||||
}
|
||||
|
||||
#define GRID_BINOP_RIGHT(op, name) \
|
||||
template <typename T1, typename T2, \
|
||||
typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
|
||||
typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
|
||||
inline auto op(const T1 &lhs, const T2 &rhs) \
|
||||
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
|
||||
{ \
|
||||
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
|
||||
}
|
||||
|
||||
#define GRID_DEF_BINOP(op, name) \
|
||||
GRID_BINOP_LEFT(op, name); \
|
||||
GRID_BINOP_RIGHT(op, name);
|
||||
|
||||
#define GRID_DEF_TRINOP(op, name) \
|
||||
template <typename T1, typename T2, typename T3> \
|
||||
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
|
||||
->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
|
||||
{ \
|
||||
return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
|
||||
}
|
||||
|
||||
////////////////////////
|
||||
// Operator definitions
|
||||
////////////////////////
|
||||
GRID_DEF_UNOP(operator-, UnarySub);
|
||||
GRID_DEF_UNOP(Not, UnaryNot);
|
||||
GRID_DEF_UNOP(operator!, UnaryNot);
|
||||
GRID_DEF_UNOP(adj, UnaryAdj);
|
||||
GRID_DEF_UNOP(conjugate, UnaryConj);
|
||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(real, UnaryReal);
|
||||
GRID_DEF_UNOP(imag, UnaryImag);
|
||||
GRID_DEF_UNOP(toReal, UnaryToReal);
|
||||
GRID_DEF_UNOP(toComplex, UnaryToComplex);
|
||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||
// abs-fabs-dabs-labs thing
|
||||
GRID_DEF_UNOP(sqrt, UnarySqrt);
|
||||
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
|
||||
GRID_DEF_UNOP(sin, UnarySin);
|
||||
GRID_DEF_UNOP(cos, UnaryCos);
|
||||
GRID_DEF_UNOP(asin, UnaryAsin);
|
||||
GRID_DEF_UNOP(acos, UnaryAcos);
|
||||
GRID_DEF_UNOP(log, UnaryLog);
|
||||
GRID_DEF_UNOP(exp, UnaryExp);
|
||||
|
||||
GRID_DEF_BINOP(operator+, BinaryAdd);
|
||||
GRID_DEF_BINOP(operator-, BinarySub);
|
||||
GRID_DEF_BINOP(operator*, BinaryMul);
|
||||
GRID_DEF_BINOP(operator/, BinaryDiv);
|
||||
|
||||
GRID_DEF_BINOP(operator&, BinaryAnd);
|
||||
GRID_DEF_BINOP(operator|, BinaryOr);
|
||||
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
|
||||
GRID_DEF_BINOP(operator||, BinaryOrOr);
|
||||
|
||||
GRID_DEF_TRINOP(where, TrinaryWhere);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Closure convenience to force expression to evaluate
|
||||
/////////////////////////////////////////////////////////////
|
||||
template <class Op, class T1>
|
||||
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
|
||||
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
|
||||
{
|
||||
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template <class Op, class T1, class T2>
|
||||
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
|
||||
{
|
||||
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template <class Op, class T1, class T2, class T3>
|
||||
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
|
||||
eval(0, expr.arg2),
|
||||
eval(0, expr.arg3)))>
|
||||
{
|
||||
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
|
||||
eval(0, expr.arg2),
|
||||
eval(0, expr.arg3)))> ret(expr);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#undef GRID_UNOP
|
||||
#undef GRID_BINOP
|
||||
#undef GRID_TRINOP
|
||||
|
||||
#undef GRID_DEF_UNOP
|
||||
#undef GRID_DEF_BINOP
|
||||
#undef GRID_DEF_TRINOP
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,257 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_arith.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_ARITH_H
|
||||
#define GRID_LATTICE_ARITH_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// avoid copy back routines for mult, mac, sub, add
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t = lhs_v(ss);
|
||||
auto rhs_t = rhs_v(ss);
|
||||
mult(&tmp,&lhs_t,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
auto rhs_t=rhs_v(ss);
|
||||
mac(&tmp,&lhs_t,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
auto rhs_t=rhs_v(ss);
|
||||
sub(&tmp,&lhs_t,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
auto rhs_t=rhs_v(ss);
|
||||
add(&tmp,&lhs_t,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// avoid copy back routines for mult, mac, sub, add
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(lhs,ret);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
mult(&tmp,&lhs_v(ss),&rhs);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,lhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
mac(&tmp,&lhs_t,&rhs);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,lhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
sub(&tmp,&lhs_t,&rhs);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(lhs,ret);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
add(&tmp,&lhs_t,&rhs);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// avoid copy back routines for mult, mac, sub, add
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
mult(&tmp,&lhs,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
mac(&tmp,&lhs,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
sub(&tmp,&lhs,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
add(&tmp,&lhs,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class sobj,class vobj> inline
|
||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||
ret.Checkerboard() = x.Checkerboard();
|
||||
conformable(ret,x);
|
||||
conformable(x,y);
|
||||
auto ret_v = ret.View();
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
|
||||
auto tmp = a*x_v(ss)+y_v(ss);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
template<class sobj,class vobj> inline
|
||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||
ret.Checkerboard() = x.Checkerboard();
|
||||
conformable(ret,x);
|
||||
conformable(x,y);
|
||||
auto ret_v = ret.View();
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
return axpy_norm_fast(ret,a,x,y);
|
||||
}
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,466 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_base.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#define STREAMING_STORES
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern int GridCshiftPermuteMap[4][16];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Base class which can be used by traits to pick up behaviour
|
||||
///////////////////////////////////////////////////////////////////
|
||||
class LatticeBase {};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Conformable checks; same instance of Grid required
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
|
||||
{
|
||||
assert(lhs == rhs);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Minimal base class containing only data valid to access from accelerator
|
||||
// _odata will be a managed pointer in CUDA
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Force access to lattice through a view object.
|
||||
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
|
||||
// strict since host could could in principle direct access through the lattice object
|
||||
// Need to decide programming model.
|
||||
#define LATTICE_VIEW_STRICT
|
||||
template<class vobj> class LatticeAccelerator : public LatticeBase
|
||||
{
|
||||
protected:
|
||||
GridBase *_grid;
|
||||
int checkerboard;
|
||||
vobj *_odata; // A managed pointer
|
||||
uint64_t _odata_size;
|
||||
public:
|
||||
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { };
|
||||
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
|
||||
accelerator_inline int Checkerboard(void) const { return checkerboard; };
|
||||
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
|
||||
accelerator_inline void Conformable(GridBase * &grid) const
|
||||
{
|
||||
if (grid) conformable(grid, _grid);
|
||||
else grid = _grid;
|
||||
};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// A View class which provides accessor to the data.
|
||||
// This will be safe to call from accelerator_for and is trivially copy constructible
|
||||
// The copy constructor for this will need to be used by device lambda functions
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
class LatticeView : public LatticeAccelerator<vobj>
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
// Rvalue
|
||||
#ifdef __CUDA_ARCH__
|
||||
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const { return coalescedRead(this->_odata[i]); }
|
||||
#else
|
||||
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
|
||||
#endif
|
||||
|
||||
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
|
||||
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
|
||||
|
||||
accelerator_inline uint64_t begin(void) const { return 0;};
|
||||
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
|
||||
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
|
||||
|
||||
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Lattice expression types used by ET to assemble the AST
|
||||
//
|
||||
// Need to be able to detect code paths according to the whether a lattice object or not
|
||||
// so introduce some trait type things
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class LatticeExpressionBase {};
|
||||
|
||||
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
|
||||
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
|
||||
|
||||
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
|
||||
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
|
||||
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
|
||||
|
||||
template <typename Op, typename _T1>
|
||||
class LatticeUnaryExpression : public LatticeExpressionBase
|
||||
{
|
||||
public:
|
||||
typedef typename ViewMap<_T1>::Type T1;
|
||||
Op op;
|
||||
T1 arg1;
|
||||
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
|
||||
};
|
||||
|
||||
template <typename Op, typename _T1, typename _T2>
|
||||
class LatticeBinaryExpression : public LatticeExpressionBase
|
||||
{
|
||||
public:
|
||||
typedef typename ViewMap<_T1>::Type T1;
|
||||
typedef typename ViewMap<_T2>::Type T2;
|
||||
Op op;
|
||||
T1 arg1;
|
||||
T2 arg2;
|
||||
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
|
||||
};
|
||||
|
||||
template <typename Op, typename _T1, typename _T2, typename _T3>
|
||||
class LatticeTrinaryExpression : public LatticeExpressionBase
|
||||
{
|
||||
public:
|
||||
typedef typename ViewMap<_T1>::Type T1;
|
||||
typedef typename ViewMap<_T2>::Type T2;
|
||||
typedef typename ViewMap<_T3>::Type T3;
|
||||
Op op;
|
||||
T1 arg1;
|
||||
T2 arg2;
|
||||
T3 arg3;
|
||||
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// The real lattice class, with normal copy and assignment semantics.
|
||||
// This contains extra (host resident) grid pointer data that may be accessed by host code
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
class Lattice : public LatticeAccelerator<vobj>
|
||||
{
|
||||
public:
|
||||
GridBase *Grid(void) const { return this->_grid; }
|
||||
///////////////////////////////////////////////////
|
||||
// Member types
|
||||
///////////////////////////////////////////////////
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef vobj vector_object;
|
||||
|
||||
private:
|
||||
void dealloc(void)
|
||||
{
|
||||
alignedAllocator<vobj> alloc;
|
||||
if( this->_odata_size ) {
|
||||
alloc.deallocate(this->_odata,this->_odata_size);
|
||||
this->_odata=nullptr;
|
||||
this->_odata_size=0;
|
||||
}
|
||||
}
|
||||
void resize(uint64_t size)
|
||||
{
|
||||
alignedAllocator<vobj> alloc;
|
||||
if ( this->_odata_size != size ) {
|
||||
dealloc();
|
||||
}
|
||||
this->_odata_size = size;
|
||||
if ( size )
|
||||
this->_odata = alloc.allocate(this->_odata_size);
|
||||
else
|
||||
this->_odata = nullptr;
|
||||
}
|
||||
public:
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// Return a view object that may be dereferenced in site loops.
|
||||
// The view is trivially copy constructible and may be copied to an accelerator device
|
||||
// in device lambdas
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
LatticeView<vobj> View (void) const
|
||||
{
|
||||
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
|
||||
return accessor;
|
||||
}
|
||||
|
||||
~Lattice() {
|
||||
if ( this->_odata_size ) {
|
||||
dealloc();
|
||||
}
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Expression Template closure support
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
|
||||
{
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
conformable(this->_grid,egrid);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
auto me = View();
|
||||
accelerator_for(ss,me.size(),1,{
|
||||
auto tmp = eval(ss,expr);
|
||||
vstream(me[ss],tmp);
|
||||
});
|
||||
return *this;
|
||||
}
|
||||
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||
{
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
conformable(this->_grid,egrid);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
auto me = View();
|
||||
accelerator_for(ss,me.size(),1,{
|
||||
auto tmp = eval(ss,expr);
|
||||
vstream(me[ss],tmp);
|
||||
});
|
||||
return *this;
|
||||
}
|
||||
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
|
||||
{
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
conformable(this->_grid,egrid);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
auto me = View();
|
||||
accelerator_for(ss,me.size(),1,{
|
||||
auto tmp = eval(ss,expr);
|
||||
vstream(me[ss],tmp);
|
||||
});
|
||||
return *this;
|
||||
}
|
||||
//GridFromExpression is tricky to do
|
||||
template<class Op,class T1>
|
||||
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
|
||||
this->_grid = nullptr;
|
||||
GridFromExpression(this->_grid,expr);
|
||||
assert(this->_grid!=nullptr);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
resize(this->_grid->oSites());
|
||||
|
||||
*this = expr;
|
||||
}
|
||||
template<class Op,class T1, class T2>
|
||||
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
|
||||
this->_grid = nullptr;
|
||||
GridFromExpression(this->_grid,expr);
|
||||
assert(this->_grid!=nullptr);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
resize(this->_grid->oSites());
|
||||
|
||||
*this = expr;
|
||||
}
|
||||
template<class Op,class T1, class T2, class T3>
|
||||
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
|
||||
this->_grid = nullptr;
|
||||
GridFromExpression(this->_grid,expr);
|
||||
assert(this->_grid!=nullptr);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
resize(this->_grid->oSites());
|
||||
|
||||
*this = expr;
|
||||
}
|
||||
|
||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||
auto me = View();
|
||||
thread_for(ss,me.size(),{
|
||||
me[ss] = r;
|
||||
});
|
||||
return *this;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Follow rule of five, with Constructor requires "grid" passed
|
||||
// to user defined constructor
|
||||
///////////////////////////////////////////
|
||||
// user defined constructor
|
||||
///////////////////////////////////////////
|
||||
Lattice(GridBase *grid) {
|
||||
this->_grid = grid;
|
||||
resize(this->_grid->oSites());
|
||||
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
|
||||
this->checkerboard=0;
|
||||
}
|
||||
|
||||
// virtual ~Lattice(void) = default;
|
||||
|
||||
void reset(GridBase* grid) {
|
||||
if (this->_grid != grid) {
|
||||
this->_grid = grid;
|
||||
this->_odata.resize(grid->oSites());
|
||||
this->checkerboard = 0;
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////
|
||||
// copy constructor
|
||||
///////////////////////////////////////////
|
||||
Lattice(const Lattice& r){
|
||||
// std::cout << "Lattice constructor(const Lattice &) "<<this<<std::endl;
|
||||
this->_grid = r.Grid();
|
||||
resize(this->_grid->oSites());
|
||||
*this = r;
|
||||
}
|
||||
///////////////////////////////////////////
|
||||
// move constructor
|
||||
///////////////////////////////////////////
|
||||
Lattice(Lattice && r){
|
||||
this->_grid = r.Grid();
|
||||
this->_odata = r._odata;
|
||||
this->_odata_size = r._odata_size;
|
||||
this->checkerboard= r.Checkerboard();
|
||||
r._odata = nullptr;
|
||||
r._odata_size = 0;
|
||||
}
|
||||
///////////////////////////////////////////
|
||||
// assignment template
|
||||
///////////////////////////////////////////
|
||||
template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
|
||||
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
|
||||
conformable(*this,r);
|
||||
this->checkerboard = r.Checkerboard();
|
||||
auto me = View();
|
||||
auto him= r.View();
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(me[ss],him(ss));
|
||||
});
|
||||
return *this;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Copy assignment
|
||||
///////////////////////////////////////////
|
||||
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
|
||||
this->checkerboard = r.Checkerboard();
|
||||
conformable(*this,r);
|
||||
auto me = View();
|
||||
auto him= r.View();
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(me[ss],him(ss));
|
||||
});
|
||||
return *this;
|
||||
}
|
||||
///////////////////////////////////////////
|
||||
// Move assignment possible if same type
|
||||
///////////////////////////////////////////
|
||||
inline Lattice<vobj> & operator = (Lattice<vobj> && r){
|
||||
|
||||
resize(0); // deletes if appropriate
|
||||
this->_grid = r.Grid();
|
||||
this->_odata = r._odata;
|
||||
this->_odata_size = r._odata_size;
|
||||
this->checkerboard= r.Checkerboard();
|
||||
|
||||
r._odata = nullptr;
|
||||
r._odata_size = 0;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// *=,+=,-= operators inherit behvour from correspond */+/- operation
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
template<class T> inline Lattice<vobj> &operator *=(const T &r) {
|
||||
*this = (*this)*r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T> inline Lattice<vobj> &operator -=(const T &r) {
|
||||
*this = (*this)-r;
|
||||
return *this;
|
||||
}
|
||||
template<class T> inline Lattice<vobj> &operator +=(const T &r) {
|
||||
*this = (*this)+r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend inline void swap(Lattice &l, Lattice &r) {
|
||||
conformable(l,r);
|
||||
LatticeAccelerator<vobj> tmp;
|
||||
LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
|
||||
LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
|
||||
tmp = *lp; *lp=*rp; *rp=tmp;
|
||||
}
|
||||
|
||||
}; // class Lattice
|
||||
|
||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||
|
||||
Coordinate gcoor;
|
||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||
|
||||
sobj ss;
|
||||
peekSite(ss,o,gcoor);
|
||||
stream<<"[";
|
||||
for(int d=0;d<gcoor.size();d++){
|
||||
stream<<gcoor[d];
|
||||
if(d!=gcoor.size()-1) stream<<",";
|
||||
}
|
||||
stream<<"]\t";
|
||||
stream<<ss<<std::endl;
|
||||
}
|
||||
return stream;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,207 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_comparison.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_COMPARISON_H
|
||||
#define GRID_LATTICE_COMPARISON_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// relational operators
|
||||
//
|
||||
// Support <,>,<=,>=,==,!=
|
||||
//
|
||||
//Query supporting bitwise &, |, ^, !
|
||||
//Query supporting logical &&, ||,
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
typedef iScalar<vInteger> vPredicate ;
|
||||
|
||||
/*
|
||||
template <class iobj, class vobj, class robj> accelerator_inline
|
||||
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
|
||||
{
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
|
||||
ExtractBuffer<Integer> mask(Nsimd);
|
||||
ExtractBuffer<scalar_object> truevals(Nsimd);
|
||||
ExtractBuffer<scalar_object> falsevals(Nsimd);
|
||||
|
||||
extract(iftrue, truevals);
|
||||
extract(iffalse, falsevals);
|
||||
extract<vInteger, Integer>(TensorRemove(predicate), mask);
|
||||
|
||||
for (int s = 0; s < Nsimd; s++) {
|
||||
if (mask[s]) falsevals[s] = truevals[s];
|
||||
}
|
||||
|
||||
merge(ret, falsevals);
|
||||
return ret;
|
||||
}
|
||||
*/
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare lattice to lattice
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
|
||||
{
|
||||
Lattice<vPredicate> ret(rhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
thread_for( ss, rhs_v.size(), {
|
||||
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare lattice to scalar
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
|
||||
{
|
||||
Lattice<vPredicate> ret(lhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto ret_v = ret.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
ret_v[ss]=op(lhs_v[ss],rhs);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare scalar to lattice
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
|
||||
{
|
||||
Lattice<vPredicate> ret(rhs.Grid());
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
thread_for( ss, rhs_v.size(), {
|
||||
ret_v[ss]=op(lhs,rhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Map to functors
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Less than
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
|
||||
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
|
||||
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
|
||||
// Less than equal
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
return LLComparison(vle<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
|
||||
return LSComparison(vle<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
|
||||
return SLComparison(vle<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
|
||||
// Greater than
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
|
||||
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
|
||||
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
|
||||
|
||||
// Greater than equal
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
return LLComparison(vge<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
|
||||
return LSComparison(vge<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
|
||||
return SLComparison(vge<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
|
||||
// equal
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
return LLComparison(veq<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
|
||||
return LSComparison(veq<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
|
||||
return SLComparison(veq<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
|
||||
|
||||
// not equal
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
return LLComparison(vne<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
|
||||
return LSComparison(vne<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
|
||||
return SLComparison(vne<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,74 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_coordinate.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
|
||||
{
|
||||
typedef typename iobj::scalar_type scalar_type;
|
||||
typedef typename iobj::vector_type vector_type;
|
||||
|
||||
GridBase *grid = l.Grid();
|
||||
int Nsimd = grid->iSites();
|
||||
|
||||
Coordinate gcoor;
|
||||
ExtractBuffer<scalar_type> mergebuf(Nsimd);
|
||||
|
||||
vector_type vI;
|
||||
auto l_v = l.View();
|
||||
for(int o=0;o<grid->oSites();o++){
|
||||
for(int i=0;i<grid->iSites();i++){
|
||||
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
|
||||
mergebuf[i]=(Integer)gcoor[mu];
|
||||
}
|
||||
merge<vector_type,scalar_type>(vI,mergebuf);
|
||||
l_v[o]=vI;
|
||||
}
|
||||
};
|
||||
|
||||
// LatticeCoordinate();
|
||||
// FIXME for debug; deprecate this; made obscelete by
|
||||
template<class vobj> void lex_sites(Lattice<vobj> &l){
|
||||
auto l_v = l.View();
|
||||
Real *v_ptr = (Real *)&l_v[0];
|
||||
size_t o_len = l.Grid()->oSites();
|
||||
size_t v_len = sizeof(vobj)/sizeof(vRealF);
|
||||
size_t vec_len = vRealF::Nsimd();
|
||||
|
||||
for(int i=0;i<o_len;i++){
|
||||
for(int j=0;j<v_len;j++){
|
||||
for(int vv=0;vv<vec_len;vv+=2){
|
||||
v_ptr[i*v_len*vec_len+j*vec_len+vv ]= i+vv*500;
|
||||
v_ptr[i*v_len*vec_len+j*vec_len+vv+1]= i+vv*500;
|
||||
}
|
||||
}}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,87 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_local.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_LOCALREDUCTION_H
|
||||
#define GRID_LATTICE_LOCALREDUCTION_H
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// localInner, localNorm, outerProduct
|
||||
///////////////////////////////////////////////
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Non site, reduced locally reduced routines
|
||||
/////////////////////////////////////////////////////
|
||||
|
||||
// localNorm2,
|
||||
template<class vobj>
|
||||
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
|
||||
{
|
||||
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
// localInnerProduct
|
||||
template<class vobj>
|
||||
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
|
||||
{
|
||||
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
// outerProduct Scalar x Scalar -> Scalar
|
||||
// Vector x Vector -> Matrix
|
||||
template<class ll,class rr>
|
||||
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
|
||||
{
|
||||
typedef decltype(coalescedRead(ll())) sll;
|
||||
typedef decltype(coalescedRead(rr())) srr;
|
||||
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
accelerator_for(ss,rhs_v.size(),1,{
|
||||
// FIXME had issues with scalar version of outer
|
||||
// Use vector [] operator and don't read coalesce this loop
|
||||
ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,202 +0,0 @@
|
||||
/*************************************************************************************
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Source file: ./lib/lattice/Lattice_reduction.h
|
||||
Copyright (C) 2015
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
|
||||
#ifdef GRID_WARN_SUBOPTIMAL
|
||||
#warning "Optimisation alert all these reduction loops are NOT threaded "
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj>
|
||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
|
||||
GridBase *FullGrid = X.Grid();
|
||||
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
||||
|
||||
// Lattice<vobj> Xslice(SliceGrid);
|
||||
// Lattice<vobj> Rslice(SliceGrid);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
auto X_v = X.View();
|
||||
auto Y_v = Y.View();
|
||||
auto R_v = R.View();
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> s_x(Nblock);
|
||||
|
||||
thread_loop_collapse2( (int n=0;n<nblock;n++),{
|
||||
for(int b=0;b<block;b++){
|
||||
int o = n*stride + b;
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
s_x[i] = X_v[o+i*ostride];
|
||||
}
|
||||
|
||||
vobj dot;
|
||||
for(int i=0;i<Nblock;i++){
|
||||
dot = Y_v[o+i*ostride];
|
||||
for(int j=0;j<Nblock;j++){
|
||||
dot = dot + s_x[j]*(scale*aa(j,i));
|
||||
}
|
||||
R_v[o+i*ostride]=dot;
|
||||
}
|
||||
}});
|
||||
}
|
||||
};
|
||||
|
||||
template<class vobj>
|
||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
|
||||
GridBase *FullGrid = X.Grid();
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
auto X_v = X.View();
|
||||
auto R_v = R.View();
|
||||
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> s_x(Nblock);
|
||||
|
||||
thread_loop_collapse2( (int n=0;n<nblock;n++),{
|
||||
for(int b=0;b<block;b++){
|
||||
int o = n*stride + b;
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
s_x[i] = X_v[o+i*ostride];
|
||||
}
|
||||
|
||||
vobj dot;
|
||||
for(int i=0;i<Nblock;i++){
|
||||
dot = s_x[0]*(scale*aa(0,i));
|
||||
for(int j=1;j<Nblock;j++){
|
||||
dot = dot + s_x[j]*(scale*aa(j,i));
|
||||
}
|
||||
R_v[o+i*ostride]=dot;
|
||||
}
|
||||
}});
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *FullGrid = lhs.Grid();
|
||||
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
||||
|
||||
int Nblock = FullGrid->GlobalDimensions()[Orthog];
|
||||
|
||||
// Lattice<vobj> Lslice(SliceGrid);
|
||||
// Lattice<vobj> Rslice(SliceGrid);
|
||||
|
||||
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
// int nh = FullGrid->_ndimension;
|
||||
// int nl = SliceGrid->_ndimension;
|
||||
// int nl = nh-1;
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
typedef typename vobj::vector_typeD vector_typeD;
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
thread_region {
|
||||
std::vector<vobj> Left(Nblock);
|
||||
std::vector<vobj> Right(Nblock);
|
||||
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
thread_loop_collapse2((int n=0;n<nblock;n++),{
|
||||
for(int b=0;b<block;b++){
|
||||
|
||||
int o = n*stride + b;
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
Left [i] = lhs_v[o+i*ostride];
|
||||
Right[i] = rhs_v[o+i*ostride];
|
||||
}
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
for(int j=0;j<Nblock;j++){
|
||||
auto tmp = innerProduct(Left[i],Right[j]);
|
||||
auto rtmp = TensorRemove(tmp);
|
||||
ComplexD z = Reduce(rtmp);
|
||||
mat_thread(i,j) += std::complex<double>(real(z),imag(z));
|
||||
}}
|
||||
}});
|
||||
thread_critical {
|
||||
mat += mat_thread;
|
||||
}
|
||||
}
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
for(int j=0;j<Nblock;j++){
|
||||
ComplexD sum = mat(i,j);
|
||||
FullGrid->GlobalSum(sum);
|
||||
mat(i,j)=sum;
|
||||
}}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
@ -1,217 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_peekpoke.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_PEEK_H
|
||||
#define GRID_LATTICE_PEEK_H
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Peeking and poking around
|
||||
///////////////////////////////////////////////
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// FIXME accelerator_loop and accelerator_inline these
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Peek internal indices of a Lattice object
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
|
||||
{
|
||||
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
template<int Index,class vobj>
|
||||
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
|
||||
{
|
||||
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Poke internal indices of a Lattice object
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
|
||||
{
|
||||
auto rhs_v = rhs.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
|
||||
});
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
|
||||
{
|
||||
auto rhs_v = rhs.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Poke a scalar object into the SIMD array
|
||||
//////////////////////////////////////////////////////
|
||||
template<class vobj,class sobj>
|
||||
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
int rank,odx,idx;
|
||||
// Optional to broadcast from node 0.
|
||||
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
|
||||
grid->Broadcast(grid->BossRank(),s);
|
||||
|
||||
// extract-modify-merge cycle is easiest way and this is not perf critical
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
auto l_v = l.View();
|
||||
if ( rank == grid->ThisRank() ) {
|
||||
extract(l_v[odx],buf);
|
||||
buf[idx] = s;
|
||||
merge(l_v[odx],buf);
|
||||
}
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
template<class vobj,class sobj>
|
||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
|
||||
|
||||
int rank,odx,idx;
|
||||
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
|
||||
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
auto l_v = l.View();
|
||||
extract(l_v[odx],buf);
|
||||
|
||||
s = buf[idx];
|
||||
|
||||
grid->Broadcast(rank,s);
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
template<class vobj,class sobj>
|
||||
void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
|
||||
|
||||
GridBase *grid = l.Grid();
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int odx,idx;
|
||||
idx= grid->iIndex(site);
|
||||
odx= grid->oIndex(site);
|
||||
|
||||
auto l_v = l.View();
|
||||
scalar_type * vp = (scalar_type *)&l_v[odx];
|
||||
scalar_type * pt = (scalar_type *)&s;
|
||||
|
||||
for(int w=0;w<words;w++){
|
||||
pt[w] = vp[idx+w*Nsimd];
|
||||
}
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
template<class vobj,class sobj>
|
||||
void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int odx,idx;
|
||||
idx= grid->iIndex(site);
|
||||
odx= grid->oIndex(site);
|
||||
|
||||
auto l_v = l.View();
|
||||
scalar_type * vp = (scalar_type *)&l_v[odx];
|
||||
scalar_type * pt = (scalar_type *)&s;
|
||||
for(int w=0;w<words;w++){
|
||||
vp[idx+w*Nsimd] = pt[w];
|
||||
}
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -1,226 +0,0 @@
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define WARP_SIZE 32
|
||||
extern cudaDeviceProp *gpu_props;
|
||||
__device__ unsigned int retirementCount = 0;
|
||||
|
||||
template <class Iterator>
|
||||
unsigned int nextPow2(Iterator x) {
|
||||
--x;
|
||||
x |= x >> 1;
|
||||
x |= x >> 2;
|
||||
x |= x >> 4;
|
||||
x |= x >> 8;
|
||||
x |= x >> 16;
|
||||
return ++x;
|
||||
}
|
||||
|
||||
template <class Iterator>
|
||||
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
|
||||
int device;
|
||||
cudaGetDevice(&device);
|
||||
|
||||
Iterator warpSize = gpu_props[device].warpSize;
|
||||
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
|
||||
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
|
||||
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
|
||||
|
||||
std::cout << GridLogDebug << "GPU has:" << std::endl;
|
||||
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
|
||||
|
||||
if (warpSize != WARP_SIZE) {
|
||||
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// let the number of threads in a block be a multiple of 2, starting from warpSize
|
||||
threads = warpSize;
|
||||
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
|
||||
// keep all the streaming multiprocessors busy
|
||||
blocks = nextPow2(multiProcessorCount);
|
||||
|
||||
}
|
||||
|
||||
template <class sobj, class Iterator>
|
||||
__device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) {
|
||||
|
||||
Iterator blockSize = blockDim.x;
|
||||
|
||||
// cannot use overloaded operators for sobj as they are not volatile-qualified
|
||||
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
|
||||
__syncwarp();
|
||||
|
||||
const Iterator VEC = WARP_SIZE;
|
||||
const Iterator vid = tid & (VEC-1);
|
||||
|
||||
sobj beta, temp;
|
||||
memcpy((void *)&beta, (void *)&mySum, sizeof(sobj));
|
||||
|
||||
for (int i = VEC/2; i > 0; i>>=1) {
|
||||
if (vid < i) {
|
||||
memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj));
|
||||
beta += temp;
|
||||
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
|
||||
}
|
||||
__syncwarp();
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
beta = Zero();
|
||||
for (Iterator i = 0; i < blockSize; i += VEC) {
|
||||
memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj));
|
||||
beta += temp;
|
||||
}
|
||||
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
template <class vobj, class sobj, class Iterator>
|
||||
__device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n)
|
||||
{
|
||||
constexpr Iterator nsimd = vobj::Nsimd();
|
||||
|
||||
Iterator blockSize = blockDim.x;
|
||||
|
||||
// force shared memory alignment
|
||||
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
|
||||
// it's not possible to have two extern __shared__ arrays with same name
|
||||
// but different types in different scopes -- need to cast each time
|
||||
sobj *sdata = (sobj *)shmem_pointer;
|
||||
|
||||
// first level of reduction,
|
||||
// each thread writes result in mySum
|
||||
Iterator tid = threadIdx.x;
|
||||
Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x;
|
||||
Iterator gridSize = blockSize*2*gridDim.x;
|
||||
sobj mySum = Zero();
|
||||
|
||||
while (i < n) {
|
||||
Iterator lane = i % nsimd;
|
||||
Iterator ss = i / nsimd;
|
||||
auto tmp = extractLane(lane,g_idata[ss]);
|
||||
sobj tmpD;
|
||||
tmpD=tmp;
|
||||
mySum +=tmpD;
|
||||
|
||||
if (i + blockSize < n) {
|
||||
lane = (i+blockSize) % nsimd;
|
||||
ss = (i+blockSize) / nsimd;
|
||||
tmp = extractLane(lane,g_idata[ss]);
|
||||
tmpD = tmp;
|
||||
mySum += tmpD;
|
||||
}
|
||||
i += gridSize;
|
||||
}
|
||||
|
||||
// copy mySum to shared memory and perform
|
||||
// reduction for all threads in this block
|
||||
reduceBlock(sdata, mySum, tid);
|
||||
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
|
||||
}
|
||||
|
||||
template <class vobj, class sobj,class Iterator>
|
||||
__global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
|
||||
|
||||
Iterator blockSize = blockDim.x;
|
||||
|
||||
// perform reduction for this block and
|
||||
// write result to global memory buffer
|
||||
reduceBlocks(lat, buffer, n);
|
||||
|
||||
if (gridDim.x > 1) {
|
||||
|
||||
const Iterator tid = threadIdx.x;
|
||||
__shared__ bool amLast;
|
||||
// force shared memory alignment
|
||||
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
|
||||
// it's not possible to have two extern __shared__ arrays with same name
|
||||
// but different types in different scopes -- need to cast each time
|
||||
sobj *smem = (sobj *)shmem_pointer;
|
||||
|
||||
// wait until all outstanding memory instructions in this thread are finished
|
||||
__threadfence();
|
||||
|
||||
if (tid==0) {
|
||||
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
|
||||
// true if this block is the last block to be done
|
||||
amLast = (ticket == gridDim.x-1);
|
||||
}
|
||||
|
||||
// each thread must read the correct value of amLast
|
||||
__syncthreads();
|
||||
|
||||
if (amLast) {
|
||||
// reduce buffer[0], ..., buffer[gridDim.x-1]
|
||||
Iterator i = tid;
|
||||
sobj mySum = Zero();
|
||||
|
||||
while (i < gridDim.x) {
|
||||
mySum += buffer[i];
|
||||
i += blockSize;
|
||||
}
|
||||
|
||||
reduceBlock(smem, mySum, tid);
|
||||
|
||||
if (tid==0) {
|
||||
buffer[0] = smem[0];
|
||||
// reset count variable
|
||||
retirementCount = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
typedef decltype(lat) Iterator;
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
Integer size = osites*nsimd;
|
||||
|
||||
Integer numThreads, numBlocks;
|
||||
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
|
||||
Vector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
cudaError err = cudaGetLastError();
|
||||
if ( cudaSuccess != err ) {
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err ));
|
||||
exit(0);
|
||||
}
|
||||
auto result = buffer_v[0];
|
||||
return result;
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Return as same precision as input performing reduction in double precision though
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,525 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_rng.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_RNG_H
|
||||
#define GRID_LATTICE_RNG_H
|
||||
|
||||
#include <random>
|
||||
|
||||
#ifdef RNG_SITMO
|
||||
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
|
||||
#endif
|
||||
|
||||
#if defined(RNG_SITMO)
|
||||
#define RNG_FAST_DISCARD
|
||||
#else
|
||||
#undef RNG_FAST_DISCARD
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Allow the RNG state to be less dense than the fine grid
|
||||
//////////////////////////////////////////////////////////////
|
||||
inline int RNGfillable(GridBase *coarse,GridBase *fine)
|
||||
{
|
||||
|
||||
int rngdims = coarse->_ndimension;
|
||||
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension;
|
||||
assert(lowerdims >= 0);
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
assert(fine->_simd_layout[d]==1);
|
||||
assert(fine->_processors[d]==1);
|
||||
}
|
||||
|
||||
int multiplicity=1;
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
multiplicity=multiplicity*fine->_rdimensions[d];
|
||||
}
|
||||
// local and global volumes subdivide cleanly after SIMDization
|
||||
for(int d=0;d<rngdims;d++){
|
||||
int fd= d+lowerdims;
|
||||
assert(coarse->_processors[d] == fine->_processors[fd]);
|
||||
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
|
||||
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
|
||||
|
||||
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
|
||||
}
|
||||
return multiplicity;
|
||||
}
|
||||
|
||||
|
||||
// merge of April 11 2017
|
||||
// this function is necessary for the LS vectorised field
|
||||
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
|
||||
{
|
||||
int rngdims = coarse->_ndimension;
|
||||
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension; assert(lowerdims >= 0);
|
||||
// assumes that the higher dimensions are not using more processors
|
||||
// all further divisions are local
|
||||
for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
|
||||
for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
|
||||
|
||||
// then divide the number of local sites
|
||||
// check that the total number of sims agree, meanse the iSites are the same
|
||||
assert(fine->Nsimd() == coarse->Nsimd());
|
||||
|
||||
// check that the two grids divide cleanly
|
||||
assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
|
||||
|
||||
return fine->lSites() / coarse->lSites();
|
||||
}
|
||||
|
||||
// real scalars are one component
|
||||
template<class scalar,class distribution,class generator>
|
||||
void fillScalar(scalar &s,distribution &dist,generator & gen)
|
||||
{
|
||||
s=dist(gen);
|
||||
}
|
||||
template<class distribution,class generator>
|
||||
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
|
||||
{
|
||||
// s=ComplexF(dist(gen),dist(gen));
|
||||
s.real(dist(gen));
|
||||
s.imag(dist(gen));
|
||||
}
|
||||
template<class distribution,class generator>
|
||||
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
|
||||
{
|
||||
// s=ComplexD(dist(gen),dist(gen));
|
||||
s.real(dist(gen));
|
||||
s.imag(dist(gen));
|
||||
}
|
||||
|
||||
class GridRNGbase {
|
||||
public:
|
||||
// One generator per site.
|
||||
// Uniform and Gaussian distributions from these generators.
|
||||
#ifdef RNG_RANLUX
|
||||
typedef std::ranlux48 RngEngine;
|
||||
typedef uint64_t RngStateType;
|
||||
static const int RngStateCount = 15;
|
||||
#endif
|
||||
#ifdef RNG_MT19937
|
||||
typedef std::mt19937 RngEngine;
|
||||
typedef uint32_t RngStateType;
|
||||
static const int RngStateCount = std::mt19937::state_size;
|
||||
#endif
|
||||
#ifdef RNG_SITMO
|
||||
typedef sitmo::prng_engine RngEngine;
|
||||
typedef uint64_t RngStateType;
|
||||
static const int RngStateCount = 13;
|
||||
#endif
|
||||
|
||||
std::vector<RngEngine> _generators;
|
||||
std::vector<std::uniform_real_distribution<RealD> > _uniform;
|
||||
std::vector<std::normal_distribution<RealD> > _gaussian;
|
||||
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
|
||||
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
|
||||
|
||||
///////////////////////
|
||||
// support for parallel init
|
||||
///////////////////////
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
// This goes by 10^12.
|
||||
// Consider quenched updating; likely never exceeding rate of 1000 sweeps
|
||||
// per second on any machine. This gives us of order 10^9 seconds, or 100 years
|
||||
// skip ahead.
|
||||
// For HMC unlikely to go at faster than a solve per second, and
|
||||
// tens of seconds per trajectory so this is clean in all reasonable cases,
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
const int shift = 30;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Weird compiler bug in Intel 2018.1 under O3 was generating 32bit and not 64 bit left shift.
|
||||
////////////////////////////////////////////////////////////////////
|
||||
volatile uint64_t skip = site;
|
||||
|
||||
skip = skip<<shift;
|
||||
|
||||
assert((skip >> shift)==site); // check for overflow
|
||||
|
||||
eng.discard(skip);
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
static RngEngine Reseed(RngEngine &eng)
|
||||
{
|
||||
std::vector<uint32_t> newseed;
|
||||
std::uniform_int_distribution<uint32_t> uid;
|
||||
return Reseed(eng,newseed,uid);
|
||||
}
|
||||
static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed,
|
||||
std::uniform_int_distribution<uint32_t> &uid)
|
||||
{
|
||||
const int reseeds=4;
|
||||
|
||||
newseed.resize(reseeds);
|
||||
for(int i=0;i<reseeds;i++){
|
||||
newseed[i] = uid(eng);
|
||||
}
|
||||
std::seed_seq sseq(newseed.begin(),newseed.end());
|
||||
return RngEngine(sseq);
|
||||
}
|
||||
|
||||
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
|
||||
saved.resize(RngStateCount);
|
||||
std::stringstream ss;
|
||||
ss<<eng;
|
||||
ss.seekg(0,ss.beg);
|
||||
for(int i=0;i<RngStateCount;i++){
|
||||
ss>>saved[i];
|
||||
}
|
||||
}
|
||||
void GetState(std::vector<RngStateType> & saved,int gen) {
|
||||
GetState(saved,_generators[gen]);
|
||||
}
|
||||
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
|
||||
assert(saved.size()==RngStateCount);
|
||||
std::stringstream ss;
|
||||
for(int i=0;i<RngStateCount;i++){
|
||||
ss<< saved[i]<<" ";
|
||||
}
|
||||
ss.seekg(0,ss.beg);
|
||||
ss>>eng;
|
||||
}
|
||||
void SetState(std::vector<RngStateType> & saved,int gen){
|
||||
SetState(saved,_generators[gen]);
|
||||
}
|
||||
void SetEngine(RngEngine &Eng, int gen){
|
||||
_generators[gen]=Eng;
|
||||
}
|
||||
void GetEngine(RngEngine &Eng, int gen){
|
||||
Eng=_generators[gen];
|
||||
}
|
||||
template<class source> void Seed(source &src, int gen)
|
||||
{
|
||||
_generators[gen] = RngEngine(src);
|
||||
}
|
||||
};
|
||||
|
||||
class GridSerialRNG : public GridRNGbase {
|
||||
public:
|
||||
|
||||
GridSerialRNG() : GridRNGbase() {
|
||||
_generators.resize(1);
|
||||
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
|
||||
|
||||
typedef typename sobj::scalar_type scalar_type;
|
||||
|
||||
int words = sizeof(sobj)/sizeof(scalar_type);
|
||||
|
||||
scalar_type *buf = (scalar_type *) & l;
|
||||
|
||||
dist[0].reset();
|
||||
for(int idx=0;idx<words;idx++){
|
||||
fillScalar(buf[idx],dist[0],_generators[0]);
|
||||
}
|
||||
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
|
||||
}
|
||||
|
||||
template <class distribution> inline void fill(ComplexF &l,std::vector<distribution> &dist){
|
||||
dist[0].reset();
|
||||
fillScalar(l,dist[0],_generators[0]);
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
template <class distribution> inline void fill(ComplexD &l,std::vector<distribution> &dist){
|
||||
dist[0].reset();
|
||||
fillScalar(l,dist[0],_generators[0]);
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
template <class distribution> inline void fill(RealF &l,std::vector<distribution> &dist){
|
||||
dist[0].reset();
|
||||
fillScalar(l,dist[0],_generators[0]);
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
template <class distribution> inline void fill(RealD &l,std::vector<distribution> &dist){
|
||||
dist[0].reset();
|
||||
fillScalar(l,dist[0],_generators[0]);
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
// vector fill
|
||||
template <class distribution> inline void fill(vComplexF &l,std::vector<distribution> &dist){
|
||||
RealF *pointer=(RealF *)&l;
|
||||
dist[0].reset();
|
||||
for(int i=0;i<2*vComplexF::Nsimd();i++){
|
||||
fillScalar(pointer[i],dist[0],_generators[0]);
|
||||
}
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
template <class distribution> inline void fill(vComplexD &l,std::vector<distribution> &dist){
|
||||
RealD *pointer=(RealD *)&l;
|
||||
dist[0].reset();
|
||||
for(int i=0;i<2*vComplexD::Nsimd();i++){
|
||||
fillScalar(pointer[i],dist[0],_generators[0]);
|
||||
}
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
template <class distribution> inline void fill(vRealF &l,std::vector<distribution> &dist){
|
||||
RealF *pointer=(RealF *)&l;
|
||||
dist[0].reset();
|
||||
for(int i=0;i<vRealF::Nsimd();i++){
|
||||
fillScalar(pointer[i],dist[0],_generators[0]);
|
||||
}
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
template <class distribution> inline void fill(vRealD &l,std::vector<distribution> &dist){
|
||||
RealD *pointer=(RealD *)&l;
|
||||
dist[0].reset();
|
||||
for(int i=0;i<vRealD::Nsimd();i++){
|
||||
fillScalar(pointer[i],dist[0],_generators[0]);
|
||||
}
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
std::seed_seq src(seeds.begin(),seeds.end());
|
||||
Seed(src,0);
|
||||
}
|
||||
|
||||
void SeedUniqueString(const std::string &s){
|
||||
std::vector<int> seeds;
|
||||
std::stringstream sha;
|
||||
seeds = GridChecksum::sha256_seeds(s);
|
||||
for(int i=0;i<seeds.size();i++) {
|
||||
sha << std::hex << seeds[i];
|
||||
}
|
||||
std::cout << GridLogMessage << "Intialising serial RNG with unique string '"
|
||||
<< s << "'" << std::endl;
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
};
|
||||
|
||||
class GridParallelRNG : public GridRNGbase {
|
||||
private:
|
||||
double _time_counter;
|
||||
GridBase *_grid;
|
||||
unsigned int _vol;
|
||||
|
||||
public:
|
||||
GridBase *Grid(void) const { return _grid; }
|
||||
int generator_idx(int os,int is) {
|
||||
return is*_grid->oSites()+os;
|
||||
}
|
||||
|
||||
GridParallelRNG(GridBase *grid) : GridRNGbase() {
|
||||
_grid = grid;
|
||||
_vol =_grid->iSites()*_grid->oSites();
|
||||
|
||||
_generators.resize(_vol);
|
||||
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
double inner_time_counter = usecond();
|
||||
|
||||
int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
|
||||
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l.Grid() too
|
||||
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
|
||||
int words = sizeof(scalar_object) / sizeof(scalar_type);
|
||||
|
||||
auto l_v = l.View();
|
||||
thread_for( ss, osites, {
|
||||
ExtractBuffer<scalar_object> buf(Nsimd);
|
||||
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
|
||||
|
||||
int sm = multiplicity * ss + m; // Maps the generator site to the fine site
|
||||
|
||||
for (int si = 0; si < Nsimd; si++) {
|
||||
|
||||
int gdx = generator_idx(ss, si); // index of generator state
|
||||
scalar_type *pointer = (scalar_type *)&buf[si];
|
||||
dist[gdx].reset();
|
||||
for (int idx = 0; idx < words; idx++)
|
||||
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
|
||||
}
|
||||
// merge into SIMD lanes, FIXME suboptimal implementation
|
||||
merge(l_v[sm], buf);
|
||||
}
|
||||
});
|
||||
// });
|
||||
|
||||
_time_counter += usecond()- inner_time_counter;
|
||||
}
|
||||
|
||||
void SeedUniqueString(const std::string &s){
|
||||
std::vector<int> seeds;
|
||||
seeds = GridChecksum::sha256_seeds(s);
|
||||
std::cout << GridLogMessage << "Intialising parallel RNG with unique string '"
|
||||
<< s << "'" << std::endl;
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
|
||||
// Everyone generates the same seed_seq based on input seeds
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
|
||||
std::seed_seq source(seeds.begin(),seeds.end());
|
||||
|
||||
RngEngine master_engine(source);
|
||||
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
////////////////////////////////////////////////
|
||||
// Skip ahead through a single stream.
|
||||
// Applicable to SITMO and other has based/crypto RNGs
|
||||
// Should be applicable to Mersenne Twister, but the C++11
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
// Where is it?
|
||||
int rank;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
// If this is one of mine we take it
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Machine and thread decomposition dependent seeding is efficient
|
||||
// and maximally parallel; but NOT reproducible from machine to machine.
|
||||
// Not ideal, but fastest way to reseed all nodes.
|
||||
////////////////////////////////////////////////////////////////
|
||||
{
|
||||
// Obtain one Reseed per processor
|
||||
int Nproc = _grid->ProcessorCount();
|
||||
std::vector<RngEngine> seeders(Nproc);
|
||||
int me= _grid->ThisRank();
|
||||
for(int p=0;p<Nproc;p++){
|
||||
seeders[p] = Reseed(master_engine);
|
||||
}
|
||||
master_engine = seeders[me];
|
||||
}
|
||||
|
||||
{
|
||||
// Obtain one reseeded generator per thread
|
||||
int Nthread = GridThread::GetThreads();
|
||||
std::vector<RngEngine> seeders(Nthread);
|
||||
for(int t=0;t<Nthread;t++){
|
||||
seeders[t] = Reseed(master_engine);
|
||||
}
|
||||
|
||||
thread_for( t, Nthread, {
|
||||
// set up one per local site in threaded fashion
|
||||
std::vector<uint32_t> newseeds;
|
||||
std::uniform_int_distribution<uint32_t> uid;
|
||||
for(int l=0;l<_grid->lSites();l++) {
|
||||
if ( (l%Nthread)==t ) {
|
||||
_generators[l] = Reseed(seeders[t],newseeds,uid);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void Report(){
|
||||
std::cout << GridLogMessage << "Time spent in the fill() routine by GridParallelRNG: "<< _time_counter/1e3 << " ms" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Support for rigorous test of RNG's
|
||||
// Return uniform random uint32_t from requested site generator
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
uint32_t GlobalU01(int gsite){
|
||||
|
||||
uint32_t the_number;
|
||||
// who
|
||||
int rank,o_idx,i_idx;
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
// draw
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
if( rank == _grid->ThisRank() ){
|
||||
the_number = _uid[l_idx](_generators[l_idx]);
|
||||
}
|
||||
|
||||
// share & return
|
||||
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
|
||||
return the_number;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
|
||||
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
|
||||
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
|
||||
|
||||
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
|
||||
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
|
||||
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,69 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_trace.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_TRACE_H
|
||||
#define GRID_LATTICE_TRACE_H
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Tracing, transposing, peeking, poking
|
||||
///////////////////////////////////////////////
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Trace
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
|
||||
{
|
||||
Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
|
||||
coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Trace Index level dependent operation
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
|
||||
{
|
||||
Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
|
||||
coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,68 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_transpose.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_TRANSPOSE_H
|
||||
#define GRID_LATTICE_TRANSPOSE_H
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Transpose
|
||||
///////////////////////////////////////////////
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Transpose
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
|
||||
Lattice<vobj> ret(lhs.Grid());
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(ret_v[ss], transpose(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Index level dependent transpose
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))>
|
||||
{
|
||||
Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid());
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,80 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_unary.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_UNARY_H
|
||||
#define GRID_LATTICE_UNARY_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
|
||||
Lattice<obj> ret_i(rhs_i.Grid());
|
||||
auto rhs = rhs_i.View();
|
||||
auto ret = ret_i.View();
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
accelerator_for(ss,rhs.size(),1,{
|
||||
ret[ss]=pow(rhs[ss],y);
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
|
||||
Lattice<obj> ret_i(rhs_i.Grid());
|
||||
auto rhs = rhs_i.View();
|
||||
auto ret = ret_i.View();
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],mod(rhs(ss),y));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
|
||||
Lattice<obj> ret_i(rhs_i.Grid());
|
||||
auto ret = ret_i.View();
|
||||
auto rhs = rhs_i.View();
|
||||
ret.Checkerboard() = rhs_i.Checkerboard();
|
||||
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],div(rhs(ss),y));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
|
||||
Lattice<obj> ret_i(rhs_i.Grid());
|
||||
auto rhs = rhs_i.View();
|
||||
auto ret = ret_i.View();
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,3 +0,0 @@
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
|
@ -1,330 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/parallelIO/NerscIO.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <unistd.h>
|
||||
#include <sys/utsname.h>
|
||||
#include <pwd.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Precision mapping
|
||||
///////////////////////////////////////////////////////
|
||||
template<class vobj> static std::string getFormatString (void)
|
||||
{
|
||||
std::string format;
|
||||
typedef typename getPrecision<vobj>::real_scalar_type stype;
|
||||
if ( sizeof(stype) == sizeof(float) ) {
|
||||
format = std::string("IEEE32BIG");
|
||||
}
|
||||
if ( sizeof(stype) == sizeof(double) ) {
|
||||
format = std::string("IEEE64BIG");
|
||||
}
|
||||
return format;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// header specification/interpretation
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
class FieldNormMetaData : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(FieldNormMetaData, double, norm2);
|
||||
};
|
||||
class FieldMetaData : Serializable {
|
||||
public:
|
||||
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(FieldMetaData,
|
||||
int, nd,
|
||||
std::vector<int>, dimension,
|
||||
std::vector<std::string>, boundary,
|
||||
int, data_start,
|
||||
std::string, hdr_version,
|
||||
std::string, storage_format,
|
||||
double, link_trace,
|
||||
double, plaquette,
|
||||
uint32_t, checksum,
|
||||
uint32_t, scidac_checksuma,
|
||||
uint32_t, scidac_checksumb,
|
||||
unsigned int, sequence_number,
|
||||
std::string, data_type,
|
||||
std::string, ensemble_id,
|
||||
std::string, ensemble_label,
|
||||
std::string, ildg_lfn,
|
||||
std::string, creator,
|
||||
std::string, creator_hardware,
|
||||
std::string, creation_date,
|
||||
std::string, archive_date,
|
||||
std::string, floating_point);
|
||||
// WARNING: non-initialised values might lead to twisted parallel IO
|
||||
// issues, std::string are fine because they initliase to size 0
|
||||
// as per C++ standard.
|
||||
FieldMetaData(void)
|
||||
: nd(4), dimension(4,0), boundary(4, ""), data_start(0),
|
||||
link_trace(0.), plaquette(0.), checksum(0),
|
||||
scidac_checksuma(0), scidac_checksumb(0), sequence_number(0)
|
||||
{}
|
||||
};
|
||||
|
||||
// PB disable using namespace - this is a header and forces namesapce visibility for all
|
||||
// including files
|
||||
//using namespace Grid;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Bit and Physical Checksumming and QA of data
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
inline void GridMetaData(GridBase *grid,FieldMetaData &header)
|
||||
{
|
||||
int nd = grid->_ndimension;
|
||||
header.nd = nd;
|
||||
header.dimension.resize(nd);
|
||||
header.boundary.resize(nd);
|
||||
header.data_start = 0;
|
||||
for(int d=0;d<nd;d++) {
|
||||
header.dimension[d] = grid->_fdimensions[d];
|
||||
}
|
||||
for(int d=0;d<nd;d++) {
|
||||
header.boundary[d] = std::string("PERIODIC");
|
||||
}
|
||||
}
|
||||
|
||||
inline void MachineCharacteristics(FieldMetaData &header)
|
||||
{
|
||||
// Who
|
||||
struct passwd *pw = getpwuid (getuid());
|
||||
if (pw) header.creator = std::string(pw->pw_name);
|
||||
|
||||
// When
|
||||
std::time_t t = std::time(nullptr);
|
||||
std::tm tm_ = *std::localtime(&t);
|
||||
std::ostringstream oss;
|
||||
// oss << std::put_time(&tm_, "%c %Z");
|
||||
header.creation_date = oss.str();
|
||||
header.archive_date = header.creation_date;
|
||||
|
||||
// What
|
||||
struct utsname name; uname(&name);
|
||||
header.creator_hardware = std::string(name.nodename)+"-";
|
||||
header.creator_hardware+= std::string(name.machine)+"-";
|
||||
header.creator_hardware+= std::string(name.sysname)+"-";
|
||||
header.creator_hardware+= std::string(name.release);
|
||||
}
|
||||
|
||||
#define dump_meta_data(field, s) \
|
||||
s << "BEGIN_HEADER" << std::endl; \
|
||||
s << "HDR_VERSION = " << field.hdr_version << std::endl; \
|
||||
s << "DATATYPE = " << field.data_type << std::endl; \
|
||||
s << "STORAGE_FORMAT = " << field.storage_format << std::endl; \
|
||||
for(int i=0;i<4;i++){ \
|
||||
s << "DIMENSION_" << i+1 << " = " << field.dimension[i] << std::endl ; \
|
||||
} \
|
||||
s << "LINK_TRACE = " << std::setprecision(10) << field.link_trace << std::endl; \
|
||||
s << "PLAQUETTE = " << std::setprecision(10) << field.plaquette << std::endl; \
|
||||
for(int i=0;i<4;i++){ \
|
||||
s << "BOUNDARY_"<<i+1<<" = " << field.boundary[i] << std::endl; \
|
||||
} \
|
||||
\
|
||||
s << "CHECKSUM = "<< std::hex << std::setw(10) << field.checksum << std::dec<<std::endl; \
|
||||
s << "SCIDAC_CHECKSUMA = "<< std::hex << std::setw(10) << field.scidac_checksuma << std::dec<<std::endl; \
|
||||
s << "SCIDAC_CHECKSUMB = "<< std::hex << std::setw(10) << field.scidac_checksumb << std::dec<<std::endl; \
|
||||
s << "ENSEMBLE_ID = " << field.ensemble_id << std::endl; \
|
||||
s << "ENSEMBLE_LABEL = " << field.ensemble_label << std::endl; \
|
||||
s << "SEQUENCE_NUMBER = " << field.sequence_number << std::endl; \
|
||||
s << "CREATOR = " << field.creator << std::endl; \
|
||||
s << "CREATOR_HARDWARE = "<< field.creator_hardware << std::endl; \
|
||||
s << "CREATION_DATE = " << field.creation_date << std::endl; \
|
||||
s << "ARCHIVE_DATE = " << field.archive_date << std::endl; \
|
||||
s << "FLOATING_POINT = " << field.floating_point << std::endl; \
|
||||
s << "END_HEADER" << std::endl;
|
||||
|
||||
template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMetaData &header)
|
||||
{
|
||||
GridBase *grid = field.Grid();
|
||||
std::string format = getFormatString<vobj>();
|
||||
header.floating_point = format;
|
||||
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
|
||||
GridMetaData(grid,header);
|
||||
MachineCharacteristics(header);
|
||||
}
|
||||
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
|
||||
{
|
||||
// How to convert data precision etc...
|
||||
header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
|
||||
header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
|
||||
}
|
||||
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
|
||||
{
|
||||
// How to convert data precision etc...
|
||||
header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
|
||||
header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
|
||||
}
|
||||
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
|
||||
{
|
||||
|
||||
GridBase *grid = field.Grid();
|
||||
std::string format = getFormatString<vLorentzColourMatrixF>();
|
||||
header.floating_point = format;
|
||||
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
|
||||
GridMetaData(grid,header);
|
||||
GaugeStatistics(field,header);
|
||||
MachineCharacteristics(header);
|
||||
}
|
||||
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
|
||||
{
|
||||
GridBase *grid = field.Grid();
|
||||
std::string format = getFormatString<vLorentzColourMatrixD>();
|
||||
header.floating_point = format;
|
||||
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
|
||||
GridMetaData(grid,header);
|
||||
GaugeStatistics(field,header);
|
||||
MachineCharacteristics(header);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Utilities ; these are QCD aware
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
inline void reconstruct3(LorentzColourMatrix & cm)
|
||||
{
|
||||
const int x=0;
|
||||
const int y=1;
|
||||
const int z=2;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
|
||||
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
|
||||
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Some data types for intermediate storage
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
|
||||
|
||||
typedef iLorentzColour2x3<Complex> LorentzColour2x3;
|
||||
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
|
||||
typedef iLorentzColour2x3<ComplexD> LorentzColour2x3D;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// Simple classes for precision conversion
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
template <class fobj, class sobj>
|
||||
struct BinarySimpleUnmunger {
|
||||
typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
|
||||
typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
|
||||
|
||||
void operator()(sobj &in, fobj &out) {
|
||||
// take word by word and transform accoding to the status
|
||||
fobj_stype *out_buffer = (fobj_stype *)&out;
|
||||
sobj_stype *in_buffer = (sobj_stype *)∈
|
||||
size_t fobj_words = sizeof(out) / sizeof(fobj_stype);
|
||||
size_t sobj_words = sizeof(in) / sizeof(sobj_stype);
|
||||
assert(fobj_words == sobj_words);
|
||||
|
||||
for (unsigned int word = 0; word < sobj_words; word++)
|
||||
out_buffer[word] = in_buffer[word]; // type conversion on the fly
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template <class fobj, class sobj>
|
||||
struct BinarySimpleMunger {
|
||||
typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
|
||||
typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
|
||||
|
||||
void operator()(fobj &in, sobj &out) {
|
||||
// take word by word and transform accoding to the status
|
||||
fobj_stype *in_buffer = (fobj_stype *)∈
|
||||
sobj_stype *out_buffer = (sobj_stype *)&out;
|
||||
size_t fobj_words = sizeof(in) / sizeof(fobj_stype);
|
||||
size_t sobj_words = sizeof(out) / sizeof(sobj_stype);
|
||||
assert(fobj_words == sobj_words);
|
||||
|
||||
for (unsigned int word = 0; word < sobj_words; word++)
|
||||
out_buffer[word] = in_buffer[word]; // type conversion on the fly
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class fobj,class sobj>
|
||||
struct GaugeSimpleMunger{
|
||||
void operator()(fobj &in, sobj &out) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
for (int i = 0; i < Nc; i++) {
|
||||
for (int j = 0; j < Nc; j++) {
|
||||
out(mu)()(i, j) = in(mu)()(i, j);
|
||||
}}
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template <class fobj, class sobj>
|
||||
struct GaugeSimpleUnmunger {
|
||||
|
||||
void operator()(sobj &in, fobj &out) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
for (int i = 0; i < Nc; i++) {
|
||||
for (int j = 0; j < Nc; j++) {
|
||||
out(mu)()(i, j) = in(mu)()(i, j);
|
||||
}}
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template<class fobj,class sobj>
|
||||
struct Gauge3x2munger{
|
||||
void operator() (fobj &in,sobj &out){
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int i=0;i<2;i++){
|
||||
for(int j=0;j<3;j++){
|
||||
out(mu)()(i,j) = in(mu)(i)(j);
|
||||
}}
|
||||
}
|
||||
reconstruct3(out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class fobj,class sobj>
|
||||
struct Gauge3x2unmunger{
|
||||
void operator() (sobj &in,fobj &out){
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
for(int i=0;i<2;i++){
|
||||
for(int j=0;j<3;j++){
|
||||
out(mu)(i)(j) = in(mu)()(i,j);
|
||||
}}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,359 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/parallelIO/NerscIO.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Matt Spraggs <matthew.spraggs@gmail.com>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_NERSC_IO_H
|
||||
#define GRID_NERSC_IO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Write and read from fstream; comput header offset for payload
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
class NerscIO : public BinaryIO {
|
||||
public:
|
||||
|
||||
static inline void truncate(std::string file){
|
||||
std::ofstream fout(file,std::ios::out);
|
||||
}
|
||||
|
||||
static inline unsigned int writeHeader(FieldMetaData &field,std::string file)
|
||||
{
|
||||
std::ofstream fout(file,std::ios::out|std::ios::in);
|
||||
fout.seekp(0,std::ios::beg);
|
||||
dump_meta_data(field, fout);
|
||||
field.data_start = fout.tellp();
|
||||
return field.data_start;
|
||||
}
|
||||
|
||||
// for the header-reader
|
||||
static inline int readHeader(std::string file,GridBase *grid, FieldMetaData &field)
|
||||
{
|
||||
std::map<std::string,std::string> header;
|
||||
std::string line;
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// read the header
|
||||
//////////////////////////////////////////////////
|
||||
std::ifstream fin(file);
|
||||
|
||||
getline(fin,line); // read one line and insist is
|
||||
|
||||
removeWhitespace(line);
|
||||
std::cout << GridLogMessage << "* " << line << std::endl;
|
||||
|
||||
assert(line==std::string("BEGIN_HEADER"));
|
||||
|
||||
do {
|
||||
getline(fin,line); // read one line
|
||||
std::cout << GridLogMessage << "* "<<line<< std::endl;
|
||||
int eq = line.find("=");
|
||||
if(eq >0) {
|
||||
std::string key=line.substr(0,eq);
|
||||
std::string val=line.substr(eq+1);
|
||||
removeWhitespace(key);
|
||||
removeWhitespace(val);
|
||||
|
||||
header[key] = val;
|
||||
}
|
||||
} while( line.find("END_HEADER") == std::string::npos );
|
||||
|
||||
field.data_start = fin.tellg();
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// chomp the values
|
||||
//////////////////////////////////////////////////
|
||||
field.hdr_version = header["HDR_VERSION"];
|
||||
field.data_type = header["DATATYPE"];
|
||||
field.storage_format = header["STORAGE_FORMAT"];
|
||||
|
||||
field.dimension[0] = std::stol(header["DIMENSION_1"]);
|
||||
field.dimension[1] = std::stol(header["DIMENSION_2"]);
|
||||
field.dimension[2] = std::stol(header["DIMENSION_3"]);
|
||||
field.dimension[3] = std::stol(header["DIMENSION_4"]);
|
||||
|
||||
assert(grid->_ndimension == 4);
|
||||
for(int d=0;d<4;d++){
|
||||
assert(grid->_fdimensions[d]==field.dimension[d]);
|
||||
}
|
||||
|
||||
field.link_trace = std::stod(header["LINK_TRACE"]);
|
||||
field.plaquette = std::stod(header["PLAQUETTE"]);
|
||||
|
||||
field.boundary[0] = header["BOUNDARY_1"];
|
||||
field.boundary[1] = header["BOUNDARY_2"];
|
||||
field.boundary[2] = header["BOUNDARY_3"];
|
||||
field.boundary[3] = header["BOUNDARY_4"];
|
||||
|
||||
field.checksum = std::stoul(header["CHECKSUM"],0,16);
|
||||
field.ensemble_id = header["ENSEMBLE_ID"];
|
||||
field.ensemble_label = header["ENSEMBLE_LABEL"];
|
||||
field.sequence_number = std::stol(header["SEQUENCE_NUMBER"]);
|
||||
field.creator = header["CREATOR"];
|
||||
field.creator_hardware = header["CREATOR_HARDWARE"];
|
||||
field.creation_date = header["CREATION_DATE"];
|
||||
field.archive_date = header["ARCHIVE_DATE"];
|
||||
field.floating_point = header["FLOATING_POINT"];
|
||||
|
||||
return field.data_start;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Now the meat: the object readers
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class vsimd>
|
||||
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
|
||||
FieldMetaData& header,
|
||||
std::string file)
|
||||
{
|
||||
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
uint64_t offset = readHeader(file,Umu.Grid(),header);
|
||||
|
||||
FieldMetaData clone(header);
|
||||
|
||||
std::string format(header.floating_point);
|
||||
|
||||
int ieee32big = (format == std::string("IEEE32BIG"));
|
||||
int ieee32 = (format == std::string("IEEE32"));
|
||||
int ieee64big = (format == std::string("IEEE64BIG"));
|
||||
int ieee64 = (format == std::string("IEEE64"));
|
||||
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
// depending on datatype, set up munger;
|
||||
// munger is a function of <floating point, Real, data_type>
|
||||
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
|
||||
if ( ieee32 || ieee32big ) {
|
||||
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
|
||||
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
}
|
||||
if ( ieee64 || ieee64big ) {
|
||||
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
|
||||
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
}
|
||||
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
|
||||
if ( ieee32 || ieee32big ) {
|
||||
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
|
||||
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
}
|
||||
if ( ieee64 || ieee64big ) {
|
||||
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
|
||||
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
}
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
GaugeStatistics(Umu,clone);
|
||||
|
||||
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
|
||||
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
|
||||
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette
|
||||
<<" header "<<header.plaquette<<std::endl;
|
||||
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace
|
||||
<<" header "<<header.link_trace<<std::endl;
|
||||
|
||||
if ( fabs(clone.plaquette -header.plaquette ) >= 1.0e-5 ) {
|
||||
std::cout << " Plaquette mismatch "<<std::endl;
|
||||
}
|
||||
if ( nersc_csum != header.checksum ) {
|
||||
std::cerr << " checksum mismatch " << std::endl;
|
||||
std::cerr << " plaqs " << clone.plaquette << " " << header.plaquette << std::endl;
|
||||
std::cerr << " trace " << clone.link_trace<< " " << header.link_trace<< std::endl;
|
||||
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
||||
exit(0);
|
||||
}
|
||||
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
||||
assert(nersc_csum == header.checksum );
|
||||
|
||||
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
|
||||
}
|
||||
|
||||
template<class vsimd>
|
||||
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
|
||||
std::string file,
|
||||
int two_row,
|
||||
int bits32)
|
||||
{
|
||||
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
|
||||
|
||||
typedef iLorentzColourMatrix<vsimd> vobj;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
FieldMetaData header;
|
||||
///////////////////////////////////////////
|
||||
// Following should become arguments
|
||||
///////////////////////////////////////////
|
||||
header.sequence_number = 1;
|
||||
header.ensemble_id = "UKQCD";
|
||||
header.ensemble_label = "DWF";
|
||||
|
||||
typedef LorentzColourMatrixD fobj3D;
|
||||
typedef LorentzColour2x3D fobj2D;
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
GridMetaData(grid,header);
|
||||
assert(header.nd==4);
|
||||
GaugeStatistics(Umu,header);
|
||||
MachineCharacteristics(header);
|
||||
|
||||
uint64_t offset;
|
||||
|
||||
// Sod it -- always write 3x3 double
|
||||
header.floating_point = std::string("IEEE64BIG");
|
||||
header.data_type = std::string("4D_SU3_GAUGE_3x3");
|
||||
GaugeSimpleUnmunger<fobj3D,sobj> munge;
|
||||
if ( grid->IsBoss() ) {
|
||||
truncate(file);
|
||||
offset = writeHeader(header,file);
|
||||
}
|
||||
grid->Broadcast(0,(void *)&offset,sizeof(offset));
|
||||
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
header.checksum = nersc_csum;
|
||||
if ( grid->IsBoss() ) {
|
||||
writeHeader(header,file);
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
|
||||
<<std::hex<<header.checksum
|
||||
<<std::dec<<" plaq "<< header.plaquette <<std::endl;
|
||||
|
||||
}
|
||||
///////////////////////////////
|
||||
// RNG state
|
||||
///////////////////////////////
|
||||
static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG ¶llel,std::string file)
|
||||
{
|
||||
typedef typename GridParallelRNG::RngStateType RngStateType;
|
||||
|
||||
// Following should become arguments
|
||||
FieldMetaData header;
|
||||
header.sequence_number = 1;
|
||||
header.ensemble_id = "UKQCD";
|
||||
header.ensemble_label = "DWF";
|
||||
|
||||
GridBase *grid = parallel.Grid();
|
||||
|
||||
GridMetaData(grid,header);
|
||||
assert(header.nd==4);
|
||||
header.link_trace=0.0;
|
||||
header.plaquette=0.0;
|
||||
MachineCharacteristics(header);
|
||||
|
||||
uint64_t offset;
|
||||
|
||||
#ifdef RNG_RANLUX
|
||||
header.floating_point = std::string("UINT64");
|
||||
header.data_type = std::string("RANLUX48");
|
||||
#endif
|
||||
#ifdef RNG_MT19937
|
||||
header.floating_point = std::string("UINT32");
|
||||
header.data_type = std::string("MT19937");
|
||||
#endif
|
||||
#ifdef RNG_SITMO
|
||||
header.floating_point = std::string("UINT64");
|
||||
header.data_type = std::string("SITMO");
|
||||
#endif
|
||||
|
||||
if ( grid->IsBoss() ) {
|
||||
truncate(file);
|
||||
offset = writeHeader(header,file);
|
||||
}
|
||||
grid->Broadcast(0,(void *)&offset,sizeof(offset));
|
||||
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::writeRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
header.checksum = nersc_csum;
|
||||
if ( grid->IsBoss() ) {
|
||||
offset = writeHeader(header,file);
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage
|
||||
<<"Written NERSC RNG STATE "<<file<< " checksum "
|
||||
<<std::hex<<header.checksum
|
||||
<<std::dec<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,FieldMetaData& header,std::string file)
|
||||
{
|
||||
typedef typename GridParallelRNG::RngStateType RngStateType;
|
||||
|
||||
GridBase *grid = parallel.Grid();
|
||||
|
||||
uint64_t offset = readHeader(file,grid,header);
|
||||
|
||||
FieldMetaData clone(header);
|
||||
|
||||
std::string format(header.floating_point);
|
||||
std::string data_type(header.data_type);
|
||||
|
||||
#ifdef RNG_RANLUX
|
||||
assert(format == std::string("UINT64"));
|
||||
assert(data_type == std::string("RANLUX48"));
|
||||
#endif
|
||||
#ifdef RNG_MT19937
|
||||
assert(format == std::string("UINT32"));
|
||||
assert(data_type == std::string("MT19937"));
|
||||
#endif
|
||||
#ifdef RNG_SITMO
|
||||
assert(format == std::string("UINT64"));
|
||||
assert(data_type == std::string("SITMO"));
|
||||
#endif
|
||||
|
||||
// depending on datatype, set up munger;
|
||||
// munger is a function of <floating point, Real, data_type>
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::readRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
|
||||
if ( nersc_csum != header.checksum ) {
|
||||
std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
|
||||
exit(0);
|
||||
}
|
||||
assert(nersc_csum == header.checksum );
|
||||
|
||||
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(QCD);
|
||||
|
||||
#endif
|
@ -1,105 +0,0 @@
|
||||
#ifndef _GRID_STAT_H
|
||||
#define _GRID_STAT_H
|
||||
|
||||
#ifdef AVX512
|
||||
#define _KNIGHTS_LANDING_ROOTONLY
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Extra KNL counters from MCDRAM
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef _KNIGHTS_LANDING_
|
||||
#define NMC 6
|
||||
#define NEDC 8
|
||||
struct ctrs
|
||||
{
|
||||
uint64_t mcrd[NMC];
|
||||
uint64_t mcwr[NMC];
|
||||
uint64_t edcrd[NEDC];
|
||||
uint64_t edcwr[NEDC];
|
||||
uint64_t edchite[NEDC];
|
||||
uint64_t edchitm[NEDC];
|
||||
uint64_t edcmisse[NEDC];
|
||||
uint64_t edcmissm[NEDC];
|
||||
};
|
||||
// Peter/Azusa:
|
||||
// Our modification of a code provided by Larry Meadows from Intel
|
||||
// Verified by email exchange non-NDA, ok for github. Should be as uses /sys/devices/ FS
|
||||
// so is already public and in the linux kernel for KNL.
|
||||
struct knl_gbl_
|
||||
{
|
||||
int mc_rd[NMC];
|
||||
int mc_wr[NMC];
|
||||
int edc_rd[NEDC];
|
||||
int edc_wr[NEDC];
|
||||
int edc_hite[NEDC];
|
||||
int edc_hitm[NEDC];
|
||||
int edc_misse[NEDC];
|
||||
int edc_missm[NEDC];
|
||||
};
|
||||
#endif
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class PmuStat
|
||||
{
|
||||
uint64_t counters[8][256];
|
||||
#ifdef _KNIGHTS_LANDING_
|
||||
static struct knl_gbl_ gbl;
|
||||
#endif
|
||||
const char *name;
|
||||
|
||||
uint64_t reads; // memory reads
|
||||
uint64_t writes; // memory writes
|
||||
uint64_t mrstart; // memory read counter at start of parallel region
|
||||
uint64_t mrend; // memory read counter at end of parallel region
|
||||
uint64_t mwstart; // memory write counter at start of parallel region
|
||||
uint64_t mwend; // memory write counter at end of parallel region
|
||||
|
||||
// cumulative counters
|
||||
uint64_t count; // number of invocations
|
||||
uint64_t tregion; // total time in parallel region (from thread 0)
|
||||
uint64_t tcycles; // total cycles inside parallel region
|
||||
uint64_t inst, ref, cyc; // fixed counters
|
||||
uint64_t pmc0, pmc1;// pmu
|
||||
// add memory counters here
|
||||
// temp variables
|
||||
uint64_t tstart; // tsc at start of parallel region
|
||||
uint64_t tend; // tsc at end of parallel region
|
||||
// map for ctrs values
|
||||
// 0 pmc0 start
|
||||
// 1 pmc0 end
|
||||
// 2 pmc1 start
|
||||
// 3 pmc1 end
|
||||
// 4 tsc start
|
||||
// 5 tsc end
|
||||
static bool pmu_initialized;
|
||||
public:
|
||||
static bool is_init(void){ return pmu_initialized;}
|
||||
static void pmu_init(void);
|
||||
static void pmu_fini(void);
|
||||
static void pmu_start(void);
|
||||
static void pmu_stop(void);
|
||||
void accum(int nthreads);
|
||||
static void xmemctrs(uint64_t *mr, uint64_t *mw);
|
||||
void start(void);
|
||||
void enter(int t);
|
||||
void exit(int t);
|
||||
void print(void);
|
||||
void init(const char *regname);
|
||||
void clear(void);
|
||||
#ifdef _KNIGHTS_LANDING_
|
||||
static void KNLsetup(void);
|
||||
static uint64_t KNLreadctr(int fd);
|
||||
static void KNLreadctrs(ctrs &c);
|
||||
static void KNLevsetup(const char *ename, int &fd, int event, int umask);
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
||||
|
529
Grid/qcd/QCD.h
529
Grid/qcd/QCD.h
@ -1,529 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/QCD.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
static constexpr int Xdir = 0;
|
||||
static constexpr int Ydir = 1;
|
||||
static constexpr int Zdir = 2;
|
||||
static constexpr int Tdir = 3;
|
||||
|
||||
static constexpr int Xp = 0;
|
||||
static constexpr int Yp = 1;
|
||||
static constexpr int Zp = 2;
|
||||
static constexpr int Tp = 3;
|
||||
static constexpr int Xm = 4;
|
||||
static constexpr int Ym = 5;
|
||||
static constexpr int Zm = 6;
|
||||
static constexpr int Tm = 7;
|
||||
|
||||
static constexpr int Nc=3;
|
||||
static constexpr int Ns=4;
|
||||
static constexpr int Nd=4;
|
||||
static constexpr int Nhs=2; // half spinor
|
||||
static constexpr int Nds=8; // double stored gauge field
|
||||
static constexpr int Ngp=2; // gparity index range
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// QCD iMatrix types
|
||||
// Index conventions: Lorentz x Spin x Colour
|
||||
// note: static constexpr int or constexpr will work for type deductions
|
||||
// with the intel compiler (up to version 17)
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
#define ColourIndex (2)
|
||||
#define SpinIndex (1)
|
||||
#define LorentzIndex (0)
|
||||
|
||||
// Also should make these a named enum type
|
||||
static constexpr int DaggerNo=0;
|
||||
static constexpr int DaggerYes=1;
|
||||
static constexpr int InverseNo=0;
|
||||
static constexpr int InverseYes=1;
|
||||
|
||||
// Useful traits is this a spin index
|
||||
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
|
||||
|
||||
const int SpinorIndex = 2;
|
||||
template<typename T> struct isSpinor {
|
||||
static constexpr bool value = (SpinorIndex==T::TensorLevel);
|
||||
};
|
||||
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
|
||||
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
|
||||
|
||||
// ChrisK very keen to add extra space for Gparity doubling.
|
||||
//
|
||||
// Also add domain wall index, in a way where Wilson operator
|
||||
// naturally distributes across the 5th dimensions.
|
||||
//
|
||||
// That probably makes for GridRedBlack4dCartesian grid.
|
||||
|
||||
// s,sp,c,spc,lc
|
||||
|
||||
template<typename vtype> using iSinglet = iScalar<iScalar<iScalar<vtype> > >;
|
||||
template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iScalar<vtype>, Ns> >;
|
||||
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
|
||||
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
|
||||
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
|
||||
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
|
||||
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
|
||||
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
|
||||
template<typename vtype> using iSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Ns> >;
|
||||
template<typename vtype> using iHalfSpinVector = iScalar<iVector<iScalar<vtype>, Nhs> >;
|
||||
template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
|
||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||
|
||||
|
||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||
|
||||
// Spin matrix
|
||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||
typedef iSpinMatrix<ComplexF > SpinMatrixF;
|
||||
typedef iSpinMatrix<ComplexD > SpinMatrixD;
|
||||
|
||||
typedef iSpinMatrix<vComplex > vSpinMatrix;
|
||||
typedef iSpinMatrix<vComplexF> vSpinMatrixF;
|
||||
typedef iSpinMatrix<vComplexD> vSpinMatrixD;
|
||||
|
||||
// Colour Matrix
|
||||
typedef iColourMatrix<Complex > ColourMatrix;
|
||||
typedef iColourMatrix<ComplexF > ColourMatrixF;
|
||||
typedef iColourMatrix<ComplexD > ColourMatrixD;
|
||||
|
||||
typedef iColourMatrix<vComplex > vColourMatrix;
|
||||
typedef iColourMatrix<vComplexF> vColourMatrixF;
|
||||
typedef iColourMatrix<vComplexD> vColourMatrixD;
|
||||
|
||||
// SpinColour matrix
|
||||
typedef iSpinColourMatrix<Complex > SpinColourMatrix;
|
||||
typedef iSpinColourMatrix<ComplexF > SpinColourMatrixF;
|
||||
typedef iSpinColourMatrix<ComplexD > SpinColourMatrixD;
|
||||
|
||||
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
|
||||
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
|
||||
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
|
||||
|
||||
// SpinColourSpinColour matrix
|
||||
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
|
||||
typedef iSpinColourSpinColourMatrix<ComplexF > SpinColourSpinColourMatrixF;
|
||||
typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
|
||||
|
||||
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
|
||||
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
|
||||
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
|
||||
|
||||
// SpinColourSpinColour matrix
|
||||
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
|
||||
typedef iSpinColourSpinColourMatrix<ComplexF > SpinColourSpinColourMatrixF;
|
||||
typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
|
||||
|
||||
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
|
||||
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
|
||||
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
|
||||
|
||||
// LorentzColour
|
||||
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
|
||||
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
|
||||
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
|
||||
|
||||
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
|
||||
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
|
||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
|
||||
|
||||
// DoubleStored gauge field
|
||||
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
|
||||
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
|
||||
|
||||
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||
|
||||
// Spin vector
|
||||
typedef iSpinVector<Complex > SpinVector;
|
||||
typedef iSpinVector<ComplexF> SpinVectorF;
|
||||
typedef iSpinVector<ComplexD> SpinVectorD;
|
||||
|
||||
typedef iSpinVector<vComplex > vSpinVector;
|
||||
typedef iSpinVector<vComplexF> vSpinVectorF;
|
||||
typedef iSpinVector<vComplexD> vSpinVectorD;
|
||||
|
||||
// Colour vector
|
||||
typedef iColourVector<Complex > ColourVector;
|
||||
typedef iColourVector<ComplexF> ColourVectorF;
|
||||
typedef iColourVector<ComplexD> ColourVectorD;
|
||||
|
||||
typedef iColourVector<vComplex > vColourVector;
|
||||
typedef iColourVector<vComplexF> vColourVectorF;
|
||||
typedef iColourVector<vComplexD> vColourVectorD;
|
||||
|
||||
// SpinColourVector
|
||||
typedef iSpinColourVector<Complex > SpinColourVector;
|
||||
typedef iSpinColourVector<ComplexF> SpinColourVectorF;
|
||||
typedef iSpinColourVector<ComplexD> SpinColourVectorD;
|
||||
|
||||
typedef iSpinColourVector<vComplex > vSpinColourVector;
|
||||
typedef iSpinColourVector<vComplexF> vSpinColourVectorF;
|
||||
typedef iSpinColourVector<vComplexD> vSpinColourVectorD;
|
||||
|
||||
// HalfSpin vector
|
||||
typedef iHalfSpinVector<Complex > HalfSpinVector;
|
||||
typedef iHalfSpinVector<ComplexF> HalfSpinVectorF;
|
||||
typedef iHalfSpinVector<ComplexD> HalfSpinVectorD;
|
||||
|
||||
typedef iHalfSpinVector<vComplex > vHalfSpinVector;
|
||||
typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF;
|
||||
typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD;
|
||||
|
||||
// HalfSpinColour vector
|
||||
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
|
||||
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
|
||||
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
|
||||
|
||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||
|
||||
// singlets
|
||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||
typedef iSinglet<ComplexF> TComplexF; // FIXME This is painful. Tensor singlet complex type.
|
||||
typedef iSinglet<ComplexD> TComplexD; // FIXME This is painful. Tensor singlet complex type.
|
||||
|
||||
typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure
|
||||
typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure
|
||||
typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure
|
||||
|
||||
typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without?
|
||||
typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without?
|
||||
typedef iSinglet<RealD> TRealD; // Shouldn't need these; can I make it work without?
|
||||
|
||||
typedef iSinglet<vReal > vTReal;
|
||||
typedef iSinglet<vRealF> vTRealF;
|
||||
typedef iSinglet<vRealD> vTRealD;
|
||||
|
||||
typedef iSinglet<vInteger> vTInteger;
|
||||
typedef iSinglet<Integer > TInteger;
|
||||
|
||||
|
||||
// Lattices of these
|
||||
typedef Lattice<vColourMatrix> LatticeColourMatrix;
|
||||
typedef Lattice<vColourMatrixF> LatticeColourMatrixF;
|
||||
typedef Lattice<vColourMatrixD> LatticeColourMatrixD;
|
||||
|
||||
typedef Lattice<vSpinMatrix> LatticeSpinMatrix;
|
||||
typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF;
|
||||
typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD;
|
||||
|
||||
typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix;
|
||||
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
|
||||
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
|
||||
|
||||
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
|
||||
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
|
||||
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
|
||||
|
||||
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
|
||||
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
|
||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
|
||||
|
||||
// DoubleStored gauge field
|
||||
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
|
||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
|
||||
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
|
||||
|
||||
typedef Lattice<vSpinVector> LatticeSpinVector;
|
||||
typedef Lattice<vSpinVectorF> LatticeSpinVectorF;
|
||||
typedef Lattice<vSpinVectorD> LatticeSpinVectorD;
|
||||
|
||||
typedef Lattice<vColourVector> LatticeColourVector;
|
||||
typedef Lattice<vColourVectorF> LatticeColourVectorF;
|
||||
typedef Lattice<vColourVectorD> LatticeColourVectorD;
|
||||
|
||||
typedef Lattice<vSpinColourVector> LatticeSpinColourVector;
|
||||
typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF;
|
||||
typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD;
|
||||
|
||||
typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector;
|
||||
typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF;
|
||||
typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD;
|
||||
|
||||
typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector;
|
||||
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
|
||||
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
|
||||
|
||||
typedef Lattice<vTReal> LatticeReal;
|
||||
typedef Lattice<vTRealF> LatticeRealF;
|
||||
typedef Lattice<vTRealD> LatticeRealD;
|
||||
|
||||
typedef Lattice<vTComplex> LatticeComplex;
|
||||
typedef Lattice<vTComplexF> LatticeComplexF;
|
||||
typedef Lattice<vTComplexD> LatticeComplexD;
|
||||
|
||||
typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
|
||||
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Physical names for things
|
||||
///////////////////////////////////////////
|
||||
typedef LatticeHalfSpinColourVector LatticeHalfFermion;
|
||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
|
||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
|
||||
|
||||
typedef LatticeSpinColourVector LatticeFermion;
|
||||
typedef LatticeSpinColourVectorF LatticeFermionF;
|
||||
typedef LatticeSpinColourVectorD LatticeFermionD;
|
||||
|
||||
typedef LatticeSpinColourMatrix LatticePropagator;
|
||||
typedef LatticeSpinColourMatrixF LatticePropagatorF;
|
||||
typedef LatticeSpinColourMatrixD LatticePropagatorD;
|
||||
|
||||
typedef LatticeLorentzColourMatrix LatticeGaugeField;
|
||||
typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF;
|
||||
typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD;
|
||||
|
||||
typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField;
|
||||
typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF;
|
||||
typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD;
|
||||
|
||||
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
|
||||
|
||||
// Uhgg... typing this hurt ;)
|
||||
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
|
||||
typedef Lattice<vColourVector> LatticeStaggeredFermion;
|
||||
typedef Lattice<vColourVectorF> LatticeStaggeredFermionF;
|
||||
typedef Lattice<vColourVectorD> LatticeStaggeredFermionD;
|
||||
|
||||
typedef Lattice<vColourMatrix> LatticeStaggeredPropagator;
|
||||
typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF;
|
||||
typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Peek and Poke named after physics attributes
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//spin
|
||||
template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(PeekIndex<SpinIndex>(rhs,0))
|
||||
{
|
||||
return PeekIndex<SpinIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekSpin(const vobj &rhs,int i,int j) -> decltype(PeekIndex<SpinIndex>(rhs,0,0))
|
||||
{
|
||||
return PeekIndex<SpinIndex>(rhs,i,j);
|
||||
}
|
||||
template<class vobj> auto peekSpin(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<SpinIndex>(rhs,0))
|
||||
{
|
||||
return PeekIndex<SpinIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekSpin(const Lattice<vobj> &rhs,int i,int j) -> decltype(PeekIndex<SpinIndex>(rhs,0,0))
|
||||
{
|
||||
return PeekIndex<SpinIndex>(rhs,i,j);
|
||||
}
|
||||
//colour
|
||||
template<class vobj> auto peekColour(const vobj &rhs,int i) -> decltype(PeekIndex<ColourIndex>(rhs,0))
|
||||
{
|
||||
return PeekIndex<ColourIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekColour(const vobj &rhs,int i,int j) -> decltype(PeekIndex<ColourIndex>(rhs,0,0))
|
||||
{
|
||||
return PeekIndex<ColourIndex>(rhs,i,j);
|
||||
}
|
||||
template<class vobj> auto peekColour(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<ColourIndex>(rhs,0))
|
||||
{
|
||||
return PeekIndex<ColourIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekColour(const Lattice<vobj> &rhs,int i,int j) -> decltype(PeekIndex<ColourIndex>(rhs,0,0))
|
||||
{
|
||||
return PeekIndex<ColourIndex>(rhs,i,j);
|
||||
}
|
||||
//lorentz
|
||||
template<class vobj> auto peekLorentz(const vobj &rhs,int i) -> decltype(PeekIndex<LorentzIndex>(rhs,0))
|
||||
{
|
||||
return PeekIndex<LorentzIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<LorentzIndex>(rhs,0))
|
||||
{
|
||||
return PeekIndex<LorentzIndex>(rhs,i);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Poke lattice
|
||||
//////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
void pokeColour(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0))> & rhs,
|
||||
int i)
|
||||
{
|
||||
PokeIndex<ColourIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeColour(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0,0))> & rhs,
|
||||
int i,int j)
|
||||
{
|
||||
PokeIndex<ColourIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeSpin(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0))> & rhs,
|
||||
int i)
|
||||
{
|
||||
PokeIndex<SpinIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeSpin(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0,0))> & rhs,
|
||||
int i,int j)
|
||||
{
|
||||
PokeIndex<SpinIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeLorentz(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<LorentzIndex>(vobj(),0))> & rhs,
|
||||
int i)
|
||||
{
|
||||
PokeIndex<LorentzIndex>(lhs,rhs,i);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Poke scalars
|
||||
//////////////////////////////////////////////
|
||||
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0)) & rhs,int i)
|
||||
{
|
||||
pokeIndex<SpinIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0,0)) & rhs,int i,int j)
|
||||
{
|
||||
pokeIndex<SpinIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
|
||||
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0)) & rhs,int i)
|
||||
{
|
||||
pokeIndex<ColourIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0,0)) & rhs,int i,int j)
|
||||
{
|
||||
pokeIndex<ColourIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
|
||||
template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<LorentzIndex>(lhs,0)) & rhs,int i)
|
||||
{
|
||||
pokeIndex<LorentzIndex>(lhs,rhs,i);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Fermion <-> propagator assignements
|
||||
//////////////////////////////////////////////
|
||||
//template <class Prop, class Ferm>
|
||||
template <class Fimpl>
|
||||
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
|
||||
{
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
{
|
||||
auto pjs = peekSpin(p, j, s);
|
||||
auto fj = peekSpin(f, j);
|
||||
|
||||
for(int i = 0; i < Fimpl::Dimension; ++i)
|
||||
{
|
||||
pokeColour(pjs, peekColour(fj, i), i, c);
|
||||
}
|
||||
pokeSpin(p, pjs, j, s);
|
||||
}
|
||||
}
|
||||
|
||||
//template <class Prop, class Ferm>
|
||||
template <class Fimpl>
|
||||
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
|
||||
{
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
{
|
||||
auto pjs = peekSpin(p, j, s);
|
||||
auto fj = peekSpin(f, j);
|
||||
|
||||
for(int i = 0; i < Fimpl::Dimension; ++i)
|
||||
{
|
||||
pokeColour(fj, peekColour(pjs, i, c), i);
|
||||
}
|
||||
pokeSpin(f, fj, j);
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// transpose array and scalar
|
||||
//////////////////////////////////////////////
|
||||
template<int Index,class vobj> inline Lattice<vobj> transposeSpin(const Lattice<vobj> &lhs){
|
||||
return transposeIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj> inline Lattice<vobj> transposeColour(const Lattice<vobj> &lhs){
|
||||
return transposeIndex<ColourIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj> inline vobj transposeSpin(const vobj &lhs){
|
||||
return transposeIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj> inline vobj transposeColour(const vobj &lhs){
|
||||
return transposeIndex<ColourIndex>(lhs);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Trace lattice and non-lattice
|
||||
//////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(vobj()))>
|
||||
{
|
||||
return traceIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(vobj()))>
|
||||
{
|
||||
return traceIndex<ColourIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
inline auto traceSpin(const vobj &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs))>
|
||||
{
|
||||
return traceIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
inline auto traceColour(const vobj &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs))>
|
||||
{
|
||||
return traceIndex<ColourIndex>(lhs);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Current types
|
||||
//////////////////////////////////////////
|
||||
GRID_SERIALIZABLE_ENUM(Current, undef,
|
||||
Vector, 0,
|
||||
Axial, 1,
|
||||
Tadpole, 2);
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,100 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_ABSTRACT_EOFA_FERMION_H
|
||||
#define GRID_QCD_ABSTRACT_EOFA_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// DJM: Abstract base class for EOFA fermion types.
|
||||
// Defines layout of additional EOFA-specific parameters and operators.
|
||||
// Use to construct EOFA pseudofermion actions that are agnostic to
|
||||
// Shamir / Mobius / etc., and ensure that no one can construct EOFA
|
||||
// pseudofermion action with non-EOFA fermion type.
|
||||
template<class Impl>
|
||||
class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
// Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
|
||||
RealD mq1;
|
||||
RealD mq2;
|
||||
RealD mq3;
|
||||
RealD shift;
|
||||
int pm;
|
||||
|
||||
RealD alpha; // Mobius scale
|
||||
RealD k; // EOFA normalization constant
|
||||
|
||||
virtual void Instantiatable(void) = 0;
|
||||
|
||||
// EOFA-specific operations
|
||||
// Force user to implement in derived classes
|
||||
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag) = 0;
|
||||
virtual void Dtilde (const FermionField& in, FermionField& out) = 0;
|
||||
virtual void DtildeInv(const FermionField& in, FermionField& out) = 0;
|
||||
|
||||
// Implement derivatives in base class:
|
||||
// for EOFA both DWF and Mobius just need d(Dw)/dU
|
||||
virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
|
||||
this->DhopDeriv(mat, U, V, dag);
|
||||
};
|
||||
virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
|
||||
this->DhopDerivOE(mat, U, V, dag);
|
||||
};
|
||||
virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
|
||||
this->DhopDerivEO(mat, U, V, dag);
|
||||
};
|
||||
|
||||
// Recompute 5D coefficients for different value of shift constant
|
||||
// (needed for heatbath loop over poles)
|
||||
virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
|
||||
|
||||
// Constructors
|
||||
AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
|
||||
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
|
||||
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
|
||||
: CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
|
||||
_mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
this->alpha = _b + _c;
|
||||
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
|
||||
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
|
||||
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,169 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class CayleyFermion5D : public WilsonFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField &in, FermionField &out);
|
||||
virtual RealD Mdag (const FermionField &in, FermionField &out);
|
||||
|
||||
// half checkerboard operations
|
||||
virtual void Meooe (const FermionField &in, FermionField &out);
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out);
|
||||
virtual void Mooee (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
|
||||
virtual void Meo5D (const FermionField &psi, FermionField &chi);
|
||||
|
||||
virtual void M5D (const FermionField &psi, FermionField &chi);
|
||||
virtual void M5Ddag(const FermionField &psi, FermionField &chi);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Physical surface field utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
virtual void Dminus(const FermionField &psi, FermionField &chi);
|
||||
virtual void DminusDag(const FermionField &psi, FermionField &chi);
|
||||
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
|
||||
virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
|
||||
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);
|
||||
virtual void ImportUnphysicalFermion(const FermionField &solution5d, FermionField &exported4d);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Support for MADWF tricks
|
||||
///////////////////////////////////////////////////////////////
|
||||
RealD Mass(void) { return mass; };
|
||||
void SetMass(RealD _mass) {
|
||||
mass=_mass;
|
||||
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
|
||||
} ;
|
||||
void P(const FermionField &psi, FermionField &chi);
|
||||
void Pdag(const FermionField &psi, FermionField &chi);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Instantiate different versions depending on Impl
|
||||
/////////////////////////////////////////////////////
|
||||
void M5D(const FermionField &psi,
|
||||
const FermionField &phi,
|
||||
FermionField &chi,
|
||||
Vector<Coeff_t> &lower,
|
||||
Vector<Coeff_t> &diag,
|
||||
Vector<Coeff_t> &upper);
|
||||
|
||||
void M5Ddag(const FermionField &psi,
|
||||
const FermionField &phi,
|
||||
FermionField &chi,
|
||||
Vector<Coeff_t> &lower,
|
||||
Vector<Coeff_t> &diag,
|
||||
Vector<Coeff_t> &upper);
|
||||
|
||||
virtual void Instantiatable(void)=0;
|
||||
|
||||
// force terms; five routines; default to Dhop on diagonal
|
||||
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
|
||||
// Efficient support for multigrid coarsening
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
void Meooe5D (const FermionField &in, FermionField &out);
|
||||
void MeooeDag5D (const FermionField &in, FermionField &out);
|
||||
|
||||
// protected:
|
||||
RealD mass;
|
||||
|
||||
// Save arguments to SetCoefficientsInternal
|
||||
Vector<Coeff_t> _gamma;
|
||||
RealD _zolo_hi;
|
||||
RealD _b;
|
||||
RealD _c;
|
||||
|
||||
// Cayley form Moebius (tanh and zolotarev)
|
||||
Vector<Coeff_t> omega;
|
||||
Vector<Coeff_t> bs; // S dependent coeffs
|
||||
Vector<Coeff_t> cs;
|
||||
Vector<Coeff_t> as;
|
||||
// For preconditioning Cayley form
|
||||
Vector<Coeff_t> bee;
|
||||
Vector<Coeff_t> cee;
|
||||
Vector<Coeff_t> aee;
|
||||
Vector<Coeff_t> beo;
|
||||
Vector<Coeff_t> ceo;
|
||||
Vector<Coeff_t> aeo;
|
||||
// LDU factorisation of the eeoo matrix
|
||||
Vector<Coeff_t> lee;
|
||||
Vector<Coeff_t> leem;
|
||||
Vector<Coeff_t> uee;
|
||||
Vector<Coeff_t> ueem;
|
||||
Vector<Coeff_t> dee;
|
||||
|
||||
// Matrices of 5d ee inverse params
|
||||
Vector<iSinglet<Simd> > MatpInv;
|
||||
Vector<iSinglet<Simd> > MatmInv;
|
||||
Vector<iSinglet<Simd> > MatpInvDag;
|
||||
Vector<iSinglet<Simd> > MatmInvDag;
|
||||
|
||||
// Constructors
|
||||
CayleyFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
|
||||
|
||||
void CayleyReport(void);
|
||||
void CayleyZeroCounters(void);
|
||||
|
||||
double M5Dflops;
|
||||
double M5Dcalls;
|
||||
double M5Dtime;
|
||||
|
||||
double MooeeInvFlops;
|
||||
double MooeeInvCalls;
|
||||
double MooeeInvTime;
|
||||
|
||||
protected:
|
||||
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,104 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/ContinuedFractionFermion5D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_CONTINUED_FRACTION_H
|
||||
#define GRID_QCD_CONTINUED_FRACTION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class ContinuedFractionFermion5D : public WilsonFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField &in, FermionField &out);
|
||||
virtual RealD Mdag (const FermionField &in, FermionField &out);
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Meooe (const FermionField &in, FermionField &out);
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out);
|
||||
virtual void Mooee (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
|
||||
|
||||
// force terms; five routines; default to Dhop on diagonal
|
||||
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
|
||||
// virtual void Instantiatable(void)=0;
|
||||
virtual void Instantiatable(void) =0;
|
||||
|
||||
// Efficient support for multigrid coarsening
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Physical surface field utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
// virtual void Dminus(const FermionField &psi, FermionField &chi); // Inherit trivial case
|
||||
// virtual void DminusDag(const FermionField &psi, FermionField &chi); // Inherit trivial case
|
||||
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
|
||||
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
|
||||
|
||||
// Constructors
|
||||
ContinuedFractionFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
|
||||
|
||||
protected:
|
||||
|
||||
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
|
||||
void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);;
|
||||
|
||||
// Cont frac
|
||||
RealD dw_diag;
|
||||
RealD mass;
|
||||
RealD R;
|
||||
RealD ZoloHiInv;
|
||||
Vector<double> Beta;
|
||||
Vector<double> cc;;
|
||||
Vector<double> cc_d;;
|
||||
Vector<double> sqrt_cc;
|
||||
Vector<double> See;
|
||||
Vector<double> Aee;
|
||||
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,90 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
// Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
|
||||
// for red-black preconditioned Shamir EOFA
|
||||
Coeff_t dm;
|
||||
Coeff_t dp;
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
|
||||
// EOFA-specific operations
|
||||
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
|
||||
virtual void Dtilde (const FermionField& in, FermionField& out);
|
||||
virtual void DtildeInv (const FermionField& in, FermionField& out);
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField& in, FermionField& out);
|
||||
virtual RealD Mdag (const FermionField& in, FermionField& out);
|
||||
|
||||
// half checkerboard operations
|
||||
virtual void Mooee (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeDag (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInv (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInvDag(const FermionField& in, FermionField& out);
|
||||
|
||||
virtual void M5D (const FermionField& psi, FermionField& chi);
|
||||
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Instantiate different versions depending on Impl
|
||||
/////////////////////////////////////////////////////
|
||||
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
|
||||
|
||||
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
|
||||
|
||||
virtual void RefreshShiftCoefficients(RealD new_shift);
|
||||
|
||||
// Constructors
|
||||
DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
|
||||
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
|
||||
RealD _M5, const ImplParams& p=ImplParams());
|
||||
|
||||
protected:
|
||||
void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,139 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_DOMAIN_WALL_FERMION_H
|
||||
#define GRID_QCD_DOMAIN_WALL_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class DomainWallFermion : public CayleyFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist, bool fiveD) {
|
||||
FermionField in_k(in.Grid());
|
||||
FermionField prop_k(in.Grid());
|
||||
|
||||
FFT theFFT((GridCartesian *) in.Grid());
|
||||
|
||||
//phase for boundary condition
|
||||
ComplexField coor(in.Grid());
|
||||
ComplexField ph(in.Grid()); ph = Zero();
|
||||
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
int shift = 0;
|
||||
if(fiveD) shift = 1;
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||
LatticeCoordinate(coor, nu + shift);
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
if(fiveD){//FFT only on temporal and spatial dimensions
|
||||
std::vector<int> mask(Nd+1,1); mask[0] = 0;
|
||||
theFFT.FFT_dim_mask(in_k,in_buf,mask,FFT::forward);
|
||||
this->MomentumSpacePropagatorHt_5d(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_dim_mask(out,prop_k,mask,FFT::backward);
|
||||
}
|
||||
else{
|
||||
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||
this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
}
|
||||
//phase for boundary condition
|
||||
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {
|
||||
bool fiveD = true; //5d propagator by default
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
bool fiveD = true; //5d propagator by default
|
||||
std::vector<double> twist(Nd,0.0); //default: twist angle 0
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1); //default: periodic boundary conditions
|
||||
FreePropagator(in,out,mass,boundary,twist,fiveD);
|
||||
};
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
// Constructors
|
||||
DomainWallFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,const ImplParams &p= ImplParams()) :
|
||||
|
||||
|
||||
CayleyFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
|
||||
{
|
||||
RealD eps = 1.0;
|
||||
|
||||
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
|
||||
assert(zdata->n==this->Ls);
|
||||
|
||||
// std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<this->Ls<<std::endl;
|
||||
// Call base setter
|
||||
this->SetCoefficientsTanh(zdata,1.0,0.0);
|
||||
|
||||
Approx::zolotarev_free(zdata);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,213 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class S,class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Representation::Dimension> > {
|
||||
public:
|
||||
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > Gimpl;
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=true;
|
||||
static const int Nhcs = Options::Nhcs;
|
||||
|
||||
typedef typename Options::_Coeff_t Coeff_t;
|
||||
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Make the doubled gauge field a *scalar*
|
||||
/////////////////////////////////////////////////
|
||||
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
|
||||
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
|
||||
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
|
||||
typedef WilsonImplParams ImplParams;
|
||||
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor,ImplParams> StencilImpl;
|
||||
typedef typename StencilImpl::View_type StencilView;
|
||||
|
||||
ImplParams Params;
|
||||
|
||||
DomainWallVec5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
|
||||
|
||||
template <class ref>
|
||||
static accelerator_inline void loadLinkElement(Simd ®, ref &memory)
|
||||
{
|
||||
vsplat(reg, memory);
|
||||
}
|
||||
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi, const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi, int mu, StencilEntry *SE,
|
||||
StencilView &St)
|
||||
{
|
||||
#ifdef GPU_VEC
|
||||
// Gauge link is scalarised
|
||||
mult(&phi(), &U(mu), &chi());
|
||||
#else
|
||||
SiteGaugeLink UU;
|
||||
for (int i = 0; i < Dimension; i++) {
|
||||
for (int j = 0; j < Dimension; j++) {
|
||||
vsplat(UU()()(i, j), U(mu)()(i, j));
|
||||
}
|
||||
}
|
||||
mult(&phi(), &UU(), &chi());
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
SiteScalarGaugeField ScalarUmu;
|
||||
SiteDoubledGaugeField ScalarUds;
|
||||
|
||||
GaugeLinkField U(Umu.Grid());
|
||||
GaugeField Uadj(Umu.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
U = adj(Cshift(U, mu, -1));
|
||||
PokeIndex<LorentzIndex>(Uadj, U, mu);
|
||||
}
|
||||
|
||||
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
|
||||
Coordinate lcoor;
|
||||
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
|
||||
|
||||
peekLocalSite(ScalarUmu, Umu, lcoor);
|
||||
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
|
||||
|
||||
peekLocalSite(ScalarUmu, Uadj, lcoor);
|
||||
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
|
||||
|
||||
pokeLocalSite(ScalarUds, Uds, lcoor);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
assert(0);
|
||||
// Following lines to be revised after Peter's addition of half prec
|
||||
// missing put lane...
|
||||
/*
|
||||
typedef decltype(traceIndex<SpinIndex>(outerProduct(Btilde[0], Atilde[0]))) result_type;
|
||||
unsigned int LLs = Btilde.Grid()->_rdimensions[0];
|
||||
conformable(Atilde.Grid(),Btilde.Grid());
|
||||
GridBase* grid = mat.Grid();
|
||||
GridBase* Bgrid = Btilde.Grid();
|
||||
unsigned int dimU = grid->Nd();
|
||||
unsigned int dimF = Bgrid->Nd();
|
||||
GaugeLinkField tmp(grid);
|
||||
tmp = Zero();
|
||||
|
||||
// FIXME
|
||||
// Current implementation works, thread safe, probably suboptimal
|
||||
// Passing through the local coordinate for grid transformation
|
||||
// the force grid is in general very different from the Ls vectorized grid
|
||||
|
||||
for (int so = 0; so < grid->oSites(); so++) {
|
||||
std::vector<typename result_type::scalar_object> vres(Bgrid->Nsimd());
|
||||
std::vector<int> ocoor; grid->oCoorFromOindex(ocoor,so);
|
||||
for (int si = 0; si < tmp.Grid()->iSites(); si++){
|
||||
typename result_type::scalar_object scalar_object; scalar_object = Zero();
|
||||
std::vector<int> local_coor;
|
||||
std::vector<int> icoor; grid->iCoorFromIindex(icoor,si);
|
||||
grid->InOutCoorToLocalCoor(ocoor, icoor, local_coor);
|
||||
for (int s = 0; s < LLs; s++) {
|
||||
std::vector<int> slocal_coor(dimF);
|
||||
slocal_coor[0] = s;
|
||||
for (int s4d = 1; s4d< dimF; s4d++) slocal_coor[s4d] = local_coor[s4d-1];
|
||||
int sF = Bgrid->oIndexReduced(slocal_coor);
|
||||
assert(sF < Bgrid->oSites());
|
||||
|
||||
extract(traceIndex<SpinIndex>(outerProduct(Btilde[sF], Atilde[sF])), vres);
|
||||
// sum across the 5d dimension
|
||||
for (auto v : vres) scalar_object += v;
|
||||
}
|
||||
tmp[so].putlane(scalar_object, si);
|
||||
}
|
||||
}
|
||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
||||
*/
|
||||
}
|
||||
};
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplF; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplD; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplF; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplD; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,189 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperator.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Allow to select between gauge representation rank bc's, flavours etc.
|
||||
// and single/double precision.
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Impl>
|
||||
class FermionOperator : public CheckerBoardedSparseMatrixBase<typename Impl::FermionField>, public Impl
|
||||
{
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
FermionOperator(const ImplParams &p= ImplParams()) : Impl(p) {};
|
||||
virtual ~FermionOperator(void) = default;
|
||||
|
||||
virtual FermionField &tmp(void) = 0;
|
||||
|
||||
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
|
||||
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
|
||||
|
||||
virtual GridBase *FermionGrid(void) =0;
|
||||
virtual GridBase *FermionRedBlackGrid(void) =0;
|
||||
virtual GridBase *GaugeGrid(void) =0;
|
||||
virtual GridBase *GaugeRedBlackGrid(void) =0;
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField &in, FermionField &out)=0;
|
||||
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Meooe (const FermionField &in, FermionField &out)=0;
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
|
||||
virtual void Mooee (const FermionField &in, FermionField &out)=0;
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out)=0;
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out)=0;
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out)=0;
|
||||
|
||||
// non-hermitian hopping term; half cb or both
|
||||
virtual void Dhop (const FermionField &in, FermionField &out,int dag)=0;
|
||||
virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
|
||||
virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
|
||||
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
|
||||
|
||||
// force terms; five routines; default to Dhop on diagonal
|
||||
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
|
||||
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
|
||||
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
|
||||
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();}; // Clover can override these
|
||||
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();};
|
||||
|
||||
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
|
||||
|
||||
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
||||
|
||||
|
||||
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist)
|
||||
{
|
||||
FFT theFFT((GridCartesian *) in.Grid());
|
||||
|
||||
typedef typename Simd::scalar_type Scalar;
|
||||
|
||||
FermionField in_k(in.Grid());
|
||||
FermionField prop_k(in.Grid());
|
||||
|
||||
//phase for boundary condition
|
||||
ComplexField coor(in.Grid());
|
||||
ComplexField ph(in.Grid()); ph = Zero();
|
||||
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||
|
||||
Scalar ci(0.0,1.0);
|
||||
assert(twist.size() == Nd);//check that twist is Nd
|
||||
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||
{
|
||||
LatticeCoordinate(coor, nu);
|
||||
double boundary_phase = ::acos(real(boundary[nu]));
|
||||
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu])));
|
||||
//momenta for propagator shifted by twist+boundary
|
||||
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||
}
|
||||
in_buf = exp(ci*ph*(-1.0))*in;
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
|
||||
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
|
||||
//phase for boundary condition
|
||||
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
|
||||
|
||||
};
|
||||
|
||||
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||
std::vector<Complex> boundary;
|
||||
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||
FreePropagator(in,out,mass,boundary,twist);
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Updates gauge field during HMC
|
||||
///////////////////////////////////////////////
|
||||
virtual void ImportGauge(const GaugeField & _U)=0;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Conserved currents, either contract at sink or insert sequentially.
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
virtual void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu)=0;
|
||||
virtual void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx)=0;
|
||||
|
||||
// Only reimplemented in Wilson5D
|
||||
// Default to just a zero correlation function
|
||||
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
|
||||
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Physical field import/export
|
||||
///////////////////////////////////////////////
|
||||
virtual void Dminus(const FermionField &psi, FermionField &chi) { chi=psi; }
|
||||
virtual void DminusDag(const FermionField &psi, FermionField &chi) { chi=psi; }
|
||||
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported)
|
||||
{
|
||||
imported = input;
|
||||
};
|
||||
virtual void ImportUnphysicalFermion(const FermionField &input,FermionField &imported)
|
||||
{
|
||||
imported=input;
|
||||
};
|
||||
virtual void ExportPhysicalFermionSolution(const FermionField &solution,FermionField &exported)
|
||||
{
|
||||
exported=solution;
|
||||
};
|
||||
virtual void ExportPhysicalFermionSource(const FermionField &solution,FermionField &exported)
|
||||
{
|
||||
exported=solution;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,189 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Template parameter class constructs to package
|
||||
// externally control Fermion implementations
|
||||
// in orthogonal directions
|
||||
//
|
||||
// Ultimately need Impl to always define types where XXX is opaque
|
||||
//
|
||||
// typedef typename XXX Simd;
|
||||
// typedef typename XXX GaugeLinkField;
|
||||
// typedef typename XXX GaugeField;
|
||||
// typedef typename XXX GaugeActField;
|
||||
// typedef typename XXX FermionField;
|
||||
// typedef typename XXX PropagatorField;
|
||||
// typedef typename XXX DoubledGaugeField;
|
||||
// typedef typename XXX SiteSpinor;
|
||||
// typedef typename XXX SitePropagator;
|
||||
// typedef typename XXX SiteHalfSpinor;
|
||||
// typedef typename XXX Compressor;
|
||||
//
|
||||
// and Methods:
|
||||
// void ImportGauge(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
// void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
// void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,StencilImpl::View_type &St)
|
||||
// void InsertForce4D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
|
||||
// void InsertForce5D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
|
||||
//
|
||||
//
|
||||
// To acquire the typedefs from "Base" (either a base class or template param) use:
|
||||
//
|
||||
// INHERIT_GIMPL_TYPES(Base)
|
||||
// INHERIT_FIMPL_TYPES(Base)
|
||||
// INHERIT_IMPL_TYPES(Base)
|
||||
//
|
||||
// The Fermion operators will do the following:
|
||||
//
|
||||
// struct MyOpParams {
|
||||
// RealD mass;
|
||||
// };
|
||||
//
|
||||
//
|
||||
// template<class Impl>
|
||||
// class MyOp : public<Impl> {
|
||||
// public:
|
||||
//
|
||||
// INHERIT_ALL_IMPL_TYPES(Impl);
|
||||
//
|
||||
// MyOp(MyOpParams Myparm, ImplParams &ImplParam) : Impl(ImplParam)
|
||||
// {
|
||||
//
|
||||
// };
|
||||
//
|
||||
// }
|
||||
//////////////////////////////////////////////
|
||||
|
||||
template <class T> struct SamePrecisionMapper {
|
||||
typedef T HigherPrecVector ;
|
||||
typedef T LowerPrecVector ;
|
||||
};
|
||||
template <class T> struct LowerPrecisionMapper { };
|
||||
template <> struct LowerPrecisionMapper<vRealF> {
|
||||
typedef vRealF HigherPrecVector ;
|
||||
typedef vRealH LowerPrecVector ;
|
||||
};
|
||||
template <> struct LowerPrecisionMapper<vRealD> {
|
||||
typedef vRealD HigherPrecVector ;
|
||||
typedef vRealF LowerPrecVector ;
|
||||
};
|
||||
template <> struct LowerPrecisionMapper<vComplexF> {
|
||||
typedef vComplexF HigherPrecVector ;
|
||||
typedef vComplexH LowerPrecVector ;
|
||||
};
|
||||
template <> struct LowerPrecisionMapper<vComplexD> {
|
||||
typedef vComplexD HigherPrecVector ;
|
||||
typedef vComplexF LowerPrecVector ;
|
||||
};
|
||||
|
||||
struct CoeffReal {
|
||||
public:
|
||||
typedef RealD _Coeff_t;
|
||||
static const int Nhcs = 2;
|
||||
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
|
||||
};
|
||||
struct CoeffRealHalfComms {
|
||||
public:
|
||||
typedef RealD _Coeff_t;
|
||||
static const int Nhcs = 1;
|
||||
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
|
||||
};
|
||||
struct CoeffComplex {
|
||||
public:
|
||||
typedef ComplexD _Coeff_t;
|
||||
static const int Nhcs = 2;
|
||||
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
|
||||
};
|
||||
struct CoeffComplexHalfComms {
|
||||
public:
|
||||
typedef ComplexD _Coeff_t;
|
||||
static const int Nhcs = 1;
|
||||
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Implementation dependent fermion types
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define INHERIT_FIMPL_TYPES(Impl)\
|
||||
typedef typename Impl::Coeff_t Coeff_t; \
|
||||
typedef Impl Impl_t; \
|
||||
typedef typename Impl::FermionField FermionField; \
|
||||
typedef typename Impl::PropagatorField PropagatorField; \
|
||||
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
|
||||
typedef typename Impl::SiteDoubledGaugeField SiteDoubledGaugeField; \
|
||||
typedef typename Impl::SiteSpinor SiteSpinor; \
|
||||
typedef typename Impl::SitePropagator SitePropagator; \
|
||||
typedef typename Impl::SiteHalfSpinor SiteHalfSpinor; \
|
||||
typedef typename Impl::Compressor Compressor; \
|
||||
typedef typename Impl::StencilImpl StencilImpl; \
|
||||
typedef typename Impl::ImplParams ImplParams; \
|
||||
typedef typename Impl::StencilImpl::View_type StencilView; \
|
||||
typedef typename ViewMap<FermionField>::Type FermionFieldView; \
|
||||
typedef typename ViewMap<DoubledGaugeField>::Type DoubledGaugeFieldView;
|
||||
|
||||
#define INHERIT_IMPL_TYPES(Base) \
|
||||
INHERIT_GIMPL_TYPES(Base) \
|
||||
INHERIT_FIMPL_TYPES(Base)
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
NAMESPACE_CHECK(ImplBase);
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour four spinors with colour index
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/fermion/WilsonImpl.h>
|
||||
NAMESPACE_CHECK(ImplWilson);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Flavour doubled spinors; is Gparity the only? what about C*?
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/fermion/GparityWilsonImpl.h>
|
||||
NAMESPACE_CHECK(ImplGparityWilson);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour one component spinors with colour index
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/fermion/StaggeredImpl.h>
|
||||
NAMESPACE_CHECK(ImplStaggered);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour one component spinors with colour index. 5d vec
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/fermion/StaggeredVec5dImpl.h>
|
||||
NAMESPACE_CHECK(ImplStaggered5dVec);
|
||||
|
||||
|
@ -1,238 +0,0 @@
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FourierAcceleratedPV.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christoph Lehner (lifted with permission by Peter Boyle, brought back to Grid)
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<typename M>
|
||||
void get_real_const_bc(M& m, RealD& _b, RealD& _c) {
|
||||
ComplexD b,c;
|
||||
b=m.bs[0];
|
||||
c=m.cs[0];
|
||||
std::cout << GridLogMessage << "b=" << b << ", c=" << c << std::endl;
|
||||
for (size_t i=1;i<m.bs.size();i++) {
|
||||
assert(m.bs[i] == b);
|
||||
assert(m.cs[i] == c);
|
||||
}
|
||||
assert(b.imag() == 0.0);
|
||||
assert(c.imag() == 0.0);
|
||||
_b = b.real();
|
||||
_c = c.real();
|
||||
}
|
||||
|
||||
|
||||
template<typename Vi, typename M, typename G>
|
||||
class FourierAcceleratedPV {
|
||||
public:
|
||||
|
||||
ConjugateGradient<Vi> &cg;
|
||||
M& dwfPV;
|
||||
G& Umu;
|
||||
GridCartesian* grid5D;
|
||||
GridRedBlackCartesian* gridRB5D;
|
||||
int group_in_s;
|
||||
|
||||
FourierAcceleratedPV(M& _dwfPV, G& _Umu, ConjugateGradient<Vi> &_cg, int _group_in_s = 2)
|
||||
: dwfPV(_dwfPV), Umu(_Umu), cg(_cg), group_in_s(_group_in_s)
|
||||
{
|
||||
assert( dwfPV.FermionGrid()->_fdimensions[0] % (2*group_in_s) == 0);
|
||||
grid5D = SpaceTimeGrid::makeFiveDimGrid(2*group_in_s, (GridCartesian*)Umu.Grid());
|
||||
gridRB5D = SpaceTimeGrid::makeFiveDimRedBlackGrid(2*group_in_s, (GridCartesian*)Umu.Grid());
|
||||
}
|
||||
|
||||
void rotatePV(const Vi& _src, Vi& dst, bool forward) const {
|
||||
|
||||
GridStopWatch gsw1, gsw2;
|
||||
|
||||
typedef typename Vi::scalar_type Coeff_t;
|
||||
int Ls = dst.Grid()->_fdimensions[0];
|
||||
|
||||
Vi _tmp(dst.Grid());
|
||||
double phase = M_PI / (double)Ls;
|
||||
Coeff_t bzero(0.0,0.0);
|
||||
|
||||
FFT theFFT((GridCartesian*)dst.Grid());
|
||||
|
||||
if (!forward) {
|
||||
gsw1.Start();
|
||||
for (int s=0;s<Ls;s++) {
|
||||
Coeff_t a(::cos(phase*s),-::sin(phase*s));
|
||||
axpby_ssp(_tmp,a,_src,bzero,_src,s,s);
|
||||
}
|
||||
gsw1.Stop();
|
||||
|
||||
gsw2.Start();
|
||||
theFFT.FFT_dim(dst,_tmp,0,FFT::forward);
|
||||
gsw2.Stop();
|
||||
|
||||
} else {
|
||||
|
||||
gsw2.Start();
|
||||
theFFT.FFT_dim(_tmp,_src,0,FFT::backward);
|
||||
gsw2.Stop();
|
||||
|
||||
gsw1.Start();
|
||||
for (int s=0;s<Ls;s++) {
|
||||
Coeff_t a(::cos(phase*s),::sin(phase*s));
|
||||
axpby_ssp(dst,a,_tmp,bzero,_tmp,s,s);
|
||||
}
|
||||
gsw1.Stop();
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Timing rotatePV: " << gsw1.Elapsed() << ", " << gsw2.Elapsed() << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void pvInv(const Vi& _src, Vi& _dst) const {
|
||||
|
||||
std::cout << GridLogMessage << "Fourier-Accelerated Outer Pauli Villars"<<std::endl;
|
||||
|
||||
typedef typename Vi::scalar_type Coeff_t;
|
||||
int Ls = _dst.Grid()->_fdimensions[0];
|
||||
|
||||
GridStopWatch gswT;
|
||||
gswT.Start();
|
||||
|
||||
RealD b,c;
|
||||
get_real_const_bc(dwfPV,b,c);
|
||||
RealD M5 = dwfPV.M5;
|
||||
|
||||
// U(true) Rightinv TMinv U(false) = Minv
|
||||
|
||||
Vi _src_diag(_dst.Grid());
|
||||
Vi _src_diag_slice(dwfPV.GaugeGrid());
|
||||
Vi _dst_diag_slice(dwfPV.GaugeGrid());
|
||||
Vi _src_diag_slices(grid5D);
|
||||
Vi _dst_diag_slices(grid5D);
|
||||
Vi _dst_diag(_dst.Grid());
|
||||
|
||||
rotatePV(_src,_src_diag,false);
|
||||
|
||||
// now do TM solves
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
|
||||
GridStopWatch gswA, gswB;
|
||||
|
||||
gswA.Start();
|
||||
|
||||
typedef typename M::Impl_t Impl;
|
||||
//WilsonTMFermion<Impl> tm(x.Umu,*x.UGridF,*x.UrbGridF,0.0,0.0,solver_outer.parent.par.wparams_f);
|
||||
std::vector<RealD> vmass(grid5D->_fdimensions[0],0.0);
|
||||
std::vector<RealD> vmu(grid5D->_fdimensions[0],0.0);
|
||||
|
||||
WilsonTMFermion5D<Impl> tm(Umu,*grid5D,*gridRB5D,
|
||||
*(GridCartesian*)dwfPV.GaugeGrid(),
|
||||
*(GridRedBlackCartesian*)dwfPV.GaugeRedBlackGrid(),
|
||||
vmass,vmu);
|
||||
|
||||
//SchurRedBlackDiagTwoSolve<Vi> sol(cg);
|
||||
SchurRedBlackDiagMooeeSolve<Vi> sol(cg); // same performance as DiagTwo
|
||||
gswA.Stop();
|
||||
|
||||
gswB.Start();
|
||||
|
||||
for (int sgroup=0;sgroup<Ls/2/group_in_s;sgroup++) {
|
||||
|
||||
for (int sidx=0;sidx<group_in_s;sidx++) {
|
||||
|
||||
int s = sgroup*group_in_s + sidx;
|
||||
// int sprime = Ls-s-1;
|
||||
|
||||
RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
|
||||
RealD cosp = ::cos(phase);
|
||||
RealD sinp = ::sin(phase);
|
||||
RealD denom = b*b + c*c + 2.0*b*c*cosp;
|
||||
RealD mass = -(b*b*M5 + c*(1.0 - cosp + c*M5) + b*(-1.0 + cosp + 2.0*c*cosp*M5))/denom;
|
||||
RealD mu = (b+c)*sinp/denom;
|
||||
|
||||
vmass[2*sidx + 0] = mass;
|
||||
vmass[2*sidx + 1] = mass;
|
||||
vmu[2*sidx + 0] = mu;
|
||||
vmu[2*sidx + 1] = -mu;
|
||||
|
||||
}
|
||||
|
||||
tm.update(vmass,vmu);
|
||||
|
||||
for (int sidx=0;sidx<group_in_s;sidx++) {
|
||||
|
||||
int s = sgroup*group_in_s + sidx;
|
||||
int sprime = Ls-s-1;
|
||||
|
||||
ExtractSlice(_src_diag_slice,_src_diag,s,0);
|
||||
InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 0,0);
|
||||
|
||||
ExtractSlice(_src_diag_slice,_src_diag,sprime,0);
|
||||
InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 1,0);
|
||||
|
||||
}
|
||||
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
_dst_diag_slices = Zero(); // zero guess
|
||||
sol(tm,_src_diag_slices,_dst_diag_slices);
|
||||
gsw.Stop();
|
||||
std::cout << GridLogMessage << "Solve[sgroup=" << sgroup << "] completed in " << gsw.Elapsed() << ", " << gswA.Elapsed() << std::endl;
|
||||
|
||||
for (int sidx=0;sidx<group_in_s;sidx++) {
|
||||
|
||||
int s = sgroup*group_in_s + sidx;
|
||||
int sprime = Ls-s-1;
|
||||
|
||||
RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
|
||||
RealD cosp = ::cos(phase);
|
||||
RealD sinp = ::sin(phase);
|
||||
|
||||
// now rotate with inverse of
|
||||
Coeff_t pA = b + c*cosp;
|
||||
Coeff_t pB = - Coeff_t(0.0,1.0)*Coeff_t(c*sinp);
|
||||
Coeff_t pABden = pA*pA - pB*pB;
|
||||
// (pA + pB * G5) * (pA - pB*G5) = (pA^2 - pB^2)
|
||||
|
||||
ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 0,0);
|
||||
_dst_diag_slice = (pA/pABden) * _dst_diag_slice - (pB/pABden) * (G5 * _dst_diag_slice);
|
||||
InsertSlice(_dst_diag_slice,_dst_diag,s,0);
|
||||
|
||||
ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 1,0);
|
||||
_dst_diag_slice = (pA/pABden) * _dst_diag_slice + (pB/pABden) * (G5 * _dst_diag_slice);
|
||||
InsertSlice(_dst_diag_slice,_dst_diag,sprime,0);
|
||||
}
|
||||
}
|
||||
gswB.Stop();
|
||||
|
||||
rotatePV(_dst_diag,_dst,true);
|
||||
|
||||
gswT.Stop();
|
||||
std::cout << GridLogMessage << "PV completed in " << gswT.Elapsed() << " (Setup: " << gswA.Elapsed() << ", s-loop: " << gswB.Elapsed() << ")" << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,321 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||
public:
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const int Nhcs = Options::Nhcs;
|
||||
static const bool LsVectorised=false;
|
||||
|
||||
typedef ConjugateGaugeImpl< GaugeImplTypes<S,Dimension> > Gimpl;
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Options::_Coeff_t Coeff_t;
|
||||
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
|
||||
|
||||
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Dimension>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Dimension>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Dimension>, Nhs>, Ngp>;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iVector<iVector<iVector<vtype, Dimension>, Nhcs>, Ngp>;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>, Ngp>;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef GparityWilsonImplParams ImplParams;
|
||||
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
|
||||
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor, ImplParams> StencilImpl;
|
||||
typedef typename StencilImpl::View_type StencilView;
|
||||
|
||||
ImplParams Params;
|
||||
|
||||
GparityWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){};
|
||||
|
||||
// provide the multiply by link that is differentiated between Gparity (with
|
||||
// flavour index) and non-Gparity
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi,
|
||||
int mu)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi,
|
||||
int mu,
|
||||
StencilEntry *SE,
|
||||
StencilView &St)
|
||||
{
|
||||
int direction = St._directions[mu];
|
||||
int distance = St._distances[mu];
|
||||
int ptype = St._permute_type[mu];
|
||||
int sl = St._simd_layout[direction];
|
||||
Coordinate icoor;
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
_Spinor tmp;
|
||||
|
||||
const int Nsimd =SiteDoubledGaugeField::Nsimd();
|
||||
int s = SIMTlane(Nsimd);
|
||||
St.iCoorFromIindex(icoor,s);
|
||||
|
||||
int mmu = mu % Nd;
|
||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
|
||||
int permute_lane = (sl==1)
|
||||
|| ((distance== 1)&&(icoor[direction]==1))
|
||||
|| ((distance==-1)&&(icoor[direction]==0));
|
||||
|
||||
if ( permute_lane ) {
|
||||
tmp(0) = chi(1);
|
||||
tmp(1) = chi(0);
|
||||
} else {
|
||||
tmp(0) = chi(0);
|
||||
tmp(1) = chi(1);
|
||||
}
|
||||
|
||||
auto UU0=coalescedRead(U(0)(mu));
|
||||
auto UU1=coalescedRead(U(1)(mu));
|
||||
|
||||
mult(&phi(0),&UU0,&tmp(0));
|
||||
mult(&phi(1),&UU1,&tmp(1));
|
||||
|
||||
} else {
|
||||
|
||||
auto UU0=coalescedRead(U(0)(mu));
|
||||
auto UU1=coalescedRead(U(1)(mu));
|
||||
|
||||
mult(&phi(0),&UU0,&chi(0));
|
||||
mult(&phi(1),&UU1,&chi(1));
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
typedef _Spinor vobj;
|
||||
typedef typename SiteHalfSpinor::scalar_object sobj;
|
||||
typedef typename SiteHalfSpinor::vector_type vector_type;
|
||||
|
||||
vobj vtmp;
|
||||
sobj stmp;
|
||||
|
||||
const int Nsimd =vector_type::Nsimd();
|
||||
|
||||
// Fixme X.Y.Z.T hardcode in stencil
|
||||
int mmu = mu % Nd;
|
||||
|
||||
// assert our assumptions
|
||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||
assert((sl == 1) || (sl == 2));
|
||||
|
||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
|
||||
if ( sl == 2 ) {
|
||||
|
||||
ExtractBuffer<sobj> vals(Nsimd);
|
||||
|
||||
extract(chi,vals);
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
|
||||
St.iCoorFromIindex(icoor,s);
|
||||
|
||||
assert((icoor[direction]==0)||(icoor[direction]==1));
|
||||
|
||||
int permute_lane;
|
||||
if ( distance == 1) {
|
||||
permute_lane = icoor[direction]?1:0;
|
||||
} else {
|
||||
permute_lane = icoor[direction]?0:1;
|
||||
}
|
||||
|
||||
if ( permute_lane ) {
|
||||
stmp(0) = vals[s](1);
|
||||
stmp(1) = vals[s](0);
|
||||
vals[s] = stmp;
|
||||
}
|
||||
}
|
||||
merge(vtmp,vals);
|
||||
|
||||
} else {
|
||||
vtmp(0) = chi(1);
|
||||
vtmp(1) = chi(0);
|
||||
}
|
||||
mult(&phi(0),&U(0)(mu),&vtmp(0));
|
||||
mult(&phi(1),&U(1)(mu),&vtmp(1));
|
||||
|
||||
} else {
|
||||
mult(&phi(0),&U(0)(mu),&chi(0));
|
||||
mult(&phi(1),&U(1)(mu),&chi(1));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <class ref>
|
||||
static accelerator_inline void loadLinkElement(Simd ®, ref &memory)
|
||||
{
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds.Grid(),GaugeGrid);
|
||||
conformable(Umu.Grid(),GaugeGrid);
|
||||
|
||||
GaugeLinkField Utmp (GaugeGrid);
|
||||
GaugeLinkField U (GaugeGrid);
|
||||
GaugeLinkField Uconj(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Uconj = conjugate(U);
|
||||
|
||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||
if ( Params.twists[mu] ) {
|
||||
Uconj = where(coor==neglink,-Uconj,Uconj);
|
||||
}
|
||||
|
||||
auto U_v = U.View();
|
||||
auto Uds_v = Uds.View();
|
||||
auto Uconj_v = Uconj.View();
|
||||
auto Utmp_v= Utmp.View();
|
||||
thread_foreach(ss,U_v,{
|
||||
Uds_v[ss](0)(mu) = U_v[ss]();
|
||||
Uds_v[ss](1)(mu) = Uconj_v[ss]();
|
||||
});
|
||||
|
||||
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
||||
Uconj = adj(Cshift(Uconj,mu,-1));
|
||||
|
||||
Utmp = U;
|
||||
if ( Params.twists[mu] ) {
|
||||
Utmp = where(coor==0,Uconj,Utmp);
|
||||
}
|
||||
|
||||
thread_foreach(ss,Utmp_v,{
|
||||
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
|
||||
});
|
||||
|
||||
Utmp = Uconj;
|
||||
if ( Params.twists[mu] ) {
|
||||
Utmp = where(coor==0,U,Utmp);
|
||||
}
|
||||
|
||||
thread_foreach(ss,Utmp_v,{
|
||||
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||
|
||||
// DhopDir provides U or Uconj depending on coor/flavour.
|
||||
GaugeLinkField link(mat.Grid());
|
||||
// use lorentz for flavour as hack.
|
||||
auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
|
||||
auto link_v = link.View();
|
||||
auto tmp_v = tmp.View();
|
||||
thread_foreach(ss,tmp_v,{
|
||||
link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
|
||||
});
|
||||
PokeIndex<LorentzIndex>(mat, link, mu);
|
||||
return;
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
|
||||
//mat = outerProduct(Btilde, A);
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
assert(0);
|
||||
/*
|
||||
auto tmp = TraceIndex<SpinIndex>(P);
|
||||
parallel_for(auto ss = tmp.begin(); ss < tmp.end(); ss++) {
|
||||
mat[ss]() = tmp[ss](0, 0) + conjugate(tmp[ss](1, 1));
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
int Ls = Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
GaugeLinkField tmp(mat.Grid());
|
||||
tmp = Zero();
|
||||
auto tmp_v = tmp.View();
|
||||
auto Atilde_v = Atilde.View();
|
||||
auto Btilde_v = Btilde.View();
|
||||
thread_for(ss,tmp.Grid()->oSites(),{
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
int sF = s + Ls * ss;
|
||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
||||
}
|
||||
});
|
||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
||||
return;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
|
||||
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffReal> GparityWilsonImplF; // Float
|
||||
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffReal> GparityWilsonImplD; // Double
|
||||
|
||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
|
||||
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplFH; // Float
|
||||
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplDF; // Double
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,231 +0,0 @@
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion5D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: AzusaYamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// This is the 4d red black case appropriate to support
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class ImprovedStaggeredFermion5DStatic {
|
||||
public:
|
||||
// S-direction is INNERMOST and takes no part in the parity.
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
const int npoint = 16;
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
class ImprovedStaggeredFermion5D : public StaggeredKernels<Impl>, public ImprovedStaggeredFermion5DStatic
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef StaggeredKernels<Impl> Kernels;
|
||||
|
||||
FermionField _tmp;
|
||||
FermionField &tmp(void) { return _tmp; }
|
||||
|
||||
////////////////////////////////////////
|
||||
// Performance monitoring
|
||||
////////////////////////////////////////
|
||||
void Report(void);
|
||||
void ZeroCounters(void);
|
||||
double DhopTotalTime;
|
||||
double DhopCalls;
|
||||
double DhopCommTime;
|
||||
double DhopComputeTime;
|
||||
double DhopComputeTime2;
|
||||
double DhopFaceTime;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Implement the abstract base
|
||||
///////////////////////////////////////////////////////////////
|
||||
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
|
||||
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
|
||||
GridBase *FermionGrid(void) { return _FiveDimGrid;}
|
||||
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
|
||||
|
||||
// full checkerboard operations; leave unimplemented as abstract for now
|
||||
RealD M (const FermionField &in, FermionField &out);
|
||||
RealD Mdag (const FermionField &in, FermionField &out);
|
||||
|
||||
// half checkerboard operations
|
||||
void Meooe (const FermionField &in, FermionField &out);
|
||||
void Mooee (const FermionField &in, FermionField &out);
|
||||
void MooeeInv (const FermionField &in, FermionField &out);
|
||||
|
||||
void MeooeDag (const FermionField &in, FermionField &out);
|
||||
void MooeeDag (const FermionField &in, FermionField &out);
|
||||
void MooeeInvDag (const FermionField &in, FermionField &out);
|
||||
|
||||
void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
// These can be overridden by fancy 5d chiral action
|
||||
void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
|
||||
// Implement hopping term non-hermitian hopping term; half cb or both
|
||||
void Dhop (const FermionField &in, FermionField &out,int dag);
|
||||
void DhopOE(const FermionField &in, FermionField &out,int dag);
|
||||
void DhopEO(const FermionField &in, FermionField &out,int dag);
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// New methods added
|
||||
///////////////////////////////////////////////////////////////
|
||||
void DerivInternal(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
DoubledGaugeField & UUU,
|
||||
GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag);
|
||||
|
||||
void DhopInternal(StencilImpl & st,
|
||||
LebesgueOrder &lo,
|
||||
DoubledGaugeField &U,
|
||||
DoubledGaugeField &UUU,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
void DhopInternalOverlappedComms(StencilImpl & st,
|
||||
LebesgueOrder &lo,
|
||||
DoubledGaugeField &U,
|
||||
DoubledGaugeField &UUU,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
void DhopInternalSerialComms(StencilImpl & st,
|
||||
LebesgueOrder &lo,
|
||||
DoubledGaugeField &U,
|
||||
DoubledGaugeField &UUU,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
|
||||
// Constructors
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Grid internal interface -- Thin link and fat link, with coefficients
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ImprovedStaggeredFermion5D(GaugeField &_Uthin,
|
||||
GaugeField &_Ufat,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
double _mass,
|
||||
RealD _c1, RealD _c2,RealD _u0,
|
||||
const ImplParams &p= ImplParams());
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// MILC constructor ; triple links, no rescale factors; must be externally pre multiplied
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ImprovedStaggeredFermion5D(GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
double _mass,
|
||||
RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
|
||||
const ImplParams &p= ImplParams());
|
||||
|
||||
// DoubleStore gauge field in operator
|
||||
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
|
||||
void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
|
||||
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
|
||||
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
|
||||
// Give a reference; can be used to do an assignment or copy back out after import
|
||||
// if Carleton wants to cache them and not use the ImportSimple
|
||||
DoubledGaugeField &GetU(void) { return Umu ; } ;
|
||||
DoubledGaugeField &GetUUU(void) { return UUUmu; };
|
||||
void CopyGaugeCheckerboards(void);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Data members require to support the functionality
|
||||
///////////////////////////////////////////////////////////////
|
||||
public:
|
||||
|
||||
virtual int isTrivialEE(void) { return 1; };
|
||||
virtual RealD Mass(void) { return mass; }
|
||||
|
||||
GridBase *_FourDimGrid;
|
||||
GridBase *_FourDimRedBlackGrid;
|
||||
GridBase *_FiveDimGrid;
|
||||
GridBase *_FiveDimRedBlackGrid;
|
||||
|
||||
RealD mass;
|
||||
RealD c1;
|
||||
RealD c2;
|
||||
RealD u0;
|
||||
int Ls;
|
||||
|
||||
//Defines the stencils for even and odd
|
||||
StencilImpl Stencil;
|
||||
StencilImpl StencilEven;
|
||||
StencilImpl StencilOdd;
|
||||
|
||||
// Copy of the gauge field , with even and odd subsets
|
||||
DoubledGaugeField Umu;
|
||||
DoubledGaugeField UmuEven;
|
||||
DoubledGaugeField UmuOdd;
|
||||
|
||||
DoubledGaugeField UUUmu;
|
||||
DoubledGaugeField UUUmuEven;
|
||||
DoubledGaugeField UUUmuOdd;
|
||||
|
||||
LebesgueOrder Lebesgue;
|
||||
LebesgueOrder LebesgueEvenOdd;
|
||||
|
||||
// Comms buffer
|
||||
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Conserved current utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu);
|
||||
void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx);
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,192 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MADWF.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Fieldi, class Fieldo,IfNotSame<Fieldi,Fieldo> X=0>
|
||||
inline void convert(const Fieldi &from,Fieldo &to)
|
||||
{
|
||||
precisionChange(to,from);
|
||||
}
|
||||
template <class Fieldi, class Fieldo,IfSame<Fieldi,Fieldo> X=0>
|
||||
inline void convert(const Fieldi &from,Fieldo &to)
|
||||
{
|
||||
to=from;
|
||||
}
|
||||
|
||||
template<class Matrixo,class Matrixi,class PVinverter,class SchurSolver, class Guesser>
|
||||
class MADWF
|
||||
{
|
||||
private:
|
||||
typedef typename Matrixo::FermionField FermionFieldo;
|
||||
typedef typename Matrixi::FermionField FermionFieldi;
|
||||
|
||||
PVinverter & PauliVillarsSolvero;// For the outer field
|
||||
SchurSolver & SchurSolveri; // For the inner approx field
|
||||
Guesser & Guesseri; // To deflate the inner approx solves
|
||||
|
||||
Matrixo & Mato; // Action object for outer
|
||||
Matrixi & Mati; // Action object for inner
|
||||
|
||||
RealD target_resid;
|
||||
int maxiter;
|
||||
public:
|
||||
|
||||
MADWF(Matrixo &_Mato,
|
||||
Matrixi &_Mati,
|
||||
PVinverter &_PauliVillarsSolvero,
|
||||
SchurSolver &_SchurSolveri,
|
||||
Guesser & _Guesseri,
|
||||
RealD resid,
|
||||
int _maxiter) :
|
||||
|
||||
Mato(_Mato),Mati(_Mati),
|
||||
SchurSolveri(_SchurSolveri),
|
||||
PauliVillarsSolvero(_PauliVillarsSolvero),Guesseri(_Guesseri)
|
||||
{
|
||||
target_resid=resid;
|
||||
maxiter =_maxiter;
|
||||
};
|
||||
|
||||
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
|
||||
{
|
||||
std::cout << GridLogMessage<< " ************************************************" << std::endl;
|
||||
std::cout << GridLogMessage<< " MADWF-like algorithm " << std::endl;
|
||||
std::cout << GridLogMessage<< " ************************************************" << std::endl;
|
||||
|
||||
FermionFieldi c0i(Mati.GaugeGrid()); // 4d
|
||||
FermionFieldi y0i(Mati.GaugeGrid()); // 4d
|
||||
FermionFieldo c0 (Mato.GaugeGrid()); // 4d
|
||||
FermionFieldo y0 (Mato.GaugeGrid()); // 4d
|
||||
|
||||
FermionFieldo A(Mato.FermionGrid()); // Temporary outer
|
||||
FermionFieldo B(Mato.FermionGrid()); // Temporary outer
|
||||
FermionFieldo b(Mato.FermionGrid()); // 5d source
|
||||
|
||||
FermionFieldo c(Mato.FermionGrid()); // PVinv source; reused so store
|
||||
FermionFieldo defect(Mato.FermionGrid()); // 5d source
|
||||
|
||||
FermionFieldi ci(Mati.FermionGrid());
|
||||
FermionFieldi yi(Mati.FermionGrid());
|
||||
FermionFieldi xi(Mati.FermionGrid());
|
||||
FermionFieldi srci(Mati.FermionGrid());
|
||||
FermionFieldi Ai(Mati.FermionGrid());
|
||||
|
||||
RealD m=Mati.Mass();
|
||||
|
||||
///////////////////////////////////////
|
||||
//Import source, include Dminus factors
|
||||
///////////////////////////////////////
|
||||
Mato.ImportPhysicalFermionSource(src4,b);
|
||||
std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
|
||||
std::cout << GridLogMessage << " b " <<norm2(b)<<std::endl;
|
||||
|
||||
defect = b;
|
||||
sol5=Zero();
|
||||
for (int i=0;i<maxiter;i++) {
|
||||
|
||||
///////////////////////////////////////
|
||||
// Set up c0 from current defect
|
||||
///////////////////////////////////////
|
||||
PauliVillarsSolvero(Mato,defect,A);
|
||||
Mato.Pdag(A,c);
|
||||
ExtractSlice(c0, c, 0 , 0);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Solve the inner system with surface term c0
|
||||
////////////////////////////////////////////////
|
||||
ci = Zero();
|
||||
convert(c0,c0i); // Possible precison change
|
||||
InsertSlice(c0i,ci,0, 0);
|
||||
|
||||
// Dwm P y = Dwm x = D(1) P (c0,0,0,0)^T
|
||||
Mati.P(ci,Ai);
|
||||
Mati.SetMass(1.0); Mati.M(Ai,srci); Mati.SetMass(m);
|
||||
SchurSolveri(Mati,srci,xi,Guesseri);
|
||||
Mati.Pdag(xi,yi);
|
||||
ExtractSlice(y0i, yi, 0 , 0);
|
||||
convert(y0i,y0); // Possible precision change
|
||||
|
||||
//////////////////////////////////////
|
||||
// Propagate solution back to outer system
|
||||
// Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
|
||||
//////////////////////////////////////
|
||||
c0 = - y0;
|
||||
InsertSlice(c0, c, 0 , 0);
|
||||
|
||||
/////////////////////////////
|
||||
// Reconstruct the bulk solution Pdag PV^-1 Dm P
|
||||
/////////////////////////////
|
||||
Mato.P(c,B);
|
||||
Mato.M(B,A);
|
||||
PauliVillarsSolvero(Mato,A,B);
|
||||
Mato.Pdag(B,A);
|
||||
|
||||
//////////////////////////////
|
||||
// Reinsert surface prop
|
||||
//////////////////////////////
|
||||
InsertSlice(y0,A,0,0);
|
||||
|
||||
//////////////////////////////
|
||||
// Convert from y back to x
|
||||
//////////////////////////////
|
||||
Mato.P(A,B);
|
||||
|
||||
// sol5' = sol5 + M^-1 defect
|
||||
// = sol5 + M^-1 src - M^-1 M sol5 ...
|
||||
sol5 = sol5 + B;
|
||||
std::cout << GridLogMessage << "***************************************" <<std::endl;
|
||||
std::cout << GridLogMessage << " Sol5 update "<<std::endl;
|
||||
std::cout << GridLogMessage << "***************************************" <<std::endl;
|
||||
std::cout << GridLogMessage << " Sol5 now "<<norm2(sol5)<<std::endl;
|
||||
std::cout << GridLogMessage << " delta "<<norm2(B)<<std::endl;
|
||||
|
||||
// New defect = b - M sol5
|
||||
Mato.M(sol5,A);
|
||||
defect = b - A;
|
||||
|
||||
std::cout << GridLogMessage << " defect "<<norm2(defect)<<std::endl;
|
||||
|
||||
double resid = ::sqrt(norm2(defect) / norm2(b));
|
||||
std::cout << GridLogMessage << "Residual " << i << ": " << resid << std::endl;
|
||||
std::cout << GridLogMessage << "***************************************" <<std::endl;
|
||||
|
||||
if (resid < target_resid) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MADWF : Exceeded maxiter "<<std::endl;
|
||||
assert(0);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,104 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_MOBIUS_EOFA_FERMION_H
|
||||
#define GRID_QCD_MOBIUS_EOFA_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
public:
|
||||
// Shift operator coefficients for red-black preconditioned Mobius EOFA
|
||||
Vector<Coeff_t> Mooee_shift;
|
||||
Vector<Coeff_t> MooeeInv_shift_lc;
|
||||
Vector<Coeff_t> MooeeInv_shift_norm;
|
||||
Vector<Coeff_t> MooeeInvDag_shift_lc;
|
||||
Vector<Coeff_t> MooeeInvDag_shift_norm;
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
|
||||
// EOFA-specific operations
|
||||
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
|
||||
virtual void Dtilde (const FermionField& in, FermionField& out);
|
||||
virtual void DtildeInv (const FermionField& in, FermionField& out);
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField& in, FermionField& out);
|
||||
virtual RealD Mdag (const FermionField& in, FermionField& out);
|
||||
|
||||
// half checkerboard operations
|
||||
virtual void Mooee (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeDag (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInv (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInv_shift (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInvDag (const FermionField& in, FermionField& out);
|
||||
virtual void MooeeInvDag_shift(const FermionField& in, FermionField& out);
|
||||
|
||||
virtual void M5D (const FermionField& psi, FermionField& chi);
|
||||
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Instantiate different versions depending on Impl
|
||||
/////////////////////////////////////////////////////
|
||||
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
|
||||
|
||||
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
|
||||
Vector<Coeff_t>& shift_coeffs);
|
||||
|
||||
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
|
||||
|
||||
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
|
||||
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
|
||||
Vector<Coeff_t>& shift_coeffs);
|
||||
|
||||
virtual void RefreshShiftCoefficients(RealD new_shift);
|
||||
|
||||
// Constructors
|
||||
MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
|
||||
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
|
||||
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
|
||||
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
|
||||
|
||||
protected:
|
||||
void SetCoefficientsPrecondShiftOps(void);
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,77 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_MOBIUS_FERMION_H
|
||||
#define GRID_QCD_MOBIUS_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class MobiusFermion : public CayleyFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
// Constructors
|
||||
MobiusFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
RealD b, RealD c,const ImplParams &p= ImplParams()) :
|
||||
|
||||
CayleyFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
|
||||
{
|
||||
RealD eps = 1.0;
|
||||
|
||||
std::cout<<GridLogMessage << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Tanh approx"<<std::endl;
|
||||
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
|
||||
assert(zdata->n==this->Ls);
|
||||
|
||||
// Call base setter
|
||||
this->SetCoefficientsTanh(zdata,b,c);
|
||||
|
||||
Approx::zolotarev_free(zdata);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,78 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusZolotarevFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
|
||||
#define GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class MobiusZolotarevFermion : public CayleyFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
// Constructors
|
||||
MobiusZolotarevFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
RealD b, RealD c,
|
||||
RealD lo, RealD hi,const ImplParams &p= ImplParams()) :
|
||||
|
||||
CayleyFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
|
||||
{
|
||||
RealD eps = lo/hi;
|
||||
|
||||
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,this->Ls,0);
|
||||
assert(zdata->n==this->Ls);
|
||||
|
||||
std::cout<<GridLogMessage << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
|
||||
// Call base setter
|
||||
this->SetCoefficientsZolotarev(hi,zdata,b,c);
|
||||
|
||||
Approx::zolotarev_free(zdata);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,70 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/OverlapWilsonContfracTanhFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
|
||||
#define OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
RealD scale,const ImplParams &p= ImplParams()) :
|
||||
|
||||
// b+c=scale, b-c = 0 <=> b =c = scale/2
|
||||
ContinuedFractionFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
{
|
||||
assert((this->Ls&0x1)==1); // Odd Ls required
|
||||
int nrational=this->Ls-1;// Even rational order
|
||||
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
|
||||
this->SetCoefficientsTanh(zdata,scale);
|
||||
Approx::zolotarev_free(zdata);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,72 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
|
||||
#define OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
RealD lo,RealD hi,const ImplParams &p= ImplParams()):
|
||||
|
||||
// b+c=scale, b-c = 0 <=> b =c = scale/2
|
||||
ContinuedFractionFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
{
|
||||
assert((this->Ls&0x1)==1); // Odd Ls required
|
||||
|
||||
int nrational=this->Ls;// Odd rational order
|
||||
RealD eps = lo/hi;
|
||||
|
||||
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
|
||||
this->SetCoefficientsZolotarev(hi,zdata);
|
||||
Approx::zolotarev_free(zdata);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,69 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
|
||||
#define OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class OverlapWilsonPartialFractionTanhFermion : public PartialFractionFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
RealD scale,const ImplParams &p= ImplParams()) :
|
||||
|
||||
// b+c=scale, b-c = 0 <=> b =c = scale/2
|
||||
PartialFractionFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
{
|
||||
assert((this->Ls&0x1)==1); // Odd Ls required
|
||||
int nrational=this->Ls-1;// Even rational order
|
||||
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
|
||||
this->SetCoefficientsTanh(zdata,scale);
|
||||
Approx::zolotarev_free(zdata);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,73 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
|
||||
#define OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class OverlapWilsonPartialFractionZolotarevFermion : public PartialFractionFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
RealD lo,RealD hi,const ImplParams &p= ImplParams()):
|
||||
|
||||
// b+c=scale, b-c = 0 <=> b =c = scale/2
|
||||
PartialFractionFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
{
|
||||
assert((this->Ls&0x1)==1); // Odd Ls required
|
||||
|
||||
int nrational=this->Ls;// Odd rational order
|
||||
RealD eps = lo/hi;
|
||||
|
||||
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
|
||||
this->SetCoefficientsZolotarev(hi,zdata);
|
||||
Approx::zolotarev_free(zdata);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,103 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/PartialFractionFermion5D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_PARTIAL_FRACTION_H
|
||||
#define GRID_QCD_PARTIAL_FRACTION_H
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class PartialFractionFermion5D : public WilsonFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
const int part_frac_chroma_convention=1;
|
||||
|
||||
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
|
||||
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
|
||||
void MooeeInv_internal(const FermionField &in, FermionField &out,int dag);
|
||||
void M_internal(const FermionField &in, FermionField &out,int dag);
|
||||
|
||||
// override multiply
|
||||
virtual RealD M (const FermionField &in, FermionField &out);
|
||||
virtual RealD Mdag (const FermionField &in, FermionField &out);
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Meooe (const FermionField &in, FermionField &out);
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out);
|
||||
virtual void Mooee (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
|
||||
|
||||
// force terms; five routines; default to Dhop on diagonal
|
||||
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
|
||||
virtual void Instantiatable(void) =0; // ensure no make-eee
|
||||
|
||||
// Efficient support for multigrid coarsening
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Physical surface field utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
|
||||
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
|
||||
|
||||
// Constructors
|
||||
PartialFractionFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
|
||||
|
||||
protected:
|
||||
|
||||
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
|
||||
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
|
||||
|
||||
// Part frac
|
||||
RealD mass;
|
||||
RealD dw_diag;
|
||||
RealD R;
|
||||
RealD amax;
|
||||
RealD scale;
|
||||
Vector<double> p;
|
||||
Vector<double> q;
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,92 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field>
|
||||
class PauliVillarsSolverUnprec
|
||||
{
|
||||
public:
|
||||
ConjugateGradient<Field> & CG;
|
||||
PauliVillarsSolverUnprec( ConjugateGradient<Field> &_CG) : CG(_CG){};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
|
||||
{
|
||||
RealD m = _Matrix.Mass();
|
||||
Field A (_Matrix.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<Matrix,Field> HermOp(_Matrix);
|
||||
|
||||
_Matrix.SetMass(1.0);
|
||||
_Matrix.Mdag(src,A);
|
||||
CG(HermOp,A,sol);
|
||||
_Matrix.SetMass(m);
|
||||
};
|
||||
};
|
||||
|
||||
template<class Field,class SchurSolverType>
|
||||
class PauliVillarsSolverRBprec
|
||||
{
|
||||
public:
|
||||
SchurSolverType & SchurSolver;
|
||||
PauliVillarsSolverRBprec( SchurSolverType &_SchurSolver) : SchurSolver(_SchurSolver){};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
|
||||
{
|
||||
RealD m = _Matrix.Mass();
|
||||
Field A (_Matrix.FermionGrid());
|
||||
|
||||
_Matrix.SetMass(1.0);
|
||||
SchurSolver(_Matrix,src,sol);
|
||||
_Matrix.SetMass(m);
|
||||
};
|
||||
};
|
||||
|
||||
template<class Field,class GaugeField>
|
||||
class PauliVillarsSolverFourierAccel
|
||||
{
|
||||
public:
|
||||
GaugeField & Umu;
|
||||
ConjugateGradient<Field> & CG;
|
||||
|
||||
PauliVillarsSolverFourierAccel(GaugeField &_Umu,ConjugateGradient<Field> &_CG) : Umu(_Umu), CG(_CG)
|
||||
{
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
|
||||
{
|
||||
FourierAcceleratedPV<Field, Matrix, typename Matrix::GaugeField > faPV(_Matrix,Umu,CG) ;
|
||||
faPV.pvInv(src,sol);
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,134 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field,class PVinverter> class Reconstruct5DfromPhysical {
|
||||
private:
|
||||
PVinverter & PauliVillarsSolver;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// First cut works, 10 Oct 2018.
|
||||
//
|
||||
// Must form a plan to get this into production for Zmobius acceleration
|
||||
// of the Mobius exact AMA corrections.
|
||||
//
|
||||
// TODO : understand absence of contact term in eqns in Hantao's thesis
|
||||
// sol4 is contact term subtracted, but thesis & Brower's paper suggests not.
|
||||
//
|
||||
// Step 1: Localise PV inverse in a routine. [DONE]
|
||||
// Step 2: Schur based PV inverse [DONE]
|
||||
// Step 3: Fourier accelerated PV inverse [DONE]
|
||||
//
|
||||
/////////////////////////////////////////////////////
|
||||
|
||||
Reconstruct5DfromPhysical(PVinverter &_PauliVillarsSolver)
|
||||
: PauliVillarsSolver(_PauliVillarsSolver)
|
||||
{
|
||||
};
|
||||
|
||||
|
||||
template<class Matrix>
|
||||
void PV(Matrix &_Matrix,const Field &src,Field &sol)
|
||||
{
|
||||
RealD m = _Matrix.Mass();
|
||||
_Matrix.SetMass(1.0);
|
||||
_Matrix.M(src,sol);
|
||||
_Matrix.SetMass(m);
|
||||
}
|
||||
template<class Matrix>
|
||||
void PVdag(Matrix &_Matrix,const Field &src,Field &sol)
|
||||
{
|
||||
RealD m = _Matrix.Mass();
|
||||
_Matrix.SetMass(1.0);
|
||||
_Matrix.Mdag(src,sol);
|
||||
_Matrix.SetMass(m);
|
||||
}
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &sol4,const Field &src4, Field &sol5){
|
||||
|
||||
int Ls = _Matrix.Ls;
|
||||
|
||||
Field psi4(_Matrix.GaugeGrid());
|
||||
Field psi(_Matrix.FermionGrid());
|
||||
Field A (_Matrix.FermionGrid());
|
||||
Field B (_Matrix.FermionGrid());
|
||||
Field c (_Matrix.FermionGrid());
|
||||
|
||||
typedef typename Matrix::Coeff_t Coeff_t;
|
||||
|
||||
std::cout << GridLogMessage<< " ************************************************" << std::endl;
|
||||
std::cout << GridLogMessage<< " Reconstruct5Dprop: c.f. MADWF algorithm " << std::endl;
|
||||
std::cout << GridLogMessage<< " ************************************************" << std::endl;
|
||||
|
||||
///////////////////////////////////////
|
||||
//Import source, include Dminus factors
|
||||
///////////////////////////////////////
|
||||
_Matrix.ImportPhysicalFermionSource(src4,B);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Set up c from src4
|
||||
///////////////////////////////////////
|
||||
PauliVillarsSolver(_Matrix,B,A);
|
||||
_Matrix.Pdag(A,c);
|
||||
|
||||
//////////////////////////////////////
|
||||
// Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
|
||||
//////////////////////////////////////
|
||||
psi4 = - sol4;
|
||||
InsertSlice(psi4, psi, 0 , 0);
|
||||
for (int s=1;s<Ls;s++) {
|
||||
ExtractSlice(psi4,c,s,0);
|
||||
InsertSlice(psi4,psi,s,0);
|
||||
}
|
||||
|
||||
/////////////////////////////
|
||||
// Pdag PV^-1 Dm P
|
||||
/////////////////////////////
|
||||
_Matrix.P(psi,B);
|
||||
_Matrix.M(B,A);
|
||||
PauliVillarsSolver(_Matrix,A,B);
|
||||
_Matrix.Pdag(B,A);
|
||||
|
||||
//////////////////////////////
|
||||
// Reinsert surface prop
|
||||
//////////////////////////////
|
||||
InsertSlice(sol4,A,0,0);
|
||||
|
||||
//////////////////////////////
|
||||
// Convert from y back to x
|
||||
//////////////////////////////
|
||||
_Matrix.P(A,sol5);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,102 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: SchurDiagTwoKappa.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Christoph Lehner
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// This is specific to (Z)mobius fermions
|
||||
template<class Matrix, class Field>
|
||||
class KappaSimilarityTransform {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Matrix);
|
||||
Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
|
||||
|
||||
KappaSimilarityTransform (Matrix &zmob) {
|
||||
for (int i=0;i<(int)zmob.bs.size();i++) {
|
||||
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
|
||||
kappa.push_back( k );
|
||||
kappaDag.push_back( conj(k) );
|
||||
kappaInv.push_back( 1.0 / k );
|
||||
kappaInvDag.push_back( 1.0 / conj(k) );
|
||||
}
|
||||
}
|
||||
|
||||
template<typename vobj>
|
||||
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
|
||||
GridBase *grid=out.Grid();
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
|
||||
int Ls = grid->_rdimensions[0];
|
||||
thread_for(ss, grid->oSites(),
|
||||
{
|
||||
vobj tmp = s[ss % Ls]*in[ss];
|
||||
vstream(out[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
|
||||
sscale(in,out,s);
|
||||
return norm2(out);
|
||||
}
|
||||
|
||||
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
|
||||
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
|
||||
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
|
||||
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
|
||||
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
KappaSimilarityTransform<Matrix, Field> _S;
|
||||
SchurDiagTwoOperator<Matrix, Field> _Mat;
|
||||
|
||||
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
|
||||
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_S.MInv(in,out);
|
||||
_Mat.Mpc(out,tmp);
|
||||
return _S.M(tmp,out);
|
||||
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_S.MDag(in,out);
|
||||
_Mat.MpcDag(out,tmp);
|
||||
return _S.MInvDag(tmp,out);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -1,175 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class S, class Representation = FundamentalRepresentation >
|
||||
class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > >
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
typedef RealD _Coeff_t ;
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=false;
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
|
||||
|
||||
//Necessary?
|
||||
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
|
||||
|
||||
typedef _Coeff_t Coeff_t;
|
||||
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
|
||||
typedef StaggeredImplParams ImplParams;
|
||||
typedef SimpleCompressor<SiteSpinor> Compressor;
|
||||
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
|
||||
typedef typename StencilImpl::View_type StencilView;
|
||||
|
||||
ImplParams Params;
|
||||
|
||||
StaggeredImpl(const ImplParams &p = ImplParams()) : Params(p){};
|
||||
|
||||
static accelerator_inline void multLink(SiteSpinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SiteSpinor &chi,
|
||||
int mu)
|
||||
{
|
||||
mult(&phi(), &U(mu), &chi());
|
||||
}
|
||||
static accelerator_inline void multLinkAdd(SiteSpinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SiteSpinor &chi,
|
||||
int mu)
|
||||
{
|
||||
mac(&phi(), &U(mu), &chi());
|
||||
}
|
||||
|
||||
template <class ref>
|
||||
static accelerator_inline void loadLinkElement(Simd ®, ref &memory)
|
||||
{
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
inline void InsertGaugeField(DoubledGaugeField &U_ds,
|
||||
const GaugeLinkField &U,int mu)
|
||||
{
|
||||
PokeIndex<LorentzIndex>(U_ds, U, mu);
|
||||
}
|
||||
inline void DoubleStore(GridBase *GaugeGrid,
|
||||
DoubledGaugeField &UUUds, // for Naik term
|
||||
DoubledGaugeField &Uds,
|
||||
const GaugeField &Uthin,
|
||||
const GaugeField &Ufat) {
|
||||
conformable(Uds.Grid(), GaugeGrid);
|
||||
conformable(Uthin.Grid(), GaugeGrid);
|
||||
conformable(Ufat.Grid(), GaugeGrid);
|
||||
GaugeLinkField U(GaugeGrid);
|
||||
GaugeLinkField UU(GaugeGrid);
|
||||
GaugeLinkField UUU(GaugeGrid);
|
||||
GaugeLinkField Udag(GaugeGrid);
|
||||
GaugeLinkField UUUdag(GaugeGrid);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
|
||||
// Staggered Phase.
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
Lattice<iScalar<vInteger> > x(GaugeGrid); LatticeCoordinate(x,0);
|
||||
Lattice<iScalar<vInteger> > y(GaugeGrid); LatticeCoordinate(y,1);
|
||||
Lattice<iScalar<vInteger> > z(GaugeGrid); LatticeCoordinate(z,2);
|
||||
Lattice<iScalar<vInteger> > t(GaugeGrid); LatticeCoordinate(t,3);
|
||||
|
||||
Lattice<iScalar<vInteger> > lin_z(GaugeGrid); lin_z=x+y;
|
||||
Lattice<iScalar<vInteger> > lin_t(GaugeGrid); lin_t=x+y+z;
|
||||
|
||||
ComplexField phases(GaugeGrid); phases=1.0;
|
||||
|
||||
if ( mu == 1 ) phases = where( mod(x ,2)==(Integer)0, phases,-phases);
|
||||
if ( mu == 2 ) phases = where( mod(lin_z,2)==(Integer)0, phases,-phases);
|
||||
if ( mu == 3 ) phases = where( mod(lin_t,2)==(Integer)0, phases,-phases);
|
||||
|
||||
// 1 hop based on fat links
|
||||
U = PeekIndex<LorentzIndex>(Ufat, mu);
|
||||
Udag = adj( Cshift(U, mu, -1));
|
||||
|
||||
U = U *phases;
|
||||
Udag = Udag *phases;
|
||||
|
||||
InsertGaugeField(Uds,U,mu);
|
||||
InsertGaugeField(Uds,Udag,mu+4);
|
||||
// PokeIndex<LorentzIndex>(Uds, U, mu);
|
||||
// PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
|
||||
|
||||
// 3 hop based on thin links. Crazy huh ?
|
||||
U = PeekIndex<LorentzIndex>(Uthin, mu);
|
||||
UU = Gimpl::CovShiftForward(U,mu,U);
|
||||
UUU= Gimpl::CovShiftForward(U,mu,UU);
|
||||
|
||||
UUUdag = adj( Cshift(UUU, mu, -3));
|
||||
|
||||
UUU = UUU *phases;
|
||||
UUUdag = UUUdag *phases;
|
||||
|
||||
InsertGaugeField(UUUds,UUU,mu);
|
||||
InsertGaugeField(UUUds,UUUdag,mu+4);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
|
||||
GaugeLinkField link(mat.Grid());
|
||||
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
|
||||
PokeIndex<LorentzIndex>(mat,link,mu);
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu){
|
||||
assert (0);
|
||||
// Must never hit
|
||||
}
|
||||
};
|
||||
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
|
||||
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
|
||||
typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,117 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/StaggeredKernels.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi, Peter Boyle
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid)
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper routines that implement Staggered stencil for a single site.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
class StaggeredKernelsStatic {
|
||||
public:
|
||||
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
|
||||
enum { CommsAndCompute, CommsThenCompute };
|
||||
static int Opt;
|
||||
static int Comms;
|
||||
};
|
||||
|
||||
template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , public StaggeredKernelsStatic {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef FermionOperator<Impl> Base;
|
||||
|
||||
public:
|
||||
|
||||
void DhopDirKernel(StencilImpl &st, DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU, SiteSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dir,int disp);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Nc kernels
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
void DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
void DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
void DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Nc=3 specific kernels
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
void DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
void DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
void DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Asm Nc=3 specific kernels
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
void DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out,int dag);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic interface; fan out to right routine
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out, int interior=1,int exterior=1);
|
||||
|
||||
void DhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out, int interior=1,int exterior=1);
|
||||
|
||||
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
|
||||
DoubledGaugeFieldView &U, DoubledGaugeFieldView &UUU,
|
||||
SiteSpinor * buf, int LLs, int sU,
|
||||
const FermionFieldView &in, FermionFieldView &out, int dag, int interior,int exterior);
|
||||
|
||||
public:
|
||||
|
||||
StaggeredKernels(const ImplParams &p = ImplParams());
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
@ -1,203 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class S, class Representation = FundamentalRepresentation >
|
||||
class StaggeredVec5dImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
|
||||
|
||||
public:
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=true;
|
||||
typedef RealD Coeff_t ;
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
|
||||
|
||||
//Necessary?
|
||||
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
|
||||
|
||||
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
// Make the doubled gauge field a *scalar*
|
||||
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
|
||||
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
|
||||
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
|
||||
typedef StaggeredImplParams ImplParams;
|
||||
typedef SimpleCompressor<SiteSpinor> Compressor;
|
||||
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
|
||||
typedef typename StencilImpl::View_type StencilView;
|
||||
|
||||
ImplParams Params;
|
||||
|
||||
StaggeredVec5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
|
||||
|
||||
template <class ref>
|
||||
static accelerator_inline void loadLinkElement(Simd ®, ref &memory)
|
||||
{
|
||||
vsplat(reg, memory);
|
||||
}
|
||||
|
||||
static accelerator_inline void multLink(SiteHalfSpinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SiteHalfSpinor &chi,
|
||||
int mu)
|
||||
{
|
||||
SiteGaugeLink UU;
|
||||
for (int i = 0; i < Dimension; i++) {
|
||||
for (int j = 0; j < Dimension; j++) {
|
||||
vsplat(UU()()(i, j), U(mu)()(i, j));
|
||||
}
|
||||
}
|
||||
mult(&phi(), &UU(), &chi());
|
||||
}
|
||||
static accelerator_inline void multLinkAdd(SiteHalfSpinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SiteHalfSpinor &chi,
|
||||
int mu)
|
||||
{
|
||||
SiteGaugeLink UU;
|
||||
for (int i = 0; i < Dimension; i++) {
|
||||
for (int j = 0; j < Dimension; j++) {
|
||||
vsplat(UU()()(i, j), U(mu)()(i, j));
|
||||
}
|
||||
}
|
||||
mac(&phi(), &UU(), &chi());
|
||||
}
|
||||
|
||||
inline void InsertGaugeField(DoubledGaugeField &U_ds,const GaugeLinkField &U,int mu)
|
||||
{
|
||||
GridBase *GaugeGrid = U_ds.Grid();
|
||||
thread_for(lidx, GaugeGrid->lSites(),{
|
||||
|
||||
SiteScalarGaugeLink ScalarU;
|
||||
SiteDoubledGaugeField ScalarUds;
|
||||
|
||||
Coordinate lcoor;
|
||||
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
|
||||
peekLocalSite(ScalarUds, U_ds, lcoor);
|
||||
|
||||
peekLocalSite(ScalarU, U, lcoor);
|
||||
ScalarUds(mu) = ScalarU();
|
||||
|
||||
});
|
||||
}
|
||||
inline void DoubleStore(GridBase *GaugeGrid,
|
||||
DoubledGaugeField &UUUds, // for Naik term
|
||||
DoubledGaugeField &Uds,
|
||||
const GaugeField &Uthin,
|
||||
const GaugeField &Ufat)
|
||||
{
|
||||
|
||||
GridBase * InputGrid = Uthin.Grid();
|
||||
conformable(InputGrid,Ufat.Grid());
|
||||
|
||||
GaugeLinkField U(InputGrid);
|
||||
GaugeLinkField UU(InputGrid);
|
||||
GaugeLinkField UUU(InputGrid);
|
||||
GaugeLinkField Udag(InputGrid);
|
||||
GaugeLinkField UUUdag(InputGrid);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
|
||||
// Staggered Phase.
|
||||
Lattice<iScalar<vInteger> > coor(InputGrid);
|
||||
Lattice<iScalar<vInteger> > x(InputGrid); LatticeCoordinate(x,0);
|
||||
Lattice<iScalar<vInteger> > y(InputGrid); LatticeCoordinate(y,1);
|
||||
Lattice<iScalar<vInteger> > z(InputGrid); LatticeCoordinate(z,2);
|
||||
Lattice<iScalar<vInteger> > t(InputGrid); LatticeCoordinate(t,3);
|
||||
|
||||
Lattice<iScalar<vInteger> > lin_z(InputGrid); lin_z=x+y;
|
||||
Lattice<iScalar<vInteger> > lin_t(InputGrid); lin_t=x+y+z;
|
||||
|
||||
ComplexField phases(InputGrid); phases=1.0;
|
||||
|
||||
if ( mu == 1 ) phases = where( mod(x ,2)==(Integer)0, phases,-phases);
|
||||
if ( mu == 2 ) phases = where( mod(lin_z,2)==(Integer)0, phases,-phases);
|
||||
if ( mu == 3 ) phases = where( mod(lin_t,2)==(Integer)0, phases,-phases);
|
||||
|
||||
// 1 hop based on fat links
|
||||
U = PeekIndex<LorentzIndex>(Ufat, mu);
|
||||
Udag = adj( Cshift(U, mu, -1));
|
||||
|
||||
U = U *phases;
|
||||
Udag = Udag *phases;
|
||||
|
||||
InsertGaugeField(Uds,U,mu);
|
||||
InsertGaugeField(Uds,Udag,mu+4);
|
||||
|
||||
// 3 hop based on thin links. Crazy huh ?
|
||||
U = PeekIndex<LorentzIndex>(Uthin, mu);
|
||||
UU = Gimpl::CovShiftForward(U,mu,U);
|
||||
UUU= Gimpl::CovShiftForward(U,mu,UU);
|
||||
|
||||
UUUdag = adj( Cshift(UUU, mu, -3));
|
||||
|
||||
UUU = UUU *phases;
|
||||
UUUdag = UUUdag *phases;
|
||||
|
||||
InsertGaugeField(UUUds,UUU,mu);
|
||||
InsertGaugeField(UUUds,UUUdag,mu+4);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu){
|
||||
assert (0);
|
||||
}
|
||||
};
|
||||
typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec
|
||||
typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float
|
||||
typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,374 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: David Preti <>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Wilson Clover
|
||||
//
|
||||
// Operator ( with anisotropy coefficients):
|
||||
//
|
||||
// Q = 1 + (Nd-1)/xi_0 + m
|
||||
// + W_t + (nu/xi_0) * W_s
|
||||
// - 1/2*[ csw_t * sum_s (sigma_ts F_ts) + (csw_s/xi_0) * sum_ss (sigma_ss F_ss) ]
|
||||
//
|
||||
// s spatial, t temporal directions.
|
||||
// where W_t and W_s are the temporal and spatial components of the
|
||||
// Wilson Dirac operator
|
||||
//
|
||||
// csw_r = csw_t to recover the isotropic version
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
class WilsonCloverFermion : public WilsonFermion<Impl>
|
||||
{
|
||||
public:
|
||||
// Types definitions
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
template <typename vtype>
|
||||
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
typedef iImplClover<Simd> SiteCloverType;
|
||||
typedef Lattice<SiteCloverType> CloverFieldType;
|
||||
|
||||
public:
|
||||
typedef WilsonFermion<Impl> WilsonBase;
|
||||
|
||||
virtual int ConstEE(void) { return 0; };
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
GridRedBlackCartesian &Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r = 0.0,
|
||||
const RealD _csw_t = 0.0,
|
||||
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
|
||||
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
|
||||
Fgrid,
|
||||
Hgrid,
|
||||
_mass, impl_p, clover_anisotropy),
|
||||
CloverTerm(&Fgrid),
|
||||
CloverTermInv(&Fgrid),
|
||||
CloverTermEven(&Hgrid),
|
||||
CloverTermOdd(&Hgrid),
|
||||
CloverTermInvEven(&Hgrid),
|
||||
CloverTermInvOdd(&Hgrid),
|
||||
CloverTermDagEven(&Hgrid),
|
||||
CloverTermDagOdd(&Hgrid),
|
||||
CloverTermInvDagEven(&Hgrid),
|
||||
CloverTermInvDagOdd(&Hgrid)
|
||||
{
|
||||
assert(Nd == 4); // require 4 dimensions
|
||||
|
||||
if (clover_anisotropy.isAnisotropic)
|
||||
{
|
||||
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
|
||||
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
|
||||
}
|
||||
else
|
||||
{
|
||||
csw_r = _csw_r * 0.5;
|
||||
diag_mass = 4.0 + _mass;
|
||||
}
|
||||
csw_t = _csw_t * 0.5;
|
||||
|
||||
if (csw_r == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
|
||||
if (csw_t == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
}
|
||||
|
||||
virtual RealD M(const FermionField &in, FermionField &out);
|
||||
virtual RealD Mdag(const FermionField &in, FermionField &out);
|
||||
|
||||
virtual void Mooee(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv);
|
||||
|
||||
//virtual void MDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
|
||||
virtual void MooDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
|
||||
virtual void MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
|
||||
|
||||
void ImportGauge(const GaugeField &_Umu);
|
||||
|
||||
// Derivative parts unpreconditioned pseudofermions
|
||||
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
conformable(X.Grid(), Y.Grid());
|
||||
conformable(X.Grid(), force.Grid());
|
||||
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
|
||||
GaugeField clover_force(force.Grid());
|
||||
PropagatorField Lambda(force.Grid());
|
||||
|
||||
// Guido: Here we are hitting some performance issues:
|
||||
// need to extract the components of the DoubledGaugeField
|
||||
// for each call
|
||||
// Possible solution
|
||||
// Create a vector object to store them? (cons: wasting space)
|
||||
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
|
||||
|
||||
Impl::extractLinkField(U, this->Umu);
|
||||
|
||||
force = Zero();
|
||||
// Derivative of the Wilson hopping term
|
||||
this->DhopDeriv(force, X, Y, dag);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Clover term derivative
|
||||
///////////////////////////////////////////////////////////
|
||||
Impl::outerProductImpl(Lambda, X, Y);
|
||||
//std::cout << "Lambda:" << Lambda << std::endl;
|
||||
|
||||
Gamma::Algebra sigma[] = {
|
||||
Gamma::Algebra::SigmaXY,
|
||||
Gamma::Algebra::SigmaXZ,
|
||||
Gamma::Algebra::SigmaXT,
|
||||
Gamma::Algebra::MinusSigmaXY,
|
||||
Gamma::Algebra::SigmaYZ,
|
||||
Gamma::Algebra::SigmaYT,
|
||||
Gamma::Algebra::MinusSigmaXZ,
|
||||
Gamma::Algebra::MinusSigmaYZ,
|
||||
Gamma::Algebra::SigmaZT,
|
||||
Gamma::Algebra::MinusSigmaXT,
|
||||
Gamma::Algebra::MinusSigmaYT,
|
||||
Gamma::Algebra::MinusSigmaZT};
|
||||
|
||||
/*
|
||||
sigma_{\mu \nu}=
|
||||
| 0 sigma[0] sigma[1] sigma[2] |
|
||||
| sigma[3] 0 sigma[4] sigma[5] |
|
||||
| sigma[6] sigma[7] 0 sigma[8] |
|
||||
| sigma[9] sigma[10] sigma[11] 0 |
|
||||
*/
|
||||
|
||||
int count = 0;
|
||||
clover_force = Zero();
|
||||
for (int mu = 0; mu < 4; mu++)
|
||||
{
|
||||
force_mu = Zero();
|
||||
for (int nu = 0; nu < 4; nu++)
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
else
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
||||
}
|
||||
//clover_force *= csw;
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
|
||||
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
|
||||
{
|
||||
conformable(lambda.Grid(), U[0].Grid());
|
||||
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
|
||||
// insertion in upper staple
|
||||
// please check redundancy of shift operations
|
||||
|
||||
// C1+
|
||||
tmp = lambda * U[nu];
|
||||
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C2+
|
||||
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C3+
|
||||
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
|
||||
|
||||
// C4+
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
|
||||
|
||||
// insertion in lower staple
|
||||
// C1-
|
||||
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C2-
|
||||
tmp = adj(lambda) * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C3-
|
||||
tmp = lambda * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
|
||||
|
||||
// C4-
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
private:
|
||||
// here fixing the 4 dimensions, make it more general?
|
||||
|
||||
RealD csw_r; // Clover coefficient - spatial
|
||||
RealD csw_t; // Clover coefficient - temporal
|
||||
RealD diag_mass; // Mass term
|
||||
CloverFieldType CloverTerm, CloverTermInv; // Clover term
|
||||
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
|
||||
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
|
||||
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
|
||||
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
|
||||
|
||||
// eventually these can be compressed into 6x6 blocks instead of the 12x12
|
||||
// using the DeGrand-Rossi basis for the gamma matrices
|
||||
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
auto T_v = T.View();
|
||||
auto F_v = F.View();
|
||||
thread_for(i, CloverTerm.Grid()->oSites(),
|
||||
{
|
||||
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
auto T_v = T.View();
|
||||
auto F_v = F.View();
|
||||
thread_for(i, CloverTerm.Grid()->oSites(),
|
||||
{
|
||||
T_v[i]()(0, 1) = -F_v[i]()();
|
||||
T_v[i]()(1, 0) = F_v[i]()();
|
||||
T_v[i]()(2, 3) = -F_v[i]()();
|
||||
T_v[i]()(3, 2) = F_v[i]()();
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXY(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
auto T_v = T.View();
|
||||
auto F_v = F.View();
|
||||
thread_for(i, CloverTerm.Grid()->oSites(),
|
||||
{
|
||||
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(1, 1) = timesI(F_v[i]()());
|
||||
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 3) = timesI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
auto T_v = T.View();
|
||||
auto F_v = F.View();
|
||||
thread_for(i, CloverTerm.Grid()->oSites(),
|
||||
{
|
||||
T_v[i]()(0, 1) = timesI(F_v[i]()());
|
||||
T_v[i]()(1, 0) = timesI(F_v[i]()());
|
||||
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverYT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
T = Zero();
|
||||
|
||||
auto T_v = T.View();
|
||||
auto F_v = F.View();
|
||||
thread_for(i, CloverTerm.Grid()->oSites(),
|
||||
{
|
||||
T_v[i]()(0, 1) = -(F_v[i]()());
|
||||
T_v[i]()(1, 0) = (F_v[i]()());
|
||||
T_v[i]()(2, 3) = (F_v[i]()());
|
||||
T_v[i]()(3, 2) = -(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverZT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F.Grid());
|
||||
|
||||
T = Zero();
|
||||
|
||||
auto T_v = T.View();
|
||||
auto F_v = F.View();
|
||||
thread_for(i, CloverTerm.Grid()->oSites(),
|
||||
{
|
||||
T_v[i]()(0, 0) = timesI(F_v[i]()());
|
||||
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
|
||||
T_v[i]()(3, 3) = timesI(F_v[i]()());
|
||||
});
|
||||
|
||||
return T;
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
@ -1,240 +0,0 @@
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonFermion5D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_WILSON_FERMION_5D_H
|
||||
#define GRID_QCD_WILSON_FERMION_5D_H
|
||||
|
||||
#include <Grid/perfmon/Stat.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// This is the 4d red black case appropriate to support
|
||||
//
|
||||
// parity = (x+y+z+t)|2;
|
||||
// generalised five dim fermions like mobius, zolotarev etc..
|
||||
//
|
||||
// i.e. even even contains fifth dim hopping term.
|
||||
//
|
||||
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// This is the 4d red black case appropriate to support
|
||||
//
|
||||
// parity = (x+y+z+t)|2;
|
||||
// generalised five dim fermions like mobius, zolotarev etc..
|
||||
//
|
||||
// i.e. even even contains fifth dim hopping term.
|
||||
//
|
||||
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class WilsonFermion5DStatic {
|
||||
public:
|
||||
// S-direction is INNERMOST and takes no part in the parity.
|
||||
static const std::vector<int> directions;
|
||||
static const std::vector<int> displacements;
|
||||
static constexpr int npoint = 8;
|
||||
};
|
||||
|
||||
template<class Impl>
|
||||
class WilsonFermion5D : public WilsonKernels<Impl>, public WilsonFermion5DStatic
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef WilsonKernels<Impl> Kernels;
|
||||
PmuStat stat;
|
||||
|
||||
FermionField _tmp;
|
||||
FermionField &tmp(void) { return _tmp; }
|
||||
|
||||
void Report(void);
|
||||
void ZeroCounters(void);
|
||||
double DhopCalls;
|
||||
double DhopCommTime;
|
||||
double DhopComputeTime;
|
||||
double DhopComputeTime2;
|
||||
double DhopFaceTime;
|
||||
double DhopTotalTime;
|
||||
|
||||
double DerivCalls;
|
||||
double DerivCommTime;
|
||||
double DerivComputeTime;
|
||||
double DerivDhopComputeTime;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Implement the abstract base
|
||||
///////////////////////////////////////////////////////////////
|
||||
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
|
||||
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
|
||||
GridBase *FermionGrid(void) { return _FiveDimGrid;}
|
||||
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
|
||||
|
||||
// full checkerboard operations; leave unimplemented as abstract for now
|
||||
virtual RealD M (const FermionField &in, FermionField &out){assert(0); return 0.0;};
|
||||
virtual RealD Mdag (const FermionField &in, FermionField &out){assert(0); return 0.0;};
|
||||
|
||||
// half checkerboard operations; leave unimplemented as abstract for now
|
||||
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
|
||||
|
||||
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
|
||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
||||
|
||||
// These can be overridden by fancy 5d chiral action
|
||||
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
|
||||
|
||||
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
|
||||
|
||||
// Implement hopping term non-hermitian hopping term; half cb or both
|
||||
// Implement s-diagonal DW
|
||||
void DW (const FermionField &in, FermionField &out,int dag);
|
||||
void Dhop (const FermionField &in, FermionField &out,int dag);
|
||||
void DhopOE(const FermionField &in, FermionField &out,int dag);
|
||||
void DhopEO(const FermionField &in, FermionField &out,int dag);
|
||||
|
||||
// add a DhopComm
|
||||
// -- suboptimal interface will presently trigger multiple comms.
|
||||
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// New methods added
|
||||
///////////////////////////////////////////////////////////////
|
||||
void DerivInternal(StencilImpl & st,
|
||||
DoubledGaugeField & U,
|
||||
GaugeField &mat,
|
||||
const FermionField &A,
|
||||
const FermionField &B,
|
||||
int dag);
|
||||
|
||||
void DhopInternal(StencilImpl & st,
|
||||
LebesgueOrder &lo,
|
||||
DoubledGaugeField &U,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
void DhopInternalOverlappedComms(StencilImpl & st,
|
||||
LebesgueOrder &lo,
|
||||
DoubledGaugeField &U,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
void DhopInternalSerialComms(StencilImpl & st,
|
||||
LebesgueOrder &lo,
|
||||
DoubledGaugeField &U,
|
||||
const FermionField &in,
|
||||
FermionField &out,
|
||||
int dag);
|
||||
|
||||
// Constructors
|
||||
WilsonFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
double _M5,const ImplParams &p= ImplParams());
|
||||
|
||||
// Constructors
|
||||
/*
|
||||
WilsonFermion5D(int simd,
|
||||
GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
double _M5,const ImplParams &p= ImplParams());
|
||||
*/
|
||||
|
||||
// DoubleStore
|
||||
void ImportGauge(const GaugeField &_Umu);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Data members require to support the functionality
|
||||
///////////////////////////////////////////////////////////////
|
||||
public:
|
||||
|
||||
// Add these to the support from Wilson
|
||||
GridBase *_FourDimGrid;
|
||||
GridBase *_FourDimRedBlackGrid;
|
||||
GridBase *_FiveDimGrid;
|
||||
GridBase *_FiveDimRedBlackGrid;
|
||||
|
||||
double M5;
|
||||
int Ls;
|
||||
|
||||
//Defines the stencils for even and odd
|
||||
StencilImpl Stencil;
|
||||
StencilImpl StencilEven;
|
||||
StencilImpl StencilOdd;
|
||||
|
||||
// Copy of the gauge field , with even and odd subsets
|
||||
DoubledGaugeField Umu;
|
||||
DoubledGaugeField UmuEven;
|
||||
DoubledGaugeField UmuOdd;
|
||||
|
||||
LebesgueOrder Lebesgue;
|
||||
LebesgueOrder LebesgueEvenOdd;
|
||||
|
||||
// Comms buffer
|
||||
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Conserved current utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu);
|
||||
void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax,
|
||||
ComplexField &lattice_cmplx);
|
||||
|
||||
void ContractJ5q(PropagatorField &q_in,ComplexField &J5q);
|
||||
void ContractJ5q(FermionField &q_in,ComplexField &J5q);
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -1,226 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour four spinors with colour index
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
|
||||
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
|
||||
public:
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=false;
|
||||
static const int Nhcs = Options::Nhcs;
|
||||
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
//Necessary?
|
||||
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
|
||||
|
||||
typedef typename Options::_Coeff_t Coeff_t;
|
||||
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
|
||||
typedef WilsonImplParams ImplParams;
|
||||
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor,ImplParams> StencilImpl;
|
||||
typedef typename StencilImpl::View_type StencilView;
|
||||
|
||||
ImplParams Params;
|
||||
|
||||
WilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
|
||||
assert(Params.boundary_phases.size() == Nd);
|
||||
};
|
||||
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi,
|
||||
int mu)
|
||||
{
|
||||
auto UU = coalescedRead(U(mu));
|
||||
mult(&phi(), &UU, &chi());
|
||||
}
|
||||
template<class _Spinor>
|
||||
static accelerator_inline void multLink(_Spinor &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const _Spinor &chi,
|
||||
int mu,
|
||||
StencilEntry *SE,
|
||||
StencilView &St)
|
||||
{
|
||||
multLink(phi,U,chi,mu);
|
||||
}
|
||||
|
||||
|
||||
template <class ref>
|
||||
static accelerator_inline void loadLinkElement(Simd ®, ref &memory)
|
||||
{
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,
|
||||
DoubledGaugeField &Uds,
|
||||
const GaugeField &Umu)
|
||||
{
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
|
||||
conformable(Uds.Grid(), GaugeGrid);
|
||||
conformable(Umu.Grid(), GaugeGrid);
|
||||
|
||||
GaugeLinkField U(GaugeGrid);
|
||||
GaugeLinkField tmp(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
////////////////////////////////////////////////////
|
||||
// apply any boundary phase or twists
|
||||
////////////////////////////////////////////////////
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
|
||||
////////// boundary phase /////////////
|
||||
auto pha = Params.boundary_phases[mu];
|
||||
scalar_type phase( real(pha),imag(pha) );
|
||||
|
||||
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||
int Lmu = L - 1;
|
||||
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
|
||||
// apply any twists
|
||||
RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
|
||||
if ( theta != 0.0) {
|
||||
scalar_type twphase(::cos(theta),::sin(theta));
|
||||
U = twphase*U;
|
||||
std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
|
||||
}
|
||||
|
||||
tmp = where(coor == Lmu, phase * U, U);
|
||||
PokeIndex<LorentzIndex>(Uds, tmp, mu);
|
||||
|
||||
U = adj(Cshift(U, mu, -1));
|
||||
U = where(coor == 0, conjugate(phase) * U, U);
|
||||
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
|
||||
GaugeLinkField link(mat.Grid());
|
||||
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
|
||||
PokeIndex<LorentzIndex>(mat,link,mu);
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
|
||||
mat = outerProduct(B,A);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
mat = TraceIndex<SpinIndex>(P);
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu){
|
||||
|
||||
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||
GaugeLinkField tmp(mat.Grid());
|
||||
tmp = Zero();
|
||||
auto tmp_v = tmp.View();
|
||||
auto Btilde_v = Btilde.View();
|
||||
auto Atilde_v = Atilde.View();
|
||||
thread_for(sss,tmp.Grid()->oSites(),{
|
||||
int sU=sss;
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sF = s+Ls*sU;
|
||||
tmp_v[sU] = tmp_v[sU]+ traceIndex<SpinIndex>(outerProduct(Btilde_v[sF],Atilde_v[sF])); // ordering here
|
||||
}
|
||||
});
|
||||
PokeIndex<LorentzIndex>(mat,tmp,mu);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
|
||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
|
||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,167 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper routines that implement Wilson stencil for a single site.
|
||||
// Common to both the WilsonFermion and WilsonFermion5D
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
class WilsonKernelsStatic {
|
||||
public:
|
||||
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
|
||||
enum { CommsAndCompute, CommsThenCompute };
|
||||
static int Opt;
|
||||
static int Comms;
|
||||
};
|
||||
|
||||
template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public WilsonKernelsStatic {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
typedef FermionOperator<Impl> Base;
|
||||
|
||||
public:
|
||||
|
||||
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior=1,int exterior=1) ;
|
||||
|
||||
static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||
int interior=1,int exterior=1) ;
|
||||
|
||||
static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor * buf,
|
||||
int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Utilities for inserting Wilson conserved current.
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
static void ContractConservedCurrentSiteFwd(const SitePropagator &q_in_1,
|
||||
const SitePropagator &q_in_2,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeFieldView &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
bool switch_sign = false);
|
||||
|
||||
static void ContractConservedCurrentSiteBwd(const SitePropagator &q_in_1,
|
||||
const SitePropagator &q_in_2,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeFieldView &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
bool switch_sign = false);
|
||||
|
||||
static void SeqConservedCurrentSiteFwd(const SitePropagator &q_in,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeFieldView &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
vPredicate t_mask,
|
||||
bool switch_sign = false);
|
||||
|
||||
static void SeqConservedCurrentSiteBwd(const SitePropagator &q_in,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeFieldView &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
vPredicate t_mask,
|
||||
bool switch_sign = false);
|
||||
|
||||
private:
|
||||
|
||||
static accelerator void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
|
||||
|
||||
// Specialised variants
|
||||
static accelerator void GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static void AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
|
||||
|
||||
static void AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static void AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
|
||||
|
||||
static void AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static void AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
|
||||
|
||||
static void AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
// Keep Hand unrolled temporarily
|
||||
static accelerator void HandDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void HandDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void HandDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void HandDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void HandDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
|
||||
static accelerator void HandDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
|
||||
public:
|
||||
WilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -1,74 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonTMFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class WilsonTMFermion : public WilsonFermion<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
// Constructors
|
||||
WilsonTMFermion(GaugeField &_Umu,
|
||||
GridCartesian &Fgrid,
|
||||
GridRedBlackCartesian &Hgrid,
|
||||
RealD _mass,
|
||||
RealD _mu,
|
||||
const ImplParams &p= ImplParams()
|
||||
) :
|
||||
WilsonFermion<Impl>(_Umu,
|
||||
Fgrid,
|
||||
Hgrid,
|
||||
_mass,p)
|
||||
|
||||
{
|
||||
mu = _mu;
|
||||
}
|
||||
|
||||
|
||||
// allow override for twisted mass and clover
|
||||
virtual void Mooee(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
private:
|
||||
RealD mu; // TwistedMass parameter
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -1,152 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonTMFermion5D.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk> ; NB Christoph did similar in GPT
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class WilsonTMFermion5D : public WilsonFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
|
||||
// Constructors
|
||||
WilsonTMFermion5D(GaugeField &_Umu,
|
||||
GridCartesian &Fgrid,
|
||||
GridRedBlackCartesian &Frbgrid,
|
||||
GridCartesian &Ugrid,
|
||||
GridRedBlackCartesian &Urbgrid,
|
||||
const std::vector<RealD> _mass,
|
||||
const std::vector<RealD> _mu,
|
||||
const ImplParams &p= ImplParams()
|
||||
) :
|
||||
WilsonFermion5D<Impl>(_Umu,
|
||||
Fgrid,
|
||||
Frbgrid,
|
||||
Ugrid,
|
||||
Urbgrid,
|
||||
4.0,p)
|
||||
|
||||
{
|
||||
update(_mass,_mu);
|
||||
}
|
||||
|
||||
virtual void Meooe(const FermionField &in, FermionField &out) {
|
||||
if (in.Checkerboard() == Odd) {
|
||||
this->DhopEO(in, out, DaggerNo);
|
||||
} else {
|
||||
this->DhopOE(in, out, DaggerNo);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void MeooeDag(const FermionField &in, FermionField &out) {
|
||||
if (in.Checkerboard() == Odd) {
|
||||
this->DhopEO(in, out, DaggerYes);
|
||||
} else {
|
||||
this->DhopOE(in, out, DaggerYes);
|
||||
}
|
||||
}
|
||||
|
||||
// allow override for twisted mass and clover
|
||||
virtual void Mooee(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
//axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
ComplexD a = 4.0+this->mass[s];
|
||||
ComplexD b(0.0,this->mu[s]);
|
||||
axpbg5y_ssp(out,a,in,b,in,s,s);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
ComplexD a = 4.0+this->mass[s];
|
||||
ComplexD b(0.0,-this->mu[s]);
|
||||
axpbg5y_ssp(out,a,in,b,in,s,s);
|
||||
}
|
||||
}
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out) {
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
RealD m = this->mass[s];
|
||||
RealD tm = this->mu[s];
|
||||
RealD mtil = 4.0+this->mass[s];
|
||||
RealD sq = mtil*mtil+tm*tm;
|
||||
ComplexD a = mtil/sq;
|
||||
ComplexD b(0.0, -tm /sq);
|
||||
axpbg5y_ssp(out,a,in,b,in,s,s);
|
||||
}
|
||||
}
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out) {
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
RealD m = this->mass[s];
|
||||
RealD tm = this->mu[s];
|
||||
RealD mtil = 4.0+this->mass[s];
|
||||
RealD sq = mtil*mtil+tm*tm;
|
||||
ComplexD a = mtil/sq;
|
||||
ComplexD b(0.0,tm /sq);
|
||||
axpbg5y_ssp(out,a,in,b,in,s,s);
|
||||
}
|
||||
}
|
||||
|
||||
virtual RealD M(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerNo);
|
||||
FermionField tmp(out.Grid());
|
||||
for (int s=0;s<(int)this->mass.size();s++) {
|
||||
ComplexD a = 4.0+this->mass[s];
|
||||
ComplexD b(0.0,this->mu[s]);
|
||||
axpbg5y_ssp(tmp,a,in,b,in,s,s);
|
||||
}
|
||||
return axpy_norm(out, 1.0, tmp, out);
|
||||
}
|
||||
|
||||
// needed for fast PV
|
||||
void update(const std::vector<RealD>& _mass, const std::vector<RealD>& _mu) {
|
||||
assert(_mass.size() == _mu.size());
|
||||
assert(_mass.size() == this->FermionGrid()->_fdimensions[0]);
|
||||
this->mass = _mass;
|
||||
this->mu = _mu;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<RealD> mu;
|
||||
std::vector<RealD> mass;
|
||||
|
||||
};
|
||||
|
||||
typedef WilsonTMFermion5D<WilsonImplF> WilsonTMFermion5DF;
|
||||
typedef WilsonTMFermion5D<WilsonImplD> WilsonTMFermion5DD;
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,73 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusFermion.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
class ZMobiusFermion : public CayleyFermion5D<Impl>
|
||||
{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
public:
|
||||
|
||||
virtual void Instantiatable(void) {};
|
||||
// Constructors
|
||||
ZMobiusFermion(GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,
|
||||
std::vector<ComplexD> &gamma, RealD b,RealD c,const ImplParams &p= ImplParams()) :
|
||||
|
||||
CayleyFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid,
|
||||
FiveDimRedBlackGrid,
|
||||
FourDimGrid,
|
||||
FourDimRedBlackGrid,_mass,_M5,p)
|
||||
|
||||
{
|
||||
// RealD eps = 1.0;
|
||||
std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl;
|
||||
Vector<Coeff_t> zgamma(this->Ls);
|
||||
for(int s=0;s<this->Ls;s++){
|
||||
zgamma[s] = gamma[s];
|
||||
}
|
||||
|
||||
// Call base setter
|
||||
this->SetCoefficientsInternal(1.0,zgamma,b,c);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,158 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int LLs = psi.Grid()->_rdimensions[0];
|
||||
int vol = psi.Grid()->oSites()/LLs;
|
||||
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
|
||||
assert(Ls==LLs);
|
||||
|
||||
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
|
||||
for(int s=0;s<Ls;s++){
|
||||
Pplus(s,s) = this->bee[s];
|
||||
Pminus(s,s) = this->bee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pminus(s,s+1) = -this->cee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pplus(s+1,s) = -this->cee[s+1];
|
||||
}
|
||||
|
||||
Pplus (0,Ls-1) = this->dp;
|
||||
Pminus(Ls-1,0) = this->dm;
|
||||
|
||||
Eigen::MatrixXd PplusMat ;
|
||||
Eigen::MatrixXd PminusMat;
|
||||
|
||||
if(inv) {
|
||||
PplusMat = Pplus.inverse();
|
||||
PminusMat = Pminus.inverse();
|
||||
} else {
|
||||
PplusMat = Pplus;
|
||||
PminusMat = Pminus;
|
||||
}
|
||||
|
||||
if(dag){
|
||||
PplusMat.adjointInPlace();
|
||||
PminusMat.adjointInPlace();
|
||||
}
|
||||
|
||||
// For the non-vectorised s-direction this is simple
|
||||
|
||||
for(auto site=0; site<vol; site++){
|
||||
|
||||
SiteSpinor SiteChi;
|
||||
SiteHalfSpinor SitePplus;
|
||||
SiteHalfSpinor SitePminus;
|
||||
|
||||
for(int s1=0; s1<Ls; s1++){
|
||||
SiteChi = Zero();
|
||||
for(int s2=0; s2<Ls; s2++){
|
||||
int lex2 = s2 + Ls*site;
|
||||
if(PplusMat(s1,s2) != 0.0){
|
||||
spProj5p(SitePplus,psi[lex2]);
|
||||
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
|
||||
}
|
||||
if(PminusMat(s1,s2) != 0.0){
|
||||
spProj5m(SitePminus, psi[lex2]);
|
||||
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
|
||||
}
|
||||
}
|
||||
chi[s1+Ls*site] = SiteChi*0.5;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DOMAIN_WALL_EOFA_DPERP_DENSE
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
|
||||
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
|
||||
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void DomainWallEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
#endif
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,167 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
|
||||
// Pminus fowards
|
||||
// Pplus backwards
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi.Grid());
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls], chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp_pminus(tmp, czero, chi, one/this->dee[Ls-1], chi, Ls-1, Ls-1);
|
||||
axpby_ssp_pplus(chi, one, tmp, one/this->dee[Ls], chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply U^{-1}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi.Grid());
|
||||
|
||||
// Apply (U^{\prime})^{-dagger}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp_pminus(tmp, czero, chi, one/conjugate(this->dee[Ls-1]), chi, Ls-1, Ls-1);
|
||||
axpby_ssp_pplus(chi, one, tmp, one/conjugate(this->dee[Ls]), chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply L^{-dagger}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DOMAIN_WALL_EOFA_DPERP_LINALG
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
|
||||
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
|
||||
|
||||
#endif
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,183 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
int LLs = psi.Grid()->_rdimensions[0];
|
||||
int vol = psi.Grid()->oSites()/LLs;
|
||||
|
||||
int pm = this->pm;
|
||||
RealD shift = this->shift;
|
||||
RealD alpha = this->alpha;
|
||||
RealD k = this->k;
|
||||
RealD mq1 = this->mq1;
|
||||
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
|
||||
assert(Ls==LLs);
|
||||
|
||||
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
|
||||
|
||||
for(int s=0;s<Ls;s++){
|
||||
Pplus(s,s) = this->bee[s];
|
||||
Pminus(s,s) = this->bee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pminus(s,s+1) = -this->cee[s];
|
||||
}
|
||||
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
Pplus(s+1,s) = -this->cee[s+1];
|
||||
}
|
||||
Pplus (0,Ls-1) = mq1*this->cee[0];
|
||||
Pminus(Ls-1,0) = mq1*this->cee[Ls-1];
|
||||
|
||||
if(shift != 0.0){
|
||||
Coeff_t N = 2.0 * ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
|
||||
for(int s=0; s<Ls; ++s){
|
||||
if(pm == 1){ Pplus(s,Ls-1) += shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
|
||||
else{ Pminus(Ls-1-s,Ls-1) -= shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
|
||||
}
|
||||
}
|
||||
|
||||
Eigen::MatrixXd PplusMat ;
|
||||
Eigen::MatrixXd PminusMat;
|
||||
|
||||
if(inv){
|
||||
PplusMat = Pplus.inverse();
|
||||
PminusMat = Pminus.inverse();
|
||||
} else {
|
||||
PplusMat = Pplus;
|
||||
PminusMat = Pminus;
|
||||
}
|
||||
|
||||
if(dag){
|
||||
PplusMat.adjointInPlace();
|
||||
PminusMat.adjointInPlace();
|
||||
}
|
||||
|
||||
// For the non-vectorised s-direction this is simple
|
||||
|
||||
for(auto site=0; site<vol; site++){
|
||||
|
||||
SiteSpinor SiteChi;
|
||||
SiteHalfSpinor SitePplus;
|
||||
SiteHalfSpinor SitePminus;
|
||||
|
||||
for(int s1=0; s1<Ls; s1++){
|
||||
SiteChi = Zero();
|
||||
for(int s2=0; s2<Ls; s2++){
|
||||
int lex2 = s2 + Ls*site;
|
||||
if(PplusMat(s1,s2) != 0.0){
|
||||
spProj5p(SitePplus,psi[lex2]);
|
||||
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
|
||||
}
|
||||
if(PminusMat(s1,s2) != 0.0){
|
||||
spProj5m(SitePminus, psi[lex2]);
|
||||
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
|
||||
}
|
||||
}
|
||||
chi[s1+Ls*site] = SiteChi*0.5;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef MOBIUS_EOFA_DPERP_DENSE
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
|
||||
|
||||
template void MobiusEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
|
||||
|
||||
template void MobiusEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
template void MobiusEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
|
||||
|
||||
#endif
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,289 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
|
||||
// Pminus fowards
|
||||
// Pplus backwards
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
|
||||
Vector<Coeff_t>& shift_coeffs)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
|
||||
FermionField& chi, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
|
||||
Vector<Coeff_t>& shift_coeffs)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
int Ls = this->Ls;
|
||||
for(int s=0; s<Ls; s++){
|
||||
if(s==0) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
|
||||
} else if (s==(Ls-1)) {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
} else {
|
||||
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
|
||||
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
|
||||
}
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
|
||||
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
int Ls = this->Ls;
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply U^{-1}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi.Grid());
|
||||
|
||||
// Apply (L^{\prime})^{-1}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
axpby_ssp(tmp, czero, tmp, this->MooeeInv_shift_lc[0], psi, 0, 0);
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
|
||||
axpby_ssp(tmp, one, tmp, this->MooeeInv_shift_lc[s], psi, 0, s);
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
|
||||
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply U^{-1} and add shift term
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
|
||||
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
int Ls = this->Ls;
|
||||
|
||||
// Apply (U^{\prime})^{-dagger}
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply L^{-dagger}
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
|
||||
{
|
||||
Coeff_t one(1.0);
|
||||
Coeff_t czero(0.0);
|
||||
chi.Checkerboard() = psi.Checkerboard();
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField tmp(psi.Grid());
|
||||
|
||||
// Apply (U^{\prime})^{-dagger} and accumulate (MooeeInvDag_shift_lc)_{j} \psi_{j} in tmp[0]
|
||||
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
|
||||
axpby_ssp(tmp, czero, tmp, this->MooeeInvDag_shift_lc[0], psi, 0, 0);
|
||||
for(int s=1; s<Ls; s++){
|
||||
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
|
||||
axpby_ssp(tmp, one, tmp, this->MooeeInvDag_shift_lc[s], psi, 0, s);
|
||||
}
|
||||
|
||||
// U_m^{-\dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for(int s=0; s<Ls-1; s++){
|
||||
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
|
||||
}
|
||||
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
|
||||
|
||||
// Apply L^{-dagger} and add shift
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
|
||||
for(int s=Ls-2; s>=0; s--){
|
||||
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
|
||||
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
|
||||
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef MOBIUS_EOFA_DPERP_LINALG
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
|
||||
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
|
||||
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
|
||||
|
||||
#endif
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,235 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Pminus fowards
|
||||
// Pplus backwards..
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
||||
const FermionField &phi_i,
|
||||
FermionField &chi_i,
|
||||
Vector<Coeff_t> &lower,
|
||||
Vector<Coeff_t> &diag,
|
||||
Vector<Coeff_t> &upper)
|
||||
{
|
||||
|
||||
chi_i.Checkerboard()=psi_i.Checkerboard();
|
||||
GridBase *grid=psi_i.Grid();
|
||||
auto psi = psi_i.View();
|
||||
auto phi = phi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
int Ls =this->Ls;
|
||||
|
||||
// 10 = 3 complex mult + 2 complex add
|
||||
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
|
||||
uint64_t nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss= sss*Ls;
|
||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||
spinor tmp1, tmp2;
|
||||
for(int s=0;s<Ls;s++){
|
||||
uint64_t idx_u = ss+((s+1)%Ls);
|
||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||
spProj5m(tmp1,psi(idx_u));
|
||||
spProj5p(tmp2,psi(idx_l));
|
||||
coalescedWrite(chi[ss+s],diag[s]*phi(ss+s)+upper[s]*tmp1+lower[s]*tmp2);
|
||||
}
|
||||
});
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
||||
const FermionField &phi_i,
|
||||
FermionField &chi_i,
|
||||
Vector<Coeff_t> &lower,
|
||||
Vector<Coeff_t> &diag,
|
||||
Vector<Coeff_t> &upper)
|
||||
{
|
||||
chi_i.Checkerboard()=psi_i.Checkerboard();
|
||||
GridBase *grid=psi_i.Grid();
|
||||
auto psi = psi_i.View();
|
||||
auto phi = phi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
int Ls=this->Ls;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
|
||||
uint64_t nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss=sss*Ls;
|
||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||
spinor tmp1,tmp2;
|
||||
for(int s=0;s<Ls;s++){
|
||||
uint64_t idx_u = ss+((s+1)%Ls);
|
||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||
spProj5p(tmp1,psi(idx_u));
|
||||
spProj5m(tmp2,psi(idx_l));
|
||||
coalescedWrite(chi[ss+s],diag[s]*phi(ss+s)+upper[s]*tmp1+lower[s]*tmp2);
|
||||
}
|
||||
});
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi_i)
|
||||
{
|
||||
chi_i.Checkerboard()=psi_i.Checkerboard();
|
||||
GridBase *grid=psi_i.Grid();
|
||||
|
||||
auto psi = psi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
|
||||
int Ls=this->Ls;
|
||||
|
||||
auto plee = & lee [0];
|
||||
auto pdee = & dee [0];
|
||||
auto puee = & uee [0];
|
||||
auto pleem = & leem[0];
|
||||
auto pueem = & ueem[0];
|
||||
|
||||
MooeeInvCalls++;
|
||||
MooeeInvTime-=usecond();
|
||||
uint64_t nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss=sss*Ls;
|
||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||
spinor tmp;
|
||||
|
||||
// flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls = 12*Ls * (9) = 108*Ls flops
|
||||
// Apply (L^{\prime})^{-1}
|
||||
coalescedWrite(chi[ss],psi(ss)); // chi[0]=psi[0]
|
||||
for(int s=1;s<Ls;s++){
|
||||
spProj5p(tmp,chi(ss+s-1));
|
||||
coalescedWrite(chi[ss+s] , psi(ss+s)-plee[s-1]*tmp);
|
||||
}
|
||||
|
||||
// L_m^{-1}
|
||||
for (int s=0;s<Ls-1;s++){ // Chi[ee] = 1 - sum[s<Ls-1] -pleem[s]P_- chi
|
||||
spProj5m(tmp,chi(ss+s));
|
||||
coalescedWrite(chi[ss+Ls-1], chi(ss+Ls-1) - pleem[s]*tmp);
|
||||
}
|
||||
|
||||
// U_m^{-1} D^{-1}
|
||||
for (int s=0;s<Ls-1;s++){
|
||||
// Chi[s] + 1/d chi[s]
|
||||
spProj5p(tmp,chi(ss+Ls-1));
|
||||
coalescedWrite(chi[ss+s], (1.0/pdee[s])*chi(ss+s)-(pueem[s]/pdee[Ls-1])*tmp);
|
||||
}
|
||||
coalescedWrite(chi[ss+Ls-1], (1.0/pdee[Ls-1])*chi(ss+Ls-1));
|
||||
|
||||
// Apply U^{-1}
|
||||
for (int s=Ls-2;s>=0;s--){
|
||||
spProj5m(tmp,chi(ss+s+1));
|
||||
coalescedWrite(chi[ss+s], chi(ss+s) - puee[s]*tmp);
|
||||
}
|
||||
});
|
||||
|
||||
MooeeInvTime+=usecond();
|
||||
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi_i)
|
||||
{
|
||||
chi_i.Checkerboard()=psi_i.Checkerboard();
|
||||
GridBase *grid=psi_i.Grid();
|
||||
int Ls=this->Ls;
|
||||
|
||||
auto psi = psi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
|
||||
auto plee = & lee [0];
|
||||
auto pdee = & dee [0];
|
||||
auto puee = & uee [0];
|
||||
auto pleem = & leem[0];
|
||||
auto pueem = & ueem[0];
|
||||
|
||||
assert(psi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
MooeeInvCalls++;
|
||||
MooeeInvTime-=usecond();
|
||||
|
||||
|
||||
uint64_t nloop = grid->oSites()/Ls;
|
||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||
uint64_t ss=sss*Ls;
|
||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||
spinor tmp;
|
||||
|
||||
// Apply (U^{\prime})^{-dagger}
|
||||
coalescedWrite(chi[ss],psi(ss));
|
||||
for (int s=1;s<Ls;s++){
|
||||
spProj5m(tmp,chi(ss+s-1));
|
||||
coalescedWrite(chi[ss+s], psi(ss+s)-conjugate(puee[s-1])*tmp);
|
||||
}
|
||||
// U_m^{-\dagger}
|
||||
for (int s=0;s<Ls-1;s++){
|
||||
spProj5p(tmp,chi(ss+s));
|
||||
coalescedWrite(chi[ss+Ls-1], chi(ss+Ls-1) - conjugate(pueem[s])*tmp);
|
||||
}
|
||||
|
||||
// L_m^{-\dagger} D^{-dagger}
|
||||
for (int s=0;s<Ls-1;s++){
|
||||
spProj5m(tmp,chi(ss+Ls-1));
|
||||
coalescedWrite(chi[ss+s], conjugate(1.0/pdee[s])*chi(ss+s)-conjugate(pleem[s]/pdee[Ls-1])*tmp);
|
||||
}
|
||||
coalescedWrite(chi[ss+Ls-1], conjugate(1.0/pdee[Ls-1])*chi(ss+Ls-1));
|
||||
|
||||
// Apply L^{-dagger}
|
||||
for (int s=Ls-2;s>=0;s--){
|
||||
spProj5p(tmp,chi(ss+s+1));
|
||||
coalescedWrite(chi[ss+s], chi(ss+s) - conjugate(plee[s])*tmp);
|
||||
}
|
||||
});
|
||||
MooeeInvTime+=usecond();
|
||||
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,831 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
* Dense matrix versions of routines
|
||||
*/
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInvDag(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
|
||||
this->MooeeInternal(psi,chi,DaggerYes,InverseYes);
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
|
||||
this->MooeeInternal(psi,chi,DaggerNo,InverseYes);
|
||||
}
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
||||
const FermionField &phi_i,
|
||||
FermionField &chi_i,
|
||||
Vector<Coeff_t> &lower,
|
||||
Vector<Coeff_t> &diag,
|
||||
Vector<Coeff_t> &upper)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
|
||||
chi_i.Checkerboard()=psi_i.Checkerboard();
|
||||
GridBase *grid=psi_i.Grid();
|
||||
auto psi = psi_i.View();
|
||||
auto phi = phi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
const int nsimd= Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd> > u(LLs);
|
||||
Vector<iSinglet<Simd> > l(LLs);
|
||||
Vector<iSinglet<Simd> > d(LLs);
|
||||
|
||||
assert(Ls/LLs==nsimd);
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type * u_p = (scalar_type *)&u[0];
|
||||
scalar_type * l_p = (scalar_type *)&l[0];
|
||||
scalar_type * d_p = (scalar_type *)&d[0];
|
||||
|
||||
for(int o=0;o<LLs;o++){ // outer
|
||||
for(int i=0;i<nsimd;i++){ //inner
|
||||
int s = o+i*LLs;
|
||||
int ss = o*nsimd+i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
|
||||
assert(Nc==3);
|
||||
|
||||
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
|
||||
#if 0
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
for(int v=0;v<LLs;v++){
|
||||
|
||||
int vp=(v+1)%LLs;
|
||||
int vm=(v+LLs-1)%LLs;
|
||||
|
||||
spProj5m(hp,psi[ss+vp]);
|
||||
spProj5p(hm,psi[ss+vm]);
|
||||
|
||||
if ( vp<=v ) rotate(hp,hp,1);
|
||||
if ( vm>=v ) rotate(hm,hm,nsimd-1);
|
||||
|
||||
hp=0.5*hp;
|
||||
hm=0.5*hm;
|
||||
|
||||
spRecon5m(fp,hp);
|
||||
spRecon5p(fm,hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v];
|
||||
chi[ss+v] = chi[ss+v] +u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
||||
|
||||
}
|
||||
#else
|
||||
for(int v=0;v<LLs;v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp= (v==LLs-1) ? 0 : v+1;
|
||||
int vm= (v==0 ) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(2)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(2)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(2)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(3)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(3)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(3)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(0)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(0)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(0)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(1)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(1)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(1)(2);
|
||||
|
||||
if ( vp<=v ) {
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
if ( vm>=v ) {
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
// Can force these to real arithmetic and save 2x.
|
||||
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_00);
|
||||
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_01);
|
||||
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_02);
|
||||
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_10);
|
||||
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_11);
|
||||
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_12);
|
||||
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_00);
|
||||
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_01);
|
||||
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_02);
|
||||
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_10);
|
||||
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_11);
|
||||
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0),p_00);
|
||||
vstream(chi[ss+v]()(0)(1),p_01);
|
||||
vstream(chi[ss+v]()(0)(2),p_02);
|
||||
vstream(chi[ss+v]()(1)(0),p_10);
|
||||
vstream(chi[ss+v]()(1)(1),p_11);
|
||||
vstream(chi[ss+v]()(1)(2),p_12);
|
||||
vstream(chi[ss+v]()(2)(0),p_20);
|
||||
vstream(chi[ss+v]()(2)(1),p_21);
|
||||
vstream(chi[ss+v]()(2)(2),p_22);
|
||||
vstream(chi[ss+v]()(3)(0),p_30);
|
||||
vstream(chi[ss+v]()(3)(1),p_31);
|
||||
vstream(chi[ss+v]()(3)(2),p_32);
|
||||
|
||||
}
|
||||
#endif
|
||||
});
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
||||
const FermionField &phi_i,
|
||||
FermionField &chi_i,
|
||||
Vector<Coeff_t> &lower,
|
||||
Vector<Coeff_t> &diag,
|
||||
Vector<Coeff_t> &upper)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
|
||||
chi_i.Checkerboard()=psi_i.Checkerboard();
|
||||
GridBase *grid=psi_i.Grid();
|
||||
auto psi=psi_i.View();
|
||||
auto phi=phi_i.View();
|
||||
auto chi=chi_i.View();
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
int nsimd= Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd> > u(LLs);
|
||||
Vector<iSinglet<Simd> > l(LLs);
|
||||
Vector<iSinglet<Simd> > d(LLs);
|
||||
|
||||
assert(Ls/LLs==nsimd);
|
||||
assert(phi.Checkerboard() == psi.Checkerboard());
|
||||
|
||||
// just directly address via type pun
|
||||
typedef typename Simd::scalar_type scalar_type;
|
||||
scalar_type * u_p = (scalar_type *)&u[0];
|
||||
scalar_type * l_p = (scalar_type *)&l[0];
|
||||
scalar_type * d_p = (scalar_type *)&d[0];
|
||||
|
||||
for(int o=0;o<LLs;o++){ // outer
|
||||
for(int i=0;i<nsimd;i++){ //inner
|
||||
int s = o+i*LLs;
|
||||
int ss = o*nsimd+i;
|
||||
u_p[ss] = upper[s];
|
||||
l_p[ss] = lower[s];
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
|
||||
#if 0
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
for(int v=0;v<LLs;v++){
|
||||
|
||||
int vp=(v+1)%LLs;
|
||||
int vm=(v+LLs-1)%LLs;
|
||||
|
||||
spProj5p(hp,psi[ss+vp]);
|
||||
spProj5m(hm,psi[ss+vm]);
|
||||
|
||||
if ( vp<=v ) rotate(hp,hp,1);
|
||||
if ( vm>=v ) rotate(hm,hm,nsimd-1);
|
||||
|
||||
hp=hp*0.5;
|
||||
hm=hm*0.5;
|
||||
spRecon5p(fp,hp);
|
||||
spRecon5m(fm,hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
||||
|
||||
}
|
||||
#else
|
||||
for(int v=0;v<LLs;v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
|
||||
int vp= (v==LLs-1) ? 0 : v+1;
|
||||
int vm= (v==0 ) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(0)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(0)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(0)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(1)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(1)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(1)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(2)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(2)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(2)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(3)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(3)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(3)(2);
|
||||
|
||||
if ( vp<=v ) {
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
if ( vm>=v ) {
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_00);
|
||||
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_01);
|
||||
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_02);
|
||||
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_10);
|
||||
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_11);
|
||||
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_12);
|
||||
|
||||
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_00);
|
||||
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_01);
|
||||
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_02);
|
||||
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_10);
|
||||
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_11);
|
||||
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_12);
|
||||
|
||||
vstream(chi[ss+v]()(0)(0),p_00);
|
||||
vstream(chi[ss+v]()(0)(1),p_01);
|
||||
vstream(chi[ss+v]()(0)(2),p_02);
|
||||
vstream(chi[ss+v]()(1)(0),p_10);
|
||||
vstream(chi[ss+v]()(1)(1),p_11);
|
||||
vstream(chi[ss+v]()(1)(2),p_12);
|
||||
vstream(chi[ss+v]()(2)(0),p_20);
|
||||
vstream(chi[ss+v]()(2)(1),p_21);
|
||||
vstream(chi[ss+v]()(2)(2),p_22);
|
||||
vstream(chi[ss+v]()(3)(0),p_30);
|
||||
vstream(chi[ss+v]()(3)(1),p_31);
|
||||
vstream(chi[ss+v]()(3)(2),p_32);
|
||||
}
|
||||
#endif
|
||||
});
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
|
||||
#ifdef AVX512
|
||||
#include <simd/Intel512common.h>
|
||||
#include <simd/Intel512avx.h>
|
||||
#include <simd/Intel512single.h>
|
||||
#endif
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi_i, FermionField &chi_i,
|
||||
int LLs, int site,
|
||||
Vector<iSinglet<Simd> > &Matp,
|
||||
Vector<iSinglet<Simd> > &Matm)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised&&EnableBool,int> sfinae=0;
|
||||
auto psi = psi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
#ifndef AVX512
|
||||
{
|
||||
SiteHalfSpinor BcastP;
|
||||
SiteHalfSpinor BcastM;
|
||||
SiteHalfSpinor SiteChiP;
|
||||
SiteHalfSpinor SiteChiM;
|
||||
|
||||
// Ls*Ls * 2 * 12 * vol flops
|
||||
for(int s1=0;s1<LLs;s1++){
|
||||
for(int s2=0;s2<LLs;s2++){
|
||||
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
|
||||
|
||||
int s=s2+l*LLs;
|
||||
int lex=s2+LLs*site;
|
||||
|
||||
if ( s2==0 && l==0) {
|
||||
SiteChiP=Zero();
|
||||
SiteChiM=Zero();
|
||||
}
|
||||
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
vbroadcast(BcastP()(sp )(co),psi[lex]()(sp)(co),l);
|
||||
}}
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
vbroadcast(BcastM()(sp )(co),psi[lex]()(sp+2)(co),l);
|
||||
}}
|
||||
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
SiteChiP()(sp)(co)=real_madd(Matp[LLs*s+s1]()()(),BcastP()(sp)(co),SiteChiP()(sp)(co)); // 1100 us.
|
||||
SiteChiM()(sp)(co)=real_madd(Matm[LLs*s+s1]()()(),BcastM()(sp)(co),SiteChiM()(sp)(co)); // each found by commenting out
|
||||
}}
|
||||
|
||||
}}
|
||||
{
|
||||
int lex = s1+LLs*site;
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
|
||||
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
|
||||
}}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
{
|
||||
// pointers
|
||||
// MASK_REGS;
|
||||
#define Chi_00 %%zmm1
|
||||
#define Chi_01 %%zmm2
|
||||
#define Chi_02 %%zmm3
|
||||
#define Chi_10 %%zmm4
|
||||
#define Chi_11 %%zmm5
|
||||
#define Chi_12 %%zmm6
|
||||
#define Chi_20 %%zmm7
|
||||
#define Chi_21 %%zmm8
|
||||
#define Chi_22 %%zmm9
|
||||
#define Chi_30 %%zmm10
|
||||
#define Chi_31 %%zmm11
|
||||
#define Chi_32 %%zmm12
|
||||
|
||||
#define BCAST0 %%zmm13
|
||||
#define BCAST1 %%zmm14
|
||||
#define BCAST2 %%zmm15
|
||||
#define BCAST3 %%zmm16
|
||||
#define BCAST4 %%zmm17
|
||||
#define BCAST5 %%zmm18
|
||||
#define BCAST6 %%zmm19
|
||||
#define BCAST7 %%zmm20
|
||||
#define BCAST8 %%zmm21
|
||||
#define BCAST9 %%zmm22
|
||||
#define BCAST10 %%zmm23
|
||||
#define BCAST11 %%zmm24
|
||||
|
||||
int incr=LLs*LLs*sizeof(iSinglet<Simd>);
|
||||
for(int s1=0;s1<LLs;s1++){
|
||||
for(int s2=0;s2<LLs;s2++){
|
||||
int lex=s2+LLs*site;
|
||||
uint64_t a0 = (uint64_t)&Matp[LLs*s2+s1]; // should be cacheable
|
||||
uint64_t a1 = (uint64_t)&Matm[LLs*s2+s1];
|
||||
uint64_t a2 = (uint64_t)&psi[lex];
|
||||
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
|
||||
if ( (s2+l)==0 ) {
|
||||
asm (
|
||||
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
|
||||
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
|
||||
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
|
||||
VBCASTCDUP(0,%2,BCAST0)
|
||||
VBCASTCDUP(1,%2,BCAST1)
|
||||
VBCASTCDUP(2,%2,BCAST2)
|
||||
VBCASTCDUP(3,%2,BCAST3)
|
||||
VBCASTCDUP(4,%2,BCAST4) VMULMEM (0,%0,BCAST0,Chi_00)
|
||||
VBCASTCDUP(5,%2,BCAST5) VMULMEM (0,%0,BCAST1,Chi_01)
|
||||
VBCASTCDUP(6,%2,BCAST6) VMULMEM (0,%0,BCAST2,Chi_02)
|
||||
VBCASTCDUP(7,%2,BCAST7) VMULMEM (0,%0,BCAST3,Chi_10)
|
||||
VBCASTCDUP(8,%2,BCAST8) VMULMEM (0,%0,BCAST4,Chi_11)
|
||||
VBCASTCDUP(9,%2,BCAST9) VMULMEM (0,%0,BCAST5,Chi_12)
|
||||
VBCASTCDUP(10,%2,BCAST10) VMULMEM (0,%1,BCAST6,Chi_20)
|
||||
VBCASTCDUP(11,%2,BCAST11) VMULMEM (0,%1,BCAST7,Chi_21)
|
||||
VMULMEM (0,%1,BCAST8,Chi_22)
|
||||
VMULMEM (0,%1,BCAST9,Chi_30)
|
||||
VMULMEM (0,%1,BCAST10,Chi_31)
|
||||
VMULMEM (0,%1,BCAST11,Chi_32)
|
||||
: : "r" (a0), "r" (a1), "r" (a2) );
|
||||
} else {
|
||||
asm (
|
||||
VBCASTCDUP(0,%2,BCAST0) VMADDMEM (0,%0,BCAST0,Chi_00)
|
||||
VBCASTCDUP(1,%2,BCAST1) VMADDMEM (0,%0,BCAST1,Chi_01)
|
||||
VBCASTCDUP(2,%2,BCAST2) VMADDMEM (0,%0,BCAST2,Chi_02)
|
||||
VBCASTCDUP(3,%2,BCAST3) VMADDMEM (0,%0,BCAST3,Chi_10)
|
||||
VBCASTCDUP(4,%2,BCAST4) VMADDMEM (0,%0,BCAST4,Chi_11)
|
||||
VBCASTCDUP(5,%2,BCAST5) VMADDMEM (0,%0,BCAST5,Chi_12)
|
||||
VBCASTCDUP(6,%2,BCAST6) VMADDMEM (0,%1,BCAST6,Chi_20)
|
||||
VBCASTCDUP(7,%2,BCAST7) VMADDMEM (0,%1,BCAST7,Chi_21)
|
||||
VBCASTCDUP(8,%2,BCAST8) VMADDMEM (0,%1,BCAST8,Chi_22)
|
||||
VBCASTCDUP(9,%2,BCAST9) VMADDMEM (0,%1,BCAST9,Chi_30)
|
||||
VBCASTCDUP(10,%2,BCAST10) VMADDMEM (0,%1,BCAST10,Chi_31)
|
||||
VBCASTCDUP(11,%2,BCAST11) VMADDMEM (0,%1,BCAST11,Chi_32)
|
||||
: : "r" (a0), "r" (a1), "r" (a2) );
|
||||
}
|
||||
a0 = a0+incr;
|
||||
a1 = a1+incr;
|
||||
a2 = a2+sizeof(typename Simd::scalar_type);
|
||||
}}
|
||||
{
|
||||
int lexa = s1+LLs*site;
|
||||
asm (
|
||||
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
|
||||
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
|
||||
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
|
||||
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
|
||||
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
#undef Chi_00
|
||||
#undef Chi_01
|
||||
#undef Chi_02
|
||||
#undef Chi_10
|
||||
#undef Chi_11
|
||||
#undef Chi_12
|
||||
#undef Chi_20
|
||||
#undef Chi_21
|
||||
#undef Chi_22
|
||||
#undef Chi_30
|
||||
#undef Chi_31
|
||||
#undef Chi_32
|
||||
|
||||
#undef BCAST0
|
||||
#undef BCAST1
|
||||
#undef BCAST2
|
||||
#undef BCAST3
|
||||
#undef BCAST4
|
||||
#undef BCAST5
|
||||
#undef BCAST6
|
||||
#undef BCAST7
|
||||
#undef BCAST8
|
||||
#undef BCAST9
|
||||
#undef BCAST10
|
||||
#undef BCAST11
|
||||
#endif
|
||||
};
|
||||
|
||||
// Z-mobius version
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi_i, FermionField &chi_i,
|
||||
int LLs, int site, Vector<iSinglet<Simd> > &Matp, Vector<iSinglet<Simd> > &Matm)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised,int> sfinae=0;
|
||||
#ifndef AVX512
|
||||
{
|
||||
auto psi = psi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
|
||||
SiteHalfSpinor BcastP;
|
||||
SiteHalfSpinor BcastM;
|
||||
SiteHalfSpinor SiteChiP;
|
||||
SiteHalfSpinor SiteChiM;
|
||||
|
||||
// Ls*Ls * 2 * 12 * vol flops
|
||||
for(int s1=0;s1<LLs;s1++){
|
||||
for(int s2=0;s2<LLs;s2++){
|
||||
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
|
||||
|
||||
int s=s2+l*LLs;
|
||||
int lex=s2+LLs*site;
|
||||
|
||||
if ( s2==0 && l==0) {
|
||||
SiteChiP=Zero();
|
||||
SiteChiM=Zero();
|
||||
}
|
||||
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
vbroadcast(BcastP()(sp )(co),psi[lex]()(sp)(co),l);
|
||||
}}
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
vbroadcast(BcastM()(sp )(co),psi[lex]()(sp+2)(co),l);
|
||||
}}
|
||||
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
SiteChiP()(sp)(co)=SiteChiP()(sp)(co)+ Matp[LLs*s+s1]()()()*BcastP()(sp)(co);
|
||||
SiteChiM()(sp)(co)=SiteChiM()(sp)(co)+ Matm[LLs*s+s1]()()()*BcastM()(sp)(co);
|
||||
}}
|
||||
|
||||
|
||||
}}
|
||||
{
|
||||
int lex = s1+LLs*site;
|
||||
for(int sp=0;sp<2;sp++){
|
||||
for(int co=0;co<Nc;co++){
|
||||
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
|
||||
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
|
||||
}}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
{
|
||||
auto psi = psi_i.View();
|
||||
auto chi = chi_i.View();
|
||||
// pointers
|
||||
// MASK_REGS;
|
||||
#define Chi_00 %zmm0
|
||||
#define Chi_01 %zmm1
|
||||
#define Chi_02 %zmm2
|
||||
#define Chi_10 %zmm3
|
||||
#define Chi_11 %zmm4
|
||||
#define Chi_12 %zmm5
|
||||
#define Chi_20 %zmm6
|
||||
#define Chi_21 %zmm7
|
||||
#define Chi_22 %zmm8
|
||||
#define Chi_30 %zmm9
|
||||
#define Chi_31 %zmm10
|
||||
#define Chi_32 %zmm11
|
||||
#define pChi_00 %%zmm0
|
||||
#define pChi_01 %%zmm1
|
||||
#define pChi_02 %%zmm2
|
||||
#define pChi_10 %%zmm3
|
||||
#define pChi_11 %%zmm4
|
||||
#define pChi_12 %%zmm5
|
||||
#define pChi_20 %%zmm6
|
||||
#define pChi_21 %%zmm7
|
||||
#define pChi_22 %%zmm8
|
||||
#define pChi_30 %%zmm9
|
||||
#define pChi_31 %%zmm10
|
||||
#define pChi_32 %%zmm11
|
||||
|
||||
#define BCAST_00 %zmm12
|
||||
#define SHUF_00 %zmm13
|
||||
#define BCAST_01 %zmm14
|
||||
#define SHUF_01 %zmm15
|
||||
#define BCAST_02 %zmm16
|
||||
#define SHUF_02 %zmm17
|
||||
#define BCAST_10 %zmm18
|
||||
#define SHUF_10 %zmm19
|
||||
#define BCAST_11 %zmm20
|
||||
#define SHUF_11 %zmm21
|
||||
#define BCAST_12 %zmm22
|
||||
#define SHUF_12 %zmm23
|
||||
|
||||
#define Mp %zmm24
|
||||
#define Mps %zmm25
|
||||
#define Mm %zmm26
|
||||
#define Mms %zmm27
|
||||
#define N 8
|
||||
int incr=LLs*LLs*sizeof(iSinglet<Simd>);
|
||||
for(int s1=0;s1<LLs;s1++){
|
||||
for(int s2=0;s2<LLs;s2++){
|
||||
int lex=s2+LLs*site;
|
||||
uint64_t a0 = (uint64_t)&Matp[LLs*s2+s1]; // should be cacheable
|
||||
uint64_t a1 = (uint64_t)&Matm[LLs*s2+s1];
|
||||
uint64_t a2 = (uint64_t)&psi[lex];
|
||||
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
|
||||
if ( (s2+l)==0 ) {
|
||||
LOAD64(%r8,a0);
|
||||
LOAD64(%r9,a1);
|
||||
LOAD64(%r10,a2);
|
||||
asm (
|
||||
VLOAD(0,%r8,Mp)// i r
|
||||
VLOAD(0,%r9,Mm)
|
||||
VSHUF(Mp,Mps) // r i
|
||||
VSHUF(Mm,Mms)
|
||||
VPREFETCH1(12,%r10) VPREFETCH1(13,%r10)
|
||||
VPREFETCH1(14,%r10) VPREFETCH1(15,%r10)
|
||||
|
||||
VMULIDUP(0*N,%r10,Mps,Chi_00)
|
||||
VMULIDUP(1*N,%r10,Mps,Chi_01)
|
||||
VMULIDUP(2*N,%r10,Mps,Chi_02)
|
||||
VMULIDUP(3*N,%r10,Mps,Chi_10)
|
||||
VMULIDUP(4*N,%r10,Mps,Chi_11)
|
||||
VMULIDUP(5*N,%r10,Mps,Chi_12)
|
||||
|
||||
VMULIDUP(6*N ,%r10,Mms,Chi_20)
|
||||
VMULIDUP(7*N ,%r10,Mms,Chi_21)
|
||||
VMULIDUP(8*N ,%r10,Mms,Chi_22)
|
||||
VMULIDUP(9*N ,%r10,Mms,Chi_30)
|
||||
VMULIDUP(10*N,%r10,Mms,Chi_31)
|
||||
VMULIDUP(11*N,%r10,Mms,Chi_32)
|
||||
|
||||
VMADDSUBRDUP(0*N,%r10,Mp,Chi_00)
|
||||
VMADDSUBRDUP(1*N,%r10,Mp,Chi_01)
|
||||
VMADDSUBRDUP(2*N,%r10,Mp,Chi_02)
|
||||
VMADDSUBRDUP(3*N,%r10,Mp,Chi_10)
|
||||
VMADDSUBRDUP(4*N,%r10,Mp,Chi_11)
|
||||
VMADDSUBRDUP(5*N,%r10,Mp,Chi_12)
|
||||
|
||||
VMADDSUBRDUP(6*N ,%r10,Mm,Chi_20)
|
||||
VMADDSUBRDUP(7*N ,%r10,Mm,Chi_21)
|
||||
VMADDSUBRDUP(8*N ,%r10,Mm,Chi_22)
|
||||
VMADDSUBRDUP(9*N ,%r10,Mm,Chi_30)
|
||||
VMADDSUBRDUP(10*N,%r10,Mm,Chi_31)
|
||||
VMADDSUBRDUP(11*N,%r10,Mm,Chi_32)
|
||||
);
|
||||
} else {
|
||||
LOAD64(%r8,a0);
|
||||
LOAD64(%r9,a1);
|
||||
LOAD64(%r10,a2);
|
||||
asm (
|
||||
VLOAD(0,%r8,Mp)
|
||||
VSHUF(Mp,Mps)
|
||||
|
||||
VLOAD(0,%r9,Mm)
|
||||
VSHUF(Mm,Mms)
|
||||
|
||||
VMADDSUBIDUP(0*N,%r10,Mps,Chi_00) // Mri * Pii +- Cir
|
||||
VMADDSUBIDUP(1*N,%r10,Mps,Chi_01)
|
||||
VMADDSUBIDUP(2*N,%r10,Mps,Chi_02)
|
||||
VMADDSUBIDUP(3*N,%r10,Mps,Chi_10)
|
||||
VMADDSUBIDUP(4*N,%r10,Mps,Chi_11)
|
||||
VMADDSUBIDUP(5*N,%r10,Mps,Chi_12)
|
||||
|
||||
VMADDSUBIDUP(6 *N,%r10,Mms,Chi_20)
|
||||
VMADDSUBIDUP(7 *N,%r10,Mms,Chi_21)
|
||||
VMADDSUBIDUP(8 *N,%r10,Mms,Chi_22)
|
||||
VMADDSUBIDUP(9 *N,%r10,Mms,Chi_30)
|
||||
VMADDSUBIDUP(10*N,%r10,Mms,Chi_31)
|
||||
VMADDSUBIDUP(11*N,%r10,Mms,Chi_32)
|
||||
|
||||
VMADDSUBRDUP(0*N,%r10,Mp,Chi_00) // Cir = Mir * Prr +- ( Mri * Pii +- Cir)
|
||||
VMADDSUBRDUP(1*N,%r10,Mp,Chi_01) // Ci = MiPr + Ci + MrPi ; Cr = MrPr - ( MiPi - Cr)
|
||||
VMADDSUBRDUP(2*N,%r10,Mp,Chi_02)
|
||||
VMADDSUBRDUP(3*N,%r10,Mp,Chi_10)
|
||||
VMADDSUBRDUP(4*N,%r10,Mp,Chi_11)
|
||||
VMADDSUBRDUP(5*N,%r10,Mp,Chi_12)
|
||||
|
||||
VMADDSUBRDUP(6 *N,%r10,Mm,Chi_20)
|
||||
VMADDSUBRDUP(7 *N,%r10,Mm,Chi_21)
|
||||
VMADDSUBRDUP(8 *N,%r10,Mm,Chi_22)
|
||||
VMADDSUBRDUP(9 *N,%r10,Mm,Chi_30)
|
||||
VMADDSUBRDUP(10*N,%r10,Mm,Chi_31)
|
||||
VMADDSUBRDUP(11*N,%r10,Mm,Chi_32)
|
||||
);
|
||||
}
|
||||
a0 = a0+incr;
|
||||
a1 = a1+incr;
|
||||
a2 = a2+sizeof(typename Simd::scalar_type);
|
||||
}}
|
||||
{
|
||||
int lexa = s1+LLs*site;
|
||||
/*
|
||||
SiteSpinor tmp;
|
||||
asm (
|
||||
VSTORE(0,%0,pChi_00) VSTORE(1 ,%0,pChi_01) VSTORE(2 ,%0,pChi_02)
|
||||
VSTORE(3,%0,pChi_10) VSTORE(4 ,%0,pChi_11) VSTORE(5 ,%0,pChi_12)
|
||||
VSTORE(6,%0,pChi_20) VSTORE(7 ,%0,pChi_21) VSTORE(8 ,%0,pChi_22)
|
||||
VSTORE(9,%0,pChi_30) VSTORE(10,%0,pChi_31) VSTORE(11,%0,pChi_32)
|
||||
: : "r" ((uint64_t)&tmp) : "memory" );
|
||||
*/
|
||||
|
||||
asm (
|
||||
VSTORE(0,%0,pChi_00) VSTORE(1 ,%0,pChi_01) VSTORE(2 ,%0,pChi_02)
|
||||
VSTORE(3,%0,pChi_10) VSTORE(4 ,%0,pChi_11) VSTORE(5 ,%0,pChi_12)
|
||||
VSTORE(6,%0,pChi_20) VSTORE(7 ,%0,pChi_21) VSTORE(8 ,%0,pChi_22)
|
||||
VSTORE(9,%0,pChi_30) VSTORE(10,%0,pChi_31) VSTORE(11,%0,pChi_32)
|
||||
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
|
||||
|
||||
// if ( 1 || (site==0) ) {
|
||||
// std::cout<<site << " s1 "<<s1<<"\n\t"<<tmp << "\n't" << chi[lexa] <<"\n\t"<<tmp-chi[lexa]<<std::endl;
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
#undef Chi_00
|
||||
#undef Chi_01
|
||||
#undef Chi_02
|
||||
#undef Chi_10
|
||||
#undef Chi_11
|
||||
#undef Chi_12
|
||||
#undef Chi_20
|
||||
#undef Chi_21
|
||||
#undef Chi_22
|
||||
#undef Chi_30
|
||||
#undef Chi_31
|
||||
#undef Chi_32
|
||||
|
||||
#undef BCAST0
|
||||
#undef BCAST1
|
||||
#undef BCAST2
|
||||
#undef BCAST3
|
||||
#undef BCAST4
|
||||
#undef BCAST5
|
||||
#undef BCAST6
|
||||
#undef BCAST7
|
||||
#undef BCAST8
|
||||
#undef BCAST9
|
||||
#undef BCAST10
|
||||
#undef BCAST11
|
||||
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void
|
||||
CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv)
|
||||
{
|
||||
EnableIf<Impl::LsVectorised,int> sfinae=0;
|
||||
chi.Checkerboard()=psi.Checkerboard();
|
||||
|
||||
int Ls=this->Ls;
|
||||
int LLs = psi.Grid()->_rdimensions[0];
|
||||
int vol = psi.Grid()->oSites()/LLs;
|
||||
|
||||
|
||||
Vector<iSinglet<Simd> > Matp;
|
||||
Vector<iSinglet<Simd> > Matm;
|
||||
Vector<iSinglet<Simd> > *_Matp;
|
||||
Vector<iSinglet<Simd> > *_Matm;
|
||||
|
||||
// MooeeInternalCompute(dag,inv,Matp,Matm);
|
||||
if ( inv && dag ) {
|
||||
_Matp = &MatpInvDag;
|
||||
_Matm = &MatmInvDag;
|
||||
}
|
||||
if ( inv && (!dag) ) {
|
||||
_Matp = &MatpInv;
|
||||
_Matm = &MatmInv;
|
||||
}
|
||||
if ( !inv ) {
|
||||
MooeeInternalCompute(dag,inv,Matp,Matm);
|
||||
_Matp = &Matp;
|
||||
_Matm = &Matm;
|
||||
}
|
||||
assert(_Matp->size()==Ls*LLs);
|
||||
|
||||
MooeeInvCalls++;
|
||||
MooeeInvTime-=usecond();
|
||||
|
||||
if ( switcheroo<Coeff_t>::iscomplex() ) {
|
||||
thread_loop( (auto site=0;site<vol;site++),{
|
||||
MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
|
||||
});
|
||||
} else {
|
||||
thread_loop( (auto site=0;site<vol;site++),{
|
||||
MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
|
||||
});
|
||||
}
|
||||
MooeeInvTime+=usecond();
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,321 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/ContinuedFractionFermion5D.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/ContinuedFractionFermion5D.h>
|
||||
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale)
|
||||
{
|
||||
SetCoefficientsZolotarev(1.0/scale,zdata);
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
|
||||
{
|
||||
// How to check Ls matches??
|
||||
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
|
||||
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
|
||||
int Ls = this->Ls;
|
||||
assert(zdata->db==Ls);// Beta has Ls coeffs
|
||||
|
||||
R=(1+this->mass)/(1-this->mass);
|
||||
|
||||
Beta.resize(Ls);
|
||||
cc.resize(Ls);
|
||||
cc_d.resize(Ls);
|
||||
sqrt_cc.resize(Ls);
|
||||
for(int i=0; i < Ls ; i++){
|
||||
Beta[i] = zdata -> beta[i];
|
||||
cc[i] = 1.0/Beta[i];
|
||||
cc_d[i]=std::sqrt(cc[i]);
|
||||
}
|
||||
|
||||
cc_d[Ls-1]=1.0;
|
||||
for(int i=0; i < Ls-1 ; i++){
|
||||
sqrt_cc[i]= std::sqrt(cc[i]*cc[i+1]);
|
||||
}
|
||||
sqrt_cc[Ls-2]=std::sqrt(cc[Ls-2]);
|
||||
|
||||
|
||||
ZoloHiInv =1.0/zolo_hi;
|
||||
dw_diag = (4.0-this->M5)*ZoloHiInv;
|
||||
|
||||
See.resize(Ls);
|
||||
Aee.resize(Ls);
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
Aee[s] = sign * Beta[s] * dw_diag;
|
||||
sign = - sign;
|
||||
}
|
||||
Aee[Ls-1] += R;
|
||||
|
||||
See[0] = Aee[0];
|
||||
for(int s=1;s<Ls;s++){
|
||||
See[s] = Aee[s] - 1.0/See[s-1];
|
||||
}
|
||||
for(int s=0;s<Ls;s++){
|
||||
std::cout<<GridLogMessage <<"s = "<<s<<" Beta "<<Beta[s]<<" Aee "<<Aee[s] <<" See "<<See[s] <<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<class Impl>
|
||||
RealD ContinuedFractionFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField D(psi.Grid());
|
||||
|
||||
this->DW(psi,D,DaggerNo);
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==0 ) {
|
||||
ag5xpby_ssp(chi,cc[0]*Beta[0]*sign*ZoloHiInv,D,sqrt_cc[0],psi,s,s+1); // Multiplies Dw by G5 so Hw
|
||||
} else if ( s==(Ls-1) ){
|
||||
RealD R=(1.0+mass)/(1.0-mass);
|
||||
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,D,sqrt_cc[s-1],psi,s,s-1);
|
||||
ag5xpby_ssp(chi,R,psi,1.0,chi,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,D,sqrt_cc[s],psi,s,s+1);
|
||||
axpby_ssp(chi,1.0,chi,sqrt_cc[s-1],psi,s,s-1);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
return norm2(chi);
|
||||
}
|
||||
template<class Impl>
|
||||
RealD ContinuedFractionFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
// This matrix is already hermitian. (g5 Dw) = Dw dag g5 = (g5 Dw)dag
|
||||
// The rest of matrix is symmetric.
|
||||
// Can ignore "dag"
|
||||
return M(psi,chi);
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
|
||||
int Ls = this->Ls;
|
||||
|
||||
this->DhopDir(psi,chi,dir,disp); // Dslash on diagonal. g5 Dslash is hermitian
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==(Ls-1) ){
|
||||
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,chi,0.0,chi,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,chi,0.0,chi,s,s);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::Meooe (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
// Apply 4d dslash
|
||||
if ( psi.Checkerboard() == Odd ) {
|
||||
this->DhopEO(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
|
||||
} else {
|
||||
this->DhopOE(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
|
||||
}
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==(Ls-1) ){
|
||||
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,chi,0.0,chi,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,chi,0.0,chi,s,s);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MeooeDag (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
this->Meooe(psi,chi);
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==0 ) {
|
||||
ag5xpby_ssp(chi,cc[0]*Beta[0]*sign*dw_diag,psi,sqrt_cc[0],psi,s,s+1); // Multiplies Dw by G5 so Hw
|
||||
} else if ( s==(Ls-1) ){
|
||||
// Drop the CC here.
|
||||
double R=(1+mass)/(1-mass);
|
||||
ag5xpby_ssp(chi,Beta[s]*dw_diag,psi,sqrt_cc[s-1],psi,s,s-1);
|
||||
ag5xpby_ssp(chi,R,psi,1.0,chi,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*dw_diag,psi,sqrt_cc[s],psi,s,s+1);
|
||||
axpby_ssp(chi,1.0,chi,sqrt_cc[s-1],psi,s,s-1);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
this->Mooee(psi,chi);
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MooeeInv (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
// Apply Linv
|
||||
axpby_ssp(chi,1.0/cc_d[0],psi,0.0,psi,0,0);
|
||||
for(int s=1;s<Ls;s++){
|
||||
axpbg5y_ssp(chi,1.0/cc_d[s],psi,-1.0/See[s-1],chi,s,s-1);
|
||||
}
|
||||
// Apply Dinv
|
||||
for(int s=0;s<Ls;s++){
|
||||
ag5xpby_ssp(chi,1.0/See[s],chi,0.0,chi,s,s); //only appearance of See[0]
|
||||
}
|
||||
// Apply Uinv = (Linv)^T
|
||||
axpby_ssp(chi,1.0/cc_d[Ls-1],chi,0.0,chi,Ls-1,Ls-1);
|
||||
for(int s=Ls-2;s>=0;s--){
|
||||
axpbg5y_ssp(chi,1.0/cc_d[s],chi,-1.0*cc_d[s+1]/See[s]/cc_d[s],chi,s,s+1);
|
||||
}
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
this->MooeeInv(psi,chi);
|
||||
}
|
||||
|
||||
// force terms; five routines; default to Dhop on diagonal
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField D(V.Grid());
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==(Ls-1) ){
|
||||
ag5xpby_ssp(D,Beta[s]*ZoloHiInv,U,0.0,U,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(D,cc[s]*Beta[s]*sign*ZoloHiInv,U,0.0,U,s,s);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
this->DhopDeriv(mat,D,V,DaggerNo);
|
||||
};
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField D(V.Grid());
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==(Ls-1) ){
|
||||
ag5xpby_ssp(D,Beta[s]*ZoloHiInv,U,0.0,U,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(D,cc[s]*Beta[s]*sign*ZoloHiInv,U,0.0,U,s,s);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
this->DhopDerivOE(mat,D,V,DaggerNo);
|
||||
};
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
|
||||
FermionField D(V.Grid());
|
||||
|
||||
int sign=1;
|
||||
for(int s=0;s<Ls;s++){
|
||||
if ( s==(Ls-1) ){
|
||||
ag5xpby_ssp(D,Beta[s]*ZoloHiInv,U,0.0,U,s,s);
|
||||
} else {
|
||||
ag5xpby_ssp(D,cc[s]*Beta[s]*sign*ZoloHiInv,U,0.0,U,s,s);
|
||||
}
|
||||
sign=-sign;
|
||||
}
|
||||
this->DhopDerivEO(mat,D,V,DaggerNo);
|
||||
};
|
||||
|
||||
// Constructors
|
||||
template<class Impl>
|
||||
ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
|
||||
GaugeField &_Umu,
|
||||
GridCartesian &FiveDimGrid,
|
||||
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||
GridCartesian &FourDimGrid,
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD M5,const ImplParams &p) :
|
||||
WilsonFermion5D<Impl>(_Umu,
|
||||
FiveDimGrid, FiveDimRedBlackGrid,
|
||||
FourDimGrid, FourDimRedBlackGrid,M5,p),
|
||||
mass(_mass)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
assert((Ls&0x1)==1); // Odd Ls required
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
conformable(solution5d.Grid(),this->FermionGrid());
|
||||
conformable(exported4d.Grid(),this->GaugeGrid());
|
||||
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
|
||||
}
|
||||
template<class Impl>
|
||||
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
conformable(imported5d.Grid(),this->FermionGrid());
|
||||
conformable(input4d.Grid() ,this->GaugeGrid());
|
||||
FermionField tmp(this->FermionGrid());
|
||||
tmp=Zero();
|
||||
InsertSlice(input4d, tmp, Ls-1, Ls-1);
|
||||
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
||||
this->Dminus(tmp,imported5d);
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user